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ABSTRACT 
 

Knowledge-base management system (KBMS) based on description logics provides  

semantic organization of data and powerful reasoning service whereas Database 

Management System (DBMS) provides the easy access and efficient management. 

KBMS can be used where large amount of data stored in existing relational databases 

need to be accessed. We present the architecture and algorithms of a system that converts 

most of the queries into KBMS into a collection of SQL queries. The system thereby rely 

on the optimization facilities of existing DBMS to gain efficiency.  

 

In our project, we use RACER as a description logic based KBMS and MYSQL as a 

Database management system. RACER uses nRQL as its Query language to query 

semantic organization of data defined in A-Box and T-Box. MYSQL uses standard  SQL 

query language to access data maintained in MYSQL database. 
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Chapter 1 

Introduction 
 

Many software applications that need the storage and management of large amounts 

of data rely on DBMS, while applications like expert systems, natural language 

interfaces, decision support systems  rely on knowledge representation systems, 

which provide better reasoning about more structured data.  

 

The main difference between knowledge representation system and database system 

is that the latter is oriented to the efficient management of large amounts of data, 

while the former seek to give a more structured representation of the universe of 

discourse in which data are placed. More specifically, in some knowledge 

representation systems, application domains are described by means of a collection 

of complex terms - or concepts - that are placed into a taxonomy. The capability of 

classifying concepts to form taxonomies, accordingly with well defined semantics, 

are given by an appropriate calculus. The first goal of classifying concepts is to 

provide a subsumption algorithm. Concept languages together with semantically 

grounded subsumption calculi are called description logics. Database systems 

instead are suited to manage data efficiently with little concern about their dimension, 

but the formalism for organizing them in a structured way and the capability to infer new 

information from that already existing information are quite absent. 

 

People have been using DBMS based applications for decades to store and manage their 

data. DBMS based applications can be widely enhanced by knowledge-base interface. 

Knowledge-base interface provides deductive extensions to the DBMS based 

application. The important benefit of knowledge-base interface to DBMS based 

application is that it enables to create a good intelligent information system.  
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figure 1.1 RACER knowledge-base interface to DBMS 

 

Figure 1.1 shows an implementation of knowledge-base interface. In this figure, RACER 

knowledge-base management system is used to provide deductive extension to DBMS. 

Conceptual schema for RACER knowledge-base are built from the  logical schema of 

the database. In RACER new schema can be derived from the conceptual schema.  

 

New schema are called deductive extension of the database schema. This deductive 

extension of schema enables us to create a good intelligent information system. In this 

dissertation, we use RACER as knowledge-base management system and MYSQL as 

DBMS. Knowledge-base interface to DBMS have the following benefits: 

 

1. Large A-Box management in RACER 

RACER system lacks efficiency in managing the large amount of data in A-Box. In 

realistic applications, our experience suggests that knowledge-base system is complex 

and may involve large number of individuals. It is difficult and sometimes impossible to 
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manage the existing RACER A-Boxes. RACER knowledge-base interface to DBMS 

enables to store all data about A-Boxes in DBMS, which can be managed better by a 

DBMS. 

 

2. Knowledge Acquisition from DBMS 

The task of acquiring knowledge for a real knowledge-base application often includes a 

great amount of raw data collection. Knowledge-base interface to DBMS can be used to 

acquire knowledge from the data which are already stored in the existing databases.  

 

3. Rich concept data modeling 

Knowledge-base interface to DBMS can have a richer set of conceptual data model. New 

and extended data models can be built using the existing data models in knowledge-base 

system whereas DBMS have fix data-models. Suppose the database have PERSON table 

and HAS-CHILDREN table. Then the knowledge-base system enables us to define the 

new concept called PARENT apart from PERSON and HAS-CHILDREN. 

 

In this dissertation, we developed a system for RACER knowledge-base interface to 

DBMS which converts RACER query language (nRQL) to database query language 

(SQL). The system enables us to query individuals of deductive extension of database 

schema and conceptual schema without loading data into A-Box of the RACER. The 

construction of conceptual schema and its extension in RACER have to be done by the 

user himself. 

1.1 nRQL to SQL conversion 
 
Individuals in RACER are stored in RACER A-Box whereas the information about 

individuals in DBMS are stored in database tables. It is difficult and sometimes 

impossible to manage large amount of individuals in RACER A-Boxes. nRQL to SQL 

conversion system does not load individuals from the RACER A-Box but it loads 

individuals from the information stored in database tables.  
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RACER A-Box individuals are more complex as compared to individuals in database 

tables. RACER A-Box individuals are the instances of concept and roles defined in 

RACER T-Box . The concept axioms that RACER supports include concept inclusion 

that states the subsumption relationship between two concepts. Therefore individuals of 

Racer A-Box can be a instance of concept that has subsumption relation between two 

concept. nRQL query to SQL query converter decompose the complex description of the 

RACER concepts(or roles) to the level where it can be mapped into SQL query to the 

table or view in the database. The results from SQL query is returned to the user. 

 

There are certain limitation of this nRQL to SQL conversion tools. It can only handle 

unary and binary table in database because RACER concepts are unary and roles are 

binary. In order to handle n-ary table one must decompose the schema or create views in 

database that have unary or binary relationship.   

 

1.2 Outline 
 
Chapter 2 gives an overview on RACER knowledge management system and RACER 

query language(nRQL). 

 

Chapter 3 gives an overview on Database Management System, relational algebra and 

SQL query language. 

 

Chapter 4 discusses previous ideas and proposals to convert subset of nRQL based query 

language to SQL and formulates the properties that a query language is expected to have. 

 

Chapter 5 gives an overview of implementation and architecture of nRQL query to SQL 

query converter. 

 

Chapter 6 discusses  the benchmarks based on the results of nRQL queries in RACER A-

Boxes and the result of converted SQL queries that we have chosen to compare. It 

discusses compilation of test queries and general methods used to obtain the results. 
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Chapter 7 summaries the work done and draws a conclusion of this thesis. A number of 

different ideas are given how this work could be improved, enhanced and effectively 

used for further practical and research purposes. 
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Chapter 2 

RACER and nRQL 

2.1 RACER  

RACER (Renamed ABox and Concept Expression Reasoner) system was developed by 

Prof. Dr.Ralf Möller and Volker Haarslev in 1999 at University of Hamburg, Germany. 

Since then it is being used in many research projects “as a knowledge representation 

system that implements a highly optimized tableau calculus for very expressive 

description logic”.  [2]. 

 

RACER is a description logic ontology reasoning system supporting DL ALCQHI+(D-). 

RACER extends basic Description Logic ALC  by adding role hierarchies, transitive 

roles, inverse roles, and qualifying number restrictions. In RACER, the knowledge-base 

is represented in a tuple (T-Box, A-Box). A-Box contains assertions about individuals and 

T-Box defines the concepts (classes or types of instances), roles (predicates), and features 

(attributes/properties) of these instances. 

 

RACER system provides reasoning services for multiple TBoxes and for multiple 

ABoxes. A collection of concept axioms is called a TBox (Terminological Box) and a 

collection of assertional axioms is called an ABox (Assertional Box). [for details ref. A. 

“Family.RACER” knowledge-base file (TBOX & ABOX), APPENDIX] 

 

In A-Box, the set of individual names I is the signature of A-Box. The individual set 

must be disjoint with both the concept set and the role set. In A-Box there are four types 

of assertions: asserting an individual IN IN1 to be of a concept C.; asserting role filler for 

a role R to an individual IN IN2 that is, individual IN IN1 is related to individual IN IN2 

via role R.); assigning an attribute to an individual; or asserting restriction on an 

individual. RACER uses optimized tableau algorithm to calculate satisfiability problem. 
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Tableau algorithm is the dominating algorithm for description logic reasoning currently. 

The basic idea of this algorithm is to apply transformation rules (these rules preserve the 

consistency of original A-Box) to A-Box until no rules applicable. If there is no 

confliction in the A-Box, it is called satisfiable (or consistent). The subsumption problem 

in RACER is reduced to satisfiability problem. 

 

The RACER T-Box includes the conceptual model of concepts and roles. The model 

consists of a set of concept names C and a set of role names R. By exploiting several 

operators (constructs), one can build complex concepts and roles. RACER supports 

Negation, Conjunction, and Disjunction constructs. RACER also provides Existential 

and Universal qualified restrictions to ensure that certain roles filler have to be of a 

specific concept. RACER provides three types of number restrictions: At-most, At-least, 

and Exactly. The restrictions can be applied to roles. However, only non-transitive roles 

(also no transitive sub-roles) can apply cardinality restrictions to attributes. 

 

The concept axioms that RACER supports include concept inclusion that states the 

subsumption relationship between two concepts, concept equation that states equivalence 

between two concepts, and concept disjointness that states the disjointness relationship 

among concepts. RACER can also define the concept name as a special type of a concept 

term. In RACER, concept axioms can be cyclic or even several axioms for just one 

concept. 

 

Role declarations in RACER are unique. Only one declaration can be done to one role 

name. This restriction also applies to attributes in T-Box and individual names in A-Box. 

Role declarations can declare features (attributes) of a given role, declaring a role to be 

transitive, and declare hierarchy relationships among roles. In the current version of 

RACER, the sub-role relationship can not be cyclic. 

 

To suit for variant purposes of reasoning, RACER provides two inference modes. Given 

a query, RACER can minimize the computation time in the lazy inference mode. If the 

lazy inference mode is enabled, only the individuals involved in a “direct types” query 
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are realized. However, when the query involves much classifying, another mode – the 

eager inference mode provides better performance. The other way to save processing 

time is to save A-Box and T-Box in separate files. Thus, classifying one of them does not 

need to affect another. 

 

2.2 nRQL (The New RACER Query Language)  

 
nRQL (new RACER Query Language) is the language of RACER for message 

interchange. It is derived from the previous standard RACER Query Language (RQL). 

nRQL is RACER expressive ABox query language. nRQL offers support of conjunctive 

queries. The query variables will be bound to ABox individuals. Queries will make use 

of concept and role terms. TBoxes supply the vocabulary to be used in the queries.  

 
However, nRQL offers much more than just plan conjunctive queries. The main features 

of the nRQL language can be summarized as follows: 

• Availability of compound (complex) queries built from (simple) query atoms; 

well defined syntax and clean compositional semantics 

• Negation as failure (NAF) semantics as well as true negation available; also roles 

can be negated with nRQL! 

• Support for the concrete domain: availability of complex predicate expressions as 

well as role chains 

• A projection operator for query bodies 

• Special support for querying OWL knowledge-bases (e.g., an extended RACER 

concept syntax for OWL datatype properties, support for the retrieval of told 

datatype values of OWL datatype properties) 

• Complex TBox queries 

• Support for so-called hybrid queries[2]. 
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2.2.1 nRQL Language 

 
We introduce the nRQL language with example of the knowledge-base family-1 that 

comes together with RACER. Figure 2.1 shows the concept hierarchy for the  family 

TBox and figure 2.2 shows the sample description of ABox in smith family. 

 

 
 

Fig 2.1 Concept hierarchy for the “family” TBox [2] 

 
 

Fig 2.2 Depiction of the” ABox smith-family”. [2] 

 
2.2.1.1 Query Atoms 

The basic expressions of the nRQL language are called query atoms, or simply atoms. 

Atoms are either unary or binary. A unary atom references one object, and a binary atom 
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references two objects. An object is either an ABox individual or a variable. Variable 

begins with a question mark (e.g. ?x) and an individual begins with the instance name 

(e.g. betty).  

 
There are only three types of atoms available: 

1. concept query atoms (which are unary) 

2. role query atoms (which are binary) 

3. constraint query atoms (which are binary) 

 
 Concept Query Atoms 
 
Concept query atom is a unary atom. Suppose we are looking for all instances of woman 

in the current A-Box of RACER. We simply write: 

 
(retrieve  (?x)  (?x  woman)) 
 

asking RACER for all instances of type woman from the current ABox to be bound to 

the variable ?x. RACER replies: 

 

(((?X  EVE))  ((?X  DORIS))  ((?X  ALICE))  ((?X  BETTY))) 

 

i.e., the query is satisfied if the variable ?x is bound to Eve, to Doris, to Alice, or to 

Betty. RACER has returned a list of binding lists. Each binding list lists a number of 

variable-value-pairs. Note that there is no guaranty on the order in which the possible 

bindings are delivered. 

 

Suppose we just want to know if there are any known women at all in the current 

ABox. We could simply query 

 
(retrieve ()  (?x  woman)) 

 
RACER replies: T, which means 

”yes”. 

In this case, the list of supplied result objects (the query head) is empty. Such a query 
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never returns any  bindings,  but  only  T  or  NIL  (true  or  false).  T  is  returned  if  

any  binding  possibility  has  been found making the query body true; and NIL 

otherwise. 

It  is  also  possible  to  use  ABox  individuals  within  queries. Suppose  we  want  to  

know  if  Betty  is  a woman - we can pose the query 

 
(retrieve  ()  (betty  woman)) 
 
If an ABox individual is used which is not present in the ABox, RACER signals an 

error: 

 
(retrieve  ()  (jane  woman)) 
 
yields 

Error:  Undefined individual name JANE in ABox SMITH-FAMILY. 

[2] 

 

Role Query Atoms 
 

The second type of nRQL atoms are the role query atoms. These are binary atoms, in 

contrast to the previously discussed unary concept query atoms. It retrieves the instances 

of the binary pair associated with the role term. Suppose  we  are looking  for  all  

explicitly  modeled  mother-child-pairs  in  the current  ABox [2]. We can simply write:  

 
(retrieve (?mother  ?child)  (?mother  ?child  has-child)) 

 
RACER replies: 

(((?MOTHER  BETTY)  (?CHILD  DORIS)) 

((?MOTHER  BETTY)  (?CHILD  EVE)) 

((?MOTHER  ALICE)  (?CHILD  BETTY)) 

((?MOTHER  ALICE)  (?CHILD  CHARLES))) 

 

The query expression (?mother  ?child  has-child) is an example of a so-called binary 

query atom. If we are just interested in the children of Betty (ABox  individual) within  
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queries., we could ask RACER like this: 

 
(retrieve (?child-of-betty)  (betty  ?child-of-betty  has-child))  
 

Role Terms in Role Query Atoms: We mentioned that arbitrary concept expressions can 

be used in concept query atoms, not only atomic names. The same applies to role query 

atoms – role terms can be used, not only role names, as the following example 

demonstrates: 

 
(retrieve (?child-of-betty) (?child-of-betty betty (inv has-child))) 
 
Again, RACER replies: 
 
(((?CHILD-OF-BETTY DORIS)) ((?CHILD-OF-BETTY EVE))). 
 
Please note that the set of role terms is rather limited in RACER (only inv is available as 

a term constructor). However, nRQL adds one more constructor which is only available 

in role query atoms: negated roles[2]. 

 

Negated Roles in nRQL: We know that we can retrieve the instances of the concept (not 

mother) with (retrieve (?x) (?x (not mother))): RACER replies (((?X CHARLES))), since 

charles is a man, and man and woman are disjoint. This follows from the definitions of 

these concepts in the family TBox. Thus, RACER can prove that charles is an instance of 

the concept (not mother). Usually, in a description logic system, negated roles are not 

offered, in contrast to negated concepts. Thus, negated roles are neither offered by 

RACER concept syntax, nor can negated roles be used in ABoxes. However, negated 

roles can be used for ABox querying with nRQL [2]: 

 
Role query atoms can also be inverted: 
 
(retrieve (?mother  ?child)  (inv  (?mother  ?child  has-child))) 

 
is equivalent to 
 
(retrieve (?mother  ?child)  (?child  ?mother  (inv  has-child))) 
 
Of course, the answer will be the same as for 
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(retrieve (?mother  ?child)  (?mother  ?child  has-child)).  

 
 
 
Constraint Query Atoms 
 
The last type of query atom is the constraint query atom. It is useful in querying 

concrete domain attribute. It is a binary atom, like the role query atom. These atoms 

are meant to address the concrete domain part of a KB. Currently, constraint query 

atoms can only be used on ABoxes whose associated TBoxes do not contain a 

signature[2]. For example, consider the query 

 
  (retrieve (?x) (?x (an age))) 
 
asking RACER for all instances of those concepts  that has an age. RACER replies: 

 
 (((?X CHARLES)) ((?X DORIS)) ((?X BETTY)) ((?X EVE)) ((?X ALICE))) 
 
Similarly, we can also ask RACER who is at least 75 years old: 
 
(retrieve (?x) (?x (>= age 75))) 
 
RACER replies: 
 
(((?X ALICE))) 
 
Similarly, we can also find out who is older than whom, or who is older than alice. 
 
The first query can be formulated like this: 
 
(retrieve (?x ?y) (?x ?y (constraint age age >))) 
 
RACER replies: 
 
(((?X CHARLES) (?Y EVE)) 

((?X CHARLES) (?Y DORIS)) 

((?X CHARLES) (?Y BETTY)) 

((?X ALICE) (?Y CHARLES)) 

((?X ALICE) (?Y EVE)) 

((?X ALICE) (?Y DORIS)) 
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((?X ALICE) (?Y BETTY)) 

((?X DORIS) (?Y EVE)) 

((?X BETTY) (?Y EVE)) 

((?X BETTY) (?Y DORIS))) 

 
That means, Charles is older than Eve, Doris, and Betty, . . . .  
 
Note that constraint is a keyword, age is a concrete domain attribute, and > is one of the 
concrete domain predicates offered by RACER.[2] 
 

2.2.1.2 Complex  Queries 
 
Complex query expression is combined expression of one or more than one query atoms. 

Basically, nRQL offers the following constructors which can be used to combine query 

atoms [2]: 

• AND is the standard way of defining compound queries, 

• UNION can be used to combine the answers of a set of queries into one answer set, and 

• NEG implements a negation as failure semantics; moreover, 

• INV can always be used to “reverse” all role query atoms in that subexpression. 

 
AND  Queries: 

Suppose we want to list all mothers of male persons in the family-1.RACER KB. 

Whereas the previous queries were all simple  (a single unary or binary query atom  was 

sufficient for expressing them), we will now need a compound (or complex) query[2] : 

 
(retrieve  (?x  ?y)  (and  (?x  mother)  (?y  man)  (?x  ?y  has-child))) 
 
RACER replies: 
 
(((?X  ALICE)  (?Y  CHARLES))) 
 
In this query, we have used the AND operator. 
 
Instead of AND, you can also use CAP or INTERSECTION 
 
Understanding the Query Results It should be noted that 
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(retrieve  (?x)  (and  (?x  mother)  (?y  man)  (?x  ?y  has-child))) 
 
is not  equivalent to 
 
(retrieve  (?x)  (?x  mother)), 

 
since  the  first  query  (internally)  also  binds  the  variable  ?y  and  ensures  that  (?y  

man)  (?x  ?y has-child) holds as well, even if the possible bindings of ?y are not 

returned to the user. 

The objects (variables and individuals) which are referenced within a query body are 

always bound in every possible way; then the list of result objects is used to determine 

the format of the output tuples of the query. This can be seen as a projection operation  

(if we ignore the possibility to duplicate or reorder objects in the output binding lists).  

However, the projection to the result objects is always the last step in the query 

processing chain, and not the first one. Consequently, if the specified list of result 

objects is empty, we get T iff any binding possibility has been found making the query 

body true, and NIL otherwise. 

 

Union Queries:  

Suppose we want to list all men and woman in the family-1.RACER KB. Whereas the 

previous queries were all simple  (a single unary or binary query atom  was sufficient 

for expressing them), we will now need a compound (or complex) query [2]: 

 

(retrieve  (?x)  (or  (?x  woman)  (?x  man))) 

 

RACER replies: 

 

(((?X  CHARLES))  ((?X  EVE))  ((?X  DORIS))  ((?X  BETTY))  ((?X  ALICE))) 

 

Instead of OR, you can also use CUP or UNION 

However, the OR operator is more subtle to understand, since the names  of the 

variables matter. If disjuncts within an OR reference different variables, then the 

system will ensure that each disjunct references the same variables. For example, the 
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query 

 

(retrieve  (?x  ?y)  (or  (?x  woman)  (?y  man))) 

 

will be internally rewritten (since the first disjunct references ?x, and the second 

disjunct references?y) into 

 

(retrieve  (?x  ?y)  (or  (and  (?x  woman)  (?y  top)) 

(and  (?x  top)  (?y  man)))), 

 

ensuring that both disjuncts now bind the same variables (?x  ?y), and therefore also 

have the same arity. 

 

The result will be 

 

(((?X  EVE)  (?Y  DORIS)) 

((?X  EVE)  (?Y  CHARLES)) 

((?X  EVE)  (?Y  BETTY)) 

((?X  EVE)  (?Y  ALICE)) 

((?X  DORIS)  (?Y  EVE)) 

((?X  DORIS)  (?Y  CHARLES)) 

((?X  DORIS)  (?Y  BETTY)) 

((?X  DORIS)  (?Y  ALICE)) 

((?X  BETTY)  (?Y  DORIS)) 

((?X  BETTY)  (?Y  EVE)) 

((?X  BETTY)  (?Y  CHARLES)) 

((?X  BETTY)  (?Y  ALICE)) 

((?X  ALICE)  (?Y  DORIS)) 

((?X  ALICE)  (?Y  EVE)) 

((?X  ALICE)  (?Y  CHARLES)) 
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((?X  ALICE)  (?Y  BETTY))) 

 

As expected, this is the union of the two queries 

 

(retrieve  (?x  ?y)  (and  (?x  woman)  (?y  top))) 

 

(((?X  EVE)  (?Y  BETTY)) 

((?X  DORIS)  (?Y  BETTY)) 

((?X  ALICE)  (?Y  BETTY)) 

((?X  EVE)  (?Y  DORIS)) 

((?X  BETTY)  (?Y  DORIS)) 

((?X  ALICE)  (?Y  DORIS)) 

((?X  EVE)  (?Y  CHARLES)) 

((?X  DORIS)  (?Y  CHARLES)) 

((?X  BETTY)  (?Y  CHARLES)) 

((?X  ALICE)  (?Y  CHARLES)) 

((?X  DORIS)  (?Y  EVE)) 

((?X  BETTY)  (?Y  EVE)) 

((?X  ALICE)  (?Y  EVE)) 

((?X  EVE)  (?Y  ALICE)) 

((?X  DORIS)  (?Y  ALICE)) 

((?X  BETTY)  (?Y  ALICE))) 

 

and 

 

(retrieve  (?x  ?y)  (and  (?x  top)  (?y  man))) 

 

(((?X  BETTY)  (?Y  CHARLES)) 

((?X  DORIS)  (?Y  CHARLES)) 

((?X  EVE)  (?Y  CHARLES)) 
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((?X  ALICE)  (?Y  CHARLES))) 

 

However, the second disjunct does not produce any new tuples in 

this example. Consider the query 

 
(retrieve  (?y)  (or  (?x  woman)  (?y  man))) 

 
Again, it is important to note that this query is *not* equivalent to 

 
 
(retrieve  (?y)  (?y  man)). 

 
 
As already described, RACER will rewrite this query into 

 
 
(retrieve  (?y)  (or  (and  (?x  woman)  (?y  top)) 

(and  (?x  top)  (?y  man)))), 

 

Thus, the possible bindings for ?y are from the union of top and man, which is of 

course top, and not man. 

 

RACER therefore replies: 

 
(((?Y  ALICE))  ((?Y  DORIS))  ((?Y  EVE))  ((?Y  CHARLES))  ((?Y  BETTY))), 

 
 
whereas 

 
(retrieve  (?y)  (?y  man)). 

 
returns 

 

(((?Y  CHARLES))), 

 

NEG – The Negation As Failure Constructor 

A NEG constructor is provided which implements a Negation as Failure Semantics. 

Negation as failure semantics is especially useful for measuring the completeness of the 
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modeling in an ABox, which is important for many applications[2]. Consider the query 

 

(retrieve (?x) (?x grandmother)) 

 

RACER replies: 

 

((?X ALICE)). 

 

Thus, RACER can prove that Alice is a grandmother. Fine. If we query with a NOT 

within an ordinary RACER concept term 

 

(retrieve (?x) (?x (NOT grandmother))), 

 

we get 

 

((?X CHARLES)), 

 

since Charles is a man, and thus, he can obviously not be grandmother. RACER is able 

to prove this, given the definitions of man and grandmother in the TBox. However, due 

to the open world semantics, Charles is the only individual for which RACER is able to 

prove this. For example, Betty might very well be a grandmother, and we just do not 

have complete knowledge on Betty. Currently, it is just not known that Betty is a 

grandmother[2]. 

 

So suppose we want to know which individuals are currently not known to be  

grandmothers. This is were the negation as failure comes into play. Thus, we would like 

to retrieve all the individuals for which RACER currently cannot prove that they are 

grandmothers. Consequently, all individuals but Alice (the only known grandmother) 

should be returned. This is exactly the semantics of a negation as failure atom[2]: 

 

(retrieve (?x) (NEG (?x grandmother))) 
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RACER replies: 

 

(((?X DORIS)) ((?X EVE)) ((?X CHARLES)) ((?X BETTY))) 

 

Note that the NEG is placed “around” the entire atom. 

 

This is simply the complement query of 

 

(retrieve (?x) (?x grandmother)) 

 

w.r.t. the set of all individuals in the ABox: 

 

(retrieve (?x) (union (?x C) (neg (?x C)))) 

 

will always return the set of all ABox individuals, for any concept C. 

 

Note that (?x (not grandmother)) will always return a subset of (neg (?x grandmother)), 

but not the other way around. This holds for an arbitrary concept term. Things get tricky 

is negation as failure is used on negated atoms: 

 

(retrieve (?x) (neg (?x (not grandmother)))) 

 

yields 

 

(((?X DORIS)) ((?X EVE)) ((?X BETTY)) ((?X ALICE))). 

 

Thus, we were asking for all individuals for which RACER cannot prove that they are 

instances of (not grandmother). Since Charles is the only individual for which RACER 

can prove this, he is missing from the answer set.[2] 
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 Boolean Complex Queries 

 

In fact, it is possible to combine arbitrarily nested AND, SOME and OR query 

expressions. We therefore might call the queries boolean. Moreover, the queries are 

even brought into Disjunctive Normal Form (DNF). Since the DNF might be 

exponentially larger than the original query and thus result in very big queries, we 

would like to inform the user of this potential performance pitfall. 

In  order to  understand  the  query  results  of  some  complex  queries  better  it  

might  help  if  the  user reminds him / herself about these internal transformations.[2] 

 

The  Projection  Operator  for  Query  Bodies 

 

We  have already mentioned that the  process of constructing the answer tuples  for a 

query can be seen as applying a projection  operation. Consider the query 

 
(retrieve  (?x)  (and  (?x  c)  (?x  ?y  r)  (?y  d))). 

 
on the ABox 

 
(instance  a  c) 
(instance  b  d) 

(instance  c  top) 

(related  a  b  r), 

 

which gives us the expected answer 

 

(((?X  A))). 

 

In the process of evaluating the query body (and  (?x  c)  (?x  ?y  r)  (?y  d)), bindings 

for ?x and ?y are computed. Internally, nRQL computes an answer set for this query 

expression, which is simply a list (set) of pairs whose first components give bindings 

for ?x and whose second components give bindings  for  ?y. In  this  example,  the  

internal answer set  will  be  ((A  B)). From this  set,  the  final answer (((?X  A))) is 
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computed by projecting  all the tuples to their first components (the bindings for  ?x),  

since  the  head  of  the  query  is  given  as  (?x).  Moreover,  reordering,  duplication,  

as  well as further specialized  head projection operations can be  applied to  this  

internal answer set before finally  returning the  bindings to  the  user;  see also Section  

1.1.2 for a  discussion of the  specialized head projection operators[2]. 

 

The nRQL approach of first computing these internal answer sets, and then applying a 

projection operation to get the desired output according to the form as specified by the 

query head works fine until the nRQL negation operator (\NOT” or \NEG”) is used 

within the query bodies. To understand the problem, suppose you want to query for the 

instances of the concept C which do not have a known R successor which is an 

instance of the concept D. Thus, you want to get the complement of the answer of the 

previous query: the complement of (((?X  A))) is (((?X  B))  ((?X  C))). Recall that 

(((?X A))) was the answer to the query (retrieve  (?x)  (and  (?x  c)  (?x  ?y  r)  (?y  

d))). In a first attempt to solve this problem you would most likely come up with the 

following query[2]: 

 

(retrieve  (?x)  (and  (?x  c)  (?x  ?y  r)  (?y  d))), 

 

 

However, in this query a projection to ?x will be applied to the complement of the set 

((A B)), which is  the  set ((B  A)  (B  C)  (C  A)  (C  B)  (A  C)) { note  that  the  pairs 

(B  B), (A  A) and (C  C) are missing, due to the  UNA  for the variables ?x,  ?y. 

Applying  the projection to ?x on this  set then gives us 

 

(((?X  B))  ((?X  C))  ((?X  A))), 

 

which is  not  what  we  wanted.  The  problem  is  that  the  complement  operator  has  

been  applied to  a  two-dimensional set,  which  again  yields  (naturally)  a  two-

dimensional set,  to  which  then  the projection has been applied. In order to get the 

desired result, a projection operator must be applied before  the  complement  set  is  
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constructed,  such  that  a  one-dimensional  complement  is  computed, instead of a two-

dimensional one.[2] 
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Chapter 3 

Database System 
 

Database is an organized collection of data. It is a collection of records stored in a 

computer in a systematic way, such that a computer program can consult it to answer 

questions. For better retrieval and sorting, each record is usually organized as a set of 

data elements. The items retrieved in answer to queries become information that can be 

used to make decisions. The computer program used to manage and query a database is 

known as a database management system (DBMS).  

 

Tables 
Tables are the central concept of a database. It is the collection of records, or pieces of 

knowledge. Typically, for a given table it has a structural description of the type of facts 

held in that database; this description is known as a schema. The schema describes the 

objects that are represented in the database, and the relationships among them. An 

instance of a table is a set of tuples, also called records, in which each tuple has the same 

number of fields as the table schema.  

The schema description for “Person” table can be described as following:  

CREATE TABLE person ( 

  id  char(30)  

,Name  char(30) 

,department char(30) 

,dob  DATE  NOT NULL 

); 

 

The instance of the “Person” table can be described as following: 



 

STS – Technical University of Hamburg-Harburg (TUHH), 2006 25

 

    Fields (Attributes, Columns) 

ID Last name Department DOB 

Sachin Manandhar STS 04.11.1979 

Michel Wessel STS 02.02.1975 

Sam Jones STS 03.12.1987 

Touples 

(records,rows) 

Ralph Muller STS 06.12.1977 

 

Fig 3.1 An Instance of the Person table 

The “Person” table contains six tuples. As we expect from the schema, it has four fields.  

Primary Keys  
A table requires a key which uniquely identifies each row in the table. This is entity 

integrity. The key could have one column, or it could use all the columns. No part of a 

primary key may be NULL. If the rows of the data are not unique, it is necessary to 

generate an artificial primary key.  

The schema description with primary key for “Person” table can be described as 

following:  

CREATE TABLE Person ( 

  id  char(30)  

,Name  char(30) 

,department char(30) 

,dob  DATE  NOT NULL 

,PRIMARY KEY(id) 

); 
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Foreign Keys  
A foreign key is an attribute that completes a relationship by identifying the parent 

entity. Foreign keys provide a method for maintaining integrity in the data (called 

referential integrity) and for navigating between different instances of an entity. Every 

relationship in the model must be supported by a foreign key. Every dependent and 

category (subtype) entity in the model must have a foreign key for each relationship in 

which it participates. Foreign keys are formed in dependent and subtype entities by 

migrating the entire primary key from the parent or generic entity.  

 

Foreign key attributes are not considered to be owned by the entities to which they 

migrate, because they are reflections of attributes in the parent entities. Thus, each 

attribute in an entity is either owned by that entity or belongs to a foreign key in that 

entity. 

The schema description for “has-children” binary table can be described as following:  

CREATE TABLE has-children ( 

  parent CHAR(30)  

 ,child  CHAR(30)  

,FOREIGN KEY(parent) REFERENCES person (id) 

,FOREIGN KEY(child) REFERENCES person (id) 

 

); 
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Relational Algebra and SQL 

Relational Algebra 

Relational Algebra is the mathematics which underpin SQL operations. Queries in 

algebra are composed using a collection of operators. A fundamental property is that 

every operator in the algebra accepts (one or two) relation instances as arguments and 

returns a relation instance as a result. This property makes it easy to compose operators 

to form a complex query – a relational algebra expression is recursively defined to be a 

relation, a unary algebra operator applied to a single expression, or a binary algebra 

operator applied to two expressions. We describe the basic operators of the algebra 

(selection, projection, union, cross-product and difference),as well as some additional 

operators that can be defined in terms of the basic operators but arise frequently enough 

to warrant special attention in the following section. 

Selection and Projection 

Relational algebra includes operator to select row from a relation (σ ) and to project 

columns (π). These operations allow us to manipulate data in a single relation. Consider  

the instance of the “person” table shown in figurer 3.1 as E2. we can retrieve rows 

corresponding to STS department employees by using the σ operators.  

σ department=STS(E2) 

The expression evaluates to the table shown in Figure 3.2. The subscript 

department=STS specifies the selection criterion to be applied while retrieving tuples. 
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ID Last name Department DOB 

Sachin Manandhar STS 04.11.1979 

Michel Wessel STS 02.02.1975 

Sam Jones STS 03.12.1987 

Ralph Muller STS 06.12.1977 

Tina Smith Telematik 06.12.1977 

Manish Ivanov Telematik 06.12.1977 

Fig 3.2 σ department=STS(E2) 

The selection operator σ specifies the tuples to retain through a selection condition. In 

general, the selection condition is a Boolean combination(i.e., an expression using the 

logical connectives Λ (AND) and v (OR). Of terms that have the form attribute op 

constant or attribute1 op attribute2 , where op is one of the comparison operators. 

 

The projection operator π allows us to extract columns from a table; for example, we can 

find out all person ID, Department by using π. The expression  

π id,department(E2) 

evaluates to the relation shown in Figure 3.3. The subscript id, department specifies the 

fields to be retained. The other fields are ‘projected out’. 
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ID Department 

Sachin STS 

Michel STS 

Sam STS 

Ralph STS 

Tina Telematik 

Manish Telematik 

Fig 3.3 π id,department(E2) 

Since the result of relational algebra expression is always a relation, we can substitute an 

expression whenever a relation is expressed. For example we can compute the id and 

department for person in STS department. The expression 

π id,department(σ department=STS(E2)) 

produces the result shown in Figure 3.4. It is obtained by applying the selection to E2 

and then applying the projection. 

 

ID Department 

Sachin STS 

Michel STS 

Sam STS 

Ralph STS 

Fig 3.4 π id,department(σ department=STS(E2))  
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Set Operations 

The following standard operation on set are also available in relational algebra: union 

(U), intersection (∩) , set-difference (-), and cross-product(×). 

 

Union: R U S returns a relation instance containing all tuples that occur  either relation 

instance R or relation instance S (or both). R and S ,must be union – compatible, and the 

schema of the result id defined to be identical to the schema of R. 

 

 
 

Fig 3.5 Union example 

 

Intersection: R ∩ S returns a relation instance containing all tuples that occur in both R 

and S. The relations R and S must be union-compatible, and the schema of the result is 

defined to be identical to the schema of R. 
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Fig 3.6 Intersection example 

 

Set-difference: R – S returns a relation instance containing all tuples that occur in R but 

not in S. The relations R and s must be union-compatible, and the schema of the result is 

defined to be identical to the schema of R. 

 

 
 

Fig 3.7 Set difference example 
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Cross-product: R×S returns a relation instance whose schema contains all the fields of 

R (in the same order as they appear in R) followed by all the fields of S ( in the same 

order as they appear in S). The result  R × S  contains one touple <r,s> ( the 

concatenation of tuples r and s) for each pair of tuples r belongs to R and s belongs to S. 

 

 

Fig 3.8 Cross product example 

 

SQL 
Structured Query Language (SQL) is the most widely used commercial relational 

database language. It was originally developed at IBM in SEQUEL-XRM and System-R 

projects (1974-1977). Almost immediately, other vendors introduced DBMS products 

based on SQL, and it is now a de facto standard. SQL continues to evolve in response to 

changing needs in the database area. The current ANSI/ISO standard for SQL is called 

SQL:1999. [Database Management System,  Ramakrishnan, Gehrke,  McGrawHill 

publication 2003]. 

 

 

The basic form of SQL query is as follows: 
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SELECT [ DISTINCT ]select-list 

 

FROM from-list 

 

WHERE qualification; 

 

Every query must have SELECT clause, which specifies columns to be retained in the 

result, and a FROM clause, which specifies a cross-product of tables. The optional 

WHERE clause specifies selection conditions on the tables mentioned in the FROM 

clause. Such a query intuitively corresponds to a relational algebra expression involving 

selections, projections and cross-products. Let us consider a simple example. 

 

(SQL query example 1) Find the id and department of all person. 
 

SELECT DISTINCT E.id, E.department 

 

FROM person E 

 

The answer is a set of rows, each of which is a pair <id, department>. If two or more 

person have the same id and department, the answer still contains just one pair. With the 

id and department. The query is equivalent to applying the projection operator on 

relational algebra. If we omit the keyword DISTINCT, the answer would be a multi set 

of rows. 

 

The answer to this query with keyword DISTINCT on instance E of person is shown in 

Figure 3.9. 

  

ID Department 

Sachin STS 

Michel STS 

Sam STS 

Ralph STS 
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Tina Telematik 

Manish Telematik 

     

Fig 3.9 Answer to (SQL query example 1) 

 

Our next query is equivalent to an application of the selection operator of relational 

algebra. 

(SQL query example 2) Find the id and department of all person. 
 

SELECT DISTINCT E.id, E.department 

 

FROM person as E 

 

Where E.department = ‘STS’ 

 

This query uses the optional keyword AS to introduce a range variable. Incidentally, 

when we want to retrieve all columns, SQL provides a  convenient shorthand: We can 

simply write SELECT *.  

 

As these two examples illustrate, the SELECT clause is actually used to do projection, 

whereas selections in the relation algebra sense are expressed using the WHERE clause. 

 

We now consider the syntax of a basic SQL query in more detail. 

 

• The from-list in the FROM clause is a list of table names. A table name can be 

followed by a range variable; a range variable is particularly useful when the 

same table name appears more than once in the from-list. 

 

• The select-list is a list of (expressions involving) column names of tables named 

in the from-list. Column names can be prefixed by a range variable. 
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• The qualification in the WHERE clause is a Boolean combination (i.e., an 

expression using the logical connectives AND, OR, and NOT) of conditions of 

the form expression op expression, where op is one of the comparison operators 

{<, <=, =, <>, >=, >}. An expression is a column name, a constant, or an 

(arithmetic or string) expression. 

 

Although the preceding rule describe (informally) the syntax of a basic SQL query, they 

do not tell us the meaning of a query. The answer to a query is itself a relation. Which is 

a multi set of rows in SQL!—whose contents can be understood by considering the 

following conceptual evaluation strategy: 

 

1. the cross-product of the tables in the from-list. 

2. Delete rows in the cross-product that fail the qualification conditions. 

3. Delete all columns that do not appear in the select-list. 

4. If DISTINCT is specified, eliminate duplicate rows. 

 

This straightforward conceptual evaluation strategy makes explicit the rows that must be 

present in the answer to the query.  

JOIN Operator  

JOIN is used to combine related tuples from two or more relations:  

• In its simplest form, the JOIN operator is just the cross product of the two or 

more relations.  

• As the join becomes more complex, tuples are removed within the cross product 

to make the result of the join more meaningful.  

• JOIN allows you to evaluate a join condition between the attributes of the 

relations on which the join is undertaken.  

The notation used is  
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 R JOINjoin condition S 

 

 
 

Fig 3.10 JOIN example 

Natural Join  
Invariably the JOIN involves an equality test, and thus is often described as an equi-join. 

Such joins result in two attributes in the resulting relation having exactly the same value. 

A `natural join' will remove the duplicate attribute(s).  

• In most systems a natural join will require that the attributes have the same name 

to identify the attribute(s) to be used in the join. This may require a renaming 

mechanism.  

• If you do use natural joins make sure that the relations do not have two attributes 

with the same name by accident.  

 

OUTER JOIN  

Notice that much of the data is lost when applying a join to two relations. In some cases 

this lost data might hold useful information. An outer join retains the information that 

would have been lost from the tables, replacing missing data with nulls.  

 

There are three forms of the outer join, depending on which data is to be kept.  

• LEFT OUTER JOIN - keep data from the left-hand table  
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• RIGHT OUTER JOIN - keep data from the right-hand table  

• FULL OUTER JOIN - keep data from both tables  

 
 

Fig 3.11  : OUTER JOIN (left/right) example 

 

 
 

Fig 3.12  : OUTER JOIN (full) example 

 

Consider the following SQL to find parent of the STS department.  

 SELECT DISTINCT parent.id 

 FROM  person as parent, has-children, person as child 

 WHERE child.department = `STS' 

   AND parent.id = has-children.parent 

   AND child.id = has-children.child 
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The equivalent relational algebra is  

 PROJECTid (parent JOINid = parent ( 

  PROJECTparent (has-children JOIN child=id( 

  SELECTdepartment = `STS' child) 

  )) 

 

When this query is submitted to the DBMS, its query optimizer tries to find the most 

efficient equivalent expression before evaluating it.  

 

Subqueries 

 

One SELECT statement can be used inside another, allowing the result of executing one 

query to be used in WHERE rules of the other SELECT statement. When one SELECT 

statement appears within another SELECT statement's WHERE clause it is known as a 

SUBQUERY. 

  

One limitation of subqueries is that it can only return one attribute. This means that the 

subquery can only have one attribute in its SELECT line. If you supply more than one 

attribute the system will report an error.  

 

Subqueries are generally used in situations where one might normally use a self join or a 

view. Subqueries tend to be much easier to understand.  For example, if we want to find 

Who in the database is older than sachin? 

  
SELECT id  

FROM person 

WHERE dob > (SELECT dob FROM person WHERE id = 'sachin') 
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IN and NOT IN for subqueries 

IN and Not IN can be used with something like ('BLUE','BLACK')or a subquery returns 

a similar construct. For example:  

SELECT regno FROM car 

WHERE colour IN (SELECT colour FROM car WHERE person as owner  = 

sachin') 

; 

SELECT regno FROM car 

WHERE colour NOT IN (SELECT colour FROM car WHERE person as owner = 

'sachin') 

; 

 

EXISTS 

The EXISTS operator is a simple test, which is TRUE if the subquery returns at least 1 

row, and FALSE if it return 0 rows. NOT EXISTS does the opposite.  For example: 

SELECT colour 

FROM car a 

WHERE exists ( 

        select colour             -- does not matter what is selected 

        from car b                -- As we use CAR twice, call this one 

b 

        where a.colour = b.colour -- CAR rows with the same colour as a 

        and   a.regno != b.regno  -- but a car different to the one in 

a 

     ); 

 

ANY and ALL 

ANY and ALL allows us to handle subqueries which return multiple rows. The 

subqueries have only a single column which have ANY in front of a query. The rule 

provided must be true for at least 1 of the rows returned. For example: 

SELECT regno FROM car 
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WHERE colour = ANY (SELECT colour FROM car WHERE person as owner = 

'sachin') 

; 

 

UNION 

UNION merge the results of two queries together to form a single output table. UNION 

only works if each query in the statement has the same number of columns, and each of 

the corresponding columns are of the same type. For example: 

SELECT name,count(*) 

FROM   driver JOIN car on (name = owner) 

UNION 

SELECT name,0 

FROM   driver 

WHERE  name not in (select owner from car) 

 

 



 

STS – Technical University of Hamburg-Harburg (TUHH), 2006 41

 

Chapter 4 

Background on nRQL to SQL conversion 
 

The syntax of nRQL can be used to define concepts (unary relation symbols), roles 

(binary relation symbols), and individuals (constants). Atomic sentences about constants 

can be expressed in nRQL by saying that an individual is an instance of a concept, or a 

role that holds between two individuals. 

 

We explain  nRQL to SQL conversion process by the following example. Suppose we 

have unary table EMPLOYEE and binary table HAS-TEAM in the database.  

 

 

 

 

 

 

 

 

Figure:4.1 Example database tables (EMPLOYEE, HAS-TEAM) 

 

Let us assume following knowledge-base is being created in RACER, which maps a 

concept EMPLOYEE to unary table EMPLOYEE and role HAS-TEAM maps to binary 

table HAS-TEAM.   
 
(in-knowledge-base employee employee-database) 
 
(signature :atomic-concepts (employee) 
           :roles ((has-team :transitive t)) 
           :individuals(michel sachin ralph)) 
 
(instance sachin employee) 
(instance michel employee) 
(instance ralph employee) 

EMPLOYEE

id 

Michel 

Sachin 

Ralph 

HAS-TEAM
 

supervisor employee 

Michel Sachin 
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(related michel sachin has-team) 
 
 
RACER allows us to create a new complex individuals from the atomic concepts and 

roles. Here, we create a new concept called SUPERVISOR from EMPLOYEE concept 

and HAS-TEAM role. 

 
(equivalent supervisor (and employee (some has-team employee))) 
 
(instance michel supervisior) 
 

Similarly, complex concepts and complex roles can be built from the atomic ones using 

different sets of operators to form term descriptions. Typical concept forming operators 

are AND, OR, NOT, SOME, etc. Typical role-forming operators are INVERSE, 

FEATURE,TRANSITIVE, RANGE.  

 

In order to simplify our translation process we divide RACER atomic concept into two 

types of concepts: 

1. Primitive concept 

2. Complex concept 

Primitive concept  

Primitive concept in the RACER has its direct mapping into the database tables. For 

example, the EMPLOYEE concept in RACER has its direct mapping into a  unary table 

EMPLOYEE. 

Complex concepts 

In contrast to primitive concept, complex concept does not have its direct mapping 

to database tables but it has description of tables that have its mapping to database 

tables. For example, the SUPERVISOR concept in RACER does not has its direct 

mapping into  its database table but its description can be mapped through EMPLOYEE 

table and  HAS-TEAM table. 
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Similarly, to simplify our translation process for roles we consider roles that has its 

direct mapping to database table. We call this role as a primitive role. For example we 

consider HAS-TEAM role as a primitive role. 

 

4.1 nRQL to SQL conversion Approach: 

Primitive concept and primitive role have its direct mapping to its corresponding unary 

table and the binary table respectively. The cleanest way to establish a correspondence 

between values in these tables and the facts in the RACER is to have each tuple in a 

“concept table” correspond to an individual in the RACER. Similarly, each tuple in a 

“role table” correspond to a role relationship.  

 

A concept table should have an attribute key which is necessary to distinguish the 

corresponding individuals. While a role table has attribute keys of both the domain and 

range of the binary relation. For simplicity, we assume all keys are single values; 

initially, we have a sole (key) attribute in a concept table and designate it as id; and the 

two attributes of a role table as the LEFT concept id and the RIGHT concept id.  

 

4.1.1 Translating primitive concept to SQL query 

Since every primitive concept C to be found in RACER corresponds to its respective 

unary table with definite id. The algorithm to translate RACER primitive concept 

definition to  SQL is written as follows.   

 
function getSQL(C) 

  var q : QUERY 

  q.select := C.id ; 

  q.from := Table C; 

  q.statement: = “select distinct ” + q.select + “from “ + q.from; 

  return q.statement; 

end function 
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4.1.2 Translating primitive role to SQL query 

Since every primitive role R to be found in RACER corresponds to its respective binary 

table with designate left concept and right concept. The algorithm to translate RACER 

role definition to  SQL is written as follows.   

 
function getSQL(R) 

  var q : QUERY 

  var r: ROLE 

  q.select := Left.id, RIGHT.id ; 

  q.from := Table R, r.LEFTConcept.basetable as LEFT,  

  r. RIGHT Concept.basetable as RIGHT; 

 

  q.where := R.left = LEFT.id + “ And “+ 

             R.Right = RIGHT.id + “ And “+ 

             LEFT.id + “ In “+ “(“ + getSQL(LEFT) + “)” + “ AND ” 

             RIGHT.id + “ In “+ “(“ + getSQL(RIGHT) + “)” + “ AND ” 

 

  q.statement: = “select distinct ” + q.select + “ from “ + q.from; 

                  + “ where ” + q.where 

  

  return  q.statement; 

end function 

 

4.1.3 Translating complex concepts to SQL query 

Complex concepts are built using concepts or roles, which have some direct and 

indirect mapping into its corresponding database table. In order to translate complex 

concept we need to simplify it into a composite description of simple concept and 

roles which can be mapped to database. For example we can simplify the 

SUPERVISOR concept  as follows: 

 

SUPERVISOR :: = 

 (AND  

EMPLOYEE 
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 (SOME has-team EMPLOYEE) ) 

 
Therefore to generate an equivalent SQL translation for this query, we need to 

translate the RACER description instead of the composite concept itself. The 

algorithm to translate composite concept query to SQL query is the following :    

 
function getSQL(C) 

  var q : QUERY 

  q.select := C.id ; 

  q.from := Table getPremitiveConcept(C) as C; 

  q.where := C.id in getCompositDesc (getRACERDesc(C)) 

  q.statement: = “select distinct ” + q.select + “from “ + q.from 

    + “ where ” + q.where; 

 return q.statement; 

end function 

 

4.1.3 translating composite descriptions to SQL query 

It is relatively easy to derive an SQL query that computes the instances of a composite 

description based on the denotation of its components. For example, if instances of the 

concepts C and D are computed by the queries QC and QD, then and(C,D) can be 

obtained by the query QC  intersect QD. 

 

and(C,D) getSQL(C) Intersect getSQL(D) 

or(C,D) getSQL(C) Union getSQL(D) 

some(r,c) select r.left from s_Table z, r_Table r 

where r.right=z.id and r.right  in getSQL(C) 
 

                   Fig 4.2  translation for composite concept  description 
 

The algorithm to translate RACER and(C,D) composite description is written as 

follows. 
 function getCompositDesc(and(C,D)) 
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   var q : QUERY 

   q.statement getSQL(C) + “ Intersect “ + getSQL(D); 

   return q.statement; 

 end function 

 

Similarly the algorithm to translate RACER or(C,D) composite description is written as 

following. 
 

 function getCompositDesc (or(C,D)) 

   var q : QUERY 

   q.statement getSQL(C) + “ UNION “ + getSQL(D); 

   return q.statement; 

 end function 

 

Similarly the algorithm to translate RACER some(r,c) composite description is written 

as following. 
      function getCompositDesc (some(R,C)) 

 var q : QUERY 

 q.select := R.left; 

   q.from := Table R, RIGHT; 

 q.where := R.right=RIGHT.id and RIGHT.ID in getSQL(C) 

 q.statement := “Select “ + q.select + “ From “ + q.from  

   + “ where ” + q.where;  

 

 return q.statement; 

 end function 

 

4.2 Problems with the nRQL to SQL translation 
 

The above mentioned translation just supports a part of nRQL query language. The other 

nRQL queries that are not supported by above mentioned translations are:  

 
Queries with individuals  
 
It is also possible to use ABox individuals in nRQL queries. For example, suppose we 

just want to know if sachin  is a EMPLOYEE: 
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(retrieve () (sachin  EMPLOYEE)) 
 
Since primitive concept EMPLOYEE corresponds to EMPLOYEE table in database, 

which has id field as its key. We redefine the algorithm to translate primitive concept 

with individual as following:   
 
function getSQL(C,instance) 

  var q : QUERY 

  q.select := C.id ; 

  q.from := Table C; 

  q.where := C.id = instance; 

  q.statement: = “select distinct ” + q.select + “from “ + q.from 
   “ where ” + q.where; 

  return q.statement; 

end function 

 
 
Queries with negated concept 
 

It is also possible to use negated concept in nRQL queries. For example, suppose we just 

want to find individuals which  is not a EMPLOYEE: 

 

 (retrieve (?x) (?x (not EMPLOYEE))) 

 

The direct translation to this nRQL query would be to query union of all unary tables in 

database and negate the getSQL (EMPLOYEE). If we represent the union of all unary 

tables by ANY-OBJECT view query. Then we can evaluate the nRQL query expression 

(not EMPLOYEE) by  getSQL(ANY-OBJECT) MINUS getSQL(EMPLOYEE). In order 

to increase the performance of the system, we did not implement this algorithm to 

translate negated concept for our project.  

 
Role Terms in Role Query Atoms: 
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It is also possible to use arbitrary concept expression in concept query atoms, not only 

atomic names. The same applies to role query atoms – role terms can be used, not only 

role names, as the following example demonstrates: 

 
(retrieve (?team-of-michel) (?team-of-michel michel (HAS- TEAM))) 
 
Although RACER handles this differently, in our project we treat arbitrary concept 

expression as a variable, assuming that nRQL uses the unique name assumption (UNA) 

for the variable. 



 

STS – Technical University of Hamburg-Harburg (TUHH), 2006 49

Chapter 5 

Implementation 
 

5.1 nRQL to SQL query conversion Architecture 

In the following section we are going to discuss the architecture and implementation 

details of the nRQL to SQL conversion  project. The current nRQL to SQL conversion 

system consists of two main subprojects. The first subproject is responsible for parsing 

nRQL query and is implemented as an nRQL graph in memory. The second subproject is 

the implementation of nRQL graph to SQL query conversion with a RDBMS on its 

backend.  

 

 
fig 5.1 Architecture of nRQL to SQL  query conversion 

 

When nRQL query is passed to query conversion system the parser will evaluate the 

nRQL query and generate an appropriate nRQL graph in memory for the query. The 

query converter then maps this graph to SQL query. 
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5.2  nRQL Parser 
 
 nRQL parser splits a text stream, typically a nRQL query, into a graph representation 

suitable for nRQL to SQL query conversion. It analyzes the stream of tokens and then 

constructs a graph representation in memory for the nRQL query expression.  

 

The RETRIEVE expression is a very important expression of nRQL query. It is composed 

of Query Head expression and Query Body expression. Query Head expression can be a 

list of variables or instance of the concepts that is associated with the Query Body 

expression.  Query Body expression can be simple or compound. Simple Query Body 

expression simply associates query variable or instance to its respective concepts, while 

compound Query Body expression is composed of one or more Query Body joined 

together by one or more operators . 

 

The EBNF syntax for RETRIEVE, Query Head, Query Body expression can be 
represented as following: 

 

RETRIEVE: <RETRIEVE> “ ” QueryHead()“ ” QueryBody() 

 

Query Head: <OPEN_PAREN> (Var() | “ ” |Qname())* <CLOSE_PAREN> 

 

Query Body: <OPEN_PAREN> (SimpleQueryBody() | CompoundQueryBody())* 

<CLOSE_PAREN> 

 

nRQL parser will generate the following graph for this RETRIEVE operator. 

RETRIEVE

Query Head Query Body

Variable 1 Variable 2  
 

fig 5.2 Graph representation of “RETRIEVE” query expression 
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5.2.1 Simple Query Body 

 

Simple query body expression is often composed of one or more variables or it could be 

an  instance of the object. 

The EBNF syntax for Simple Query Body can be represented as follows: 
 

Simple Query Body: <OPEN_PAREN> ((var()| “ ” |Qname()))* <CLOSE_PAREN> 

 

nRQL parser will generate the following graph for this Simple Query Body 

expression. 

 

Concept Query Statement Role Query Statement

Subject
Node

Predicate
Node

Object
Node

LEFT 
Node

Right 
Node

Role 
Node

Query Body

 

 

fig 5.3 Graph representation of simple query body expression  
 

 

5.2.2 Compound Query Body  

 

nRQL compound query statements are often composed of one or more operators. nRQL 

parser evaluates these operators contained in an nRQL expression to produce an nRQL 

graph which is an equivalent of the nRQL expression.  

  

The EBNF syntax for Compound Query Body can be represented as follows: 
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Compound Query Body: <OPEN_PAREN> (Operator()“ ” QueryBody() 

  “ ” QueryBody ()) <CLOSE_PAREN> 

 

nRQL parser will generate the following graph for this Simple Query Body 

expression. 

Query Body

Operator (and, or, some)

Query Body
Query Body

 
fig 5.4 Graph representation of compound query body expression  

5.3 nRQLgraph to SQL query converter 
 
The second sub-project nRQL graph to SQL query converter consists of two 

components. The first component is called query optimizer. It is responsible for 

optimizing the nRQL graph produced by the parser, which can be further translated to 

SQL query. The second component SQL converter analyzes the  optimized nRQL graph 

and produces a SQL output.  

 query 
optimizer

SQL 
converter

optimized nRQL graph

SQL query

 nRQL graph

optimized nRQL graph

 

 

fig 5.5 Architecture of nRQL graph to SQL  query conversion



 

STS – Technical University of Hamburg-Harburg (TUHH), 2006 53

 

5.3.1 query optimizer 

nRQL parser does not distinguish between the primitive concept and compound concept 

this distinction is done by the query optimizer. Query optimizer traverses every object 

node and check if the object node is a primitive concept or compound concept against 

RACER. It uses JRACER to get the concept description from RACER. The following 

code fragment shows a sample implementation of  JRACER. 

 

public class Subscription { 

public static void main(String[] argv) { 

RACERServer RACER1 = new 

RACERServer("localhost",8088); 

String res; 

try { 

RACER1.openConnection(); 

res = RACER1.send("define-concept PARENT"); 

RACER1.closeConnection(); 

System.out.println(res); 

} 

catch (Exception e) { 

e.printStackTrace(); 

} 

} 

} 

 

If JRACER replies NIL as the concept description for the selected object node, then 

query optimizer treat this object node as a primitive concept node. The pair of this 

subject Node, predicate node and the primitive concept node is treated as a triple. 
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If JRACER replies other than NIL as the concept  description query optimizer treat this 

object node as complex  concept. For e.g. (AND EMPLOYEE  (SOME HAS-TEAM 

EMPLOYEE)) 
 

Query optimizer refine the graph for the object node. To refine this object node query 

optimizer connect to nRQL parser and get an equivalent graph for this concept 

description. The Object node can then be replaced by the graph retrieved from the nRQL 

parser. The refinement process continues until every object node is represented as a 

primitive concept node.  

 

 
fig 5.6 nRQL graph optimization for concepts  

 
 

In the case of role based nRQL queries such as  

(reterive (?x ?y) (and (?x SUPERVISOR) (?y EMPLOYEE) (?x ?y HAS-TEAM)) 

 nRQL parser generates the graph as following: 
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Query Body

Query Body Query Body Query Body

Intersection ("AND")

Subject
Node
(?x)

Predicate
Node
( )

Object
Node

(SUPERVISOR)

Concept query statement Concept query statement

Subject
Node
(?y)

Predicate
Node
( )

Object
Node

(EMPLOYEE)

Role query statement

Subject
Node
(?y)

Subject
Node
(?x)

Role
Node

(HAS-TEAM)  
 

fig 5.7 nRQL graph for (and (?x SUPERVISOR) (?y EMPLOYEE) (?x ?y HAS-TEAM))  

 

Each role query statement is composed of left and right variables. Each of these variable 

are associated with some concept anywhere in the graph. nRQL graph optimizer searches 

for the associated concept in the parent nRQL graph and constructs a query body graph 

as following. 

Query Body Query Body

Query Body

Subject
Node
(?x)

Predicate
Node
( )

Object
Node

(SUPERVISOR)

Concept query statement Concept query statement

Subject
Node
(?y)

Predicate
Node
( )

Object
Node

(EMPLOYEE)

Role query expression

Role
Node

(HAS-TEAM)

 
 

fig 5.8 optimized nRQL graph for (and (?x SUPERVISOR) (?y EMPLOYEE) (?x ?y HAS-

TEAM))  

 

Later query optimizer replaces the  parent graph of role query body with the optimized 

graph for role query body. Similar kind of optimization is also done for role based nRQL 
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queries such as (and PERSON (SOME HAS-CHILDREN PERSON)). In this case 

searching is done in grand-parent graph for concepts and later grand-parent graph is 

replaced by optimized graph. 

  

5.3.2 SQL translator 
 
Query body of nRQL graph is composed of one or more than one query body sub-

graphs. SQL translator define toSQL() function to translate query body nRQL graph 

toSQL query. toSQL() function always returns a SQL string.  

 

5.3.1.1 SQL translation for Triple 

 

The Level 0 query body of optimized nRQL sub-graph is always a primitive concept 

query. It has a subject node,  a predicate node and a object node with  primitive concept. 

SQL translator define this set as a “Triple” object. The following code snippet of 

“Triple” object shows an implementation of function toSQL(). 
   
 
 public String toSQL() 
       { 
  String SQLString; 
        String SubjString; 
        String condString; 
  SQLString = "Select "; 
  condString ="";   
   SQLString = SQLString + obj.toString() + ".id"; 

SQLString =  SQLString + " from " +  
obj.toString(); 

    
  SubjString =subj.toString(); 
   
  char first = SubjString.charAt( 0 ); 
  if ((first != '?')&& (first != '')){ 
   condString = condString +  obj.toString() + ".id = '"  

+ subj.toString() + "'"; 
   } 
  
  if (!(condString.equals(""))) 
   SQLString = SQLString + " Where " + condString; 
    
  return SQLString;  

} 
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toSQL() function for “Triple” object simply selects object id from object when subject 

node is an instance of a primitive concept  then it selects the object id which is equal to 

an instance of  the primitive concept. 

 

5.3.1.2 SQL translation for role query 

 

Optimized nRQL sub-graph for role query has a left query body, a right query body and 

a role node. SQL translator define this set as “RoleBaseQuery” object. The following  

code snippet of as “RoleBaseQuery” object shows an implementation of function 

toSQL(). 

 
public String toString(){ 
 
 String sqlString; 
    
 if ((!L.isEmpty())&&(!R.isEmpty())){ 

String tempLeftObj = L.getTriple().getObject().toString(); 
 String tempRightObj = R.getTriple().getObject().toString(); 
 sqlString = "Select "; 
 sqlString = sqlString  + tempLeftObj + "," +tempRightObj; 
 sqlString = sqlString  + " from "; 
 sqlString = sqlString  + roleName; 
 String condString=""; 
 String temp=L.getTriple().getSubject().toString(); 
 char first = temp.charAt( 0 ); 
 if ((first != '?')&& (first != '')){ 
   if (!condString.equals("")){ 
   condString = condString + " And "; 
   } 
    condString = condString +  tempLeftObj + " = '" + temp + "'"; 
    } 
  temp=R.getTriple().getSubject().toString(); 
  first = temp.charAt( 0 ); 
 if ((first != '?')&& (first != '')){ 
   if (!condString.equals("")){ 
  condString = condString + " And "; 
  } 
    condString = condString +  tempRightObj + " = '" + temp + "'"; 
 }  
 if (!condString.equals("")){ 
   sqlString = sqlString  + " Where " + condString; 
  } 
  return sqlString; 
   } 
 if ((!L.isEmpty())&&(R.isEmpty())){ 
  String primaryrole; 
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  String tempLeftObj = L.getTriple().getObject().toString(); 
  sqlString = "Select "; 
  primaryrole =""; 
  DatabaseConnection db = new DatabaseConnection();  
  Role role = new Role(db); 
  primaryrole = role.getPrimary(roleName,tempLeftObj); 
  } 
 sqlString = sqlString  + roleName + "."+ primaryrole; 
 sqlString = sqlString  + " from "; 
 sqlString = sqlString  + roleName + ","; 
 sqlString = sqlString  + tempLeftObj; 
 sqlString = sqlString  + " Where "; 
 sqlString = sqlString  + "(" + roleName + "." + tempLeftObj  
                  + " = " + tempLeftObj + ".id" +")"; 
 sqlString = sqlString  + " And "; 
 sqlString = sqlString  + "("; 
 sqlString = sqlString +roleName+ "." + tempLeftObj; 
 sqlString = sqlString  + " in "; 
 sqlString = sqlString  + "("; 
 sqlString = sqlString  + L.queryHandler().toSQL(); 
  sqlString = sqlString  + ")"; 
  sqlString = sqlString  + ")"; 
  return sqlString; 
  } 
 return ""; 
 } 
 

toSQL() function for “RoleBaseQuery” object simply selects role table name, left object 

table name, and right object table name, and make join query of role table, left table and 

right table. It also makes sure RoleTable.left is in SQL query of left sub-graph and 

RoleTable.right is in right sub-graph. 

 

 5.3.1.2 SQL translation for compound query 

Optimized nRQL sub-graph for compound query always has a left query body and a 

right query body. SQL translator define this set as “CompoundQuery” object. Compound 

query could be  “And” or “Or” type. The following  code snippet of as 

“CompoundQuery” object shows an implementation of function toSQL(). 
   
 
 public String toSQL() 
       { 
  String SQLString; 
         
      if ((QueryType == 'And') 
  sql = sql + L.toSQL()+ " INTERSECT " + R.toSQL(); 

} 
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      if ((QueryType == 'Or') 
  sql = sql + L.toSQL()+ " UNION " + R.toSQL(); 

} 
    

} 

 

toSQL() function for “CompoundQuery” object of type “And” simply gives an 

intersection left sub-graph query and right sub-graph query. Similarly toSQL() function 

for “CompoundQuery” object of type “Or” simply gives a union of left sub-graph query 

and right sub-graph query. 
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Chapter 6 
 

Benchmarks 
 

The aim of this thesis was to design a nRQL to SQL conversion system for a subset of 

nRQL statement that is powerful enough to queries information in database. This enables 

us to query instances of the RACER ABox individuals which is stored in DBMS.   

6.1 Tools used  
We had used various tools to test nRQL queries and SQL queries.  

 

1. RICE (RACER Interactive Client Environment) 

RICE  is a graphical interface to RACER. It is developed by Vaithi Subramanian. It 

provides functions for browsing TBoxes and ABoxes, plus querying facilities using the 

RACER API.  

 
2. SQL Studio and SQLyog 
 

SQL Studio and SQLyog  are graphical interface to MYSQL DBMS. It provides 

functions for creating and browsing database schema, plus multiple querying facilities 

using the MYSQL MAXDB API.  

 

6.2 Validation  
In order to validate our translation. We test the result of SQL query in database against 

nRQL query in RACER knowledge-base. We consider the following Database tables in 

MYSQL database. 

1. Unary table “employee” 

2. Binary table “has_emp” 

3. Binary table “has_team” 
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The schema for unary table “employee” is as follows: 

CREATE TABLE `employee` ( 

  `id` char(20) NOT NULL default '', 

  PRIMARY KEY  (`id`) 

) ENGINE=InnoDB DEFAULT CHARSET=latin1; 

 

The data value for unary table employee is as follows: 

 

Table employee 

id 

michel 

ralph 

sachin 

sam 

  

Fig: 6.1 data values in “employee” table 

 

The schema for binary table “has_emp” is as follows: 

 

CREATE TABLE `has_emp` ( 

  `manager` char(20) NOT NULL default '', 

  `employee` char(20) NOT NULL default '', 

  KEY `manager` (`manager`), 

  KEY `employee` (`employee`), 

  CONSTRAINT `has_emp_ibfk_1` FOREIGN KEY (`manager`) 

REFERENCES `employee` (`id`), 

  CONSTRAINT `has_emp_ibfk_2` FOREIGN KEY (`employee`) 

REFERENCES `employee` (`id`) 

) ENGINE=InnoDB DEFAULT CHARSET=latin1; 
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The data value for binary table “has_emp” is as follows: 

Table has_emp 

manager employee 

ralph michel 

michel sachin 

michel sam 

 

Fig: 6.2 data values in “has_emp” table 

 

The schema for binary table has_team is as follows: 

 

CREATE TABLE `has_team` ( 

  `supervisior` char(20) NOT NULL default '', 

  `employee` char(20) NOT NULL default '', 

  KEY `supervisior` (`supervisior`), 

  KEY `employee` (`employee`), 

  CONSTRAINT `has_team_ibfk_1` FOREIGN KEY (`supervisior`) 

REFERENCES `employee` (`id`), 

  CONSTRAINT `has_team_ibfk_2` FOREIGN KEY (`employee`) 

REFERENCES `employee` (`id`) 

) ENGINE=InnoDB DEFAULT CHARSET=latin1; 

 

The data value for binary table “has_team” is as follows: 

Table has_team 

supervisior employee 

michel sachin 

michel sam 

 

Fig: 6.3 data values in “has_team” table 
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We then construct a knowledge-base schema in RACER from this database schema. The 

knowledge-base schema in RACER for above database schema is as follows: 

 
 (in-knowledge-base employee employee-database) 
 
(signature :atomic-concepts (employee ) 
           :roles ((has_emp :transitive t) 
     (has_team :transitive t))) 
 
 
We then add individuals to the knowledge-base schema which can be found in employee 

table. The new knowledgebase with added individuals in RACER A-Box is as follows: 

 
(in-knowledge-base employee employee-database) 
 
(signature :atomic-concepts (employee ) 
           :roles ((has_emp :transitive t) 
     (has_team :transitive t)) 
           :individuals(michel sachin ralph sam)) 
 
(instance michel employee) 
(instance ralph employee) 
(instance sachin employee) 
(instance sam employee) 
(related ralph michel has_emp) 
(related michel sachin has_emp) 
(related michel sam has_emp) 
 
(related michel sachin has_team) 
(related michel sam has_team) 
 

 In order to test the complex concepts in RACER knowledgebase we extend our 

knowledge-base with new complex concept called manager, which is an extension of  

employee concept and has_emp role. Similarly, we extend our knowledge-base with new 

complex concept called supervisor. The extended knowledge-base with added 

individuals in RACER A-Box is as follows. 

 
(in-knowledge-base employee employee-database) 
 
(signature :atomic-concepts (employee  
                                   supervisior manager) 
           :roles ((has_emp :transitive t) 
     (has_team :transitive t)) 
           :individuals(michel sachin ralph sam)) 
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(equivalent manager (and employee (some has_emp employee))) 
(equivalent supervisior (and employee (some has_team employee))) 
 
(instance ralph manager) 
(related ralph michel has_emp) 
(instance michel manager) 
(related michel sachin has_emp) 
 
(instance michel supervisior) 
(related michel sachin has_team) 
(related michel sam has_team) 
 
(instance sachin employee) 
(instance sam employee) 
 
 

6.3 Query result comparison and evaluation 
In order to evaluate the results of nRQL query against the generated SQL query, we  

compare the result of nRQL query in RACER ABox and result of the SQL query in 

MySQL database. 

Q6.2.1 Test for primitive concept 
 
nRQL Query : (retrieve (?x) (?x employee)) 

 
nRQL query result from RACER ABox are: 

(((?X RALPH)) ((?X MICHEL)) ((?X SAM)) ((?X SACHIN))) 

 
translated SQL: Select employee.id from employee 

 
SQL query result from MYSQL database: 

michel, ralph, sachin, sam 

 

Here, the result of nRQL query in RACER ABox and result returned from MySQL 

database are same. 
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Q6.2.2 Test for primitive concept with instance 
 
nRQL Query : (retrieve () (michel employee)) 

 
nRQL query result from RACER ABox are: 

T 

 
translated SQL:  

Select employee.id from employee Where employee.id = 
'michel' 
 
SQL query result from MYSQL database: 

michel 

 

Here, the result of nRQL query in RACER ABox returns ‘T’(true) while the result 

returned from MySQL database returns the instance ‘michel’. Even though the result are 

different. It is similar because in query we test for the instance of ‘michel’ and query 

result also return instance ‘michel’, which menas the query result also returns true.   

 

Q6.2.3 Test for complex concept  
 
nRQL Query : (retrieve (?x) (?x manager)) 

 
nRQL query result from RACER ABox are: 

(((?X MICHEL)) ((?X RALPH))) 
 
translated SQL:  

Select employee.id from employee where employee.id in   ( 

Select has_emp.manager from has_emp,employee Where 

(has_emp.employee = employee.id) And (has_emp.employee in 

(Select employee.id from employee))) 

 
SQL query result from MYSQL database: 

michel, ralph 
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Here, the result of nRQL query in RACER ABox and result returned from MySQL 

database are same. 

 

Q6.2.4 Test for compound ‘and’ query and primitive role 
 

nRQL Query :  

(retrieve (?x ?y)  

(and (?x manager) (?y employee) (?x ?y has_emp))) 

 
nRQL query result from RACER ABox are: 

( 
((?X MICHEL) (?Y SACHIN))  
((?X RALPH) (?Y MICHEL))  
((?X RALPH) (?Y SACHIN))) 
translated SQL:  

Select employee.id from employee where employee.id in   ( 

Select has_emp.manager from has_emp,employee Where 

(has_emp.employee = employee.id) And (has_emp.employee in 

(Select employee.id from employee))) 

 

SQL query result from MYSQL database: 

michel, sachin 

ralph,michel 

ralph, sachin 

 

Here, the result of nRQL query in RACER ABox and result returned from MySQL 

database are same. 

Q6.2.4 Test for compound ‘or’ query  
 

nRQL Query :  

(retrieve (?x) (or (?x manager) (?x supervisior))) 
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nRQL query result from RACER ABox are: 

(((?X MICHEL)) ((?X RALPH))) 
 

translated SQL:  

Select employee.id from employee where employee.id in   ( 

Select has_emp.manager from has_emp,employee Where 

(has_emp.employee = employee.id) And (has_emp.employee in 

(Select employee.id from employee)))  

UNION  

Select employee.id from employee where employee.id in   ( 

Select has_team.supervisior from has_team,employee Where 

(has_team.employee = employee.id) And (has_team.employee in 

(Select employee.id from employee))) 

 

SQL query result from MYSQL database: 

ralph,michel 

 

Here, the result of nRQL query in RACER ABox and result returned from MySQL 

database are same. 

Q6.2.4 Test for compound ‘and’ query  
 

nRQL Query :  

(retrieve (?x) (and (?x manager) (?x supervisior))) 
 
nRQL query result from RACER ABox are: 

(((?X MICHEL))) 

translated SQL:  

Select employee.id from employee where employee.id in   ( 

Select has_emp.manager from has_emp,employee Where 

(has_emp.employee = employee.id) And (has_emp.employee in 

(Select employee.id from employee)))  

Intersect 
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Select employee.id from employee where employee.id in   ( 

Select has_team.supervisior from has_team,employee Where 

(has_team.employee = employee.id) And (has_team.employee in 

(Select employee.id from employee))) 

 

SQL query result from MYSQL database: 

michel 

 

Here, the result of nRQL query in RACER ABox and result returned from MySQL 

database are same. 
 

6.4 Evaluation  
 

The above comparison of result for different set of nRQL queries and generated SQL 

queries shows that our translation are correct and nRQL query to SQL query conversion 

is valid. 
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Chapter 7 

Conclusion 
 

nRQL to SQL conversion system is able to query individuals from database without 

maintaining RACER ABox. This enables to query knowledge stored in DBMS, provided 

that schema for knowledge-base is developed in RACER. This also enables to store large 

number of individuals of RACER ABox in DBMS, provided that knowledge-base 

schema are stored in DBMS.  

 

7.1 Future work 
 

7.1.1 Integration with IDE 

With integrated IDE user will able to create good knowledgebase. The process of 

creating knowledgebase from information stored in database can be improved 

significantly by automatically loading database schemas into RACER knowledgebase.  

 

7.1.2 Flexible storage for RACER ABox 

nRQL to SQL conversion system just allows us to query individuals stored in DBMS. 

Unfortunately it does not support storage of RACER ABox individuals. In real world 

application, we often need to add, delete and update RACER A-Box individuals. 

Flexible storage techniques have to be developed, so that it can add, delete and update  

the RACER ABox individual in the DBMS.   

 

7.1.3 Further nRQL query support 

nRQL to SQL conversion system just supports nRQL query for concept query atoms, 

role query atoms and complex query with ‘and’, ‘or’ and ‘some’. nRQL query can 

support more these query expression. Further new techniques have to be developed to 

support other nRQL query expression such as told value query expression and constraint 
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query atoms which could be very useful to query features of tables as well as features of 

concept in RACER knowledge-base.  

 
7.1.4 Support of other main DBMS 

The current implementation of nRQL to SQL conversion system is based on MAXDB 

MySQL database. It would be, however, very interesting also to try other DBMS such as 

Oracle, MsSQL and PostgreSQL to compare them with each other in terms of 

performance efficiency and memory usage.  
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Software tools 
 
• RACER 1.8.x Server (Windows) **, V. Haarslev, R. Möller, M. Wessel 

(http://www.sts.tu-harburg.de/~r.f.moeller/racer/racer-1-7-23-windows). 

 

RICE , RACER Interactive Client Environment, Academic Medical Center, dept. 

of Medical Informatics (http://www.b1g-systems.com/ronald/rice) 

 

 J2SE 1.4, Java application development platform, Sun Microsystems 

(http://dlc.sun.com/jdk/j2sdk-1_4_2_07-windows-i586-p.exe) 

 

 Eclipse 3.0, open extensible IDE, Eclipse Foundation 

(http://www.eclipse.org/downloads/index.php) 
 
MySQL 5.0, open source Database server, MySQL AB 

(http://www.mysql.com/products/database/) 
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Appendix  
 

A. “Family.racer” knowledge base file (TBOX & ABOX) 
 
(in-knowledge-base family smith-family) 
 
(signature :atomic-concepts (human person female male woman man 
                                   parent mother father 
                                   grandmother aunt uncle 
                                   sister brother) 
           :roles ((has-descendant :transitive t) 
                   (has-child :parent has-descendant) 
                   has-sibling 
                   (has-sister :parent has-sibling) 
                   (has-brother :parent has-sibling) 
                   (has-gender :feature t)) 
           :individuals (alice betty charles doris eve)) 
 
(implies *top* (all has-child person)) 
(implies (some has-child *top*) parent) 
 
(implies (some has-sibling *top*) (or sister brother)) 
(implies *top* (all has-sibling (or sister brother))) 
(implies *top* (all has-sister (some has-gender female))) 
(implies *top* (all has-brother (some has-gender male))) 
 
(implies person (and human (some has-gender (or female male)))) 
(implies woman (and person (some has-gender female))) 
(implies man (and person (some has-gender male))) 
 
(equivalent parent (and person (some has-child person))) 
(equivalent mother (and woman parent))  
(equivalent father (and man parent)) 
 
(equivalent grandmother  
     (and mother  
   (some has-child  
         (some has-child person)))) 
(equivalent aunt (and woman (some has-sibling parent))) 
(equivalent uncle (and man (some has-sibling parent))) 
 
(equivalent brother (and man (some has-sibling person))) 
(equivalent sister (and woman (some has-sibling person))) 
 
(instance alice mother) 
(related alice betty has-child) 
(related alice charles has-child) 
 
(instance betty mother) 
(related betty doris has-child) 
(related betty eve has-child) 
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(instance charles brother) 
(related charles betty has-sibling) 
(instance charles (at-most 1 has-sibling)) 
 
(related doris eve has-sister) 
 
(related eve doris has-sister) 
#| 
(concept-subsumes? brother uncle) 
 
(concept-ancestors mother) 
 
(concept-descendants man) 
 
(all-transitive-roles) 
 
(individual-instance? doris woman) 
 
(individual-types eve) 
 
(individual-fillers alice has-descendant) 
 
(individual-direct-types eve) 
 
(concept-instances sister) 
 
|# 
 
 


