
Technische Universität Hamburg-Harburg

Project Work

User-Centered Web Service Discovery Support

Submitted by:

Lidia Khmylko

Supervised by:

Prof. Dr. Joachim Schmidt

Dipl.-Inf. Patrick Hupe

Software, Technology and Systems Institute

Hamburg University of Technology

GERMANY

June 2006

i

I declare that this work has been prepared by myself, all literary or content-related quotations from other
sources are clearly pointed out, and no other sources or aids than the ones that are declared are used.

Hamburg, 29.06.2006

Lidia Khmylko

ii

Acknowledgments

My special thanks go to Prof. Dr. Joachim W. Schmidt providing the opportunity to work on this student
project, to the research assistant Dipl.-Inf. Patrick Hupe for his essential and kind advice, guidance and
encouragement throughout this student project work, to Prof. Dr. Ralf Möller for his advice and new
suggestions, and all the research assistants at the Software, Technology and Systems Institute (STS) of the
Hamburg University of Technology (TUHH) for their help and assistance with ontology links and query
languages.

iii Table of Contents

Table of Contents
Chapter 1 Introduction...1

1.1 Motivation...1

1.2 Objectives... 2

1.3 Structure of This Work... 2

Chapter 2 Conceptual and Technological Background... 4

2.1 Principles of Service-Oriented Architectures... 4

2.2 Current SOA Implementation: Web Services...12

2.3 Semantic Web Technology...14

2.3.1 RDF...15

2.3.2 OWL..16

2.3.3 OWL-QL...18

2.4 Semantic Web Services Description...21

2.4.1 OWL-S.. 23

2.4.2 WSML/WSMO... 24

2.4.3 WSDL-S..27

2.5 Semantic Web Service Discovery...28

2.6 Summary...29

Chapter 3 Requirements Analysis... 30

3.1 HMI Platform..30

3.2 Services Discovery Analysis in HMI..32

3.2.1 Use Cases for User-Centered Service Discovery in HMI...32

3.2.2 Requirements for User-Centered Discovery Service.. 33

3.3 Domain Analysis...34

3.4 Summary...40

Chapter 4 Design of User-Centered Discovery Service for HMI..41

4.1 Semantic Description of the HMI Services.. 41

4.2 Query Patterns...43

4.3 Evaluation... 45

4.4 Summary...46

Chapter 5 Concluding Remarks...47

5.1 Summary...47

iv Table of Contents

5.2 Outlook... 48

Bibliography.. 49
Web References... 51

Chapter 1 Introduction

Chapter 1 Introduction

Web services are Internet-based, distributed modular service abstractions which provide standard
interfaces and communication protocols for efficient and effective service integration. Web services
were invented to bring a new level of integration to the computing industry and its networked
communities. The main advantage aimed at by Web services is that they enable service-based
applications to interoperate despite being developed in different programming languages, at various
times, by different people, with designs based on various assumptions.

Very strong initial success of Web services was mostly perceived in the area of integration within,
and (to a lesser extent) between, businesses. An increasing number of organizations are using the
Web services technology as a standardized infrastructure for interoperation of disparate software
components within the organization, fulfillment of transactions between organizations, and sharing
of corporate resources with customers and partners. Not only the automatic inter- and
intraenterprise integration processes, but also human users may become Web services clients, thus,
bringing forth the problem of understanding between humans and machines.

1.1 Motivation
Second-generation Web services specifications under development, such as ebXML [Ewe06] and
BPEL4WS, [ACD03], should enhance the usability, scope, and expressiveness of Web services.
However, there is an increasing realization that the syntactic level they treat Web services on is not
enough and technologies from the Semantic Web [BHL01] can also make crucial contributions to
Web services frameworks. Semantic Web Services [MSZ01] take up on this idea, introducing
ontologies to describe, on the one hand, the concepts in the services’ domains (e.g., flights and
hotels, tourism, libraries), and, on the other hand, characteristics of the services themselves (e.g.,
control flow, data flow) and their relationships to the domain ontologies (via inputs and outputs,
preconditions and effects, and so on). These semantically rich descriptions enable automated
machine reasoning over service and domain descriptions, thus supporting automation of service
discovery, composition, and execution and reducing manual configuration and programming
efforts. The field of Semantic Web services is still in an early stage, and adoption has been slow.

Thus, the main disadvantage of the actual description standards for services including Web services
is that they predominantly deal with the service description at a syntactical level (i.e., how a service
should be called) and lack the formalization of semantics (what the service is responsible for) which
is crucial for Web service human users.

1

Chapter 1 Introduction

One of the key problems associated with Web services is service discovery. Before any Web service
can be accessed, it should be made known to the party that wants to use it. The problem field can be
differentiated into

a) computer-supported matching of the service providers with service requests (service
matchmaking) which is widely researched in Semantic Web community and

b) support of the human users in their search and discovery of services.

This work makes a contribution to the latter point. The goals and objectives for it will be set in the
next section.

1.2 Objectives
The goal of this project work is a conceptual design of an architecture providing services in
heterogeneous service infrastructures to support human users of the system.

This work will focus on services in digital library environments. As a case study, a digital library
system for teachers (Hamburger Medienindex1, HMI) will be used. To achieve the goal set the
following tasks will be performed:

• the study of the state-of-the-art service-oriented architectures, their principles, related
technologies and standards as well as of the higher abstract description languages for
services (e.g., OWL-S) and service discovery approaches;

• the analysis of service discovery in library environments including the analysis of the HMI
platform specifics and the requirements added to the services layer based on the users' needs
in service discovery;

• the conceptual design of the architecture that will include the following steps:

– presenting the technical model of the system as a domain-specific ontology;

– modeling the services, their structures and operational sequences accessible from the
outside;

– designing the query modules that supports service discovery by human users;

• the evaluation of the designed architecture, its effect, usefulness, and enhancement
possibilities.

The envisioned conceptual architecture will provide library users with a semantic service discovery
support.

1.3 Structure of This Work
The background technologies that will serve as a basis for the conceptual design later are analyzed
in Chapter 2. It centers around the discussion of service-oriented architectures (Section 2.1) and
their current implementation with Web services (Section 2.2) as well as general Semantic Web
concepts and standards (Section 2.3). The proposed standards for the semantic description of Web
services are compared in detail in Section 2.4 and the existing approaches for the semantic Web
service discovery are introduced and analyzed in Section 2.5.

1 http://www.sts.tu-harburg.de/projects/entry.html#HMI

2

Chapter 1 Introduction

Chapter 3 analyzes the requirements for the conceptual architecture of the user-centered service
discovery support in the HMI library. It introduces the HMI architecture (Section 3.1) and by means
of the use case analysis (Section 3.2.1) and domain analysis (Section 3.3) defines the guidelines for
the conceptual design taking place in Chapter 4. The conceptual architecture designed is evaluated
in Section 4.3 and the work finishes with a summary and outlook.

3

Chapter 2 Conceptual and Technological Background

Chapter 2 Conceptual and Technological
Background

Service-oriented architecture (SOA) has emerged as the most significant shift in how business
applications are designed, developed and implemented in the last 10 years, eclipsing the shift to
client-server. In fact, Gartner, Inc. predicts that by 2008, “SOA will provide the basis for 80 percent
of new development projects” [Hay05].

SOA is an architectural style which aims to allow interaction of diverse applications regardless of
their platform, implementation languages and locations by utilizing generic and reliable services
that can be used as application building block. SOA includes methodologies and strategies to follow
in order to develop sophisticated applications and information systems.

2.1 Principles of Service-Oriented Architectures
Before speaking about SOA, one needs to consider the software development background for its
appearance. Over the last decades, object-oriented (OO) and component-oriented architectural
styles have firmly established themselves in all kinds of software projects which is surely a good
argument in their favor and SOA does not put an end to any of the previous technologies. But the
wide acceptation of object and component orientation has also revealed their shortcomings. That is
why, a brief revision of both architectural styles is a good reference point to start speaking about
SOA.

Object-oriented development supports the development of software by encapsulating both data and
behavior into abstract data types, called classes [Boo97]. Instances of classes are formed into small
modules, called objects. Any changes in data representation only affect the immediate object that
encapsulates the data. Classes can live for ever, while objects have a limited lifetime.

Objects communicate with each other through messaging. Object based development advances
software design by providing more support for hiding behavior and data through objects and
classes. There is almost no dependency between objects, however a large number of interconnected
objects create dependencies that can be difficult to manage.

The well-known principles of the object-oriented development are modularity, encapsulation,
separation of the interface and implementation, information hiding, and polymorphism [Boo97].

4

Chapter 2 Conceptual and Technological Background

Components are more sophisticated software modules than objects. A software component is
defined as a functional unit with contractually specified interfaces and explicit context dependencies
only. A software component can be deployed independently and is subject to composition by third
parties [Szy02]. It can be realized as a group of objects which has a specified interface that work
together to provide an application function.

The term component may refer to many different software constructs, from single application logic
to an entire functional system. In all cases, a component is a software package with one or more
well defined interfaces. A component is executed in a component execution environment provided
by an application server, such as a J2EE container, which provides the functions required by the
component for execution in the environment, such as transaction management and database
connection pooling.

Components overlap the properties of object orientation, such as encapsulation and polymorphism,
except it reduces the property of inheritance. In component thinking, inheritance is tightly coupled
and unsuitable for most forms of packaging and reuse. Instead, components reuse the functionality
by invoking other objects and components rather than inheriting from them. In component
terminology, these invocations are called delegations [MaM04].

Component specifications, i.e., their public interfaces, can be reused. The reuse of component
specifications is a form of polymorphism. Preferably, component specifications are local or global
standards that are widely reused throughout a system, an enterprise, or an industry. Components
may be integrated to create a larger entity which could be a new component, a component
framework, or an entire system. This is called composition [MaM04].

Reusable components are good reflections of effective software design. The architecture provides
the design context in which the components are built and reused. Another important aspect of
components is that the development of software architecture based on component specifications
supports parallel and independent building of the system parts. These computational boundaries that
define an individual system part are testable subsystems and can be divided for one or more
distributed project teams. A good architecture emphasizes the separation of responsibilities. In a
common three-tier architecture (Figure 2.1), the presentation tier manages presentation components;
the business objects tier manages business logic components; and the persistence tier manages data
access components.

5

Figure 2.1: A typical 3-tier application architecture (cf. [Ire03])

Chapter 2 Conceptual and Technological Background

This separation and modularization provides for fault tolerance, easier maintenance, and future-
proofing. A good service-oriented architecture is nothing new, just a smart way of separating (and
exposing) a component's responsibilities.

Similar to objects and components, a service is an architectural building block. It comprises
information and behavior, hides the internal implementation from outside and can be described by
its relatively simple interface that can be remotely called. The World Wide Web Consortium2, W3C,
defines:

A service is an abstract resource that represents a capability of performing tasks that represents
a coherent functionality.

Services have been subject to research in business science long before the Internet hype came along
and the term came to the computer science. Service has become a term loaded with different
meanings at different circumstances, depending mostly on the authors’ research domain.
Researchers in business schools, for example, have been investigating the nature of services in the
sense of business transactions for decades. They traditionally consider them to be business
activities, deeds and performances of a mostly intangible nature [BGO04].

A service-oriented architecture consists of a number of services. Services are loosely-coupled
pieces of functionality that have well-defined, platform-independent interfaces and can be reused.
SOA and Web services are often mentioned in the same context, and this leading to a
misunderstanding. So it should be specially pointed out that SOA is as an architectural paradigm
independent of Web services and can be realized basing on different technologies. The OASIS SOA
Reference Model Technical Committee3 is working on defining SOA independent of any specific
technologies. Another misunderstanding is caused according to [Kay03] by the relationship between
the object-oriented technology and SOA. Contrary to the wide-spread opinion, the object-oriented

2 http://www.w3.org/
3 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

6

Figure 2.2: A service-oriented application architecture (cf. [Ire03])

Chapter 2 Conceptual and Technological Background

technologies are not replaced by SOA. The application development is still based on the classic OO
principles mentioned above. Web services or other SOA implementations can be set up over the
object-oriented or other technologies. The basis technology used is hidden and is therefore
irrelevant (Figure 2.2).

In a service-oriented architecture, clients are consuming services, rather than invoking discreet
method calls directly. In a 3-tier model, objects are marshaled across process boundaries through
the proxy/stub techniques. This provides benefits, such as location transparency. The basic
philosophy is that one tier should only communicate with the tier contiguous to it.

One disadvantage to object-orientation at an architectural level is the number of communication
links. Client code is responsible for traversing complex object models and understanding details
about domain-specific logic. In a service-oriented model, a further "layer of indirection" is
introduced. This alleviates some of the pain associated with traversing complex object models. The
services layer, the layer added between the presentation layer and the business logic layer in Figure
2.3, provides black-box functionality.

In a service-oriented design, services should be course-grained. Course-grained services are
modeled after and align to business processes. Objects should be fine-grained and align to real
business entities. These discreet objects provide the detailed business logic. Specificity is good
when building discreet business objects. This is also a very successful way to codify organizational
knowledge. Each business object is responsible for its own behavior and business rule
implementation, such as updating a database table, sending an email, or placing a message on a
queue.

Services provide the orchestration of the detailed business objects to expose a full service to the
consumer. Services are responsible for orchestrating calls to discreet business objects, managing the
responses, and acting accordingly. Service methods may invoke and manage several business
objects. Service methods align to business processes by design. Class methods align to detailed
object-level operations by design.

Consider the example architecture presented in Figure 2.3. A single consumer application (perhaps
interacting with the company over the Internet) wants to engage the company in some business
process. To facilitate that business process, the company internally invokes processing that spans
two discreet systems (A and B). However, through a service-oriented architecture, the entire end-to-
end business process is exposed to the consumer application as a single service.

Figure 2.3 also illustrates the granularity differences on the various layers. The coarse-grained
services that can be accessed from the outside are based on the finer grained services of the internal
services layer, and further on the fine-grained objects and database calls reflecting the grade of
detail necessary for the users of the corresponding layers.

Still there is a debate in the SOA community concerning how fine or coarse the services should be.
While there's no standard way to quantify service granularity, some ideas from component-based
design can be used, such as the number of function points or data elements affected by the
invocation of a service. If a service needs to be called too many times in a business application or if
only a small part of its functionality is typically used, it's likely that the service is too coarse. If too
many parameters for a service are required, the service is most likely too low level and fine grained.
Striving for an appropriate granularity will maximize ease of use, reuse, and manageability; an
appropriate service is not necessarily either fine or coarse, but one that maximizes business value
[DHK05].

7

Chapter 2 Conceptual and Technological Background

As already mentioned the service-oriented architecture came to leverage the advantages of object-
oriented architectures, but also to overcome its disadvantages. The disadvantages that stay in the
way of many object-oriented projects are:

• a very high complexity,

• software chunks with a very high coupling arise, as all the functionality should be wrapped
inside objects,

• low separation of concerns, as the same object model is generally used in both the Business
Tier and the Client Tier),

• the business management principle to separate the business processes and data cannot be
met.

In addition to overcoming the disadvantages of object-oriented approach mentioned in the
beginning of the chapter, SOA aims at achieving a challenging set of advantages that includes
[SiH05]:

– Intra-enterprise interoperation: to provide the tools modeling information and relating
the models, constructing processes over the systems, asserting and guaranteeing
transactional properties, adding in flexible decision-support, and relating the functioning of
the component software systems to the organizations they represent.

– Inter-enterprise interoperation: to provide the same benefits as for intra-enterprise
interoperation above. In addition, it provides the ability for the interacting parties to

8

Figure 2.3: Exposing separate applications as a single service (cf. [Ire03])

Chapter 2 Conceptual and Technological Background

choreograph their behaviors so that each may apply its local policies autonomously and yet
achieve effective and coherent cross-enterprise processes.

– Application configuration: to enable the customization of new applications by providing a
Web service interface that eliminates messaging problems and by providing a semantic
basis to customize the functioning of the application.

– Dynamic selection: to enable dynamic selection of business partners based on quality-of-
service criteria that each party can customize for itself.

– Software fault tolerance: to provide support for dynamic selection of partners as well as
abstractions through which the state of a business transaction can be captured and flexibly
manipulated; in this way, dynamic selection is exploited to yield application-level fault
tolerance.

– Grid computing: to enable the efficient usage of Grid resources.

– Utility computing: to facilitate utility computing, especially where redundant services can
be used to achieve fault tolerance.

To realize the above advantages, SOAs impose the following requirements [SiH05]:

– Loose coupling. No tight transactional properties generally apply among the components.
In general, it is not appropriate to specify the consistency of data across the information
resources that are parts of the various components. However, it is reasonable to think of the
high-level contractual relationships through which the interactions among the components
are specified.

– Implementation neutrality. The interface is what matters. We cannot depend on the
details of the implementations of the interacting components. In particular, the approach
cannot be specific to a set of programming languages.

– Flexible configurability. The system is configured late and flexibly. In other words, the
different components are bound to each other late in the process. The configuration can
change dynamically.

– Long lifetime. We do not necessarily advocate a long lifetime for our components.
However, since we are dealing with computations among autonomous heterogeneous
parties in dynamic environments, we must always be able to handle exceptions. This means
that the components must exist long enough to be able to detect any relevant exceptions, to
take corrective action, and to respond to the corrective actions taken by others. Components
must exist long enough to be discovered, to be relied upon, and to engender trust in their
behavior.

– Granularity. The participants in an SOA should be understood at a coarse granularity.
That is, instead of modeling actions and interactions at a detailed level, it would be better to
capture the essential high-level qualities that are (or should be) visible for the purposes of
business contracts among the participants. Coarse granularity reduces dependencies among
the participants and reduces communications to a few messages of greater significance.

– Team-oriented view. Instead of framing computations centrally, it would be better to think
in terms of how computations are realized by autonomous parties. In other words, instead
of a participant commanding its partners, computation becomes more a matter of business
partners working as a team. This means, that instead of an individual, a team of cooperating
participants is a better modeling unit. A team-oriented view is a consequence of taking a
peer-to-peer architecture seriously.

9

Chapter 2 Conceptual and Technological Background

The following table summarizes the characteristics and features of the object-oriented, component-
based and service-based software architectural models.

Object-Oriented
Development

Component-Based
Development

Service-Based
Development

Granularity fine medium coarse

Reusability low medium high

Coupling tight loose loose

Dependencies at compile time at compile time only at run time

Building blocks objects components services

Functionality description on class level by interface declarations network addressable
service declarations

Communication scope intra-application intra-application inter-application

Table 2.1: Comparison of architectural development models

An addition of a more abstract layer to the existing architectures surely solves many problems. The
real success of SOA will still mostly dependent on the quality of the implementing technology. The
current implementation for SOA will be discussed in Section 2.3. Before that, a short summary of
the benefits SOA brings for business that are explained with the help of the SOA Maturity Model
comes.

SOA Maturity Model
While software engineering is quick to embrace the technical value of service-oriented design,
development and implementation, the executives face the very different challenge of accurately
managing the investment in technology as it relates to business value. These IT managers and
decision makers need help and guidance in communicating the business value of their SOA vision
and to be able to benchmark their SOA adoption within the organization.

10

Figure 2.4: Service Oriented Architecture Maturity Model Levels with
Key Business Impact (cf.[SoS06])

Chapter 2 Conceptual and Technological Background

The New SOA Maturity Model (SOA MM) was published on October 27, 2005 and has emerged
from the collaboration of Sonic Software4 with its partners AmberPoint5 and Systinet6. The model is
designed to show the increasingly positive impact of SOA adoption from a business benefits
perspective. It provides IT decision makers with simple framework for benchmarking the strategic
value of their SOA implementation, and a model for visualizing future success.

The description of the 5 existing levels in the SOA MM (Figure 2.4) is presented now shortly.

SOA Maturity Model Level 1
SOA Maturity Level 1 is Initial. Initial Services represent the initial learning and initial project
phase of SOA adoption. Projects here are typically done to simultaneously meet a specific need to
implement functionality while trying out specific technologies and an approach to SOA. This
maturity level also includes initial R&D activities testing the SOA technologies in a laboratory
environment. Usually, the initial introduction of SOA is driven by the application development
organization – often as part of an application integration project.

SOA Maturity Model Level 2
SOA Maturity Level 2 is Architected Services. At this level that standards are set as to the technical
governance of SOA implementation. The key business benefit of this level is development and
deployment cost reductions through the use of SOA standard infrastructure and components as
compared to using older technologies or costs accumulated through multiple unique one-time
projects. These benefits are greater in the heterogeneous environments typical of most enterprises.

SOA Maturity Model Level 3
The focus of SOA Maturity Level 3 is on the partnership between technology and business
organizations in order to assure that the use of SOA provides clear business responsiveness. Core to
the value of SOA is the linkage between business process and digital processes. SOA Maturity
Level 3 is defined with two complementary paths to attain the goals of Business Services focused on
the improvement of internal business processes, and Collaborative Services focused on the
improvement of collaborative processes with external partners.

SOA Maturity Model Level 4
While SOA Maturity Level 3 focuses on the implementation of internal and/or external business
processes, SOA Maturity Level 4 focuses on measuring and presenting these processes at the
business level so as to provide continuous feedback on the performance and business impact of the
processes implemented at Level 3. This level includes business activity monitoring to allow
business users to transform the way they respond to business events.

SOA Maturity Model Level 5
SOA Maturity Level 5, Optimized Business Processes SOA, adds automatic response to the
measurements and displays of Level 4. In this way, the SOA information systems becomes the
“enterprise nervous system” and takes action automatically according to events occurring at the
business level according to the rule optimizing business goals.

The New SOA Maturity Model provides a framework for discussion between IT and business users
about the applicability and benefits of SOA in an organization across five levels of adoption
maturity. Its goal is not only to provide a means for organizations to benchmark current
implementations, but also to offer a chance for IT leaders to visualize a path to successfully advance
the value of SOA for their organizations.

4 www.sonicsoftware.com
5 www.amberpoint.com
6 www.systinet.com

11

Chapter 2 Conceptual and Technological Background

2.2 Current SOA Implementation: Web Services
The concept of service-oriented architectures is not tied to any special technology. Nowadays, the
technology most often used to implement SOA is the Web services technology. This subchapter
will provide the background about the Web services, the standards concerning them and the
standards bodies engaged.

Many definitions for a Web service are used today [Huh02]:

• a piece of business logic accessible via the Internet using open standards (Microsoft),

• encapsulated, loosely coupled, contracted software functions, offered via standard protocols
over the Web (DestiCorp7),

• loosely coupled software components that interact with one another dynamically via
standard Internet technologies (Gartner8),

• a software application identified by a URI, whose interface and binding are capable ob being
defined, described, and discovered by XML artifacts and supports direct interactions with
other software applications using XML-based messages via Internet-based protocols (W3C).

There are three well-differentiated roles in a Web services infrastructure which are shown in Figure
2.5. The three types of participants include:

– Service providers who create Web services and advertise them to potential users by
registering the Web services with service brokers.

– Service brokers who maintain a registry of advertised (published) services and might
introduce service providers to service requesters.

– Service requesters who search the registries of service brokers for suitable service
providers, and then contact a service provider to use its service.

The main Web services standards are principally based on the following four components [PLL06]:

• an agreed upon transport protocol;

• a platform-independent format to describe the messages and their content;

• an interface description language which states what operations will be made available by the
service with which messages;

• a common directory to publish and find the services.

7 http://www.desticorp.com/index.html
8 http://www.gartner.com/

12

Figure 2.5: Roles in a service infrastructure

Chapter 2 Conceptual and Technological Background

The first component can be principally realized by any of the wide-spread transport protocols, such
as SMTP or FTP. The most popular protocol in the Web services context is HTTP. HTTP has the
advantage that, on the one hand, it allows the usage of the existing infrastructure while, on the other
hand, it can be further developed basing on the available know-how of the users.

The second component is realized with Simple Object Access Protocol [Soa03], now known only
by its acronym, SOAP. SOAP provides the definition of the XML-based information which can be
used for exchanging structured and typed information between peers in a decentralized, distributed
environment. Besides, SOAP specifies the binding to the HTTP as the underlying communication
protocol between two addressable endpoints. The communication via SOAP over HTTP solves in
some respects the existing problems in the RMI or CORBA approaches which are the reasons for
tight coupling between the separate components. Besides, the latter are not suitable for open web
infrastructures for, as a rule, the firewalls block the underlying proprietary protocols.

The Web Services Description Language [CCM01], WSDL, is used as the third component and
provides the XML-based description of the user interface which makes the Web service available.
WSDL permits the separate description of the abstract functionality of the service and the service
access details. On the one hand, the operations of a service are described by its input and output
parameters, on the other hand, an independent description of endpoint addresses to access the
service and the transport protocols used is given.

Universal Description, Discovery and Integration [BCE02], UDDI, represents the forth component
of the Web service based middleware solution and as a directory technology provides an interface
to locate Web services. The UDDI interface allows to dynamically find the business partners and
external services. The UDDI server is itself accessible over a Web services interface via SOAP and
offers the operation to publish new services and search for the registered ones. The description in
UDDI can in its turn contain a link to an existent WSDL description. Unfortunately, UDDI has not
established as a widely-used technology.

There is a huge lack of moderation in the existing UDDI registries. An evaluation in [Mod02] has
shown that 67% of entries in the present UDDI registries are invalid or unavailable, the reasons
very probably being the complexity of the UDDI description for a Web service and the insufficient
service description update mechanisms.

Besides, UDDI as a directory has only a restricted expressiveness what concerns the dynamic
binding of the existing Web services to distributed applications. WSDL descriptions provide
information in machine-readable form, and yet they concern only the syntax of the service interface,
and not the semantics of the service. So is only the interface machine-readable, and not the
functionality of the service. UDDI is restricted to the keyword search of the natural language
description of the Web services. The present research is centered around the extension possibilities
of the present Web services descriptions with the Semantic Web technology (Section 2.3).

Figure 2.6 shows the place of the standard protocols in the interactions between Web services
infrastructure participants.

There is a whole range of further standards and recommendations for the technology summarized
under the name of “Web services”. Those components described above only permit the description
of services that follow simple interaction patterns as WSDL description are restricted to the small
set of input/output operations. However, the business processes are often complex and need the
description of more sophisticated interaction patterns.

13

Chapter 2 Conceptual and Technological Background

The Business Process Execution Language for Web Services [ACD03], BPEL4WS, allows the
description of such business processes based on WSDL and this way also the description of the
executable combinations of different Web service invocations. The BPEL is an XML-based
language for process description and execution which treats WSDL operations as separate activities.
The overall process described can in its turn be made available as an independent Web Service.

E-Business eXtensible Markup Language [Ewe06], ebXML, is a set of specifications that together
aim to enable a modular electronic business framework. ebXML specifications have XML
messaging as a common basis. ebXML is a joint initiative of the United Nations (UN/CEFACT)
and OASIS, developed with global participation for global usage.

But these approaches also make the main emphasis on the syntactic description of the Web services,
and leave the semantic aspect out of consideration.

2.3 Semantic Web Technology
The Semantic Web is the vision of Tim Berners Lee, the creator of the Web, and is intended as an
extension of the Web as it currently exists. Semantic Web aims to improve upon the meaning, in
machine-understandable terms, of information currently available on the World Wide Web
[BHL01]. This enables computers, in the form of autonomous software agents, to work with the
wealth of World Wide Web information more easily. Moreover, it enhances the human-computer
co-operation by bringing the concept of human understanding closer to the machine.

As with most Web-related recommendations and standards, W3C manages the development of the
Semantic Web languages. Figure 2.7 displays the proposed layered architecture known as the
“Semantic Web Layer Cake”. The W3C aims at working its way up the stack. The encoding layers
and parts of the data layer are specified and working drafts exist for the ontology layer. Research
groups are addressing the upper layers, however, no official W3C working group has been
established for the logic and proof layers yet. The proof and trust layers as well as standard security
features such as encryption, certificates, and digital signatures are long-term research goals and are
moreover outside the scope of this project work.

The foundation is built by well-established and accepted Internet technologies, namely Unicode, the
Uniform Resource Identification, URI, scheme and of course XML, XML Namespaces, and XML
Schema. All layers above make heavy use of these core technologies. For instance, all mark-up
languages are subsets of XML.

14

Figure 2.6: Protocols for Web services

Chapter 2 Conceptual and Technological Background

The data layer allows representing information in an unambiguous way. An interconnected graph of
data is established by using URIs to denote concepts and instances and arcs the relationships
between them. Once captured, intelligence algorithms may be applied and deductions derived
autonomously from axioms and assertions provided. Different applications can use this data or
publish own information via this methodology. If such a Web enabled data representation approach
is to be the basis of data integration, the meaning of globally referenced entities and concept must
be specified. This is done in the ontology layer sitting on top of the data layer.

Ontologies formally represent a shared understanding about a domain. Therefore, they allow
interpreting information from the data layer. One of the most cited definitions of ontology be found
in [Gru93]:

An ontology is a formal, explicit specification of a shared conceptualization.

Here, a conceptualization refers to people's conceptual understanding of a certain domain. While
being very general, this definition captures the essence of what ontology means, regardless of
potential application areas one might have in mind.

The logic layer contains domain knowledge in the form of rules allowing automated reasoning on
available data. The idea is to be able to explicitly formalize knowledge, rather than embedding it in
program code, which is hard to maintain.

2.3.1 RDF
RDF, or the Resource Description Framework [RDF06], is an XML based ontology language used
for expressing semi-structured meta-data. There is no in-built restriction on semantics, but the
triple-based syntactic structure of RDF allows applications to effectively extract potentially useful
meta-information from a document. The core idea is that everything is treated as a URI. A triple
consists of a class, property and value (or subject, property, and object which are used in this work
synonymously). Each class is considered a thing. If Joe is Peter's brother, the following subject,
predicate, object triple states this:

Subject: http://www.mit.edu/~joe/
Predicate: http://www.cogsci.princeton.edu/~wn/isBrotherOf
Object: http://www.mit.edu/~peter/

15

Figure 2.7: Semantic Web Layer Cake (cf. [BHL01])

Chapter 2 Conceptual and Technological Background

In RDF, this subject, predicate, object triple is written as follows:
<?xml version='1.0'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:wn="http://www.cogsci.princeton.edu/~wn/">
<rdf:Description rdf:about="http://www.mit.edu/~joe/">
<wn:isBrotherOf
rdf:resource="http://www.mit.edu/~peter/" />
</rdf:Description>
</rdf:RDF>

RDF has no support for complex data types for properties and semantic constraints on concepts
defined as a class. It is desirable, however, to express more sophisticated assertions.

2.3.2 OWL
The Web Ontology Language [OWL04], OWL, extends the RDF language-schema addressing the
shortcomings outlined above. OWL was originally a part of the DARPA project as DAML+OIL
[DAR06], and was renamed to OWL on submission as a standard to the W3C. An OWL knowledge
base is constructed in a similar fashion to an RDF knowledge base.

<rdfs:Class rdf:ID="WINE">
 <rdfs:subClassOf rdf:resource="#POTABLE-LIQUID"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#MAKER"/>
 <owl:minCardinality>
 1
 </owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#MAKER"/>
 <owl:toClass rdf:resource="#WINERY"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#GRAPE-SLOT"/>
 <owl:minCardinality>
 1
 </owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#FLAVOR"/>
 <owl:toClass rdf:resource="#WINE-FLAVOR"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </rdfs:Class>

Figure 2.8: An OWL Wine Ontology excerpt

16

Chapter 2 Conceptual and Technological Background

A class hierarchy is defined and properties are assigned to class concepts. The power of OWL
emerges when one considers how it improves upon the RDF language. Firstly, OWL expresses
complex data-types and value restrictions on those data-types. Secondly, through use of OWL
keywords complex relationships between classes and types can be defined. Figure 2.8 taken from
the WC3 OWL tutorial9 shows how the concept of wine may be captured in an OWL ontology.
The ontology in Figure 2.8 defines the concept of “wine”. According to the specification, a wine is
a potable liquid produced by at least one maker of type winery, and is made from at least one type
of grape. In addition, it can have some specific flavor.

OWL differentiates between the declaration of a concept and an instantiation of that concept.
Essentially, OWL individuals are the extensional knowledge of an OWL knowledge base that serve
as the application of the intentional knowledge defined by OWL structure keywords. Figure 2.9
illustrates the instantiation of an OWL individual.

<WhiteWine>
<MAKER rdf:resource="#StGenevieve" />
<GRAPE-SLOT rdf:resource="#Dry" />
<FLAVOR rdf:resource="#Moderate" />

</WhiteWine>
Figure 2.9: An application of the abstract OWL Wine class

OWL provides a means by which equality and difference between semantic concepts can be
expressed. owl:equivalentClass, owl:equivalentProperty and owl:sameAs can each be
used to express equivalence between two syntactically differing concepts. For example, the concept
of wine the concept of vino can be considered as the same concept defined differently. By asserting
the Vino class equivalent to Wine class using owl:equivalentClass the concepts become
equivalent in the eyes of any reasoner and deductions are made accordingly. owl:sameAs works in
the same fashion except it is applied to individuals, not classes. The difference operators
owl:differentFrom, owl:AllDistinct, and owl:distinctMembers apply the inverse
semantics to individuals and individuals which are declared part of collections.

OWL property characteristics are used to enrich the semantics available in terms of class properties.
owl:objectProperty and owl:datatypeProperty define object types and data-types
respectively. Assertions such as owl:transitiveProperty, owl:SymmetricProperty further
enrich the semantics with assertions on related properties of classes. A complete OWL specification
is to be found under [OWL04].

Reasoning with OWL
OWL as well as RDF are closely connected to Description Logics (DL). There are several tools
available for reasoning with OWL knowledge-bases. JESS [San06] rule engine, RACER [RAC06]
and Pellet [MIN06] are three common rule-based tools used for querying knowledge base
assertions. All of these tools have in-built support for OWL reasoning.

The W3C OWL standard is presented in three dialects and provides different computability
guarantees. OWL Lite is a subset of the OWL DL language. Similarly, OWL DL is a subset of
OWL Full. The first two of the above omit certain semantic restrictions, such as multiple
cardinality, in order to guarantee a certain level of computability. The above mentioned reasoners
are capable of reasoning over at least the OWL DL language. In fact, most support OWL-DL plus
certain features of OWL Full. It is assumed, unless explicitly stated, that any references to OWL
will refer to the OWL DL subset.

9 http://www.w3.org/TR/owl-features/

17

Chapter 2 Conceptual and Technological Background

One of the possibilities to make inferences about the OWL ontologies is to explicitly use a query
language, such as OWL-QL, that will be presented next.

2.3.3 OWL-QL
OWL Query Language [FHH03], OWL-QL, is a formal language and protocol for a querying agent
(further referred to as a server) and an answering agent (further referred to as a client) on the
Semantic Web for conducting a query answering dialog using knowledge represented in the
Ontology Web Language. OWL-QL is an updated version of the DAML Query Language (DQL)
[FHH03a] developed by the Joint United States/European Union ad hoc Agent Markup Language
Committee1, and the authors of this paper, who are members of that committee, are the editors of
both the DQL specification and the OWL-QL specification [FHH03b].

The design of OWL-QL is based on a number of basic assumptions about query answering dialogs
on the Semantic Web, and on the intended role of OWL-QL.

First, the Semantic Web is expected to include many kinds of query answering services with access
to many types of information represented in many formats. Traditional database query languages
like SQL [InT92] and languages for retrieving information from the Web (e.g., XQuery [Mar03]
and RQL [KaC03]) are not suitable for supporting such heterogeneity. OWL-QL supports query
answering dialog in which the client may use automated reasoning methods to derive answers to
queries, as well as scenarios in which the knowledge to be used in answering a query may be in
multiple knowledge bases on the Semantic Web, even if those knowledge bases are not specified by
the client.

Second, it is expected that some servers will have only partial information about the topic, some
will have performance limitations, and some will be simply unable to handle certain kinds of
queries. OWL-QL therefore provides an adaptable query answering protocol which both allows a
server to return partial sets of answers as the answers are computed and allows a client to specify
the maximum number of answers that it wants the server to include in the next set of answers it
sends to the client.

Third, a Semantic Web query language needs to support queries that do not include a specification
of the knowledge base to be used in answering the query. OWL-QL supports server selection of the
knowledge base to be used in answering a query, and client requests that a server identify the
knowledge base used in answering a query.

Fourth, the set of notations and surface syntactic forms used on the Web is already large, and
various communities have different preferences, none of them universal. The essential aspects of
the design of OWL-QL are independent of the surface syntax of the language. The OWL-QL
specification is stated at an “abstract” or structural level, allowing essentially the same language to
be implemented in multiple surface syntactic forms. The specification describes the types of objects
(e.g., queries and answers) that are passed between server and client during a query answering
dialog, the necessary and optional components of each of those object types, and the expected
response of a server to each type of object sent to it by a client. The XML Schema provided in the
OWL-QL specification is only one example syntax for the language.

The query syntax and the protocol structure of OWL-QL will now be presented in detail.

Query Answering Dialog
Figure 2.13 shows the schema of a OWL-QL dialog. The communication starts with a query sent by
the client to the server. The server computes the necessary information and sends an answer
(Answer Bundle) together with a Continuation Token that contains a Process Handle (analog to a
Session-ID) with which the client can continue the communication. The dialog is over if one of the

18

Chapter 2 Conceptual and Technological Background

parties sends a Termination Token. For the client, this means that it does not need any further
answers, for the server – that it does not have any further information available.

A special feature of OWL-QL is that it can support iterative queries. The dialog frame enables a
client to get a restricted number of query answers without delay while after sending a Continuation
Token that has a reference to a previous query further answers can be retrieved.

Query Syntax
OWL-QL defines a query document to be send to the reasoner. This document is composed of the
following elements: premise, query pattern, answer pattern, must-bind variables, may-bind
variables, don't-bind variables, answer knowledge base reference and answer size bound.

As already said, an OWL-QL query answering dialog is initiated by a client sending a query to an
OWL-QL server. An OWL-QL query is an object necessarily containing a query pattern that
specifies a collection of OWL sentences in which some URI references are considered to be
variables. For example, a client could ask “Who owns a red car?” with a query having the following
query pattern10:

Query: (“Who owns a red car?”)
 Query Pattern: {(owns ?p ?c) (type ?c Car) (has-color ?c Red)}
 Must-Bind Variables List: (?p)
 May-Bind Variables List: ()
 Don’t-Bind Variables List: ()
Answer Pattern: {(owns ?p “a red car”)}
 Answer KB Pattern: …
 Answer: (“Joe owns a red car?”)
 Answer Pattern Instance: {(owns Joe “a red car”)}

10 Query patterns are shown here as a set of triples of the form (<property> <subject> <object>) similar to the KIF [Kno06] syntax,
where any item in the triple can be a variable. Variables are represented as names beginning with the character “?”.

19

Figure 2.13: OWL-QL dialog schema

Chapter 2 Conceptual and Technological Background

A query may have zero or more answers, each of which provides bindings of URI references or
literals to some of the variables in the query pattern such that the conjunction 3 of the answer
sentences – produced by applying the bindings to the query pattern and considering the remaining
variables in the query pattern to be existentially quantified – is entailed by a knowledge base (KB)
called the answer KB. For example, the answer “Joe owns a red car.” used in the previous example
means the answer KB entails the following sentence, expressed here in first-order logic (using KIF
syntax):

(exists (?c) (and (owns Joe ?c) (type ?c Car) (has-color ?c Red)))
Each binding in a query answer is a URI reference or a literal that either explicitly occurs as a term
in the answer KB or is a term in OWL. That is, OWL-QL is suited for answering queries of the
form “What URI references and literals from the answer KB and OWL denote objects that make the
query pattern true?” or, when there are no variables to be bound in the query pattern, “Is the query
pattern true in the answer KB?”. A variable that has a binding in a query answer is identified in that
query answer.

OWL has no suitable notion of a variable, so an OWL-QL query pattern is simply an OWL
knowledge base, and a query specifies which URI references in its query pattern are to be
considered to be variables. Data base query languages typically designate a subset of the variables
in a query as being the variables for which bindings are to be included in a query answer.

In typical knowledge representation languages, such as OWL, a knowledge base may entail the
existence of a query answer but not entail a binding for every variable in the query. For example, a
knowledge base that says that every person has exactly one father (i.e., that every object of type
'Person' has exactly one value of the property 'hasFather') and that Joe is a person (i.e., that 'Joe'
is type 'Person'), entails that Joe has a father but may not entail a value of property 'hasFather' for
Joe, e.g., if the knowledge base does not identify the father. OWL-QL supports existentially
quantified answers by enabling the client to designate some of the query variables for which
answers will be accepted with or without bindings. That is, each variable that occurs in a OWL-QL
query is considered to be a must-bind variable, a may-bind variable, or a don’t-bind variable.
Answers are required to provide bindings for all the must-bind variables, may provide bindings for
any of the may-bind variables, and are not to provide bindings for any of the don’t-bind variables.
These designations are made by inclusion of a must-bind variables list, a may-bind variables list,
and a don’t-bind variable list in an OWL-QL query. These lists contain URI references that occur in
the query, and no URI reference can be an item of more than one of these lists.

Specifying a query pattern and the variables lists does not indicate how the answers – the bindings
to the pattern variables – are to be returned from the server to the client. OWL-QL allows a client to
specify the format in which answer bindings are returned by (optionally) including an answer
pattern in a query that can be any list expression containing all of the query’s must-bind and may-
bind variables. If no answer pattern is specified, a two item list whose first item is the query’s must-
bind variables list and whose second item is the query’s may-bind variables list is used as the
answer pattern. Each query answer contains an instantiation of the answer pattern in which each
variable having a binding in the answer is replaced by its binding.

Since OWL does not have an “implies” logical connective, “if then” queries such as “If Joe is a
person, then does Joe have a father?” cannot be stated using only a query pattern. OWL-QL
facilitates the representation of “if then” queries by enabling a query to optionally include a query
premise that is an OWL KB or a KB reference. When a premise is included in a query, it is
considered to be included in the answer KB. Omitting the query premise is equivalent to providing
an empty query premise. Here is an example of a query that includes a premise:

20

Chapter 2 Conceptual and Technological Background

Query: “If C1 is a Seafood Course and W1 is a drink of C1, then what
color is W1?”

Premise: {(type C1 Seafood-Course) (has-drink W1 C1)}
Query Pattern: {(has-color W1 ?x)}
Must-Bind Variables List: (?x)

The set of OWL sentences that are used by the server in answering a query is referred to as the
answer KB. This may be one or more actual knowledge bases, or a virtual entity representing the
total information available to the server at the time of answering. An OWL-QL query contains an
answer KB pattern that is a KB, a list of KB references, or a variable. If a query’s answer KB
pattern is a KB or a reference to a KB, then the conjunction of the answer sentences specified by
each query answer must be entailed by that KB. If a query’s answer KB pattern is a list of KBs
and/or KB references, then the conjunction of the answer sentences specified by each query answer
must be entailed by the conjunction of the KBs in or referenced in that list. If a query’s answer KB
pattern is a variable, then the server is free to select or to generate an answer KB from which to
answer the query, but if the variable is a must-bind variable, then the answer must provide a binding
to the variable that is a reference to a resource representing the answer KB. In many cases, that URI
reference will be a URL that can be used to access the KB or to communicate with the server about
the KB, but the URI reference is not required to be a URL.

2.4 Semantic Web Services Description
As mentioned previously, the crucial disadvantage of the actual description standards for Web
services is that they predominantly deal with the syntax – how Web service should be called – and
lack semantics, i.e., the machine-understandable formalization of what the Web service is
responsible for.

As Figure 2.10 highlights, Web service technology can sufficiently profit from the value added by
the Semantic Web. The Web services technology pursues the transfer from the static to the dynamic
content on the Web, whereas the Semantic Web aims at providing a shift from the interoperable
syntax to the interoperable semantics. The application scenarios for the semantic descriptions of
Web services technology generally correspond to the “standard” Web services technology with a
difference that the use of the ontologies and the semantic descriptions of services promise a higher
degree of automation (just like in the case with the semantically described static data).

The semantic description of services in such a way that their automatic use and re-use is really
possible is not an easy undertaking, and the research in this field is still in its beginning phase.
Presently, it is still not clear which strategy will in the end bring a breakthrough for the technology.

21

Figure 2.10: Development of the technologies on the Web

Chapter 2 Conceptual and Technological Background

That is why, this section will present and compare several existing approaches. The agreement on
the uniform communication infrastructure for Web services uncloses new possibilities: human
developers and in the future probably also machines will find and call the suitable services to solve
their current problems. The current research in this field is concentrated on the standardization of
the semantic description, i.e., what the service offers to make its usage in different environments
possible. The highest potential is expected from the following four aspects [PLL06]:

• Discovery. Before a Web service can be used in a distributed application, it should be made
known for the developer or, in the automated case, for the software system. Present
technologies (such as UDDI, see Section 2.2) support this design step solely by keyword
search and standardized vocabulary (such as UNSPC11). Semantic annotation allows for the
description of the services with the help of local ontologies that are connected by logic
axioms with which the inference machines can compute the services set matching a certain
query. Section 2.5 will consider the service discovery approaches.

• Negotiation. After a Web service that could be suitable for a certain problem solution is
found the concrete service instance from the number of services that are available in the
Web service should be determined. This means, for example, the agreement upon concrete
transport and payment terms.

• Composition. In the case that a query cannot be processed by any of the Web services
available, the semantic description provides an opportunity for the combination of several
Web services.

• Invocation. After a service or a combination of services is found and chosen it can be
executed. For this purpose, the information from the knowledge databases (for example, the
input values that are contained in the semantic query description) is adapted to the formats
required by the respective communication protocol.

Standards bodies have recognized the importance of the semantic annotation of the Web services
for the real breakthrough of the Web services technologies. This is made clear by the the initiatives
which pursue the further development and standardization of the technology. Among them are the
undertakings of such experienced standards experts as the W3C (Semantic Web Services Interest
Group [SWS06]) and the OASIS (Semantic Execution Environment Technical Committee
[SEE06]).

Still the results of the standardization process for the corresponding technology as well as the
maturity of the current standards for the use in industry is not achieved at the moment which was
also confirmed by the W3C workshop “Frameworks for Semantics in Web Services“ [WWF06]. It
mentioned the following reasons for the lack of a clear momentum at present towards a W3C
recommendation track in this area: (1) use of these technologies is primarily in research and/or
prototyping efforts at present; (2) lack of vendor commitment to provide tools and other forms of
support; (3) the preference of the Web services community for a “go-slow” approach. Nevertheless,
there is still big hope about the further development of the present approaches.

The rest of this section provides an overview about the three presently most important approaches
to the semantic description of the Web services [PLL06]: OWL-S, WSML, and WSDL-S. It
concentrates on the conceptual presentation of the description languages, the further details can be
found in the respective specifications. For all the approaches, a short overviewof the support of the
discovery, negotiation, composition and invocation is given.

11 United Nations Standard Products and Services Code: http://www.unspsc.org/

22

Chapter 2 Conceptual and Technological Background

2.4.1 OWL-S
OWL-S [MBH04] was the first initiative to define a standard ontology to semantically annotate
Web services. Since its first publication in May, 2001 under the name DAML-S up to the actual
version 1.1 which was submitted in September, 2004 in W3C by Nokia, University of Maryland,
the National Institute of Standards and Technology (NIST), Network Inference, SRI International,
France Telecom, Stanford University, Toshiba, and the University of Southampton as a standard
proposal, OWL-S has absorbed many improvements and enhancements. Still, basically all of its
cornerstones have survived from the very beginning.

OWL-S is an ontology of service concepts. OWL-S organizes a service description into four
conceptual areas: the process model, the profile, the grounding, and the service (Figure 2.11).

A process model describes how a service performs its tasks. It includes information about inputs,
outputs (including a specification of the conditions under which various outputs will occur),
preconditions (circumstances that must hold before a service can be used), and effects (changes
brought about by a service). The process model differentiates between composite, atomic, and
simple processes. For a composite process, the process model shows how it breaks down into
simpler component processes, and the flow of control and data between them. The subprocesses of
the composite process are linked by control constructs, such as sequence, split and join, choice,
iteration, and if-then-else. Atomic processes are essentially “black boxes” of functionality, and
simple processes are abstract process descriptions that can relate to other composite or atomic
processes.

A profile provides a general description of a Web service, intended to be published and shared to
facilitate service discovery. Profiles can include both functional properties (inputs, outputs,
preconditions, and effects) and nonfunctional properties (service name, text description, contact
information, service category, and additional service parameters). The functional properties are
derived from the process model, but it is not necessary to include all the functional properties from
the process model in a profile. A simplified view can be provided for service discovery, on the
assumption that the service consumer would eventually look at the process model to achieve a full
understanding of how the service works.

A grounding specifies how a service is invoked, by detailing how the atomic processes in a
service’s process model map onto a concrete messaging protocol. OWL-S allows for different types
of groundings to be used, but the only type developed to date is the WSDL grounding, which allows
any Web service with a WSDL definition to be marked up as semantically using OWL-S.

23

Figure 2.11: The top level of the service ontology (cf. [MBH04])

Chapter 2 Conceptual and Technological Background

A service simply binds the other parts together into a unit that can be published and invoked. The
different parts of a service can be reused and connected in various ways. For example, a service
provider may connect its process model with several profiles in order to provide customized
advertisements to different communities of service consumers. A different service provider,
providing a similar service, may reuse the same process model, possibly as part of a larger
composite process, and connect it to a different grounding. The relationships between the service
components are modeled using properties such as presents (Service-to-Profile), describedBy
(Service-to-Process Model), and supports (Service-to-Grounding).

OWL-S is actually a metamodel for Web services and not just a description language. OWL-S is a
OWL ontology, but OWL-S descriptions include much more semantic information than if the
description logic of OWL alone is used. This is accepted by W3C itself and, on the one hand, there
are attempts to formally describe the semantics of the OWL-S models [NaM02], on the other hand,
there is research done on the proprietary abstract syntax for OWL-S services descriptions that will
not be tied by the OWL restrictions.

• Discovery. The service profile is the element of OWL-S that is used for the description of
Web services in directories and for their retrieval. There have been proposals made to
embed the OWL-S profile descriptions into UDDI [SPS04]. But to use the semantic
descriptions in reality, the presently very easy query interface of UDDI should be extended
with an inference machine.

• Negotiation. To conclude the service agreement, OWL-S offers the non-functional attributes
in the service profile. The combinations with such standards as WS-Policy [WSP06] are not
considered in the present version.

• Composition. [SPW04] and [MaM03] make proposals to combine OWL with the planning
problem solutions from the AI. But these planners do not use the whole potential of OWL-S,
because of the extreme problem complexity. This complexity lets to assume that a long time
passes before the automation of the Web services compositions will be achieved on the basis
of the present technology. Therefore, it makes sense to specially consider the manually
supported Web services composition.

• Invocation. The service grounding is the element that is responsible for the service
invocation. The grounding allows for the linkage of the atomic processes from the service
model to the WSDL operations whereas the separate input and output parameters are bound
to the WSDL input and output messages.

There are already several implementations of OWL-S available. For example, OWL-S Matchmaker
[Pao02] is a system for service discovery which was also integrated in UDDI. [SiP04] provides a
Java interface for OWL-S descriptions which allows the parsing, serialization, and the execution of
the OWL-S services. The OWL-S Editor [Ele05] is a plug-in for the ontology editor Protégé and
permits the graphical editing of the OWL-S descriptions.

The Semantic Web Services Framework [BBB05], SWSF, an initiative that, in some respect, can be
seen as a successor of OWL-S, tries to alternatively define the semantics of the OWL-S concepts in
an ontology that is formalized directly in the first order predicate logic, and not in OWL. But as the
SWSF has only had purely theoretical importance and there are no implementations whatsoever, it
will not be considered in more detail in this work.

2.4.2 WSML/WSMO
The Web Service Modeling Ontology [BBD05], WSMO, proposed to the W3C in April 2005 is a
conceptual model for the semantic service description. The WSMO working group was founded in

24

Chapter 2 Conceptual and Technological Background

April, 2004 and is a primarily European initiative of the EU projects SEKT [SEK06], DIP [DIP06],
and KnowledgeWeb [KWe06].

WSMO follows basically the same principles as OWS-S, but still with somewhat other focus. Just
like in OWL_S, the ontologies are an important element, but WSMO is not formalized as an
ontology itself, but in a meta datamodel, according to the MOF (Meta-Object Facility) methodology
[MOF04]. This metamodel can be expressed in different knowledge representation languages.

WSMO follows the basic principal of strict separation of dimensions, i.e., service descriptions,
ontologies, and user queries are independent Web services and are correlated by mediators. Thus,
WSMO differentiates between the following four top-level elements for the description of Web
services (Figure 2.12):

Ontologies define the vocabulary for the description of all other elements, such as services and
queries. Ontologies are formalized with the Web Service Modeling Language, WSML, a language
that was specially developed for WSMO. WSML subsumes the expressiveness of OWL, but
represents rather a frame-based than a keyword-based approach. The underlying logic formalisms to
describe the axioms and rules in ontologies are based not on the description logic as in OWL, but on
frame-logic [KLW95] and logic programming [Llo87].

Web services in WSMO are described from three different perspectives: non-functional properties,
capability (functional properties), and interfaces (dynamic aspects, or the behavior of the Web
services). Similar to OWL-S, the capabilities allow for the specification of the pre-conditions,
assumptions, post-conditions, and effects with the help of the logical expressions. In the interface
description, WSMO differentiates between the Choreography interface, i.e., the interface for the
user, and the orchestration interface that shows what services and goals are invoked by the Web
service. In the broad sense, choreography and orchestration interface in WSMO can be compared to
the OWL-S process model. One more similar feature between the two approaches: WSMO allows
for the connection to the existing WSDL descriptions over a grounding mechanism.

Goals specify the queries, i.e., the needed functionality from the user perspective. A goal represents
a conceptual reflection of the service descriptions. The de-coupling of the goal and service
descriptions as a separate entity (goal-driven approach) is a key difference from OWL-S. Mediators
describe the elements to overcome the heterogeneity between different components. Mediators
solve the incompatibilites on different levels.

– Data level – mediators define the rules to dissolve the terminology conflicts [ScB05] .

25

Figure 2.12: WSMO top-level elements (cf. [BBD+05])

Chapter 2 Conceptual and Technological Background

– Process level – mediators solve the conflicts basing on the different interaction patterns of
the processes that are part of the Web services [CiM05] .

Mediators in WSMO can connect different other elements (ontologies, Web services, and Goals).
Thus, one distinguishes between OOMediators, WWMediators, WGMediator, and GGMediator,
whereas the first is a pure data mediator and the other three can also contain process mediation.

WSML is based on the existing standards, similar to OWL, and offers both XML and RDF
serialization. The formal semantics of the WSML has not been completely defined for all WSMO
elements yet.

• Discovery. WSMO compares the goal and service descriptions (capabilities) to discover the
Web services. It is based on the logic programming.

• Negotiation. Policies in WSMO can be described to some extent with the non-functional
attributes which reminds of the OWL-S approach. Besides, there are also proposals to
integrate the peer trust rules into WSMO [OLP+04].

• Composition. The element to be used for the description of complex processes is
Orchestration Interface. Presently, there are still no implementations for it. WSMO does not
specify which description language exactly should be used for service composition, it only
defines the conceptual model basing on the abstract state machines.

• Invocation. Similar to OWL-S, the grounding mechanism is being developed in WSMO
presently. The connection to WSDL is achieved within the choreography and orchestration
of the Web services. But it is still possible that this grounding mechanism will be in the end
substituted by the model that is close to that of WSDL-S (s. below).

The Web Service Modeling Ontology shares the vision with OWL-S that ontologies are essential to
support automatic discovery, composition and interoperation of Web services. But despite sharing a
unifying vision, OWL-S and WSMO differ greatly in the details and the approach to achieve these
results. Whereas OWL-S explicitly defines a set of ontologies that support reasoning about Web
services, WSMO defines a conceptual framework within which these ontologies will have to be
created. Another difference between OWL-S and WSMO is that while OWL-S does not make any
distinction between types of Web services, WSMO places a lot of stress in the specification of
mediators: mapping programs that solve the interoperation problems between Web services.

In WSMO's vision, mediators perform tasks such as translation between ontologies, or between the
messages that one Web service produces and those that another Web service expects. In the process
of defining mediators, WSMO produces a taxonomy of possible mediators that helps to define and
classify the different tasks that mediators are supposed to solve. However, it can be difficult to map
this taxonomy onto the classical problems of Web service interoperation; i.e. discovery,
composition and invocation. For example, it is unclear how mediators can help during discovery,
since discovery is intrinsically a selection problem, while mediators attempt to reconcile the
differences between goals of Web services.

The definition of mediators in WSMO calls attention to some very important translation tasks that
Web services face. Not surprisingly, these same translation tasks are needed in support of OWL-S
Web services in their interaction. However, rather than stipulating the existence of a new type of
component in the Web services infrastructure, OWL-S provides to Web services and their clients
the information that is needed to find existing mediators that can reconcile their mismatches, or
perhaps to create mediators through the process of Web service composition.

WSMO is supported by two development environments: [WST06] and [MDC+03]. There is a Java
API available, [WSM+06], that provides tools to parse, validate and serialize the WSML
descriptions and connection to various inference machines.

26

Chapter 2 Conceptual and Technological Background

2.4.3 WSDL-S
WSDL-S [AFM+05] was proposed by IBM and the University of Georgia to the W3C in November
2005 and represents a bottom-up approach basing on WSDL and extending the existing Web
service interface description with semantic information. This „lightweight“ approach offers limited
potential for automation of processes, principally for simple interaction models, but can still be
interesting for manual service discovery.

The WSDL-S philosophy is to extend upon the existing and accepted Web services standards to
achieve prompt results. The key points can be summarized as follows:

– WSDL-S is directly integrated into the existing standards (WSDL).

– For the annotation there is no definite language prescribed for knowledge representation.
Different knowledge representation formalisms should be allowed.

– The existing WSDL service parameter typing with XML Schema as supported in WSDL
should be used in integration in the semantic description.

– A mechanism should be found to convert between the XML-based syntactic typing and
the ontology concepts.

To achieve all this, WSDL-S adds a small number of a further elements to the existing WSDL
standard. These elements allow for the annotation of the input and output parameters as well as the
WSDL operations themselves. Pre- and post-conditions for operations give a semantical description
of the environment before and after the operation execution. Besides, there is an opportunity to
categorize WSDL 2.0 port types according to some ontology.

The second basic principal mentioned above has made it necessary to only represent the semantical
models in WSDL as a reference and deposit them outside it. The concepts of the existing ontologies
are specified with their URI. But WSDL-S does not specify how the ontologies should be defined.

The integration of the XML Schema is realized with two alternatives for the annotations. Either the
complex types or the separate subordinate elements of the complex type can be annotated. As a
mechanism for the information conversion from ontologies (such as OWL) or their equivalent into
the XML Schema, the references to the translation rules (in the XSLT) are used.

• Discovery. The description of the pre- and post-conditions allows for the service discovery,
just like in the other approaches described. A P2P infrastructure represented in [VSS+05]
used WSDL-S description formalism. Similar to OWL-S based discovery, it is also based on
the subsumption between concepts in a description logic.

• Negotiation. As a lightweight approach, WSDL-S offers no explicit support for negotiation.
But as a WSDL-S as an extension of „pure“ WSDL can be easier, in comparison to the other
approaches, combined with the corresponding Web service standard recommendations, such
as WS-Policy.

• Composition. WSDL-S does not dispose of the expressive power to describe the processes,
the description of the complex interaction patterns is also not supported. But the sequences
of WSDL operations can be expressed implicitly if the necessary information is provided in
the pre- and post-conditions.

• Invocation. As an extension of WSDL, WSDL-S offers support for automatic Web service
execution basing on the existing approaches to the execution with the help of WSDL
described services. To integrate the additional semantical information, a mapping between
the ontological concepts and the corresponding XML Schema, similar to OWL-S, is
necessary.

27

Chapter 2 Conceptual and Technological Background

There are several tools that support WSDL-S that come from the METEROR-S project [Met06].
There has also been a Web service discovery infrastructure developed [VSS+05] and a framework
to annotate the Web services [POS+04].

While comparing WSDL-S approach with OWL-S, one notices that the semantic expressiveness is
rich and flexible in OWL-S, it defines a new way to describe Web services and suffers from
limitations. First, the OWL-S profile model duplicates the descriptions embodied in the rest of
WSDL (namely input and outputs). This leads to the inconvenience of creating multiple definitions
for describing the same service. Second, it assumes that everyone uses OWL for representing
ontologies which may not always be the case. WSDL-S was created to overcome these limitations.
Besides, while it is noted that the theoretical underpinnings of OWL-S in description logic makes it
a richer language for representing semantics, extending the industry standards such as WSDL to
include semantics may prove to be a more practical approach for adoption.

For the purposes of this work OWL-S has been chosen as the the longest available and most
elaborated standard. Its support for logic reasoning was also an important criterion of choice. It is
still too early to discard OWL-S despite its limitations as they have not yet been completely
overcome by any other alternative.

2.5 Semantic Web Service Discovery
Service Discovery can be defined as locating a machine-processable description of a Web service
that may have been previously unknown and that meets certain functional criteria. For the users to
discover a service means to get its description so as to be able to decide whether they want to use it.
User-centered Web service discovery is in any case based on the technology available to automate
this process.

Although heavily supported by languages such as OWL, OWL-S and RDF as well as SOAP and
XML research into semantic service discovery is still maturing and, as a result, a standard means of
discovery is still a way off. As a result of this non-convergence, research continues in several
parallel avenues outlined below.

Semantically Enhanced UDDI
As already said, UDDI alone does provide any semantical support. Still there is a very active body
of research in semantically enhancing the UDDI registry standard. Since the UDDI standard is
plentiful in features and a mature standard, it seems a logical progression to attempt to build on this
maturity by adding semantic annotation. In [AGD+03] the authors endeavor to provide a structure
whereby semantic information may be annotated onto current UDDI elements, such as tModel.
Similarly, [SPS04] endeavor to ”import” the semantic web into a UDDI standard implementation.
Each of these works aims to introduce concept matching to the UDDI registry by incorporating
reasoning and OWL-S support to current implementations. The active research in this area
highlights one of UDDI’s main weaknesses, lack of service capability support and emphasizes a
general consensus amongst the web service academic community that semantic support for
capability matching of web services is primary the area forward.

OWL-S Matchmaking
In [PKP+02] Paolucci et al. outline a methodology and efficient algorithm for semantic service
capability matching. The current body of research focuses primarily on comparing inputs and
outputs of a service as semantic concepts represented in OWL. By extracting subsumption
relationships between input requirements and outputs, the authors propose a way of ranking
semantic matching results. This ranking can be used in conjunction with other user-defined, or plug-
in, constraints to inform of an exact, or potentially useful web-service capability match.

28

Chapter 2 Conceptual and Technological Background

In [SPS04] the same authors propose an efficient way to apply the matching methodologies outlined
in [PKP+02] to the UDDI Registry. This basic extension adds a capability port to the current UDDI
implementation thus making it semantically aware. An interesting contribution of [SPS04] is an
evaluation of ranked matching and a resulting focus on accelerating performance by minimizing the
amount of matching and, therefore reasoning, that takes place.

Ranked Matching
The work done in [JRM+00], focuses on a finer grained approach to matching than presented in
[PKP+02]. By consideration of the service category and finer-grained user constraints based on
concept properties as well as input and output matching the work done by Jaeger et al. [JRM+00]
proposes a more accurate approach to semantic matching. The matching process is broken into four
distinct phases; input matching, output matching, service category matching and user constraint
matching, each of which scores a numerical ranking, also based on the subsumption relation. The
semantic matcher then aggregates a ranking in each of these categories and as a result can produce
an accurate match with informative matching statistics. A Java prototype has been built and is
hosted by the Technische Universität Berlin.

Reasoning
Reasoning for the semantic service discovery is used in connection with such a query language as
OWL-QL presented in detail in Section 2.3.3.

The OWL-QL Web site12 provides links to the OWL-QL specification and to current OWL-QL
implementations, including an OWL-QL client with a Web browser user interface suitable for use
by humans for asking queries of an OWL-QL server. But the proposed syntax (the KIF similar
syntax just used for the illustrations) only let experts profit from the technology. One cannot expect
all the users to write such queries. This problem will be addressed in chapters 3 and 4.

2.6 Summary
The power of service-oriented architectures lies in the fact that it allows easier integration of
distributed computing applications, including intra- as well as interenterprise integration. Web
services that use standard protocols for service interface descriptions (WSDL) and service
invocation (SOAP), coupled with a global data format (XML), were introduced to turn this vision of
the service-oriented architecture into reality.

Main challenges of the further development of Web services concern automated discovery, dynamic
composition, enactment, and other tasks associated with managing and using service-based systems.
For the solution of these problems, the description of services on the semantic level is necessary,
but the present standards only take the syntactic properties of the service into account, and leave the
semantics out of consideration. To support the development of semantic Web services, the Semantic
Web technology proposes several concurrent specifications (OWL-S, WSMO, WSDL-S), whereby
OWL-S remains the major standard available.

Semantic Web service discovery is one of the key problems that has to be solved before the Web
service technology can reach its full potential. Existing approaches, such as service matchmaking or
query-answering schema of OWL-QL achieve good results, but in the present state they remain
useless for the general public, i.e., for the users of the computer systems and require advanced
computer proficiency to be successfully used. The adaptation of the technology is needed so that it
is made accessible for all.

12 http://ksl.stanford.edu/projects/owl-ql/

29

 Chapter 3 Requirements Analysis

Chapter 3 Requirements Analysis

Reusing the conceptual and technological background presented in Chapter 2, this chapter will
analyze the requirements for the conceptual architecture for the user-centered service discovery
support in a digital library environment. As an example and a case study, a digital library system for
teachers (the Hamburger Medienindex, HMI) will be used.

The analysis made and the requirements accumulated throughout this chapter will be later made use
of for the conceptual design in Chapter 4.

3.1 HMI Platform
The HMI project suggests and evaluates a digital library for teachers which provides them with
opportunities to gather, classify, share and re-use the teaching materials. It is the follow project of
the WEL (“Warburg Electronic Library”) [WEL06] and TEFIS (“Technology and Information
System”) [TeF06] and is accomplished in cooperation with the [LLS06].

The HMI architecture (Figure 3.1) is based on two pillars: the library and the community platform.
The library model is defined using the open and dynamic asset model [Sehr04] defined at STS.
Community platform supports cooperation and communication within user group: community and
user blogs, events, etc. Services bridge both pillars. The configuration of services and their
interdependencies is supported by the Spring Framework [SpF06] used throughout the three top-
most layers. The layers underlying the services layer in the HMI architecture are responsible for
modeling, and storing the data and are based on integrated heterogeneous components. As content
and metadata repository, CoreMedia Content Application Engine [CoM06] is used together with an
Oracle database [ORD06]. InfoAsset Broker [InA06] is the core element of the community
platform. Systinet Server [Sys06] and Axis [ApA06] serve for the integration of external services.
Services completely disclose the complexity and heterogeneity of the system from the users as they
manage the library invoking the services through the user interface that hides in its turn the
technical complexity of the services. HMI-based services can also be published as Web services.

A usage scenario for the HMI can be described as follows. The community browses plain Web- and
teaching-specific sites to gather teaching material. The library only manages higher quality material
collected, classified and annotated by community. The library users work in public, community-
specific and private spaces. The library provides services to seamlessly use external services (e.g.,
the BookSearch service that is based on the Amazon Web Service [AWS06]).

30

 Chapter 3 Requirements Analysis

The HMI services can be classified into several groups:

• Library-Management Services:

– Classifier Management Services – manage Classifier structures: AddClassifier, Remove-
Classifer, EditClassifier;

– Artefact Management Services – manage Artefacts: AddArtefact, EditArtefact, Remove-
Artefact;

– Personalization Services – add personalized adaptations of libraries;

– Acquiring Services – material acquiring: Book search (external);

– Classification Services – classify acquired material: ClassifyArtefact;

– Search Services – search material or classification structures: ClassifierSuggest, Search-
Artefact (with keyword search);

– Annotation Services – Annotate, rate, recommend material;

• User-Management Services:

– Group Management Services – manage user groups and single users: CreateUser, Edit-
User, RemoveUser, CreateGroup, EditGroup, RemoveGroup;

31

Figure 3.1: HMI system architecture

 Chapter 3 Requirements Analysis

– Authorization Services – manage access rights: UpdateAutorization;

• Content Playout Services:

– Web-based content playout;

• Community Services:

– Manage community or personal weblogs;

– Integrate Weblog as form of annotation into HMI Core Services.

Further, the analysis will center on the library- and user-management services as they are the most
important access points for an HMI user to interact with the system. For example, HMI Media
Playout Services imply that the content searched for is found. They could be thought as part of
some composite service from the user view, but composite services will not be considered in this
work. The further discussion will also take into consideration the services that are already modeled
(present in the classification), but not implemented yet13.

The number of services in the system is constantly growing. If the user is supposed to access them
only with the help of the user interface, the latter will get so complex that finding the webpage with
the form that fulfills the user's needs becomes very tedious. That is why, service discovery in the
HMI gets so important. As the previous chapter has shown, service discovery when made by means
of the present technology is, in its turn, too complex for a user without a strong technical
background. So the next sections have the purpose to analyze what adaptation of the technology can
be done to make service discovery more user-friendly.

3.2 Services Discovery Analysis in HMI
For the purpose of the user-centered Web service discovery in the HMI, a User-Centered Discovery
service should be added to the HMI services. It will provide the users with essential means to find
the services they need. The HMI users will interact directly with the User-Centered Discovery
service interface. To analyze the possible user interaction with such a service, the next section will
present the major use cases.

3.2.1 Use Cases for User-Centered Service Discovery in HMI
In this section, a short list of very simple use cases will be sketched to provide a basis for the further
analysis towards the definition of the requirements for the user-centered service discovery. In all
use cases, the result is that the users who want to find a service that can satisfy their needs obtain
information from the published service advertisements. Figure 3.2 presents the possible use cases.

Use Case 1: Browse Service Descriptions

In the case of UDDI (Section 2.2) browsing can be understood as browsing through the
advertisement repository, whereas the party interested in a specific service manually finds what s/he
wants by drilling down through the categories. But for users without a strong technical background
such as HMI users in a normal case (if they are not computer science teachers specialized in the
Web service technology), browsing through the advertisement repository does not help much as the
repository information does not have a user-friendly format and is badly categorized. As already
said, there are almost no well-defined taxonomies for services advertisements (Section 2.2). So the
users should have an opportunity to browse through the categories they understand well. As such,
the domain objects can be well-suited if they are presented as a domain-specific ontology. As all the

13 The HMI Community Services have not been modeled in detail yet in the HMI and will not be considered here.

32

 Chapter 3 Requirements Analysis

services in a system have to do with the domain objects in one or another way (have them as
functional parameters, make use of them in pre-conditions and results) then the domain objects
through which the user browses can be seen as a starting point to get to the services that are
relationally connected to the domain objects. The concrete case differentiation useful here will be
done in the next chapter.

Use Case 2: Search for Service

Search means submitting a query to the system which describes what is searched for and getting an
answer that was generated and returned back. The user-friendliness of the query language is its
main criterion, others will be determined later in this chapter. It is important to define the search
criteria that will be reflected in the query language. From the users' point of view a service is seen
as some piece of functionality changing the domain objects like 'Classifier', 'User', or 'Image', or, on
the other hand, performing some action like 'search a book', 'change user (profile)', or 'create a
classifier'. That is why, the use cases “Search by Parameter” and “Search by Action” are
subordinate use cases for “Search for Service”.

Use Case 3: Search by Parameter

This kind of service search may include searching for services which have a domain object as either
an input or output parameter or both of them.

Use Case 4: Search by Action

A a service 'does something', or 'performs an action' as illustrated in the examples above, it will be
important to see how these actions can be modeled for the domain under discussion.

For any of the use cases presented a mapping from the user formulated queries having the for the
users attainable level of complexity into the full-form OWL QL queries is indispensable. Primarily,
to provide this mapping, a special User-Centered Discovery Service should be added to the HMI
system. Its tasks will be discussed in detail in the next section.

3.2.2 Requirements for User-Centered Discovery Service
The User-Centered Discovery service's main task consists in concealing the internal technical
complexity of the service discovery from human users. It gets the queries formulated in a well-
adapted human comprehensible format from the users. It generates OWL-QL messages basing on
the mappings defined for the queries. And then submits them to the knowledge base query
component (it can be an OWL QL query service as proposed by [RaM06]). It is important for the
User-Centered Discovery service that the knowledge base itself is designed taking into

33

Figure 3.2: Use cases for user-centered service discovery

 Chapter 3 Requirements Analysis

consideration the human view upon the domain under query. As the users will browse through the
domain objects and use them in their queries they should very well understand the concepts they are
dealing with. So designing the knowledge base for the domain by only taking the technical domain
model will not be sufficient.

It is proposed to use an ontology as a well-suited abstraction for a knowledge base and at the same
time a human comprehensible conceptual model of the domain. Here are the principles that are
important to consider while building the domain-specific ontology for the HMI:

– the domain-specific ontology is an extended subset of the technical model;

– the concepts used are well familiar to the human users (from the domains of digital
libraries, digital media, Web, time, or learning materials);

– if it is not possible to eliminate the unfamiliar or technical concepts they should be precisely
commented and examples of familiar concepts describing them should be given;

– re-use of other existing ontologies is welcome.

These principles will be taken into consideration while creating a domain-specific ontology for the
HMI in Section 3.3.

The other part of the already mentioned knowledge base along with the domain-specific ontology is
a collection of the HMI service descriptions. The most important information for the discovery of
services is contained in the Service Profile if the OWL-S upper ontology for semantic description of
services is used as chosen in Section 2.4 for the semantic description of the service instances. So the
HMI services will be described with OWL-S with a special emphasis on the creating Service
Profiles that are well-suited for the service discovery by human users, while describing the services
the domain-specific ontology built will be re-used. The possible service discovery patterns by
human users and the approaches to adapt the service profiles for the better success of discovery will
be presented in Chapter 4.

The core of the suggested User-Centered Discovery service is the mapping component that
generates OWL QL queries from the queries specified in the suggested user-friendly domain-
specific query language. The last underlies the following requirements:

– intuitive for amateur users;

– flexible inside the domain;

– extendable – for the case new services are added to the system;

– limited in the number of keywords that should be learned or presented in the UI;

– similar to the search query languages known to users (e.g., those used in search engines);

– easily visualizable (e.g. choice possibilities in each state can be easily summarized and
presented)

– subset of OWL-QL so that the mapping is easy and the relevant technology can be reused.

The design of this user-friendly domain-specific query language and of its mapping to OWL QL is
postponed until Chapter 4, the next step will be the analysis of the HMI domain and building an
HMI domain-specific ontology.

3.3 Domain Analysis
The analysis already made has pointed out that the existing technical domain model cannot be
reasonably used for the purposes of the user-centered service discovery support. This section will

34

 Chapter 3 Requirements Analysis

analyze which parts of the existing HMI model (the part of the model relevant for services is shown
in Figure 3.3 can be included into the domain model, discuss the reasons and search for sensible
extensions of it so that the it gets well-comprehensible by the human users.

The HMI data model makes use of such technical concepts as 'Classifier', 'Artefact', or
'MediaContent' that do not belong to the conceptual domain shared by the HMI users who are
normally teachers and not advanced computer scientists. These concepts do not speak of concrete,
or at most digital, objects that the user is accustomed to face in daily life, such as a “book”, a
“DVD”, an “film”, or a “notebook”. They are conceptual abstractions that are introduced by the
software engineers to build a complex system upon a complex domain. They are not fine-grained
either, as it is typical for the objects one encounters in life, like an “image”, or a “text”. They are
specially made so abstract that embracing new fine-grained concepts to the technical model is not a
pain for those who have to adapt the model.

As presented in Section 2.3.2, ontologies are the way to conceptually model any application domain
in such a way that the model becomes generally comprehensible by human users and processed by
machines. So building a domain-specific ontology will provide the users exactly with the taxonomy
of concepts, and their relationships that are understood by them, on the one hand, and can very well
be mapped to the technical model, on the other hand, – as the ontologies can be processed
automatically. Besides, the automatic processing of ontologies provides opportunities to reason over
them which is, as already said, important for service discovery as such. The last reason explains that
if the HMI domain-specific ontology is to be built with the means of OWL than it should be the
OWL DL dialect of it so that the reasoning services can be used.

But before searching for the suitable instantiations in real life for the abstract and extensible
concepts from the HMI model, one can already notice another adaptation and simplification case
from the user's point of view. The users will very probably not know much about the underlying
WEL model (everything above the separating line in the UML class diagram in Figure 3.3) that was
the basis for the HMI model (everything under the line). 'WELObject', 'WELUser', 'WELUserGroup'
'WELRelationshipAttribution', 'WELObjectAttribution' should be eliminated as giving no
information to the user.

The only information explicitly given to the users about WEL is that “the HMI is a WEL library” (a
known fact). It is reflected in in the ontology, along with a basic classification of HMI_Library
itself which is shown in the bottom-most branch of the HMI domain-specific ontology (Figure 3.4).
The concept of 'Library' includes the concepts of 'OnlineLibrary' and 'MediaLibrary'. There is
no distinct boundary between them as almost every 'MediaLibrary' nowadays provides digital
resources on-line, and on-line libraries can manage 'tangible' resources which one supposes to find
in a 'MediaLibrary'. The classification of the 'HMI_Library' is not needed by the HMI services
alone, but this is one of the points where the flexibility and extensibility of the ontological
definition is assured. Figure 3.4 shows the taxonomy of concepts proposed for domain-specific
ontology for the HMI ('is_a' relationship). The top-most concepts in the HMI library are
'HMI_User' and 'HMI_Item' which are both classified as 'WEL_Items'. All the proposed 'Items' in
the ontology, such as 'WEL_Item', 'HMI_Item', 'Web_Item', or 'MediaLibrary_Item' are suggested
in analogy to the 'owl:Thing' with the meaning that we have to do with “Things from the WEL”,
“Things from the HMI”, or “Things from the Web”. The word “thing” is considered to be too
general in this case and is replaced by the word “item”.

35

 Chapter 3 Requirements Analysis

36

Figure 3.3: HMI Domain Model

 Chapter 3 Requirements Analysis

The complex data structure and the component architectural pattern (simplified) one finds in the
technical model of the HMI to express the “user” and “user groups” notions can be mapped to the
three ontological concepts: 'SingleUser', 'UserGroup' and 'HMI_User' comprising both first.

Almost the complete hierarchical structure underlying 'HMI_Item' is mapped from the HMI model
into the domain-specific ontology including the 'Classifier', 'Bibliotheque' and 'Artefact'
subtrees. The 'ClassifiedItem' class is considered to be too abstract and adding no useful
information and the 'Artefact' is thereby a direct subclass of 'HMI_Item'. These classes from the
HMI model as well as such subclasses of 'Artefact' as 'ArtefactReference' and
'ArtefactInstance', 'TangibleArtefactReference' and 'IntangibleArtefactInstance',
and 'WebArtefactInstance' are important concepts that the HMI domain is impossible to think
of. Although they are rather abstract they must be present in the ontology as well. For better
understanding of these concepts the ontology provides sufficient comments (with rdfs:comment)
about such concepts. For instance, 'Artefact' is commented with “Any digital content stored in the
library or references to the external content.”

To provide more concrete concepts as illustration of the existing abstract concepts outlined above,
inside the 'Web_Item' hierarchical subtree under 'DigitalContent', the same classes are found as
those that conceptual designer of the technical HMI model thought of when including
'ArtefactInstance' into the model. Examples of them are 'Text', 'Image', 'Video', or
'Animation'. As for 'Webpages', they can, in general, also be stored in the library as such
completely. But there is a different idea available only to store a reference to the webpage or site.
'WebArtefactReference' has thus 'URL' as its subclass, it is the other subclass of 'Web_Item' along
with the 'DigitalContent'. 'TangibleArtefactReference' is aimed to contain references to
real-world objects that do not have a digital form, like a “book” or “newspaper”, as well as those
digitized that are sometimes called “hard-media” like “DVD” or “CD”. These are the items that a
'MediaLibrary' contains. On this way, 'MediaLibrary_Item' becomes a subclass of
'TangibleArtefactReference'. Other classes of objects can be thought of that will also be
subclasses of 'TangibleArtefactReference' like 'Notebook', e.g., if someone has collected his
or her own teaching notes.

Until now the disjointness of the introduced classes was not discussed. The mutually among
themselves disjoint classes are as follows:

– 'DigitalContent', 'URL';

– 'Animation', 'Application', 'Image', 'Text', 'Audio', 'Video';

– 'HMI_Item', 'HMI_User';

– 'Artefact', 'Bibliotheque', 'Classifer';

– 'ArtefactInstance', 'ArtefactReference';

– 'TangibleArtefactReference', 'IntangibleArtefactReference'.

Besides, 'Library' is mutually disjoint with 'WEL_Item' and 'Web_Item' which are not disjoint as
they have some common subclasses. 'Site' and 'Webpage' can be hardly differentiated from other
digital content. Thus, the disjointness between them is not defined. The class 'MediaContent' from
the HMI model is only the encapsulation of some important properties, such as 'isPrintable',
'isTextual', 'isVisual', and 'isAudible' having a boolean value (datatype properties in OWL).
One can easily think of services examples that make use of these properties, e.g.,
'KeywordSearchService' would need something that 'isTextual' to be able to process it. All the
four properties are defined for 'Artefact'. For 'Classifier' the property 'isTextual' is set to
“true”.

37

 Chapter 3 Requirements Analysis

38

 Chapter 3 Requirements Analysis

Other datatype properties follow immediately from instance attributes of the HMI model classes.
'isGuest' is a boolean property of 'HMI_User', and 'hasKeywords' is a string property of
'Classifer'.

More important for the service description later are object properties to be defined. All the
properties in the domain-ontology fall into two groups: roles and inclusions (Table 3.1). Roles
almost always correspond to the roles on the associations found in the HMI model, such as
'creator', 'editor', or 'owner'. The reasons to call the corresponding properties in the ontology
with the action verbs in the imperative 'create', 'acquire', or 'search' and not, e.g., 'creates' or
'acquirer' will become clear in the next chapter.

Roles in the
HMI model

Actions as OWL
Properties

Subject → Object Relashionships in OWL Inverse Property

'editor' 'create' 'HMI_User' → 'HMI_Item'

'HMI_User' → 'HMI_User'

'isCreatedBy'

'acquirer' 'acquire' 'HMI_User' → 'Artefact' 'isAcquiredBy'

'searcher' 'search' 'HMI_User' → 'HMI_Item' 'isSearchedBy'

'reader' 'read' 'HMI_User' → 'HMI_User'

'HMI_User' → 'HMI_Item'

'isReadBy'

'editor' 'update' 'HMI_User' → 'HMI_User'

'HMI_User' → 'HMI_Item'

'isUpdatedBy'

'editor' 'delete' 'HMI_User' → 'HMI_User'

'HMI_User' → 'HMI_Item'

'isDeletedBy'

'annotator' 'annotate' 'HMI_User' → 'HMI_User'

'HMI_User' → 'HMI_Item'

'isAnnotatedBy'

'owner' 'own' 'HMI_User' → 'HMI_Item' 'isOwnedBy'

Table 3.1: Actions as properties in the HMI ontology

Many properties reflect the composition of related objects. Very often this relationship is an
additional means to express UML class hierarchies, especially for classes that were not taken into
the ontology. For example, a hierarchical relationship exists between 'WELUser' and 'HMIUser' is not
expressed in the domain-ontology as 'WELUser' was not added to it. Thus, 'hasMember' property
(inverse of 'isMemberOf') is defined between 'HMI_UserGroup' and 'HMI_User' as well as between
HMI_UserGroups. Other examples (inverse properties are given in the brackets):

– 'hasClassifier': 'Bibliotheque' → 'Classifier' ('hasParentBibl');

– 'hasSubClassifier': 'Classifier' → 'Classifier' ('hasParentClassifier');

– 'contains': 'WEL_Library' → 'WEL_Item'; 'HMI_Library' → 'HMI_Item',
'MediaLibrary' → 'MediaLibrary_Item', 'OnlineLibrary' → 'Web_Item'
('isContainedBy');

– 'hasExtendedBibl': 'Bibliotheque' → 'Bibliotheque'.

39

 Chapter 3 Requirements Analysis

The 'hasCreationTime' property has instances of 'time-entry: CalendarClock-
Description' from the well-known time-ontology [PaH04] as its values.

The following definitions could be built for the considered ontology:

– HMI_Library≡WEL_Library∩∀contain. HMI_Item∪contain. HMI_User 

– Artefact≡HMI_Item∩ArtefactInstance∪ArtefactReference

– HMI_Item≡WEL_Item∩Bibliotheque∪Classifier∪Artefact 

– HMI_User≡HMI_Item∩SingleUser∪UserGroup

The open-world assumption of OWL is very helpful for creating a domain-specific ontology as it is
really not possible to describe all of the classes in the domain. It is possible that more classes exist
then described, but adding them to the ontology will, first of all, not break the technical HMI model
with all the tedious work connected to it, and besides, be available at once for the reasoning
services.

3.4 Summary
In such a heterogeneous system as the HMI that includes a wide variety of services, users need a
strong support to find the services that fulfill their needs. Providing the service access points
through the user interface alone that is done in such cases in general cannot be seen as a good
solution any more as the complexity of the user interface grows in parallel to the number of services
provided. The semantic service discovery technology that aims to solve the problem of finding the
right service cannot be applied by the users alone, as it is too complex. This makes it obvious that
an adaptation of this technology is needed so that human users can benefit from it, too.

These considerations and the analysis of the service discovery use cases have made it obvious that
the mapping mechanism is needed from a user-friendly domain-specific query language to the
technical realization query language such as OWL-QL. The requirements for such a simplified
query language were discussed in this chapter as well as the guidelines according to which the User-
Centered Discovery service should be designed and the services – described on the semantic level.

This chapter also analyzed the HMI model and as a result a domain-specific ontology of the HMI
was created. The next chapter will make use of this ontology while defining the proposed domain-
specific query language and its mappings to OWL-QL.

40

Chapter 4 Design of User-Centered Discovery Service for HMI

Chapter 4 Design of User-Centered Discovery
Service for HMI

With the help of the analysis done in the previous chapter, a User-Centered Discovery Service will
be conceptually designed.

To achieve this goal the HMI services should be first semantically described and then according to
the requirements defined in Section 3.2.2 OWL-QL will be mapped to the user-friendly query
language.

4.1 Semantic Description of the HMI Services
All HMI services are instances of the HMI_Service that is a subclass of OWL-S Service. Still
additional properties are needed for the HMI_Service. One of them is the property 'hasAccessURL'
which binds the Service instance to the URL instance. This solution is needed for the general OWL-
S grounding approach (see Section 2.4.1) is too technical for human users and the HMI services are
supposed to be accessed over the user interface available at the URL referenced by
'hasAccessURL'.

As already underlined, the most important information for service discovery is provided in OWL-S
Profile which defined the service capabilities, i.e. the functional and non-functional properties. The
functional properties that are mostly taken into account here are 'hasInput', 'hasOutput”
(subclasses of 'hasParameter'), 'hasPrecondition' and 'hasResult'. For example, the
CreateClassifier service has, speaking formally, in terms of the technical model of the HMI
User (who performs the creation) and ClassifierCreateData as input parameters, and Classifier as
an output parameter. As the technical model of the HMI has already been mapped into the domain-
specific ontology the corresponding concepts can be easily used while describing the services
semantically. But as for ClassifierCreateData, it does not provide the relevant information that
the users need to know before invoking the service. Such technical concepts – they were not
included into the ontology either – will not be part of the semantic service description. Other
examples include ClassifierRemoveData, ArtefactUpdateData, or UserProfileData.

The pre-condition of the CreateClassifier service can be defined as:

loggedIn(?User, ?SessionID),

41

Chapter 4 Design of User-Centered Discovery Service for HMI

whereas the effect, or post-condition, can be described by (in a pseudo-language):
IF

isAuthorized(?User, ?Classifier) AND isValid(ClassifierCreateData)
THEN

hasParentBibl(?Classifier, ?Bibliotheque) AND
create(?User, ?Classifier).

The same pre-condition is true for the BookSearch service, the post-condition of which will look
like:

IF
(exists hasTitle(?Book, ?inputParameter1)) OR
(exists hasAuthor(?Book, ?inputParameter2))

THEN RETURN.

These conditional expressions are too complex and are not the way the users formulate their wishes.
The user's view on the result achieved by the service is other than the formally defined result in the
system. For example, in the first case, the result perceived by the user will be Classifier created and
can be expressed by the relationship (User create Classifier) in RDF triple syntax
(<subject> <property> <object>), in the second – the 'Book' found, and the relationship
coming into the foreground is (User search Book).

Let's consider again the properties defined in the HMI ontology (Table 3.1). Exactly the properties
falling into the category 'roles' or 'actions' are the properties utilized by the HMI services from the
user's view:

(User edit HMI_Item),

(User acquire Artefacts),

(User delete HMI_Item).

For such an action as “User search Book by Title” that is what can be done with the BookSearch
service and is described with additional specialization expression (“by Title”), some additional
factors should be considered. First of all, it can be separated into two logically conjuncted triples
(User search Book) AND (search hasCriterion Title). Unfortunately, OWL DL does
not allow defining properties of properties. Then, all types of search will have to be modeled as
additional subproperties of the property search which is allowed. Thus, the domain ontology will be
extended with an axiom (searchByTitle rdfs:subPropertyOf search) and the result of
service description will have to be specified by (User searchByTitle Book). Analogous:

(searchByAuthor rdfs:subPropertyOf search)
(User searchByAuthor Book).

Thus, it is reasonable to define a new property 'action' and make all the action properties its
subproperty.

The property 'hasResult' mentioned above provides a relationship between a Profile instance and
an instance of 'Result' which is part of the process model ontology. OWL-S provides the following
relationships:

(profile:Profile hasResult process:Result)
(process:Result hasEffect expr:Expression)
(expr:Expression expressionLanguage LogicLanguage).

42

Chapter 4 Design of User-Centered Discovery Service for HMI

Whereby, KIF, SWRL, DRS can be chosen as a logic language. The 'Expression' itself is then
added as a string inside the XML document. The sense of such an inclusion becomes clear if one
thinks of the impossibility to characterize properties through properties in OWL DL.

Thus, the resulting expression for the BookSearch service, for example, with the KIF language
chosen, looks like:

(or(search HMI_User (or Book DVD CD))
 (searchByTitle HMI_User (or Book DVD CD))
 (searchByAuthor HMI_User (or Book DVD CD))).

And the corresponding expression for the CreateClassifier service is given by:
(create HMI_User Classifier).

After preparing the knowledge base of service descriptions with the adaptations proposed, the
possible query types can be discussed in detail. The next section will have a look at the query
patterns taking into consideration the use cases described in Section 3.2.1.

4.2 Query Patterns
This section presents possible user query types and how they can be mapped into OWL QL. The
user queries can be first grouped according to the use cases described in Section 3.2.1.

Browse Service Descriptions
To move through the taxonomy of the domain classes, the user needs a possibility to find the
subclasses and ancestor classes of the given class. The “subclassOf <domain class name>”
query maps into OWL QL query:

(rdfs:subClassOf hmi:<domian class name> ?subclass) must-bind ?subclass
and, respectively, the “subsumes <domain class name>” query:

(rdfs:subClassOf ?subsumes hmi:<domian class name>) must-bind ?subsumes
But more important for the users is the ability to get to know the most general subclass or a most
specific one. Unfortunately, the ability to ask such so called “structural queries” [FHH03] is limited
to concepts which can be expressed using OWL. There is no way in OWL to express the concept of
a most general subclass or a most specific type. The OWL-QL query pattern language was not
extended beyond the expressive capabilities of the content language used in the knowledge bases
being queried (i.e., OWL) so as not to impose greater computational burdens on a server than are
defined by the specification of the language it uses [FHH03].

So to obtain answers to queries involving concepts not expressible in OWL such as “most general
subclass” or “most specific type”, and also to optimize any variable with respect to any given
transitive property, by using an iterative optimization technique described in [FHH03].

To optimize the value of a must-bind variable V in a query Q with respect to a transitive property P
and a server S, send Q to S asking for at most one answer. If S provides an answer to Q with a
binding of Bi for V, then send S a query Q’ consisting of Q with the additional premise (P Bi V) and
ask for at most one answer. If S does not provide an answer to Q’, then Bi is the optimal binding
that S can provide for V. If S provides an answer to Q’ with a binding of Bj for V, then send S a new
query Q’ consisting of Q with the additional premise (P Bj V). Continue this iterative querying

43

Chapter 4 Design of User-Centered Discovery Service for HMI

until S does not provide an answer. The last binding produced for V is the optimal binding that S can
provide for V.

For example, a client could use iterative optimization to find the most general subclass of C by
asking for at most one answer to a query with query pattern (subclassOf ?x C) and must-bind
variable ?x, and then successively asking for at most one answer to the same query with the
addition of premise (subclassOf Ci ?x), where Ci is the most recently returned binding for the
variable ?x.

Thus, if the automatic exchange and processing of queries is automatized then the users can just use
additional keywords, such as “last” and “first” to express their wish to get the the direct parent
or subclass in the answer respectively. These words would formally mean starting the query
exchange according to the an iterative optimization method described.

Search by Parameter
The services description allow for differentiating between input and output parameters of which the
users are also well-aware. Thus, if the users search for a service which takes a domain object as,
e.g., an input parameter they are provided with a simple query type “input <domain class
name>” which maps to the OWL-QL query:

Query: (rdf:type ?service hmi:HMI_Service)
 (service:presents ?service ?profile)
 (rdf:type ?profile profile:Profile)
 (profile:hasInput ?profile ?input)
 (rdf:type ?input process:Input)
 (process:parameterType ?input ?parameter)
 (rdf:type ?parameter hmi:<domain class name>)
 (hmi:hasAccessPoint ?service ?URL)
 (rdf:type ?URL hmi:URL)
 (rdfs:comment ?service ?commentary)
 must-bind ?service don't bind ?URL ?commentary
Answer: (Service ?service is described as ?commentary can be accessed at
?URL).

The answer to this query will provide the URL and the commentary of the service. Both are needed
so that the users get to know what the service does through its human-understandable description
one finds in the commentary as well as the URL of where the service can be accessed.

A similar query will demand all the services that get a specific domain-object as an output
parameter: “output <domain class name>”. The difference from the OWL-QL query it is mapped to,
is that 'profile:hasInput' in the forth line will have to be changed to 'profile:hasOutput'.

If the user is not going to specify whether the domain-specific object appears as an input or output
parameter of the service, the query will be like “parameter <domain class name>” and will be
mapped to another similar query with 'profile:hasParameter' in line four.

44

Chapter 4 Design of User-Centered Discovery Service for HMI

Search by Action

This time the query is aimed at finding the service by actions separated from other properties in
Sections 3.3 and 4.1. The first type is finding the list of all the actions available with the keyword
“action”:

(rdfs:subPropertyOf hmi:action ?subproperty) must-bind ?subproperty.

The second query pattern – searching for a service itself providing the action chosen – will be
composed of the action name with the name of the domain class which can be seen as the object of
the action performed: “<action name> <domain class name>”. This pattern maps into an
OWL-QL query of type:

(rdf:type ?service hmi:HMI_Service)
(service:presents ?service ?profile)
(rdf:type ?profile profile:Profile)
(profile:hasResult ?profile ?result)
(rdf:type ?result process:Result)
(process:hasEffect ?result ?effect)
(rdf:type ?effect expr:Expression)
(expr:expressionLanguage ?effect expr:KIF)
(“<action> User <domain class name>”)
(hmi:hasAccessPoint ?service ?URL)
(rdf:type ?URL hmi:URL)
(rdfs:comment ?service ?commentary)
 must-bind ?service don't bind ?URL ?commentary.

As already said, the 'hasEffect'-property must have a string inside according to OWL-S, so, in this
case, the expression in the string has to be made part of the analysis. To achieve this, another
expression is written into the query in the string form. As all the services in the library are user-
centered, i.e., the 'User' is the one who performs the action, from the users' point of view, the
actions are performed as such upon their command. This is the point where one can profit from the
infinitive form of the verbs in the action properties. Such a query is perceived by the user just as a
command to the system to 'do something'.

To process such a query the sting will have to be extracted from it, and after services satisfying the
query are found their action expression from the query and the service description will have to be
compared. As the action expressions are nothing else than OWL property restrictions, to compare
them matchmaking of OWL property restrictions through concept subsumption can be applied. It
will guarantee that the chosen service will perform the action demanded by the user.

4.3 Evaluation
The experiences made with the semantic description of Web services have shown that there are
conceptual drawbacks in OWL-S that make service modeling tedious. Especially, modeling service
parameters in the Service Profile is connected with defining many cross references in the Process
Model. Besides, other languages embedded into OWL-S make the design hard.

Another important point that has to be made is that presently the support of an ontology designer or
a semantic service annotator through reasoning services and tools is not sufficient. The boundaries

45

Chapter 4 Design of User-Centered Discovery Service for HMI

of what features, properties, or predicates, can be described by Description Logics and are
supported by the concrete reasoning engine, are not clear yet. Reasoning engines provide new
optimizations and open the area possible for description. The available tools for ontology
development, like Protégé [Ele+05] are not on the up-to-date level and may cause confusion
declaring that the expression used is not part of DL, although it is probably just the absence of an
optimization that leads to such assumptions. The boundaries of the modeling opportunities offered
by Description Logics itself have still to be researched.

The Semantic Web is not a ready-to-use off-the-shelf technology. Although it impresses with a
great number of proposed standards, concepts and design abstraction, they are still in development,
often not compatible to each other. Besides, the boundaries are still being widened making some
practices possible today that were not possible yesterday. But there is no guarantee that the
reasoning service you are looking for is already available.

Another difficulty encountered is the lack of ready-to-go ontologies connected with the HMI
domain (libraries, multimedia, or teaching materials) or their immaturity. The only ontology that
could be utilized during the creation of the domain-specific ontology for the HMI is the time
ontology.

4.4 Summary
This chapter has presented a semantic description of the HMI services with OWL-S so as to reflect
the users' view on their functional and non-functional properties. Thereby, some adaptations had to
be made to the OWL-S ontology, e.g., the technical binding was extended by a a 'hasAccessURL'
property to give users a chance to access an UI-enabled service found. Further analysis has shown
that another adaptation of OWL-S Profile is necessary so that the goal of the service the users
understand well can be described formally. Such a goal maps, on the one hand, to the OWL-S
Profile's 'Result' and, on the other hand, to the action properties of the HMI domain-specific
ontology. In praxis, they are described as class restrictions inside strings.

Besides, various query types for the user-centered query language and their mappings to OWL-QL
have been classified according to the use cases defined in Section 3.2.1. The users are provided with
a few intuitively clear keywords and structures to formulate the queries. The greatest problem
outlined is the matching of the user defined goals in the query with the goals defined by the service.
Service matchmaking is proposed to solve this problem.

46

Chapter 5 Concluding Remarks

Chapter 5 Concluding Remarks

This chapter will provide the summary of the work and its results and outlook about the possible
perspectives for future work.

5.1 Summary
The intersection of such research areas as service-oriented architectures and the Semantic Web
provides the background for the semantic Web service discovery. Chapter 2 has stated that although
both technologies have not yet reached the necessary level of maturity they have very high potential
when applied to current complex heterogeneous computer systems to solve the problem of
interoperation on different levels. The principles and goals of service-oriented architectures and
their implementation with the Web service technology have been analyzed in Sections 2.1 and 2.2.
The current state of research in the Semantic Web along with its main concepts (especially, that of
ontology) and standards (such as RDF, OWL, OWL-QL) have been presented in Section 2.3.

It has been shown that the main drawback of the Web service technology relevant for service
discovery is that the current standards only deal with syntax and ignore semantics. The Semantic
Web standards (such as OWL-S, WSMO, WSDL-S) enhance the Web service technology and add
semantics to the service descriptions. These standards have been analyzed and compared in Section
2.4. The possible approaches to solve the semantic Web service discovery problem were introduced
in Section 2.5. They include, e.g., semantically enhancement for UDDI, service matchmaking, or
reasoning with the help of a query language such as OWL-QL.

Although many approaches exist for the semantic Web service discovery, being very technical, they
generally address computer experts or automatic machine interactions and ignore the fact that the
search for services can also be pursued by human users without advanced technical background.

The rest of this work has been an attempt to design a conceptual architecture that supports the users
in discovery of services in heterogeneous library environments such as the HMI media library.
Chapter 3 has analyzed the requirements for service discovery, it has presented the HMI system and
attempted to classify the services found in it (Section 3.1). The analysis of the use cases (Section
3.2.1) has provided the guidelines for the conceptual architecture (Section 3.2.2). The domain-
analysis (Section 3.3) has resulted in building a domain-specific ontology for the HMI.

For the design of the conceptual architecture, the choice has been made in favor of the OWL-S
standard for the semantic Web service description (Section 4.1) as well as OWL-QL for the

47

Chapter 5 Concluding Remarks

semantic Web service discovery. The patterns of the OWL-QL queries have been modeled and
mapped to a user-centered discovery language in Section 4.2. The evaluation of the designed
architecture, the experience with the used technologies and enhancement possibilities (Section 4.3)
have finished Chapter 4.

As a result of the design phase a User-Centered Discovery service has been proposed in this work to
support the users while searching for services in the HMI system. It hides the technology
complexity from the users with the help of the user-centered query language which is intuitive,
domain-specific, has a restricted vocabulary and is mapped to a subset of OWL-QL and gives the
users a chance to search for the services with simple queries. Thereby, the domain-specific ontology
of the HMI and the semantically described service instances serve as a knowledge base for OWL-
QL queries into which the user queries are translated.

5.2 Outlook
The practical realization of the proposed architecture, could be done under support of
RacerManager [RaM06]. It is an open-source semantic web infrastructure that serves as a scalable
front-end for applications to efficiently query OWL ontologies and implements OWL-QL.
RacerManager makes use of the OWL reasoning capabilities of the DL Reasoner RACER
[RAC06]. RacerManager serves as an OWL-QL application server for the DL Reasoner RacerPro.
To support the OWL-QL communication scheme (s. Section 2.3.3) RacerManager has a service-
oriented architecture. It offers OWL-QL support as a webservice. Clients such as software agents or
web applications can reference and query any OWL ontology by calling the web service using
standards such as SOAP and WSDL.

In the implementatio, RacerManager has to be informed about the knowledge base including the
HMI domain-specific ontology and semantic service descriptions. The OWL-QL queries generated
by the User-Centered Discovery service have to be sent to RacerManager and the responses
redirected back to the service so that the results can be presented to the users.

The experiences gathered during this work (s. Section 4.3) have extended the list of known
limitations of OWL-S [BLW04]. The absence of the user goal concept was a big design obstacle.
Opposite to OWL-S the goal concept is available in WSMO (Section 2.4.3) as one of its a central
concepts. This work showed how important it is for the semantic discovery of services, especially if
the clients searching for services are human users. It was stated that the user goal and the service
capability are separate in practice and should be described separately. Thus, an interesting research
topic were to compare WSMO and OWL-S as to how much they are suitable for user-centered
service discovery in library environments.

Besides, after the ontologies in the related domain ([BOE06], [Mar06]) reach a better stage of
maturity, an integration of them with the HMI ontology can be thought of as an important task.

48

Bibliography

Bibliography

[AGD+03] Akiragiu, R., Goodwin, R., Doshi, P. and Roeder, S. A Method for Semantically
Enhancing the Service Capabilities of IDDI. ACM, 2003.

[BBB+05] Battle, S., Bernstein, A., Boley, H., et al. Semantic Web Services Framework
(SWSF). W3C Member Submission, May 2005;
available at http://www.w3.org/Submission/2005/07/ (2005).

[BGO+04] Baida, Z., Gordijn, J., Omelayenko, B., and Akkermans H. A Shared Service
Terminology for Online Service Provisioning. In ICEC04, Delft, Netherlands, 2004.

[BHL01] Berners-Lee, T., Hendler, J. and Lassila, O. The Semantic Web. Scientific
American, May 2001.

[BLW04] Balzer, S., Liebig, T., Wagner, M. Pitfalls of OWLS: A Practical Semantic Web Use
Case. ACM Press New York, NY, USA, 2004.

[Boo97] Booch, G. Object-Oriented Analysis and Design: With Applications. Addison-
Wesley, 1997.

[CiM05] Cimpian, E., and Mocan, A. WSMX Process Mediation Based on Choreographies.
In: 1st Int’l Workshop on Web Service Choreography and Orchestration for
Business Process Management (BPM 2005), 2005.

[DHK+05] Deb, M., Helbig, J., Kroll, M., Scherdin, A. Bringing SOA to Life: The Art and
Science of Service Discovery and Design. In SOA Web Services Journal, 27 Dec.
2005;
available at http://webservices.sys-con.com/read/164560.htm (2005).

[Ele+05] Elenius, D. et al. The OWL-S Editor – a Development Tool for Semantic Web
Services. In Proc. of the 2nd European Semantic Web Conference (ESWC2005),
Heraklion, Crete, May 2005.

[FHH03] Files, R., Hayes, P., and Horrocks, I. OWL-QL – a Language for Deductive Query
Answering on the Semantic Web. Stanford University, 2003.

[FHH03b] Fikes, R., Hayes, P., and Horrocks, I. OWL Query Language (OWL-QL) Abstract
Specification; DARPA Agent Markup Language (DAML) Program; October 13,
2003.

[FHH03a] Fikes, R., Hayes, P., and Horrocks, I. DAML Query Language (DQL) Abstract
Specification; Joint United States/European Union ad hoc Agent Markup Language
Committee; DARPA Agent Markup Language (DAML) Program; April 1, 2003;
available at http://www.daml.org/2003/04/dql/ (2005).

[Gru93] Gruber, T. Towards Principles for the Design of Ontologies Used for Knowledge
Sharing. In: N. Guarino and R. Poli. Formal Ontology in Conceptual Analysis and
Knowledge Representation, Deventer, 1993.

49

Bibliography

[Hay05] Hayward, S. Service-Oriented Architecture Adds Flexibility to Business Processes,
In: Positions 2005, 2005.

[Huh02] Huhns, M.N. Software agents: The Future of Web Services. Technical report,
University of South Carolina, Department of Computer Science and Engineering,
2002.

[InT92] Information Technology – Database Languages – SQL". ISO/IEC 9075:1992,
American National Standards Institute, New York, N.Y., 1992.

[Ire03] Irek, C. Realizing a Service-Oriented Architecture with .NET. 15 Seconds, 2003;
available at http://www.15seconds.com/issue/031215.htm (2005).

[JRM+00] Jaeger, M. C., Rojec-Goldmann, G., Muhl, et al. Ranked Matching for Service
Descriptions Using OWL-S. Technical Report, TU Berlin, Institute of
Telecommunication Systems.

[KaC03] Karvounarakis, G. and Christophides, V. The RDF Query Language (RQL). Institute
of Computer Science, Foundation of Research Technology, Hellas, Greece, July 18,
2003;
available at http://139.91.183.30:9090/RDF/RQL/ (2005).

[Kay03] Kaye, D. Loosely Coupled: The Missing Pieces for Web Services. RDS Associates
Inc. 2003.

[KLW95] Kifer, M., Lausen, G., and Wu, J. Logical Foundations of Object-Oriented and
Frame-Based Languages. JACM, 42(4), 1995.

[Llo87] Lloyd, J.W. Foundations of Logic Programming. Springer, 1987.

[MaM03] Mandell, D. J., and McIlraith, S. A. Adapting BPEL4WS for the Semantic Web: The
Bottom-Up Approach to Web Service Interoperation. In: Proc. of the 2nd Int’l
Semantic Web Conference (ISWC2003), 2003.

[MaM04] Malveau, R., Mowbray, Th. J. Software Architecture: Basic Training. In: Prentice
Hall PTR, 16 Apr. 2004.

[Mar03] Marchiori M. XML Query (XQuery). World Wide Web Consortium, September 23,
2003;
available at http://www.w3.org/XML/Query (2005).

[MDC+03] Motta, E., Domingue, J., Cabral, L. and Gaspari, M. IRS-II: A Framework and
Infrastructure for Semantic Web Services. In: 2nd Int’l Semantic Web Conference
(ISWC2003). Springer Verlag, October 2003.

[MSZ01] McIlraith, S., Song, T., Zeng, H.: SemanticWeb services. IEEE Intelligent Systems,
Special Issue on the Semantic Web 16, 2001.

[NaM02] Narayanan, S., McIlraith, S. Simulation, Verification and Automated Composition
of Web Services. In: Proc. of the 11th Int’l World Wide Web Conference
(WWW2002), Honolulu, Hawaii, May 2002.

50

Bibliography

[OLP+04] Olmedilla, D., Lara, R., Polleres, A., and Lausen, H. Trust Negotiation for Semantic
Web Services. In: 1st Int’l Workshop on Semantic Web Services and Web Process
Composition (SWSWPC 2004), 2004.

[PaH04] Pan, F., Hobbs, J.R. Time in OWL-S. University of Southern California. 2004.

[Pao02] Paolucci, et al. Semantic Matching of Web Services Capabilities. In: 1st Int.
Semantic Web Conference (ISWC), Springer, 2002.

[PKP+02] Paolucci, M., Kawamura, T., Payne, R. R., and Sycara, K. Semantic Matching of
Web Services Capabilities. ISWC2002, 2002.

[POS+04] Patil, A., Oundhakar, S., Sheth, A., and Verma, K. METEOR-S Web Service
Annotation Framework. In: Proc. of the 13th Int’l World Wide Web Conference
(WWW2004), 2004.

[ScB05] Scharffe, F., and Bruijn, J. de. A Language to Specify Mappings between
Ontologies. In IEEE SITIS’05, Yaound´e, Cameroon, Nov. 2005.

[SiH05] Singh M.P., Huhns M.N. Service-Oriented Computing: Semantics, Processes,
Agents. John Wiley & Sons, 2005.

[SiP04] Sirin, E., and Parsia, B. The OWL-S Java API. Nov. 2004.

[SPS04] Srinivasan, N., Paolucci, M., and Sycara, K. Adding OWL-S to UDDI,
Implementation and Throughput. In: 1st Int’l Workshop on Semantic Web Services
and Web Process Composition (SWSWPC 2004), July 2004.

[SPW+04] Sirin, E., Parsia, B., Wu, D., et al. HTN Planning for Web Service Composition
Using SHOP2. 1(4), 2004.

[Szy02] Szyperski, C. Component Software: Beyond Object-Oriented Programming.
Addison Wesley, 2002.

[VSS+05] Verma, K., Sivashanmugam, K., Sheth, A., et al. METEOR-S WSDI: A Scalable
Infrastructure of Registries for Semantic Publication and Discovery of Web
Services. In: Journal of Information Technology and Management, Special Issue on
Universal Global Integration, 6(1), Kluwer Academic Publishers, 2005.

Web References

[ACD+03] Andrews, T., Curbera, F., Dholakia, H. et al. Business Process Execution Language
for Web Services version 1.1. Specification, May 2003;
available at http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
(2006).

[AFM+05] Akkiraju, R., Farrell, J., Miller, J., et al. Web Service Semantics – WSDL-S. W3C
Member Submission, Nov. 2005;
available at http://www.w3.org/Submission/2005/10/ (2006).

51

Bibliography

[ApA06] Apache Axis;
available at http://ws.apache.org/axis/ (2006).

[AWS06] Amazon Web Services;
available at http://www.amazon.de/exec/obidos/tg/browse/-/3516041/302-5490053-
8135212 (2006).

[BBD+05] Bruijn, J. de, Bussler, C., Domingue, J., et al. Web Service Modeling Ontology
(WSMO). W3C Member Submission, April 2005;
available at http://www.w3.org/Submission/2005/06/ (2006).

[BCE+02] Bellwood, T. et al. UDDI Version 3.0, October 2004;
available at http://uddi.org/pubs/uddi_v3.htm (2006).

[BOE06] Bootstrapping Ontology Evolution with Multimedia Information Extraction;
available at http://www.boemie.org/ (2006).

[CCM+01] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. Web Services
Description Language (WSDL) 1.1., March 2001;
available at http://www.w3.org/TR/wsdl (2006).

[CoM06] CoreMedia AG;
available at http://www.coremedia.com/ (2006).

[DAR06] The DARPA Agent Markup Language Programme;
available at http://www.daml.org (2006).

[DIP06] Data, Information, and Process Integration with Semantic Web Services;
available at http://dip.semanticweb.org/ (2006).

[Ewe06] Electronic Business Using XML (ebXML);
available at http://www.ebxml.org/ (2006).

[InA06] InfoAsset AG;
available at http://www.infoasset.de/ (2006).

[Kno06] Knowledge Interchange Format;
available at http://logic.stanford.edu/kif/kif.html (2006).

[KWe06] Knowledge Web FP6-507482;
available at http://knowledgeweb.semanticweb.org/ (2006).

[LLS06] Landesinstitut für Lehrerbildung und Schulentwicklung, Hamburg;
available at http://www.li-hamburg.de/ (2006).

[MBH+04] Martin, D., Burstein, M., Hobbs, J. et al. OWL-S: Semantic Markup for Web
Services. W3C Member Submission, Nov. 2004;
available at http://www.w3.org/Submission/2004/07/ (2006).

[Met06] METEOR-S: Semantic Web Services and Processes;
available at http://lsdis.cs.uga.edu/projects/meteor-s/ (2006).

52

Bibliography

[MIN06] MINDSWAP: Pellet;
available at http://www.mindswap.org/2003/pellet/ (2006).

[Mod02] Modi, T. WSIL: Do we Need Another Web Services Specification? In: Web
Services Architect, 16 January 2002;
available at http://www.webservicesarchitect.com/content/articles/modi01.asp
(2006).

[MOF04] Meta-Object Facility. Technical report, the Object Management Group, 2004;
available at http://www.omg.org/technology/documents/formal/mof.htm (2006).

[OAS05] The OASIS SOA Reference Model Technical Committee;
available at http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-
rm (2005).

[ORD06] Oracle Relational Database;
available at http://www.oracle.com/index.html (2006).

[OWL04] OWL Technical Committeee. OWL Web Ontology Language;
available at http://www.w3.org/2004/OWL/ (2006).

[RAC06] RACER Systems. RACER An Inference Engine for the Semantic Web;
available at http://www.racer-systems.com/de/index.phtml?lang (2006).

[RaM06] RacerManager;
available at http://racerproject.sourceforge.net/ (2006).

[RDF06] Resource Description Framework (RDF);
available at http://www.w3.org/RDF/ (2006).

[PLL06] Polleres, A., Lausen, H., Lara, R. Semantische Beschreibung von Web Services;
available at http://members.deri.at/~axelp/publications/poll-etal-2006.pdf (2006).

[San06] Sandia National Laboratories. JESS – The Rule Engine for Java;
available at http://www.jessrules.com/ (2006).

[SEE06] Semantic Execution Environment Technical Committee;
available at http://xml.coverpages.org/OASIS-SemanticEx-CFP.html (2006).

[SEK06] Semantically-Enabled Knowledge Technologies;
available at http://www.sekt-project.com/ (2006).

[Soa03] SOAP Version 1.2 Part 0: Primer. W3C, June 2003;
available at http://www.w3.org/TR/2003/REC-soap12-part0-20030624/ (2006).

[SoS06] Sonic Software;
available at http://www.sonicsoftware.com/index.ssp (2006).

[SpF06] Spring Framework;
available at http://www.springframework.org/ (2006).

53

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

Bibliography

[Sys06] Systinet;
available at http://www.systinet.com/ (2006).

[SWS06] Semantic Web Services Interest Group;
available at http://www.w3.org/2002/ws/swsig/ (2006).

[WSM+06] WSMOJ;
available at http://wsmo4j.sourceforge.net/ (2006).

[WSP06] Web Services Policy Framework;
available at http://www-128.ibm.com/developerworks/library/specification/ws-
polfram/ (2006)

[WST06] Web Service Modeling Toolkit (WSMT);
available at http://sourceforge.net/projects/wsmt (2006).

[WWF06] W3C Workshop on Frameworks for Semantics in Web Services Summary Report;
available at http://www.w3.org/2005/04/FSWS/workshop-report.html (2006).

54

	Chapter 1Introduction
	1.1Motivation
	1.2Objectives
	1.3Structure of This Work

	Chapter 2Conceptual and Technological Background
	2.1Principles of Service-Oriented Architectures
	2.2Current SOA Implementation: Web Services
	2.3Semantic Web Technology
	2.3.1RDF
	2.3.2OWL
	2.3.3OWL-QL

	2.4Semantic Web Services Description
	2.4.1OWL-S
	2.4.2WSML/WSMO
	2.4.3WSDL-S

	2.5Semantic Web Service Discovery
	2.6Summary

	Chapter 3Requirements Analysis
	3.1HMI Platform
	3.2Services Discovery Analysis in HMI
	3.2.1Use Cases for User-Centered Service Discovery in HMI
	3.2.2Requirements for User-Centered Discovery Service

	3.3Domain Analysis
	3.4Summary

	Chapter 4Design of User-Centered Discovery Service for HMI
	4.1Semantic Description of the HMI Services
	4.2Query Patterns
	4.3Evaluation
	4.4Summary

	Chapter 5Concluding Remarks
	5.1Summary
	5.2Outlook
	Bibliography
	Web References

