
Technical University Hamburg-Harburg

A Module Generator for
Web application interfaces to CCMS

Master Thesis
Submitted in partial fulfilment of the requirements for the degree

Master of Science in Information and Media Technologies

Submitted by:

Shafeer Hussain Hajamohideen
Information and Media Technologies

Matriculation No. 16752

Supervised by:

Prof. Dr. Joachim W. Schmidt
Institute for Software, Technology & Systems

Prof. Dr. Friedrich H. Vogt
Institute of Telematics

M.Sc. Sebastian Boßung
Institute for Software, Technology & Systems

October 2006

i

Declaration

I declare that:

this work has been prepared by myself,
all literal or content based quotations are clearly pointed out,
and no other sources or aids than the declared ones have been used.

Hamburg, 31st October 2006
Shafeer Hussain, Hajamohideen

ii

Acknowledgements

I would like to thankProf. Dr. Joachim W. Schmidtof Institute for Software, Technology and
Systems (STS) for giving me this opportunity to do the master thesis at his department andProf.
Dr. Friedrich H. Vogtof Telematics (TI5) department for being the co-supervisor.

I extend my special thanks toMr. Sebastian Bossungfor his guidance and thoughts during the
entire thesis. I am also thankful toDr. Hans-Werner Sehringfor his support, advice and the
fellow students at the STS department sharing their views on the project.

Finally, I wish to thank all my friends who stood by me for all the good and bad times, their
help and suggestions during critical times. Also, I am grateful to my parents for keeping faith
on me, their patience andlove.

Hamburg, Germany Shafeer Hussain, Hajamohideen

iii

Abstract

Information systems development and its user interface design are a complex task and has been
undertaken using different methods and techniques. It must fulfill a variety of application and
architectural requirements. Every information system has a user interface which for many pur-
poses is perceived as the whole system. For the user, the distinction between interface and
system looks, for most practical purposes, meaningless.

Furthermore, applications have domain models that are nimbly changed and also evolve to the
new requirements that are added during their lifetime. Many users work collaboratively on data
based on a common domain model of the application domain. The application needs to handle
changes in a way that ensures less or no rework. A main source of problems of such system
originates from the lack of a systematic subdivision of large software systems into manageable
modules. A change in the application’s domain model affects most part of the system, resulting
in a time consuming and error prone adjustments. As a consequence developers are traditionally
involved in a complex patchwork of refactoring various parts of the system manually to keep in
sync with the system’s requirements.

The Conceptual Content Management Systems have developed an approach to stay open to
constantly changing domain models and dynamically evolve and integrate the changes without
a manual intervention. This approach is based on a conceptual modeling language, a model
compiler framework and a system architecture. The model compiler generates a system that
conforms to openness and the system architecture ensures that the system adapts to the changes
dynamically. Although, CCMSs lacks a user interface that would be able to work on the same
approach. This thesis work is aimed at addressing this problem and explore the possibilities to
provide a web application interface to CCMS.

Contents

List of Figures vii

List of Tables vii

Listings viii

1 Introduction 2

1.1 Problem statement and objectives .2

1.2 Approach . 3

1.3 Related work .4

1.4 Outline of the thesis .5

2 Conceptual Content Management Systems 6

2.1 Conceptual Content Management .6

2.2 Asset Definition Language .7

2.2.1 Characteristic .8

2.2.2 Relationship . 8

2.2.3 Constraint . 9

2.3 Model Compiler . 9

2.4 CCMS Architecture . 9

2.4.1 Modules .10

iv

Contents v

2.4.2 Components .12

2.4.3 Systems .12

2.5 Summary .13

3 Frameworks for building Web Application Interfaces 14

3.1 Introduction .14

3.2 Using existing Web Application Frameworks15

3.3 Spring Application Framework .16

3.3.1 Spring Web MVC .16

3.3.2 Application development with Spring Web17

3.3.3 Using Spring Web for the Presentation layer18

3.4 JavaServer Faces .19

3.4.1 Faces and MVC .19

3.4.2 Using JavaServer Faces for the Presentation layer24

3.5 Summary .26

4 Designing a Web Application Interface 27

4.1 Creating User Interface from an Asset Model27

4.1.1 Asset Members .28

4.1.2 Content .29

4.1.3 Characteristics .29

4.1.4 Relationships .30

4.1.5 Inherited Asset Members .33

4.1.6 Operations on Asset .34

4.2 Technology Dependent Artifacts in the User Interface36

4.2.1 Importance of Type Conversion .36

Contents vi

4.2.2 Validating User Input .36

4.2.3 Bean Management .37

4.2.4 Page Navigation Rules .38

4.3 Design overview of Web application generator39

4.4 Summary .40

5 Implementation of a Web Application Generator 42

5.1 Structure of Code Generation .42

5.2 Generating Backing Beans .43

5.3 Generating Views with JSP and Faces UI components45

5.4 Generating Configuration Files .48

5.5 Symbol Table .49

6 Conclusion and Future work 50

6.1 Main Contribution .50

6.2 Limitations .51

6.3 Future Work .52

Appendices 53

A Developing Web Applications with Spring 53

A.1 Configuring Spring MVC .53

A.2 Configuring application .54

B Configuration and Generated Code Samples 57

Bibliography 67

List of Figures

2.1 Content-Concept representation of an Asset [27]7

2.2 Model compiler architecture .10

2.3 Component implemeting a User Interface based on the model M1 12

3.1 MVC design pattern .15

3.2 Overview of a typical Spring web application [20]17

3.3 A view of JavaServer Faces application [22]20

3.4 Web application infrastructure as a stack of services [22]25

4.1 Association between Model - Backing Bean - View28

4.2 Overview of navigation rules .38

4.3 Meta model of the Intermediate Asset Model [29]39

5.1 Web application generator .43

vii

List of Tables

4.1 Overview of the Application Beans, its Scope, Properties and Actions35

viii

Listings

2.1 Example of a model containing Asset definitions8

3.1 An example of a navigation rule in JSF .24

4.1 Asset definition of product catalog application28

4.2 Representing Asset characteristics .29

4.3 Types of Relationship between Assets .30

4.4 Representing One-to-One relationships .31

4.5 Representing Many-to-Many relationships .31

4.6 Example view for Many-to-Many relationship as Combobox32

4.7 Example for populating a Many-to-Many relationship property32

4.8 Example of inherited Asset members .33

4.9 Representing inherited Asset members .33

4.10 Example view for inherited Asset members34

4.11 Example of a custom validator forSelectManyUI component 37

4.12 Example of a Managed Bean Configuration37

4.13 A typical code generation process for generators40

5.1 Generating<AssetBean>s and<AssetListBean>s from Assets 44

5.2 Generating<AssetBean>properties from Asset characteristics44

5.3 Generating<AssetBean>properties from Asset relationships45

5.4 Generating a create page for an Asset .46

ix

Listings 1

5.5 Code snippet for adding a characteristic to a form page46

5.6 Code snippet for adding a relationship to a form page47

5.7 Generating managed beans to register<AssetBean>and<AssetLisBean>s . . . 48

5.8 Generating navigation case for create page .49

A.1 Configuring the Spring MVC DispatcherServlet53

A.2 Configuring the URL mapping patterns .54

A.3 Register ContextLoaderServlet and bean configuration files54

A.4 Register the ProductListController .55

A.5 ProductListController .55

A.6 Register the InternalResourceViewResolver56

A.7 Register the catalog service .56

B.1 WebAppGenerator Configuration .57

B.2 Generated backing bean of theProduct Asset 58

B.3 Generated list page of theProduct Asset . 62

B.4 Generated create page of theProduct Asset 64

B.5 Generated view page of theProduct Asset . 65

Chapter 1

Introduction

Information systems development and its user interface design are a complex task and has been
undertaken using different methods and techniques. It must fulfill a variety of application and
architectural requirements. Every information system has a user interface which for many pur-
poses is perceived as the whole system. For the user, the distinction between interface and
system looks, for most practical purposes, meaningless.

Furthermore, applications have domain models that are nimbly changed and also evolve to the
new requirements that are added during their lifetime. Many users work collaboratively on data
based on a common domain model of the application domain. The application needs to handle
changes in a way that ensures less or no rework. A main source of problems of such system
originates from the lack of a systematic subdivision of large software systems into manageable
modules. A change in the application’s domain model affects most part of the system, resulting
in a time consuming and error prone adjustments. As a consequence developers are traditionally
involved in a complex patchwork of refactoring various parts of the system manually to keep in
sync with the system’s requirements.

1.1 Problem statement and objectives

In this thesis, an approach based on a model for Conceptual Content Management (CCM) [27]
is used for information system development. The CCM approach profits from the dynamic,
model-driven generation of smaller modules, which can be combined automatically into the
full system. The generation process uses a CCM model of the application domain(s) from
which a compiler framework dynamically generates the schema-dependent parts of the system.
Due to the dynamic nature of this generation process, it is possible to provide adequate support
for both schema evolution and personalization of such a system.

2

1.2 Approach 3

However, the current development stage of the CCM does not have means to provide a user
interface to its conceptual content management system (CCMS) [4]. This thesis work is aimed
to address this problem:

• To generate a web application interface based on the domain model of the application and
thus,

• To explore the possibilities in providing a user interface that fulfill the requirements of
open and dynamic content management systems.

Web applications are built according to a layered architecture and is also based on a application
domain model. Thedata layerwhich stores the information including, data, content, attributes
of the domain entities as well as the management information needed to enable all the operations
of the application and presentation layers. Theapplication layermediates between data storage
and presentation. Thepresentation layerrepresents the information to the user based on the
data and takes user input to navigate, create, modify and delete data. All these layers are highly
depend on the conceptual model of the application. Since the layers are interrelated, despite the
layering, changes made to one layer affects the whole system. This aspect of system evolution
based on changes to the schema can be complemented by the CCM approach and thus leads up
to the following objectives of this thesis:

• To generate a web application interface to conceptual content management systems

• To identify and generate schema dependent part of the system

• To find ways to integrate the dynamic code generation with manually written application
code, thus to support schema evolution and personalization

1.2 Approach

The main objective is to provide a user interface to a CCMS, which in context of a web appli-
cation is the presentation layer that is responsible for interacting with the user. In CCMS, the
separation of concerns are enabled by layers of modules. The main concern of providing a web
application interface to the CCMS would be to implement the server module. The server mod-
ule is responsible for providing an interface to enable external communication, be it a human
interface or a standardized distribution mechanism.

The presentation layer not only represent the information but also to interact with the user.
Therefore, the requirements to implement the user interface are not only the conceptual model
but also the usability issues. Usability serves as a measure of how effective, efficient and satis-
fying the usage of the system is from the user’s perspective [12]. Most of the web application

1.3 Related work 4

functionalities such as representation of data, form based input and manipulation of data can be
generated. Other issues such as error handling, custom layout and configuration require manual
extension of the generated code. This part of the system should be invariant to the schema and
has to be integrated on top of the generated code. The functionalities of the data layer and the
application layer would be implemented by the respective modules below the server module.

1.3 Related work

There has been several attempts to provide a user interface to CCMS, either by generic means
or as a homogeneous system. As pointed out in [4], user interface development deals with
numerous special cases and requires some manual work. The following four possibilities have
been identified to influence the generation of user interfaces:

• Changing the conceptual domain model

• Configuring the generator

• Passing parameters to the generated system, and

• Hand-coding parts of the user interface

A generator for web applications has been implemented that combines these four cases but is
weak in its configuration language.

In [26], the author provides an approach toconceptual content management application devel-
opment by means of storyboarding. It is based on theSiteLang[35] modeling paradigm for
rapid prototyping of user interfaces and provides a web application specification language that
allows to generate a web application by means of Storyboarding.

[24] presents another approach to model user interfaces for CCMSs. In this work, a custom
UI Component model has been proposed in addition to the domain object model to implement
a prototypical Swing (fat client) interface. It also mention about user interfaces created in
generic fashion by means of User Interface Markup Language (UIML) [1]. UIML is an XML
based language for describing user interfaces that can be implemented on any platform. The
advantages of such languages is that it can be used in a verity of platforms such as desktops,
handheld PCs, and Mobile phones. Another example in this area is the Abstract User Interface
Markup Language (AUIML) [23] which assists in developing graphical user interfaces running
as Swing (fat client) or Web applications (thin clients). XML User Interface Language (XUL)
[6] and eXtensible Application Markup Language (XAML) [11] are some more examples of
XML-based user interface definition languages. The drawback, as studied in this work, is that

1.4 Outline of the thesis 5

implementing user interfaces using the above mentioned technologies are not flexible enough
coping with system evolution.

All these works are done to build user interfaces for a open and dynamic content management
system based on the CCM approach. This thesis works aims to contribute a generic web appli-
cation interface (thin-client) by exploring the possibilities in today’s web development world in
realizing one for the CCMSs.

1.4 Outline of the thesis

In the next chapter 2 the conceptual content management approach is discussed, giving a more
detailed overview of its approach, the asset language, the compiler framework and its archi-
tecture. Chapter 3 will discuss the existing application frameworks, analyze its features and
explores how they can be used to build an interface for a web application that supports the open
and dynamic content management system. Chapter 4 will explain the design decision made to
transform the conceptual model into the different facets of the chosen application framework.
Chapter 5 discuss further on implementation details of a web application generator that follows
the design decisions and will also address any limitations in realizing it. Chapter 6 will explain
the main contributions that have been done in this project and also the limitations and future
work based on this thesis.

Chapter 2

Conceptual Content Management Systems

Chapter 1 explained the difficulty in maintaining software adaptations to information systems
which are based on a common conceptual model. Since users need to have a personal and
subjective view of the conceptual model, the applications require openness (defined in next
section) to the model so that users can change it according to their needs. Also, the system must
dynamically adapt to the changes made to the model without manual intervention. This chapter
discusses how these issues are handles using the CCM approach.

2.1 Conceptual Content Management

A system based on the conceptual content management approach should allow users to support
subjective view of the application domain, allowing users to express their subjective view on the
conceptual model. Furthermore, the system must also be able to interact with the personalized
view of the individual users as well as to maintain the content available before personalization
in order to exchange data between other users of the system. As proposed in [9], the CCM
approach address these requirements by developing a open and dynamic content management
system.

The generated systems are based on a component architecture and each component are specific
to the application domain. Components are constructed from modules which provide a separa-
tion of concerns. A module is a unit with interfaces to all other modules. Each of these specific
modules are created by a generator. A compiler framework which constitutes a set of generators
will generate the complete system. The CCM architecture enables the reuse of code by using
the same module implementation on various levels.

As seen above, to enable the users to change the conceptual model to the underlying system
and to react to the changes without a manual intervention, the system supports the following
properties:

6

2.2 Asset Definition Language 7

• opennessthat allows the users to express their personal view of the application domain

• dynamicsthat allows the users to employ their personalized view to create instances of
the system

To achieve this the CCM approach contributes:

• A conceptual modeling language called theAsset Language

• A model compiler frameworkthat generates conceptual content management systems
(CCMS)

• A system architecturefor these systems

The primitives of openness and dynamics allow the system to realize schema personalization,
schema evolution and interaction of application domains [29].

2.2 Asset Definition Language

In the CCM approach, the entities of real world are modeled as content-concept pairs called
Assetsbased on the observation that neither content nor concept exist in isolation. Figure 2.1
represents an Asset. Thecontentrepresents the multimedia content—texts, images, maps videos
etc—of an Asset whereas theconceptconsists of thecharacteristicproperties of entities, its
relationshipwith other assets andconstraintsto those characteristics and relationships. More
details on the Asset language can be found in [31].

Figure 2.1: Content-Concept representation of an Asset [27]

2.2 Asset Definition Language 8

The Asset Definition Language (ADL) [27] defines the conceptual model of the application
domain. The model consists of an aggregation of Asset class definitions which describes the
structure of assets. The structure and syntax of Asset definitions corresponds to the class defi-
nitions of the object-oriented languages. Listing 2.1 illustrates an example a Asset definition:

model Iconography
from Artists import Artist

class Picture {
content image : Image
concept
characteristic title : String
characteristic placeOfCreation : Place
relationship artist : Artist
constraint placeOfCreation : artist . placeOfBirth

}

class Portrait refines Picture {
concept
characteristic sizeX : int
characteristic sizeY : int

}

Listing 2.1: Example of a model containing Asset definitions

The Asset definitions are organized under the keywordmodel followed by its name and the
Asset classes belonging to the model. An Asset class consists of the two sections, thecontent
which references to the content part (multimedia) andconcept section which consists of the
conceptual part representing the attributes of the entity by the following three contributions.

2.2.1 Characteristic

Characteristic values are inherent to an entity and are identified by a name and a type handle
determined by the underlying base language. In the above example everyPicture has a title
of typeString . The currently supported base language for these type handles is Java.

2.2.2 Relationship

Relationship between assets describe entities by their relation to others. It is identified by a
name and the type of the Asset to which it is referred. The relationshipartist in the exam-
ple references to another entity described by the AssetArtist that has been imported from
another model calledArtists . An asterisk (*) on a relation type refers to a many-to-many
relationship on a set of associated Asset instances.

2.3 Model Compiler 9

2.2.3 Constraint

Constraints impose value restrictions on the attributes of instances of an Asset. In the example
here, theplaceOfCreation in which thePicture has been created is required to be the
same as that of theplaceOfBirth of the associatedArtist .

Besides Asset definition language, there is also theAsset Query LanguageandAsset Manip-
ulation Language. They provide means to query Asset instances (lookfor), to create new
instances (create), to manipulate (modify) as well as delete (delete) existing instances.
These commands have variants that can handle single or multiple instances at one time as well
as more complex tasks. For more details refer to [31].

2.3 Model Compiler

A complete CCMS is created by an instance of the compiler framework using an appropriate set
of generators inserted at extension points. The compiler is created as framework which controls
the overall compilation process following the classical compiler architecture. The framework
consists of frontend and backend components where generators form the backend. A central
generator of the backend is a API generator which takes the conceptual domain model and
produces a uniform module API. A server module for a web service would require a generator
for WSDL interface descriptions and the uniform module API. Section 2.4.1 explain details
about the different modules which implement the module API, to provide different functionality
to the system. The execution of generators are scheduled by interdependencies based on a
extended notion of symbol tables, which are used for communication between the generators.
The symbol tables also provide the schema and API definitions. Figure 2.2 shows a model
compiler framework.

2.4 CCMS Architecture

To satisfy the dynamic property of the CCM approach, the conceptual content management sys-
tems (CCMSs) must dynamically react to changes made by the users to the application domain
model. To achieve this behavior the CCMS architecture follows a standardization of creating a
complete system from a set ofmoduleswhich are the building blocks of individual systems at
large.

2.4 CCMS Architecture 10

Figure 2.2: Model compiler architecture

2.4.1 Modules

Modules are self-contained units, each having a specific purpose in the system as a whole to
provide separation of concerns. They are the generation targets of the compiler framework and
are arranged in layers. The modules on the each layer use the modules on the layer below
them and provide services to the layer above. A standardized module interface common to
all modules provide the means to interact between modules. This interface provide means to
create, modify and delete assets as well as query existing ones. All these operations have variant
forms that deals with a single or a set of assets. The following operations describe one of these
variants:

• create(class, inits) : returns a new Asset instance of typeclass and initializes its
attributes according toinits .

• modify(a, updates) : updates the attributes of an Asset instancea with updates which
can contain information in the form of name-value pairs

2.4 CCMS Architecture 11

• delete(a) : deletes an asset instancea

• lookfor(class, constraints) : executes a query for the instance ofclass with the
givenconstraints

Due to the common interface, the operations are available to all modules and deal with Assets of
a fixed model. The modules can be combined in various ways, while still being domain specific.
The kind of modules available are discussed below.

Client Module

Client modules provide the uniform interface to the modules on the higher layers. They map
the calls they receive to the third party system, such as a database system used to store Asset
instances. They do not use any further modules and other client modules can forward calls to
remote systems, such as a system accessed through a web service.

Server Module

Servermodules are complementary to client modules. They use the layers below them through
the standard interface but do not provide this interface. They are intended to provide other
interfaces, for example a user interface (thin or fat clients) to the CCMS or a web service.

Transformation Module

Transformationmodules use as well as provide the standard interface and based on exactly one
module on the layer below them. They have three types of transformations, namelyTemporal
Transformationwhich acts as persistence mechanism,Spatial Transformationwhich is used
to achieve physical distribution between systems andSchema Transformationuse and provide
the standard module interface but conform to different schemata and generate a module for
instance-level transformation of Assets.

Mediation Module

Mediationmodules act as a mediator proposed by [36] to provide access to different sources
of information in a homogeneous way. Mediators include a wrapper around the information
sources and some mediation logic to tie them together. This mediation logic is implemented by
mediation modules and the wrapper by transformation modules.

2.4 CCMS Architecture 12

Figure 2.3: Component implemeting a User Interface based on the model M1

Figure 2.3 shows a component implementing a web based user interface based on the conceptual
(domain) model M1. The client module is responsible for providing the data stored in a database.
The server module queries the client module’s standard module interface and receive a reply
back with the data it needs to present to the user. More details on modules and its uses can be
found in [29].

2.4.2 Components

Modules of a same model are combined intocomponentsto achieve a particular task, for ex-
ample providing personalized instances. Components provide services to their modules, the
important one being identifier resolution. Based on the identifier of an Asset instance, each
module can ask its component to retrieve the instance. This request will be delegated to all top
modules by the component and returned to the caller. This enables a module to reach instances
that are not stored in the base module but elsewhere in the component.

The assembly of a component is described in its configuration containing the details on which
modules the component is composed of, their dependencies as well as the parameters (e.g
database names,) to pass to the modules. Modules can be reused in different location by means
of the component configuration. Components interact with other components by through Trans-
formation modules, explained in the previous section. For interaction with external systems
such as a relational database, a web service or a user interface, the boundary of component is
described in the client or server module.

2.4.3 Systems

A conceptual content management system is formed by combining the components. On the one
hand, components of the same system can use different models depending upon the openness
and dynamics of the users personalized view on the application domain. For this reason, distinct
components are necessary to accommodate the personal opinion of the user as well as to ensure

2.5 Summary 13

the accessibility of existing instances. On the other hand, inter-domain operations require two
components which handles the assets of that particular domain. More details on how application
models can be used in different ways and how application domains can be modeled by reusing
existing models can be referred in [29].

2.5 Summary

The CCM architecture is suited for generating systems based on a conceptual model. Its ability
to combine modules to realize specific functionalities and standardized interfaces with domain
specification make it possible to generate such systems. It supports system evolution by utilizing
openness and dynamics. The architecture and its corresponding facilities for system creation
have been used in many application projects. As seen above, the server module has to be
implemented to provide a web application interface to CCMS. The possibilities of providing
such a thin client using existing technologies and frameworks will be discussed in the next
chapter.

Chapter 3

Frameworks for building Web Application
Interfaces

In section 1.2 proposed that to provide a web application interface to the CCMS only the pre-
sentation layer of an conventional web application build on a layered architecture has to be
implemented. Furthermore, the model compiler generates the target code in the base language
of the CCMS, which currently use Java. For building enterprise application in Java, the J2EE
platform has been emerged as a standard platform. To ensure a seamless interaction to the
changes made to the domain model, the frameworks used should be able to support the open-
ness and dynamics of the CCM approach.

3.1 Introduction

Design patterns are proven and reusable and are most important resources to application de-
velopers. They provide a common language to express experience and save time and effort.
One of the core J2EE design pattern used in today’s most web applications is the Model-View-
Controller (MVC) pattern. Figure 3.1 shows a variation of the MVC pattern specific to web
applications, known asModel 2. TheModelconsists of plain old java objects (POJOs), EJBs
and in CCM its Assets. TheViewcan be JSPs, XSLT or any other view technology. TheCon-
troller is always implemented as a servlet.

It creates a decoupling between data access, data presentation and user interaction layers. This
enables fewer interdependencies between components and higher level of re-usability, such as
implementing new views without changing the underlying code. This separation allows dif-
ferent people work with the layers independently and also lets portions of the some layers be
integrated before all of the three layers are complete. These are the benefits why most frame-
works implements some variation of this MVC pattern for building interactive web applications.

14

3.2 Using existing Web Application Frameworks 15

Figure 3.1: MVC design pattern

3.2 Using existing Web Application Frameworks

The “first principle of reusable object-oriented design” advocated by the classic Gang of Four
(GoF) design patterns book [14] is: “Program to an interface, not an implementation”. This
decouples the interfaces from their implementation. Using interface-based architecture is im-
portant in J2EE application because of their scale. A few advantaged of an interface-based
approach include:

• The ability to change the implementation class of any application without affecting calling
code. This enables us to parameterize any part of an application without breaking the
component.

• Total freedom in implementing interfaces. There is no need to commit to an inheritance
hierarchy. However, its still possible to achieve code reuse by using concrete inheritance
in interface implementations.

• The ability to provide simple test implementations and stub implementations of applica-
tion interfaces as necessary and enable multiple teams to work parallel after they have
agreed on interfaces.

More about design techniques and recommendations for J2EE applications can be found in
[18]. The best practice would be to choose an existing and proven web application framework
for e.g., Struts [2], WebWork [25], Spring [20] and JSF [33] to name a few. The next section
analyzes two of these frameworks which could prove to be flexible and provides components to
build a dynamic, server-side user interface for CCMSs.

3.3 Spring Application Framework 16

3.3 Spring Application Framework

Spring is a open source framework which allows to build lightweight and robust J2EE appli-
cations. It follows the above principle of implementing to interface and based on the famous
Inversion of Control (IoC) / Dependency Injectionpattern. The concept behind this pattern is
expressed as the Hollywood Principle: ’Don’t call me, I’ll call you’. Martin Fowler’s article
[13] would give a decent insight of this pattern. The basic use of Inversion of Control is that
objects are not created directly, but described how should they be created. The components and
services are not connected together in code but a configuration file contains the description on
which services are needed by which components. A container, in the case of Spring framework,
the IoC container takes the responsibility to hook everything together.

3.3.1 Spring Web MVC

The Spring framework consists of seven well defined modules built on top of the core container,
which defines how beans are created, configured and managed. Figure 3.2 below shows a
layered architecture of a full fledges web application using Spring framework.

Each of the seven modules shown at the background can stand on its own or implemented
together with one or more of the others. The functionality of each of these modules are as
follows:

• TheCore provides the essential functionality of the framework. The primary component
here is thereBeanFactory , which implements the Factory pattern and the IoC pattern
separating the application’s configuration and dependency from the application code.

• Context is a configuration file providing a way to access beans and services such as JNDI,
email, internationalization, validation and scheduling.

• The AOP module integrates the aspect-oriented programming functionality into the
framework.

• TheDAO is a JDBC abstraction layer that simplifies database access and manges excep-
tion handling by parsing vendor specific error codes.

• The ORM package provides integration layers for several ORM frameworks including
JDO, Hibernate and iBatis and comply with the transaction management and DAO ex-
ceptions hierarchies mentioned above.

• Spring’sWeb modulebuild on top of application context module, providing features such
as multipart functionality and contexts for web applications. It supports integration with
other frameworks like Struts, WebWork etc.

3.3 Spring Application Framework 17

Figure 3.2: Overview of a typical Spring web application [20]

• TheMVC framework is a full featured MVC implementation for building web applica-
tions. It is highly configurable, provides a clean separation between code and web forms,
accommodates numerous view technologies including JSP, Velocity, Tiles, iText, POI and
even JSF.

The architectural benefits of Spring, as proposed by the author in [19], is that one can choose
to use part of it in isolation, either be it to simplify the use of JDBC or to manage business
objects. It is essentially dedicated to enable you to build applications using POJOs to implement
the business logic tier, which would be applicable to a wide range of environments. Form
controllers seamlessly integrate the web layer with the domain model, removing the need of
ActionForms to transform HTTP parameters to values of the domain model. It allows to
reuse business objects and data-access objects that are not tied to specific J2EE services. Such
objects can be reused across Web or standalone applications without any hassle.

3.3.2 Application development with Spring Web

The MVC module is designed around aDispatcherServlet that dispatches request to
handlers with handler mappings, view resolution, locale as well as support for file up-

3.3 Spring Application Framework 18

loads. The default request handler is a simpleController interface with just one method,
ModelAndView handleRequest(request, response) . Spring contains different kinds of
controllers, which are form-based such asAbstractFormController or command-based
AbstractCommandController and alsoAbstractWizardFormController that execute wiz-
ard style logic. Application controllers typically subclass them and an appropriate base class
has to be selected with respect to the form that is being used on that view. Spring allows any
object to be used as a form or command object and need not require any framework specific
interface or base class. Understanding these features and how they enable building an web
application interface with Spring Web is demonstrated in A.

3.3.3 Using Spring Web for the Presentation layer

Spring’s full-featured Web MVC module is powerful and provides a clean division between
controllers, JavaBean models and views. Its is flexible and completely based on interfaces. As
seen in A, it separates the roles of the controller, model, dispatcher and the handler object which
makes them easier to customize. Spring also provides mechanism to use custom templates by
implementing the Spring View interface to integrate it.

The benefits of using Spring MVC as the user interface framework would be that it is view
agnostic, which means that the developer is not forced to use JSP, but any other view technolo-
gies like XML/XSLT. This makes the application maintainable for future update or substituting
the current one with another one (JSTL/JSF) or enhance to a newer version (JSP 2.0/EL) or
using different technologies in conjunction. In this case, only the page templates has to be
re-generated leaving the controllers and the form or command objects intact.

Apart from choosing a view to present to the user, the presentation layer must also enforce con-
straints on model data and also validating user inputs. The way these responsibilities are handled
has a significant impact on the development efforts, which in our case, code generation. Choos-
ing Spring Web for the presentation layer needs the generator to implement controllers suitable
to the page being processed. For code generation, this means that for every view associated
with a model object, choosing an appropriate controller would be difficult and error prone.

Even though any object can be used as form object or command object, it is feasible to imple-
ment one for each Asset to provide any view specific data and the operations performed on those
Assets. Then, generating bean configuration files registering the controllers and their command
classes and views as well as resource mappings.

Since validation and conversions in Spring are evaluated as application-level errors, invalid sub-
missions should be handled by a validator object. The validator requires implementation of two
methods : thesupport and thevalidate , which check the validation method and carries out the
validation. This requires for every form objects, the generator should implement a validator to
handle those application errors thrown by invalid form submission. All these features are highly
flexible, but would rather be a tedious task considering the complexity of code generation.

3.4 JavaServer Faces 19

3.4 JavaServer Faces

JavaServer Faces (JSF or simplyFaces) is an increasingly popular component-based, event-
driven, tools-friendly server-side framework. It enforces a clean separation of presentation and
business logic. However, it focuses more on the UI side of things and can be integrated with
other frameworks. The functionality provided by JSP 2.0, JSTL and MVC would be enough to
generate simple dynamic web pages with limited user interaction. But when it comes to devel-
oping complex user interfaces, lot of work has to be done to extract request parameters, validate,
process and render them back to HTML controls, which is tedious and error-prone. Faces allows
easy-to-use tools that shorten the time needed to implement server-side user interfaces.

3.4.1 Faces and MVC

Faces follows the MVC architecture by providing a controller servlet, allows separation of the
view using renderers and the model using component class and an event based mechanism.
The way components relate to each other is described using XML markup with custom JSP tag
libraries. The following features differentiate Faces from other application frameworks.

• A UI component modelwith event listeners and handlers for object-oriented web appli-
cation development.

• Bean management with Backing beansthat are JavaBeans associated with the UI com-
ponents and separates UI component objects from objects that perform business logic and
process data.

• Extensibility of UI components that compose the user interface of Faces application by
allowing to configure, reuse and extend the components to develop complex ones.

• Flexible rendering modelthat separates the UI components functionality from the view.

• Extensible conversion and validation modelto provide a enhanced protection by ex-
tending the standard converters and validators.

In the following sections, the key conceptual base of these features that Faces provides are
briefly explained to understand what they mean in a Faces context and how they are used in
writing a Faces application. A detailed insight into these features, list of component tags, and
other information on JSF, please refer to the JavaServer Faces specification at [16]. Figure 3.3
shows a high-level view of a Faces application and how it integrates with other subsystems, like
EJB or database services.

3.4 JavaServer Faces 20

Figure 3.3: A view of JavaServer Faces application [22]

UI Components

Faces user interface components are stateful objects that provides specific functionality for in-
teracting with an user. Unlike in RAD (Rapid Application Development) environments like
Visual Basic, UI components in Faces are build on JavaBeans with properties, methods, and
events. User interface elements are packed as a component, which makes development faster
and easier because the basic functionality of a components is same and can be reused with only
changing some properties such as color or style. They are specifically designed for web applica-
tions which means that they are on the server side of the application rather than the client side.
They are organized into aview, which is a tree of components usually displayed as a page. This
enables the components remember their values between requests. Components are identified
by a component identifier, which can be set by the developer and can be associated with one
another through named relationships, for example “header” or “footer”—calledfacets.

Building user interfaces with Faces is more about assembling and configuring the components
than writing tedious code. Faces includes standard components such as labels, hyperlinks, text
boxes, list boxes, radio buttons, panels and data grids. Apart from these standard components,
it also provides way to extend or create custom components.

3.4 JavaServer Faces 21

Renderer

Renderersare responsible for displaying a UI component and translating a user’s input into
the component’s value. They are organized intorender kitswhich focus on a specific type of
output. It works like a translator between the client and server. It creates a representation of
a component in a way that the client can understand. It also processes the response from the
user to extract the correct request parameters and set the component’s value based on those
parameters.

For example, the following code defines aHtmlInputText component:

<h:inputText id= " name" size= " 20" maxlength= " 30" />

This component when encoded and sent to the user will produce the following HTML snippet:

<input id= " myForm: name" type =" text " name=" myForm: name" size =" 20"
maxlength =" 30" />

Renderers can be designed to work with one or more UI components, and a UI component can
be associated with many different renderers.

Validator and Converter

Validators ensure that the value entered by a user is acceptable. It is a complex and error prone
task to check them with the correct type of data to be entered and the displaying the errors
appropriately. Faces handles validation not only through validator methods in backing beans
or in validator classes and but also at the UI component level. Although, component level
validation can handle only simple validation such as length or range of the input, pluggable
external validators can be used that can be attached to any component. One or more validators
can be associated with a single UI component. The errors encountered by the validator will
be added to the current message list which makes it easy to display the errors back to the user
using standard Faces components. The following example shows aLength validator associated
with an HtmlInputText component that check if the given user input is between two and ten
characters long.

<h:inputText>
<f:validateLength minimum= " 5" maximum=" 10" />

</h:inputText>

3.4 JavaServer Faces 22

Components usually associated with backing bean properties, which can be aString repre-
senting a name or aDate representing a date-of-birth. Converts a component’s value to and
from a string for display. A UI component can be associated with a single converter. They also
handle localization and formatting. For example, theDateTime converter can format aDate

into a short, long or a full style. The date will also consider the user’s locale while displaying it
in the given style. The following code shows how to register a converter on anHtmlInputText

component:

<h:outputText>
<f:convert_datetime type= " both " dateStyle= " long " />

</h:outputText>

Apart from converting common data types, converters also allow application developers to write
converters for their own model objects.

Managed and Backing Beans

Faces introduces two new terms :managed beanandbacking bean. The managed beans are spe-
cialized JavaBean objects managed by Faces implementation to describe how a bean is created
and managed. They collect values from UI components and implement event listener methods.
They can also hold references to UI components.

The backing beans plays the role of the controller in MVC pattern. They contain properties
that has to be retrieved from users and handling-logic associated with the UI components used
on the page. A component is associated with a backing bean through the Faces expression
language (EL), which is similar to the JSTL and JSP 2.0 expression languages. For example,
the following code snippet looks up anHtmlInputText component’s value to thename property
of an PersonBean object. Whenever the value of the component or thepersonBean.name

property changes, they are kept in sync automatically.

<h:outputText id= " personName " value= " #{ personBean . name} " />

Each backing bean property is bound directly with either a component instance or its value. It
also defines methods that process some functions to manipulate a component, such as validating
the component’s data or handling events fired by the component and the changes are updated
the next time the page is displayed to the user. A backing bean can be shared with one or more
views and vice-versa. This avoids code duplication forcing a one-to-one relationship between
a backing bean and a view. Understanding how Faces interacts with backing beans and model
objects is an essential part of building a Faces application.

3.4 JavaServer Faces 23

Events and Listeners

Events capture the way user interacts with UI components, such as clicking on a component
or executing a command. Faces uses the JavaBeans to handle events and listeners. Events
provides an alternative to the complexity of developing web applications in terms of requests
and responses. In Faces, application logic is integrated by assigning appropriate listeners to
components. UI components (and other objects) generate events, and listeners can be registered
to handle those events.

Faces provide four standard events, namely value-change events, action events, data model
events and phase events.

• Value-changeevents are fired when a user changes the component’s value of a input
control.

• Actionevents are fired when a command component, like a button or a link is activated.

• Data modelevents are fired when a data-aware component is selected for processing.

• Thephaseevents are executed while processing an HTTP request.

Events and listeners are fundamental part of a Faces application.

Messages

Displaying error messages properly back to the user is one of the issues in developing user
interfaces. Basically, errors are classified into two categories:applicationerrors resulted from
application logic or database connection errors and user input errors such as a invalid input or
required entries. Application errors are usually displayed on a different page whereas input
errors redisplay the same page. Also, error messages of an input field or control are consistent
over different pages.

Faces provide messages that consists of a summary text, detailed text and severity level to
display the error messages on a view. Just about any part of the application (backing beans, val-
idators, converters, and so on) can generate information or error messages that can be displayed
back to the user. The messages can be associated with a specific component (input errors) or no
specific ones (application errors). For example, the following snippet shows the error message
associated to a specific component by using theHtmlMessage component:

<h:message id= " errors " for= " personName " style= " color: red " />

3.4 JavaServer Faces 24

This code displays all errors that were generated for thepersonName input component, which
is declared on the same page. Since messages are integral part of the Faces validation and
type conversion, error messages are generated when a validator encounters an invalid input or
a converter processes a incorrect type. It also provide ways to customize standard application
messages and to create them in Java code.

Navigation

Web applications have multiple pages and navigation provides the ability to move from one
page to the next. JSF has a powerful navigation system that’s integrated with specialized event
listeners. Thenavigation handlerdecides what page to load based on the logical outcome of
an action method. Anavigation ruledefines what outcomes are understood and what pages are
loaded on those outcomes. Each specific mapping between an outcome and a page is called as
navigation case.

<navigation-rule>
<from-view-id>/ login . jsp </from-view-id>
<navigation-case>

<from-outcome> success </from-outcome>
<to-view-id>/ mainpage . jsp </to-view-id>

</navigation-case>
<navigation-case>

<from-outcome> failure </from-outcome>
<to-view-id>/ login . jsp </to-view-id>

</navigation-case>
</navigation-rule>

Listing 3.1: An example of a navigation rule in JSF

The example above shows a navigation rule with each navigation case maps the outcome to a
specific page without any extra code. The rules are defined in a Faces configuration and are
maintained in a single file which acts as a central location to all pages.

3.4.2 Using JavaServer Faces for the Presentation layer

One of framework’s primary goal is to ease the burden of integrating user interface with the
model. Compared to theActionForm andAction approach in Struts, development with back-
ing beans in Faces enables a better object-oriented design practices. A backing bean not only
contains view data but also behavior related to that data. Traditionally, validation can be a te-
dious web development task and so do the generation of validators for every single form object.
The standard Faces validators would reduce this complexity and also enable the use of third
party or custom validators. The advantages of using Faces is that it provides:

3.4 JavaServer Faces 25

Figure 3.4: Web application infrastructure as a stack of services [22]

• Java APIs to represent UI components, handle events, manage state and validate input.

• Custom tag libraries to express the UI components within the JSP pages or templates and
wiring them with the server-side objects.

• Provides clean separation between mode and view.

• Flexible rendering mechanism and support for other view technologies.

• Extendability to all its features and third party tools.

Choosing JavaServer Faces for the presentation layer needs the generator to implement backing
beans (JavaBeans) representing the model objects containing the application specific function-
ality, JSP pages with Faces UI components, managed bean configurations with navigation rules
and any custom tag libraries, custom validators or listeners needed.

Faces can also be combined with Spring framework. Since we need to implement only the
presentation layer and the access to other layers would be provided by the respective modules
of the CCMS, using would be considered overkill. Figure 3.4 helps understanding this overlap
between framework functionalities. In this thesis project, the need is more directed to a UI-
oriented framework, which is why the reason to choose Faces. Also it supports enough services

3.5 Summary 26

to fit to the need to generate a user interface based on the domain model. Apart from that
additional services can be added in future as well.

3.5 Summary

Frameworks are extremely common these days and they help make web development easier.
Frameworks enforce a clean separation of presentation and business logic. For this thesis, a
framework that focuses more on the UI side of things would be beneficial. Spring provides
a powerful and flexible MVC framework. It provides ways to manage business objects, uses
IoC container to provide solutions that addresses all the architectural layers, supports use of
different display technologies, data access abstraction and transaction management.

Faces is a UI framework for building web applications. It provides standard UI components
(buttons, hyperlinks, check boxes and so on), options for creating custom tags and components,
server-side event processing and a tool support to simplify coding web-based applications. On
how the user interface is implemented by transforming an Asset model based on ADL into a
JavaServer Faces components, how the framework configuration works and what it takes to get
the application running will be discussed in the next chapter.

Chapter 4

Designing a Web Application Interface

In accordance with the CCM approach discussed in chapter 2, the next step is to implement
the server module which will provide the web application interface to CCMS. After exploring
the possibilities on building a web application interface using existing application frameworks
in chapter 3, JavaServer Faces has been chosen as the UI framework for the presentation tier.
This chapter will discuss the ways to build a Faces application from an Asset model by creating
backing and managed beans, JSP pages with Faces UI components (views) and defining page
navigations. To make understand this design, a online product catalog application is considered
as an example through out this discussion. Listing 4.1 represents the Asset definition of the
applications conceptual model and provide the basis for a meaningful discussion in generating
a web application interface.

4.1 Creating User Interface from an Asset Model

In Faces, backing beans defines properties and handling logics associated with the UI com-
ponents used in a page. Views can be built in a form-centric manner in which each view is
associated with a single bean containing objects that represent data for that page. Components
of the view can be directly connected to the data sources using the backing-beans with action
methods that perform any operations. This approach of one-to-one binding might work well
for a small application, however for large applications a more object-oriented approach would
be ideal. As shown in Figure 4.1, this approach requires to develop model objects representing
the application domain, backing beans that work with view and access the model objects. With
this approach, several views can share the same backing bean and provides an abstraction to the
source of data. It is also possible to combine these two approaches.

27

4.1 Creating User Interface from an Asset Model 28

model Catalog

class Product {
content

productImage : String
concept

characteristic name: String
characteristic price : int
characteristic description : String
relationship category : Category *

}

class Category {
concept

characteristic name: String
characteristic description : String

}

Listing 4.1: Asset definition of product catalog application

4.1.1 Asset Members

Asset members are the model objects of a CCMS (left part of Figure 4.1). EachAssetClass

is associated with a backing bean which relates to a view object (middle part of Figure 4.1).
In contrast to the model object that contains only data, a view object is a model object that
contains additional presentation specific data and behavior. The backing beans are named after
the Asset names followed by aBeanas suffix. For example, the AssetProduct in the model 4.1
is implemented asProductBean . The listing below shows how this is represented as a backing
bean for the interface implementation. For clarity, the backing bean in general will be denoted
as an<AssetBean>throughout this discussion.

public class ProductBean { ... }

The<AssetBean>will have properties that associates with the concept part of an Asset which
will be referenced by a UI component. Apart from properties, the<AssetBean>will also have
action methods (discussed in section 4.1.6) and action listener methods that performs the opera-
tions on an Asset. As learned from section 3.4.1, the backing beans aredeclarativelyassociated
with a component of the view (right part of Figure 4.1). With JSF expression language (EL),

Figure 4.1: Association between Model - Backing Bean - View

4.1 Creating User Interface from an Asset Model 29

any property or action of the<AssetBean>can be accessed somewhere in the application. The
next three sections will explain how the conceptual part is integrated in the<AssetBean>.

4.1.2 Content

The content part of the Asset is presented as multimedia contents. In 4.1, everyProduct has a
productImage , which depicts a visual representation of theProduct . The type of these content
handles depend on the base language, for which currently Java is used. TheproductImage

handle is defined to hold aString literal, which can refer to a URL or a absolute or relative
path to a file or directory. It can also be defined as anImage object or a binary stream that
can be stored in the underlying database. TheproductImage can be implemented as a static
property in a common backing bean that holds a URI to the product image directory. For this
project theString variant is used and since every instance has aproductId property, the name
of the image file is assumed to be the same. This would be advantageous to associate the image
property with URL property of theHtmlGraphicImage component as shown below.

<h:graphicImage url= " images / products /#{ productBean . productId }. jpg " />

4.1.3 Characteristics

Characteristics are immanent properties of an Asset and in ADL they are defined by the keyword
characteristic. In 4.1, for example, everyProduct has aname, aprice tag and adescription

of the product. The types of these characteristics are determined by the base language as well.
This simplifies the possibility to map them directly as native Java primitive as well as built-
in types to the corresponding bean properties of the<AssetBean>. The bean properties are
referenced through getters and setters (also calledaccessorsandmutators) via value-binding by
the UI components that access these properties in the their respective views. Type conversions
are discussed in section 4.2.1.

public class ProductBean {
private de. tuhh . sts . cocoma. generic . ID productId ;
private String name;
private String description ;
private int price ;
...
...

}

Listing 4.2: Representing Asset characteristics

4.1 Creating User Interface from an Asset Model 30

Listing 4.2 shows the characteristics as bean properties and their corresponding built-in Java
types. The setter and getter methods to these bean properties are generated as well. In addition
to characteristics, anproductId property to identify the instance of an Asset has been included
to every<AssetBean>. Thus,ProductBean would have a bean property calledproductId of
typede.tuhh.sts.cocoma.generic.ID as shown in the Listing above. Adding this property
will be beneficial in many ways, especially when dealing with views, one of which is discussed
in the next section.

4.1.4 Relationships

Relationships are established between Assets which describe autonomous entities and are de-
fined by the keywordrelationship. There are three kinds of relationships an Asset class can be
defined with:one-to-one, many-to-manyandrecursive, which are based on their cardinalities
between the entities. To demonstrate these types, consider the example given in Listing 4.3.

class Product {
...
concept

...
relationship make: Company
relationship category : Category *

}

class Category {
concept

relationship categories : Category *
}

class Company {
concept

characteristic name: String
...

}

Listing 4.3: Types of Relationship between Assets

One-To-One

Here, the relationshipmake is a one-to-one relationship, which means everyProduct is made
by at most oneCompany. A one-to-one relationship is implemented as a<AssetBean>property
that holds an instance of the relation Asset itself and its type. In the given example 4.3, the
relationship will be implemented as shown below.

4.1 Creating User Interface from an Asset Model 31

public class ProductBean {
...
private Company make;
...

}

Listing 4.4: Representing One-to-One relationships

Similar to other bean properties, the one-to-one relation can be referenced by components using
them through value-binding in their respective views. Thenameproperty of the company (make)
to which the product (ProductBean) belongs to is associated with the value property of the
HtmlOutputText component as shown below.

<h:outputText id= " product:madeBy " value= " #{ productBean . make. name} " />

Many-To-Many

The relationshipcategory depicts that everyProduct is classified into one or more categories
that it belongs to. The asterisk (*) on a relation typeCategory refers to this many-to-many
relationship. Similar to one-to-one relationship, many-to-many can also be implemented as a
<AssetBean>property except that it is a list of Asset instances of the relation Asset. For small
applications with less number of items this would be a good option, but for large applications
this is not feasible. In that case, it makes sense to hold only a list of IDs of Asset instances of
the relation Asset and the relationship will be implemented as shown below.

public class ProductBean {
...
private List selectedCategoryIds ;
private List categorySelectItems ;
...

}

Listing 4.5: Representing Many-to-Many relationships

Binding a bean property of typeList in a view can be realized withSelectManyUI components,
which are responsible for selecting one or more items from a list. Depending on the size of
the list, a drop-down list (HtmlSelectManyMenu), combo-box (HtmlSelectManyListbox) or
a group of check-boxes (HtmlSelectManyCheckbox) associate the contents of the list with a
set of dynamic values. The list can be populated from a lookup or reference data table. The
following listing shows a combo-box that allows the user to select one or more categories from
the dynamically populatedcategorySelectItems instances, which is then associated with the
selectedCategoryIds property of theProductBean .

4.1 Creating User Interface from an Asset Model 32

<h:selectManyListbox value= " #{ productBean . selectedCategoryIds } " id= "
selectedCategoryIds " >

<f:selectItems value= " #{ productBean . categorySelectItems } " id= "
categories " />

</h:selectManyListbox>

Listing 4.6: Example view for Many-to-Many relationship as Combobox

ThecategorySelectItems is a convenience property that returns a collection ofSelectItems

instances containing all available categories which is populated byinit method, as shown in
Listing 4.7. Instead of havingSelectItem instances, the property can also return aMap whose
key/value pairs will be converted intoSelectItem instances.

protected void init (){
...
AssetClass categoryAssetClass = this . module . getClass (" Category ");
AssetIterator iter = module . lookfor (categoryAssetClass , new

QueryConstraint []{});
while (iter . hasNext ()) {

Category category = (Category) iter . next ();
this . categorySelectItems . add (new SelectItem (category . getID (),

category . getName ()));
}
...

}

Listing 4.7: Example for populating a Many-to-Many relationship property

The bean propertycategorySelectItems could be implemented on the (ProductBean) it-
self along withselectedCategoryIds or as a property in a different bean, for example in
CategoryListBean or aApplicationBean which will be common for the whole application.
The major difference in implementing this property in a separate bean depends on the scope of
the bean being accessed in the application. IfcategorySelectItems has to be available only
for a requestor through out theapplication. More on bean management and its scope will be
discussed later in this chapter.

Recursive

The previous sections discussed the two types of relationships in which two different Asset
classes were related to each other. In example 4.3, the Asset classCategory defines one more
kind of relationship. The relationshipcategories relates the Asset classCategory to itself and
is calledrecursiverelationship. However, this follows the same relationship type as the many-
to-many relationship by definition with an asterisk (*), it is considered to be a many-to-many
relationship.

4.1 Creating User Interface from an Asset Model 33

When the Asset class is related to itself it does not mean that its instance is related to itself.
However, an instance of this Asset class is related to another instance of the Asset class. In
this example, an instance ofCategory can be a part of otherCategory instance. The imple-
mentation of this relationship is same to the many-to-many relationship, except that it has to be
populated prior in theCategoryBean for the propertycategories before it can be populated
in theProductBean . Thus, it required two separate views for the user to make this selection.

4.1.5 Inherited Asset Members

New asset classes can be defined by inheriting existing asset classes using the keywordrefines.
It inherit the definitions of all characteristics, relationships and constraints from the parent class
but the subclass may redefine or extend them as well as define their own. Listing 4.8 shows a
new Asset classPremiumProduct introduced to the model that inherits the Asset classProduct

and defines two more characteristics,width andheight .

model Catalog
...
class PremiumProduct refines Product {

concept
characteristic width : int
characteristic height : int

}
...

Listing 4.8: Example of inherited Asset members

Inherited members are implemented similar to the Asset member as a<AssetBean>but inherits
all the bean properties of the parent<AssetBean>. Thus,PremiumProductBean will inherit all
the properties defined inProductBean plus the two new characteristics as its bean properties,
as shown below 4.9.

public class PremiumProductBean extends ProductBean {
private de. tuhh . sts . cocoma. generic . ID premiumProductId ;
private int height ;
private int width ;
...

}

Listing 4.9: Representing inherited Asset members

However, the components that are associated with these bean properties should be accessed in
separate views. That is,ProductBean will be displayed on its own view with components as-
sociated with all of its properties, where as thePremiumProductBean will have a separate view
representing the components associated with all inherited properties ofProductBean along with
its own properties, as shown in Listing 4.10.

4.1 Creating User Interface from an Asset Model 34

<td align= " left " width= " 400" >
<h:inputText value= " #{ premiumProductBean . name} " id= " name" />

</td>
<td align= " left " width= " 400" >

<h:inputText value= " #{ premiumProductBean . description } " id= "
description " />

</td>
...
<td align= " left " width= " 400" >

<h:inputText value= " #{ premiumProductBean . width } " id= " width " />
</td>
<td align= " left " width= " 400" >

<h:inputText value= " #{ premiumProductBean . height } " id= " height " />
</td>

Listing 4.10: Example view for inherited Asset members

4.1.6 Operations on Asset

Besides ADL that defines Assets, there also exists Asset query and manipulation language that
allows operations, i.e., to query and manipulate Asset instances. All these operations are avail-
able in different forms to handle single or a set of Asset instances. In this thesis, operations are
limited to the basic operations of the module interface, i.e.,create , edit , delete andlookfor .
For every operation, a action method is implemented in the corresponding<AssetBean>. Thus
every<AssetBean>has acreateAction , updateAction anddeleteAction respectively. The
following section explain the straightforward forms mapping implemented for this thesis.

Create

The createAction method is responsible for creating a new Asset instance. The form of op-
eration used here iscreate(class, inits) to create the Asset instance of typeclass and
initializing its attributes withinits . The<AssetBean>properties of the Asset hold the values
entered by the user are mapped to the newly created Asset instance before its saved in the un-
derlying database. The data mapping is necessary because of the separation of the two different
object models between<AssetBean>and Asset instances as shown in Figure 4.1. To map the
data between the two object models the reflection-basedBeanUtils is used.

4.1 Creating User Interface from an Asset Model 35

Update

The updateAction method is responsible for modifying and and updating an existing Asset
instance. The Asset instanceasset is first loaded by callinglookfor(ID) with its ID and
thenmodify(asset, inits) is called to initialize the attributes of the Asset instance with the
values contained ininits . Similar to create, data mapping is carried out byBeanUtils .

Delete

ThedeleteAction removes an Asset instance by callingdelete(asset) . The Asset instance
asset is loaded prior todelete by calling thelookfor(ID) with its ID.

Lookfor

Similar to other operationslookfor also has many form, one of which has been shown in
the previous sections to load an Asset instance by passing its ID. Apart from<AssetBean>,
a separate backing bean is implemented to contain the search actions on an Asset and other
presentation-specific data and behavior, for example, pagination logic. For every Asset there
exists such a backing bean which will be denoted hereafter as<AssetListBean>. This also
enables to apply different scopes on availability of data to the application.

Table 4.1: Overview of the Application Beans, its Scope, Properties and Actions

Table 4.1 summarizes the beans representing Assets into view objects with its properties, action
methods and the scope used to access it. The<AssetBean>provides access to visual represen-
tation, contain its characteristics and relationships as properties, provides operations to query
and manipulate them and valid within a request. The<AssetListBean>contains properties that
hold a list of<AssetBean>s that can be presented to the user based on the search operation and

4.2 Technology Dependent Artifacts in the User Interface 36

also valid within a request. Additional to these beans,<ApplicationBean>is included that con-
tains properties that are common to the whole application domain, such as a URI to a directory
to store Asset contents and valid throughout the application. Armed with this information, the
Assets can be intelligently hooked up to the views by JSF EL expressions. The beans provides
functionality for one or more specific views; thecreate andedit operations on an Asset share
the same backing bean.

4.2 Technology Dependent Artifacts in the User Interface

4.2.1 Importance of Type Conversion

In order for user interfaces to display objects (bean properties) in terms that the user under-
stands, they must be converted into strings for display. These strings can be based on different
factors, for example dates displayed on the format of the user’s locale or simply conversion of
different built-in types. This feature is important for code generation based on conceptual mode
because the user need not worry about implementing handlers for type conversion every time
the model is changed.

One of the features of Faces is its support for type conversion. Faces converts the value of a bean
property to aString for display to the user. If no converter is registered on the UI component
associated with the property, then the converter registered for that type will be used. In case for
some reason a value cannot be converted then an error message will be generated and can be
displayed back to the user.

Faces provide standard converters for basic Java types:BigDecimal , BigInteger , Boolean ,
Byte , Character , Integer , Short , Double , Float andLong . For example, if a component is
associated with a property of typeInteger , it will be converted using theInteger converter.
Faces also allows using custom built converters and third-party vendor provided ones. A con-
verter can be associated with almost any components that accepts user input.

4.2.2 Validating User Input

As discussed in section 3.4.1, the standard components level validators available in Faces are
simple enough to handle validation such as length or range of the input, but supports plug-
gable external validators. For example, aSelectItemsRange validator can be developed with
a custom tag (as shown below) to validate the number of items selected by theSelectManyUI
component in Listing 4.6.

4.2 Technology Dependent Artifacts in the User Interface 37

<h:selectManyListbox value= " #{ productBean . selectedCategoryIds } " id= "
selectedCategoryIds " >

<catalog:validateSelectedItemsRange minNum= " 1" />
<f:selectItems value= " #{ productBean . categorySelectItems } " id= "

categories " />
</h:selectManyListbox>

Listing 4.11: Example of a custom validator forSelectManyUI component

Although, custom validators can be implemented easily, currently there is no standard way to
model validation constraints for characteristics and relationships in ADL. For this thesis, no
custom validators have been developed as it is not ambiguous to decide which UI components
should use which set of validators based on the model definition.

4.2.3 Bean Management

By now, the use of backing beans in Faces application should be clear and the last step is to
make sure the application can access them. In order the JSF EL expression be able to find them,
the backing beans have to be exposed as a scoped variable (see Table 4.1). This is handled by the
managed bean configuration, where backing beans are configured as managed beans and expose
the model objects, i.e., the Assets through those backing beans. It allows to specify which
objects will be available throughout the lifecycle of the application. The example below 4.12
shows registeringProductBean which is responsible to handle theProduct Asset instances
from the catalog model 4.1 discussed earlier.

<managed-bean>
<description>

Backing bean that contains product information .
</description>
<managed-bean-name> productBean </managed-bean-name>
<managed-bean-class> de. tuhh . sts . cocoma. catalog . view . bean . ProductBean </

managed-bean-class>
<managed-bean-scope> request </managed-bean-scope>
<managed-property>

<property-name> productId </property-name>
<value>#{ param . productId }</value>

</managed-property>
</managed-bean>

Listing 4.12: Example of a Managed Bean Configuration

As seen in this example, the managed bean facility provides possibilities to initialize object
properties. TheproductId property of theProductBean is populated by the request parameter

4.2 Technology Dependent Artifacts in the User Interface 38

productId . Faces implementation gets the parameter from the request and sets the managed-
property. TheProductBean is set to have a scope of request which means for each request a
newProductBean instance is references in the JSP page.

4.2.4 Page Navigation Rules

Section 3.4.1 explained Faces navigation handler that operates on a set of navigation rules which
defines the applications possible navigation paths, represented by means of navigation cases. A
navigation rule specifies which pages can be selected from a specific page or a set of pages. The
navigation case is selected based on a logical outcome. Figure 4.2 show a general navigation
rule in which for every operation on an Asset a navigation case is defined with a page that has
to be loaded on the outcome of that operation. In the front page, for every Asset there exists a
action which displays a list of Asset instances on “asset list” page. On the Asset list page, there
exists actions to create, edit, delete and view an Asset instance. Except for view action, the
outcome of these action depends on two cases: namely “success” and “failure” which navigates
to a result or error page, respectively. The navigation rules are configured infaces-config.xml.

Figure 4.2: Overview of navigation rules

To make this navigation rule and its navigation cases clear, consider the example of the Asset
Product . The front page consists an action that provides a list of products (productList.jsp)
from which the user can choose to view (viewProduct.jsp), create (createProduct.jsp), edit (ed-
itProduct.jsp) or delete (deleteProduct.jsp) a product. Depending on the outcome of these action
methods, the success (result.jsp) or failure (error.jsp) page is loaded.

4.3 Design overview of Web application generator 39

4.3 Design overview of Web application generator

TheWebAppGeneratorenables a unidirectional mapping of conceptual model into the entities
of a Faces application. Figure 2.2 shows a typical model compiler architecture with generators
at its extension points. The front-end of the compiler does the parsing and checking the Asset
definitions (4.1) and produces a internal representation of the Asset model in the form of a
Intermediate Asset Model. As depicted in Figure 2.2, the Intermediate model provides access
to all Asset classes, its characteristics, relationships and constraints.

Figure 4.3: Meta model of the Intermediate Asset Model [29]

The Intermediate model is passed to theAPIGenerator, which is usually the first generator to
be executed and produces theAPISymbolTablefrom which unique interfaces are available to
all generators. Generators communicate with each other through symbol tables and can depend
on the symbol tables of many other generators. The dependency between the symbol tables
are considered as the dependencies between the generators themselves and determines their
scheduled execution. Therefore, theWebAppGeneratordepends on theModule APIgenerated
by theAPIGeneratorwhich has to be executed prior to it.

The backend of model compiler takes a generator configuration file with all the parameters
required for the execution of theWebAppGeneratorand produces the Asset Object API. By
extending theGenerator class of the Module API, theWebAppGeneratorgets access to all
these components. Listing 4.13 shows the code generation process is triggered by invoking the
generate method.

4.4 Summary 40

public SymbolTable generate (IntermediateModel im , SymbolTable [] tables ,
Map<String , ? extends Object > params) throws GeneratorException {

init (im , tables , params);
...
try {
..

generateAssetBeans ();
generateAssetListBeans ();

} catch (ModelException e) {
e. printStackTrace ();

}
generateJSP ();
...
return getWebST();

}

Listing 4.13: A typical code generation process for generators

Thegenerate method takes an Intermediate model, API symbol table and the parameters de-
fined in the generator configuration file as input parameters. This method returns the symbol
table it creates and produces Java (backing beans), JSP and HTML (views) and XML (faces
configuration) files as a side effect of its execution. InvokinggetIm().getClasses() from
the Intermediate model give access to all the Asset classes. Its characteristics and relation-
ships will be available by invokingac.getCharacteristics() andac.getRelationships()

respectively.

Java Code Generation Toolkit(JCGTk) is responsible for generating Java code. Unfortunately,
the Code Generation toolkit does not provide any libraries to generate JSP or HTML code and
the pages are generated asString arrays and then written into a file. This is a tedious task
because these sting arrays are wrapped around with Java code that will provide access to the
Asset definitions needed to create these pages and the generated pages are not possibly well
formed. The implementation of theWebAppGeneratoris discussed in detail in the next chapter.

4.4 Summary

This chapter explained the design issues in building a Faces application from a Asset model.
Asset characteristics and relationships were represented as Backing beans properties and op-
erations on Asset instances as Actions. Backing beans were also implemented with handling
logics associated with the UI components used in a JSP page. Backing beans can be shared
with one or more views thus preventing code duplication and provides an abstraction to the
source of data. Backing beans are registered and managed through the Managed Bean facility
in order to expose the underlying Asset to the user interface. It also explained the need for type

4.4 Summary 41

conversions, validating user input as well as navigation rules and how Faces handles them. The
next chapter applies these design decisions to implement a generator that will generate a user
interface based on Faces application framework.

Chapter 5

Implementation of a Web Application
Generator

Now that having studied the different facets of converting an Asset model, its time for the
next step to implement a Web application generator that will generate these facets from the
conceptual model by using the Model compiler. In this chapter will discuss the implementation
details of the generator and also any implementation issues and limitation arise in realizing a
open and dynamic web application interface to compliment the CCM approach.

To demonstrate the the design decision made in the last chapter and apply them in the gen-
erator implementation, consider the conceptual model 4.1 of an real world Web application.
The modelCatalog identifies that the system is composed of two model objectsProduct

andCategory . Each product belongs to at least one category which is why the relationship
category , represented by an asterisk (*). To make the implementation simple, it is assumed
that the catalog is not frequently updated, no internationalization is required and no more than
300 products exist in the catalog.

5.1 Structure of Code Generation

Writing generators to generate application software is a complex task because setting up an in-
frastructure for them is difficult [32]. In chapter 2 it has been clearly explained the way CCMSs
are created from a set of components comprised of one or more modules with generators at
extension points. Figure 5.1 depicts detailed structure of the compiler framework with a Web
application generator.

As discussed in 4.3, the code generation process starts when thegenerate method executes
with the Intermediate model, API symbol table and the parameters defined in the generator

42

5.2 Generating Backing Beans 43

Figure 5.1: Web application generator

configuration file as input parameters. This method returns the symbol table it creates and
produces Java (backing beans), JSP and HTML (views) and XML (faces configuration) files as
a side effect of its execution. The structure of code generation is also categorized on these steps
and will be discussed in the following sections.

5.2 Generating Backing Beans

The backing beans are generated with help ofJava Code Generation Toolkit(JCGTk), which
is used by the CCM generators to generate Java code. Details on the functionalities of the
toolkit can be found in [30]. As seen in Figure 5.1 the compiler framework translates the Asset
model to anIntermediatemodel which contains the Asset class definitions. First, by invoking
the methodgetClasses from the Intermediate model, an array ofAssetClass s are retrieved.
By iterating over this array, everyAssetClass of the modelCatalog is retrieved and invokes
a set of methods in order to convert the Asset model into backing beans (<AssetBean>s and
<AssetListBean>s) with properties and action methods as discussed in 4.1.

5.2 Generating Backing Beans 44

private void generateAssetBean (AssetClass ac) throws ModelException ,
GeneratorException {
JavaClass baseBeanClass = (JavaClass) getModel (). getType (BaseBean .

class);
JavaClass beanClass = new JavaClass (getModel (), getBeanPackage (),

JavaVisibility . PUBLIC, createBeanName (ac), baseBeanClass);
...
...

}

Listing 5.1: Generating<AssetBean>s and<AssetListBean>s from Assets

Listing 5.1 shows that every<AssetBean>extends aBaseBean . TheBaseBean is defined with
a commonmoduleLocator property that will hold a reference to the base module which pro-
vides access to the query and manipulate Asset instances. This makes it easier to initialize the
property’s value when the bean is created in the Managed Bean configuration file, instead of in
Java code and keeps from defining the same property in multiple backing beans. Apart from
that it also hasinit method that will be implemented by all the<AssetBean>and<AssetLis-
Bean>s. The package in which the beans are created is defined as a parameter in the generation
configuration file B.1.

Characteristics of the Asset class are obtained from invokingac.getCharacteristics() and
they are added tobeanClass as properties withsetterandgettermethods as shown in Listing
5.2. Each characteristic have name and a type that can be invoked byassetChar.getName()

and assetChar.getTypeName() and set as bean property name and type respectively. The
JavaCodeGenerationHelper.javaGetterMethodName is a convenience method to create a
getter method name.

for (Characteristic assetChar : ac . getCharacteristics ()) {
JavaField beanProperty = new JavaField (JavaVisibility . PRIVATE, (

JavaType) getModel (). getType (assetChar . getTypeName ()), assetChar .
getName ());

beanClass . addField (beanProperty);
generateGetter (JavaVisibility . PUBLIC, beanClass , beanProperty ,

JavaCodeGenerationHelper . javaGetterMethodName (beanProperty .
getName ()));

generateSetter (JavaVisibility . PUBLIC, beanClass , beanProperty ,
JavaCodeGenerationHelper . javaSetterMethodName (beanProperty .
getName ()));

}

Listing 5.2: Generating<AssetBean>properties from Asset characteristics

Next, relationships has to be added tobeanClass and they are available by invoking
ac.getRelationships() . Similar to characteristics, relationships are also defined as bean

5.3 Generating Views with JSP and Faces UI components 45

properties depending on the cardinality of the relationship. Every relationship has a name
and its referred relation Asset type, which can be invoked byassetRel.getName() and
assetRel.getReferredType() .

for (Relationship assetRel : ac . getRelationships ()) {
if (assetRel . isToMany ()) {

JavaField relProperty = new JavaField (JavaVisibility . PRIVATE,
getModel (). getType (Set . class), assetRel . getName () + " Ids ");

beanClass . addField (relProperty);
JavaField relSelectedProperty = new JavaField (JavaVisibility .

PRIVATE, getModel (). getType (List . class), " selected " +assetRel .
getName () + " Ids ");

beanClass . addField (relSelectedProperty);
...

} else {
JavaField relProperty = new JavaField (JavaVisibility . PRIVATE,

getModel (). getType (assetRel . getReferredClass (). getClass ()),
assetRel . getName ());

beanClass . addField (relProperty);
...

}
}

Listing 5.3: Generating<AssetBean>properties from Asset relationships

As discussed in 4.1.4, one-to-one relationships are defined as single relation Asset type property
holding a single instance of that Asset whereas a many-to-many relationship will be defined as
aList holding a list relation Assets instances. Part of the implemented code is shown in Listing
5.3.

For the case of an inherited Asset, it will be implemented as discussed in section 4.1.5. The
inherited Asset classes has a property that contains the super class as the parent Asset class. If
the methodgetSuperClass() returns an Asset then the inheritance is implemented in a similar
way as an Asset with the additional characteristics and relationships. Listing B.2 shows the
complete generated code of the Asset classProduct with characteristics, relationships as well
as action methods for create, update and delete operations based on the discussion in section
4.1.6.

5.3 Generating Views with JSP and Faces UI components

Having the controller part being implemented, the next step is to implement the view that will
be associated with it. The views are creates as JSP pages with Faces UI components and the
access to beans are realized through JSF Expression Language. All the pages are generated in a
similar fashion as to the generation of backing beans, that is by iterating over an array of Asset

5.3 Generating Views with JSP and Faces UI components 46

classes. For every Asset class a set of methods are invoked to generate pages for the actions
create, edit and view Asset. In general all pages follows a structure as listed below:

• All pages import the core JSF tag library which includes favious tag like<f:view> and
various other tags.

• Standard HTML componnets are used, which are referenced by this library.

• All Faces tags are enclosed in a<f:view> tag enclosed with in a static header and footer
followed by a<h:form> tag with a respectiveid="formName" .

Listing 5.4 shows the code to generate a create Asset page which is based on the structure
discussed above. The edit Asset page is created in the same way except that it invokes the
generateFormJSP(ac, "update") method and the view Asset page is created by invoking
the generateViewAssetJSP(ac) method. The delete Asset action is embedded in the list all
Assets page and will display a result page on successful execution or a error page on failure.

private void generateAssetJSPs () throws GeneratorException {
for (AssetClass ac : getIm (). getClasses ()) {

String createJSP = createTaglibDeclarations ();
createJSP += createHeaderJSP ();
createJSP += generateFormJSP (ac , " create ");
createJSP += createFooterJSP ();
writeJSP (createJSP , " create " +ac . getName ());
...

}
}

Listing 5.4: Generating a create page for an Asset

The characteristics of an Asset class are represented with the name of the characteristic and
an <h:inputText tag, if its an create or edit Asset page or an<h:outputText> tag if its a
view Asset page. In order to convert or validate the values entered by the user, an appropriate
converter or validator has to be added here to the<h:inputText> or <h:inputText> tag with
a for attribute representing the ID (see 3.4.1) of the property being handled. The<h:message>

tag will display any conversion or validation errors to the user. On successful create or edit
action a result page will be shown which could be redirected to the front page or the Asset list
page. Listing 5.5 shows the way characteristics are added to a page.

for (Characteristic assetChar : ac . getCharacteristics ()){
JavaField assetCharField = currentAssetBeanClass . getField (assetChar

. getName ());
String assetFieldName = assetCharField . getName ();
jsp +=" <tr >\ n" +

" <td align =\" right \" width =\"100\">\ n" +

5.3 Generating Views with JSP and Faces UI components 47

" <h: outputText value =\" " +assetFieldName +" \"/>\ n" +
" </ td >\ n" +
" <td align =\" left \" width =\"400\">\ n" +
" <h: inputText value =\"#{ " +assetBeanName +" . " +

assetFieldName +" }\" id =\" " +assetFieldName +" \" required =\"
true \"/>\ n" +

" <h: message for =\" " +assetFieldName +" \" styleClass =\"
errorMessage \"/>\ n" +

" </ td >\ n" +
" </ tr >\ n" ;

}

Listing 5.5: Code snippet for adding a characteristic to a form page

The next step is to add relationship propterties to a page. As discussed in section 4.1.4 depend-
ing on the cardinality, a one-to-one relationship is directly associated with the page similar to
the way a characteristic is represented. A many-to-many relationship has many possibilities to
represent them. Considering the simplicity of the application in this implementation, a many-
to-many relationship is represented as Combobox. Listing 5.6 shows the way relationships are
generated on a page.

for (Relationship assetRel : ac . getRelationships ()){
...
jsp +=" <tr >\ n" +

" <td align =\" right \" width =\"100\" valign =\" bottom \">\ n" +
" <h: outputText value =\" " +assetRelName +" \"/>\ n" +
" </ td >\ n" +
" <td align =\" left \" width =\"400\">\ n" ;

String assetRelFieldName = assetRelField . getName ();
if (assetRelField . getType (). getName (). equals (" List ")) {

jsp +=" <h: selectManyListbox value =\"#{ " +assetBeanName +" . " +
assetRelFieldName +" }\" id =\" " +assetRelFieldName +" \">\ n" +
" <catalog : validateSelectedItemsRange minNum=\"1\"/>\ n" +
" <f : selectItems value =\"#{ " +assetBeanName +" . " +

selectedRelItems . getName ()+ " }\" id =\" " +assetRelName +" s\"/>\
n" +

" </ h: selectManyListbox >\ n" ;
}
jsp +=" <h: message for =\" " +assetRelFieldName +" \" styleClass =\"

errorMessage \"/>\ n" +
" </ td >\ n" +
" </ tr >\ n" ;

}

Listing 5.6: Code snippet for adding a relationship to a form page

The limitation in representing a many-to-many relationship in this way is that the Asset in-
stances represented bySelectItems component should have a value that can be read by the

5.4 Generating Configuration Files 48

user. This means value of the key/value pair of this component should be a property of type
String , like name property, rather than a number or price which would make less sense. There
is no standard way to model this in ADL and this mapping is configured at the moment as a
parameter in the generator configuration file B.1.

The views for an inherited Asset class are implemented the same way as of an Asset class,
but along with its characteristics and relationships the ones from the inherited Asset class will
also be implemented. The complete code of the product list, view and create product pages
generated by this generator are listed in B.

5.4 Generating Configuration Files

Apart from generating backing beans and views, the configurations for the managed beans, and
navigation rules are partially generated by theWebAppGeneratorand integrated with the main
faces-config.xmlconfiguration file. The managed bean are configured in thefaces-managed-
beans.xmland the navigation rules are configured in thefaces-navigation.xml. To generate
the managed beans, for every Asset class, the symbol table is looked up to get the generated
<AssetBean>and<AssetLisBean>s and registered as managed bean. Listing 5.7 shows the
way <AssetBean>s are registered. ThemoduleLocator property is defined in theBaseBean

and is common for all<AssetBean>and<AssetLisBean>s.

for (AssetClass ac : getIm (). getClasses ()) {
JavaClass currentAssetBeanClass = (JavaClass) getWebST().

getAssetBeanClassifier (ac);
...
managedBean += " <managed- bean >" +

" <managed- bean - name>" +assetBeanName +" </ managed- bean - name
>" +

" <managed- bean - class >" +getBeanPackage ()+ " . " +
currentAssetBeanClass . getName ()+ " </ managed- bean - class >
" +

" <managed- bean - scope >request </ managed- bean - scope > " +
" <managed- property >" +
" <property - name>moduleLocator </ property - name>" +
" <value >#{ moduleLocatorBean }</ value >" +
" </ managed- property >" +
" </ managed- bean >" ;

}

Listing 5.7: Generating managed beans to register<AssetBean>and<AssetLisBean>s

Similarly, configuring navigation cases are based on the symbol table and for every generated
page a navigation case is added to the navigation rule. Listing 5.8 shows the generation of a
navigation case for the create Asset page.

5.5 Symbol Table 49

for (AssetClass ac : getIm (). getClasses ()) {
String createAssetPageName = (JavaClass) getWebST().

getCreateAssetPage (ac);
...
navigationCase += " <navigation - case >" +

" <description >" +
" </ description >" +
" <from - outcome >" +createAssetPageName +" </ from - outcome

>" +
" <to - view - id >/ " +createAssetPageName +" . jsp </ to - view -

id >" +
" </ navigation - case >" ;

...
}

Listing 5.8: Generating navigation case for create page

The navigation cases generated are for the general navigation cases and any specific navigation
cases should be manually configured.

5.5 Symbol Table

TheWebAppGeneratorreturns a symbol table which contain all information about the generated
<AssetBean>s and<AssetListBean>s, its create, update, delete action methods as well as any
search actions, generated pages and references to all other generated information. As seen in
the discussions earlier, these information are used within the generator as well in order to create
other parts of the code generation. The symbol table produced by thisWebAppGeneratorcould
be used by other CCM generators which provide other services, for example, aViewGenerator
that generates views based on another view technology or aWebServiceGenerator.

Chapter 6

Conclusion and Future work

In this chapter concludes with brief analysis of the work done, the limitations faced in realizing
it practically and ideas for future work that can be done in order to improve it. Therefore, the
generated web application interface is analyzed with respect to the transformation rules and
decisions made in chapter 4.

6.1 Main Contribution

The aim of this thesis was to come up with ideas to model a web application interface for
conceptual content management systems. The thesis was motivated by the fact that CCMSs
provide a way to develop information systems that are open and dynamic, but have no means to
provide a user interface to it. Web applications are built according to a layered architecture and
is also based on a application domain model. Despite the separation of concerns through layers,
the changes made to the domain model will affect the whole system. To ensure a seamless
interaction to the changes made to the domain model, the frameworks used should be able to
support the openness and dynamics of the CCM approach.

Today’s most web applications are designed around the Model-View-Controller (MVC) pattern.
It creates a decoupling between data access, data presentation and user interaction layers. How-
ever, to provide a web application interface to the CCMSs only the presentation layer has to be
implemented. With respect to CCM, this means that the Model exists, only the View and the
Controller has to be implemented by the generator. After analyzing the two Web application
frameworks in chapter 3, JavaServes Faces has been chosen to be used for this thesis because
of its UI framework including server side UI components, options for creating custom tags
and components, server-side event processing and a tool support to simplify coding web-based
applications.

50

6.2 Limitations 51

A JSF application consists of JSP Pages with JSF components representing the user interface
(View) and Backing Beans that hold the data (controller), a bean management facility and nav-
igation rules. A web application interface with respect to these aspect were defined 4 and
implemented 5 in order to map the Asset definitions to JSF components. The basic operations
such as create, edit, delete and view instances of an Asset were realized. Views were built in
which one or more views were associated with a one or more backing beans containing objects
that represent Assets. There were elements that are implemented manually, for example, the
BaseBean and other utility classes as well as and static JSP pages representing the front, header,
footer and error pages. However, there were limitation mostly related to the layout of the user
interface such as implementing the views in a user friendly manner and the way the Assets
and its relationships were represented. The next section will discuss some of the limitations
occurred implementing the web application generator.

6.2 Limitations

One of the limitations in during implementation of the generator is that implementing a se-
lection list for a Asset relationship and associating it with a UI component, so that the
user can select one or more Asset instances that belongs to that relationship type. As dis-
cussed 4.6,categorySelectItems was implemented as a a convenience property and as-
sociated with aHtmlSelectManyListbox UI component. In order to populate this list, a
collection of SelectItems containing the instances of the relationship Asset has to be dis-
played. The limitation here was to select a characteristics, such as name, of the related
Asset instance to display as key/value pair for the UI component. Currently, the charac-
teristic that has to be use for building such collection is specified as a parameter (<param

name="categorySelectItemName">Category:name</param>) in the generator configuration
file.

Another general limitation is that to specify a Asset as a starting point of the application and also
to specify a kind of navigation rule in order to control the application flow of the application.
This is important if different users of the system want to have a different application flow or
navigation structure of application. Currently only a general navigation rule is defined and
applied to the whole application. Apart from this, there could be some mechanism to represent
any type conversions or validations that are more specific to the entity in hand than to the data
type used to represent it. Consider for example, the price of a product which could be a currency
type or a value of a input field that could be validated for its length. Since these are considered
more as commercial limitation and do not address the functionality of the implementation they
are not considered in the scope of this project. However, availability of such a feature could be
used to enhance the standard ones or develop custom validators and type converters.

Faces application doesn’t have a built in security feature ad this would be a limitation if the ap-
plication requires some authentication. Although, there are several ways to handle user authen-
tication in JSF such as implementing a servlet filter to handle authentication checking, which

6.3 Future Work 52

can be decoupled from the generated Web application and the security rules can be configured
in a configuration file.

6.3 Future Work

As discussed earlier, there are certain limitations in representing conceptual part of an Asset
to the user, which are mostly some kind of constraints in order to display the UI components
associated with it. This can be addressed in future projects to make a proposal to realize a view
or presentation model that will define additional parameters to represent an Asset in a UI based
on the underlying technology.

In [24], an modeling approach has been introduced to provide interface definitions in order to
model UI components that can be mapped to a target technology. It has options to define display
constraints that offers support for dynamic binding of instance values of Assets to UI compo-
nents. A extension of this could implement JSF UI components with the ability to configure its
display attributes and use it while generating view for the web application interface. The study
made in [24] recommends improvement for using a MVC based presentation layer for its UI
modeling approach as well as event-based system which are available in JSF, both can benefit
from each others advantages.

Alternatively, a lighter version of the UI modeling discussed above could be realized, some
kind of declarative presentation model from which generators implementing a user interface
can reason about and automate various aspects of interface design. The presentation model
could be able to define the needed display parameter in terms of the Asset definitions rather
than a target view technology model so that these information can be used by any generator
implementing a user interface to CCMS. There exists model-based user interface paradigms [34]
and [10], that use different models, such as Application model, Task model and Presentation
model and provide tools for generating portions of the interface automatically and prototyping
environments that can generate executable interfaces from a model.

Navigation, application flow and providing support for widget control are also some UI is-
sues where future work can be done. Currently, only basic functionalities on Assets and its
characteristics and relationships have been implemented. Constraints on Assets and Recursive
Inheritance are not yet realized. This could be also a point to be considered in the future.

Appendix A

Developing Web Applications with Spring

This chapter gives an insight into web application development with Spring Web MVC dis-
cussed in section 3.3.2. The different components discussed in the following section shows
how the model, view and controller interact with each other. An example application would
demonstrate the features of Spring Web and provide a base in understanding which parts of it
should be generated and which parts should be hand-coded. Consider a product catalog ap-
plication to configure and implement the view layer with JSP and JSTL tags for rendering the
output.

A.1 Configuring Spring MVC

The first things to do is to configure Spring MVC’sDispatcherServlet that controls where
all requests are routed based on the information that will be provided later. The configurations
are registered inweb.xmlfile as shown in the listing A.1. The Spring application context is
loaded from a XML file named after the servlet-name with-servletappended to it. This is a
standard naming convention used in Spring. In our case, theDispatcherServlet will load its
application context from thecatalogapp-servlet.xmlfile.

<servlet>
<servlet-name> catalogapp </servlet-name>
<servlet-class>

org . springframework . web. servlet . DispatcherServlet
<servlet-class>
<load-on-startup>1<load-on-startup>

<servlet>

Listing A.1: Configuring the Spring MVC DispatcherServlet

53

A.2 Configuring application 54

The next step is to configure the URL patterns that are used in this application, which is also
a standard servlet-mapping entry A.2 in theweb.xmlfile. In out case, any URL with an ’.jsp’
extension will be routed to the dispatcher.

<servlet-mapping>
<servlet-name> catalogapp <servlet-name>
<url-pattern> * . jsp </url-pattern>

</servlet-mapping>

Listing A.2: Configuring the URL mapping patterns

Next, register the configuration files that will be loaded byContextLoaderServlet when
the application is started. The listing A.3 below registers theContextLoaderServlet . A
contextConfigLocation parameter defines the location of the configuration files to be loaded.

<servlet>
<servlet-name> context <servlet-name>
<servlet-class>

org . springframework . web. context . ContextLoaderServlet
</servlet-class>

<load-on-startup>1</load-on-startup>
</servlet>

<context-param>
<param-value> contextConfigLocation </param-value>
<param-value>/ WEB- INF / service - context . xml </param-value>

</context-param>

Listing A.3: Register ContextLoaderServlet and bean configuration files

Theservice-context.xmlfile contains the bean configuration of the services of the catalog appli-
cation. Multiple configuration files, for example a separatesecurity-context.xml, can be speci-
fied in the<param-value> tag by comma as delimiter.

A.2 Configuring application

The catalog application allows users to view and manipulate products in the catalog based on
their authentication. The applications consists of a product page where the user can view prod-
ucts and also create, update or delete products if he is authenticated to do so. The authentication
based on simple user login with a name and password.

A.2 Configuring application 55

<bean id= " productListController "
class= " catalog . controller . ProductListController " >

<property name= " commandName" value= " productListCommand " />
<property name= " commandClass " value= " catalog . commands.

ProductListCommand " />
<property name= " validator " value= " catalog . validators .

ProductListValidator "
<property name= " formView " value= " catalog " />
<property name= " successView " value= " productList " />
<property name= " catalogService " >

<ref bean= " catalogService " />
</property>

</bean>

Listing A.4: Register the ProductListController

Here for instance, theProductListController extends theSimpleFormController to dis-
play all the products that belongs to a category. The controller allows to specify aformView

property for the request page and asuccessView property for the page that has to be shown
on successful execution. The names of the page maps to the actual view pages respectively.
The validator gets control after the user submits the form and the values entered will be
set on the command object by the framework. ThecommandClass and commandNamedeter-
mine the command object that will be active in those pages. The corresponding code of the
ProductListController is shown in listing A.5.

public class ProductListController extends SimpleFormController {

public ProductListController () {

}

protected ModelAndView onSubmit (Object command) throws Exception {
ProductListCommand productListCommand = (ProductListCommand) command

;
List <Product > productList = catalogService . searchByCategory (

productListCommand . getCategoryId ());
return new ModelAndView (getSuccessView (), " productList " , productList

)
}

private CatalogService catalogService ;

public CatalogService getCatalogService () {
return catalogService ;

}

public void setCatalogService (CatalogService catalogService) {
this . catalogService = catalogService ;

A.2 Configuring application 56

}
}

Listing A.5: ProductListController

The command object associated with this controller is theProductListCommand . The
onSubmit method gets control and calls thesearchByCatergory method to get the list of
products of the selected category. It then returns aModelAndView passing a new instance using
the URL to thesuccessView .

Views in Spring are addressed by aview resolverandInternalResourceViewResolver is used
in this example A.6 to resolve the logical name to an actual resource, in this case a JSP file that
is /pages/catalog.jsp.

<bean id= " viewResolver "
class= " org . springframework . web. servlet . view .

InternalResourceViewResolver " >
<property name= " viewClass " >

<value> org . springframework . web. servlet . view . JstlView </value>
</property>
<property name= " prefix " value= " / pages / " />
<property name= " suffix " value= " . jsp " />

</bean>

Listing A.6: Register the InternalResourceViewResolver

Finally, thecatalogService that is wired into theViewProductController has to be regis-
tered in theservice-context.xmlfile mentioned earlier, which is then loaded in theweb.xml.

<bean id= " catalogService "
class= " catalog . services . CatalogService " >

<property name= " catalogDao " >
<ref local= " catalogDao " />

</property>
</bean>

Listing A.7: Register the catalog service

ThecatalogService takes a parameter to a data access object that enables access to the data
to be displayed on the page. With controller and services configured the application is ready to
be deployed.

Appendix B

Configuration and Generated Code
Samples

The generator configuration file used by the compiler to run theWebAppGenerator is shown
below.

1 <?xml version =" 1.0 " encoding= " UTF-8 " ?>
2

3 <cat
4 xmlns:util= " http: // www. sts . tu - harburg . de/2004/ java / util / xmlconfigfile "

>
5 <scanner class= " de. tuhh . sts . cocoma. compiler . ADLScanner " />
6 <parser class= " de. tuhh . sts . cocoma. compiler . ADLParser " />
7 <configuration name= " webappgen " >
8 <param name=" outputDirBase " >target </param>
9 <generator

10 class= " de. tuhh . sts . cocoma. compiler . generators . webapp.
WebappGenerator "

11 name=" WebappGenerator " >
12 <param name=" targetDirectory " >
13 <util:xpath path= " ../../../ param [@name=’ outputDirBase ’]/ text () " /

>
14 </param>
15 <param name=" applicationAsset " >Category </param>
16 <param name=" categorySelectItemName " >Category : name</param>
17 <param name=" webDirectory " >web</param>
18 <param name=" sourceDirectory " >java </param>
19 <param name=" beanPackage " >de. tuhh . sts . cocoma. catalog . view . bean </

param>
20 <param name=" moduleLocatorPackage " >de. tuhh . sts . cocoma. catalog . view .

modulelocator </param>
21 </generator>
22

23 <generator

57

Appendices B: Configuration and Generated Code Samples 58

24 class= " de. tuhh . sts . cocoma. compiler . generators . api . APIGenerator "
25 name=" apigen " >
26 <param name=" outputDir " >target / java </param>
27 <param name=" targetPackage " >de. tuhh . sts . cocoma</param>
28 </generator>
29 </configuration>
30 </cat>

Listing B.1: WebAppGenerator Configuration

Listing B.2 below shows the code generated by theWebAppGenerator to create a backing bean
for theProduct class from the modelCatalog . This code demonstrates all the aspects of code
generation in transforming an Asset into a baking bean.

1 / *
2 * Generated by de. tuhh . sts . cocoma. compiler . generators . webapp.

WebappGenerator
3 * Thu Oct 12 17:34:15 CEST 2006 * /
4

5 package de. tuhh . sts . cocoma. catalog . view . bean ;
6 public class ProductBean extends de. tuhh . sts . cocoma. catalog . view . bean .

BaseBean {
7 private de. tuhh . sts . cocoma. generic . ID productId ;
8 private java . lang . String name;
9 private java . lang . String description ;

10 private int price ;
11 private java . util . Set categoryIds ;
12 private java . util . List selectedcategoryIds ;
13 private java . util . List categorySelectItems ;
14 private de. tuhh . sts . cocoma. generic . AssetClass assetClass ;
15 public ProductBean () {
16 this . categorySelectItems = new java . util . ArrayList ();
17 this . assetClass = this . module . getClass (" Product ");
18 }
19 public de. tuhh . sts . cocoma. generic . ID getProductId () {
20 return this . productId ;
21 }
22 public void setProductId (de. tuhh . sts . cocoma. generic . ID productId) {
23 this . productId = productId ;
24 }
25 public java . lang . String getName () {
26 return this . name;
27 }
28 public void setName (java . lang . String name) {
29 this . name = name;
30 }
31 public java . lang . String getDescription () {
32 return this . description ;
33 }
34 public void setDescription (java . lang . String description) {

Appendices B: Configuration and Generated Code Samples 59

35 this . description = description ;
36 }
37 public int getPrice () {
38 return this . price ;
39 }
40 public void setPrice (int price) {
41 this . price = price ;
42 }
43 public java . util . Set getCategoryIds () {
44 return this . categoryIds ;
45 }
46 public java . util . List getSelectedcategoryIds () {
47 return this . selectedcategoryIds ;
48 }
49 public java . util . List getCategorySelectItems () {
50 return this . categorySelectItems ;
51 }
52 public void setCategoryIds (java . util . Set newcategoryIds) {
53 this . categoryIds = newcategoryIds ;
54 if (this . categoryIds != null)
55 this . selectedcategoryIds = de. tuhh . sts . cocoma. catalog . view . util .

ViewUtils . convertToList (this . categoryIds);
56 }
57 public void setSelectedcategoryIds (java . util . List newcategoryIds) {
58 this . selectedcategoryIds = newcategoryIds ;
59 this . categoryIds = de. tuhh . sts . cocoma. catalog . view . util . ViewUtils .

convertToSet (this . selectedcategoryIds);
60 }
61 public de. tuhh . sts . cocoma. generic . AssetClass getAssetClass () {
62 return this . assetClass ;
63 }
64 protected void init () {
65 try {
66 if (this . productId != null) {
67 de. tuhh . sts . cocoma. catalog . Product product = (de. tuhh . sts . cocoma.

catalog . Product) module . lookfor (this . productId);
68 org . apache . commons. beanutils . BeanUtils . copyProperties (this ,

product);
69 }
70 de. tuhh . sts . cocoma. generic . AssetClass categoryAssetClass = this .

module . getClass (" Category ");
71 de. tuhh . sts . cocoma. generic . AssetIterator iter = module . lookfor (

categoryAssetClass , new de. tuhh . sts . cocoma. generic . Module .
QueryConstraint []{});

72 while (iter . hasNext ()) {
73 de. tuhh . sts . cocoma. catalog . Category category = (de. tuhh . sts .

cocoma. catalog . Category) iter . next ();
74 this . categorySelectItems . add (new javax . faces . model . SelectItem (

category . getID (), category . getName ()));
75 }
76 } catch (java . lang . Exception ex) {

Appendices B: Configuration and Generated Code Samples 60

77 java . lang . String errMsg = " Could not retrieve Product " ;
78 throw new javax . faces . FacesException (errMsg , ex);
79 }
80 }
81 public java . lang . String createAction () throws de. tuhh . sts . cocoma.

catalog . model . exception . CatalogException {
82 de. tuhh . sts . cocoma. catalog . Product product = (de. tuhh . sts . cocoma.

catalog . Product) module . create (this . assetClass ,
83 new de. tuhh . sts . cocoma. generic . Module . MemberInitialization []{});
84 if (product == null) {
85 de. tuhh . sts . cocoma. catalog . view . util . FacesUtils . addErrorMessage ("

Error creating Product ");
86 return de. tuhh . sts . cocoma. catalog . view . bean . NavigationResults . RETRY

;
87 }
88 de. tuhh . sts . cocoma. catalog . MutableProduct mutableProduct = null ;
89 try {
90 mutableProduct = product . lockAsProduct ();
91 } catch (de. tuhh . sts . cocoma. generic . StateException se) {
92 de. tuhh . sts . cocoma. catalog . view . util . FacesUtils . addErrorMessage ("

Error locking Product ");
93 return de. tuhh . sts . cocoma. catalog . view . bean . NavigationResults .

FAILURE;
94 }
95 try {
96 mutableProduct . commitAsProduct ();
97 } catch (de. tuhh . sts . cocoma. generic . StateException se) {
98 de. tuhh . sts . cocoma. catalog . view . util . FacesUtils . addErrorMessage ("

Error committing Product ");
99 try {

100 mutableProduct . abortAsProduct ();
101 } catch (de. tuhh . sts . cocoma. generic . StateException sex) {
102 sex . printStackTrace ();
103 }
104 return de. tuhh . sts . cocoma. catalog . view . bean . NavigationResults .

FAILURE;
105 }
106 try {
107 org . apache . commons. beanutils . BeanUtils . copyProperties (product , this

);
108 } catch (java . lang . Exception ex) {
109 java . lang . String errMsg = " Could not save Product " ;
110 de. tuhh . sts . cocoma. catalog . view . util . FacesUtils . addErrorMessage (

errMsg);
111 try {
112 mutableProduct . abortAsProduct ();
113 } catch (de. tuhh . sts . cocoma. generic . StateException se) {
114 se . printStackTrace ();
115 }
116 return de. tuhh . sts . cocoma. catalog . view . bean . NavigationResults .

FAILURE;

Appendices B: Configuration and Generated Code Samples 61

117 }
118 de. tuhh . sts . cocoma. catalog . view . util . FacesUtils . getSessionBean ().

setProductId (this . productId);
119 de. tuhh . sts . cocoma. catalog . view . util . FacesUtils . resetManagedBean ("

productListBean ");
120 java . lang . String errMsg = " Product with ID " + (this . productId + "

was created successfully ");
121 de. tuhh . sts . cocoma. catalog . view . util . FacesUtils . addInfoMessage (

errMsg);
122 return de. tuhh . sts . cocoma. catalog . view . bean . NavigationResults .

SUCCESS;
123 }
124 public java . lang . String deleteAction () {
125 try {
126 de. tuhh . sts . cocoma. catalog . Product product = (de. tuhh . sts . cocoma.

catalog . Product) module . lookfor (this . productId);
127 module . delete (product);
128 de. tuhh . sts . cocoma. catalog . view . util . FacesUtils . resetManagedBean ("

productListBean ");
129 } catch (java . lang . Exception ex) {
130 java . lang . String errMsg = " Could not delete Product " ;
131 de. tuhh . sts . cocoma. catalog . view . util . FacesUtils . addErrorMessage (

errMsg);
132 return de. tuhh . sts . cocoma. catalog . view . bean . NavigationResults .

FAILURE;
133 }
134 java . lang . String errMsg = " Product with ID " + (this . productId + "

was deleted successfully ");
135 de. tuhh . sts . cocoma. catalog . view . util . FacesUtils . addInfoMessage (

errMsg);
136 return de. tuhh . sts . cocoma. catalog . view . bean . NavigationResults .

SUCCESS;
137 }
138 public java . lang . String updateAction () {
139 try {
140 de. tuhh . sts . cocoma. catalog . Product product = (de. tuhh . sts . cocoma.

catalog . Product) module . lookfor (this . productId);
141 module . modify (product , new de. tuhh . sts . cocoma. generic . Module .

MemberInitialization []{});
142 org . apache . commons. beanutils . BeanUtils . copyProperties (product , this

);
143 de. tuhh . sts . cocoma. catalog . view . util . FacesUtils . resetManagedBean ("

productListBean ");
144 } catch (java . lang . Exception ex) {
145 java . lang . String errMsg = " Could not update Product " ;
146 de. tuhh . sts . cocoma. catalog . view . util . FacesUtils . addErrorMessage (

errMsg);
147 return de. tuhh . sts . cocoma. catalog . view . bean . NavigationResults .

FAILURE;
148 }

Appendices B: Configuration and Generated Code Samples 62

149 java . lang . String errMsg = " Product with ID " + (this . productId + "
was updated successfully ");

150 de. tuhh . sts . cocoma. catalog . view . util . FacesUtils . addInfoMessage (
errMsg);

151 return de. tuhh . sts . cocoma. catalog . view . bean . NavigationResults .
SUCCESS;

152 }
153 }

Listing B.2: Generated backing bean of theProduct Asset

The following three listings shows the generated code for JSP pages with UI components rep-
resenting the view, create, edit, delete as well as listing a Asset. The edit page is same as the
create page except the action method will beeditAction instead ofcreateAction .

1 <%-- Auto generated code . DO NOT EDIT -- %>
2 <%-- Generated by de. tuhh . sts . cocoma. compiler . generators . webapp.

WebappGenerator -- %>
3 <%-- Thu Oct 12 17:34:16 CEST 2006 -- %>
4

5 <%@ taglib prefix= " f " uri= " http :// java . sun . com/ jsf / core " %>
6 <%@ taglib prefix= " h" uri= " http :// java . sun . com/ jsf / html " %>
7 <html >
8 <head >
9 <title >Front Page</ title >

10 <link rel =" stylesheet " type =" text / css " href =" stylesheet . css " />
11 </ head >
12 <body >
13 <f:view>
14 <%@ include file= " header . jsp " %>
15 <h: form id= " productListBeanForm " >
16 <table align =" center " >
17 <tr>
18 <td><h:dataTable id= " table "
19 value =" #{ productListBean . currentProductBeans } " var =" productBean "

>
20 <h:column>
21 <f:facet name=" header " >
22 <h:outputText value =" Product name" />
23 </f:facet>
24 <h:outputText value =" #{ productBean . name} " />
25 </h:column>
26 <h:column>
27 <f:facet name=" header " >
28 <h:outputText value =" Product description " />
29 </f:facet>
30 <h:outputText value =" #{ productBean . description } " />
31 </h:column>
32 <h:column>
33 <f:facet name=" header " >

Appendices B: Configuration and Generated Code Samples 63

34 <h:outputText value =" Product price " />
35 </f:facet>
36 <h:outputText value =" #{ productBean . price } " />
37 </h:column>
38 <h:column>
39 <f:facet name=" header " >
40 <h:outputText value =" " />
41 </f:facet>
42 <h:commandLink action =" viewProduct " styleClass= " highLightLink "

>
43 <h:outputText value =" view " />
44 <f:param name=" productId " value =" #{ productBean . productId } " />
45 </h:commandLink>
46 </h:column>
47 <h:column>
48 <h:outputText value =" | " styleClass= " highLightText " />
49 </h:column>
50 <h:column>
51 <f:facet name=" header " >
52 <h:outputText value =" " />
53 </f:facet>
54 <h:commandLink action =" editProduct " styleClass= " highLightLink "

>
55 <h:outputText value =" edit " />
56 <f:param name=" productId " value =" #{ productBean . productId } " />
57 </h:commandLink>
58 </h:column>
59 <h:column>
60 <h:outputText value =" | " styleClass= " highLightText " />
61 </h:column>
62 <h:column>
63 <f:facet name=" header " >
64 <h:outputText value =" " />
65 </f:facet>
66 <h:commandLink action =" #{ productBean . deleteAction } "
67 styleClass= " highLightLink " >
68 <h:outputText value =" delete " />
69 <f:param name=" productId " value =" #{ productBean . productId } " />
70 </h:commandLink>
71 </h:column>
72 </h:dataTable></td>
73 </tr>
74 </ table >
75 </h: form >
76 <%@ include file= " footer . jsp " %>
77 </f:view>
78 </ body >
79 </ html >

Listing B.3: Generated list page of theProduct Asset

Appendices B: Configuration and Generated Code Samples 64

1 <%-- Auto generated code . DO NOT EDIT -- %>
2 <%-- Generated by de. tuhh . sts . cocoma. compiler . generators . webapp.

WebappGenerator -- %>
3 <%-- Thu Oct 12 17:34:15 CEST 2006 -- %>
4

5 <%@ taglib prefix= " f " uri= " http :// java . sun . com/ jsf / core " %>
6 <%@ taglib prefix= " h" uri= " http :// java . sun . com/ jsf / html " %>
7 <html >
8 <head >
9 <title >Front Page</ title >

10 <link rel =" stylesheet " type =" text / css " href =" stylesheet . css " />
11 </ head >
12 <body >
13 <f:view>
14 <%@ include file= " header . jsp " %>
15 <h: form id= " createProductForm " >
16 <table align =" center " width =" 500" >
17 <tr>
18 <td></td>
19 <td align =" left " ><h:outputText value =" Create New Product "
20 styleClass= " headerText " /></td>
21 </tr>
22 <tr>
23 <td align =" right " width =" 100" ><h:outputText value =" name" /></td>
24 <td align =" left " width =" 400" ><h:inputText
25 value =" #{ productBean . name} " id= " name" required= " true " /> <h:

message
26 for= " name" styleClass= " errorMessage " /></td>
27 </tr>
28 <tr>
29 <td align =" right " width =" 100" ><h:outputText value =" description " /

>
30 </td>
31 <td align =" left " width =" 400" ><h:inputText
32 value =" #{ productBean . description } " id= " description " required= "

true " />
33 <h:message for= " description " styleClass= " errorMessage " /></td>
34 </tr>
35 <tr>
36 <td align =" right " width =" 100" ><h:outputText value =" price " /></td>
37 <td align =" left " width =" 400" ><h:inputText
38 value =" #{ productBean . price } " id= " price " required= " true " /> <h:

message
39 for= " price " styleClass= " errorMessage " /></td>
40 </tr>
41 <tr>
42 <td align =" right " width =" 100" valign =" bottom " ><h:outputText
43 value =" category " /></td>
44 <td align =" left " width =" 400" ><h:selectManyListbox
45 value =" #{ productBean . selectedcategoryIds } " id= "

selectedcategoryIds " >

Appendices B: Configuration and Generated Code Samples 65

46 <catalog:validateSelectedItemsRange minNum= " 1" />
47 <f:selectItems value =" #{ productBean . categorySelectItems } "
48 id= " categorys " />
49 </h:selectManyListbox> <h:message for= " selectedcategoryIds "

styleClass= " errorMessage " /></td>
50 </tr>
51 <tr>
52 <td align =" center " colspan =" 2" ><h:commandButton value =" Create "
53 action =" #{ productBean . createAction } " /> <h:commandButton
54 value =" Cancel " action =" cancel " immediate= " true " /></td>
55 </tr>
56 <tr>
57 <td align =" left " colspan =" 2" ><h:messages
58 styleClass= " errorMessage " globalOnly= " true " /></td>
59 </tr>
60 </ table >
61 </h: form >
62 <%@ include file= " footer . jsp " %>
63 </f:view>
64 </ body >
65 </ html >

Listing B.4: Generated create page of theProduct Asset

1 <%-- Auto generated code . DO NOT EDIT -- %>
2 <%-- Generated by de. tuhh . sts . cocoma. compiler . generators . webapp.

WebappGenerator -- %>
3 <%-- Thu Oct 12 17:34:15 CEST 2006 -- %>
4

5 <%@ taglib prefix= " f " uri= " http :// java . sun . com/ jsf / core " %>
6 <%@ taglib prefix= " h" uri= " http :// java . sun . com/ jsf / html " %>
7 <html >
8 <head >
9 <title >Front Page</ title >

10 <link rel =" stylesheet " type =" text / css " href =" stylesheet . css " />
11 </ head >
12 <body >
13 <f:view>
14 <%@ include file= " header . jsp " %>
15 <h: form id= " viewProductForm " >
16 <table width =" 800" border =" 0" align =" center " bgcolor =" #FFFFFF"
17 cellpadding =" 0" cellspacing =" 0" >
18 <tr>
19 <td colspan =" 2" > ;</td>
20 </tr>
21 <tr>
22 <td width =" 460" >
23 <table width =" 460" >
24 <tr>
25 <td align =" center " ><h:graphicImage

Appendices B: Configuration and Generated Code Samples 66

26 url= " images / products /#{ productBean . productId }. jpg " /></td>
27 </tr>
28 </ table >
29 </td>
30 <td width =" 340" valign =" top " >
31 <table border =" 0" bgcolor =" #FFFFFF" >
32 <tr>
33 <td><h:outputText value =" Product name" /></td>
34 <td><h:outputText value =" #{ productBean . name} " /></td>
35 </tr>
36 <tr>
37 <td><h:outputText value =" Product description " /></td>
38 <td><h:outputText value =" #{ productBean . description } " /></td>
39 </tr>
40 <tr>
41 <td><h:outputText value =" Product price " /></td>
42 <td><h:outputText value =" #{ productBean . price } " /></td>
43 </tr>
44 </ table >
45 </td>
46 </tr>
47 <tr>
48 <td colspan =" 2" bordercolor= " #FFFFFF" bgcolor =" #FFFFFF" >
49 <hr width =" 760" color =" #CCCCCC" />
50 </td>
51 </tr>
52 <tr>
53 <td colspan =" 2" ><%@ include file= " navigation . jsp " %>
54 </td>
55 </tr>
56 </ table >
57 </h: form >
58 <%@ include file= " footer . jsp " %>
59 </f:view>
60 </ body >
61 </ html >

Listing B.5: Generated view page of theProduct Asset

Bibliography

[1] ABRAMS, M., PHANOURIOU, C., BATONGBACAL , A. L., WILLIAMS , S. M., AND

SHUSTER, J. E. Uiml: An appliance-independent xml user interface language.
Computer Networks 31, 11-16 (1999), 1695–1708.

[2] APACHE STRUTS FOUNDATION. Apache Struts Framework.http://struts.apache.org/,
2006. Framework Specification.

[3] BASS, L. J., AND UNGER, C., Eds.Engineering for Human-Computer Interaction,
Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for
Human-Computer Interaction, Yellowstone Park, USA, August 1995(1996), vol. 45 of
IFIP Conference Proceedings, Chapman & Hall.

[4] BOSSUNG, S., SEHRING, H.-W., HUPE, P.,AND SCHMIDT, J. W. Open and Dynamic
Schema Evolution in Content-Intensive Web Applications. In Cordeiro et al. [7],
pp. 109–116.

[5] BROY, M., AND ZAMULIN , A. V., Eds.Perspectives of Systems Informatics, 5th
International Andrei Ershov Memorial Conference, PSI 2003, Akademgorodok,
Novosibirsk, Russia, July 9-12, 2003, Revised Papers(2003), vol. 2890 ofLecture Notes
in Computer Science, Springer.

[6] BULLARD , V., SMITH , K. T., AND DACONTA, M. C. Essential XUL Programming.
Wiley, 2001.

[7] CORDEIRO, J. A. M., PEDROSA, V., ENCARNAÇÃO, B., AND FILIPE, J., Eds.WEBIST
2006, Proceedings of the Second International Conference on Web Information Systems
and Technologies: Internet Technology / Web Interface and Applications, Setúbal,
Portugal, April 11-13, 2006(2006), INSTICC Press.

[8] CZARNECKI, K., AND EISENECKER, U. W., Eds.Generative and Component-Based
Software Engineering, First International Symposium, GCSE’99, Erfurt, Germany,
September 28-30, 1999, Revised Papers(2000), vol. 1799 ofLecture Notes in Computer
Science, Springer.

67

http://struts.apache.org/

Bibliography 68

[9] CZARNECKI, K., EISENECKER, U. W., GLÜCK , R., VANDEVOORDE, D., AND

VELDHUIZEN, T. L. Generative Programming and Active Libraries. In Jazayeri et al.
[17], pp. 25–39.

[10] DA SILVA , P. P., GRIFFITHS, T., AND PATON, N. W. Generating user interface code in a
model based user interface development environment. InAdvanced Visual Interfaces
(2000), pp. 155–160.

[11] DAVID , J.-L., RYAN , B., DESERRANNO, R., AND YOUNG, A. Professional WinFX
Beta: Covers “Avalon” Windows Presentation Foundation and “Indigo” Windows
Communication Foundation. Wrox, 2005.

[12] DIX , A., FINLEY, J., ABOWD, G. D., AND BEALE, R. Human Computer Interaction.
Prentice Hall, 2003.

[13] FOWLER, M. Inversion of Control Containers and the Dependency of Injection pattern.
http://www.martinfowler.com/articles/injection.html (January 2004).

[14] GAMMA , E., HELM , R., JOHNSON, R., AND VLISSIDES, J. M. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, October
1994.

[15] GOTTLOB, G., BENCZÚR, A. A., AND DEMETROVICS, J., Eds.Advances in Databases
and Information Systems, 8th East European Conference, ADBIS 2004, Budapest,
Hungary, September 22-25, 2004, Proceesing(2004), vol. 3255 ofLecture Notes in
Computer Science, Springer.

[16] JAVA COMMUNITY PROCESS. JavaServer Faces Specification.
http://www.jcp.org/en/jsr/detail?id=127, 2006. Java Technology Specifications.

[17] JAZAYERI , M., LOOS, R., AND MUSSER, D. R., Eds.Generic Programming,
International Seminar on Generic Programming, Dagstuhl Castle, Germany, April 27 -
May 1, 1998, Selected Papers(2000), vol. 1766 ofLecture Notes in Computer Science,
Springer.

[18] JOHNSON, R. Expert One-on-One: J2EE Design and Development. Wrox, 2002.

[19] JOHNSON, R. Introduction to Spring Framework.
http://www.theserverside.com/tt/articles/article.tss?l=SpringFramework (July 2005).

[20] JOHNSON, R., ET AL . Spring Java/J2EE Application Framework.
http://www.springframework.org/, 2006. Framework Specification.

[21] KUNII , H. S., JAJODIA, S.,AND SØLVBERG, A., Eds.Conceptual Modeling - ER 2001,
20th International Conference on Conceptual Modeling, Yokohama, Japan, November
27-30, 2001, Proceedings(2001), vol. 2224 ofLecture Notes in Computer Science,
Springer.

http://www.jcp.org/en/jsr/detail?id=127
http://www.springframework.org/

Bibliography 69

[22] MANN , K. D. JavaServer Faces in Action. Manning, 2004.

[23] MERRICK, R., WOOD, B., AND KREBS, W. Abstract User Interface Markup Language.
In Workshop on developing User Interfaces with XML: Advances on User Interface
Description Languages(2004).

[24] MOFOR, G. N. Modeling of User Interfaces for Conceptual Content Management
Systems. Projektarbeit, STS, TU Hamburg-Harburg, August 2006.

[25] OPENSYMPHONY. WebWork Web Application Framework.
http://www.opensymphony.com/webwork/, 2006. Framework Specification.

[26] SAVOLSKYTE , J. Conceptual Content Management Application Development by means
of Storyboarding. Master thesis, TU Hamburg-Harburg, August 2006.

[27] SCHMIDT, J. W.,AND SEHRING, H.-W. Conceptual Content Modeling and
Management. In Broy and Zamulin [5], pp. 469–493.

[28] SEHRING, H.-W. Compiler Framework and Generator Development Guide.
http://www.sts.tu-harburg.de/ hw.sehring/cocoma/projs/compiler/Compiler
_Framework.pdf, September 2004. Framework Specification.

[29] SEHRING, H.-W. Konzeptorientierte Inhaltsverwaltung Modell, Systemarchitektur und
Prototypen. Doctoral thesis, TU Hamburg-Harburg, 2004.

[30] SEHRING, H.-W. Java Code Generation Toolkit.
phhttp://www.sts.tu-harburg.de/ hw.sehring/codegentk/doc/index.html, 2006.

[31] SEHRING, H.-W., AND SCHMIDT, J. W. Beyond Databases: An Asset Language for
Conceptual Content Management. In Gottlob et al. [15], pp. 99–112.

[32] SMARAGDAKIS , Y., AND BATORY, D. S. Scoping Constructs for Software Generators.
In Czarnecki and Eisenecker [8], pp. 65–78.

[33] SUN M ICROSYSTEMS. JavaServer Faces.http://java.sun.com/javaee/javaserverfaces/,
2006.

[34] SZEKELY, P. A., SUKAVIRIYA , P. N., CASTELLS, P., MUTHUKUMARASAMY , J.,AND

SALCHER, E. Declarative interface models for user interface construction tools: the
MASTERMIND approach. In Bass and Unger [3], pp. 120–150.

[35] THALHEIM , B., AND DÜSTERHÖFT, A. Sitelang: Conceptual Modeling of Internet
Sites. In Kunii et al. [21], pp. 179–192.

[36] WIEDERHOLD, G. Mediators in the architecture of future information systems.IEEE
Computer 25, 3 (1992), 38–49.

http://www.opensymphony.com/webwork/
http://www.sts.tu-harburg.de/~hw.sehring/cocoma/projs/compiler/Compiler_Framework.pdf
http://www.sts.tu-harburg.de/~hw.sehring/cocoma/projs/compiler/Compiler_Framework.pdf
http://www.sts.tu-harburg.de/~hw.sehring/codegentk/doc/index.html
http://java.sun.com/javaee/javaserverfaces/

	List of Figures
	List of Tables
	Listings
	Introduction
	Problem statement and objectives
	Approach
	Related work
	Outline of the thesis

	Conceptual Content Management Systems
	Conceptual Content Management
	Asset Definition Language
	Characteristic
	Relationship
	Constraint

	Model Compiler
	CCMS Architecture
	Modules
	Components
	Systems

	Summary

	Frameworks for building Web Application Interfaces
	Introduction
	Using existing Web Application Frameworks
	Spring Application Framework
	Spring Web MVC
	Application development with Spring Web
	Using Spring Web for the Presentation layer

	JavaServer Faces
	Faces and MVC
	Using JavaServer Faces for the Presentation layer

	Summary

	Designing a Web Application Interface
	Creating User Interface from an Asset Model
	Asset Members
	Content
	Characteristics
	Relationships
	Inherited Asset Members
	Operations on Asset

	Technology Dependent Artifacts in the User Interface
	Importance of Type Conversion
	Validating User Input
	Bean Management
	Page Navigation Rules

	Design overview of Web application generator
	Summary

	Implementation of a Web Application Generator
	Structure of Code Generation
	Generating Backing Beans
	Generating Views with JSP and Faces UI components
	Generating Configuration Files
	Symbol Table

	Conclusion and Future work
	Main Contribution
	Limitations
	Future Work

	Appendices
	Developing Web Applications with Spring
	Configuring Spring MVC
	Configuring application

	Configuration and Generated Code Samples
	Bibliography

