

Conversion of Octopus UML Models
 into Eclipse UML2 Models

Student Project

Submitted by:
A. Jibran Shidqie

ajibran.shidqie@tu-harburg.de
Information and Media Technologies

Matriculation Number: 27199

Supervised by:

Prof. Dr. Ralf Möller
STS - TUHH

M.Sc. Miguel Garcia

STS - TUHH

Hamburg, Germany

August 2006

Declaration

I declare that:

this work has been prepared by myself,

all literally or content-related quotations from other sources are clearly pointed out,

and no other sources or aids than the ones that are declared are used.

Hamburg, 09.08.2006

 A. Jibran Shidqie

Abstract

 Nowadays Model Driven Architecture (MDA) has become more popular within

many organizations as an approach to design their application. The flexibility and the

reusability of the design makes them even more important. Unified modeling language

(UML) which recently known as primary modeling notation plays a central role in this

architecture. OCL Tool for Precise UML Specifications (Octopus) and Eclipse Modeling

Framework (EMF) are the examples of these UML tools which have their own strength.

 Octopus has focused so far on modeling-time checking of well-formedness of

UML + OCL models, and their IDE support. In contrast, the Eclipse modeling platforms

has focused less on compile-time correctness of OCL models as on providing graphical

tooling to manipulate instantiations of domain-specific languages defined by the modeler.

The combination of their strength will demonstrate powerful capabilities of designing

model in application development. This student project will combine the strong point of

both tools by providing the bridge between them. The converter which transform the

Octopus Model to EMF based Model will be the concrete result of this work.

Table of Contents
I Introduction... 8

I.1 Background... 8

I.2 Objectives ... 8

I.3 Organization Document .. 9

I.4 Preliminaries ... 10

I.4.1 Object Constraint Language (OCL).. 10

I.4.2 Octopus ... 10

I.4.3 EMF & Emfatic... 11

I.4.4 UML2.. 13

I.5 Summary ... 14

II Octopus to UML2 ... 15

II.1 Octopus ... 15

II.1.1 Royal and Loyal Example... 15

II.1.2 Octopus UML model .. 16

II.1.3 Octopus OCL expression .. 17

II.2 Conversion from Octopus to UML2... 19

II.2.1 UML2 model... 19

II.2.2 The conversion.. 19

II.2.2.1 Visitor01 ... 20

II.2.2.2 Visitor02 ... 21

II.2.2.3 Visitor03 ... 21

II.2.2.4 UML2 File Writer ... 21

II.2.2.5 Output in UML2 ... 21

II.2.2.6 Output in omondo ... 23

II.3 UML2 Codegen .. 24

II.4 Summary ... 27

III Adding Constraints ... 28

III.1 Adding Constraints by Creating Constraints Element in UML2...................... 28

III.2 EMFT Validation.. 33

III.2.1 Adding Constraints ... 34

III.3 EMFT OCL... 37

III.3.1 Adding Constraints ... 37

III.3.1.1 Octopus Model to Emfatic .. 38

III.3.1.2 Emfatic to Generated Code... 42

III.4 Summary ... 47

IV EMF.Edit & EValidator API .. 48

IV.1 EMF.edit ... 48

IV.2 Evalidator API .. 48

IV.3 Generation of an Editor for Royal and Loyal ... 49

IV.4 Runtime Aspect... 52

IV.5 Summary ... 54

V Outlook ... 56

V.1 Summary ... 56

V.2 Future Work .. 56

Appendixes ... 58

VI Visitor Code of Octopus2uml2 ... 58

VI.1 de.tuhh.sts.ouml2.visitors package ... 58

VI.1.1 VisitorForUml2.java ... 58

VI.1.2 Visitor01.java.. 59

VI.1.3 Visitor02.java.. 62

VI.1.4 Visitor03.java.. 66

Bibliography ... 68

Table Of Figures

Figure I-1. Class Hierarchy of an Ecore Metamodel [11] .. 12

Figure I-2. Class Hierarchy of Emfatic Metamodel.. 13

Figure I-3. Class model of Ecore Metamodel... 14

Figure II-1The Royal and Loyal Model [8] .. 16

Figure II-2. Example of Royal and Loyal UML model - RandL.uml............................... 17

Figure II-3. Example of Royal and Loyal OCL Expression – Customer.ocl.................... 18

Figure II-4. Octopus UML model of Royal and Loyal... 18

Figure II-5. Octopus2uml2 plugins... 22

Figure II-6. Conversion Action from Octopus UML model into UML2 model............... 22

Figure II-7. UML2 model of Royal and Loyal ... 23

Figure II-8. Royal and Loyal in UML2 model visually built using Omondo................... 24

Figure II-9. UML2 model as importer model ... 25

Figure II-10. Process All the options .. 26

Figure II-11.Generate Model Code... 26

Figure II-12. Generated Code from UML2 model.. 27

Figure III-1. Create a constraint element .. 28

Figure III-2. Add the constrained element properties... 29

Figure III-3. Create an opaque expression to the constraint ... 29

Figure III-4. Add value to the body properties of the constraint 30

Figure III-5. The results after the constraints is added ... 30

Figure III-6. Converting to Ecore Model.. 31

Figure III-7. The Ecore model after adding the constraint ... 31

Figure III-8. Customer.java... 32

Figure III-9. CustomerImpl.java ... 32

Figure III-10. Validation PluginProject .. 34

Figure III-11. Startup class extension point – plugin.xml .. 35

Figure III-12. Startup Class – Startup.java ... 35

Figure III-13. Constraint Definition – plugin.xml .. 36

Figure III-14. variable definition – plugin.properties ... 36

Figure III-15. Flow chain of the conversion process .. 37

Figure III-16. InvariantsVisitor.java ... 38

Figure III-17. DerivationAttributeVisitor.java ... 39

Figure III-18. OperationExpressionVisitor.java ... 40

Figure III-19. ConvertUMLToEmfatic.java ... 41

Figure III-20. Convert to Emfatic ... 41

Figure III-21. Royal And Loyal emfatic model - RoyalAndLoyal.emf............................ 42

Figure III-22. Generate Ecore Model from Emfatic ... 43

Figure III-23. Generate genmodel from Ecore model .. 43

Figure III-24. Properties of RoyalAndLoyal.genmodel.. 44

Figure III-25. Generate the Model Code... 44

Figure III-26. Generated code on package view... 45

Figure III-27. Pre Constraint generated Code –LoyaltyAccountImpl.java....................... 45

Figure III-28. Post Constraint Generated Code – LoyaltyAccountImpl.java 46

Figure III-29. Validator Method – CustomerImpl.java ... 46

Figure IV-1. Generate Edit and Editor Code .. 49

Figure IV-2. Generated Code of EMF Codegen... 49

Figure IV-3. Editor of Royal and Loyal.. 50

Figure IV-4. Validate Action - Context Menu of Editor ... 50

Figure IV-5. validate method – RandLValidator.java .. 51

Figure IV-6. validateCustomer method – RandL.java.. 51

Figure IV-7. Test Results – All OCL Expressions are included....................................... 53

Figure IV-8. Test Results – Only The relevant OCL expressions included 53

I Introduction

I.1 Background

 The development of enterprise-level software systems requires applying

appropriate techniques from Software Engineering in order to help software architects to

provide solutions. Several challenges, e.g. reusability and unplanned system evolution,

have to be coped with. Model Driven Architecture (MDA) comes into play to help the

software architect to achieve all of those needs.

 In MDA, as its name suggests, the model plays as central role. There are many

reasons why models become so important. Models represent abstractions of real-world

systems that can be used in communicating intricate ideas. People can understand faster

and easier the model than the programming code. Early experiences consisted in using

the notation and tools of the Unified Modeling Language (UML) to document system

perspectives, which can be mapped into design documents and into programming

language code. Initially the last transformation was performed manually, but today as we

can see there are tools that can generate code automatically.

 This Student Project introduces two such tools, OCL Tool for Precise UML

Specifications (Octopus) [7] and Eclipse Modeling Framework (EMF) [3]. Both of them

have their own strengths which can be useful under different situations. Octopus has

focused so far on modeling-time checking of well-formedness of UML together with its

OCL models, and their IDE support. On the other hand, EMF has focused on providing

graphical tooling in order to manipulate the instantiations of domain specific languages

defined by the modeler.

I.2 Objectives

 We can combine the strengths of both tools to maximize benefits. Octopus

provides a very good way on modeling time by ensuring the OCL expression are

syntactically correct. And EMF on the other side has a very useful features around

generating code and other artefacts (GUIs). When modeling with EMF, we have to wait

until runtime in order to know whether syntax errors are contained in defining OCL

expression. Preparing the model in Octopus can avoid such errors and guarantee runtime

executability. Bridging between these two powerful tools would be a very interesting

works, and might be a good solution generally to MDA which keeps evolving.

 This Student Project is a continuation of previous work, a converter from an

Octopus class model to an EMF model. At the beginning of this StA, that plugin

(octopus2emfatic) could convert the octopus model into Emfatic form [4] without OCL

constraints. By building upon that plugin, this StA consists of two related tasks:

1. Conversion of Octopus UML models to Eclipse UML2 Abstract Syntax Tree

representation (AST) [17].

2. Conversion of Octopus UML + OCL models to the Emfatic file format.

 The conversion of Octopus models to UML2 ASTs aims at reusing the tooling for

graphical representation and manipulation of UML2 models. UML2 as an Eclipse project

provides the interoperability to other EMF based components and (commercial) tools,

making easier to use those tools to extend the functionality of our original models.

 The emfatic format, which represents textual representation of the Ecore model

(EMF model) is a human-readable textual notation for EMF models. The second task

aims at completing the conversion process in our toolchain by including OCL constraints.

 In summary, the overall objective of these tasks is to contribute to a toolchain for

the model-driven development of enterprise-class systems.

I.3 Organization Document

 Chapter I gives some explanation about the background and the objectives of this

project. This introductory chapter also provides a brief overview of the terms used in the

rest of the report.

 Chapter II explains about the conversion process from Octopus model into UML2

model. It provides general information about what constitutes the Octopus model and the

UML2 model.

 Chapter III focuses on how to add the constraints to complete the conversion

process from Octopus model to UML2 model. It also discusses the limitation and the

alternatives of the solution.

 Chapter IV describes how to ensure that the model is kept up to date with the

source form of the model. Information about the validation process against the defined

constraints is provided here.

 The last chapter presents the summary and briefy discusses the future of this

project.

I.4 Preliminaries

I.4.1 Object Constraint Language (OCL)

 The Object Constraint Language (OCL) [6] is a language that enables describing

expressions and constraints on object-oriented models and other object modeling artifacts.

An expression is an indication or specification of a value. A constraint is a restriction on

one or more values of (part of) an object-oriented model or system. For more detail

information, please refer to [8].

I.4.2 Octopus

 Octopus stands for "OCL Tool for Precise UML Specifications". The information

in this subsection is summarized from [7]:

 Octopus offers two important functionalities:

1. Octopus is able to statically check OCL expressions. It checks the syntax,

as well as the expression types, and the correct use of model elements

like association roles and attributes.

2. Octopus is able to transform the UML model, including the OCL

expressions, into Java code.

 Octopus fully conforms to version 2.0 of the OCL standard. All

new constructs, like derivation rules and initial value specifications, are

completely supported. Furthermore, Octopus offers the possibility to view

expressions in an SQL-like syntax. The semantics of the original expressions,

written in the standard syntax, remain fully intact, while their appearance

become more familiar for those who have been working with databases.

 Octopus is able to generate a complete 3-tier prototype application

from your UML/OCL model. The middle tier consists of plain old Java

objects (POJOs). These POJOs include code for checking invariants and

multiplicities from the model. OCL expressions that define the body of an

operation are transformed into the body of the corresponding Java method.

Derivation rules and initial value specifications are transformed as expected.

 The storage tier consists of an XML reader and writer dedicated to

the UML/OCL model. It stores any data content in the prototype application

in an XML file. Naturally, it is also able to read the content of this XML file

into your prototype application. Furthermore, the application may be

regenerated, for instance, because one of the classes was missing an

attribute, and the reader will still be able to read the XML file. The reader

will read the contents of the XML file and produce objects for whatever

classes, attributes, and association ends are still in your model. New model

elements simply remain empty.

 The user interface tier consists of an implementation of a plug-in

for the Eclipse Rich Client Platform (RCP). From a Navigator view that

shows you all instances in the system, you are able to create and examine

instances of your UML/OCL model. Of course, the invariants or

multiplicities of an instance can be checked by pushing a single button.

I.4.3 EMF & Emfatic

 The Eclipse Modeling Framework (EMF) is an open source framework for

developing model-driven applications. It creates Java code for graphically editing,

manipulating, reading, and serializing data based on a model specified in XML Schema,

UML, or annotated Java [1]. In addition to that, EMF also provides runtime support for

the models which covers change notification, persistence support, and reflective API for

manipulating EMF objects generally.

 The core model of EMF called Ecore which describes application data models and knows as

Ecore meta-model.

Figure I-1 shows the complete class hierarchy of the Ecore model. Figure I-3 shows the

dependency diagram of Ecore metamodel.

 To generate the model into code, EMF has generator model called genmodel,

which is a wrapper of the ecore model that provides options that can be configured

relevant only to the code generator, such as what packages to use, and where the

generated code should go.

 Emfatic is a language designed to represent EMF Ecore models in a textual form. It can be

useful tool for viewing or building the Ecore models. Both of this form can be derived from each

other. Emfatic provides the generator which converts Emfatic to Ecore. and vice versa.

Figure I-2 shows the class hierarchy of Emfatic metamodel.

Figure I-1. Class Hierarchy of an Ecore Metamodel [11]

I.4.4 UML2

 The UML2 project (an Eclipse Tools sub-project) is an EMF-based

implementation of the UML 2.x metamodel for the Eclipse platform [17]. This

implementation is provided to support the development of the modeling tools.

 UML2 in their implementation has several goals:

1. Provide a common XMI schema to facilitate interchange of semantic models.

2. Provide test cases as a means of validating the specification and implementation.

3. Provide validation rules as a means of defining and enforcing levels of

compliance

Figure I-2. Class Hierarchy of Emfatic Metamodel

Figure I-3. Class model of Ecore Metamodel

I.5 Summary

 MDA gives the flexibility and the ease to the software architect to build such a

big-scale application. UML plays an important role as the model of MDA. Octopus is one

of the UML tools which can express UML class models and OCL constraints.

Furthermore, Octopus can guarantee the well-formedness of that model at modeling time.

EMF and UML2 is an Eclipse based framework which gives the possibility to generate

the code from the structured data model. It provides the editor in which we can

manipulate the model. The objective of this student project is to extend the Octopus

modeling platform to convert Octopus models to UML2 Model, in order to combine all

the benefits both of Octopus and EMF.

II Octopus to UML2

II.1 Octopus

 To get the full functionality of octopus, it has to be installed as eclipse plugins.

The source code can be found at http://sourceforge.net/projects/octopus/. After having it

as eclipse plugins, we can create an octopus project. The functionality provided in

Octopus is available only on projects with an Octopus nature.

 The Octopus nature can be achieved in several ways. It can be added to Java,

Plug-in, and simple projects. To create a simple project with the Octopus nature, the

wizard will help you, ‘New>Project>Octopus>NewOctopusProject' and follow the

directions. To add the Octopus nature to a Java or Plug-in project, create the project in the

normal way. Next, either use the ‘Octopus’ context menu on the project and select ‘Add

Octopus Nature’, or use the button with the red ‘O’. Another way to add the Octopus

nature is to select the ‘Add Octopus Nature’ entry in the Octopus menu.

 This nature will then specify two special folders, ‘model’ and ‘expression’ by

default. The first is the folder where the UML elements are stored (*.uml), and the latter

is the folder where the files that contain OCL expressions are stored (*.ocl). All These

folder are configurable in the project properties. Combination of these two elements

constitutes as Octopus models.

II.1.1 Royal and Loyal Example

 Octopus provides several example projects in their site (http://www.klasse.nl/

octopus). One of them, Royal and Loyal, is used within this work as the example case.

 Royal and Loyal (R&L) models the computer system of a fictional company. It

handles loyalty programs for companies that offer their customers various kinds of

bonuses. Often, the extras take the form of bonus points or air miles, but other bonuses

are possible as well: reduced rates, a larger rental car for the same price as a standard

rental car, extra or better service on an airline, and so on. Anything a company is willing

to offer can be a service rendered in a loyalty program [8]. Figure II-1 shows its UML

class model. Like other UML model, it shows no dependency on whatever programming

language that will be used to build the system.

Figure II-1The Royal and Loyal Model [8]

II.1.2 Octopus UML model

 The octopus UML model can be obtained in two ways:

1. The model can be manually created within Octopus itself using a textual

representation of UML,

2. The model can be imported from the XMI format. This XMI format normally can

be derived from the UML modeling tool.

 Octopus has provided the import functionality to make things easier for octopus

user. The result of this import action is the textual representation of UML. This

functionality created based on XSLT, but still have some problem caused by the dialect

differences of XMI format of various modeling tools. The XMI format of Royal and

Loyal is already given from the example, so we can directly import it into the octopus

UML model.

Figure II-2 shows part of the model in the textual representation.

Figure II-2. Example of Royal and Loyal UML model - RandL.uml

II.1.3 Octopus OCL expression

 OCL expression are stored in the file with the context name as the filename and

‘.ocl’ as the extension, for example Customer.ocl. Each OCL file needs to be structured

according to the rules in the OCL specification version 2.0. All OCL files should be

placed under the dedicated expression folder in the Octopus project.

<package> RandL
 + <class> Burning <specializes> Transaction
<endclass>
 + <class> Customer
<attributes>
 + name: String;
 + title: String;
 + isMale: Boolean;
 + dateOfBirth: Date;
 + /age: Integer;
 + gender: Gender;
<operations>
 + age(): Integer;
 + birthdayHappens();
<endclass>
.
.
.
<endpackage>

Figure II-3. Example of Royal and Loyal OCL Expression – Customer.ocl

package RandL

context Customer
 inv ofAge: age >= 18

context Customer::birthdayHappens()
 post: age = age@pre + 1

context Customer
 def: wellUsedCards : Set(CustomerCard)
 = cards->select(transactions.points->sum() > 10000)
 def: loyalToCompanies : Bag(ProgramPartner)
 = programs.partners
 def: cardsForProgram(p: LoyaltyProgram) : Sequence(CustomerCard)
 = p.Membership.card
.
.
.
endpackage

Figure II-4. Octopus UML model of Royal and Loyal

 All OCL expression which exist in the octopus project (project with the octopus

nature) will be checked whenever the project is rebuilt. First it will check the UML files,

then if there are no errors found, all OCL files are checked, otherwise no OCL files are

checked.

Figure II-3 shows part of the ocl expression of the Customer context. Figure II-4 shows

the Octopus UML model of Royal and Loyal in Abstract Syntax Tree (AST) view.

II.2 Conversion from Octopus to UML2

II.2.1 UML2 model

 A model contains three major categories of elements: Classifiers, events, and

behaviors. Each major category models individuals in an incarnation of the system being

modeled. A classifier describes a set of objects; an object is an individual thing with a

state and relationships to other objects. An event describes a set of possible occurrences;

an occurrence is something that happens that has some consequence within the system. A

behavior describes a set of possible executions; an execution is the performance of an

algorithm according to a set of rules [16].

 The detail specifications about UML2 metamodel can be found in [15] and [16].

Those are the official document released by Object Management Group (OMG,

http://www.uml.org). The detail information about how to get the source code and how to

install it properly in order to get it run in Eclipse can be found at http://www.eclipse.org/

uml2.

II.2.2 The conversion

 Octopus has implemented visitor pattern in modeling their AST. This makes the

conversion process much easier. What we should do is to provide the ‘visitor’ which will

visit all Octopus elements according to Octopus’s visitor pattern implementation.

 This conversion action uses a number of visitors to visit the input Octopus model

(UML model and OCL expression). All of these visitors implement the package visitor of

Octopus (nl.klasse.octopus.modelVisitors.IPackageVisitor) which is already provided by

Octopus. An implementation of the IPackageVisitor can specify the visit to go through

the Classes, Associations, Operations, etc. by defining the operations ‘visitXXX()’. If

they return true the corresponding items are visited, otherwise they are not. Each visitor

visits the input based on the corresponding item that they visited and then translates them

into UML2 model structure.

 The basic idea of the visitor used in this conversion is taken from the visitor of

octopus2emfatic plugin which converts Octopus model into Emfatic. The visitor defines

several maps. Each map maps an Octopus element to UML2 element, for example,

Octopus package (nl.klasse.octopus.model.IPackage) to UML2 package (org.eclipse.

uml2.uml.Package), Octopus classifier (nl.klasse.octopus.model.IClassifier) to UML2

classifier (org.eclipse.uml2.uml.Classifier), etc. When the visitor visited one element of

the input (Octopus model), it created the same element in the form of UML2 model, and

stored it in corresponding map, which will be processed later by another visitor in the

next visit. At the end, after the final UML2 models has been generated, it is serialized

into file, using the information which stored in that map.

 The following visitors are called in the given order, depending on whether the

option has been set to use the given functionality. In the following we will name all

visitors and what they do. The complete visitor code can be found in the appendix.

II.2.2.1 Visitor01

 In the first pass, all Octopus Packages with its imported packages are read which

results UML2 Packages are created accordingly. For this pass, only the package names

are being read.

 For each octopus classifier which can be, in general, Enumeration, Class, or

Interface, results in the creating of the corresponding UML2 classifier by its name.

 The creation of UML2 properties is done by visiting the octopus attributes. The

octopus attribute is mapped to property in the UML2.

 The same happens with the creation of UML2 operation and UML2 parameter

when it visits the same elements of the Octopus model. Basically all the UML2 elements

which needed, is created by its name in this first pass.

II.2.2.2 Visitor02

 In the second pass, the subpackages are linked to the correct package based on its

relation of the octopus model. The same thing is done for the classifier, each of them is

connected with its owner. As an addition, the visitor will traverse all the primitive type,

and attach it to its owner package.

 The Enumeration type will complete in this stage which its literal is created based

on the Octopus Enumeration model. For another type of Octopus classifier (IClassifier)

which is not part of Enumeration, after checking the type of its attribute, then it will

create the correct model of the UML2 classifier, and linked it back with the Octopus

classifier using the maps. The generalization of each classifier is finalized here.

 The other property of the UML2 Operation is determined, the return type and the

parameters.

 The property of Property (visibility) and Parameter (direction) is set and will be

completed.

II.2.2.3 Visitor03

 After having the basic model set, all association related elements are built in this

third pass (last pass). The UML2 association created based on the association model of

the input Octopus UML.

II.2.2.4 UML2 File Writer

 Here we create a resource set with the specified URI, add the package to the

resource contents, and ask the resource to save itself using the default options. The error

will display in the console if an exception occurs.

II.2.2.5 Output in UML2

 All of those code bundled in one plugins named octopus2uml2. To get it run in

Eclipse, create a new plugins project and put the source code inside source folder of the

project (Figure II-5). Then launch new workspace, and run the OUML2 -> Convert to

UML2 from the context menu of the input Octopus project (Figure II-6).

Figure II-5. Octopus2uml2 plugins

Figure II-6. Conversion Action from Octopus UML model into UML2 model

Figure II-7. UML2 model of Royal and Loyal

 Figure II-7 shows the result of Royal and Loyal in UML2 model, generated from

the action in Figure II-6. This result is similar with one in Figure II-4 only differs in the

representation of the model.

II.2.2.6 Output in omondo

 Omondo provides the visual presentation of the UML2 model. From UML2

model, we can obtained the ecore model which can be opened using Omondo

(http://www.omondo.com) and resulting the visual diagram of the model. This output

(Figure II-8) is useful to check the correctness of the output temporarily by comparing it

with one in Figure II-1.

Figure II-8. Royal and Loyal in UML2 model visually built using Omondo

II.3 UML2 Codegen

 Once we had the UML2 model, the next things to do is to get the generated code

based on the model defined. UML2 has provided UML2 Codegen API in their

frameworks.

 The purpose of the UML2 code generation extensions is to enhance the default

EMF code generator to handle concepts that are specific to UML, such as subsetting,

redefinition, and derived unions. A generator model created from a UML model that

makes use of any of these concepts (assuming the options were enabled in the wizard)

will produce code that enforces the associated constraints. The customized templates do

provide a few other options (such as factory and look-up methods) that were considered

too application-specific to be included in EMF, but these customizations could easily be

added independently of the UML2 code generator [10].

 The UML2 Codegen is not a stand alone module which can be used as generator

like EMF Codegen, but furthermore it is the extension of EMF Codegen. However, we

can use it as provided by the eclipse framework like the following.

 Having the UML2 model, we can start the EMF project wizard by choosing it as

the importer model and enabling the UML-specific options (i.e. process redefining

operations/properties, subsetting properties, and/or union properties). From EMF project

we can directly derive the generated code by choosing ‘generate model’ in the context

menu of the genmodel.

 Following are the steps to get the generated code out of the UML2 model.

1. Create new EMF Project with UML2 as the importer model

Figure II-9. UML2 model as importer model

2. Specify the model and enable the UML2 specific options, or simply press the process

all button.

Figure II-10. Process All the options

3. After having the .genmodel file, open it and run Generate Model Code from its context

menu.

Figure II-11.Generate Model Code

4. The result code is generated in src folder

Figure II-12. Generated Code from UML2 model

II.4 Summary

 This StA used one of the example Octopus projects (Royal and Loyal, which

modeled a computer system for a fictional company) as a case study for the conversion to

Eclipse UML2.

 UML2 model contains three major categories of elements: classifier, events, and

behaviors. The conversion from Octopus model to UML2 is done by creating visitor to

visit all the Octopus element and create the corresponding UML2 element. Each visitor

stored the information (Octopus element and UML2 element) into maps. At the end, the

UML2 model, which can be obtained from that maps, is serialized into UML file.

 UML2 Codegen which is based on EMF Codegen cannot be used separately

without EMF. To get the generated code out of the UML2 model, use the EMF Codegen

instead, with all the options enabled.

III Adding Constraints
 The conversion from Octopus model to UML2 is not complete. There is still

something missing in the generated UML2 model. The constraints which are represented

in OCL expressions have not been transformed into UML2 model.

 There are several ways to have it expressed in the resulting UML2 model. In the

following we will discuss some alternatives for such translation.

III.1 Adding Constraints by Creating Constraints Element in
UML2

 A constraint can be specified by creating a Constraint element and specifying its

constrained element(s) and specification (e.g. an opaque expression). The UML2 project

does not provide any specific UI to support OCL, but it is possible to create constraints

via the UML editor [9].

 Following are the steps to create the constraint elements. We will continue from

the model which has been generated, RandL.uml (UML2 model).

1. Open Royal and Loyal UML2 model with UML Model Editor in eclipse.

2. Create a Constraint of Customer classifier.

Figure III-1. Create a constraint element

3. Add the attribute as one of the constraint's constrained elements (from the Properties

view)

Figure III-2. Add the constrained element properties

4. Create an opaque expression as its specification

Figure III-3. Create an opaque expression to the constraint

5. Add a body string to the expression

Figure III-4. Add value to the body properties of the constraint

6. Result after adding name of the Constraints and the Expression

Figure III-5. The results after the constraints is added

 Now the constraint element has been added in the UML2 model. We would like

to see whether this constraints will be generated to the code, by converting it to Ecore

model then generate the code using EMF Codegen.

7. Convert it into Ecore Model

Figure III-6. Converting to Ecore Model

8. The constraints has been added as additional validation method.

Figure III-7. The Ecore model after adding the constraint

 There is also the annotation attached to the validation method. That annotation

informs us that, the OCL expression will be added as the documentation of the method.

9. Here is the generated code from .genmodel file, which can be obtained from the .ecore

file.

Figure III-8. Customer.java

Figure III-9. CustomerImpl.java

 The generated validation method still needs to be completed manually by hand.

The OCL constraints that have been expressed in the previous steps only generated as the

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public boolean AgeConstraints(DiagnosticChain diagnostics, Map context) {
// TODO: implement this method
// -> specify the condition that violates the invariant
// -> verify the details of the diagnostic, including severity and message
// Ensure that you remove @generated or mark it @generated NOT
 if (false) {
 if (diagnostics != null) {
 diagnostics.add (new BasicDiagnostic (Diagnostic.ERROR,
 RandLValidator.DIAGNOSTIC_SOURCE,
 RandLValidator.CUSTOMER__AGE_CONSTRAINTS,
 EcorePlugin.INSTANCE.getString(
 "_UI_GenericInvariant_diagnostic",
 new Object[] { "AgeConstraints",
 EObjectValidator.getObjectLabel(this, context) }),
 new Object [] { this }));
 }
 return false;
 }
 return true;
}

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* <!-- begin-model-doc -->
* age > 18
* <!-- end-model-doc -->
* @model
* @generated
*/
boolean AgeConstraints(DiagnosticChain diagnostics, Map context);

documentation in the interface (Figure III-8). This limitation makes us to find another

approach in adding the constraint to the UML2 model.

III.2 EMFT Validation

 The Eclipse Modeling Framework Technology project was initiated to incubate

new technologies that extend or complement EMF (http://www.eclipse.org/emft). There

are several topics which are covered beyond this EMFT project, some examples include

Validation, OCL, Query, Transaction, and many more. Each topic has similar intention

which is to coordinate all things surround the EMF. The Validation and OCL will be

discussed deeper in this work.

 The EMF validation framework provides a means to evaluate and ensure the well-

formedness of EMF models. Validation comes in two forms: batch and live. While batch

validation allows a client to explicitly evaluate a group of EObjects and their contents,

live validation can be used by clients to listen on change notifications to EObjects to

immediately verify that the change does not violate the well-formedness of the model [14].

The purpose of this framework is to check the integrity of the EMF metamodels by

providing a generic and extensible framework which can be used in defining constraints

to be checked againts the model. Actually EMF already provided EValidator API in their

package (this is briefly explained in IV.2). This framework differs from it in several

important aspect [14]:

1. Support for automatic validation on transaction boundaries: constraints can

indicate that they are evaluated in "live" mode, as changes are made in a model,

rather than by user demand.

2. Dynamic extensibility: the framework is not based on code generation.

3. Pluggable support for constraint languages such as OCL.

 However, both of them can work simultaneously to achieve the expected results.

 Using this approach, the Constraints will not be generated inside the model. We

will create the validation extension that will be invoked by the generated code when the

validation occur.

III.2.1 Adding Constraints

 We can create an EValidator implementation that delegates to the validation

framework, to provide user-demand "batch mode" validation from an EMF editor or even

a “live mode” validation.

 Following are steps in how to implement this way using our example Royal and

Loyal model:

1. Create the EMF project based on Royal and Loyal UML2 Model, choose the UML

model as the model importer and add all the options (by clicking ‘Process All’) to include

all the functionality of UML2 model.

2. Generate the model code, edit code, and editor code out of it.

3. Create new plugin project to provide the validation.

 Figure III-10 shows the result on the workspace after adding several code

supporting the validation. These code is based on the Validation Adapter Example and

OCL Validation Example. The explanation is provided in their tutorial which you can get

after installing EMFT Validation plugins on Eclipse.

Figure III-10. Validation PluginProject

 The EValidator implementation will delegate to the EMF Validation Framework

to evaluate all active constraints on a sub-tree of a model. The metamodel that will be the

target is the Royal and Loyal Metamodel example which are just created in previous steps.

 EMF provides extension points on which to register resource factories for file

extensions and EPackages for namespace URIs. However, there is no extension point on

which we can register our EValidator implementation for the Royal and Loyal

Metamodel. Instead, we will create an org.eclipse.ui.startup extension to register our

validator when the Eclipse platform launches.

Figure III-11. Startup class extension point – plugin.xml

 Then the Startup class (Figure III-12) which is defined above (Figure III-11) will

do the rest by registering the validator to Evalidator.Registry. With this way, each time,

user invoke EMFs validate action in the context menu of Royal and Loyal Editor, this

validator will be run.

Figure III-12. Startup Class – Startup.java

 Figure III-13 show the constraints part which has to be defined in plugin.xml.

Each constraints that wants to be evaluated has to be added to this plugin.xml. This

document only gives one OCL Constraints as the example which defines that the age of

Customer, which is the target, has to be greater than 18. Some variables used can be

defined in plugin.properties (Figure III-14).

<plugin>
 <extension point="org.eclipse.ui.startup">
 <startup class="randl.validation.ocl.adapter.Startup"/>
 </extension>

.

.

.
</plugin>

public class Startup implements IStartup {

 /**
 * Install the validator.
 */

 public void earlyStartup() {
 EValidator.Registry.INSTANCE.put(
 RandLPackage.eINSTANCE, new EValidatorAdapter());
 }

}

Figure III-13. Constraint Definition – plugin.xml

Figure III-14. variable definition – plugin.properties

 This approach has succeeded on generation of OCL constraints into the model. In

order to do that we have to put all the constraint one by one into the plugin.xml which is

not a good idea for some rather large application.

<extension point="org.eclipse.emf.validation.constraintProviders">
 <category name="%category.name"
 id="emf-validation-example/ocl">
 %category.description
 </category>
 <constraintProvider cache="true">
 <package namespaceUri="http:///RandL.ecore"/>
 <constraints categories="emf-validation-example/ocl">
 <constraint
 lang="OCL"
 severity="ERROR"
 mode="Live"
 name="%customer1.name"
 id="customer1"
 statusCode="101">
 <description>%customer1.desc</description>
 <message>%customer1.msg</message>
 <!-- This constraint applies to Customer -->
 <!--<target class="Customer"/> -->
 <target class="Customer">
 <event name="Set">
 <feature name="age"/>
 </event>
 </target>
 <!-- Age of the customer should not less than 18 -->
 <![CDATA[age >= 18]]>
 </constraint>
 </constraints>
 </constraintProvider>
 </extension>

category.name = Royal and Loyal OCL Constraints
category.description = OCL Category for Royal and Loyal

customer1.name = Customer OCL Constraint in batch mode
customer1.desc = Customer OCL Constraint description
customer1.msg = age of "{0}" has to be greater than 18

III.3 EMFT OCL

 The EMFT OCL component provides capabilities for queries, constraint parsing,

constraint validation and content assist for user models. It defines the API for

constructing, validating, and evaluating OCL queries and constraints on EMF model

elements. (http://www.eclipse.org/emft/projects/ocl/)

 Using this component, we can provide OCL expression as annotations element in

the Ecore model. The generated model classes will have methods implementing these as

described in the next few sections.

III.3.1 Adding Constraints

 This technique used is based on an EMFT OCL article [2] which explains how to

implement model integrity using EMFT OCL. We will follow that approach to get the

OCL expression tranformed into the EMF model and evaluated at runtime.

 The basic idea on adding the constraints is having them as the annotations in the

Ecore model so that later on the can be transformed (by reflective inspection of that

model) into code in charge of runtime checks. The mechanics of the conversion involve

EMF codegen together with additional JET templates (http://www.eclipse.org/articles/

Article-JET/jet_tutorial1.html). The conversion process starts from the Octopus model

and ends as the EMF model using emfatic as intermediate notation. Figure III-15 shows

the chain of the conversion process: Octopus model -> Emfatic -> EMF model ->

Generated Code.

Figure III-15. Flow chain of the conversion process

UML OCL

Octopus Model

Emfatic octopus2emfatic

Emfatic Generator

EMF Model

Ecore

Genmodel

Generated
Code

EMF Codegen

Additional
 Jet Templates

public void class_Before(IClassifier c) {
 if (c instanceof ClassifierImpl && !(c instanceof IEnumerationType)) {
 EmfClass nc = (EmfClass) maps.classifiers.get(c);
 ClassifierImpl in = (ClassifierImpl) c;
 List<String> invNames = new ArrayList<String>();
 Iterator it = in.getInvariants().iterator();
 int invOperCount = 1;
 while(it.hasNext()) {
 IOclContext cont = (IOclContext) it.next();
 if (cont != null && (cont.getType() == OclUsageType.INV)) {
 if (cont.getName() != null && cont.getName().length() > 0) {
 if (!invNames.contains(cont.getName())) {
 invNames.add(cont.getName());
 addInvariant(nc, cont, invOperCount);
 }
 } else {
 addInvariant(nc, cont, invOperCount);
 invOperCount++;
 }
 }
 }
 }
}

 Additional JET Templates are needed to generate the validation operation body.

Scripting statements in these templates parse the annotations containing the constraints.

At runtime, the constraint is available as a String, which is interpreted to obtain a result.

The templates may also generate additional support fields.

III.3.1.1 Octopus Model to Emfatic

 This process is done by extending the octopus2emfatic plugins. It already

transformed the Octopus model to emfatic, only without having the constraints in it.

These additional visitors will add all the constraints of the input model into the emfatic

representation. Following are the four steps involved:

1. InvariantsVisitor

Figure III-16. InvariantsVisitor.java

 This visitor will visit every classifier and check whether they have OCL

specification of invariants. If so, it loops over each invariant, creating an EMF annotation

for each. The name of the invariant is given by its name, if any, otherwise the general

‘invariant_<classifier_name>_<order_number>’ name is used. For invariant annotation,

it uses ‘invariant’ as the key and the OCL expression as the value.

public void attribute(IAttribute a) {
 if (a instanceof AttributeImpl) {
 AttributeImpl attr = (AttributeImpl) a;
 EmfStructuralFeature na = maps.attributes.get(a) != null ?
 maps.attributes.get(a) : maps.references.get(a);

 if(na != null){
 // init expression
 IOclContext cont = attr.getInit();
 if (cont != null) {
 addDerivationRule(na, cont);
 } else {
 // derivation rule
 cont = attr.getDerivationRule();
 if (cont != null) {
 addDerivationRule(na, cont);
 }
 }
 }
 }
}

2. DerivationAttributeVisitor

 Very similar to the previous visitor, only this time a check is made for each

Octopus attribute whether it has an OCL specification of init and derivation. If so, it will

create the derivation annotation for corresponding attribute. The key of the annotation in

this case is ‘derive’ and its value is the OCL expression.

Figure III-17. DerivationAttributeVisitor.java

3. OperationExpressionVisitor

 This visitor visits all the Operations and checks whether there is any OCL

specifications of pre, post, or body defined. For each type of constraint, it creates one

additional operation named ‘pre_<operation_name>’, ‘body_<operation_name>’, or

‘post_<operation_name>’, depending on the specifications. For each of those additional

operations, it will define one annotation which contains it as constraint. At the end, it

creates one more annotation on the operation itself which contains of the invocation of

those additional method defined in OCL expression.

 There are two distinct types of annotations created here. First annotations use

literal ‘body’ as the key, and the OCL expression as the value. This OCL expression will

be checked and parsed before it is included in the body of its operation. Second

annotation use ‘genmodel’ as the key, and the invocation of pre, body, or post operation,

which has been previously defined, as the value. The latter type of annotation is used

public void operation_Before(IOperation o) {
 if (o instanceof OperationImpl) {
 EmfOperation no = maps.operations.get(o);
 OperationImpl oper = (OperationImpl) o;

 Iterator preIt = oper.getPreConditions().iterator();
 int preCount=0;
 while(preIt.hasNext()) {
 IOclContext preCont = (IOclContext) preIt.next();
 if (preCont != null && !preCont.hasErrors()) {
 preCount++;
 createConditionOperation(no, preCont, "pre_", preCount);
 }
 }

 Iterator postIt = oper.getPostConditions().iterator();
 int postCount=0;
 while(postIt.hasNext()) {
 IOclContext postCont = (IOclContext) postIt.next();
 if (postCont != null && !postCont.hasErrors()) {
 postCount++;
 createConditionOperation(no, postCont, "post_", postCount);
 }
 }

 if(preCount==0 && postCount==0){
 IOclContext bodyCont = oper.getBodyExpression();
 if (bodyCont != null) {
 addBody(no, bodyCont);
 }
 }else{
 IOclContext bodyCont = oper.getBodyExpression();
 if (bodyCont != null) {
 createConditionOperation(no, bodyCont, "body_", 0);
 addConditionToBody(no, preCount, 1, postCount);
 }else{
 addConditionToBody(no, preCount, 0, postCount);
 }
 }
 }
}

when we want to put the literal value of the annotation directly into the generated body of

operations without having it parsed as OCL constraint.

Figure III-18. OperationExpressionVisitor.java

4. Add all those visitor to the convert method of ConvertUMLToEmfatic Class

5. Launch the octopus2emfatic plugin by running it as new eclipse application (runtime

workbench), then invoke the OE -> Convert To Emfatic of the Royal and Loyal octopus

project

Figure III-19. ConvertUMLToEmfatic.java

Figure III-20. Convert to Emfatic

public class ConvertUMLToEmfatic {

 public static StringBuffer convert(IPackage p, boolean isTop, IOclLibrary
oclLib) {

 StringBuffer sb = new StringBuffer();
 if (p.getSubpackages().size() == 1) {
 p = (IPackage) p.getSubpackages().iterator().next();
 }

 VisitorForEmfatic v;

 v = new Visitor01(null);
 p.accept(v);
 v = new Visitor02(v.maps);
 p.accept(v);
 v = new Visitor03(v.maps);
 p.accept(v);

 v = new InvariantsVisitor(v.maps);
 p.accept(v);
 v = new DerivationAttributeVisitor(v.maps);
 p.accept(v);
 v = new OperationExpressionVisitor(v.maps);
 p.accept(v);

 EmfPackage top = v.maps.packages.get(p);
 String str = top.toString();
 sb.append(str);
 return sb;
 }
}

6. This is the result of generated emfatic after extending the octopus2emfatic plugin. The

invariant is listed as the validator method and notice its annotation (green marks) which

represents the OCL expression.

Figure III-21. Royal And Loyal emfatic model - RoyalAndLoyal.emf

III.3.1.2 Emfatic to Generated Code

1. Create the ecore model out of the emfatic

class Customer {
 attr Integer age;
 attr Boolean isMale;
 @"http://www.eclipse.org/OCL/examples/ocl"(
 derive = "self.name.substring(1, 1)")
 readonly volatile transient derived attr String initial;
 attr Gender gender;
 attr String name;
 attr String title;

 val OctopusDate dateOfBirth;

 @"http://www.eclipse.org/OCL/examples/ocl"(
 invariant = "self.age >= 18")
 op boolean invariant_ofAge(ecore.EDiagnosticChain diagnostics,ecore.EMap context);

 @genmodel(
 body = "// TODO: implement this method
 // Ensure that you remove @generated or mark it @generated NOT body
 assert post_birthdayHappens_1();
 ")
 op void birthdayHappens();
 @"http://www.eclipse.org/OCL/examples/ocl"(
 body = "self.age = self.age + 1")
 op boolean post_birthdayHappens_1();

 .
 .
 .
 .

 !ordered ref CustomerCard[0..*] #owner cards; /* end + CustomerCard.cards [0..*]
in assoc cards_owner + CustomerCard.cards [0..*] <-> + Customer.owner [1..1] */
 !ordered ref LoyaltyProgram[0..*] #participants programs; /* end +
LoyaltyProgram.programs [0..*] in assoc Membership + Customer.participants [0..*] <->
+ LoyaltyProgram.programs [0..*] */

}

Figure III-22. Generate Ecore Model from Emfatic

2. From ecore files we can get the EMF model (.genmodel). Choose the ‘EMF model’,

and select ‘ecore‘ as the importer model. Then continue the instruction until we can get

the .genmodel.

Figure III-23. Generate genmodel from Ecore model

3. Normally, from this model, we can directly obtain the generated code by invoking

‘Generate Model Code’ from context menu of this model. But, since we have to

implement the model integrity in this case by adding the OCL constraint into the

generated code, we have to configure some JET templates of this model. The template is

obtained from this resource [2]. There are few things to configure on the properties of the

model. See the green marks.

Figure III-24. Properties of RoyalAndLoyal.genmodel

4. After all things are configured, we can generate the code

Figure III-25. Generate the Model Code

5. Here is the generated code

Figure III-26. Generated code on package view

 Using this approach, finally we got the OCL expression as part of the body of the

validator method. It means we have successfully generated the constraints which is

defined in the model into the code. Figures below show the generated code of the

constraints.

Figure III-27. Pre Constraint generated Code –LoyaltyAccountImpl.java

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public boolean pre_isEmpty_1() {
 if (pre_isEmpty_1BodyOCL == null) {
 EOperation eOperation = (EOperation)
 eClass().getEOperations().get(4);
 Environment env =
 ExpressionsUtil.createOperationContext(eClass(), eOperation);
 EAnnotation ocl =
 eOperation.getEAnnotation(OCL_ANNOTATION_SOURCE);
 String body = (String) ocl.getDetails().get("body");
 try {
 pre_isEmpty_1BodyOCL =
 ExpressionsUtil.createQuery(env, body, true);
 } catch (ParserException e) {
 throw new
 UnsupportedOperationException(e.getLocalizedMessage());
 }
 }

 Query query =
 QueryFactory.eINSTANCE.createQuery(pre_isEmpty_1BodyOCL);
 EvalEnvironment evalEnv = new EvalEnvironment();
 query.setEvaluationEnvironment(evalEnv);
 return ((Boolean) query.evaluate(this)).booleanValue();
}

Figure III-28. Post Constraint Generated Code – LoyaltyAccountImpl.java

Figure III-29. Validator Method – CustomerImpl.java

/**
* The parsed OCL expression for the definition of the '{@link #invariant_ofAge Invariant
of Age}' invariant constraint.
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @see #invariant_ofAge
* @generated
* invariant = self.age >= 18
 */
private static OCLExpression invariant_ofAgeInvOCL;
private static final String OCL_ANNOTATION_SOURCE =
"http://www.eclipse.org/OCL/RoyalAndLoyal/ocl";
public boolean invariant_ofAge(DiagnosticChain diagnostics, Map context) {
 if (invariant_ofAgeInvOCL == null) {
 EOperation eOperation = (EOperation) eClass().getEOperations().get(1);
 Environment env = ExpressionsUtil.createClassifierContext(eClass());
 EAnnotation ocl = eOperation.getEAnnotation(OCL_ANNOTATION_SOURCE);
 String body = (String) ocl.getDetails().get("invariant");
 try {
 invariant_ofAgeInvOCL = ExpressionsUtil.createInvariant(env, body, true);
 } catch (ParserException e) {
 throw new UnsupportedOperationException(e.getLocalizedMessage());
 }
 }
 Query query = QueryFactory.eINSTANCE.createQuery(invariant_ofAgeInvOCL);
 EvalEnvironment evalEnv = new EvalEnvironment();
 query.setEvaluationEnvironment(evalEnv);
 if (!query.check(this)) {
 if (diagnostics != null) {
 diagnostics.add
 (new BasicDiagnostic
 (Diagnostic.ERROR, RandLValidator.DIAGNOSTIC_SOURCE,
 RandLValidator.CUSTOMER__INVARIANT_OF_AGE,
 EcorePlugin.INSTANCE.getString("_UI_GenericInvariant_diagnostic",
 new Object[] { "invariant_ofAge",
 EObjectValidator.getObjectLabel(this, context) }),
 new Object [] { this }));
 }
 return false;
 }
 return true;
}

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public Boolean isEmpty() {
 assert pre_isEmpty_1();
 // TODO: implement this method
 // Ensure that you remove @generated or mark it @generated NOT body
 assert post_isEmpty_1();
 throw new UnsupportedOperationException();
}
/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public boolean post_isEmpty_1() {
.
.
.
}

III.4 Summary

 In this stage we already had the converted UML2 model transform from Octopus

Model, only without the Constraints included. There are several ways to get them

expressed in the destination model. First approach is by adding it as constraint element

using UML2 editor, which later can be generated automatically programmatically. With

this way, we found out that the constraint is not generated as the implementation body of

the validation operation, instead only stated as documentation, which needs to manually

typed by hand. The second approach is using EMFT validation. With this way we create

the extension of the model which based on the validation framework. All the constraints

has to be put on plugin.xml of that extension package, which requires too much effort in

such big scale application. The third approach involves EMFT OCL components. With

this way we put the constraint as the annotation which later EMF Codegen with

additional JET Templates can process them to be generated as proper code. Using this

solution, we can get all the constraint expressed correctly in the code.

IV EMF.Edit & EValidator API

IV.1 EMF.edit

 The purpose of EMF.edit [13] is to build very functional viewers and editors for

the model. Basically, with this framework, developers which use EMF model in their

application can easily generate an editor that will display and edit instances of the model

using standard JFace viewers and a property sheet.

 EMF.Edit is an Eclipse framework that includes generic reusable classes for

building editors for EMF models. It provides:

1. Content and label provider classes, property source support, and other

convenience classes that allow EMF models to be displayed using standard

desktop (JFace) viewers and property sheets.

2. A command framework, including a set of generic command implementation

classes for building editors that support fully automatic undo and redo.

3. A code generator capable of generating everything needed to build a complete

editor plug-in for your EMF model. It produces a properly structured editor that

conforms to the recommended style for Eclipse EMF model editors.

 For More Information about EMF.edit please refer to [3].

IV.2 Evalidator API

 EMF Codegen generates package validator classes for each package which has

invariant method in its classes. EObjectValidator is the base for all generated package

validator classes. This base class provides validation on such aspects [12]:

1. The actual multiplicities of the attributes and references match the bounds defined

in the model.

2. The defined data type of the attributes is respected.

3. Any cross referenced objects are contained in resources.

4. Every proxy is properly resolved.

IV.3 Generation of an Editor for Royal and Loyal

 After having the model ready in EMF, now we can generate the editor to

manipulate the instance. This generation editor can also be used to ensure the integrity of

the model by validate action. This validate action will invoke the validate method

provided by package validator classes (EValidator API).

1. Generate edit code and editor code of Royal and Loyal

Figure IV-1. Generate Edit and Editor Code

2. Here is the result on the workspace. There are 3 projects created based on EMF

Codegen. The .edit and .editor package is used to provide the diagram editor and

manipulation of the instance of the model.

Figure IV-2. Generated Code of EMF Codegen

3. Launch a new workspace to instantiate the model. For detail, see step 4 of [5]

4. In this editor we can create an instance of the model. Then manipulate the properties in

the properties view (provided in the context menu). Figure IV-3 shows the editor of

Royal and Loyal.

Figure IV-3. Editor of Royal and Loyal

5. In this editor we can validate the instance of the model

Figure IV-4. Validate Action - Context Menu of Editor

 This action will invoke the validate method of the package validator classes which

is generated by EMF codegen.

Figure IV-5. validate method – RandLValidator.java

 Figure IV-5 is generated for RandL package. It is implementing the validate

method of its base class EObjectValidator.

Figure IV-6. validateCustomer method – RandL.java

/**
* Calls <code>validateXXX</code> for the corresonding classifier of the model.
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/

protected boolean validate(int classifierID, Object value, DiagnosticChain
diagnostics, Map context) {

 switch (classifierID) {
 .
 .
 .
 case RandLPackage.CUSTOMER:
 return validateCustomer((Customer)value, diagnostics, context);
 .
 .
 .
 default:
 return true;
 }
}

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public boolean validateCustomer(Customer customer, DiagnosticChain diagnostics, Map
context) {
boolean result = validate_EveryMultiplicityConforms(customer, diagnostics, context);
if (result || diagnostics != null)
 result &= validate_EveryDataValueConforms(customer, diagnostics, context);
if (result || diagnostics != null)
 result &= validate_EveryReferenceIsContained(customer, diagnostics, context);
if (result || diagnostics != null)
 result &= validate_EveryProxyResolves(customer, diagnostics, context);
if (result || diagnostics != null)
 result &= validateCustomer_invariant_Customer1(customer, diagnostics, context);
if (result || diagnostics != null)
 result &= validateCustomer_invariant_Customer2(customer, diagnostics, context);
.
.
.
return result;
}

 This method will invoke each method which states in the validateXXX in the

Figure IV-6 which belongs to Evalidator API. This invocation will preserve all of the

integrity of the specific instance.

IV.4 Runtime Aspect

 Once we had the EMF model, we can create the editor to manipulate or validate

the instance. After validating the instance against all the constraint defined in the model,

we can see how many OCL expressions can still be preserved by the EMF model,

comparing to the original model which was in form of Octopus model. This result can

also be one of the parameters which can tell us whether this solutions can be improved in

the future.

 One thing that needs to be noticed, the EMF model does not support the

Association Class. If there is any Association Class from the Octopus model, it will be

treated as the normal class. In our example, Royal and Loyal, there is one association

class named Membership. This affects the number of constraints that can be processed by

the EMF model

 This subchapter will show the results of how many OCL expressions can be

processed by the Royal and Loyal EMF model. The specification of OCL expression

which can be checked in this test only limited on: ‘inv’, ‘def’, ‘init’, and ‘derive’. The

other three specifications (‘pre’, ‘body’, and ‘post’) can not be included in the test

because they require method invocation while currently the editor can not provide it.

 We will show the results based on several criteria. The X-axis denotes the context

of the OCL and the Y-axis denotes specification of the OCL. (b=before, a=after)

1. All OCL expressions are included.

 In this criteria, we include all the constraint in the test. In the editor, we create the

instances as the requirements of the model, and validate theses instances to see whether

all the constraints can be preserved. From Figure IV-7, the total percentage of the OCL

expression that the EMF model can process is only 45.99 %. That is such a poor result. If

we drill down, we will see the constraint that involves the random OCL expressions,

which is not relevant with this model, makes the most contribution to the failed process.

The next result will remove them out. The example of this Constraints is, “inv: Set { Set { 1,

2 }, Set { 2, 3 }, Set { 4, 5, 6 } } ->isEmpty()”. The Association class also will be removed in the

next test, because EMF model does not recognize it.

 Inv def init derive Total
 b a b a b a b a b a (%)
Burning 6 6 6 6 100.00
Customer 16 11 4 1 20 12 60.00
CustomerCard 7 3 1 1 3 3 2 2 13 9 69.23
LoyaltyAccount 3 3 3 3 2 2 8 8 100.00
LoyaltyProgram 27 7 3 2 30 9 30.00
Membership 9 0 1 0 10 0 0.00
ProgramPartner 6 6 1 1 7 7 100.00
Service 7 7 8 8 100.00
ServiceLevel 19 0 19 0 0.00
Transaction 4 4 4 4 100.00
TransactionReport 2 0 5 0 7 0 0.00
TransactionReportLine 5 0 5 0 0.00
 106 47 10 5 6 6 14 4 137 63 45.99

Figure IV-7. Test Results – All OCL Expressions are included

2. Only Relevant OCL Expressions

 inv def init derive Total
 b a b a b a b a b a (%)
Burning 6 6 6 6 100.00
Customer 12 11 3 1 15 12 80.00
CustomerCard 7 2 1 1 3 3 1 0 12 6 50.00
LoyaltyAccount 3 3 3 3 2 2 8 8 100.00
LoyaltyProgram 9 7 2 2 11 9 81.82
ProgramPartner 6 6 1 1 7 7 100.00
Service 7 7 8 8 100.00
ServiceLevel 1 0 1 0 0.00
Transaction 4 4 4 4 100.00
TransactionReport 2 0 3 0 5 0 0.00
TransactionReportLine 5 0 5 0 0.00
 106 47 10 5 6 6 14 4 82 60 73.17

Figure IV-8. Test Results – Only The relevant OCL expressions included

 Now we can see the total percentage is much better. Analyzing this result, we can

divide the cause of the failed validation into 2 categories:

1. Derived value from the unspecified parent

 It is failed because the parent value has not been initialized yet, but it is already

evaluated by the editor. For example, printedName, one of the field of the CustomerCard,

is derived from concatenation of title and name of its owner which is Customer. In the

editor, when the CustomerCard is instantiated, the corresponding field is automatically

evaluated without having specified who is the 'owner' of the CustomerCard which causes

null pointer exception.

 This kind of error can be avoided by creating some additional condition to the

model. It will not be occurred if the deriving process done when the parent class has been

initialized.

2. Invocation of empty method

 The constraint invokes one of the method of its context which is still empty.

Normally, the empty body operation by default is filled with throwing an Exception by

EMF Codegen.

 Similar to first case, it can be avoided if the completion of operation body is done

before the validation occur. In this case, we just let the the implementation operation

body empty.

IV.5 Summary

 EMF.edit generates an editor in which we can manipulate an instance of the

model as well and validate that instance against the specified OCL constraints. This

feature can be seen as a rapid prototyping mechanism to easily test the integrity of a

model instance. The EValidator API is the underlying API internally invoked to carry out

this task. Package validation classes are generated automatically to invoke the validate

operation of its base class, if any.

 Royal and Loyal EMF model did validate in the first attempt all the constraints

but the coverage of them was not good, because most of the failed constraints were not

relevant to the target model or were not supported by the target OCL interpreter

(remember the reduction operation on a collection of literals). After the problematic

constraints were removed, results around coverage of constraints improved significantly.

As we saw, some of the constraints that still could not be processed had to do with non-

initialized data that the constraint depends on.

V Outlook

V.1 Summary

 The main motivation behind this student project was to complete a tool chain

from Octopus Model to UML2 model, where each tool has its own advantages. This tool

chain provides the flexibility to gain the benefits provided by both of tools, Octopus and

EMF. EMF is a modeling framework and code generation facility for building tools and

other applications based on a structured data model, while UML2 is an EMF-based

implementation of the UML 2.0 metamodel for the Eclipse platform.

 EMF supports regenerating the model after changing the code but still preserves

the changes of the customized code. EMF also provides the framework which gives the

possibility to create, edit, and delete the instance of the model using the visual editor.

This framework, known as EMF.edit, additionally can be used as validation tool to ensure

the integrity of the model. Those are specific improvements that we can get with EMF

model but not with Octopus model.

 Once we have created the EMF model, we can have them worked with the other

EMF-based components. This interoperability with other components is also one of the

main advantages after converting the model into the EMF technology space. With this

feature, the enhancement for the model can easily be obtained.

 This student project has succeeded in converting the Octopus model into UML2

model without the constraints included (because of lack of framework support for this at

time from part of Eclipse UML2). And this work also completes the convertion of

Octopus model to EMF model including the OCL constraints. The integrity of the

generated model that can be preserved is at least more than 70% which was tested using

the generated editor provided by EMF.

V.2 Future Work

 There are so many works to complete, generally in MDA world, and in this

project in particular. Currently, EMF model does not support the Association class. There

must be a way to solve this problem, for example by refactoring the original model into

one amenable to direct translation to EMF. This refactoring should also involve the OCL

constraints that refer to the original association class.

 In the algorithm to convert the octopus model, octopus2emfatic, there are some

bugs remain. This code will fail to process when the input model has the same classifier’s

name with the emfatic’s keyword, such as ‘Date’. The other problem, that has been found,

will occur when the model has method overloading, two or more methods have the same

name with different signature. The Ecore generator, which generates emfatic to ecore file,

does not support it. That would be a good progress if those bugs can be fixed in the future.

 The most important enhancement is to complete the tool that can process this

modeling chain smoothly and can be customized easily by the other developers. It will

give a meaningful contribution to the eclipse community which already has big support

from and for the developer.

Appendixes

VI Visitor Code of Octopus2uml2

VI.1 de.tuhh.sts.ouml2.visitors package

VI.1.1 VisitorForUml2.java
package de.tuhh.sts.ouml2.visitors;

import nl.klasse.octopus.model.IClassifier;
import nl.klasse.octopus.model.IStructuralFeature;
import nl.klasse.octopus.model.VisibilityKind;
import nl.klasse.octopus.modelVisitors.DefaultPackageVisitor;
import nl.klasse.octopus.stdlib.internal.types.StdlibCollectionType;
import org.eclipse.uml2.uml.MultiplicityElement;
import de.tuhh.sts.ouml2.util.Maps;

public class VisitorForUml2 extends DefaultPackageVisitor {

 protected String baseUri =
 "http://de.tuhh.sts.octopus/octopus2emfatic/2006";

 public Maps maps = new Maps();

 public VisitorForUml2(Maps m) {
 if (m != null) {
 this.maps = m;
 }
 }

 protected void setModifiersFor(MultiplicityElement
 multiplicityElement, IStructuralFeature osf) {

 if (osf.getType() instanceof StdlibCollectionType) {
 StdlibCollectionType ct = (StdlibCollectionType)
 osf.getType();
 multiplicityElement.setIsOrdered(ct.isOrderedSet() ||
 ct.isSequence());
 multiplicityElement.setIsUnique(ct.isSet() ||
 ct.isOrderedSet());
 }
 }

 protected void setCardinalityFor(MultiplicityElement
 multiplicityElement, IStructuralFeature osf) {

 multiplicityElement.setLower(
 osf.getMultiplicity().getLower());
 int up = osf.getMultiplicity().getUpper();
 if (up == Integer.MAX_VALUE) {

 up = -1;
 }
 multiplicityElement.setUpper(up);
 }

 protected String getStrTypeExprFor(IClassifier theType) {
 String str = theType.getName();
 if (str.trim().toLowerCase().equals("real")) {
 str = "Double";
 }
 return str;
 }

 protected org.eclipse.uml2.uml.VisibilityKind getVisibility
 (VisibilityKind octopusVisibilityKind){

 if(octopusVisibilityKind == VisibilityKind.NONE)
 return
 org.eclipse.uml2.uml.VisibilityKind.PACKAGE_LITERAL;
 else if(octopusVisibilityKind == VisibilityKind.PRIVATE)
 return
 org.eclipse.uml2.uml.VisibilityKind.PRIVATE_LITERAL;
 else if(octopusVisibilityKind == VisibilityKind.PROTECTED)
 return
 org.eclipse.uml2.uml.VisibilityKind.PROTECTED_LITERAL;
 else if(octopusVisibilityKind == VisibilityKind.PUBLIC)
 return
 org.eclipse.uml2.uml.VisibilityKind.PUBLIC_LITERAL;
 else
 return
 org.eclipse.uml2.uml.VisibilityKind.PACKAGE_LITERAL;
 }

}

VI.1.2 Visitor01.java
package de.tuhh.sts.ouml2.visitors;

import java.util.Iterator;

import nl.klasse.octopus.model.IAttribute;
import nl.klasse.octopus.model.IClassifier;
import nl.klasse.octopus.model.IInterface;
import nl.klasse.octopus.model.IOperation;
import nl.klasse.octopus.model.IPackage;
import nl.klasse.octopus.model.IParameter;
import nl.klasse.octopus.model.internal.types.EnumerationTypeImpl;
import nl.klasse.octopus.model.internal.types.ImportedElementImlp;
import nl.klasse.octopus.model.internal.types.OperationImpl;
import nl.klasse.octopus.oclengine.IOclContext;
import nl.klasse.octopus.stdlib.internal.types.StdlibCollectionType;
import org.eclipse.emf.common.util.EMap;
import org.eclipse.emf.ecore.EAnnotation;
import org.eclipse.uml2.uml.Classifier;
import org.eclipse.uml2.uml.Operation;

import org.eclipse.uml2.uml.Package;
import org.eclipse.uml2.uml.Parameter;
import org.eclipse.uml2.uml.Property;
import org.eclipse.uml2.uml.UMLFactory;
import de.tuhh.sts.ouml2.util.Maps;

public class Visitor01 extends VisitorForUml2 {

 public Visitor01(Maps m) {
 super(m);
 }

 @Override
 public void package_Before(IPackage octopusPackage) {

 Package uml2Package = UMLFactory.eINSTANCE.createPackage();
 uml2Package.setName(octopusPackage.getName());
 maps.packages.put(octopusPackage, uml2Package);

 for (Object io : octopusPackage.getImports()) {
 ImportedElementImlp importedElement = (ImportedElementImlp) io;
 org.eclipse.uml2.uml.Package importedPackage =
 UMLFactory.eINSTANCE.createPackage();
 importedPackage.setName(importedElement.getPathname().toString());
 }

 super.package_Before(octopusPackage);
 }

 @Override
 public void class_Before(IClassifier octopusClassifier) {

 Classifier uml2Classifier;

 if (octopusClassifier instanceof EnumerationTypeImpl) {
 uml2Classifier = UMLFactory.eINSTANCE.createEnumeration();
 } else {
 uml2Classifier = UMLFactory.eINSTANCE.createClass();
 uml2Classifier.setIsAbstract(octopusClassifier.getIsAbstract());
 }

 maps.classifiers.put(octopusClassifier, uml2Classifier);
 uml2Classifier.setName(octopusClassifier.getName());

 super.class_Before(octopusClassifier);
 }

 @Override
 public void interface_Before(IInterface octopusInterface) {

 Classifier uml2Classifier = UMLFactory.eINSTANCE.createInterface();
 uml2Classifier.setName(octopusInterface.getName());
 maps.classifiers.put(octopusInterface, uml2Classifier);
 super.interface_Before(octopusInterface);
 }

 @Override

 public void attribute(IAttribute octopusAttribute) {

 Property uml2Property = UMLFactory.eINSTANCE.createProperty();
 maps.properties.put(octopusAttribute, uml2Property);
 uml2Property.setName(octopusAttribute.getName());

 // modifiers and cardinality

 setModifiersFor(uml2Property, octopusAttribute);
 setCardinalityFor(uml2Property, octopusAttribute);
 super.attribute(octopusAttribute);
 }

 @Override
 public void operation_Before(IOperation octopusOperation) {

 Operation uml2Operation = UMLFactory.eINSTANCE.createOperation();
 uml2Operation.setName(octopusOperation.getName());

 maps.operations.put(octopusOperation, uml2Operation);

 // modifiers and cardinality

 if (octopusOperation.getReturnType() instanceof
 StdlibCollectionType) {
 StdlibCollectionType ct = (StdlibCollectionType)
 octopusOperation.getReturnType();
 uml2Operation.setIsOrdered(ct.isOrderedSet() || ct.isSequence());
 uml2Operation.setIsUnique(ct.isSet() || ct.isOrderedSet());
 uml2Operation.setUpper(-1);
 }

 if (octopusOperation.isOclDef()) {
 addOCLExpression(octopusOperation, uml2Operation);
 }

 super.operation_Before(octopusOperation);
 }

 @Override
 public void parameter(IParameter octopusParameter) {

 Parameter uml2Parameter = UMLFactory.eINSTANCE.createParameter();
 uml2Parameter.setName(octopusParameter.getName());

 // type will be placed in Visitor02

 if (octopusParameter.getType() instanceof StdlibCollectionType) {
 StdlibCollectionType ct = (StdlibCollectionType)
 octopusParameter.getType();
 uml2Parameter.setIsOrdered(ct.isOrderedSet() || ct.isSequence());
 uml2Parameter.setIsUnique(ct.isSet() || ct.isOrderedSet());
 uml2Parameter.setUpper(-1);
 }

 maps.parameters.put(octopusParameter, uml2Parameter);
 super.parameter(octopusParameter);

 }
}

VI.1.3 Visitor02.java
package de.tuhh.sts.ouml2.visitors;

import java.util.List;

import nl.klasse.octopus.model.IAttribute;
import nl.klasse.octopus.model.IClassifier;
import nl.klasse.octopus.model.IOperation;
import nl.klasse.octopus.model.IPackage;
import nl.klasse.octopus.model.IParameter;
import nl.klasse.octopus.model.IPrimitiveType;
import nl.klasse.octopus.model.internal.types.AttributeImpl;
import nl.klasse.octopus.model.internal.types.EnumLiteralImpl;
import nl.klasse.octopus.model.internal.types.EnumerationTypeImpl;
import nl.klasse.octopus.model.internal.types.ParameterImpl;

import org.eclipse.uml2.uml.Class;
import org.eclipse.uml2.uml.Classifier;
import org.eclipse.uml2.uml.Enumeration;
import org.eclipse.uml2.uml.Operation;
import org.eclipse.uml2.uml.Package;
import org.eclipse.uml2.uml.Parameter;
import org.eclipse.uml2.uml.ParameterDirectionKind;
import org.eclipse.uml2.uml.Property;
import org.eclipse.uml2.uml.Type;

import de.tuhh.sts.ouml2.util.Maps;

public class Visitor02 extends VisitorForUml2 {

 public Visitor02(Maps m) {
 super(m);
 }

 @Override
 public void package_Before(IPackage octopusPackage) {

 Package uml2Package = maps.packages.get(octopusPackage);

 for (Object subpo : octopusPackage.getSubpackages()) {
 IPackage octopusSubPackage = (IPackage) subpo;
 Package uml2SubPackage = maps.packages.get(octopusSubPackage);
 uml2Package.createNestedPackage(uml2SubPackage.getName());
 maps.packages.put(octopusSubPackage,
 uml2Package.getNestedPackage(uml2SubPackage.getName()));
 }

 for (Object co : octopusPackage.getClassifiers()) {
 IClassifier octopusClassifier = (IClassifier) co;
 Classifier uml2Classifier =

 maps.classifiers.get(octopusClassifier);
 if (octopusClassifier instanceof EnumerationTypeImpl) {
 uml2Package.createOwnedEnumeration(uml2Classifier.getName());
 maps.classifiers.put(octopusClassifier, (Classifier)
 uml2Package.getOwnedMember(uml2Classifier.getName()));
 } else {
 uml2Package.createOwnedClass(uml2Classifier.getName(),
 uml2Classifier.isAbstract());

 maps.classifiers.put(octopusClassifier,
 (Classifier) uml2Package.getOwnedMember(
 uml2Classifier.getName()));

 for(Object oo : octopusClassifier.getOperations()){
 IOperation octopusOperation = (IOperation) oo;
 IClassifier operationReturnType =
 octopusOperation.getReturnType();
 if(operationReturnType != null){
 if (operationReturnType instanceof IPrimitiveType) {
 if(!maps.types.containsKey(operationReturnType)){
 String str = getStrTypeExprFor(operationReturnType);
 Type uml2Type =
 uml2Package.createOwnedPrimitiveType(str);
 maps.types.put(operationReturnType, uml2Type);
 }
 }
 }
 for(Object op : octopusOperation.getParameters()){
 IParameter octopusParameter = (IParameter) op;
 IClassifier parameterType = octopusParameter.getType();
 if (parameterType instanceof IPrimitiveType) {
 if(!maps.types.containsKey(parameterType)){
 String str = getStrTypeExprFor(parameterType);
 Type uml2Type =
 uml2Package.createOwnedPrimitiveType(str);
 maps.types.put(parameterType, uml2Type);
 }
 }
 }
 }

 for(Object oa : octopusClassifier.getAttributes()){
 AttributeImpl octopusAttribute = (AttributeImpl) oa;
 IClassifier octopusType = octopusAttribute.getType();

 if (octopusType instanceof IPrimitiveType) {
 if(!maps.types.containsKey(octopusType)){
 String str = getStrTypeExprFor(octopusType);
 Type uml2Type = uml2Package.createOwnedPrimitiveType(str);
 maps.types.put(octopusType, uml2Type);
 }
 }
 }
 }
 }

 super.package_Before(octopusPackage);

 }

 @Override
 public void class_Before(IClassifier octopusClassifier) {

 // handle enum and return
 if (octopusClassifier instanceof EnumerationTypeImpl) {
 Enumeration uml2Enumeration =
 (Enumeration) maps.classifiers.get(octopusClassifier);
 EnumerationTypeImpl e = (EnumerationTypeImpl) octopusClassifier;
 for (Object lo : e.getLiterals()) {
 EnumLiteralImpl l = (EnumLiteralImpl) lo;
 uml2Enumeration.createOwnedLiteral(l.getName());
 uml2Enumeration.getOwnedLiteral(l.getName()).setVisibility(
 getVisibility(l.getVisibility()));
 }
 uml2Enumeration.setVisibility(getVisibility(e.getVisibility()));
 return;
 }

 // from now on it's either a class or interface
 Class uml2Class = (Class) maps.classifiers.get(octopusClassifier);
 uml2Class.setVisibility(getVisibility(
 octopusClassifier.getVisibility()));
 for (Object ao : octopusClassifier.getAttributes()) {
 AttributeImpl octopusAttribute = (AttributeImpl) ao;

 Property uml2Property = maps.properties.get(octopusAttribute);

 Type uml2Type;
 if (octopusAttribute.getType() instanceof IPrimitiveType) {
 uml2Type = maps.types.get(octopusAttribute.getType());
 } else {
 uml2Type = maps.classifiers.get(octopusAttribute.getType());
 }

 if(uml2Type!=null){
 uml2Property.setType(uml2Type);
 uml2Class.createOwnedAttribute(uml2Property.getName(),
 uml2Type, octopusAttribute.getMultiplicity().getLower(),
 octopusAttribute.getMultiplicity().getUpper());
 maps.properties.put(octopusAttribute,
 uml2Class.getOwnedAttribute(uml2Property.getName(),
 uml2Type));
 }
 }
 // extends
 List supers = octopusClassifier.getGeneralizations();
 supers.addAll(octopusClassifier.getInterfaces());
 for (Object octoSuper : supers) {
 Classifier uml2Classifier = maps.classifiers.get(octoSuper);
 uml2Class.createGeneralization(uml2Classifier);
 }

 super.class_Before(octopusClassifier);
 }

 @Override
 public void operation_Before(IOperation octopusOperation) {

 Class uml2Class = (Class) maps.classifiers.get(
 octopusOperation.getOwner());
 Operation uml2Operation = maps.operations.get(octopusOperation);

 // return type
 if (octopusOperation.getReturnType() != null) {
 Type uml2Type;
 if (octopusOperation.getReturnType() instanceof IPrimitiveType) {
 uml2Type = maps.types.get(octopusOperation.getReturnType());

 } else {
 uml2Type = maps.classifiers.get(
 octopusOperation.getReturnType());
 }
 uml2Operation.createReturnResult("return" ,uml2Type);
 uml2Operation.setType(uml2Type);
 }

 uml2Class.createOwnedOperation(uml2Operation.getName(),
 null, null, uml2Operation.getType());
 maps.operations.put(octopusOperation,
 uml2Class.getOwnedOperation(uml2Operation.getName(),
 null, null));

 Operation operation = maps.operations.get(octopusOperation);
 operation.setVisibility(getVisibility(
 octopusOperation.getVisibility()));

 for (Object po : octopusOperation.getParameters()) {
 ParameterImpl p = (ParameterImpl) po;
 Parameter uml2Parameter = maps.parameters.get(p);
 }

 super.operation_Before(octopusOperation);
 }

 @Override
 public void attribute(IAttribute octopusAttribute) {

 Property uml2Property = maps.properties.get(octopusAttribute);
 uml2Property.setVisibility(getVisibility(
 octopusAttribute.getVisibility()));

 super.attribute(octopusAttribute);
 }

 @Override
 public void parameter(IParameter octopusParameter) {

 Parameter uml2Parameter = maps.parameters.get(octopusParameter);

 Type uml2Type;
 if (octopusParameter.getType() instanceof IPrimitiveType) {
 uml2Type = maps.types.get(octopusParameter.getType());

 } else {
 uml2Type = maps.classifiers.get(octopusParameter.getType());
 }
 uml2Parameter.setType(uml2Type);

 uml2Parameter.setDirection(ParameterDirectionKind.get(
 octopusParameter.getDirection().getName()));

 super.parameter(octopusParameter);
 }
}

VI.1.4 Visitor03.java

package de.tuhh.sts.ouml2.visitors;

import nl.klasse.octopus.model.IAssociation;
import nl.klasse.octopus.model.IAssociationEnd;
import nl.klasse.octopus.model.IClassifier;
import nl.klasse.octopus.model.internal.types.AssociationClassImpl;
import org.eclipse.uml2.uml.AggregationKind;
import org.eclipse.uml2.uml.Classifier;
import de.tuhh.sts.ouml2.util.Maps;

public class Visitor03 extends VisitorForUml2 {

 public Visitor03(Maps m) {
 super(m);
 }

 @Override
 public void association(IAssociation a) {
 if (a instanceof AssociationClassImpl) {
 // TODO
 }
 IAssociationEnd end1 = (IAssociationEnd) a.getEnd1();
 IAssociationEnd end2 = (IAssociationEnd) a.getEnd2();
 if(end1.getOwner() != null && end2.getOwner() != null){
 addIfNavigable(end1, end2);
 }

 super.association(a);
 }

 private void addIfNavigable(IAssociationEnd end1,
 IAssociationEnd end2) {

 IClassifier clas1 = end1.getOwner();
 Classifier uml2Classifier1 = maps.classifiers.get(clas1);
 IClassifier clas2 = end2.getOwner();
 Classifier uml2Classifier2 = maps.classifiers.get(clas2);

 uml2Classifier1.createAssociation(end1.isNavigable(),
 (end1.isComposite() ? AggregationKind.COMPOSITE_LITERAL :

 AggregationKind.NONE_LITERAL),
 end1.getName(), end1.getMultiplicity().getLower(),
 end1.getMultiplicity().getUpper(),

 uml2Classifier2, end2.isNavigable(),
 (end2.isComposite() ? AggregationKind.COMPOSITE_LITERAL :
 AggregationKind.NONE_LITERAL),
 end2.getName(), end2.getMultiplicity().getLower(),
 end2.getMultiplicity().getUpper());

 }
}

Bibliography

[1] Adrian Powell , “Model with the Eclipse Modeling Framework, Part 1”,

http://www-128.ibm.com/developerworks/opensource/library/os-ecemf1/, Apr 15,

2004.

[2] Christian W. Damus, “Implementing Model Integrity in EMF with EMFT OCL”,

http://www.eclipse.org/articles/Article-EMF-Codegen-with-OCL/article.html, IBM

Rational (Canada), August 1, 2006

[3] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy J.

Grose, “Eclipse Modeling Framework: A Developer's Guide”, Addison Wesley,

August 11, 2003

[4] Chris Daly, “Emfatic Language for EMF Development”,

http://www.alphaworks.ibm.com/tech/emfatic, Nov 9, 2004.

[5] “Generating an EMF Model”,

http://www.eclipse.org/emf/docs.php?doc=tutorials/clibmod/clibmod.html, May 31,

2006

[6] Jos Warmer and Anneke Kleppe, “Introduction to OCL”,

http://www.klasse.nl/ocl/ocl-introduction.html, December 20, 2005.

[7] Jos Warmer and Anneke Kleppe, “Octopus: OCL Tool for Precise Uml

Specifications”, http://www.klasse.nl/octopus/index.html, March 15, 2006.

[8] Jos Warmer, Anneke Kleppe, “The Object Constraint Language - Getting Your

Models Ready for MDA”, Second Edition, Addison-Wesley Edition 2003.

[9] Kenn Hussey, “How to Express OCL constraints?”, UML2 Newsgroup, June 07,

2006.

[10] Kenn Hussey, “UML2 Codegen”, UML2 Newsgroup, May 23, 2006.

[11] “The Eclipse Modeling Framework (EMF) Overview”,

http://www.eclipse.org/emf/docs.php?doc=references/overview/EMF.html, June 16,

2005.

[12] “The Eclipse Modeling Framework (EMF) Validation Framework Overview”,

http://www.eclipse.org/emf/docs.php?doc=references/overview/EMF.Validation.ht

ml, June 23, 2005.

[13] “The EMF.Edit Framework Overview”,

http://www.eclipse.org/emf/docs.php?doc=references/overview/EMF.Edit.html,

June 1, 2004.

[14] “Tutorial: EMF Validation General”,

http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.gmf.doc/tutorials/msl/val

idationTutorial.html, June 07, 2005.

[15] “Unified Modeling Language: Infrastructure”, version 2.0, Object Management

Group, March, 2006.

[16] “Unified Modeling Language: Superstructure”, version 2.0, Object Management

Group, August 2005.

[17] “What is UML2?”, http://www.eclipse.org/uml2/.

