
Study Literature of

Model-based Testing For Test Integrity

Sanga Lawalata

Matriculation number :29446

Student Project

submitted in partial fulfillment of Master Program

in Information and Media Technologies

Supervised by

Prof. Dr. Ralf Möller

Software, Technology and System (STS)

Technical University of Hamburg Harburg

March 2006

Acknowledgments

First of all, I would like to thank Prof. Dr. Ralf Möller from Software, Technology and

Systems (STS), Technical University of Hamburg-Harburg, for providing this topic of

Student Project and thus, giving me chance to further discover about Media Based

Testing.

I would like to thank Ralph Lembcke as my project supervisor in Airbus, for all his

ideas, guidance, and encouragement through this project.

Lastly, I am grateful for all helpful suggestion and support from my friends during my

work.

2

Table of Contents
Acknowledgments..2
1 Introduction...5

1.1 The Motivation..5
1.2 The Purpose...6
1.3 Structure Of The Work..6

2 System (software and hardware) testing...7
2.1 White Box Testing...7
2.2 Gray Box Testing...9
2.3 Black Box Testing...9
2.4 The Model­Based Testing...10

2.4.1 Model...10
2.4.2 Building the model..11

3 CIDS­SIB..15
3.1 CIDS­SIB Overview..15
3.2 CIDS Overview...15

3.2.1 Director..16
3.2.2 Decoder Encoder Units (DEUs)..16
3.2.3 Passenger Interface and Service Adapter (PISA)...17

...18
3.3 Cabin Functionality Testing Overview..19

4 Analysis and Design...20
4.1 What is System Health Check...20
4.2 System Testing Overview..20
4.3 Director...21
4.4 Making the model...23

4.4.1 Model the system behavior..23
4.4.2 Script generator...28
4.4.3 Running the test script...29
4.4.4 Analysis of the Implementation..30

5 Conclusion..31
List of Abbreviations Acronym Description..33
 ..34
References..35

3

Illustration Index
Drawing 1: Sequential If Branching Illustration..8
Drawing 2: General Overview Of System Under Test...11
Drawing 3: Transaction State II...13
Drawing 4: CIDS­SIB Testing Environment..18
Drawing 5: General Overview of SIB­CIDS...20
Drawing 6: The CIDS­SIB Environment...20
Drawing 7: DEESi Environment..21
Drawing 8: Command Structure Tree..22
Drawing 9: PaxCall Led State Diagram..24
Drawing 10: Reading Light State Diagram..24
Drawing 11: The System Health Checking Sequence..26

4

1 Introduction
System testing (hardware or software) goal is to find „the error“. It is important for a

system to be tested in order to see if the system has already fulfilled the system

specifications. Several testing methods are presented. They are based on the system

characteristics and requirements.

In the beginning, system testers tested the system using „hands“ or manually. For

software or hardware that is related with a computer system, it is possible to make

automatic testing and let the computer change the role of the „human“ from “hands on”

testing to writing „ testing scripts“.

While developing the system automatic testing, the system itself often starts growing

and becomes more complex. Because of this the test scripts become obsolete and can't

be used to test the system anymore without modification to be under taken. Maintaining

test scripts is an important factor that must be considered but often maintaining test

scripts, caused by system changes, consumes more time than is actually spend inside

system testing.

The Airbus A380 Aircraft is the latest and the largest very-long-range, four engine

subsonic commercial transport. It introduces new cabin functionalities which includes

cabin automatic customization based on the cabin configuration. To test the cabin

functionalities, automatic testing in the testing environment is performed.

1.1 The Motivation

To make sure full interoperability of cabin functionalities, automatic testing is

performed in the testing environment. It is important to make sure before performing

cabin functionalities testing that the testing environment is in a good condition so that

the healthy checking script is needed. So that the system tester can have the the test

result which are not effected by the testing environment. Health checking script will be

needed to test the testing environment.

5

1.2 The Purpose

The purpose of this project is to present a literature research of the Model-based testing

concept and discuss the possibility of its implementation within System Integration Test

Bench Health Check. the implementation of this Model-based testing may offer

automatic and dynamic system testing in the growing test environment.

1.3 Structure Of The Work

What is the idea of system testing (software and hardware) will be described briefly in

chapter 2. This chapter also includes the basic overview, the ideas, how to implement,

the advantages and disadvantages of Model-based testing.

Subsequently, chapter 3 will give the overview of System Integration Bench and how it

works to perform cabin functionality testing.

Chapter 4 is bringing Model-based testing and SIB together, model generation, how the

possibility automated automatic testing script is generated, results and the reason why it

does go like it is expected before.

Chapter 5 is conclusion, derived from results in chapter 4.

6

2 System (software and hardware) testing
In System testing, it is important to know not only if the system does what it is

supposed to do, but also if it does things it isn't supposed to do. The idea is not to find

that the tested system is working without error but to find the system error or

misbehavior. This is because no error found can be „there is no error“ or „the errors that

haven't been found yet“.

It is important because finding the error as soon as possible will produce more mature

systems and save lots of resources. There are many methods to test a system. Usually

the method is chosen based on the characteristics of system under test.

Considered a whole system as a big modules collection, there is no single testing

method that can be applied completely in one system and will „answer“ all the test

requirements. If it is needed, several testing methods can be combined to test „one big

system“. This means that it is possible to use several testing methods to test several

modules in „one big system“.

Another idea which often appears in system testing is “exhausted testing”. It means to

try to put all “possible load or input ” to the system.

2.1 White Box Testing

White box testing is „also know as a glass box, structural, clear box, and open box

testing“ [14]. White box testing often is called unit testing. A unit is commonly a small

part of the system and is defined by a system developer. For an example in software, a

unit can be a single procedure or functions or maybe the whole program can be a unit,

when nested in a bigger software system. The system testers know the „internal process

of the system under test“ which later is used to choose the set of input data. In the

software development, programmers can take over the unit testing because they know

the internal process of the unit so that they can choose a set of input data to test. This

will reduce the size of the data set used for input, just focus on the specific data which

will (hopefully) affect the unit. The drawback (still in the same example) is the

programmer tends to prove or test that the unit or program is working which is called

human psychology factor. Because the programmer, psychology, is connected with the

unit that they produced. A external programmer who has at least the same knowledge

but was not involved in developing the unit, should perform the unit test to find the

error.

7

Knowing the internal process of the unit doesn't guarantee that unit tester can perform

“exhausted testing” even though the system testers have defined a limited set of data

instead of “whole data”. The time to test “all internal process“ such as branching,

looping etc will grow exponentially.

For example, look at the picture above, it reflects a sequential process in one software.

Each circle reflects branching or „if state“. In this example testing all “if state” is “the

testing requirement”. A testing will run 20 times, total time to test each branching or

circle is 5 minutes. The total test time is t=520519518...50 if the decision

(if state) is independent [10]. At the end the white box testing can't guarantee that all the

„possible path is tested“. Time to perform testing will grow exponentially based on the

testing requirements.

8

Drawing 1: Sequential If Branching Illustration

if

if if if

if

if

if

2.2 Gray Box Testing

Gray box testing combines white box techniques with black box input testing [7].

Because system testers don't know all internal process of system under test, they use the

partial known knowledge to test the system. In general, many system under tests are a

„gray box environment“. Usually complex system, which consist of lots of smaller

black box modules, can form a gray box system.

2.3 Black Box Testing

Black box testing is „also known as functional testing. A software testing technique

whereby the internal workings of the item being tested are not known by the tester“ [3].

It can be called verification test. System testers know the expected output and will

evaluated the system output to decide if the system meets the requirements. The system

testers just supply input to the system and evaluated the output of the system. They don't

know the internal process of the system (completely hidden). At the end the system

testers will evaluate if the system has met its requirement by comparing the measured

result and the system specification.

One of the advantages is that the system tester doesn't need to know the internal

„processes“ of the black box system. He/she can design the test case as soon as

specifications are completed because the system specification defines the set of input

data and which output data they will produce.

Black box testing has a few drawbacks. Because „Testing is the process of executing a

program with the intent of finding errors“ [10], there is an idea to use „exhaustive input

testing“ which means to use all possible inputs to find the error not only using a defined

input out of the specification. Instead of to verify that the system provides “correct

behavior” based on defined input, the system must be verified also that it doesn't do

anything unwanted for sets of “undefined input”.

The first drawback using the „exhaustive input testing“ in black box testing is the

system testers should input not only „the valid inputs“ but also „the wrong inputs“. This

results in testers must supply „all possible input“ which will soon result in „infinite

number of input“ which is impossible to execute. The second drawback is the system

testing environment must be considered as a factor that will effect the result of back box

testing. There is no system that is actually independent from its environment. The

system tester must distinguish if there is an error, it is caused by the system under test or

9

testing environment. It is important when performing black box testing, system tester

must be sure that the testing environment is ready to test the system under test and

doesn't affect the system under test.

2.4 The Model-Based Testing

„Model-Based Testing is the automatic generation of efficient test procedures/vectors

using models of system requirements and specified functionality.“ [6].

The idea behind Model-based Testing is automatic system testing based on a model.

What is a model is explained in section 2.4.1, how to build the model and how to

generate automatically the test script will be explained in section 2.4.2 .

2.4.1 Model

A system model is a „copy“ or a mimic of the systems behavior. „Behavior can be

described in terms of the input sequence accepted by the system, the action, conditions,

and output logic, or the flow of data through the application's modules and routines“ [6].

A model can hide the system complexity, internal processes and later can be used to

analyze the system structure.

Hiding the system complexity means either system tester and automatic script generator

see the system as a collection of models. They test and manipulate the model, but they

don't know the internal process of the model. Taken a lamp switch for example, from

system testers point a view, they know and see only a switch that will turn on or off if

they push the button. But they don't know internally how the switch works, e.g. how it

looks in the on or off state. The switch hides the internal specific process. Hiding the

system complexity and internal specifics how it works, replaced by a model makes its

possible to create the what is called a “framework” or a standard. Two systems with the

same behavior can share the model, even though the internal process details may be

different. Different switches have their on internal process, but they share the same

action, turnOn() (defined as a method to show an action) and turnOff(). The

implementation of the turnOn() and turnOff() method will be specific dependent on the

switch company. Each switch company can defined their own specific internal process

to turn on and turn off switch.

There is no model that can present entirely all one system because a big system is often

to complex to be described by one model only. Complex system can be broken down

into smaller model that are connected each other. Smaller model is much more easy to

10

build and tested. Based on the system characteristic and testing requirements, the model

(or collection of models) is chosen.

2.4.2 Building the model

To define a model of the system under test, the steps are :

1. Based on the accepted input sequence, the action and output logic, The System

Under Test (SUT) can be defined by a set of states and state transitions which

are triggered by inputs.

Expected SUT behavior can be described by a transition table, consisting of

starting state (previous state), action (input), and ending state (current state).

Starting State

(Previous State)

Action

(Input)

Ending State

(Current State)

State1 input1 State2

State2 input2 State3

State1 input3 State3

State3 input1 State3

It is possible to make a model of „an action“ or a SUT behavior in form of a

transition function. Within a transition function definition „When this action is

possible“ is a “starting state”, „action“ is “input”, and „What the outcome of

executed action“ is a “ending state”.

input -> Transition Function -> output

FT : s0, i0s1

s0,s1 :states

s0,s1∈S

in :Input

in∈In

11

Drawing 2: General Overview Of System Under Test

System
Under Test

Input Output

S=set of all states

I=setof all input

A set of actions with sets of starting states and next state can be illustrated as a

direct graph :

s0 s1 s3

2. When „sequencing“ the „current state“ through the different states by applying

defined inputs, the inputs used define the input sequence (

i1 ,i2 , i3 , i4 , ... , in).

3. each state Sn is assigned a set of valid input symbols as dictated by SUT

specification. Input symbols that are allowed to apply when in the simulation

state n is in , for example Is1=i1 , i3 , Is2=i2

4. Let the computer search the most possible path through the direct graph.

Possible means to reach all states which are connected with a set of inputs and

no connected states aren't visited. Time, cost, computer times are things that

must be considered when selecting the path. Random walk is the easiest way

(and most often poorest) to search the possible path. But it is seldom leaving few

states untouched (without being covered) or maybe facing „looping“ that makes

the total of time for testing longer. For „a bigger or complex model“ with lots of

states and possible input combinations, random walk is not efficient anymore.

One of the efficient algorithm that is currently used is „the Chinese postman

walk“. “ ... how to find a shortest closed walk of the graph in which each edge is

traversed at least once, rather than exactly once. In graph theory, an Euler cycle

in a connected, weighted graph is called the Chinese Postman problem.” [4].

With this algorithm, the computer will search all possible paths with all the

nodes being visited at least once.

12

Starting State Next State Next State

5. Later there is „an efficient walk“, based on „the Chinese Postman Walk“ which

eliminates the actions that don't change state.

Previous State

(Starting State)

Input

(or Action)

Current State

(Ending State)

State1 input1 State2

State2 input2 State3

State1 input3 State3

(State3) (input1) (State3)

6. Input, in general point of view, is something that can trigger a change of state.

„Input implementations“ means to make a „method“ which can be called by the

test generator. Define the „method“ to generate input. Later the test script

generator puts this method inside the generated test script to generate input.

No error doesn't mean that the system is free from error. There are two

possibilities. One is there is error free, the other is no error has been found yet.

13

Drawing 3: Transaction State II

S1 S1

S1

i1

i3 i2

i1

System tester can be „more subtle where there is no error”, which means :

1. During the testing, automatically generated test scripts can report to the

tester that one functionality is not found yet or not yet implemented by

the system under test.

2. Knowing the last state value, tester can create the „test routine“ to check

if the value is either expected or unexpected.

14

3 CIDS-SIB

3.1 CIDS-SIB Overview

The Cabin Intercommunication Data System(CIDS)-System Integration Bench (SIB) is

a platform that supports the testing of the CIDS, which is the cabin core system for

illumination control, public address and many other functions.

The CIDS-SIB is divided into 2 sub systems, which are :

1. Simulation of the aircraft electronic bay related systems.

2. Simulation of the cabin-related systems.

Besides these two main systems, there are some auxiliary units like power supplies. To

run all aircraft parts of CIDS, there are power supplies that supply 28 V DC and 115V

AC. It has capabilities to simulate over-, under-voltages and power interruptions. All

these simulation systems serve operating the CIDS, which is the System Under Test.

3.2 CIDS Overview

CIDS consists of :

• Three redundant main computer (Directors)

• One or more Flight Attendant Panels (FAP)

• The Data Buses (two types – Top and Middle Lines)

• The Decoder Encoder Units (DEU-A and -B)

AFDX, Ethernet, and CAN are protocols used for message transfer between the

Directors and other aircraft systems or the simulation system respectively.

All the aircraft devices, which are installed on an aircraft inside the cabin, connect to

CIDS through several Decoder-Encoder Units. The simulation system that substitute

these devices on the SIB is called DEESi, which is an abbreviation for DEU Electrical

Environment Simulation (DEESi). The DEESi system simulates all original cabin parts

and also monitors the data exchange between the Decoder-Encoder Units and the

original equipment parts if installed.

Based on the Airbus documentations, several tools to monitor CIDS operation are

available to the tester

• ZOC : is a Debug and Maintenance interface on the Director. As explained

later, this port will be used to trigger „some actions“ at the DEUs independent

from the „cabin configuration“.

15

• DEESi system : can be used as a monitor to read or to set the current state or

value of specific simulators. These states relate to the state of the outputs and the

DEUs and the history of the state's sequence.

• fdXplorer : to monitor the AFDX message traffic. The monitored messages are

in „raw message in a duration time“, to be analyzed during CIDS testing.

• CIDS-Bus-Simulator : to monitor internal traffic message between the directors

and the DEUs.

• CANalyzer : to monitor and analyze CAN bus systems.

3.2.1 Director

The Director is „a special computer system“ that deals with all cabin functionalities.

The Director is connected to the original equipments through DEUs. Inside the 3

redundant directors, there is „a cabin configuration function“ with controls the PA

distribution, illumination control according to the cabin layout, i.e. number of set rows,

classes, class boundaries etc.

3.2.2 Decoder Encoder Units (DEUs)

Decoder Encoder Units (DEUs) are interfaces between the CIDS Buses and the cabin

devices. they decode and format data from the director to the cabin devices and vise

versa encode data received from cabin devices and send it to directors.

There are 2 type of DEUs servicing the following sets of equipment :

• DEU-A

• Up to 8 Illumination Ballast Units (IBU)

• Up to 8 Passenger Interface and Service Adapter (PISA)

• DEU-B

• Up to two Handsets

• Up to two Attendant Indication Panels (AIP)

• Up to two Area Call Panels (ACP)

• Up to two Additional Attendant Panels (AAP)

• an Emergency Power Supply Unit (EPSU)

16

• an Ice Protection Control Unit (IPCU)

• several smoke sensor (interconnected via a CAN Bus).

DEUs need 28 V normal and 28 V essential power supply.

3.2.3 Passenger Interface and Service Adapter (PISA)

Connected to each PISA are :

• a loudspeaker

• Signs (Fasten Seat Belt – FSB, No Smoking – NS, Return To Seat – RTS)

• Up to four reading lights, also used as decor, spot and attendant work lights

• Up to two passenger call lights/switches (PAX call)

A single PISA needs 115 V and additional 28V sourced by the DEU.

17

Drawing 4: CIDS­SIB Testing Environment

18

Director 3

Discretes
CABIN PRESSURE

DIRECTOR CODE

OIL PRESSURE

LD OPERATION

Cabin
EMERGENCY LIGHT

VIDEO CONTROLLER

Director 2

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

READING/DECOR/WORK LIGHT

GENERAL CABIN ILLUMINATION

PASSENGER LIGHTED SIGNS LOUDSPEAKER PASSENGER CALL DEVICES CLASS DIVIDER CODING

SPARES

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

TOUCH
SCREEN

FAP

C
O

D
E

other
Systems

FAP

C
O

D
E

MAIN DECK

LOWER DECK

TOP LINE CUT OFF RELAYS

28 VDC Essential BUS

28 VDC Service Bus

HANDSET

EMERGENCY POWER SUPPLY UNIT

ATTENDANT INDICATION PANEL

IPCU

AREA CALL PANEL

TEMP SENSOR

ADDITIONAL ATTENDANT PANEL INFO SIGNS

SPARES

COD
E

DEU B

COD
E

DEU B

COD
E

DEU B

COD
E

DEU B

COD
E

DEU B

SERVICE INTERPHONE JACKS

CARGO COMPARTMENT

6 TOP LINES

MAX.12 DEU´s
TYPE A PER

LINE
 (∑ 72 UD)

UPPER DECK

TS
AAP

TS
AAP

TS
AAP

TS
AAP

TOUCH
SCREEN

FAP

C
O

D
E

other
Systems

FAP

C
O

D
E

TS
AAP

TS
AAP

TS
AAP

TS
AAP

EBT
CONTOL BOXSMOKE

SENSOR
SMOKE
SENSOR

SMOKE
SENSOR

SMOKE
SENSOR

FIRE
EXTINGUISHING BOTTLE(S)

2 SMOKE
LINES

CAN BUS
MAX. TBD

SMOKE
SENSORS

COCKPIT
TEST SWITCH

SMOKE WARNING LIGHTS

E/E Compartment
FW IMA

LG IMA

SCI CMS

DSMS

LCVU

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

COD
E

DEU B

COD
E

DEU B

COD
E

DEU B

COD
E

DEU B

COD
E

DEU B

SMOKE SENSOR

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

COD
E

DEU A

COD
E

DEU B

COD
E

DEU B

COD
E

DEU B

COD
E

DEU B

COD
E

DEU B

Director 1

SMOKE
DETECTION
FUNCTION

Cockpit
HANDSET

SVCE INTPH OVRD SWITCH

CALL PANEL

EVAC CONTROL PANEL

SIGNS CONTROL PANEL

COCKPIT DOOR SWITCH

DATA LOADER

E/E Compartment
CPC IMA

ELMU

DSMS

ECS IMA

SCI (CMS)

SFCC

FW IMA

LG IMA

AMU

SEPDS

PESC

CINS

28 VDC TBD BUS

Option

Option
SCSC CABIN

CONFIGURATION
FUNCTION

MAX 5 TS AAP PER
FAP

6 TOP LINES

MAX.12 DEU´s
TYPE A PER

LINE
(∑ 72 MD)

2 MIDDLE LINES

MAX.12 DEU´s
TYPE B PER

LINE
(∑ 2 4 MD)

4 TOP LINES

MAX.12 DEU´s
TYPE A PER

LINE
 (∑ 4 8 LD)

2 MIDDLE LINES

MAX.12 DEU´s
TYPE B PER

LINE
(∑ 2 4 LD)

2 MIDDLE LINES

MAX.12 DEU´s
TYPE B PER

LINE
 (∑ 2 4 UD)

AVIONIC COMPARTMENT

SMOKE
SENSOR

SMOKE
SENSOR

SMOKE
SENSOR

SMOKE
SENSOR

2 SMOKE
LINES

CAN BUS
AVIONIC

MAX. TBD
SMOKE

SENSORS

23.04.02

EBT
CONTOL BOX

FIRE
EXTINGUISHING BOTTLE(S)

CFVS TBC

3.3 Cabin Functionality Testing Overview.

Before running any test, the tester will load a DEESi configuration to set the initial

values of all simulations. Based on the test case, the tester will „change the state of

simulators“ through display and command programs to create stimulus to the SUT

CIDS. One of these programs is the ASCIIBanz terminal. The director will then „react“

and change the CIDS system state, based on the „cabin configuration“ which will

trigger subsequent state change on the simulators. Different „cabin configurations“ will

result in different „current states of CIDS and simulators respectively“. The current state

of CIDS and simulators can be read using i.e the ASCIIBanz again. Later after testing,

all the „current states of the simulators“ will be analyzed based on the „system

specification“ to judge whether the test case is failed or passed.

Using the ASCIIBanz, the tester can run „automatic testing“. The tester will make and

run scripts which will produce a log file for later analysis.

19

4 Analysis and Design

4.1 What is System Health Check

Before running any test, the tester needs to be sure that the CIDS-SIB is in „healthy

condition“. „Healthy condition“ means at least there are no hardware defects that later

would affect CIDS testing result. For example : a tester, based on a test case, wants to

turn on a FSB LED. FSB can be set i.e. by setting the directors FSB-Cockpit switch to

„on“ position. If the FSB LED isn't turned on, there are two possible reasons : that the

LED is broken or the LED isn't assigned in „the cabin configuration“.

4.2 System Testing Overview

20

Drawing 5: General Overview of SIB­CIDS

Tester

SIB-CIDS

 OutputInput

Drawing 6: The CIDS­SIB Environment

Director
DEU

Cabin
Configuration

PISA

decode

DEESi

(simulation
system)

decode

encode encode

4.3 Director

The director is considered as a „gray box system“. It has a cabin configuration system

inside. The Director, as explained before, is “a device” that deals with all cabin

functionalities.

As explained before that director has a ZOC, a debug and maintenance interface. In the

picture 8, it defines the structure of all commands to control all devices connected to

CIDS. There are commands for Director, DEU-A and DEU-B. Because the PISAs are

attached in the DEU-A devices, their commands becomes part of the DEU-A

commands.

21

Drawing 7: DEESi Environment

Stimulus

RL Switch
PaxCall Switch

Gray Box
(hiding

DEUs and
Director)

4xRL
2xPaxCallSign
1xLoudspeaker

1xFsb
etc...

Measures

Inputs Output

The following table shows all commands r to control all connected equipment through

a PISA based on documentation internal AIRBUS Documentation[8].

NO Commands Devices

1. pcl1 paxCall light led button 1

2. pcl2 paxCall light led button 2

3. fsb fasten seatbelt led

4. fsba external fasten seatbelt led

5. ns non smoking led

6. nsa external non smoking led

7. rls reading light sign

8. rldim reading light dim

9. rlm reading light mode

10. audon audio on

22

Drawing 8: Command Structure TreeAll Commands

Deu-A
Commands

Deu-B
Commands

Pisa Commands

IBU Commands

Director
Commands

DEU A
Discrete

Commands

....

....

....

....

....

....

....

NO Commands Devices

11. audvol audio vol

12. audch audio channel

13. 28vEss power supply

This table shows what DEUs need to be operable

NO Power Requirements

1. 28vNorm power supply

2. 28vEss power supply

This table shows what PISAs need to be operable.

NO Power Requirements

1. 28vNorm power supply

2. 115v power supply

4.4 Making the model

4.4.1 Model the system behavior

The Directors, DEUs, PISAs, and simulator equipments are considered as one big gray

box system. All the Director inputs are considered as an action that will change its

states.

System tester need to know that all LEDs are working. So that in this circumstance,

“LED working” is the behavior system which is to be modeled.

Let's say the first action (system behavior) related with Passenger Call Button Led is

defined as PaxCallLedWorking. Inside PaxCallLedWorking, there are 2 different

actions which are turnOnPaxCallLed and turnOffPaxCallLed.

23

The second action is ReadingLightWorking. Inside ReadingLightWorking, there are 2

different actions which are turnOnReadingLightLed and turnOffReadingLightLed.

ReadingLightLed has another value which is dim value. The reading light can be turned

on but it isn't visual on because the dim value is zero or in small numbers.

24

Drawing 10: Reading Light State Diagram

Reading
Light Off

Reading
Light On

dim>0
om

dim=0
off

offon

dim++
dim­­

.

Drawing 9: PaxCall Led State Diagram

Led OffLed On

off

off
on

Additionaly addDimRlVal and subtrDimRlVal actions are defined to add and substract

the reading light dim value and readDimRlVal to get the current value of dimming.

Until now these are the list of modeled actions :

• PaxCallWorking(), consists of turnOnPaxCallLed() and turnOffPaxCallLed().

Starting State Action Ending State

PaxCall_1_Off turnOnPc1 PaxCall_1_On

PaxCall_1_On turnOnPc1 PaxCall_1_On

PaxCall_1_Off turnOffPc1 PaxCall_1_Off

PaxCall_1_On turnOffPc1 PaxCall_1_Off

ReadingLightWorking(), consist of turnOnReadingLight(), turnOffReadingLight(),

addDimRlVal(), subtrDimRlVal() and readDimRlVal().

Starting State Action Ending State

RLS_On turnOnRls RLS_On

RLS_Off turnOnRls RLS_On

RLS_On turnOffRls RLS_Off

RLS_Off turnOffRls RLS_Off

RLS_DIM addDimRlVal RLS_DIM+1

RLS_DIM subtrDimRlVal subtrDimRlVal-1

• AudioWorking(), consist of turnOnAudio(), turnOffAudio(), incVol(), decVol(),

getVol(), setAudioChannel() and getAudioChannel().

Starting State Action Ending State

Audio_Off turnOnAudio() Audio_On

Audio_On turnOnAudio() Audio_On

Audio_Off turnOffAudio() Audio_Off

Audio_On turnOffAudio() Audio_Off

Audio_Vol incVol() Audio_Vol+1

Audio_Vol decVol() Audio_Vol-1

25

There is one additional action which is PisaWorking() which consist of turnOn28VEss,

turnOff28VEss, turnOn115V and turnOff115V because the PISAs need 115v supply as

well, and it can be controlled through DEESi.

Starting State Action Ending State

28VEss_Off turnOn28VEss() 28VEss_On

28VEss_On turnOn28VEss() 28VEss_On

28VEss_Off turnOff28VEss() 28VEss_Off

28VEss_On turnOff28VEss() 28VEss_Off

115V_Off turnOn115V() 115V_On

115V_On turnOn115V() 115V_On

115V_Off turnOff115() 115V_Off

115V_On turnOff115() 115V_Off

Based on the drawing 6, if the SIB-CIDS is regarded as a gray box system, it consists of

many „black box“ parts like the DEUs, and the Directors themselves. For both devices,

they need to be „ready“ or „checked“ if they are internally working, because faulty

Directors will affect DEU functionally which in turn affects other sub systems of the

CIDS-SIB. So the tester must check that DEUs and Directors are working. This

behaviors must be modeled and later the test script generator can perform test.

Based on drawing 11, there are 4 system behaviors that must be modeled as actions,

which are PisaWorking (is already defined), DeuWorking, and DirectorWorking. The

same steps are applied like with modeling the PisaWorking.

26

Drawing 11: The System Health Checking Sequence

Director
Working

start
DEU

Working
PISA

Working
RL
On

DirectorWorking DeuWorking PISAWorking ReadingLight
Working

The first step is to model the system behavior which is DeuWorking as an action. In this

case, because the limitation of the documentation, it is assumed that DeuWorking is a

condition when DEU is powered up so that it is in operational mode.

• DeuWorking(), consisting of turnOnDeu28VEss(), turnOffDeu28VEss(),

turnOnDeu28VNorm(), and turnOffDeu28VNorm().

Starting State Action Ending State

Deu_28V_Ess_Off turnOnDeu28VEss() Deu_28V_Ess_On

Deu_28V_Ess_On turnOnDeu28VEss() Deu_28V_Ess_On

Deu_28V_Ess_Off turnOffDeu28VEss() Deu_28V_Ess_Off

Deu_28V_Ess_On turnOffDeu28VEss() Deu_28V_Ess_Off

Deu_28V_Norm_Off turnOnDeu28VNorm() Deu_28V_Norm_On

Deu_28V_Norm_On turnOnDeu28VNorm() Deu_28V_Norm_On

Deu_28V_Norm_Off turnOffDeu28VNorm() Deu_28V_Norm_Off

Deu_28V_Norm_On turnOffDeu28VNorm() Deu_28V_Norm_Off

• DirectorWorking(), consisting of turnOnDir28VEss(), turnOffDir28VEss(),

turnOnDir28VNorm(), and turnOffDir28VNorm()

Starting State Action Ending State

Dir_28V_Ess_Off turnOnDir28VEss() Dir_28V_Ess_On

Dir_28V_Ess_On turnOnDir28VEss() Dir_28V_Ess_On

Dir_28V_Ess_Off turnOffDir28VEss() Dir_28V_Ess_Off

Dir_28V_Ess_On turnOffDir28VEss() Dir_28V_Ess_Off

Dir_28V_Norm_Off turnOnDir28VNorm() Dir_28V_Norm_On

Dir_28V_Norm_On turnOnDir28VNorm() Dir_28V_Norm_On

Dir_28V_Norm_Off turnOffDir28VNorm() Dir_28V_Norm_Off

Dir_28V_Norm_On turnOffDir28VNorm() Dir_28V_Norm_Off

27

Starting State Action Ending State

Director_Not_Ready DirectorWorking() Director_Ready

Director_Ready DeuWorking() Deu_Ready

Deu_Ready PisaWorking() Pisa_Ready

Pisa_Ready AudioWorking() Audio_Working

Pisa_Ready ReadingLightWorking() RL_Working

Pisa_Ready PaxCallLedWorking() PaxCall_Working

And the tables above is the summarize of the modeled behavior based on the

drawing 11.

4.4.2 Script generator

The script testing generator will automatically generate the test script based on modeled

CIDS-SIB behaviors. All the tables above define the CIDS-SIB behavior that should be

tested before performing cabin functionalities testing. Based on that list, the script

generator will generate a test script to test all the components inside the CIDS-SIB.

Based on drawing 11, if the test script generator wants to a generate test script, it should

put in order from DirectorWorking(), DeuWorking(), PisaWorking(), and later

AudioWorking(), ReadingLightWorking(), and PaxCallLedWorking().

In this case, the test script generator doesn't have to find the shortest path because there

is just one path available because the devices such as Directors, DEUs, PISAs are

tightly coupled. DEUs needs the directors to be ready before it can be in

„readyCondition“. It looks like the boolean state, if all condition are true

(Director,DEUs,PISAs) then AudioWorking(), ReadingLightWorking(),

PaxCallLedWorking() can be performed.

All the actions, listed above, are an abstract idea of actions. Its implementation can be

implemented in any programming code.

28

The test script generator will call the action implementation as a method. It is up to

testing strategic how to read back all the data from the devices. It can be put in the

method directly or it can be done by other system. For example the method

turnOnReadingLight() can be designed like follows :

turnOnReadingLight(){

. // turn on the readingLight

. // read the reading light value from measurement

. // print „Do you see the light on ? “

}

The test script will be generated by the test script generator. The test script will turn on

all the led and the sound. it reads all the data through measurements [drawing 7]. And

the test script will compare the expected result with the actual result. In some occasion

human is still needed to watch the actual result. For example, turning on Led, it must a

human to watch if the Led works. The sound can be measured by measurement and in

the same time, listened by human.

But the audio testing has different point of view compared with PaxCall button led

testing. It has not only true or false value but also volume and audio channel. The script

generator at this point can generate test script much precisely when testing PaxCall

button led. It not only can turn on the audio function but also can read the current value

of volume. It is possible that audio is working but the tester don't hear the sound

because the volume is 0. The test script can help the system tester better understanding

of the current system condition. It can help the tester to distinguish that the sound is not

coming because it is broken or because the volume is 0.

4.4.3 Running the test script

The test script will contain these methods :

• DirectorWorking()

• DeuWorking()

• PisaWorking()

• ReadingLightWorking()

• turnOnReadingLight()

• turnOffReadingLight()

29

• readDimRlVal().

• PaxCallLedWorking()

• turnOnPaxCallLed()

• turnOffPaxCallLed()

In the reading light test, the test script is able to know the “precise” state of the reading

light, not only just turning on of off reading light.

4.4.4 Analysis of the Implementation

In this case, the Model-based testing can be applied well. Characteristics of the system,

which are mostly „hardware“, can't be modeled easily. It needs lots of information how

the „hardware works“ so that it can be modeled more precisely.

Lack of information limits modeling the system behaviors. For example :

„DeuWorking“ is described by turning on DEU normal and essential power supply. It is

supposed to be other influencing factors to be described in DeuWorking. These factors

are later described as states which could be dependent one to another. Dependent

actions are connected through current states (before the action) and future states (after

the action). The connected actions will create “path”. The test generator will create test

script that try to test all possible path.

The CIDS-SIB testing environment stability is an important factor that must be

considered. The generated health checking script can produce different results because

the system instability. In this case the health check script is able to show there is

something wrong and the current several simulator values (such as dim values) but can't

conclude either a testing environment instability or hardware failures. At this point,

human is still needed to evaluate the test result.

health checking script run times must be as efficient as possible. because the main focus

of the CIDS-SIB testing environment is to perform cabin functionalities testing. It

means the health checking can't check all testing environment equipments because it

will consume time. The critical testing requirements for CIDS-SIB health checking

script must be define.

30

5 Conclusion

System testing is important to find the error before the system is used. Finding an error

or malfunction earlier will assist in producing mature product and save the effort to fix

it in the future. Meanwhile, the system under test itself continuously grows and becomes

more complex, so automatic testing is desired.

Model-based testing concept tries to answer to how to make automatic testing can be

made in the growing systems. Automatic testing shifts most of the work to be done by

computer.

System testers need to be sure that Cabin Intercommunication Data System-System

Integration Bench is ready to perform tests when the CIDS-SIB itself is complex, has

lots of features and still growing.

Model-based testing cant be applied well enough on CIDS-SIB because of the difficulty

in modeling the system behaviors. Deeper understanding of the system testing

environment is needed to more precisely model, and this understanding can be obtained

from documentation and the system tester.

Model-based testing is more effective to test system behavior that shares the same

preconditions and dependent from one behavior to other behaviors because it is the most

“difficult part” if it is done by human. In Model-based testing, it will done by computer.

Modeling system behavior simplifies the way system tester observe the system. They

don't have to know the details of system under test; they just have to know the behavior

that they want to test. If there is additional feature or behavior that need to be tested, it

will be added to the model or a new model can be created without altering the previous

ones.

31

The amount of time to perform the test must be considered. In this case, testing the test

environment is not the main goal of the CIDS-SIB. Instead of testing all the possibilities

but “limited defined possibilities” are given to ensure the environment can perform well

in the testing.

For the future, more comprehensive documentations are needed to get better

understanding of the CIDS-SIB. The documentation may also help in modeling the

system behaviors. The model of the system testing environment can be used later to

represent other testing environments with the same basic behaviors. They use the same

model and applied their own specific devices without changing the model.

32

List of Abbreviations Acronym Description

AAP Additional Attendant Panel

A/C Aircraft

ACP Area Call Panel

ADS2 Avionics Development System, 2nd Generation

AFDX Avionics Full Duplex Switched Ethernet

AIP Attendant Indication Panel

AMU Audio Management Unit

ATA Air Transport Association

BCEVI1 Electric Systems Integration & Test Cabin Management
Systems

BITE Build In Test Equipment

CAM Cabin Assignment Module

CAN Controller Area Network

CATEGA II Computer Aided Test Generation Assistant (Version 2)

CIDS Cabin Intercommunication Data System

CITR Cabin Integration Test Rig

CMS Central Maintenance System

CVT Current Value Table

DEU Decoder/Encoder Unit

DEESi DEU Electrical Environment Simulation

DIR Director

ECAM Electronic Centralized A/C Monitoring

EPSU Emergency Power Supply Unit

FAP Flight Attendant Panel

FEDC Fire Extinguishing Data Controller

FM Failure Message

FSB Fasten Seat Belts

FWS Flight Warning System

GUI Graphical User Interface

IBU Integrated Ballast Unit (Cabin Light)

IDEFIX Interface of Data Exchange in Test Facilities between IP and
AFDX

IPCU Ice Protection Control Unit

33

AAP Additional Attendant Panel

LDCC Lower Deck Cargo Compartment

MMC Maintenance Message Control

MPB Multipurpose Bus

NS No Smoking

OBRM On Board Replaceable Module

OMS On Board Maintenance System

OE Original Equipment

PA Passenger Address

PISA Passenger Interface and Supply Adapter

PRAM Pre-Recorded Announcement & Boarding Music

PTS Purchaser Technical Specification

PTT Push-To-Talk

S/D Smoke Detector

SDF Smoke Detection Function

SIB System Integration Bench

TDS Test Data Sheet

TIP Test Input

VL Virtual Link

V&V Verification and Validation

34

References
(1) Apfelbaum, Larry. John Doyle. Model Based Testing. Software Quality Week

Conference. May 1997. March 2006 <”http://www.geocities.com/

model_based_testing/sqw97.pdf”>

(2) Blackburn, et all. Defect Indentification With Mode­Based Test Automation.

Software Productivity Consortium, NFP, T­VEC Technologies, Inc. March

2006, <”http://www.software.org/ pub/taf/downloads/ SAE_2003.pdf”>

(3) “Black Box Testing”. WebOPedia. February 2006.

<”http://www.webopedia.com/ TERM/B/ Black_Box_Testing.html ”>

(4) “Chinese Postman Problem”. EIE507 (Network Design: Theory and Practice).

February 2006. <“http://eie507.eie.polyu.edu.hk/ss­submission/B7a/”>

(5) Dalal, S. R., et all. Model­Based Testing In Practice. The 21st International

Conference On Software Engineering. May 1999. March 2006

<”http://www.geocities.com /model_based_testing /sqw97.pdf”>

(6) El­Far, Ibrahim K., James A. Whittaker. Model­based Software Testing.

Software Engineering Encyclopedia. Wiley,2001. March 2006,

<”http://www.geocities.com/ model_based_testing/

ModelBasedSoftwareTesting.pdf”>

(7) Hoglund, Greg & McGraw, Gary. Exploiting Software: How to Break Code.

Boston:Addison­Wesley Professional, 2004.

(8) Lembcke, Ralph. Requirements for CIDS DEU – Electrical Environment

Simulation System. Airbus Deutschland, 2004.

(9) “Model­based Testing”, GoldPractice, March 2006,

35

http://www.geocities.com/
http://www.geocities.com/
http://www.geocities.com/model_based_testing/
http://www.geocities.com/model_based_testing/
http://www.geocities.com/
http://eie507.eie.polyu.edu.hk/ss-submission/B7a/
http://www.geocities.com/model_based_testing
http://www.geocities.com/
http://eie507.eie.polyu.edu.hk/ss-submission/B7a/
http://www.webopedia.com/TERM/B/Black_Box_Testing.html
http://www.webopedia.com/TERM/B/
http://www.webopedia.com/
http://www.software.org/pub/taf/downloads/
http://www.software.org/
http://www.geocities.com/model_based_testing/online_papers.htm

<”http://www.goldpractices.com/ practices/mbt/ index.php”>

(10) Myers, Glenford J. The Art of Software Testing. New York:Wiley­Interscience

Publication, 1979.

(11) Robinson, Harry. Model Based Testing . Software Testing & Quality

Engineering magazine. March 2006. <”http://www.webopedia.com/TERM/

W/White_Box_Testing.html”>.

(12) Robinson, Harry. Finite State Model­Based Testing On A Shoestring. Star

West, 1999. March 2006. <”http://www.geocities.com/model_based_testing/

shoestring.htm”>.

(13) Struss, Peter., “Model Abstraction for Testing of Physical Systems”. 8th

International Workshop on Qualitative Reasoning, QR­94, Nara, Japan. March

2006. <” http://www.qrg.northwestern.edu/papers/Files/qr­workshops/QR94/

Struss_1994_Model _ Abstraction _Testing_Physical_Systems.pdf“>.

(14) “White Box Testing”. WebOPedia . March 2006

<” http://www.webopedia.com/ TERM/ W/White_Box_Testing.html”>.

36

http://www.webopedia.com/TERM/W/White_Box_Testing
http://www.webopedia.com/TERM/
http://www.webopedia.com/
http://www.webopedia.com/TERM/W/White_Box_Testing
http://www.qrg.northwestern.edu/papers/Files/qr-workshops/QR94/Struss_1994_Model_Abstraction
http://www.qrg.northwestern.edu/papers/Files/qr-workshops/QR94/Struss_1994_Model
http://www.qrg.northwestern.edu/papers/Files/qr-workshops/QR94/Struss_1994_Model
http://www.qrg.northwestern.edu/papers/Files/qr-workshops/QR94/
http://www.geocities.com/model_based_testing/
http://www.webopedia.com/TERM/W/White_Box_Testing.html
http://www.webopedia.com/TERM/W/White_Box_Testing.html
http://www.webopedia.com/TERM/
http://www.goldpractices.com/practices/mbt/index.php
http://www.goldpractices.com/practices/mbt/
http://www.goldpractices.com/

	Acknowledgments
	1 Introduction
	1.1 The Motivation
	1.2 The Purpose
	1.3 Structure Of The Work

	2 System (software and hardware) testing
	2.1 White Box Testing
	2.2 Gray Box Testing
	2.3 Black Box Testing
	2.4 The Model-Based Testing
	2.4.1 Model
	2.4.2 Building the model

	3 CIDS-SIB
	3.1 CIDS-SIB Overview
	3.2 CIDS Overview
	3.2.1 Director
	3.2.2 Decoder Encoder Units (DEUs)
	3.2.3 Passenger Interface and Service Adapter (PISA)

	
	3.3 Cabin Functionality Testing Overview.

	4 Analysis and Design
	4.1 What is System Health Check
	4.2 System Testing Overview
	4.3 Director
	4.4 Making the model
	4.4.1 Model the system behavior
	4.4.2 Script generator
	4.4.3 Running the test script
	4.4.4 Analysis of the Implementation

	5 Conclusion
	List of Abbreviations Acronym Description
	
	References

