STS

Technische Universitat Hamburg-Harburg

Conversion of Octopus UML Models
into Eclipse UML2 Models

Student Project

Submitted by:

A. Jibran Shidgie
ajibran.shidgie@tu-harburg.de
Information and Media Technologies
Matriculation Number: 27199

Supervised by:
Prof. Dr. Ralf Moéller
STS - TUHH

M.Sc. Miguel Garcia
STS-TUHH

Hamburg, Germany
August 2006

Declaration

I declare that:
this work has been prepared by myself,
all literally or content-related quotations from other sources are clearly pointed out,

and no other sources or aids than the ones that are declared are used.

Hamburg, 09.08.2006

A. Jibran Shidgie

Abstract

Nowadays Model Driven Architecture (MDA) has become more popular within
many organizations as an approach to design their application. The flexibility and the
reusability of the design makes them even more important. Unified modeling language
(UML) which recently known as primary modeling notation plays a central role in this
architecture. OCL Tool for Precise UML Specifications (Octopus) and Eclipse Modeling
Framework (EMF) are the examples of these UML tools which have their own strength.

Octopus has focused so far on modeling-time checking of well-formedness of
UML + OCL models, and their IDE support. In contrast, the Eclipse modeling platforms
has focused less on compile-time correctness of OCL models as on providing graphical
tooling to manipulate instantiations of domain-specific languages defined by the modeler.
The combination of their strength will demonstrate powerful capabilities of designing
model in application development. This student project will combine the strong point of
both tools by providing the bridge between them. The converter which transform the

Octopus Model to EMF based Model will be the concrete result of this work.

Table of Contents

I 1o (oo 004 AT] OSSP PR 8
1.1 BACKGIOUNGottt 8
1.2 ODJECTIVES ...ttt bbb 8
1.3 Organization DOCUMENT.........c.cciveiieie e s eas 9
1.4 PIEIMINGAIIES ...ttt bbb 10

1.4.1 Object Constraint Language (OCL)......ccooeiiiiiieiiie e 10
4.2 OCTOPUS ...ttt b et nne s 10
1.4.3 EMF & EMFALIC. ..o e 11
LA UML2..c ettt 13
1.5 SUMIMAIY .ttt sttt be etk e e bt eebe e s st e et e e emb e e ebeeanbeenree s 14

I OCLOPUS t0 UIMMLZ ... 15

0 R © Tox (0] UL OSSP P PR PUPRPPPR 15
11.1.1 Royal and Loyal EXamPple........cccoveiieiiiiciicccce e 15
11.1.2 OcCtopus UML MOAELcoivieiiiiicieiece e 16
11.1.3 OCtOPUS OCL EXPIESSION ...ttt 17

11.2 Conversion from OCtopus t0 UML2cccccveiiiiiiieie e 19
1.2.1 UML2 MOGEL......ciiiiieieiieieece e 19
11.2.2 THE CONVEISION ...ttt 19

L B R YA 111 (o] 0 USSR 20
11.2.2.2 VISITOT02 ..ottt ettt st 21
11.2.2.3 VISITOTO3 ..ottt 21
11.2.2.4 UML2 File WIIEE ..o 21
11.2.25 OULPUL IN UMLZ ..ot 21
11.2.2.6 OULPUL IN OMONO ..ot 23

1.3 UMLZ2 COUBUEN ..ottt ettt sttt ste et e nae e e nne s 24

HA SUMMAEIY ..ottt e st e e et e e sae e e nbeeabeeenne e 27

I AJAING CONSIIAINTS ...t 28
1.1 Adding Constraints by Creating Constraints Element in UML2..................... 28

1.2

EMET Validationoeeeeeeeeeeee et e e e e e e e 33

.21 Adding CONSIrAINTS ...ocuviiiieiiieie e et 34

] T =AY/ 1 1 1 SRS PRR 37
I1.3.1 Adding CONSIIAINTSc.veiiieiieicciesieeie e nrees 37
111.3.1.1 Octopus Model to EMFatiC.........cccvveriiiiiiiciece e 38
111.3.1.2 Emfatic to Generated COde..........covieiiiiiiiieiieie e 42
ITLA SUMMAEIY oot e e ne e 47
IV EMF.Edit & EValidator APlcc.ciiiiiieiee e 48
IV L EMF.BUIT oottt ens 48
IV.2 EVAHAAIOr API ... et 48
IV.3 Generation of an Editor for Royal and Loyal ... 49
IV.4 RUNTIME ASPECT......eiieiiee et se et ste et e et e e steeneenaenneenee s 52
IV.5 SUMMAIY . nb e e e s be e e anbeeennes 54
[V © 1111 (oo | GRS SRPRTRRTR 56
VL SUMMAEIY oottt n e nne s 56
V.2 FULUIE WOTK .ottt 56
F N o] 0T T0 D (=TSRSS 58
VI Visitor Code of OCtOPUSZ2UMIZccueiiiiiieiieiiee e e 58
VI.1 de.tuhh.sts.ouml2.viSitors PaCKageccooirieiieiireneniseseee e 58
VI.11 VISIOrFOrUMIZ JAVAoviiiiiiiieieeieese et 58
AV I VA N1 (o] (- V7 USROS SPSSPR 59
AV B3 G T V4 111 (0 (02 1= AV DSOS OS 62
VLA ViISITOI03.JAVA....eeiiiiiiiiieiesiie sttt sttt ae e sne e 66

BIDHOGIAPNY ... 68

Table Of Figures

Figure I-1. Class Hierarchy of an Ecore Metamodel [11]cccoovvievveieiieveee e 12
Figure 1-2. Class Hierarchy of Emfatic Metamodel.............ccccocoovveiiiiiiiciecee e 13
Figure 1-3. Class model of Ecore Metamodel............ccooiiiiiiiinieiien e 14
Figure 11-1The Royal and Loyal Model [8]ccooeeiiiiiiieeee e 16
Figure 11-2. Example of Royal and Loyal UML model - RandL.uml.........c...c.ccccovvnnnn. 17
Figure 11-3. Example of Royal and Loyal OCL Expression — Customer.ocl.................... 18
Figure 11-4. Octopus UML model of Royal and Loyal...........ccccooeiiiiiinieiinceenn, 18
Figure 11-5. Octopus2umI2 PIUGINS.......cc.ooiiiiiiieiee e 22
Figure 11-6. Conversion Action from Octopus UML model into UML2 model............... 22
Figure 11-7. UML2 model of Royal and Loyalcccocoeiiiiiiiiiccece e 23
Figure 11-8. Royal and Loyal in UML2 model visually built using Omondo................... 24
Figure 11-9. UML2 model as importer Modelccooeiiiiiinininecee e 25
Figure 11-10. Process All the OPLIONSccveiiei i 26
Figure 11-11.Generate Model COUE.........cciieiiiieieece e 26
Figure 11-12. Generated Code from UML2 mMOdel..........cccovviiiiiiiieniecee e 27
Figure I11-1. Create a cONStraint lemMeNntcooiiiiiiieiee s 28
Figure 111-2. Add the constrained element Properties..........ccuvveveereiieseeresieeseese e 29
Figure 111-3. Create an opaque expression to the constraint.............cccceeevveveeceieeseenn. 29
Figure 111-4. Add value to the body properties of the constraintccccoeeveveininenn. 30
Figure I11-5. The results after the constraints is addedc.ccooveieieiiniininee 30
Figure 111-6. Converting to ECOre MOdel...........ccoveieiiiiieiree e 31
Figure 111-7. The Ecore model after adding the constraintcccccooveiievieccciieceenn, 31
FIQUIE 111-8. CUSTOMEN JAVA.......eeitieieiiiiitieii ettt sttt sttt nne s 32
Figure 111-9. CUSTOMEITMPLJAVAc.eiiiiiiiiiieieeee e 32
Figure 111-10. Validation PIUGINPIOJECTccveiiiiiciee e 34
Figure 111-11. Startup class extension point — plugin.Xmlccccoveviiieiieve e, 35
Figure 111-12. Startup Class — STartup.jaVacccoeeieeieien e 35
Figure 111-13. Constraint Definition — plugin.Xml ... 36
Figure 111-14. variable definition — plugin.properties..........cccoovevvevesiieivere e seese e 36

Figure 111-15. Flow chain of the CONVErsion ProCesS.........ccccviveieeieiiieieese e seese e 37

Figure 111-16.
Figure 111-17.
Figure 111-18.
Figure 111-19.
Figure 111-20.
Figure I11-21.
Figure 111-22.
Figure 111-23.
Figure 111-24.
Figure 111-25.
Figure 111-26.
Figure 111-27.
Figure 111-28.

Figure 111-29
Figure 1V-1.
Figure 1V-2.
Figure 1V-3.
Figure IV-4.
Figure IV-5.
Figure 1V-6.
Figure 1V-7.
Figure 1V-8.

INVArTANISVISITON . JAVAveeivieiiciie sttt 38
DerivationAttribDUtEVISITOr JAVAccvrviiiiiieieiese s 39
OperatioNEXPreSSiONVISItOr JAVAccveiveerieeieseeseeieseeseesie e sreenee s 40
ConvertUMLTOEMFALIC.JAVAccveiviiieiieie e 41
ConVert t0 EMFAtiCocveiiiiiiie s 41
Royal And Loyal emfatic model - RoyalAndLoyal.emf.............ccccccvuenne. 42
Generate Ecore Model from EmfatiC.........ccccooviiiiiiiiiiiiec e 43
Generate genmodel from Ecore modelcccooveveiieiicinccc e 43
Properties of RoyalAndLoyal.genmodel...........c.ccoooieiiiiinniee, 44
Generate the Model Code.........cooveiiiieiiee s 44
Generated code 0N PACKAGE VIEWeeeveeieiieieeieseesie e sie e snee s 45
Pre Constraint generated Code —LoyaltyAccountimpl.java....................... 45
Post Constraint Generated Code — LoyaltyAccountlmpl.java................... 46
. Validator Method — CustomerImpl.javacccooeveiininiinieicec e 46
Generate Edit and Eitor COAEcoovviiiiiiiiiece e 49
Generated Code of EMF COUEQEN.......cccccveiieiieeieiicce e 49
Editor of Royal and Loyal..........cccooiiiiiiiiiiie e 50
Validate Action - Context Menu Of EditOrccooovviiiniiiiieic s 50
validate method — RandLValidator.javacccoeviiiiiniiiciie s 51
validateCustomer method — RandL.java...........cccccevvereviieneeie e 51
Test Results — All OCL Expressions are included.............cccccccovveveiiennnnn. 53
Test Results — Only The relevant OCL expressions included 53

| Introduction

1.1 Background

The development of enterprise-level software systems requires applying
appropriate techniques from Software Engineering in order to help software architects to
provide solutions. Several challenges, e.g. reusability and unplanned system evolution,
have to be coped with. Model Driven Architecture (MDA) comes into play to help the
software architect to achieve all of those needs.

In MDA, as its name suggests, the model plays as central role. There are many
reasons why models become so important. Models represent abstractions of real-world
systems that can be used in communicating intricate ideas. People can understand faster
and easier the model than the programming code. Early experiences consisted in using
the notation and tools of the Unified Modeling Language (UML) to document system
perspectives, which can be mapped into design documents and into programming
language code. Initially the last transformation was performed manually, but today as we
can see there are tools that can generate code automatically.

This Student Project introduces two such tools, OCL Tool for Precise UML
Specifications (Octopus) [7] and Eclipse Modeling Framework (EMF) [3]. Both of them
have their own strengths which can be useful under different situations. Octopus has
focused so far on modeling-time checking of well-formedness of UML together with its
OCL models, and their IDE support. On the other hand, EMF has focused on providing
graphical tooling in order to manipulate the instantiations of domain specific languages

defined by the modeler.

1.2 Objectives

We can combine the strengths of both tools to maximize benefits. Octopus
provides a very good way on modeling time by ensuring the OCL expression are
syntactically correct. And EMF on the other side has a very useful features around

generating code and other artefacts (GUIs). When modeling with EMF, we have to wait

until runtime in order to know whether syntax errors are contained in defining OCL
expression. Preparing the model in Octopus can avoid such errors and guarantee runtime
executability. Bridging between these two powerful tools would be a very interesting
works, and might be a good solution generally to MDA which keeps evolving.

This Student Project is a continuation of previous work, a converter from an
Octopus class model to an EMF model. At the beginning of this StA, that plugin
(octopus2emfatic) could convert the octopus model into Emfatic form [4] without OCL
constraints. By building upon that plugin, this StA consists of two related tasks:

1. Conversion of Octopus UML models to Eclipse UML2 Abstract Syntax Tree

representation (AST) [17].

2. Conversion of Octopus UML + OCL models to the Emfatic file format.

The conversion of Octopus models to UML2 ASTs aims at reusing the tooling for
graphical representation and manipulation of UML2 models. UML2 as an Eclipse project
provides the interoperability to other EMF based components and (commercial) tools,
making easier to use those tools to extend the functionality of our original models.

The emfatic format, which represents textual representation of the Ecore model
(EMF model) is a human-readable textual notation for EMF models. The second task
aims at completing the conversion process in our toolchain by including OCL constraints.

In summary, the overall objective of these tasks is to contribute to a toolchain for

the model-driven development of enterprise-class systems.

1.3 Organization Document

Chapter | gives some explanation about the background and the objectives of this
project. This introductory chapter also provides a brief overview of the terms used in the
rest of the report.

Chapter Il explains about the conversion process from Octopus model into UML?2
model. It provides general information about what constitutes the Octopus model and the
UML2 model.

Chapter 111 focuses on how to add the constraints to complete the conversion
process from Octopus model to UML2 model. It also discusses the limitation and the
alternatives of the solution.

Chapter 1V describes how to ensure that the model is kept up to date with the
source form of the model. Information about the validation process against the defined
constraints is provided here.

The last chapter presents the summary and briefy discusses the future of this

project.

.4 Preliminaries

.41 Object Constraint Language (OCL)

The Object Constraint Language (OCL) [6] is a language that enables describing
expressions and constraints on object-oriented models and other object modeling artifacts.
An expression is an indication or specification of a value. A constraint is a restriction on
one or more values of (part of) an object-oriented model or system. For more detail

information, please refer to [8].

1.4.2 Octopus

Octopus stands for "OCL Tool for Precise UML Specifications”. The information
in this subsection is summarized from [7]:
Octopus offers two important functionalities:

1. Octopus is able to statically check OCL expressions. It checks the syntax,
as well as the expression types, and the correct use of model elements
like association roles and attributes.

2. Octopus is able to transform the UML model, including the OCL
expressions, into Java code.

Octopus fully conforms to version 2.0 of the OCL standard. All
new constructs, like derivation rules and initial value specifications, are
completely supported. Furthermore, Octopus offers the possibility to view

expressions in an SQL-like syntax. The semantics of the original expressions,

written in the standard syntax, remain fully intact, while their appearance
become more familiar for those who have been working with databases.

Octopus is able to generate a complete 3-tier prototype application
from your UML/OCL model. The middle tier consists of plain old Java
objects (POJOs). These POJOs include code for checking invariants and
multiplicities from the model. OCL expressions that define the body of an
operation are transformed into the body of the corresponding Java method.
Derivation rules and initial value specifications are transformed as expected.

The storage tier consists of an XML reader and writer dedicated to
the UML/OCL model. It stores any data content in the prototype application
in an XML file. Naturally, it is also able to read the content of this XML file
into your prototype application. Furthermore, the application may be
regenerated, for instance, because one of the classes was missing an
attribute, and the reader will still be able to read the XML file. The reader
will read the contents of the XML file and produce objects for whatever
classes, attributes, and association ends are still in your model. New model
elements simply remain empty.

The user interface tier consists of an implementation of a plug-in
for the Eclipse Rich Client Platform (RCP). From a Navigator view that
shows you all instances in the system, you are able to create and examine
instances of your UML/OCL model. Of course, the invariants or
multiplicities of an instance can be checked by pushing a single button.

1.4.3 EMF & Emfatic

The Eclipse Modeling Framework (EMF) is an open source framework for
developing model-driven applications. It creates Java code for graphically editing,
manipulating, reading, and serializing data based on a model specified in XML Schema,
UML, or annotated Java [1]. In addition to that, EMF also provides runtime support for
the models which covers change notification, persistence support, and reflective API for
manipulating EMF objects generally.

The core model of EMF called Ecore which describes application data models and knows as

Ecore meta-model.

Figure 1-1 shows the complete class hierarchy of the Ecore model. Figure 1-3 shows the
dependency diagram of Ecore metamodel.

To generate the model into code, EMF has generator model called genmodel,
which is a wrapper of the ecore model that provides options that can be configured
relevant only to the code generator, such as what packages to use, and where the
generated code should go.

Emfatic is a language designed to represent EMF Ecore models in a textual form. It can be

useful tool for viewing or building the Ecore models. Both of this form can be derived from each

other. Emfatic provides the generator which converts Emfatic to Ecore. and vice versa.

Figure 1-2 shows the class hierarchy of Emfatic metamodel.

EObject

7

EMod=lE fevnent

o

| I |
EFactory ENamedElement EAnnotation

L
| | |

EPackage EClaaadicr EEnumLitcral ETvpodElorront

£\

EClass ECataType EStructuralfeature EQaeration EFarameter

[o

EEnum EAttibute ERefarance

Figure I-1. Class Hierarchy of an Ecore Metamodel [11]

.44 UML2

The UML2 project (an Eclipse Tools sub-project)

is an EMF-based

implementation of the UML 2.x metamodel for the Eclipse platform [17]. This

implementation is provided to support the development of the modeling tools.

UMLZ2 in their implementation has several goals:

1. Provide a common XMI schema to facilitate interchange of semantic models.

2. Provide test cases as a means of validating the specification and implementation.

3. Provide validation rules as a means of defining and enforcing levels of

compliance

H EmfPackage

&% imports: EString [*]
= prefix EString

= uri: EString

| EmfStructuralFeature

o default'alue: EString
o isDerived: EBooleanObject

E EmfAnnotahle

= cotntnent: EString

= matne: EString

= EmfTypedElement

EmfClassifier
= igCrdered: EEooleanChject Q

= igUnigue: EBooleanObject o instanceClazsMame: EString

= lovverBound: Elnteger Object
= typeExpr: EString
= upperBound: Elnteger Object

| EmfReference

= izContainer; EBooleanChject

H EmfOperation | EmfParameter |

5 EmfEnumeration H EmfClass

O izshstract: EBooleanObject
O isinterface: EBooleanObject

= literalz: EString [*]

| EmfDatatype

= igTransient: EBooleanObject

H EmfAttribute

= izCortainet: EBooleanObject

| EmfAnnotation
= =ource: EString

H KeyValue

= key: EString

= walue: EString

Figure 1-2. Class Hierarchy of Emfatic Metamodel

EModelElerment

+eModelElement

$getEAnnotation(source : String) : EAnnotation

+efnnotations

EAnnotation

+eF actarylnstance

@source : String

EhiamedElament

1

EFactory

¢hame : String

gordered ; boalean = true
unique : boolean = true

+eType

gdetails | EStringToStringhapEntry ‘create(eC\ass EClass) : EObject
ScreateFromString(eDataType | EDataType, literalvalue © String) : EdavaObject
ZF ScanvertToString(eDataType : EDataType, instancealue : EJavaObject) : String
| +ePackage | 1
ETypedElement EClassifier EFackage

lowerBound © int
gupperBound : int=1
gmany : boolean
required : boolean

0.1

+eExceptions

-

ginstanceClassMame : String
ginstanceClass © EJavaClass
defaultvalue : ElavaObject

¥izInstance(object : EJavaObject) : hoolsan
SgetClassifierlD(: int

EQperation

EParameter

0.

o.x

+aClagsifiers

nsURL: String
ensPrefix : String

¥yetEClassifisriname : String) | EClassifier

L] t +eSubpackages | 0.7

+eFackage +eSuperPackage

t +eQperation 0.*

+eParameters

EClass

EDataType

gabstract © boolean
ginterface : boolean

@serializable - boolean = true

+e0perations

+eContainingClass

+eAllOperations

®qetE StructuralF eatureffeaturelD - int)

®izSuperTypeOfisomeClass | EClass) :

A

boalean
EStructuralFeature

0= 1

+eAllStructuralFeatures (0. +eContainingClass 1
0.

EStructuraiFeature

gchangeable : boolean = true
gvolatile © boolean
gtrangient ; boolean
edefaultyvalueliteral : String
defaultValue | EdavaDbject
gunsettahle - hoolean
gderived : boolean

SgetFeaturelD(; int
’getContalnerCIassO : EdavaClass

.5 Summary

®qetE StructuralF eatureffeatureMarne © String) | EStructuralFeature EEnurrLiteral
o gvalue o int
+eReferenceType winstance : EEnumerator
+eSuperTypes
+eliterals | 0.7
+eStructuralFeatures +eMICorainments +eAllSuperTypes
0.*
i EReference +efttributeType
goontainment - boolean o+
goontainer © boolean +eEnum
resolveProxies | boolean = true +eAllReferences EEnum
0+
+e0ppasite 0.1 +eReferences $getEEnuUmLiteral(name : String) : EEnurmLiteral
or +eblliattributes ®getEEnumLiteralfvalue : int) - EEnurmLiteral
EAttribute 0. +elttributes
¢iD : boolean 0.1 +elDAttribute

Figure 1-3. Class model of Ecore Metamodel

MDA gives the flexibility and the ease to the software architect to build such a

big-scale application. UML plays an important role as the model of MDA. Octopus is one

of the UML tools which can express UML class models and OCL constraints.

Furthermore, Octopus can guarantee the well-formedness of that model at modeling time.
EMF and UML2 is an Eclipse based framework which gives the possibility to generate
the code from the structured data model. It provides the editor in which we can
manipulate the model. The objective of this student project is to extend the Octopus
modeling platform to convert Octopus models to UML2 Model, in order to combine all

the benefits both of Octopus and EMF.

Il Octopus to UML2

1.1 Octopus

To get the full functionality of octopus, it has to be installed as eclipse plugins.
The source code can be found at http://sourceforge.net/projects/octopus/. After having it

as eclipse plugins, we can create an octopus project. The functionality provided in
Octopus is available only on projects with an Octopus nature.

The Octopus nature can be achieved in several ways. It can be added to Java,
Plug-in, and simple projects. To create a simple project with the Octopus nature, the
wizard will help you, ‘New>Project>Octopus>NewOctopusProject’ and follow the
directions. To add the Octopus nature to a Java or Plug-in project, create the project in the
normal way. Next, either use the “‘Octopus’ context menu on the project and select ‘Add
Octopus Nature’, or use the button with the red *O’. Another way to add the Octopus
nature is to select the *‘Add Octopus Nature’ entry in the Octopus menu.

This nature will then specify two special folders, ‘model’ and ‘expression’ by
default. The first is the folder where the UML elements are stored (*.uml), and the latter
is the folder where the files that contain OCL expressions are stored (*.ocl). All These
folder are configurable in the project properties. Combination of these two elements

constitutes as Octopus models.

I.1.1 Royal and Loyal Example

Octopus provides several example projects in their site (http://www.klasse.nl/

octopus). One of them, Royal and Loyal, is used within this work as the example case.
Royal and Loyal (R&L) models the computer system of a fictional company. It
handles loyalty programs for companies that offer their customers various kinds of
bonuses. Often, the extras take the form of bonus points or air miles, but other bonuses
are possible as well: reduced rates, a larger rental car for the same price as a standard
rental car, extra or better service on an airline, and so on. Anything a company is willing
to offer can be a service rendered in a loyalty program [8]. Figure 11-1 shows its UML

class model. Like other UML model, it shows no dependency on whatever programming

language that will be used to build the system.

LoyaltyProgram Customer
: ame : Stri
. e - Sting °
programs | @nrollic : Customer) rams _+| isMale : Boolean
1 getServices(): Sel{Services) ;:og Toaric 2 dateOiBirth : Date
i) pa icipants Jacie: Iienst
program 1 i age. ege
1..* |partners i age() : Integar
ProgramPartner : owner| 1
numberOfCustomers ; Integer
name : String
partner | 1 levels 11 ; cards] 0.
{ordered] |1.." |currentLevel = CustomerCard
ServiceLevel i valid - Boolean
' name ; String validFrom : Date
delivered| Tiovel account| 0.1 goodThru : Dalte
Services | 0-. i LoyaltyAccount ;.:olpr: gglor i
Service available points : Integer PITRO R
condition : Boolean Services number : Inleger 1| card
pﬂinlEEarnﬂd . Inmga‘r Earn{i : |mgggr‘l|
pointsBurned : Integer burn(i : Integer)
description : String isEmpiy() : Boolean
serviceNr : Integer 3 -
calcPaints() : Integer
genaraledBy | 1 transactions| 0..°
Transaction
0.." I'paints : Integer 0.’
transachons| gate : Date transactions
amount: Real
programi) ;
LoyaltyProgram

/_’l&

Burning

<<datatypes>
Date <<enumerations:
now : Dala E Color
e _
isBefore(l : Date) : Boolean Ay coase 5"";’”
isAfter(t : Date) : Boolean gold
= (t : Date) : Boolean

Figure 11-1The Royal and Loyal Model [8]

1.1.2 Octopus UML model

The octopus UML model can be obtained in two ways:

1. The model can be manually created within Octopus itself using a textual
representation of UML,

2. The model can be imported from the XMI format. This XMI format normally can
be derived from the UML modeling tool.

Octopus has provided the import functionality to make things easier for octopus
user. The result of this import action is the textual representation of UML. This
functionality created based on XSLT, but still have some problem caused by the dialect
differences of XMI format of various modeling tools. The XMI format of Royal and
Loyal is already given from the example, so we can directly import it into the octopus
UML model.

Figure 11-2 shows part of the model in the textual representation.

<package> RandL

+ <class> Burning <specializes> Transaction
<endclass>

+ <class> Customer
<attributes>

+ name: String;
title: String;
isMale: Boolean;
dateOfBirth: Date;
/age: Integer;

+ gender: Gender;
<operations>

+ age(): Integer;

+ birthdayHappens();
<endclass>

+ 4+ + +

;endpackage>

Figure 11-2. Example of Royal and Loyal UML model - RandL.uml

1.1.3 Octopus OCL expression

OCL expression are stored in the file with the context name as the filename and
‘.ocl’ as the extension, for example Customer.ocl. Each OCL file needs to be structured
according to the rules in the OCL specification version 2.0. All OCL files should be
placed under the dedicated expression folder in the Octopus project.

package RandL

context Customer
inv ofAge: age >= 18

context Customer::birthdayHappens()
post: age = agelpre + 1

context Customer
def: wellUsedCards : Set(CustomerCard)
= cards->select(transactions.points->sum() > 10000)
def: loyalToCompanies : Bag(ProgramPartner)
= programs.partners
def: cardsForProgram(p: LoyaltyProgram) : Sequence(CustomerCard)
= p.Membership.card

éndpackage

Figure 11-3. Example of Royal and Loyal OCL Expression — Customer.ocl

Search I Console ! Properties | A3ST Explorer | Error Log W

=
7+ Burning

£}

&~ Q Customer

- ;I CustornerCard
Earning
Lovaltvaccount
LovealbyProgram
OckopusDate
ProgramPartner
Service

|
d|

=

Servicelevel

Transaction
TransactionFeporkt
TransactionReportLing

MMembership

= Gender

RandLColar
account_Membership
availablegervices_lavel
card_Membership
cards_owner
currentLevel_fMembership
deliveredServices_partner
generatedBy _transactions
levels_program
lines_report
partners_programs
transaction_TransactionRepartLine
TransactionReport_card
transactions_account
transactions_card
used3ervices_LovaltyAcoount

7 01 0 2 o 3 1 2

(L] e R A e R R e R T T

E

1
d}

,_

Figure 11-4. Octopus UML model of Royal and Loyal

All OCL expression which exist in the octopus project (project with the octopus
nature) will be checked whenever the project is rebuilt. First it will check the UML files,
then if there are no errors found, all OCL files are checked, otherwise no OCL files are
checked.

Figure 11-3 shows part of the ocl expression of the Customer context. Figure I1-4 shows

the Octopus UML model of Royal and Loyal in Abstract Syntax Tree (AST) view.

1.2 Conversion from Octopus to UML2

1.2.1 UML2 model

A model contains three major categories of elements: Classifiers, events, and
behaviors. Each major category models individuals in an incarnation of the system being
modeled. A classifier describes a set of objects; an object is an individual thing with a
state and relationships to other objects. An event describes a set of possible occurrences;
an occurrence is something that happens that has some consequence within the system. A
behavior describes a set of possible executions; an execution is the performance of an
algorithm according to a set of rules [16].

The detail specifications about UML2 metamodel can be found in [15] and [16].
Those are the official document released by Object Management Group (OMG,
http://www.uml.org). The detail information about how to get the source code and how to

install it properly in order to get it run in Eclipse can be found at http://www.eclipse.org/

uml2.

I1.2.2 The conversion

Octopus has implemented visitor pattern in modeling their AST. This makes the
conversion process much easier. What we should do is to provide the “visitor’ which will
visit all Octopus elements according to Octopus’s visitor pattern implementation.

This conversion action uses a number of visitors to visit the input Octopus model
(UML model and OCL expression). All of these visitors implement the package visitor of
Octopus (nl.klasse.octopus.modelVisitors.IPackageVisitor) which is already provided by

Octopus. An implementation of the IPackageVisitor can specify the visit to go through
the Classes, Associations, Operations, etc. by defining the operations “visitXXX()’. If
they return true the corresponding items are visited, otherwise they are not. Each visitor
visits the input based on the corresponding item that they visited and then translates them
into UML2 model structure.

The basic idea of the visitor used in this conversion is taken from the visitor of
octopus2emfatic plugin which converts Octopus model into Emfatic. The visitor defines
several maps. Each map maps an Octopus element to UML2 element, for example,
Octopus package (nl.klasse.octopus.model.lPackage) to UML2 package (org.eclipse.
uml2.uml.Package), Octopus classifier (nl.klasse.octopus.model.IClassifier) to UML2
classifier (org.eclipse.uml2.uml.Classifier), etc. When the visitor visited one element of
the input (Octopus model), it created the same element in the form of UML2 model, and
stored it in corresponding map, which will be processed later by another visitor in the
next visit. At the end, after the final UML2 models has been generated, it is serialized
into file, using the information which stored in that map.

The following visitors are called in the given order, depending on whether the
option has been set to use the given functionality. In the following we will name all
visitors and what they do. The complete visitor code can be found in the appendix.

I1.2.2.1 Visitor01

In the first pass, all Octopus Packages with its imported packages are read which
results UML2 Packages are created accordingly. For this pass, only the package names
are being read.

For each octopus classifier which can be, in general, Enumeration, Class, or
Interface, results in the creating of the corresponding UML2 classifier by its name.

The creation of UML2 properties is done by visiting the octopus attributes. The
octopus attribute is mapped to property in the UML2.

The same happens with the creation of UML2 operation and UML2 parameter
when it visits the same elements of the Octopus model. Basically all the UML2 elements
which needed, is created by its name in this first pass.

11.2.2.2 Visitor02

In the second pass, the subpackages are linked to the correct package based on its
relation of the octopus model. The same thing is done for the classifier, each of them is
connected with its owner. As an addition, the visitor will traverse all the primitive type,
and attach it to its owner package.

The Enumeration type will complete in this stage which its literal is created based
on the Octopus Enumeration model. For another type of Octopus classifier (IClassifier)
which is not part of Enumeration, after checking the type of its attribute, then it will
create the correct model of the UML2 classifier, and linked it back with the Octopus
classifier using the maps. The generalization of each classifier is finalized here.

The other property of the UML2 Operation is determined, the return type and the
parameters.

The property of Property (visibility) and Parameter (direction) is set and will be

completed.

11.2.2.3 Visitor03

After having the basic model set, all association related elements are built in this
third pass (last pass). The UML2 association created based on the association model of
the input Octopus UML.

I1.2.2.4 UMLZ2 File Writer

Here we create a resource set with the specified URI, add the package to the
resource contents, and ask the resource to save itself using the default options. The error
will display in the console if an exception occurs.

1.2.2.5 Outputin UML2

All of those code bundled in one plugins named octopus2uml2. To get it run in
Eclipse, create a new plugins project and put the source code inside source folder of the
project (Figure 11-5). Then launch new workspace, and run the OUML2 -> Convert to

UML2 from the context menu of the input Octopus project (Figure 11-6).

de.tuhh.sts. ouml2
; m Activator.java
de.tuhh.sts, oumlZ, actions
; Iﬂ ConvertockopusUMLToEclipselUMLE java
w ConwverbOckopusUMLToUMLZ Action, java
de.tuhh.sts. ourmlZ, util
|ﬂ Maps.java
- L] UMLZFilewriber java
de.tuhh.sts. ouml2, visitors
[J] visitar01 java
| WisitorDz,java
[J] visitar03.java
Elﬂ WisitorFarlml2. java
[+ B, JRE System Library [jrel.5.0_06]
[+ B4, Plug-in Dependencies
B[META-INE
i build: properties
"‘1, plugin. xml

Figure 11-5. Octopus2uml2 plugins

|=| README,
Royaldnd

|_, wrilmpor!
El I=* testtemplates
= umi2Zzemf

Refactor

ew »
LB sre 5o Into
B2, JRE Syske
+ =4, Plug-in De Qpen in Mew Window
#| [~ emfatic Open Type Hierarchy F4
+- [~ expressio
H (= META-INF = Copy ChH+C
B (= model I Cony Qualfied Hame
£-[~ bemplates % Paste Chrl+y
W Delete Dielete
lord build. prog
plugin, pre Build Path 3
plugin. xm Source Alb+sShift+3

Alk+3Shift+T *

o
1= Royaland =1 Impart,.,
[Royalind £ Export...

4+ Refresh

b

Close Project
Close Unrelated Projects

F3

Run As 3

Debug As 3

JawazHtrl

Toggle ANTLR project nature

Team r — =
Compare With » | Propetties = \,f

Restore From Local History, .,

Figure 11-6. Conversion Action from Octopus UML model into UML2 model

= Y iplatfarm: fresourcefRovalandLoyal furl2 [Rovaldndloyal rl;
r_'EEr <Package> RandlL
L-E'@' < (Class = Burning
Bl A3 =Class Customer
<= <Primitive Type > Integer
2= ZPrimitive Twpe = Skring
: = <Primitive Type > Boolean
HAD 2Class= LoyaltyProgram
* zPrimitive Type > Double
l:'- -"[:'3' < (Class= ProgramPartner
| AF <Class> Mermbership
x| A3 2Class Service
{3 =Class= Servicelevel
-4 zClass> Transaction
[#-{3 =Class CustomerCard
2] A <lass LovaltyAccount
AF <Class> Earning
A3 <Class> Ockopushate
<Enumeration RandLCalor
‘= <Enumeration = Gender
-3 =Class» TransactionReport
-3 =Class» TransactionReportLine
o zBssociation s &_participants_programs
-~ zAssociation A _cards_owner
o zhssociation® A_currentLevel Membership
o £ Association s &_pattriers_programs
o cfhssociation &_delivered3ervices_partner
j - =fszociation> A_account_Membership
: <7 zpssodiations A_card_Membership
o 2 hssodiations &_kransactions_accounk
: -4 zAssociation s A _generatedBy_transactions
- " =Association: 8_transactions_card
o £ pssociations A_availableServices_level

o = Association > A_levels_program
o TS - . v

I+

£

Figure 11-7. UML2 model of Royal and Loyal

Figure I1-7 shows the result of Royal and Loyal in UML2 model, generated from
the action in Figure 11-6. This result is similar with one in Figure I1-4 only differs in the

representation of the model.

1.2.2.6 Output in omondo

Omondo provides the visual presentation of the UML2 model. From UML2
model, we can obtained the ecore model which can be opened using Omondo

(http://www.omondo.com) and resulting the visual diagram of the model. This output

(Figure 11-8) is useful to check the correctness of the output temporarily by comparing it

with one in Figure 11-1.

H LoyaltyProgram H Customer
= isSaving: Boolean = age: Integer
= narme: String = gender. Gender
© iiial: String
addService) 0.2147483647 02147483697 | = ishale: Boolsan
addTransaction() X
programs particlparts | ame: String
& enraiQ = fitle: String
8 enrollandCreateCustomer()
& oetServices 0 # aus0
& getServices1() @ kirthcayHappenst)
& oetServicest ByLevel() & cardsForProgram()
selectPopularPartners() —
1| owner

programs | 1.2147483647 1| program

H Membership
partners | 1.2147483647 02147483647 | e etCurrertLeveiName() | Membershin card cards 1021 41 abes
Membershi CustomerCard
H ProgramPartner fprbgreny 1| Membership 1 1 =l
- levels | 1.20ATAECEYE | 1 = color: RandlColor
= name: String
= printedare: Striry
= nurberOtCustamers: Integer [l ServiceLevel | myLevel s °
= valict Boolean
level ot
etEurning Transactions = name: Sirin
& o " 0 9 o £ Loyalya & getTotalPoints()
1 card
1 | partner . % getTransactions()
= number: Integer 1
= points: Intsger 0.1 | cateOfEith untl | 0.1
0.2147453648y sikblsBERuBeyia 21 47463647 = totalPaintsEarnedt: Integer 0.1
OctopusDate
£ Service & our) ol RERSEH
earn() = day: Integer
= condition; Boolean
& getCustomerhlamer) © manth: Integer
= description: String
i isEmpty0) = year: Integer

© pointsEurned: Integer

= pointsEarmed: Intsger 1 accourt & 0
= servicehlr: Integer transactinfs2] 7 AAMFHEERENsactions & from'YMD()

date | % ishfier()
 celcPaints() generatecBy 02147485847 5 Francaction | # ixPeforn) from
4 uporadePointsEamen() o4

1 transactions | o amourt: Double kP

= points: Integer

& program)
asnumerations aEnUmEratior:
= RandLColor = Gender
= silver: 0 = male: 0 E Earning M H TransactionReporiLine | [TransactionReport
- gald: 1 ~ female: 1
= amount: Double 0.2147483647 repart = balance: Integer
© partnerilame: String F = names String
= points: Integer Inge] - Irteger
= serviceDest: String = totalBurned: Integer
atiatatypes atiatatypes atiatatypes atiatatypes X
Double Boolean String Integer = totalEarned: Integer

Figure 11-8. Royal and Loyal in UML2 model visually built using Omondo

1.3 UML2 Codegen

Once we had the UML2 model, the next things to do is to get the generated code
based on the model defined. UML2 has provided UML2 Codegen API in their
frameworks.

The purpose of the UML2 code generation extensions is to enhance the default
EMF code generator to handle concepts that are specific to UML, such as subsetting,
redefinition, and derived unions. A generator model created from a UML model that
makes use of any of these concepts (assuming the options were enabled in the wizard)

will produce code that enforces the associated constraints. The customized templates do

provide a few other options (such as factory and look-up methods) that were considered
too application-specific to be included in EMF, but these customizations could easily be
added independently of the UML2 code generator [10].

The UML2 Codegen is not a stand alone module which can be used as generator
like EMF Codegen, but furthermore it is the extension of EMF Codegen. However, we
can use it as provided by the eclipse framework like the following.

Having the UML2 model, we can start the EMF project wizard by choosing it as
the importer model and enabling the UML-specific options (i.e. process redefining
operations/properties, subsetting properties, and/or union properties). From EMF project
we can directly derive the generated code by choosing ‘generate model’ in the context
menu of the genmodel.

Following are the steps to get the generated code out of the UML2 model.

1. Create new EMF Project with UML2 as the importer model

& New EMF Project x|
Select a Model Importer v 13
Creates ecore and genmodel files based on a UMLZ model .,-_" %%f

Model Importers:

E_;| Ecore model
| Rose class model
& e

|§, ML Schema

model

'Z_‘:?_ZI < Back I Mext = I Einiisty I Cancel I

Figure 11-9. UML2 model as importer model

2. Specify the model and enable the UMLZ2 specific options, or simply press the process

all button.

UML Import

Choose options, specify one or mare URIs, try to load them, and choose a target
generator model name

Model URIs: Browse File System,.. | Browse Workspace..,

| platform: fresource/RoyalbndLoy aliumlZfRoyalandLoy al, uml

[Opkions
Ecore Tagged Yalues |Process
Derived Features IProcess

Duplicate Feature Inheritance |Pr0cess

Duplicate Features |Pr0cess

Duplicate Operation Inheritance |Pr0cess

Duplicate Operations IProcess
Redefining Operations IProcess
Redefining Properties |Pr0cess
Subsetting Properties IProcess
Lnion Properties |Process
Super Class Order IProcess
Annotation Details IProcess

_I;I;I;I*_L'-I_'-I*_I'_I'_I;I'_I;

Ignore All | Process Al

Generatar model file name:

I RoyaldndLoval.genmaodel

(7) < Back | Mext = | Eimish I Cancel

Figure 11-10. Process All the options

3. After having the .genmodel file, open it and run Generate Model Code from its context

menu.

Generate Edit Code
Generate Editor Code

Generate Test Code
Genetate Al

Figure 11-11.Generate Model Code

4. The result code is generated in src folder

== RandLUMLZ

[+, JRE Swstem Library [jrel.5.0_06]
[#-24, Plug-in Dependencies

=== model
----- # | RandL.ecare
|| Royaldndlayal.genmadel
----- larh build, propertiss
=l plugin, properties
a,,,_[; plugin, xml

Figure 11-12. Generated Code from UML2 model

.4 Summary

This StA used one of the example Octopus projects (Royal and Loyal, which
modeled a computer system for a fictional company) as a case study for the conversion to
Eclipse UMLZ2.

UML2 model contains three major categories of elements: classifier, events, and
behaviors. The conversion from Octopus model to UMLZ2 is done by creating visitor to
visit all the Octopus element and create the corresponding UML2 element. Each visitor
stored the information (Octopus element and UML2 element) into maps. At the end, the
UML2 model, which can be obtained from that maps, is serialized into UML file.

UML2 Codegen which is based on EMF Codegen cannot be used separately
without EMF. To get the generated code out of the UML2 model, use the EMF Codegen

instead, with all the options enabled.

I Adding Constraints

The conversion from Octopus model to UML2 is not complete. There is still
something missing in the generated UML2 model. The constraints which are represented
in OCL expressions have not been transformed into UML2 model.

There are several ways to have it expressed in the resulting UML2 model. In the

following we will discuss some alternatives for such translation.

.1 Adding Constraints by Creating Constraints Element in
UML?2

A constraint can be specified by creating a Constraint element and specifying its
constrained element(s) and specification (e.g. an opaque expression). The UML2 project
does not provide any specific Ul to support OCL, but it is possible to create constraints
via the UML editor [9].

Following are the steps to create the constraint elements. We will continue from
the model which has been generated, RandL.uml (UML2 model).

1. Open Royal and Loyal UML2 model with UML Model Editor in eclipse.

2. Create a Constraint of Customer classifier.

avalindle 7 Connectar

: - B ~ o

=t <Package> RandL g Constraint
#- (3 «Class> Burning 4 Duration Constraint
EMEE - |acs > Customer — (i EAnnotation
¢ [0, <Properbys nal New: Child

i+ Element Irnpart

Mew Sibling g

~ ooy “Property = Lkl
oy “Properby = sk Unda Delate

¥ Extension End

-0, <Propertys dal A Generalization

EJ oy =Property = am % 2o f—“ﬁ Inkeraction Conskraink
[+ .0 <Property = gel uf,' cuk _* Interface Realization
E o-n <Property> prc = Copy 24 Inkerval Conskraink

Figure I11-1. Create a constraint element

3. Add the attribute as one of the constraint's constrained elements (from the Properties

view)

& *Rovalandioyal.uml 52

=k 'EE' <Package = RandL
E{B < C|lass= Burning
EG <C|ass= Customer
. %ﬁ <iZonskraink =
Ei oy ZProperky > name
L_tl o2y <Properky = title
E ooy =Properky = istale

Declaration m

Problems | Javado:

Properky

[= ML
Client Dependency

Zonskrained Element
Marme

Template Parameter
Yisibiliby

4= Pubilic

Figure 111-2. Add the constrained element properties

4. Create an opaque expression as its specification

E|'EE|' <Package > RandlL
’ﬂ@ £Class = Burning
=-{3 <flass> Customer

=l i onskraink
: "'”' "'r' New Child C
'y <Properky s r -
i Mew Sibl 4
[# 57, <Properbyz © s
[#- 2, <Properky s it < Undo Set

Problems I Javadoc | Declaration | I W Redo

Propert of Cut
Eell i| Copy
Client Dependency =il
Constrained Element i Fect
Hame ¥ Delete
Template Parameter
Wiibility alidate
Contral...
Run As L
Debug As
Tearmn

[=] Comment
!;I;ﬁ EAnnotation
[54] Mamne Expression String Expressian
¥ Specification Duration
¥ Specification Duration Inkeryval
2(*“’ Specification Expression

& Specification Instance Yalue

¥ Specification Inkerval

Specification Literal Boolean

[iZi Specification Literal Integer

@ Specification Literal Mull

%] Specification Literal String

23 Specification Likeral Unlimited Matural

Figure 111-3. Create an opaque expression to the constraint

5. Add a body string to the expression

#) *RoyvaldndLlayal.uml 52 R

E!'EE‘ <Package = RandL
{3 =Class> Burning
E@ = Class = Cusktomer
. E| é:: <iZonskraink =
i =idpague Expressionz> age > 1§
E"'.;F_?i <Property > name
E'] oy «<Property = title

E
Problems | Javadoc | Declaration M~

Froperty l Yalue
= ML

Behatior

Client Dependency

Language

Marne

Template Parameter

Twpe

Wisibility 1= Pubilic

Figure 111-4. Add value to the body properties of the constraint

6. Result after adding name of the Constraints and the Expression

e

= ﬂ_‘u platform: fresource)randlfumlz RovaldndLoywal .ol
El'EE' =Package= RandL

F!@ < Class= Burning

= {3 =Class> Customer

: El‘%’—'-" 1sEraink = Age Conskraink

Z0pague Expression= Age OCL

[0, <Properky= name
[+ .5 <Property = title

. =
Problems | Javadac | Declaration |I|_. Properties &8

Froperty I Yalue

[=l ML
Client Dependency:
Constrained Element o2y “Property> age
Marne 1= Age Constraink
Template Parameter
Wisibility: 1= Public

Figure I11-5. The results after the constraints is added

Now the constraint element has been added in the UML2 model. We would like
to see whether this constraints will be generated to the code, by converting it to Ecore

model then generate the code using EMF Codegen.

7. Convert it into Ecore Model

| UMLEditor Window Help
Mews Child 3
Yalidate
zantral,.

Elerment

Package

Profile
Skerectype

Load Resource. ..

[EIG' «<Class= Burning
=2 =Class> Customer
[=]- ~.L~'J <_onskraink = Age Constraink

b . S .

cran

o e pague Expression= Age OCL
Ecore Model. ..

Conwvett To rhy > name
' Externalize r Metamade! by Litle
' GEenerate r Model Librarsy — 5
i TETETTEraTTerEEmEration | | Properties &8

Figure 111-6. Converting to Ecore Model

8. The constraints has been added as additional validation method.

=
| RovalandLoval, url M

- H LowalkyProgram
Ei E| Cuskormer
= AgeConstraink{EDiagnosticChain, EMap) : EBa
: [—jﬂtl Gentodel
L eniation - age =

alean

18
diagriostics : EDiagnosticChain
..... oE
@ aged) : Inkeget

&5 birthdayHappens()
= mame : Skring
0 Litle : Skring

= jsMale : Boolean
o = dateOfBirth : Date
----- — age : Integer
= gender : Gender

contexkt : EMap

b 2E papds 1 CustomerCard
"o =F ppograms ¢ LovalkyProgran

Figure I11-7. The Ecore model after adding the constraint

There is also the annotation attached to the validation method. That annotation

informs us that, the OCL expression will be added as the documentation of the method.

9. Here is the generated code from .genmodel file, which can be obtained from the .ecore
file.

/**

* <l-- begin-user-doc -->
* <l-- end-user-doc -->

* <l-- begin-model-doc -->
* age > 18

* <l-- end-model-doc -->

*

*

*/

boolean AgeConstraints(DiagnosticChain diagnostics, Map context);

Figure 111-8. Customer.java

/**

* <l-- begin-user-doc -->
* <l-- end-user-doc -->

*

*/

public boolean AgeConstraints(DiagnosticChain diagnostics, Map context) {
// : implement this method
// -> specify the condition that violates the invariant
// -> verify the details of the diagnostic, including severity and message
// Ensure that you remove @generated or mark it @generated NOT
iT (false) {
if (diagnostics = null) {
diagnostics.add (new BasicDiagnostic (Diagnostic.ERROR,
RandLVal idator .DIAGNOSTIC_SOURCE,
RandLVal idator .CUSTOMER__AGE_CONSTRAINTS,
EcorePlugin. INSTANCE .getString(
" Ul_Genericlnvariant_diagnostic",
new Object[] { "AgeConstraints’,
EObjectValidator.getObjectLabel (this, context) }),
new Object [] { this }));

return false;

}

return true;

Figure 111-9. CustomerIimpl.java

The generated validation method still needs to be completed manually by hand.

The OCL constraints that have been expressed in the previous steps only generated as the

documentation in the interface (Figure I11-8). This limitation makes us to find another
approach in adding the constraint to the UML2 model.

n.2 EMFT Validation

The Eclipse Modeling Framework Technology project was initiated to incubate

new technologies that extend or complement EMF (http://www.eclipse.org/emft). There

are several topics which are covered beyond this EMFT project, some examples include
Validation, OCL, Query, Transaction, and many more. Each topic has similar intention
which is to coordinate all things surround the EMF. The Validation and OCL will be
discussed deeper in this work.

The EMF validation framework provides a means to evaluate and ensure the well-
formedness of EMF models. Validation comes in two forms: batch and live. While batch
validation allows a client to explicitly evaluate a group of EObjects and their contents,
live validation can be used by clients to listen on change notifications to EObjects to
immediately verify that the change does not violate the well-formedness of the model [14].
The purpose of this framework is to check the integrity of the EMF metamodels by
providing a generic and extensible framework which can be used in defining constraints
to be checked againts the model. Actually EMF already provided EValidator API in their
package (this is briefly explained in 1V.2). This framework differs from it in several
important aspect [14]:

1. Support for automatic validation on transaction boundaries: constraints can
indicate that they are evaluated in "live" mode, as changes are made in a model,
rather than by user demand.

2. Dynamic extensibility: the framework is not based on code generation.

3. Pluggable support for constraint languages such as OCL.

However, both of them can work simultaneously to achieve the expected results.

Using this approach, the Constraints will not be generated inside the model. We
will create the validation extension that will be invoked by the generated code when the

validation occur.

l.2.1 Adding Constraints

We can create an EValidator implementation that delegates to the validation
framework, to provide user-demand "batch mode" validation from an EMF editor or even
a “live mode” validation.

Following are steps in how to implement this way using our example Royal and
Loyal model:

1. Create the EMF project based on Royal and Loyal UML2 Model, choose the UML
model as the model importer and add all the options (by clicking ‘Process All’) to include
all the functionality of UML2 model.

2. Generate the model code, edit code, and editor code out of it.

3. Create new plugin project to provide the validation.

Figure 111-10 shows the result on the workspace after adding several code
supporting the validation. These code is based on the Validation Adapter Example and
OCL Validation Example. The explanation is provided in their tutorial which you can get

after installing EMFT Validation plugins on Eclipse.

=k 4 randl.validation. ool adapter

- [] Evalidatoradapter.java

[F#]- |ﬂ RandLYalidationPlugin. java

E I?:]---_E_EJ Skartup.java

=l-£H randl.validation.ocl. expression
E+_ - Iil EQbjectPropertyTester, java

i JRE Svystem Library [jrel.5.0_0&]

~ B Plug-in Dependencies

1L META-INF

|| MANIFEST.MF

b M build. properties

|_| plugin. properties

“edrd plugin.eml

+

+

o

B 8

Figure 111-10. Validation PluginProject

The EValidator implementation will delegate to the EMF Validation Framework
to evaluate all active constraints on a sub-tree of a model. The metamodel that will be the

target is the Royal and Loyal Metamodel example which are just created in previous steps.

EMF provides extension points on which to register resource factories for file
extensions and EPackages for namespace URIs. However, there is no extension point on
which we can register our EValidator implementation for the Royal and Loyal
Metamodel. Instead, we will create an org.eclipse.ui.startup extension to register our

validator when the Eclipse platform launches.

<plugin>
<extension point="org.eclipse.ui.startup'>
<startup class=""randl.validation.ocl.adapter.Startup'/>
</extension>

;/plugin>

Figure 111-11. Startup class extension point — plugin.xml

Then the Startup class (Figure 111-12) which is defined above (Figure 111-11) will
do the rest by registering the validator to Evalidator.Registry. With this way, each time,
user invoke EMFs validate action in the context menu of Royal and Loyal Editor, this

validator will be run.

public class Startup implements IStartup {

/**
* Install the validator.
*/

public void earlyStartup() {
EValidator .Registry. INSTANCE. put(
RandLPackage.eINSTANCE, new EValidatorAdapter());

Figure 111-12. Startup Class — Startup.java

Figure 111-13 show the constraints part which has to be defined in plugin.xml.
Each constraints that wants to be evaluated has to be added to this plugin.xml. This
document only gives one OCL Constraints as the example which defines that the age of
Customer, which is the target, has to be greater than 18. Some variables used can be

defined in plugin.properties (Figure 111-14).

<extension point="org.eclipse.emf.validation.constraintProviders">
<category name=""%category.name"
id="emf-validation-example/ocl">
%category.description
</category>
<constraintProvider cache="true'">
<package namespaceUri="http:///RandL.ecore'/>
<constraints categories="emf-validation-example/ocl">
<constraint
lang=""0CL"
severity="ERROR"
mode=""Live"
name=""%customerl.name"
id="customerl™
statusCode="101">
<description>%customerl.desc</description>
<message>%customerl.msg</message>
<I-- This constraint applies to Customer -->
<l--<target class="Customer'/> -->
<target class="Customer'>
<event name="'Set''>
<feature name="'age'/>

</event>
</target>
<I-- Age of the customer should not less than 18 -->
<I[CDATAL[age >= 18]]>
</constraint>
</constraints>
</constraintProvider>

</extension>

Figure 111-13. Constraint Definition — plugin.xml

category.name = Royal and Loyal OCL Constraints
category.description = OCL Category for Royal and Loyal

customerl.name = Customer OCL Constraint in batch mode
customerl.desc = Customer OCL Constraint description
customerl.msg = age of "{0}" has to be greater than 18

Figure 111-14. variable definition — plugin.properties

This approach has succeeded on generation of OCL constraints into the model. In
order to do that we have to put all the constraint one by one into the plugin.xml which is

not a good idea for some rather large application.

m.3 EMFT OCL

The EMFT OCL component provides capabilities for queries, constraint parsing,
constraint validation and content assist for user models. It defines the API for
constructing, validating, and evaluating OCL queries and constraints on EMF model

elements. (http://www.eclipse.org/emft/projects/ocl/)

Using this component, we can provide OCL expression as annotations element in
the Ecore model. The generated model classes will have methods implementing these as

described in the next few sections.

11.3.1 Adding Constraints

This technique used is based on an EMFT OCL article [2] which explains how to
implement model integrity using EMFT OCL. We will follow that approach to get the
OCL expression tranformed into the EMF model and evaluated at runtime.

The basic idea on adding the constraints is having them as the annotations in the
Ecore model so that later on the can be transformed (by reflective inspection of that

model) into code in charge of runtime checks. The mechanics of the conversion involve

EMF codegen together with additional JET templates (http://www.eclipse.org/articles/
Article-JET/jet_tutoriall.html). The conversion process starts from the Octopus model
and ends as the EMF model using emfatic as intermediate notation. Figure 111-15 shows
the chain of the conversion process: Octopus model -> Emfatic -> EMF model ->

Generated Code.

@ octopus2emfatic | Emfatic

Octopus Model

Emfatic Generator

A 4

Generated | EMF Codegen
Code A

Genmodel

Additional

Jet Templates EMF Model

Figure 111-15. Flow chain of the conversion process

Additional JET Templates are needed to generate the validation operation body.
Scripting statements in these templates parse the annotations containing the constraints.
At runtime, the constraint is available as a String, which is interpreted to obtain a result.

The templates may also generate additional support fields.

111.3.1.1 Octopus Model to Emfatic

This process is done by extending the octopus2emfatic plugins. It already
transformed the Octopus model to emfatic, only without having the constraints in it.
These additional visitors will add all the constraints of the input model into the emfatic

representation. Following are the four steps involved:

1. InvariantsVisitor

public void class_Before(IClassifier c) {
ifT (c instanceof Classifierlmpl && !(c instanceof IEnumerationType)) {
EmfClass nc = (EmfClass) maps.classifiers.get(c);
Classifierlmpl in = (Classifierlmpl) c;
List<String> invNames = new ArrayList<String>();
Iterator it = in.getlnvariants().iterator();
int invOperCount = 1;
while(it.hasNext()) {
10clIContext cont = (10clContext) it.next();
if (cont = null && (cont.getType() == OclUsageType.INV)) {
it (cont.getName() !'= null && cont.getName().length() > 0) {
if (YinvNames.contains(cont.getName())) {
invNames.add(cont.getName());
addInvariant(nc, cont, invOperCount);

}

} else {
addInvariant(nc, cont, invOperCount);
invOperCount++;

Figure 111-16. InvariantsVisitor.java

This visitor will visit every classifier and check whether they have OCL
specification of invariants. If so, it loops over each invariant, creating an EMF annotation
for each. The name of the invariant is given by its name, if any, otherwise the general
‘invariant_<classifier_name>_<order_number>" name is used. For invariant annotation,
it uses “invariant’ as the key and the OCL expression as the value.

2. DerivationAttributeVisitor

Very similar to the previous visitor, only this time a check is made for each
Octopus attribute whether it has an OCL specification of init and derivation. If so, it will
create the derivation annotation for corresponding attribute. The key of the annotation in

this case is “derive’ and its value is the OCL expression.

public void attribute(lAttribute a) {
ifT (a instanceof Attributelmpl) {
Attributelmpl attr = (Attributelmpl) a;
EmfStructuralFeature na = maps.attributes.get(a) != null ?
maps.attributes.get(a) : maps.references.get(a);

if(na = null){

// init expression

10clIContext cont = attr.getlnit();

if (cont = null) {
addDerivationRule(na, cont);

} else {
// derivation rule
cont = attr.getDerivationRule();
if (cont !'= null) {

addDerivationRule(na, cont);

Figure 111-17. DerivationAttributeVisitor.java

3. OperationExpressionVisitor

This visitor visits all the Operations and checks whether there is any OCL
specifications of pre, post, or body defined. For each type of constraint, it creates one
additional operation named ‘pre_<operation_name>’, ‘body_<operation_name>’, or
‘post_<operation_name>’, depending on the specifications. For each of those additional
operations, it will define one annotation which contains it as constraint. At the end, it
creates one more annotation on the operation itself which contains of the invocation of
those additional method defined in OCL expression.

There are two distinct types of annotations created here. First annotations use
literal “body’ as the key, and the OCL expression as the value. This OCL expression will
be checked and parsed before it is included in the body of its operation. Second
annotation use ‘genmodel’ as the key, and the invocation of pre, body, or post operation,

which has been previously defined, as the value. The latter type of annotation is used

when we want to put the literal value of the annotation directly into the generated body of
operations without having it parsed as OCL constraint.

public void operation_Before(lOperation 0) {
iT (o instanceof Operationimpl) {
EmfOperation no = maps.operations.get(o);
Operationlmpl oper = (Operationlmpl) o;

Iterator prelt = oper.getPreConditions().iterator();
int preCount=0;
while(prelt.hasNext()) {
10cIContext preCont = (10clContext) prelt.next();
iT (preCont I= null && !preCont.haskrrors(Q)) {
preCount++;
createConditionOperation(no, preCont, 'pre_", preCount);
}
}

Iterator postlt = oper.getPostConditions().iterator();
int postCount=0;
while(postlt._.hasNext()) {
10clContext postCont = (10clContext) postlt.next();
if (postCont != null && !postCont.hasErrors()) {
postCount++;
createConditionOperation(no, postCont, '"post_ ', postCount);
}
3

if(preCount==0 && postCount==0){
10clIContext bodyCont = oper.getBodyExpression();
if (bodyCont != null) {
addBody(no, bodyCont);

3
Yelse{

10clIContext bodyCont = oper.getBodyExpression();

if (bodyCont != null) {
createConditionOperation(no, bodyCont, "body ', 0);
addConditionToBody(no, preCount, 1, postCount);

Yelse{
addConditionToBody(no, preCount, 0, postCount);

}

}
}
}

Figure 111-18. OperationExpressionVisitor.java

4. Add all those visitor to the convert method of ConvertUMLToEmfatic Class
5. Launch the octopus2emfatic plugin by running it as new eclipse application (runtime
workbench), then invoke the OE -> Convert To Emfatic of the Royal and Loyal octopus

project

public class ConvertUMLToEmfatic {

public static StringBuffer convert(lPackage p, boolean isTop, I0clLibrary
oclLib) {

StringBuffer sb = new StringBuffer();

it (p-getSubpackages().size() == 1) {
p = (1Package) p.getSubpackages().iterator().next();

VisitorForEmfatic v;

v = new Visitor01(null);
p.accept(v);

v = new Visitor02(v.maps);
p-accept(v);

Vv = new Visitor03(v.maps);
p.accept(v);

EmfPackage top = v.maps.packages.get(p);
String str = top.toString();
sb._append(str);

return sb;

Figure 111-19. ConvertUMLToEmfatic.java

=] hew » B
src o Into
2 Go Int:
[+ B IRE Systen irthdayHappens (]
=i Plug-in Der Open in New Window e . eclipse. ory/f|
[[emFatic Open Type Hierarchy = iant = "self.age
E- = n invariant_oflg
SEMESSON - Copy i e
L= METAINE o % i}
(= mrodel W Copy Qualfied fiame
Bl (> tomplates L= PoSte Crl+y ms | = Properties
ovd build.prope # Delete Delete
READMED 6 path »
=| RoyaléndL
] RayaltndLi Source Ale+shift+s »
T Royalandls REfScr Alshift+T >

4 =] xmilmportE fag Import...
=25 RoyalandLoyal

B 53 Export...
[#£5 Randl . Refresh F5
A Randl. ciose Project
B Randl Closs rrelated Projects
[+~ B4, JRE Systen
¥ org.edipse Run As 4
=} META-INF ~ Dsbug As i
7 D MANIF| Togale ANTLR project nature
o build.prope Team r
plugin. prop Compare YWith i
4 pluginaml Restore from Local History. .
o st s
4 Octopus 1 rt to Enif:

= ik

Figure 111-20. Convert to Emfatic

6. This is the result of generated emfatic after extending the octopus2emfatic plugin. The
invariant is listed as the validator method and notice its annotation (green marks) which
represents the OCL expression.

class Customer {
attr Integer age;
attr Boolean isMale;

attr Gender gender;
attr String name;
attr String title;

val OctopusDate dateOfBirth;

lordered ref CustomerCard[0..*] #owner cards;

Tordered ref LoyaltyProgram[0..*] #participants programs;

Figure 111-21. Royal And Loyal emfatic model - RoyalAndLoyal.emf

11.3.1.2 Emfatic to Generated Code

1. Create the ecore model out of the emfatic

=1 1= emfatic H
Eﬂ Roy aldndLo al.emf
Ev:’ ExXpressions Hew 4
TL,:E' META-IMNF Open F3
&> model Open With C
[#+|.— templates
o build.properties = Copy Zhrl+C
- |- README.Ext . Copy Cualitied fdame
" RovalandLowal.mdl . nocta Chl
5| RoyalandLoyal xml =
. Delet Delek
=] RoyalandLayalTestInsts e gee d
=] =milmportErrors, bxt Build Path 3
J a
= Royaldndloyal.gen Refactor Alt+Shife+T ¥
|—" testtemplates
g Impart. ..
£ Export...
7 Refresh FS
Generate Ecore Model
Run As L4
Cishiim fis 8

Figure 111-22. Generate Ecore Model from Emfatic

2. From ecore files we can get the EMF model (.genmodel). Choose the ‘EMF model’,
and select ‘ecore® as the importer model. Then continue the instruction until we can get

the .genmodel.

4 RavaldndLaval.emf [Project...

E‘lf:? Expressions
[+ = META-INF

Open F3 FEf Product Configuration

-2 radel eRuih 2 “l&] Target Definition
[+ (= templates |:= Copy Chr+C th Package

“loub build properties Copy Qualified Hame (& Class
“|=| README. bxt oo e ChY & Interface
| RoyalandLoyal.mdl =

. Dielek Delek "1 Source Falder 1
=1 RoyalandLoyal.xml Mo it % Fold |
= RoyalandLovalTestInstan Build Path s
= : i |
= eRer G Refactor AbshiftsT »
— RovalandLoyal.gen % 4 Example...
| testtemplates g Import. ..
3 Export...
‘5 Dafrach FE Fiehe shuaed

Figure 111-23. Generate genmodel from Ecore model

3. Normally, from this model, we can directly obtain the generated code by invoking

‘Generate Model Code’ from context menu of this model. But, since we have to

implement the model integrity in this case by adding the OCL constraint into the
generated code, we have to configure some JET templates of this model. The template is

obtained from this resource [2]. There are few things to configure on the properties of the

model. See the green marks.

Model Direckory

Model Plug-in Class
Model Plug-in Wariables
Suppress Containment

[= Model Class Defaults
Root Extends Class
Root Extends Interface
Root Implements Inkerface
Static Packages

[= Model Feature Defaults
Boolean Flags Field
Boolean Flags Reserved Bits
Feature Map Wrapper Class
Feature Map Wrapper Interface
Feature IMap Wrapper Internal Interface

Facade Helper Class
Force Overwrite
Redirection Pattern
Template Directory:
Lpdate Classpath

= ,l'RDvaiAnl:iLoval.gen,l’src

= EMFT_OCL:Drg.ecli'pse.emf.ocl
i Falze

Suppress EMF Metadata ¥k False
Suppress EMF Model Tags it False
Suppress Interfaces '+ False
Suppress Mokification it False

org.eclipse.emf. ecore.impl. EObjectImpl
org.eclipse.emf. ecore. ECbject

Hjl
'
=

(LTI TR

Suppress EMF Types '+ False

Suppress Unsettable it False
=l Templates & Merge

Code Formatting '+ False

Dynamic Templates ‘i brue o

Error Log | Tasks I Prablems m\ i E B =
Propert I Walue
Feature Delegation ‘= MNone
Generate Schema i False
IMinimal Feflective Methods vk brue

'= org.eclipse.emf. codegen.merge. java.Facade. jdom. JDOMFacadeHelper

% False

cvaltndLovalitemplates
L brue

Figure 111-24. Properties of RoyalAndLoyal.genmodel

4. After all things are configured, we can generate the code

E,- oy ahh

= EE FovalandLoyal
= & RandL
- E| Progra

Generate Model Code

Genetate Edit Code
M] Membe Generate Editor Code

) Lovalt Generate Test Code
4 Burning Generate Al

Figure 111-25. Generate the Model Code

5. Here is the generated code

iffJ---'j;_:LJ- RovaladndLoval.gen
R
. -t Randl
#- 1 H RandL.impl
-t RandL.uti
"r.E:.n. JRE Svystem Library [irel.5.0_0f
i~ org.eclipse.pde. core requiredPl]
[+~ META-INF
a0 build, properties
IJ plugin. propetties
E----=i'.;].;i--|:|||_||;m'|.>c:m|

Figure 111-26. Generated code on package view

Using this approach, finally we got the OCL expression as part of the body of the

validator method. It means we have successfully generated the constraints which is

defined in the model into the code. Figures below show the generated code of the

constraints.

/**

* <l-- begin-user-doc -->
* <l-- end-user-doc -->

*

*/

public boolean pre_isEmpty 1) {

iT (pre_isEmpty_1BodyOCL == null) {
EOperation eOperation = (EOperation)
eClass() -getEOperations().get(4);

Environment env =
ExpressionsUtil.createOperationContext(eClass(), eOperation);

EAnnotation ocl =
eOperation.getEAnnotation(OCL_ANNOTATION_SOURCE);

String body = (String) ocl.getDetails().get("'body™);
try {

pre_isEmpty_1BodyOCL =
ExpressionsUtil.createQuery(env, body, true);

} catch (ParserException e) {

throw new
UnsupportedOperationException(e.getLocalizedMessage());
¥

¥

Query query =
QueryFactory.elINSTANCE.createQuery(pre_isEmpty_ 1BodyOCL);

EvalEnvironment evalEnv = new EvalEnvironment();

query.setEvaluationEnvironment(evalEnv);
return ((Boolean) query.evaluate(this)).booleanvalue();

Figure 111-27. Pre Constraint generated Code —LoyaltyAccountimpl.java

/>

* <l-- begin-user-doc -->
* <I-- end-user-doc -->

*

*/

public Boolean isEmpty() {
assert pre_isEmpty 1(0);
// : implement this method
// Ensure that you remove @generated or mark it @generated NOT body
assert post_isEmpty_1Q);
throw new UnsupportedOperationException();

/**

* <l-- begin-user-doc -->
* <I-- end-user-doc -->

*

*/

public boolean post_isEmpty 1) {

}

Figure 111-28. Post Constraint Generated Code — LoyaltyAccountlmpl.java

/**
* The parsed OCL expression for the definition of the "{@link #invariant_ofAge Invariant
of Age}" invariant constraint.

* <l-- begin-user-doc -->
* <l-- end-user-doc -->

* #invariant_ofAge

*

*

invariant = self.age >= 18
*/
private static OCLExpression invariant_ofAgelnvOCL;
private static final String OCL_ANNOTATION_SOURCE =
“http://www.eclipse.org/0OCL/RoyalAndLoyal/ocl™;
public boolean invariant_ofAge(DiagnosticChain diagnostics, Map context) {
iT (invariant_ofAgelnvOCL == null) {
EOperation eOperation = (EOperation) eClass().getEOperations().get(1);
Environment env = ExpressionsUtil._createClassifierContext(eClass());
EAnnotation ocl = eOperation.getEAnnotation(OCL_ANNOTATION_SOURCE);
String body = (String) ocl.getDetails().get("invariant™);
try {
invariant_ofAgelnvOCL = ExpressionsUtil._createlnvariant(env, body, true);
} catch (ParserException e) {
throw new UnsupportedOperationException(e.getLocalizedMessage());
3
3

Query query = QueryFactory.elINSTANCE.createQuery(invariant_ofAgelnvOCL);
EvalEnvironment evalEnv = new EvalEnvironment();
query.setEvaluationEnvironment(evalEnv);
if (Iquery.check(this)) {
if (diagnostics != null) {
diagnostics.add
(new BasicDiagnostic
(Diagnostic.ERROR, RandLValidator.DIAGNOSTIC_SOURCE,
RandLVal idator.CUSTOMER__INVARIANT_OF_AGE,
EcorePlugin. INSTANCE.getString(*"_Ul_Genericlnvariant_diagnostic",
new Object[] { "invariant_ofAge",
EObjectValidator.getObjectLabel (this, context) }),
new Object [] { this }));

return false;

}

return true;
T

Figure 111-29. Validator Method — CustomerIimpl.java

.4 Summary

In this stage we already had the converted UML2 model transform from Octopus
Model, only without the Constraints included. There are several ways to get them
expressed in the destination model. First approach is by adding it as constraint element
using UML2 editor, which later can be generated automatically programmatically. With
this way, we found out that the constraint is not generated as the implementation body of
the validation operation, instead only stated as documentation, which needs to manually
typed by hand. The second approach is using EMFT validation. With this way we create
the extension of the model which based on the validation framework. All the constraints
has to be put on plugin.xml of that extension package, which requires too much effort in
such big scale application. The third approach involves EMFT OCL components. With
this way we put the constraint as the annotation which later EMF Codegen with
additional JET Templates can process them to be generated as proper code. Using this

solution, we can get all the constraint expressed correctly in the code.

IV EMF.Edit & EValidator API

Iv.1 EMF.edit

The purpose of EMF.edit [13] is to build very functional viewers and editors for
the model. Basically, with this framework, developers which use EMF model in their
application can easily generate an editor that will display and edit instances of the model
using standard JFace viewers and a property sheet.

EMF.Edit is an Eclipse framework that includes generic reusable classes for
building editors for EMF models. It provides:

1. Content and label provider classes, property source support, and other
convenience classes that allow EMF models to be displayed using standard
desktop (JFace) viewers and property sheets.

2. A command framework, including a set of generic command implementation
classes for building editors that support fully automatic undo and redo.

3. A code generator capable of generating everything needed to build a complete
editor plug-in for your EMF model. It produces a properly structured editor that
conforms to the recommended style for Eclipse EMF model editors.

For More Information about EMF.edit please refer to [3].

Iv.2 Evalidator API

EMF Codegen generates package validator classes for each package which has
invariant method in its classes. EObjectValidator is the base for all generated package
validator classes. This base class provides validation on such aspects [12]:

1. The actual multiplicities of the attributes and references match the bounds defined
in the model.

2. The defined data type of the attributes is respected.

3. Any cross referenced objects are contained in resources.

4. Every proxy is properly resolved.

Iv.3 Generation of an Editor for Royal and Loyal

After having the model ready in EMF, now we can generate the editor to
manipulate the instance. This generation editor can also be used to ensure the integrity of
the model by validate action. This validate action will invoke the validate method
provided by package validator classes (EValidator API).

1. Generate edit code and editor code of Royal and Loyal

Bl # pe Generate Model Code o o Generate Model Code
Generate Edit Code

Generate Edit Code
Generate Editor Code
Generate Test Code

Generate Editor Code

Generate Test Code

Generate All Generate All

mnen Fenre Dipen Ecore

Figure IV-1. Generate Edit and Editor Code

2. Here is the result on the workspace. There are 3 projects created based on EMF
Codegen. The .edit and .editor package is used to provide the diagram editor and

manipulation of the instance of the model.

14, RandLEMF. editor

Figure IV-2. Generated Code of EMF Codegen

3. Launch a new workspace to instantiate the model. For detail, see step 4 of [5]
4. In this editor we can create an instance of the model. Then manipulate the properties in
the properties view (provided in the context menu). Figure 1V-3 shows the editor of

Royal and Loyal.

Figure 1V-3. Editor of Royal and Loyal

5. In this editor we can validate the instance of the model

Figure 1V-4. Validate Action - Context Menu of Editor

This action will invoke the validate method of the package validator classes which

is generated by EMF codegen.

/**

* Calls <code>validateXXX</code> for the corresonding classifier of the model.
* <l-- begin-user-doc -->

* <l-- end-user-doc -->

*

*/

protected boolean validate(int classifierlD, Object value, DiagnosticChain
diagnostics, Map context) {

switch (classifierlD) {

case RandLPackage.CUSTOMER:
return validateCustomer((Customer)value, diagnostics, context);

default:
return true;
b

}

Figure 1V-5. validate method — RandLValidator.java

Figure IV-5 is generated for RandL package. It is implementing the validate

method of its base class EObjectValidator.

/**
* <l-- begin-user-doc -->

* <l-- end-user-doc -->
*

*/
public boolean validateCustomer(Customer customer, DiagnosticChain diagnostics, Map
context) {

boolean result = validate_EveryMultiplicityConforms(customer, diagnostics, context);
if (result || diagnostics != null)

result &= validate_ EveryDataValueConforms(customer, diagnostics, context);
if (result || diagnostics != null)

result &= validate_EveryReferencelsContained(customer, diagnostics, context);
if (result || diagnostics != null)

result &= validate EveryProxyResolves(customer, diagnostics, context);
if (result || diagnostics != null)

result &= validateCustomer_invariant_Customerl(customer, diagnostics, context);
if (result || diagnostics != null)

result &= validateCustomer_invariant_Customer2(customer, diagnostics, context);

return result;

¥

Figure 1V-6. validateCustomer method — RandL .java

This method will invoke each method which states in the validateXXX in the
Figure 1V-6 which belongs to Evalidator API. This invocation will preserve all of the

integrity of the specific instance.

Iv.4 Runtime Aspect

Once we had the EMF model, we can create the editor to manipulate or validate
the instance. After validating the instance against all the constraint defined in the model,
we can see how many OCL expressions can still be preserved by the EMF model,
comparing to the original model which was in form of Octopus model. This result can
also be one of the parameters which can tell us whether this solutions can be improved in
the future.

One thing that needs to be noticed, the EMF model does not support the
Association Class. If there is any Association Class from the Octopus model, it will be
treated as the normal class. In our example, Royal and Loyal, there is one association
class named Membership. This affects the number of constraints that can be processed by
the EMF model

This subchapter will show the results of how many OCL expressions can be
processed by the Royal and Loyal EMF model. The specification of OCL expression
which can be checked in this test only limited on: ‘inv’, ‘def’, “init’, and ‘derive’. The
other three specifications (‘pre’, ‘body’, and ‘post’) can not be included in the test
because they require method invocation while currently the editor can not provide it.

We will show the results based on several criteria. The X-axis denotes the context
of the OCL and the Y-axis denotes specification of the OCL. (b=before, a=after)

1. All OCL expressions are included.

In this criteria, we include all the constraint in the test. In the editor, we create the
instances as the requirements of the model, and validate theses instances to see whether
all the constraints can be preserved. From Figure IV-7, the total percentage of the OCL
expression that the EMF model can process is only 45.99 %. That is such a poor result. If

we drill down, we will see the constraint that involves the random OCL expressions,

which is not relevant with this model, makes the most contribution to the failed process.
The next result will remove them out. The example of this Constraints is, “inv: Set { Set { 1,
2}, Set{2,3} Set{4,5 6}}->isEmpty()”. The Association class also will be removed in the

next test, because EMF model does not recognize it.

Inv def init | derive Total

b a|blalbla|l b |a] b a (%)
Burning 6| 6 6| 6| 100.00
Customer 16111 | 4]1 20|12 | 60.00
CustomerCard 71 3] 1(1]13]3] 2]2] 13| 9| 69.23
LoyaltyAccount 3| 3 33| 2]2 8| 8 100.00
LoyaltyProgram 27| 7| 312 301 9| 30.00
Membership 9] O 0 10f O 0.00
ProgramPartner 6| 6 1 7| 7 100.00
Service 71 7 8| 8] 100.00
ServicelLevel 19| O 19 0 0.00
Transaction 4 4 4| 4] 100.00
TransactionReport 21 0 5]0 71 0 0.00
TransactionReportLine 5[0 5[0 0.00
106 (4710|566 14| 413763 | 45.99

Figure 1V-7. Test Results — All OCL Expressions are included
2. Only Relevant OCL Expressions
inv def init | derive Total
b a|blalbla|l b |a]|]b| a (%)

Burning 6| 6 6| 6| 100.00

Customer 12111 | 3]1 15| 12 80.00

CustomerCard 7] 2] 1{1|3]3] 1]0]12| 6| 50.00

LoyaltyAccount 3| 3 3|13] 22| 8] 8| 100.00

LoyaltyProgram 9|1 7| 2|2 11| 9 81.82

ProgramPartner 6 6] 1]1 71 7 100.00

Service 7 7 8| 8] 100.00

ServicelLevel 1] 0 11 0 0.00

Transaction 4 4 4| 4| 100.00

TransactionReport 21 0 3(0] 5] 0 0.00

TransactionReportLine 5/]0] 5] O 0.00

106 (47 |10|5|6|6[14[4([82]|60]| 73.17

Figure 1V-8. Test Results — Only The relevant OCL expressions included

Now we can see the total percentage is much better. Analyzing this result, we can

divide the cause of the failed validation into 2 categories:
1. Derived value from the unspecified parent

It is failed because the parent value has not been initialized yet, but it is already
evaluated by the editor. For example, printedName, one of the field of the CustomerCard,
is derived from concatenation of title and name of its owner which is Customer. In the
editor, when the CustomerCard is instantiated, the corresponding field is automatically
evaluated without having specified who is the 'owner' of the CustomerCard which causes
null pointer exception.

This kind of error can be avoided by creating some additional condition to the
model. It will not be occurred if the deriving process done when the parent class has been
initialized.

2. Invocation of empty method

The constraint invokes one of the method of its context which is still empty.
Normally, the empty body operation by default is filled with throwing an Exception by
EMF Codegen.

Similar to first case, it can be avoided if the completion of operation body is done
before the validation occur. In this case, we just let the the implementation operation
body empty.

V.5 Summary

EMF.edit generates an editor in which we can manipulate an instance of the
model as well and validate that instance against the specified OCL constraints. This
feature can be seen as a rapid prototyping mechanism to easily test the integrity of a
model instance. The EValidator API is the underlying API internally invoked to carry out
this task. Package validation classes are generated automatically to invoke the validate
operation of its base class, if any.

Royal and Loyal EMF model did validate in the first attempt all the constraints
but the coverage of them was not good, because most of the failed constraints were not

relevant to the target model or were not supported by the target OCL interpreter

(remember the reduction operation on a collection of literals). After the problematic
constraints were removed, results around coverage of constraints improved significantly.
As we saw, some of the constraints that still could not be processed had to do with non-

initialized data that the constraint depends on.

VvV Outlook

V.1 Summary

The main motivation behind this student project was to complete a tool chain
from Octopus Model to UML2 model, where each tool has its own advantages. This tool
chain provides the flexibility to gain the benefits provided by both of tools, Octopus and
EMF. EMF is a modeling framework and code generation facility for building tools and
other applications based on a structured data model, while UML2 is an EMF-based
implementation of the UML 2.0 metamodel for the Eclipse platform.

EMF supports regenerating the model after changing the code but still preserves
the changes of the customized code. EMF also provides the framework which gives the
possibility to create, edit, and delete the instance of the model using the visual editor.
This framework, known as EMF.edit, additionally can be used as validation tool to ensure
the integrity of the model. Those are specific improvements that we can get with EMF
model but not with Octopus model.

Once we have created the EMF model, we can have them worked with the other
EMF-based components. This interoperability with other components is also one of the
main advantages after converting the model into the EMF technology space. With this
feature, the enhancement for the model can easily be obtained.

This student project has succeeded in converting the Octopus model into UML?2
model without the constraints included (because of lack of framework support for this at
time from part of Eclipse UML2). And this work also completes the convertion of
Octopus model to EMF model including the OCL constraints. The integrity of the
generated model that can be preserved is at least more than 70% which was tested using
the generated editor provided by EMF.

V.2 Future Work

There are so many works to complete, generally in MDA world, and in this

project in particular. Currently, EMF model does not support the Association class. There

must be a way to solve this problem, for example by refactoring the original model into
one amenable to direct translation to EMF. This refactoring should also involve the OCL
constraints that refer to the original association class.

In the algorithm to convert the octopus model, octopus2emfatic, there are some
bugs remain. This code will fail to process when the input model has the same classifier’s
name with the emfatic’s keyword, such as ‘Date’. The other problem, that has been found,
will occur when the model has method overloading, two or more methods have the same
name with different signature. The Ecore generator, which generates emfatic to ecore file,
does not support it. That would be a good progress if those bugs can be fixed in the future.

The most important enhancement is to complete the tool that can process this
modeling chain smoothly and can be customized easily by the other developers. It will
give a meaningful contribution to the eclipse community which already has big support

from and for the developer.

Appendixes

VI Visitor Code of Octopus2umi2

vi.1 de.tuhh.sts.ouml2.visitors package

VI.1.1 VisitorForUml2.java

package de.tuhh_sts_ouml2._visitors;

import nl._klasse.octopus.model.IClassifier;

import nl._klasse.octopus.model.IStructuralFeature;

import nl._klasse.octopus.model .VisibilityKind;

import nl_klasse.octopus.modelVisitors._DefaultPackageVisitor;

import nl_klasse.octopus.stdlib.internal.types.StdlibCollectionType;
import org.eclipse.uml2.uml _MultiplicityElement;

import de.tuhh.sts.ouml2._util_Maps;

public class VisitorForUml2 extends DefaultPackageVisitor {

protected String baseUri =
“"http://de.tuhh.sts.octopus/octopus2emfatic/2006";

public Maps maps = new Maps(Q);

public VisitorForUml2(Maps m) {
it (m 1= null) {
this.maps = m;
}

}

protected void setModifiersFor(MultiplicityElement
multiplicityElement, IStructuralFeature osf) {

ifT (osf.getType() instanceof StdlibCollectionType) {
StdlibCollectionType ct = (StdlibCollectionType)
osT.getType();
multiplicityElement.setlsOrdered(ct. isOrderedSet() ||
ct.isSequence());
multiplicityElement.setlsUnique(ct.isSet() ||
ct.isOrderedSet());

}

protected void setCardinalityFor(MultiplicityElement
multiplicityElement, IStructuralFeature osf) {

multiplicityElement.setlLower(
osft.getMultiplicity().getLower());

int up = osf.getMultiplicity().getUpper(Q;

it (up == Integer.MAX_VALUE) {

up = -1;
}
multiplicityElement.setUpper(up);

}

protected String getStrTypeExprFor(IClassifier theType) {
String str = theType.getName();
it (str.trim().toLowerCase().equals(real™)) {
str = "Double™;
}

return str;

}

protected org.eclipse.uml2_uml_VisibilityKind getVisibility
(VisibilityKind octopusVisibilityKind){

iT(octopusVisibilityKind == VisibilityKind.NONE)

return

org.eclipse.uml2_uml _VisibilityKind.PACKAGE_LITERAL;
else if(octopusVisibilityKind == VisibilityKind.PRIVATE)

return

org.eclipse.uml2_.uml . VisibilityKind.PRIVATE LITERAL;
else if(octopusVisibilityKind == VisibilityKind.PROTECTED)

return

org.eclipse.uml2_uml _VisibilityKind.PROTECTED_LITERAL;
else if(octopusVisibilityKind == VisibilityKind.PUBLIC)

return

org.eclipse.uml2_uml _VisibilityKind.PUBLIC LITERAL;
else

return

org.eclipse.uml2_uml .VisibilityKind.PACKAGE LITERAL;

}

VI.1.2 VisitorOl.java
package de.tuhh.sts.ouml2.visitors;
import java.util.lterator;

import nl._klasse.octopus.model.lAttribute;

import nl._klasse.octopus.model.IClassifier;

import nl_klasse.octopus.model.llInterface;

import nl_klasse.octopus.model. IOperation;

import nl_klasse.octopus.model . IPackage;

import nl._klasse.octopus.model. IParameter;

import nl._klasse.octopus.model.internal.types.EnumerationTypelmpl;
import nl_klasse.octopus.model.internal _types. ImportedElementimlp;
import nl_klasse.octopus.model.internal._types.Operationimpl;
import nl._klasse.octopus.oclengine.l0clContext;

import nl._klasse.octopus.stdlib.internal.types.StdlibCollectionType;
import org.eclipse.emf.common.util _EMap;

import org.eclipse.emf._ecore.EAnnotation;

import org.eclipse.uml2_uml_Classifier;

import org.eclipse.uml2_uml.Operation;

import org.eclipse.uml2.uml.Package;
import org.eclipse.uml2._uml._Parameter;
import org.eclipse.uml2_.uml._Property;
import org.eclipse.uml2_uml_UMLFactory;
import de.tuhh.sts.ouml2_util_Maps;

public class Visitor0l extends VisitorForUml2 {

public VisitorO1l(Maps m) {

super(m);

@Override
public void package Before(lPackage octopusPackage) {

}

Package uml2Package = UMLFactory.elINSTANCE.createPackage();
uml2Package . setName(octopusPackage.getName());
maps - packages . put(octopusPackage, uml2Package);

for (Object 10 : octopusPackage.getimports()) {
ImportedElementimlp importedElement = (ImportedElementimlp) io0;
org.eclipse.uml2.uml .Package importedPackage =
UMLFactory.elINSTANCE.createPackage();
importedPackage .setName(importedElement._getPathname() .toString());

}

super .package Before(octopusPackage);

@Override
public void class Before(IClassifier octopusClassifier) {

}

Classifier uml2Classifier;

ifT (octopusClassifier instanceof EnumerationTypelmpl) {
uml2Classifier = UMLFactory.eINSTANCE.createEnumeration();

} else {
uml2Classifier = UMLFactory.eINSTANCE.createClass();

uml2Classifier.setlsAbstract(octopusClassifier.getlsAbstract());
}

maps.classifiers.put(octopusClassifier, uml2Classifier);
uml2Classifier.setName(octopusClassifier._getName());

super.class Before(octopusClassifier);

@Override
public void interface Before(lInterface octopusinterface) {

}

Classifier uml2Classifier = UMLFactory.elINSTANCE.createlnterface();
uml2Classifier.setName(octopuslinterface.getName());
maps.-classifiers.put(octopusinterface, uml2Classifier);

super . interface_Before(octopuslinterface);

@Override

public void attribute(lAttribute octopusAttribute) {

}

Property uml2Property = UMLFactory.eINSTANCE.createProperty();
maps.properties.put(octopusAttribute, uml2Property);
uml2Property.setName(octopusAttribute.getName());

// modifiers and cardinality
setModifiersFor(uml2Property, octopusAttribute);

setCardinalityFor(uml2Property, octopusAttribute);
super.attribute(octopusAttribute);

@Override
public void operation_Before(l0peration octopusOperation) {

}

Operation uml20peration = UMLFactory.eINSTANCE.createOperation();
uml20peration.setName(octopusOperation.getName());

maps .operations.put(octopusOperation, uml20peration);
// modifiers and cardinality

iT (octopusOperation.getReturnType() instanceof
StdlibCollectionType) {
StdlibCollectionType ct = (StdlibCollectionType)
octopusOperation.getReturnType();
uml20peration.setlsOrdered(ct.isOrderedSet() || ct.isSequence());
uml20peration.setlsUnique(ct.isSet() || ct.isOrderedSet());
uml20peration.setUpper(-1);

}

iT (octopusOperation.isOclDef()) {
addOCLExpression(octopusOperation, uml20peration);
}

super.operation_Before(octopusOperation);

@Override
public void parameter(lIParameter octopusParameter) {

Parameter uml2Parameter = UMLFactory.elINSTANCE.createParameter();
uml2Parameter .setName(octopusParameter.getName());

// type will be placed in Visitor02

iT (octopusParameter.getType() instanceof StdlibCollectionType) {
StdlibCollectionType ct = (StdlibCollectionType)
octopusParameter.getType();
uml2Parameter.setlsOrdered(ct. isOrderedSet() || ct.isSequence());
uml2Parameter.setlsUnique(ct.isSet() || ct.isOrderedSet());
uml2Parameter.setUpper(-1);

}

maps .parameters.put(octopusParameter, uml2Parameter);
super .parameter(octopusParameter);

VI.1.3 Visitor02.java
package de.tuhh_sts_ouml2._visitors;
import java.util_List;

import nl._klasse.octopus.model. lAttribute;

import nl_klasse.octopus.model.IClassifier;

import nl_klasse.octopus.model . IOperation;

import nl_klasse.octopus.model . IPackage;

import nl._klasse.octopus.model. IParameter;

import nl_klasse.octopus.model.IPrimitiveType;

import nl_klasse.octopus.model.internal _types._Attributelmpl;
import nl._klasse.octopus.model.internal.types.EnumLiterallmpl;
import nl._klasse.octopus.model.internal.types.EnumerationTypelmpl;
import nl._klasse.octopus.model.internal.types.Parameterimpl;

import org.eclipse.uml2_uml._Class;

import org.eclipse.uml2_uml_Classifier;

import org.eclipse.uml2_uml._Enumeration;

import org.eclipse.uml2_uml._Operation;

import org.eclipse.uml2.uml.Package;

import org.eclipse.uml2_uml_Parameter;

import org.eclipse.uml2_uml_ParameterDirectionKind;
import org.eclipse.uml2.uml.Property;

import org.eclipse.uml2.uml.Type;

import de.tuhh.sts.ouml2_util_Maps;
public class Visitor02 extends VisitorForUml2 {

public VisitorO2(Maps m) {
super(m);

@Override
public void package Before(lPackage octopusPackage) {

Package uml2Package = maps.packages.get(octopusPackage);

for (Object subpo : octopusPackage.getSubpackages()) {
IPackage octopusSubPackage = (IPackage) subpo;
Package uml2SubPackage = maps.packages.get(octopusSubPackage);
uml2Package . createNestedPackage(uml2SubPackage.getName());
maps . packages . put(octopusSubPackage,
uml2Package . getNestedPackage (uml2SubPackage.getName()));

}

for (Object co : octopusPackage.getClassifiers()) {
IClassifier octopusClassifier = (IClassifier) co;
Classifier uml2Classifier =

maps.classifiers.get(octopusClassifier);
it (octopusClassifier instanceof EnumerationTypelmpl) {
uml2Package.createOwnedEnumeration(uml2Classifier._getName());
maps.-classifiers.put(octopusClassifier, (Classifier)
uml2Package . getOwnedMember (uml2Classifier._getName()));
} else {

uml2Package.createOwnedClass(uml2Classifier.getName(),
uml2Classifier.isAbstract());

maps.classifiers.put(octopusClassifier,
(Classifier) uml2Package.getOwnedMember (
uml2Classifier.getName()));

for(Object oo : octopusClassifier.getOperations()){
I0peration octopusOperation = (IOperation) 00;
IClassifier operationReturnType =
octopusOperation.getReturnType();
if(operationReturnType = null){
iT (operationReturnType instanceof IPrimitiveType) {
if(Imaps.types.containskKey(operationReturnType)){
String str = getStrTypeExprFor(operationReturnType);
Type uml2Type =
uml2Package.createOwnedPrimitiveType(str);
maps - types.put(operationReturnType, uml2Type);

}
}
}
for(Object op : octopusOperation.getParameters()){
IParameter octopusParameter = (IParameter) op;
IClassifier parameterType = octopusParameter.getType();
it (parameterType instanceof IPrimitiveType) {
iT(Imaps.types.containsKey(parameterType)){
String str = getStrTypeExprFor(parameterType);
Type uml2Type =
uml2Package.createOwnedPrimitiveType(str);
maps.types.put(parameterType, uml2Type);
}
}
}
}

for(Object oa : octopusClassifier.getAttributes()){
Attributelmpl octopusAttribute = (Attributelmpl) oa;
IClassifier octopusType = octopusAttribute.getType();

iT (octopusType instanceof IPrimitiveType) {
iT(Imaps.types.containskey(octopusType)){
String str = getStrTypeExprFor(octopusType);
Type uml2Type = uml2Package.createOwnedPrimitiveType(str);
maps . types.put(octopusType, uml2Type);

super .package Before(octopusPackage);

}

@Override
public void class Before(IClassifier octopusClassifier) {

// handle enum and return
it (octopusClassifier instanceof EnumerationTypelmpl) {
Enumeration uml2Enumeration =
(Enumeration) maps.classifiers.get(octopusClassifier);
EnumerationTypelmpl e = (EnumerationTypelmpl) octopusClassifier;
for (Object lo : e.getLiterals()) {
EnumLiterallmpl 1 = (EnumLiterallmpl) lo;
uml2Enumeration.createOwnedLiteral (1 .getName());
uml2Enumeration._getOwnedLiteral (I .getName()) -setVisibility(
getVisibility(l.getVisibility()));
}

uml2Enumeration.setVisibility(getVisibility(e.getVisibility()));
return;

}

// from now on it"s either a class or interface
Class uml2Class = (Class) maps.classifiers.get(octopusClassifier);
uml2Class.setVisibility(getVisibility(
octopusClassifier._getVisibility()));
for (Object ao : octopusClassifier.getAttributes()) {
Attributelmpl octopusAttribute = (Attributelmpl) ao;

Property uml2Property = maps.properties.get(octopusAttribute);

Type uml2Type;

iT (octopusAttribute.getType() instanceof IPrimitiveType) {
uml2Type = maps.types.get(octopusAttribute.getType());

} else {
uml2Type = maps.classifiers.get(octopusAttribute.getType());

iTuml2Type!l=nul 1){
uml2Property.setType(uml2Type);
uml2Class.createOwnedAttribute(uml2Property.getName(),
uml2Type, octopusAttribute.getMultiplicity().getLower(),
octopusAttribute.getMultiplicity() .getUpper(Q));
maps.properties.put(octopusAttribute,
uml2Class.getOwnedAttribute(uml2Property.getName(),
uml2Type));
}
}
// extends
List supers = octopusClassifier._getGeneralizations();
supers.addAll (octopusClassifier.getinterfaces());
for (Object octoSuper : supers) {
Classifier uml2Classifier = maps.classifiers.get(octoSuper);
uml2Class.createGeneralization(uml2Classifier);

}

super.class Before(octopusClassifier);

}

@Override
public void operation_ Before(l0peration octopusOperation) {

Class uml2Class = (Class) maps.-classifiers.get(
octopusOperation.getOwner());
Operation uml20peration = maps.operations.get(octopusOperation);

// return type
iT (octopusOperation.getReturnType() = null) {
Type uml2Type;
iT (octopusOperation.getReturnType() instanceof IPrimitiveType) {
uml2Type = maps.types.get(octopusOperation.getReturnType());

} else {

uml2Type = maps.classifiers.get(
octopusOperation.getReturnType());

uml20peration.createReturnResult('return” ,uml2Type);
uml20peration.setType(uml2Type);

}

uml2Class.createOwnedOperation(uml20peration.getName(),
null, null, uml20peration.getType());
maps -operations.put(octopusOperation,
uml2Class.getOwnedOperation(uml20peration.getName(),
null, null));

Operation operation = maps.operations.get(octopusOperation);
operation.setVisibility(getVisibility(
octopusOperation.getVisibility()));

for (Object po : octopusOperation.getParameters()) {
ParameterImpl p = (Parameterimpl) po;
Parameter uml2Parameter = maps.parameters.get(p);

}

super.operation_Before(octopusOperation);

}

@Override
public void attribute(lAttribute octopusAttribute) {

Property uml2Property = maps.properties.get(octopusAttribute);
uml2Property.setVisibility(getVisibility(
octopusAttribute.getVisibility()));

super.attribute(octopusAttribute);
}

@Override
public void parameter(lParameter octopusParameter) {

Parameter uml2Parameter = maps.parameters.get(octopusParameter);
Type uml2Type;

iT (octopusParameter.getType() instanceof IPrimitiveType) {
uml2Type = maps.types.get(octopusParameter.getType());

} else {
uml2Type = maps.classifiers.get(octopusParameter.getType());

uml2Parameter.setType(uml2Type);

uml2Parameter.setDirection(ParameterDirectionKind.get(
octopusParameter.getDirection().getName()));

super .parameter (octopusParameter);

VI.1.4 Visitor03.java

package de.tuhh_sts_ouml2._visitors;

import nl._klasse.octopus.model.lAssociation;

import nl._klasse.octopus.model. lAssociationEnd;

import nl._klasse.octopus.model.IClassifier;

import nl_klasse.octopus.model.internal _types.AssociationClassimpl;
import org.eclipse.uml2._uml.AggregationKind;

import org.eclipse.uml2_uml.Classifier;

import de.tuhh.sts.ouml2._util_Maps;

public class Visitor03 extends VisitorForUml2 {

public VisitorO3(Maps m) {
super(m);

@Override
public void association(lAssociation a) {
iT (a instanceof AssociationClassimpl) {
// TODO
}
IAssociationEnd endl (1AssociationEnd) a.getEndl();
IAssociationEnd end2 (1AssociationEnd) a.getEnd2();
if(endl.getOwner() !'= null && end2.getOwner() '= null){
addIfNavigable(endl, end2);
}

super.association(a);

}

private void addlfNavigable(lAssociationEnd endl,
IAssociationEnd end2) {

IClassifier clasl = endl.getOwner();
Classifier uml2Classifierl = maps.classifiers.get(clasl);
IClassifier clas2 = end2.getOwner();
Classifier uml2Classifier2 = maps.classifiers.get(clas2);

uml2Classifierl.createAssociation(endl.isNavigable(),
(endl.isComposite() ? AggregationKind.COMPOSITE LITERAL :

AggregationKind.NONE_LITERAL),
endl.getName(), endl.getMultiplicity().getLower(),
endl.getMultiplicity()-getUpper(),

uml2Classifier2, end2.isNavigable(),
(end2.isComposite() ? AggregationKind.COMPOSITE LITERAL :
AggregationKind.NONE_LITERAL),
end2._.getName(), end2.getMultiplicity().getLower(),
end2.getMultiplicity() .-getUpper());

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

9]

[10]

[11]

Adrian Powell , “Model with the Eclipse Modeling Framework, Part 17,
http://www-128.ibm.com/developerworks/opensource/library/os-ecemfl/, Apr 15,
2004.

Christian W. Damus, “Implementing Model Integrity in EMF with EMFT OCL”,
http://www.eclipse.org/articles/Article-EMF-Codegen-with-OCL /article.html, 1BM
Rational (Canada), August 1, 2006

Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy J.
Grose, “Eclipse Modeling Framework: A Developer's Guide”, Addison Wesley,
August 11, 2003

Chris Daly, “Emfatic Language for EMF Development”,

http://www.alphaworks.ibm.com/tech/emfatic, Nov 9, 2004.

“Generating an EMF Model”,
http://www.eclipse.org/emf/docs.php?doc=tutorials/clibmod/clibmod.html, May 31,
2006

Jos Warmer and Anneke Kleppe, “Introduction to OCL”,

http://www.klasse.nl/ocl/ocl-introduction.html, December 20, 2005.

Jos Warmer and Anneke Kleppe, “Octopus: OCL Tool for Precise Uml
Specifications”, http://www.klasse.nl/octopus/index.html, March 15, 2006.

Jos Warmer, Anneke Kleppe, “The Object Constraint Language - Getting Your
Models Ready for MDA”, Second Edition, Addison-Wesley Edition 2003.

Kenn Hussey, “How to Express OCL constraints?”, UML2 Newsgroup, June 07,
2006.

Kenn Hussey, “UML2 Codegen”, UML2 Newsgroup, May 23, 2006.

“The Eclipse Modeling Framework (EMF) Overview”,
http://www.eclipse.org/emf/docs.php?doc=references/overview/EMF.html, June 16,
2005.

[12]

[13]

[14]

[15]

[16]

[17]

“The Eclipse Modeling Framework (EMF) Validation Framework Overview”,
http://www.eclipse.org/emf/docs.php?doc=references/overview/EMF.Validation.ht
ml, June 23, 2005.

“The EMF.Edit Framework Overview”,
http://www.eclipse.org/emf/docs.php?doc=references/overview/EMF.Edit.html,
June 1, 2004.

“Tutorial: EMF Validation General”,
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.gmf.doc/tutorials/msl/val
idationTutorial.html, June 07, 2005.

“Unified Modeling Language: Infrastructure”, version 2.0, Object Management
Group, March, 2006.

“Unified Modeling Language: Superstructure”, version 2.0, Object Management
Group, August 2005.

“What is UML2?”, http://www.eclipse.org/uml2/.

