

Modeling of User Interfaces for
Conceptual

Content Management Systems

PROJECT WORK

by
Gerald N. Mofor

Information and Communications Systems
Hamburg University of Technology

Supervised by
Prof. Dr. Joachim W. Schmidt
 Institute of Software, Technology & Systems

Dr. Hans-Werner Sehring
 Institute of Software, Technology & Systems

Hamburg, 17th August 2006

Technische Universität Hamburg-Harburg

Acknowledgments

I would first of all like to thank Professor Joachim.W Schmidt for boosting my moral
and giving me once more the chance to develop my theoretical skills in this project
work.

Special thanks goes to my supervisor, Dr Hans-Werner Sehring, for being very patient
and acting as a source for advice in almost every domain. I lack the right expressions
for this, is it always an honour for me to work with the COCoMa project team. The
idea is wonderful. I always have the feeling I converse with a super computer.

Last but not least, I would like to thank Sebastian Boßung, a research assistant of
Professor J.W. Schmidt, for his mental support and realistic tips to go around solving
problems in general. This has really helped me moving first straight to the point. I
must confess, I am lucky to have seen your days at STS and to have witnessed your
abilities.

I feel elated to have been part of a dream team.

Abstract

Conceptual Content Management Systems (CCMSs) were conceived with the
intention of superseding some of the limitations of information systems, such as either
failing to stay open to constantly changing domain environments or not being able to
dynamically integrate evolution steps. In as much as this target has been achieved
CCMSs, however, still need to take responsibility to offer at least the same services as
conventional information systems. This study examines one of the paramount
services, namely to enable interaction with the user. For this, CCMSs need to offer
visualization and the visualization has to be flexible to accommodate changes and
support on-the-fly evolution by adopting CCM system properties of openness and
dynamics. This primarily necessitates the design of flexible and scalable conceptual
User Interface (UI) component and technology models that can be mapped onto
concrete ones by generative means. This study furthermore argues that
understandability and hence usability can be fostered on the UI by simulating Object-
Oriented (OO) concepts, such as inheritance, association and composition. This is
done by formally binding every application specific information type to be visualized
with conceptual UI components. On request for displaying information, valid1 formal
bindings are evaluated, followed by a view update with respective actual bindings for
these formal bindings. Together with the above-mentioned advantages, the end result
of modeling UIs for CCMSs is that complex UIs are easily created, since an interface
designer need not worry about their real implementations on target UI technologies.

Content

Chapter 1: Introduction………………….…………………………….. 1
 1.1 Motivation……………………………………………….………………………. 1
 1.2 A Comparison of Realization Approaches………………………………………. 3
 1.2.1 Scripting Languages…………………………………………………... 3
 1.2.2 Generic UI Technologies... 3
 1.2.3 Asset Language and its Compiler Framework…………………………4
 1.3 Organizational Structure of the Study…………………………………………… 4

Chapter 2: Analysis of Visualization for CCMMs…..………………… 5
 2.1 State of the Art and Scope of Work.……………………………………………... 6
 2.2 Terminology Definitions……….………………………………………………... 6
 2.3 Problems Faced by Conventional UIs...……………………………………….. 8
 2.4 Rational of the Study…………………………………………………………….. 9
 2.5 Project Development Process Model…………………………………………….. 10
 2.6 Requirements Analysis……………………………………………………….… 10
 2.7 The Conceptual Content Management System Environment……………………. 13
 2.7.1 Properties……………………………………………………………… 13
 2.7.2 ADL Compiler Based System Construction………………………..…. 13
 2.8 Naïve Solution Proposals……………………………………………………….... 14
 2.8.1 Expected Visualization Behavior……………………………….…..… 14
 2.8.2 The Need For Models and Separation of Concerns…………………... 15

Chapter 3: Conceptual UI Model Design……………………………… 17
 3.1 Modeling the UI Space………………………………………………………….. 18
 3.2 Visualization Construction Scenario……………………………………………. 18
 3.2.1 Logical UI Component Domain Model……………………………….. 19
 3.2.1.1 Model-View-Controller……………………………………... 19
 3.2.1.2 UI Component Model……………………...………………... 21
 3.2.1.3 UI Container Layout Modeling…..……………………...….. 22

 3.2.2 Logical Technology Domain Model…………………………………… 24
 3.2.2.1 Object-based Technology Model………….……………….. 25
 3.2.2.2 Class-based Technology Model...………………………… 25
 3.3 Linkage Patterns between UI Components and UI Technologies……..……….. 26
 3.4 Asset Binding………..………………………………………………………….. 27
 3.4.1 Formal Binding..…………………………………………………….. 27
 3.4.2 Actual Binding…....…………………………………………………. 28
 3.5 UI Generation Process..………………………………………………………… 29
 3.5.1 UI Openness….………………………………………………………… 29
 3.5.2 UI Dynamics.………………………………………………………… 29
 3.5.3 Visualization Modality………………………………………………. 30

Chapter 4: Conceptual Model Implementation……………………….. 31
 4.1 UI Modeler’s Code……………...………………………………………………. 31
 4.1.1 Component Model Description…....…………………………………… 31
 4.1.2 Technology Description Model………………………………………... 34
 4.1.3 Component Implementation Description Model……....…………….. 35
 4.1.4 Swing Implementation Abstraction Description Model……………….. 36
 4.2 Application Domain Model…………………………………………………….. 37
 4.3 Display Constraints Implementation……………………………………………. 37
 4.4 User Interface Description Implementation…………………………………….. 38

Chapter 5: Prototype Experiment……………………………………… 41
 5.1 Experiment Environment….…………………………………………………….. 41
 5.2 Visualization Decision........…….……………………………………………….. 45
 5.3 Generator Design Structure…….……………………………………………….. 46
 5.4 Generated Code Design Structure….…………………………………………… 48

Chapter 6: Evaluation and Outlook…………………...……….………. 51
 6.1 Evaluation………………………….……………………………………………. 51
 6.2 Outlook………………………………………………………………………….. 52

Appendix A: Detailed Component Model……………………...…….... 54
Appendix B: Detailed Swing Implementation Model……………......... 58
Appendix C: User Model..........…..……………………………………... 65
Appendix D: Modality Code...………………………………………….. 69

Bibliography…………………………………………………...………….. 71

__ 1
1 openness and dynamics

Chapter 1

Introduction

Content Management Systems (CMSs) are considered a critical success factor in many
E-Commerce and E-business scenarios in that their primary role is to ease the process
of creating, managing the life cycle, discovering, archiving and publishing corporate
information. Like most information systems, CMSs suffer a great deal from being
inefficient in either allowing flexibility on the schema level or effectuating these
changes on- the-fly when evolving the system. In view of solving these inefficiencies
Conceptual Content Management Systems (CCMSs) were conceived with the
properties of openness towards system modification and dynamics to support on-the-
fly system evolution.

1.1 Motivation

Although CCMSs have been successful in achieving the additional requirement for
system responsiveness1 based on the modular architecture shown in figure 1.1, they,
however, still have to take responsibility to offer at least the same services as
conventional CMSs. This study claims that one of such services is to allow users to
interact and exploit the functionality of the software system. This entails publishing of
information and giving room for system control.

__ 2
2 also known as User Interface (UI)

Therefore, to enable interaction and publication of information, CCMSs need
visualization2. Furthermore CCMSs evolve dynamically due to their open and
dynamic properties. This imposes both open and dynamic behavior on the
visualization.

__
Figure 1.1 Modular architecture of CCMSs [Sehr04]

Figure 1.1 shows the present structure of the modular architecture of CCMSs systems.
CCMSs are characterized by layered modules, specialized for individual tasks. Of
paramount interest for this study is the Server Module. It is responsible for
enabling communication with the external world. At the moment, requests are
transmitted in XML format which are then translated into API calls to the underlying
system.

Figure 1.2 Modular architecture of CCMSs with Visualization

__

3

What is missing in figure1.1 is human interaction and for this reason figure 1.2
proposes an enhancement of the present CCMS architecture to incorporate human
interaction. This is done through the introduction of a User Interface (UI).

1.2 A Comparison of Realization Approaches

There are several ways to implement visualizations for CCMSs. This section will
consider the three main ones:
• Scripting languages
• Generic UI technologies, and the
• Asset language and its compiler framework

1.2.1 Scripting Languages

One option for implementing visualizations for CCMSs is to make use of scripting
languages. They are characterized by being interpreted, memory-managed and exhibit
dynamic behavior. They accomplish new tasks by combining existing components
and can control any GUI-based application by executing a series of commands that
might have otherwise been entered at the command prompt. Their main advantages lie
in the following:

• Fast to program,
• Much smaller program length of the script files.

These great advantages come at a heavy price, namely that of the following:

• Poor performance arising from frequent interpretation,
• Significantly slower program execution and higher memory consumption. This

situation is aggravated when dealing with a large, complex UI,
• With a change of the underlying system due to openness and dynamics, scripting-

based visualizations for CCMSs are not able to meet up in reflecting these
changes dynamically. One will have to resort to manual coding, and depending on
how much needs to be modified it can be cumbersome.

1.2.2 Generic UI Technologies

Another approach to implement visualizations for CCMS is to use generic means. An
example of a way in which user interfaces can be created in a generic fashion is by
imploring the technology User Interface Markup Language (UIML) [APBW+99].
UIML is an XML based language for describing user interfaces, which can be
implemented on any platform (appliance independent). The main advantage is that it
can be used to span a variety of platform paradigms such as desktop, handheld PC,
palm and cellular phone. Abstract User Interface Markup Language (AUIML)
[MWK04] is a further example of a technology used for describing generic user
interfaces. AUIML assists in the development of graphical user interfaces running
either as Swing or Web applications. Other examples of XML-based languages used
for defining generic user interfaces are eXtensible Application Markup Language

__4
3 due to the asset compiler framework
4 everything is one language: asset language

(XAML) [DRDY05] and XML User Interface Language (XUL) [BSD01]. The main
drawback of implementing UIs by generic means is that the above-mentioned
technologies are inflexible when coping with system evolution.

1.2.3 Asset Language and its Compiler Framework

The next alternative is to implement the visualization based on a similar pattern in
which CCMSs are constructed. That is, using the Asset Description Language (refer
to section 2.9.2 for definition) in combination with a compiler framework. This
alternative offers the following advantages:

• Visualizations are easy to implement. This emanates from the fact that the asset

language is user friendly and it is designed in the way users view entities in the
real world (i.e. according to characteristics and relationships [Sehr04]),

• Openness and dynamics are given for free,
• Fast execution3, and
• A homogeneous4 system as a whole due to a match with the underlying system.

This way maintenance is easy.

1.3 Organizational Structure of the Study

In this chapter so far, a brief overview of the context and the problem was given. The
preliminary conclusions are:

• CCMSs need visualization to support interaction with the user.
• In order to meet-up with the dynamic evolution of CCMSs, the visualization will

be generated based on asset definitions compiled by the compiler framework.

The next chapters will delve in-depth into the problems that arise with the
implementation option and offer some solutions. For now, a brief overview of what
each chapter will deal with is presented.

Chapter 2 analyses the problem for modeling visualizations by first of all stating the
state-of-the-art of other studies prior to this study. It goes on further to offer some
requirements on the visualization for CCMSs and finally delimits the scope of the
work.

Chapter 3 discusses some design issues aimed at solving requirements on the
visualization system. Along side the design decisions will be stated.

Chapter 4 goes a step closer to the implementations of the chosen design alternatives
in the asset language.

Chapter 5 will verify the models by implementing a prototype. The scope of
implementation will be stated and the results will be interpreted.

Chapter 6 closes up the study with a brief evaluation of the study and an outlook.

__

5

Chapter 2

Analysis of
Visualization for CCMSs

The last chapter briefly introduced the motivation of this study and it was made clear
that a user interface needs to be provided by CCMSs in order to be considered as part
of the family of interactive systems. In recent years the role of UIs in highly
interactive software systems has become very important because they act as an
intermediary between the user – understanding the user’s language – and the system –
translating the user’s request into the system’s language. This property is especially
important in the business world in the sense that it is seen as one of the most import
source of a corporate’s core competence – attracting customers, offering services,
maintaining customer relationships, and also making the employees of the business to
get acquainted to the software in order to easily fulfill their tasks. UIs for CCMSs also
have to follow this trend and also contribute more by offering better advantages
compared to UIs on conventional systems. The next section will shortly describe some
prior works done closely related to this study.

__

6

2.1 State of the Art and Scope of Work

This study is inspired by two main literatures [Sehr04][Xu04], which although being
concerned with to topic visualization for CCMSs are yet different in some aspects.

[Sehr04] mentions the basic need for visualization in CCMSs and makes mention of
some heuristics that good quality UIs need to follow in order to be more effective.
This work can be stated as merely providing the general guidelines of what needs to
be considered without dealing with the real implementation.

[Xu04] goes a step closer into the realization by discussing in a general note the
classification scheme of UI components and how they can be modeled. Some general
design considerations are given, together with their pro and contra arguments. It could
be considered as more of a theoretical research work.

Based on the above mentioned prior work done in this area, this study will contribute
further by re-examining some of the models proposed by [Xu04] and combine some
of the ideas from [Sehr04] to come up with implementation feasible design models for
the realization of the visualization for CCMSs.

2.2 Terminology Definitions

So far this study has been working on some terminology assumptions, which need
some formal definition in this section.

a) Content Management System

A content management system is a software system for organizing and facilitating the
processes of creation, organizing, managing, storing, searching and publishing of
(complex) multimedia content such as text, video, audio, images, and maps.

b) Usability

Usability refers to the extent in which a UI takes human psychological and
physiological factors into account. It serves as a measure of how effective, efficient
and satisfying the usage of the system is, form the user’s perspective [DFAB03].

c) Visualization: dynamic visualization

Visualization refers to that part of a program which provides a display for the user –
includes the screen, look and feel, the character encoding scheme and the font size –
as well as giving room for the user to interact and control the system. In order words,
it is a simplified view on the application, enabling and supporting users to adequately
carry out their tasks.

Dynamic visualization refers to some form of advanced user interface that restricts,
maintains and dynamically alters the viewed interface components in response to

__

7

some user action. This dynamically restricted view is based on object oriented some
paradigms – inheritance, composition, associations – See figure 2.1.

d) Asset Model

The asset model is a new entity description scheme that merges two conventional
ways of describing an entity, namely the conceptual modeling paradigm (model view)
and the content modeling paradigm (media view). The idea behind this new model is
that both conventional patterns need not exist in isolation, but go along together
[SeSc04]. The conceptual model serves in describing properties, relationships and
rules acting upon entities in the real world, while the content model serves as an
existential proof of validity of the concepts.

Figure 2.1 Dynamic Visualization

e) Conceptual Content Management Systems (CCMSs)

CCMSs are management systems that abstract the complex heterogeneous mix of
media content – texts, images, maps, audio, video – and presenting them in a
homogenous manner with the aid of domain specific conceptual models. They are
geared at overcoming the difficulties faced by conventional CMS by redirecting and
dealing with the problems at the meta-level. They are identified across two main
properties [Sehr04]:

• Expressiveness
• Responsiveness

__

8

Expressiveness refers to the system’s ability to allow for the representation of an
entity in the real world to the maximum extend. This is achieved through usage on the
asset model.

Responsiveness refers to the ability of the system to give room for modifications and
for the effectuation of these modifications on-the-fly. This property is supported
through openness and dynamics properties. Being conceptual in nature and acting like
virtual machines, they are concretized (made real) by automation, using methods
known as generative programming.

f) Openness

Openness is a property allowing asset models to be adapted according to the entity
requirements at hand, and not being based on predefined ontology for concepts and
categories.

g) Dynamics

Dynamics is a property allowing aspects of an asset model to be subject to inspection
and adap-tation at any time. This means that changes made as a result of the openness
property have to be effectuated on-the-fly.

h) Generative Programming

Generative programming is about incorporating the advantages of automation into
system development. It tries to integrate object technology and domain engineering in
order to provide an approach for systems generation. It heavily relies on the similarity
or isomorphism – in the strict sense of the word – between domain models, which
forms a basis for mapping from one system to another. It is a better approach to
system development than OO in that it exploits all the advantages of OO, and at the
same time resolves some of OO deficiencies by offering the advantage of robust
system reuse and sets a good nice position to easily achieve scalability on software
systems [CzEi00].

i) Virtual Machine

A virtual machine refers to an abstract, self-contained computing machine that
behaves as if it was standalone. An evaluation function is implemented based on an
instruction set. This normally requires the aid of a compiler [ABDM03].

2.3 Problems Faced by Conventional UIs

As businesses begin to grow, the demands on the application software increase
causing the system to become more and more complex, less performing, and less
scalable. This inefficiency at the level of the application domain has severe
repercussions on the UI, namely the risks of:

__

9

• Inconsistency in data representation,
• Inflexibility to adapt to the changing environment,
• Low usability,
• Logical mismatch between the user’s cognitive model4 and the UI model

making it difficult for the user to understand.

In order to find out what the possible causes of these problems are, it makes sense to
understand how conventional systems are developed. Most systems are built
following the principles of Object-Oriented (OO) Paradigm, introduced in the last
decade. The main contributions [LiLa05] of this paradigm were to introduce the
notion of:

• Classes (conceptual, and serves like a blue-print) and Objects (concrete instances

of a class)
• Inheritance: allows for the reuse and extension of a class.
• Encapsulation: serves as a means to hide the inner structure of an object by

just describing interfaces. This allows for the replacement of an object of one class
by another object of a different class, both satisfying the same interface.

• Polymorphism and Dynamic binding: Polymorphism refers to the way in which
objects respond to the same message in a different manner. Postponing the choice
of the object type to be executed till runtime is called dynamic binding.

In as much as there are some advantages to be drawn out of OO, it is however limited
in providing an efficient response to requirements like [Webs95]:

• Robust system reuse
• Dynamic adaptation to changing environment
• Scalability and increasing complexity

Due to the inefficiency in the OO paradigm, Generative Programming (GP) (see
section 2.2) will be implored with the goal of superseding the limitations of the OO
paradigm.

2.4 Rationale of the Study

The rationale of this study is not only to provide a UI for CCMSs but also to claim
that UIs built on open, dynamic content management systems are better off than UIs
for conventional systems. This claim is supported by the fact that CCMSs are open
and dynamic, and thus can dynamically adapt to a changing environment.
Furthermore, this claim becomes even more credible due to the fact that the
visualization will be constructed using the ideology of GP paradigm [CzEi00], and
therefore the inefficiencies faced by UIs on conventional systems will no longer exist.
How this would be modeled is demonstrated in the next chapter.

__

10

2.5 Project Development Process Model

In order to move towards achieving the target, this section describes the process
model chosen to guide the organization of objectives, activities of this study.
It furthermore provides a clear context and constraints the UI design process.

Figure 2.2 Concurrent, iterative development process Model [Coll95]

The concurrent, iterative design process model shown in figure 2.2 describes the
evolutionary development of a software product by initially starting from a small
portion to ever increasing lengths. Its greatest advantage is to uncover problems early
enough and helps in avoiding to make faulty assumptions, which could lead to
disastrous consequences in at the project end. It is suitable for this study because it is
anticipated that certain steps may be done more than once, especially between the
analysis phase and the implementation. This overlap in the phases is suitable for
validating the deliverables of one phase, before it ends, in the next phase, hence
avoiding any serious surprises [Coll95]. This process model is furthermore suitable
for this study because it creates the chance reach the specification goals of the user
who has difficulty expressing what he or she wants.

The planning phase has been dealt with up till now. Subsequent sections deal in
greater depth with the analysis phase. The design and implementation phases follow
suit in the next two chapters.

2.6 Requirements Analysis

Added to the requirements for:

• scalability to accommodate new UI Technologies
• easy-to-use,
• flexibility to changes,
• understandability,
• UI technology platform independence,

__

11

• flexibility in representing whatever component the UI-designer wants
(universality in the Component domain)

emanating from the limitations of UIs for conventional systems, further requirements
can be gotten by surveying of the environment and assessing the necessities of the
various actors of the system. As a result of generative programming, there are two sets
of actors that come into play.

Those acting at the meta-system level (generating code level), namely:

• UI domain modelers,
• Application domain experts, and
• Interface designers,

and those acting on the generated visualization system, namely the end users.

UI Domain Modelers have the goal of laying down building blocks for constructing
UIs. Their role can be subdivided into more specialized roles like UI Component
modeler and UI Technology modeler. Their main task on the meta-system is to define
the asset-based UI-Model and to change it as the need arises. See figure 2.3 for UI
domain modelers’ use cases.

Application domain experts are the application developers. They have full
knowledge and understanding of how the system works. They concerned with the so-
called “black box” modeling i.e. everything, which end users and UI designers cannot
see. This encompasses the entire framework set aside to offer all possible useful
service to the user. They have a similar task on the meta-system as the UI designers
since they define an asset-based application model and can change it as the need
arises. See figure 2.3 for domain experts’ use cases.

Interface designers are visualization experts. They posses ergonomic and graphic
design skills and are responsible for defining the UI layout for the end users, based on
models defined by the UI domain modeler and the application domain modeler
(particularly specifying how an application asset should be visualized). See figure 2.3
for interface designer’ use case. Their main task on the meta-system is to define the
asset-based UI-Model and to change it as the need arises.

End users are those who interact and use the system to exploit its functionality. They
are the targeted ones, whose needs and taste need to be satisfied. In addition, they
want to display assets with the further constraint that the view on the assets are
dynamically adaptable i.e. the view should vary depending on the asset being
displayed. See figure 2.4 for end user’s use case.

From figure 2.4, in order to fulfill the use case Display Assets two additional
functionalities are required. One of these functionalities refers to the use case
Dynamically Adapt Asset View with respect to the asset to be displayed
(see definition for dynamic visualization in section 2.1). The second functionality
refers to the use case Controller Action whose purpose is to evaluate
constraints set on assets before they are displayed.

__

12

__
Figure 2.3 Use Case diagram for Meta-System

Figure 2.4 Use Case diagram for generated Visualization Module

__

13

Both of these use cases complete their tasks by forwarding their requests to
underlying base modules (refers to all modules below the user interface in figure 1.2).
Before moving on into processing ideas for the solving the above-mentioned
requirements, the next section will give a formal overview of the CCM system.

2.7 The Conceptual Content Management System

Environment

[SeSc04] supports the idea that the two classical ways of modeling entities, content
wise and concept-wise, cannot exist in isolation but that they depend on each other,
since they refer to the same entity. This idea gave birth to a new concept for entity
description, called assets, geared at closely coupling content and concept. The process
of managing these asset objects is called Conceptual Content Management, and a
system based on the asset model is called a conceptual content management system
(see figure 1.1).

2.7.1 Properties

These systems lay strong emphasizes on openness – meaning that a user can describe
an entity as close as possible – and dynamics – meaning that model changes or
adaptation can occur at any time, to reflect these changing scenarios. For example,
entity descriptions are not static and cannot be valid all the time. The reasons for these
are [Sehr04]:

• Entities keep on changing, and the context of the author changes as well.
• Entity descriptions are exchanged between users, which normally do not find

themselves within the same context.

The asset language, Asset Description Language (ADL), is geared at satisfying
requirements for expressivity [Peir31] and responsiveness [Cass02]. These
requirements are being fulfilled by means of the system being open and dynamic.

2.7.2 ADL Compiler Based System Construction

CCMSs are created based on a model compiled by the ADL compiler, taking as input
some asset definitions [Sehr04]. The compiler is designed as a framework and its
basic structure follows the classical compiler architecture consisting of a front-end
and a back-end, which communicate by exchanging some intermediate model. The
front-end is in charge of lexing and parsing the asset definitions, as well as creating
and checking the intermediate model. The backend on the other hand consists of an
API generator and module generators. The compiler itself controls the order in which
generators are run and the data flow between them. Domain experts formulate asset
models using ADL.

This therefore means that for the generation of GUIs an asset based UI component
description is needed, and based on these component descriptions an interface can be
defined. The next section deals with some naïve design proposals.

__

14

2.8 Naïve Solution Proposals

In this section some pre-design analysis will be made towards solving the above
requirements. This will serve as a stepping-stone on which the next chapter will build.

2.8.1 Expected Visualization Behavior

In order to achieve understandability it makes sense for the appearance of the view to
reflect the underlying application domain model. The reason for this is that the
underlying application domain is modeled following the object-oriented paradigm.
Bearing in mind the OO paradigm is an approach that closely represents the
relationship between entities in the real world, it therefore makes sense to have this
concept reflected in the UI realm. This will mean that the model of the UI realm has
to be isomorphic to the application domain model.

Figure 2.5 illustrates the correspondence relationship between the application domain
and the UI realm. The arrows on the diagram do not conform to any particular
annotation. They meant to emphasize the matching of view components in the UI
realm to assets in the application domain. The starting point on this figure is the blue
arrow showing a correspondence relationship between Base Asset (representing
some current asset to be visualized) and the Base View. Base View represents a
UI component that visualizes Base Asset. Due to the fact that the OO paradigm is
used to model the application domain, other kinds of relationship with Base Asset
are possible. For instance, Inheritance Asset refers to any asset from which
Base Asset derives (in figure 2.1 the asset Agent can be seen as Base Asset,
meanwhile the asset Person can be seen as Inheritance Asset).

Apart from the inheritance relationship other OO concepts like association and
aggregation are reflected in Association Asset and Aggregation Asset
respectively. These assets are visualized by the UI components Association
View and Aggregation View respectively. That is, the additional view
components (Inheritance View, Association View and Aggregation
View) complement Base View while visualizing Base Asset.

Although the UI and the application realms look similar in structure, the relationships
between the assets in the UI realm are not explicitly modeled as in the case of those in
the application realm. That is, there is no real inheritance relationship between
Inheritance View and Base View for example. The relationships in the UI
realm are mere illusions that simulate existing relationships in the application model.

The advantages of this representation are the following:

• Ensures consistency of data representation in the visualization
• Dynamic displays can be carried out
• UI realm is open (not constrained), and flexible to display exactly any form of

relationships an asset in the application domain may have.
• Easy to maintain due to the isomorphic match between both worlds
• Easy for the user to understand, because it conforms to his or her cognitive model

__

15

• Ensures scalability, in case the model becomes more and more complex

One brief remark is that figure 2.5 only shows what should be done to solve the
understandability requirement. How this can be carried out will be treated under
Display Constraints in the next chapter.

Figure 2.5 Semantic relationship between the UI and Application Model

2.8.2 The Need for Models and Separation of Concerns

The biggest hurdle relies on coming up with a suitable design for the UI realm,
satisfying the stated requirements. The best way to go about it is to have things
modeled separately. This way a modification arising from one model does not ripple
off to the others. This will mean having separate models for the UI component realm,
UI technology realm, and application domain. Furthermore these separate models
need to be somehow glued together through some construct so as to have a unified
model. It should furthermore be noted that for the purpose of modeling, there are three
dimensions (spaces) involved:

• The user defines an asset based interface (UI model Space),
• The generator interprets this asset definition (Generator Space) and
• An equivalent technology dependent code (Generated Code Space) is

generated, say in Java Swing. See figure 2.6

UI-Realm Application Model

Visualizes

__

16

This role separation in the runtime process equally calls for separate thinking and
modeling steps. This means that modeling will have to take place at the three different
levels, as shown in Figure 2.6. The mode of thinking is reflected in chapter four and
five (combines the generator and generated space).

A model is needed to describe all that the user needs to be able to define an asset-
based interface. This will mean designing UI component model (for users to specify
components) and a UI technology model (to reference an implementation technology).
These models could be complex, but they however have to be constrained on making
life easy for the user.

Figure 2.6 Three-level modeling

model UI_Domain

class window{…
relationship tech: Swing }

UI Generator

import javax.swing.*;
…
public class myWin extends
JFrame{….}

UI Model space

Generator space

Generated space

__17

Chapter 3

Conceptual UI Model
Design

The previous chapter explored some of the requirements that visualization for open
and dynamic content management systems need to accomplish. These requirements
came from various angles, especially from the various actors of the system. A survey
of the development environment, conceptual content management system, was
formally made and the advantages of using this environment were disclosed. The
chapter ended by anticipating and making some naïve projections towards the
solution. Some useful ideas regarding the technical designs were mentioned.

In this chapter, the ideas and requirements set by the previous chapter will serve as a
foundation for coming up with concrete designs, satisfying all those requirements and
serving as a basis on which visualization dynamics can be achieved. The way in
which assets have to be presented has to be user-definable. The formal goals for the
model designs are therefore for them to be easy-to-use and to provide room for
scalability.

__

18

3.1 Modeling the UI Space

This section will strive at coming up with designs for the UI model space portion of
figure 2.6. Full dynamics can be achieved when the UI-realm (from figure 2.5) is not
limited in representing the model expressed in the application realm. This means that
the argument in favor of isomorphism between the expressivity of both domains
should hold. This furthermore means that the UI component model has to be as
generic as possible such that full expressivity is attained.

The second open issue is to conceptually define existing UI-Technologies (concrete
ones like AWT, SWING, HTML, XHTML etc). One of the requirements was to have
the model independent from these technologies. By employing generative
programming [CzEi00] technology platform independence can be easily supported.
One major consequence of using generative programming is that families with similar
characteristics can be being abstracted and treated in the same manner. This therefore
necessitates a careful modeling of the presentation technologies.

3.2 Visualization Construction Scenario

Appealing back to the use case diagrams of figures 2.3 and 2.4, this section will
examine in detail what the individual actors of the system do. From figure 3.1, the
ultimate goal of the modeling is for the interface designer to be able to specify a
layout model, which an end user can visualize. For this to happen, the interface
designer needs to know how widgets are defined, which technologies are available
and how the application domain is modeled. This last piece of information is
necessary for the interface designer to be able to associate an asset from the
application domain with widgets specified by the UI modeler.

Of special interest is the case of the UI modeler because his duty forms the core of the
whole visualization process. This role faces the problems of:

• Modeling the components which can be visualized
• Conceptually representing concrete UI technologies, and
• Providing a conceptual implementation for the displayable components.

The design of his model is inspired by Albert Einstein’s idea, quoted in [CoB05],
stating that everything should be made as simple as possible but no simpler. This idea
is vital for the abstraction of the concrete UI Technologies shown in the bottom-most
layer. A further rationale behind this design is to employ the benefits behind layered
architectural design [SJT05], whereby every layer is seen as an abstract machine
satisfying the principles of locality and information hiding, and furthermore relies on
the underlying layers for its implementation.

The outcome of this design concept is visible on figure 3.1. The idea of separation of
concerns is exploited. The UI modeler provides three separate files (1,2,3) with the
intention that modifications made on one may not ripple off to the others. This design
structure already fulfils some of the requirements from section 2.6 in that:

__

19

• Flexibility towards changes is offered
• Scalability is supported from the use of the layered design structure
• UI technology independence is obtained because the interface designer can switch

at any moment from one technology implementation to the other using the same
UI components

The next section will delve into the design models for UIComponent Model (see
number 1 in figure 3.1) and UITechnology Model (see number 2 in figure 3.1).
The ComponentImplementation Model
(number 3) will be discussed in the next chapter.

Figure 3.1 Visualization Construction Scene

3.2.1 Logical UI Component Domain Model

A generally employed pattern when designing and implementing user interfaces is the
Model-View-Controller (MVC) [GoF95]. This section discusses the ideology behind
the pattern and subsequently moves on to apply the MVC concept to modeling of
conceptual UIs.

3.2.1.1 Model-View-Controller

This domain model follows the standard pattern for modeling GUIs, namely the MVC
[GoF95]. This modeling pattern emphasizes on the separation of concerns stating
three different parts [BMRS+98]:

__

20

i. Model

The model maintains core functionality and data. It represents an abstraction of the
process of the real world and functions as a computational representation.

ii. View

The view displays information to the user, in the form of graphics, on a device. This
view is usually linked to one display surface and knows how to render it. The view
knows its model and renders its content on the display.

iii. Controller

The controller translates user input actions, say from the mouse or keyboard, into
commands sent either to the model or the view to carryout some changes.

The modeling of the basic interaction between the three units is shown in figure 3.2.
This interaction can be much more complex, depending on the scenario. The figure
states that the view has a tight coupling to the model – it knows the exact type – and a
weak coupling to the controller, giving room for polymorphism.

__
Figure 3.2 Model-View Controller

The model on the other hand has no direct communication with the controller, but has
a weak coupling to the view, emanating from the fact that a model can have several
views. Finally, the controller – acting as an intermediary – has a strong coupling to
model and the view. The precision is necessary for the controller to be able to
carryout specialized actions.

For the sake of simplicity, the modeling of the controller will not be part of the
implementation scope of this work. The main focus will be on achieving the view-
model relationship. The next section deals with how this can be done conceptually.

__

21

3.2.1.2 UI Component Model

Geared at satisfying the goals of the MVC, with particular attention on the view-
model relationship, figure 3.3 has been conceived. This figure is a revised version of
that proposed by [Xu04]. The main goal behind the revision was to achieve a
maximum of flexibility as possible, by avoiding constraining the model. At the same
time, care is taken not to give too much room for expressivity, which may lead to a lot
of ambiguity.

At the root of the component hierarchy is the UIComponent class. This class has the
role of modeling every basic property that a UI component can have. These properties
include:

a) Model

Model here refers to the data abstraction to be displayed. Not every UI component has
to be linked to a model, hence the reason for the cardinality 0..1. Every model has a
type, ModelType, associated to it.

b) Controller

The controller models the role of the controller in the MVC pattern (see figure 3.2).
The diagram shows how this unit is aware of the model and the view(s).

c) Layout Parameter

Layout parameter represents the idea of geometrically positioning a component on the
display screen. There are several ways to go about this, which can be narrowed down
to two broad types: absolute positioning or relative positioning (usually with respect
to some fixed component). Though introducing this component is necessary from a
modeling point of view, its implementation is beyond the scope of this work. Also,
the modeling of this component is an integral part of the functionality of the Layout
Manager. For modeling simplicity, every UIComponent can be subdivided into
three broad categories:

i. AssetViewComponent

The asset class AssetViewComponent models all those UIComponent the play
the role of the view in the MVC pattern. Their role is only to display the contents of
the model, and therefore strongly make use of the navigation link to the model at the
UIComponent level. Examples are textfields, labels and tables, just to name a few.

ii. ActiveComponent

These are components whose primary role is to serve as a medium executing actions
on the display. They have a strong use of the navigation link to the controller, because
they initiate and exhibit controller behavior. They have the special property of not
being bound to any model, hence making a very weak use of the model navigation
link at the UIComponent level. Should ActiveComponents, however, require a

__

22

partial reference the model (e.g. buttons or labels that display text coming from the
model), then they are modeled as a PsuedoViewComponent (see figure 3.3). That
is, a PsuedoViewComponent is an active component that exhibits view behavior
at the same time.

d) UI Container

This models the set of UIComponents that hold other UIComponents. Example,
a window holding a label and a textfield. For the arrangement of these components
within itself, the UIContainer may have a LayoutManager.

__
Figure 3.3 UI Component Model

The LayoutManager is delegated the responsibility of optimally arranging the
components within the container. It gets as input some LayoutParameter
information, which it is interpreted in a relative positioning fashion. How this
correspondence is achieved, will be discussed in section 3.2.1.3.

3.2.1.3 UI Container Layout Modeling

As introduced in the previous section, it does not only suffice to be able to add
UIComponents to a UIContainer, special considerations need to be taken to
ensure where these added components have to be placed. For this to happen, a special
way of relating the UIComponents to a LayoutParameter is needed. Several of
these modeling alternatives are proposed below in figure 3.3.

__

23

Figure 3.4 a) Aggregate UIComponent b) Aggregate ContainedComponent

c) Aggregate UIComponent d) Aggregate UIComponent
 with ContainedComponent reference with Layout Parameter reference

a) Aggregate UIComponent

In the aggregate UIComponent style, the UIContainer knows all its Children. And
the children are modeled with a Layout Parameter at definition time. Its main
advantage is that it is easy for the user to use and apply. However, this model implies
that every time a UIComponent is defined, a layout parameter has to be given, even
without being in the context of being within a UIContainer. From a pragmatic
point of view, therefore, it is weak as the user is forced from the onset to give the
layout parameter without being in the context of the container. This may be prone to
errors, as these components could be later on assigned to the wrong UIContainer.

b) Aggregate ContainedComponent

The aggregate ContainedComponent style tries to overcome the limitation of the
previous style by enforcing that the thought about the layout parameter should only be

__

24

within the context of the UIContainer. This is done by introducing an intermediary
class, ContainedComponent, which is delegated the responsibility of relating
every UIcomponent child to its layout parameter. The advantage here is that the
user’s thought is confined to a particular UIContainer. On the other hand, this way
of modeling is not in line with the user’s way of thinking, since for every
UIComponent to be modeled the user always has to construct a
ContainedComponent asset class. This could be perceived as incomprehensive to
the user.

c) Aggregate UIComponent with ContainedComponent reference

The aggregate UIComponent with ContainedComponent reference style tries to
reduce the drawback in b), by making the UIComponents visible within the
UIContainer (good for the user’s understanding), as well as making sure that the
thought on the layout parameter is confined only to the context of the
UIContainer, by introducing the ContainedComponent class, which serves as
a point of linkage between the UIComponent and the LayoutParameter. This
model brings in some comprehension to the user’s way of thinking but still poses
some obstruction in the user’s thought because the ContainedComponent concept
is not familiar for users.

d) Aggregate UIComponent with Layout Parameter reference

The Aggregate UIComponent with Layout Parameter reference style serves as
solution to both problems faced in b) and c). The modeling of layout parameter is
confined to the context of the UIContainer and the user can relate the
UIComponents to the UIContainer. Since both layout parameter and
UIComponent live in isolation, they however need to be related together. This is
taken care of by a class called Match class. In other words, what the asset class
Match does is to associate UIComponents with their corresponding layout
parameters. Although this model falls in line with the user’s way of thinking and can
be considered the most convenient from a design and pragmatic perspective, it
however gives the user additional work related to defining the match class.

Bearing in mind that one of the main goals is to make he UI definition user-friendly,
choice of figure 3.4a) is the best alternative, because it is simple for the user to use.
Although the other models are suitable design alternatives, they either come at the
cost of making life difficult for the user to understand (models b) and c) in figure 3.4)
or by increasing complexity (model d) in figure 3.4).

3.2.2 Logical Technology Domain Model

The diagram in figure 3.5 shows a classification of existing UI Technologies. It has
mainly a hierarchical structure with a wide range of application ranging from internet
technologies to standalone ones.

The purpose of this work will be to be able to conceptualize this general hierarchical
structure in an asset model. Furthermore, this conceptualization will be limited to the
family of ToolkitsAndUILibraries , and in particular targeting the Swing technology.

__

25

The goal of this section is to come up with an approach to describe the inheritance
scheme shown in figure 3.5.

Figure 3.5 Visualization Technologies Diagram [Xu04]

For this purpose two models (see figure 3.6 a & b) are proposed. The methods on the
class diagram of figure 3.6 make reference methods generated based on a code
generation toolkit [Sehr06].

3.2.2.1 Object-based Technology Model

In this model, every technology element in figure 3.5 is assumed to have the same
basic structure. The model can be seen in the light of an object system in which there
are no classes (except the original prototype class) but instead data and code are
encapsulated inside objects.

The advantage that this model offers is that it is easier and faster to implement in the
sense that one only focuses on the behavior of some small set of technologies and
only worrying about classifying them later on.

On the other hand, the major disadvantages are its inflexibility to control behavior
from a single point (since every object encapsulates its own data and code), the
absence of behavior reuse (inheritance can be carried out explicitly by delegation
[Wegn87]), and the difficulty in exhibiting polymorphic behavior.

3.2.2.2 Class-based Technology Model

Figure 3.6b shows the second approach towards modeling the technology structure of
figure 3.5. This approach works in line with the class-based paradigm, whereby the
classes provide the basic structure and behavior on the one hand, and the instances
maintain state information on the other hand. The advantages of this paradigm are:

__

26

• Flexibility in introducing a new UI technology family, since it primarily focuses
on the taxonomy and relationships between classes [Wegn87].

• Behavior reuse is given for free
• Polymorphism can be employed, and
• Instance control is easy (from the class)

Considering the differences between both models, this study chooses to implement the
class-based paradigm in order to reap its advantages.

Figure 3.6 a) Object-based Technology model b) Class-based Technology model

3.6 Linkage patterns between UI Components and UI

Technologies

The remaining issue is to allow the user to specify a component and an
implementation technology. For this, there are three alternatives shown in figure 3.7.

a) Diagram A

The generator is modeled to receive a single input. This model is based on the fact
that all components are implemented using a single input technology reference.

b) Diagram B

This diagram gives more flexibility in the choice of the technologies per component.
Every component has the flexibility to specify it own implementation technology,
thus giving room for mixing of technologies.

c) Diagram C

This model is similar to that on diagram 3.7A, the only difference being that the
generator receives two separate inputs, one specifying the interface definition and the
other specifying the implementation technology of the interface definition.

__

27

Figure 3.7 Variations of Component and Technology Linkages

Based on the flexibility criteria, the model proposed in diagram 3.7B is better that
3.7C, since it gives room for exploiting the advantages of other technology, when
mixing them together.

3.4 Asset Binding

In order to fulfill the final requirement for dynamic view adaptation, a new kind of
relationship is introduced. The idea behind this new relationship is to be able to
formally specify which components should be used to view an application asset. This
formal specification is followed at runtime by a concrete evaluation of instances
satisfying the formal specification. The concept is similar the notion of formal and
actual parameters in function definition. Refer to figure 3.8 for asset binding
representation. The figure uses the conceptual graph notation [Sowa76] for
representation. The main reason for choosing this form of annotation is because it
offers logical preciseness and it is humanly readable.

3.4.1 Formal Binding

Formal binding is represented to the part above the dotted line in figure 3.8. There are
two paths interpretation section following the arrows. The topmost path (refer to
number 1 in figure 3.8) relates an asset from the displayable Component model to an
AssetClass in the application domain, meaning that an instance of the referred
AssetClass as a whole can be visualized by a set of UI-components.

A B C

__

28

Since the concept-part of an asset class is defined in terms of characteristics and
relationships (see [Sehr04] for asset language specification), one could have a
separate view for each Characteristic and relationship and have the
entire view of the asset class tailored by the individual Characteristic and
relationship view representations. This more refined representation is depicted
on the path number 2 in figure 3.8.

Figure 3.8 Asset Binding [Sehr04]

3.4.2 Actual Binding

Actual binding is represented in the part below the dotted line in figure 3.8. Two paths
can also be identified here (number 3 and 4 in figure 3.8), respective to those in the
formal binding. The only difference here is that one evaluates instances of the type
specified in the actual bindings (compared to value passing).

The way of implementing this asset binding is by introducing the class called
DisplayContraints in figure 3.3. This class acts like an association class linking
a UIComponent to a ModelType. The advantage of this design, as opposed to one
in which every Model by definition refers to UI-components for its view, is that both
sides are decoupled. This enhances reuse of UI-components.

DisplayContraints (see figure 3.9 for display constraint example) exhibit some
kind of modality behavior in the sense that based on their role in acting as an
association class linking UI-components and assets from the application domain, they
can constrain behavior by displaying only those UI-components for which an actual
binding exists. This type checking evaluates relationships the asset to be visualized
has with others based on the OO concepts of inheritance, association and aggregation
between asset (solution to figure 2.5).

Figure 3.9 shows an example of the application of DisplayConstraints. To the
right of the figure one sees assets from the application domain being visualized by a
subset of UI components, on the left, across DisplayContraints. The

1

2

3

4

__

29

application AssetClass Person is visualized by a Label and a TextField.
Likewise the AssetClass Student is visualized by a Label and a TextField
(representing different information from that of Person).

From the UI-components point of view, Person and Student are two independent
classes but the DisplayConstraints class, however, has information about the
inheritance dependency between both. This permits that during the display of
Student the Label and TextField pertaining to Person be displayed as well,
since a Student is fully described with the inherited representation of a Person. It
is the same idea behind figure 2.1.

Figure 3.9 Display Constraints Example

3.5 UI Generation Process

This section is to summarize the entire design goal for the visualization. Figure 3.10
shows that in order to achieve the ultimate goal of view adaptation, two steps need to
be superposed.

3.5.1 UI Openness

UI openness is the first step in figure 3.10 and its main task is to define the interface
and to encode the way in which information (assets) has to be visualized [Chan04].
The background of this encoding follows the semiotics of Charles Peirce [Peir31],
where he claims that a set of signs and symbols create meaning. Meaning in this case
is won by associating every application asset with UI-components which visualize it.
This association is implored through usage of DisplayConstraints.

3.5.2 UI Dynamics

After the UI openness property comes UI dynamics. The changes made by the user
have to go into effect on-the-fly, and this accounts for the system dynamics. With the
aid of a compiler the changes are integrated as shown on the diagram in figure 3.10.

__

30

3.5.3 Visualization Modality

Visualization modality refers to the way in which information structured and
displayed to an end user. This structuring into modes is encoded in the first stage.
This phase supports three sub-processes:
• Sub-processes 1 and 2: UI evolution
• Sub-process 3: View adaptation

Sub-processes 1 and 2 account for the evolution of the user interface on model
changes resulting from the openness and dynamics property of the system.

Sub-processes 3 depicts the intended view dynamics in that there is a change in the
view state on instance selection. This is the effect of imploring
DisplayConstraints.

Figure 3.10 UI generation Process

+ =

__ 31

Chapter 4

Conceptual Model
Implementation

The previous chapter went through some design issues relevant for the implementation of a
user interface for Conceptual Content Management Systems. A system process model was
introduced on how the system should behave during runtime (figure 3.10). This chapter will
delve into the implementation of the design decisions made in the previous chapter. Special
attention is be paid to:

• How the interface definition given by the user would look like
• How the view adaptation based on assets can be realized.

4.1 UI Modeler’s Code

This section gives a brief overview on sample implementations of the task of the UI modeler
in the visualization construction scene presented in figure 3.1. The specification language
used here is the ADL.

___ 32

4.1.1 Component Model Description

This section refers to the implementation of number 1 in the UI modeler’s design (figure 3.1).
It is one of the two units visible to the UI designer and deals with the description of
displayable components by the user. The implementation of this component model follows
exactly the design presented in figure 3.3. So far, the elements set of the Component model
consists of the union of all widgets present in the underlying visualization technologies. This
means that the description to any one of these UIComponents is justified by the fact that it
can be mapped on at least one existing target technology. See code example 4.1 for a sample
description of the root components AssetViewComponent, ActiveComponent, and
UIContainer. How these components are mapped onto concrete technologies is discussed
in more detail in section 4.1.3.

__
Code Example 4.1 Component Model

An interesting part of the code example 4.1 is the relationship attribute modelattr of
UIComponent. In order to avoid static binding of values on UIComponents, this attribute
is used to indicate that there is an attribute which requires value update on display. In other
words this attribute offers support for dynamic display by giving room for dynamic binding of
instance values of application assets to UIcomponents, according to the

model CompenentModel
from AssetModel import Attribute

class UIComponent{
 concept
 characteristic name : String
 characteristic visibility : boolean
 characteristic height : int
 characteristic width : int
 relationship modelattr : Attribute
};UIComponent
class AssetViewComponent refines UIComponent

class Action{
 concept
 characteristic name : String
 characteristic mnemonickey : String
 characteristic actioncmdkey : String
}
class ActiveComponent refines UIComponent{
 concept
 relationship a : Action
}; ActiveComponent

class UIContainer refines UIComponent{
 concept
 relationship lytMgr : java.awt.LayoutManager
};UIContainer

___ 33

DisplayConstraints definition. That is, different values can be inserted on view
components at runtime, given the fact that instances carry these values of a particular type
(based on DisplayConstraints). Section 4.4 demonstrates the usage of the
modelattr in an example.

For the sake of simplicity, only a few components were modeled in this study. See code
example 4.2 and 4.3 for a sample implementation of a Label and Button for the
categories AssetViewComponent and ActiveComponent respectively. One
special property of ActiveComponents is that they initiate an action, hence their strong
relationship with the Action class.

Code Example 4.2 AssetViewComponents

Code Example 4.3 ActiveComponents

A bit tricky is the implementation for UIContainer components because they are
characterized by the fact that they are usually structured into several different sub-sections.
These different subsections contain different elements and it would be nice to have an ordered

;;;;;;AssetViewComponents
class Icon
class Label refines AssetViewComponent{
 concept
 characteristic text : String
 characteristic image :Icon
}
class TextField refines AssetViewComponent{
 concept
 characteristic text : String
 characteristic columns : int
}

;;;;;;;;;;;;;;;;;;ActiveComponents

class Button refines ActiveComponent{
 concept
 characteristic label : String
 relationship i : Icon
}
class MenuElement refines UIComponent;
class MenuItem refines MenuElement{
 concept
 characteristic mnemonic : int
 relationship i : Icon
}
class Menu refines ActiveComponent, MenuElement{
 concept
 relationship menuelms : MenuElement*
}

___ 34

way of distinguishing in which subsection a UIcomponent belongs. Code example 4.4 gives a
sample implementation for the Window component. More on this can be view in appendix A.

Code Example 4.4 Container Implementation

4.1.2 Technology Description Model

This section will refer to the implementation of number 2 in figure 3.1 referring to the UI
modeler’s design. The technology description model is the second part which is visible to the
user. The technology model has the task of dealing with the description of the concrete
visualization technologies. The implementation of this technology model follows the choice
made in the previous chapter (figure 3.6 b). This way the user can choose in which technology
the components will be implemented. Code example 4.5 gives a sample implementation for
Java technologies.

Code Example 4.5 Technology Model implementation

model TechnologyModel

class UITechnology{
 concept
 characteristic name : String
};UITechnology
class Java refines UITechnology
class Swing refines Java
class Awt refines Java

;;;;;;;;;;;;Container Classes

class MenuBar refines UIContainer, MenuElement{
 concept
 characteristic comps : UIComponent*
 relationship menus : Menu*
}

class ContentPane refines UIContainer{
 concept
 characteristic comps : UIComponent*
}
class Window refines UIContainer{
 concept
 characteristic title : String
 relationship mb : MenuBar
 relationship contentpane : ContentPane
};Window

class Panel refines UIContainer{
 concept
 characteristic comps : UIComponent*
}

___ 35

4.1.3 Component Implementation Description Model

This section refers to number 3 in figure 3.1. It is invisible from the UI designer’s perspective
and serves as an abstraction of the component implementation in the concrete technologies.
The reason for this invisibility is to decouple the implementation from the component
definition. This allows for modification of the implementation without affecting the design of
the interface. Its special focuses are on:

• Expressing a way to specify the mapping of one component from the UIComponent

model too an equivalent one on the target platform (through the combined reference of
jClass and technology in code example 4.6),

• Specifying a general description for constructors in the underlying technologies, based on
the fact that not all components have a default constructor, and also on

• Describing setter methods (refer to setterMethods in code example 4.6) for extra
attributes supplied by the user that cannot be initialized by the constructor definition.

Code Example 4.6 ComponentImplementation Abstraction

model ComponentImplModel

from AssetModel import Member
from ComponentModel import UIComponent
from TechnologyModel import UITechnology

class UIComponentImpl{
 concept
 characteristic jClass : java.lang.Class
 relationship component : UIComponent
 relationship technology : UITechnology
 relationship constructors : JavaConstructorDescription*
 relationship setterMethods: JavaMethodDescription*
};UIComponentImpl

class JavaConstructorDescription{
 concept
 characteristic paramTypes : java.lang.Class[]
 relationship componentAttributes : Member*
};JavaConstructorDescription

class JavaMethodDescription{
 concept
 characteristic methodName : java.lang.String
 characteristic paramTypes : java.lang.Class[]
 relationship componentAttributes : Member*
};JavaMethodDescription

___ 36

4.1.4 Swing Implementation Abstraction Description Model

This unit is situated one level below the Component Implementation Model of figure 3.1and
describes a focused implementation of the components defined in the Component Model for
specific target technologies, in this case for the Swing technology. This entails specifying
which constructors and setter methods to use for a particular component. Only those
components from the Component model having a corresponding target technology
representation are being considered here. For example, the code example 4.7 shows how the
component Label is mapped onto JLabel for a Swing implementation, and that the
constructor with setting the text attribute has to be used, and finally that, in case an icon is
specified, the setIcon method should be used. Reflecting back on the attribute
modelattr in code example 4.1, the implementation should specify exactly which attribute
needs to be constantly updated by referring to its setter method. From code example 4.7, the
value of any attribute associated with modelattr updates the text attribute of
TextField. This way, the generator program can draw a correlation between the attribute
on the component that needs its value constantly updated with the present application asset
instance at hand and must also ensure that this value is of the required parameter type for the
setter method. In the case of code example 4.7 the type of the attribute referred to by
modelattr must be a String, if not the generator throws an exception.

Code Example 4.7 Swing Technology Implementation Model

model SwingTechImplModel
from ComponentModel import Label, TextField, SplitPane,
 ScrollBar, Menu, Button, Window, Panel
from ComponentImplModel import UIComponentImpl,
 JavaConstructorDescription, JavaMethodDescription
from TechnologyModel import Swing

;;;;;;;;;;;TextFieldIMPL
let swing := create Swing{name=”Swing”}
let swingTextFieldImpl := create UIComponentImpl{
 jClass := javax.swing.JTextField.class
 component := TextField
 tech := swing
 constructors := {create JavaConstructorDescription{
 parameterTypes:= new Class[]{ String.class }
 componentAttributes := { TextField.text}
 }
 };constructors
 setterMethods := { create JavaMethodDescription{
 methodName:= "setColumns"
 parameterTypes := new Class[] { Integer.type}
 componentAttributes := {TextField.columns}
 } create JavaMethodDescription{
 methodName:= "setText"
 parameterTypes := new Class[] { String.class}
 componentAttributes := {TextField.modelattr}
 }}};setterMethods
};c. swingUIComponentImpl

___ 37

4.2 Application Domain Model

The application domain modeler is responsible for implementing this model. Present here are
the asset classes to be visualized, together with the relationships between one another. Code
example 4.8 shows a sample implementation.

Code Example 4.8 Application Domain Model

4.3 Display Constraints Implementation

In view of the request for users to be able to dynamically update the presentation depending
on the asset class being presented, an asset binding was proposed in section 3.5. This asset
binding was designed to be realized through the DisplayConstraints class of figure 3.2.
With a model implementation for this class, the user can then define the formal bindings. A
sample implementation is shown in code example 4.9. The contribution of this class is that at
runtime its instances are evaluated and only those UIs will be displayed for which there is an
actual binding. It also serves as a starting point for the generator to display additional
relationship information due to inheritance or associations to other classes, as proposed in
(figure 2.4). In this case the generator goes on further to evaluate all those
DisplayConstraints instances, which have associations with the type of the additional
information. Section 4.4 illustrates this point in more detail.

Code Example 4.9 Display Constraints Model

model ApplicationModel

class Person {
 concept
 characteristic name : String
}
class Student refines Person{
 concept
 characteristic matrikel: int
}

model DisplayConstraintModel

from AssetModel import AssetClass
from ComponentModel import UIComponent

class DisplayConstraints{
 concept
 relationship comps : UIComponent*
 relationship applmodel: AssetClass
}

___ 38

4.4 User Interface Description Implementation

Based on the ApplicationDomain model, Component model, Technology model
and the DisplayConstraints model this section specifies the format in which the
interface designer may define an interface. The format described in code example 4.10 below
relates all four aspects.

Code Example 4.10 Interface Description Model

For a simple interface implementation consider figure 4.1 below. On the right-hand side of the
figure the interface designer chooses to visualize an application domain consisting of the asset
classes Person and Student in the window on the left-hand side of the figure. The
designer, however, wishes to have each application asset class visualized panel-wise. That is,
the PersonPanel focuses on displaying Person instances, by visualizing only those
attributes unique to Person (i.e. name). Similarly the StudentPanel visualizes only
those attributes unique to Student (i.e. matrikel).

Figure 4.1 Visualization Dynamics Scenario

model InterfaceDescriptionModel
from ComponentModel import UIComponent
from TechnologyModel import UITechnology
from DisplayConstraintModel import DisplayContraints

class InterfaceDescription{
 concept
 characteristic interfacename : String
 characteristic technology : UITechnology
 characteristic interfacecomps: UIComponent*
 characteristic disconsts : DisplayConstraints*
}

___ 39

In this scenario a Label and a TextField are chosen to visualize the name attribute of
Person. Given more attributes, their individual representations will be modeled within the
panel. A similar argument holds for the visualization of Student. The corresponding user
code for this scenario looks as shown in code example 4.11.

Code Example 4.11 User Interface Definition

This is a simplified version of how an interface could be defined. What is missing is of course
information concerning the geometric positioning of the components and their format (what
size, color etc). Appendix C (user model) illustrates in greater detail a sample implementation
of the design presented in figure 4.1.

A special remark on code example 4.11 a goes to the attribute modelattr on the Person’
TextField (pTextField). What this indicates is that the text attribute of TextField

model UserModel
from ComponentModel import Window, Label, TextField,
 ContentPane, Panel
from ApplicationModel import Person, Student
from DisplayConstraintModel import InterfaceDescription
from TechnologyModel import Swing

;;variable initializations
let swing := create Swing{name:=“Swing”}
let plabel :=create Label{name := “Name”}
let pTextField:=create TextField{

modelattr:=Person.name}
let slabel :=create Label{name := “Matrikel”}
let sTextField:=create TextField{

modelattr:=Student.matrikel}
let pPanel := create Panel{comps:={plabel, pTextField}}
let sPanel := create Panel{comps:={slabel, sTextField}}
let pDisCons := create DisplayConstraints{comps:= {pPanel}
 applmodel:=Person}
let sDisCons := create DisplayConstraints{comps:= {sPanel}
 applmodel:= Student}
;;;Interface definition
let myInterfaceDescription : create InterfaceDescription{
 interfacename :=“MyAssetInterface”
 technology := swing
 interfacecomps:= {create Window{
 title:=“DisplayAssets”
 contentpane:= create ContentPane{
 comps:={pPanel, sPanel}
 };contentpane
 };window
 };interfacecomps
 disconts :={pDisCons, sDisCons}
};create InterfaceDescription

___ 40

(inferring from the setter method for this attribute on TextField) is dynamically bound to
the name attribute of a Person instance. The generator uses this information to create code
for the dynamic visualization (see figure 3.9 for better illustration).

Code Example 4.12 Runtime Application Domain Instances

For example, given the runtime instances shown above in code example 4.12, when
visualizing the Student instance ‘s’ the sPanel is initially painted (satisfying
sDisCons), but the generator realized that pDisCons is also satisfied making also possible
for pPanel to be painted. Text in pTextField gets the String value “Gerald Mofor”
meanwhile the text in sTextField gets the String value “12345”. In the case of the
Person instance ‘p’, the evaluation is passed for pDisCons but it fails when evaluated
against sDisCons because a Person is not an instance of Student. The value text in
pTextField gets is then “Joe Doe”.

Appendix D (modality code) shows a sample generated code showing how the values are
inserted into the TextFields while exhibiting modality behavior. First and foremost, a
reference is made to the current asset the needs to be visualized (refer to by
currentAsset.getType() on the first line of the first grayed area). In accordance with
figure 4.1 stipulating that an asset class is visualized by the cumulative visualization of its of
its individual attributes, the next step is to load all the attributes describing the current asset
class (refer to SECTION ONE in appendix C).

Once the attributes have been loaded, the next issue it to search for all view components
constrained by each individual attribute (refer to SECTION THREE in appendix C). But
before the search is carried out, the value of the current attribute (attr) in the current asset
class has to be known (refer to SECTION TWO in appendix C). The local variable
modelattrValue is dedicated for storing the value of the current attribute. The grayed
area in section two shows how the attribute value is determined. Notice how for every class,
there is a check against its corresponding attribute names. The class Person has only one
attribute, hence only one check is made (if(“name”.equals(attrName))). Meanwhile
the class Student has two attributes, and therefore two corresponding checks are
made(if(“matrikel”.equals(attrName)) and if(“name”.equals(attrName))).

After the current attribute value is determined, it can be inserted into the view components
associated with the current attribute (refer to SECTION FOUR in appendix C). Two details
are important here. The first remark is that an attribute may constrain more than one view
component. The number of constrained view components is reflected in the number of if-
statements in the grayed area of section four. In this case JTextField and Jlabel are the
only two constrained view components (see also dotted lines leaving from panels to the
application model in figure 4.1). The second remark is that these separate view components
may require different setter methods for inserting values. In this case it is just a coincidence
that both view components make use of the setText method. For the Jlabel component
the method setIcon could have been used if one had to insert an image.

;;instance initializations

let p :=create Person {name :=“Joe Doe”}
let s :=create Student{name :=“Gerald Mofor”
 matrikel:=“12345”}

___ 41

Chapter 5

Prototype Experiment

In this chapter the models designed so far will be tested in a live scenario. Worth
mentioning is the fact that while imploring generative programming there are always two
levels to be distinguished, namely the generating and the generated code. Both of these
levels were referred to in section 2.8.2 as generator and generated space respectively.
They involve two separate ways of thinking and these will be demonstrated in this
chapter. For a brief outline, this chapter will deal with:

• A brief description of the experiment environment
• The structure of generator code, and
• The structure of generated code.

5.1 Experiment Environment

By the time of writing the compiler did not permit one to process instances at the meta
level (work is still under construction). However, for illustrative purposes displaying the

___ 42

expected behavior, a prototype version for the realization of the interface definition from
chapter 4 section 4.4 has been conceived. The simplifications for this experiment involve
the following:

• The implementation focuses on the Swing technology.
• Instances are not constructed the normal way in which one would expect in the meta

level (refer to appendix C), but instead the generator implicitly creates an instance
once it encounters a class definition. The values of these implicitly created instances
are passed as parameters to the generator during runtime.

• Some naming conventions at the DisplayConstraints level making clear that
the visualization for an asset is achieved through the visualization of its attributes.
This naming convention ensures consistency between the UI for and attribute and the
value passed to for the attribute.

• A static window painting all asset instances, as shown in figure 4.1. In this case, the
ContentPane of the static window is used for dynamic display. This static window
is implicitly created by the generator. That is, there is exist no clear definition for a
window.

• The layout manager is the GridBagLayout.

Code Example 5.1 Displayable UI-Components

The Displayable UIComponent model (code example 5.1 above) contains only
two displayable components at the moment (Label, TextField). As a consequence,

model userinterfacedef

;;;; Displayable UI-Components

class UIComponent

class Frame refines UIComponent{
 concept
 characteristic tech : javax.swing.JFrame
 characteristic title : String
 relationship comps : UIComp*
}
class TextField refines UIComponent{
 concept
 characteristic tech : javax.swing.JTextField
 characteristic text : String
}
class Label refines UIComponent{
 concept
 characteristic tech : javax.swing.JLabel
 characteristic label: String
}

___ 43

the user is limited to only these components when choosing a way to visualize the
Person and Student assets from the Application model.
The tech attribute of the Displayable UIComponents combines into one unit the
role of the UITechnology Model (number 2) and the Component-
Implementation Model (number 3) shown in figure 3.1, by specifying directly
which technology is involved and the corresponding the implementation component. For
example the asset class Label will be implemented using the Swing technology
(inferred from javax.swing) and the corresponding component is ’s JLabel.

A bit tricky is the DisplayConstraint class. It plays a redirection role of just
giving a type cover to all its subclasses. The reason for this is to enable generator to
identify DisplayConstraints classes. All its subclasses need to conform to the
format of having a mandatory attribute called applAsset which refers to a particular
application asset (Person or Student in this case) to be visualized, and all other
relationships make reference to Displayable UIComponents used for the
application asset’s visualization.

Code Example 5.2 Prototype Display Constraints

As one might notice from the code example 5.2, the referred component names are not
chosen randomly. Looking at the PersonDisCond, what both relationships, nameUI
and nametextvalueUI, have in common is that they both begin with a prefix
referring to the name of the model’s attribute to be visualized and end with a UI suffix,
meaning that they are UI components for a particular attribute of a particular model.

A further distinction is made for those components expecting values coming from the
model. These components are identified by the some middle term starting with the name
of the UI component’s attribute to be modified and ending with the word value. For

;;;DisplayConstraints Assets

class DisplayConstraints

class PersonDisCond refines DisplayConstraints{
 concept
 relationship applAsset : Person
 relationship nameUI : Label
 relationship nametextvalueUI : TextField
}; PersonDisCond

class StudentDisCond refines DisplayConstraints{
 concept
 relationship applAsset
 relationship matrikelUI : Label
 relationship matrikeltextvalueUI : TextField
}; StudentDisCond

___ 44

example the middle term in nametextvalueUI will be interpreted by the generator to
mean that when inserting the value for the text property of a Person’s TextField it
needs to fetch values from the model (application asset) rather than displaying the default
values. The reason for this walk around is simply to simulate the existence of conceptual
instances.

Other information concerning the formatting of the UI components - like the height,
width, visibility etc - are taken for granted. Default values are set by the generator. Of
course, this tempers with the users right to make personal choices. Figure 3.9 shows the
formal connection of all the classed in this experiment. It shows how the model
(application asset) is only committed to the DisplayConstraint and not the
UIComponents, and that the knowledge about the relationships a model has with
another can be deduced from the ModelType side of DisplayConstraints.

However, the essence of this section is not to come up with a full-fletched
implementation but rather to visually demonstrate through prototypical means how
dynamic view adaptation can be realized. Nevertheless, the user is still given the right to
decide upon the geometrical positioning of the components, by passing on
GridBagLayout parameters referring to specific components. Code example 5.3
illustrates how the user may feed in geometric positioning information about view
components.

 Code Example 5.3 Prototype Input Configuration

Code example 5.3 is part of and XML configuration file used by the compiler to run
backend generators. This file carries information on how to run a generator by indicating

<configuration name="VisualizationGenerator">
 <generator name="visualizationGenerator"
 class="de.sts.tuhh.myguipkg.VisualizationGenerator">

 <param name="PersonnameUI">width=1/height=1/posx=0/posy=0/weightx=0/
 weighty=0/fill=NONE/insets=(3,10,0,0)/anchor=EAST</param>
 <param name="PersonnametextvalueUI">width=2/height=1/posx=2/posy=0/weightx=1/
 weighty=0/fill=HORIZONTAL/insets=(3,5,0,20)/anchor=WEST</param>
 <param name="StudentmatrikelUI">width=1/height=1/posx=0/posy=0/weightx=0/
 weighty=0/fill=NONE/insets=(3,10,0,0)/anchor=EAST</param>
 <param name="StudentmatrikeltextvalueUI">width=2/height=1/posx=2/posy=0/

weightx=1/weighty=0/fill=HORIZONTAL/insets=(3,5,0,20)/anchor=WEST</param>

 <param name="PersonPanel">width=3/height=1/posx=0/posy=0/weightx=1/
 weighty=0/fill=BOTH/insets=(3,10,0,0)/anchor=WEST</param>
 <param name="StudentPanel">width=3/height=1/posx=0/posy=2/weightx=1/
 weighty=0/fill=BOTH/insets=(3,10,0,0)/anchor=WEST</param>

 </generator>
 <generator name="apigen"
 class="de.tuhh.sts.cocoma.compiler.generators.api.APIGenerator">
 <param name="outputDir">H:\temp2\</param>
 <param name="targetPackage">de.sts.tuhh.myguipkg.apigenerated</param>
 </generator>
</configuration>

___ 45

to the compiler the name of the configuration to be used. In this case the compiler is
assigned to run the configuration with name VisualizationGenerator. This way
the compiler is informed to run two generators, namely visualizationGenerator
and apigen (refer to the orange colored code in code example 5.3). For the proper
functioning of these generators they require some parameters referred to by the element
tag param. More important is the configuration related to visualization-
Generator. This parameter section is exploited to feed in the geometric positioning of
view components in accordance with some naming convention. The naming convention
followed here is that all names for the UI relationships under DisplayConstraints
are prefixed by the type name of the referred application asset. For example, in order to
refer to Label in the asset class PersonDisCond of code example 5.2 its relationship
name (nameUI) is prefixed with Person (referenced by the attribute applAsset),
shown in code example 5.3 (refer to the blue colored code).

The parameter value specification for the geometric positioning follows yet another
convention (refer to the red colored code). This value specification convention is
designed to be in line with the parameters requested by a GridBagLayout manager. Each
individual in parameter information is separated by a ‘/’. This input parameter value is
read and transformed into an appropriate type by a reader class type called
GridBagParameterReader (see figure 5.1).

5.2 Visualization Decision

A major design decision was taken here by having the visualization of all application
assets displayed panel-wise as shown on figure 4.1. The implication of this, especially
from an inheritance point of view, is that every panel is related to only one asset type and
carries the visualizations of new information. What new here means can be explained
from the point of view of a Student (refer to figure 4.1 in the previous chapter) as
referring to visualizations for the attribute matrikel and not the attribute name, since
the name is only new with Person and not Student. The advantage of this design
decision is that one need not search for all the individual view components (they could be
many) but instead one needs to search for only the panel(s) that visualizes the application
asset. Nevertheless, the generator still has to somehow trace the relationships between all
separate panels at display time and visualize all those for which the model asset to be
visualized is fully described. For example, when displaying a Person instance, only the
Personpanel should be displayed whereas when visualizing a Student instance,
both the Personpanel and the Studentpanel have to be visualized at the same
time. Therefore in case there is more than one panel to be visualized, the user then has to
provide extra information on how the geometrically place the panels relative to one
another. For this purpose, GridBagLayout parameters for panels have to be specified (see
PersonPanel parameter of code sample 5.3).

___ 46

5.3 Generator Design Structure

In order to minimize the visualization generator’s complexity the structure displayed in
figure 4.3 is designated. The idea behind is to have separate specialized classes focused
on the major activities of the generator. The generator then delegates its tasks to the
appropriate instances.

a) GridBagParameterReader

As the name suggests, this interface is in charge of reading the parameters values stated
in the input configuration file (see code example 5.3), and transforming them into an
appropriate format. This translation is useful when calling the GridBagConstraints helper
method (refer to makeGBConstraints() in the panel classes of figure 5.2). The
method processInput first of all checks the validity of the input parameter value.
An exception is thrown (ReaderException) in case the input value does not conform
to the parameter naming convention stated at the end of section 5.1. Once the check is
over, the input value is then processed and stored into appropriate variables using setter
methods (refer to the orange section of GridBagParameterReader in figure 5.1).
These values can then be retrieved on request by corresponding getter methods (refer to
the blue section of GridBagParameterReader in figure 5.1).

b) PanelWriter

This interface focuses on the creation initialization of the asset UI-panels shown figure
5.1 above. In collaboration with values parsed by the GridBagParameterReader,
the panel writer is able to set the internal positioning of UI components within the panels
(refer to the blue colored code of code example 5.3). In this scenario, PanelWriter
uses the writePanelFile method to create two files, namely PersonPanel and
StudentPanel (see figure 5.2 for the generated code).

c) GenerateRoutineHelper

This interface takes care of all “odd” jobs needed by the generator. This includes creating
field references, making assignments, creating code for adding components to containers,
configuring the format for the UI components. These odd tasks are grouped and shown as
different colors on figure 5.1. The blue colored methods are helpful for setting the
configuration of the view components. The orange colored methods are mainly for
supporting container components while adding elements. Most important are the gray
colored methods. They are responsible for generating code exhibiting dynamic view
adaptation. For instance the method addActionLis creates code responsible for
listening to and initiating an action upon a view update request. Meanwhile the other
methods interact by creating code updating the value of the view components. Finally,
the green colored methods are responsible for keeping track of relationships between the
application asset classes, storing attribute names that require view update and storing
methods to be generated in different output files.

___ 47

__
Figure 5.1 Generator Structure

___ 48

d) VisualizationGenerator

The VisualizationGenerator is the main class that controls the interaction of the
GridBagParameterReader, PanelWriter, and GenerateRoutineHelper.
Important is the fact that this class recognizes the distinction between intrapanel and
interpanel geometric parameter information and feeds the PanelWriter with intrapanel
parameter information. With the aid of the method writeMainStatic-WindowFile the
generator generates one file, MainStaticWindow (see figure 5.2), responsible for
visualizing the application assets.

5.3 Generated Code Design Structure

The previous section hovered around the structure of the generator code. The conclusion
was that three files would be generated, two of which come from the PanelWriter
(PersonPanel and StudentPanel) and one from the VisualizationGenerator
(MainStaticPanel). In this section the structure of the generated code is illustrated
and the way in which the generated files communicate with one another is demonstrated.

Figure 5.2 Generated Code Structure

PersonPanel

+setPersonnameValue(String name):void
+makeGBConstraints():void

StudentPanel

+setStudentmatrikelvalue(String name):void
+makeGBConstraints():void

MainStaticWindow

+visualizePerson():void
+visualizeStudent():void
+setInvisibleAll():void
+actionPerformed(ActionEvent evt):void
+makeGBConstraints():void

<<interface>>

ActionListener

+actionPerformed(ActionEvent evt):void

JPanel
JFrame

studenPanel.setvisible(false);
personPanel.setvisible(false);

setInvisibleAll();
studenPanel.setvisible(true);
personPanel.setvisible(true);
personPanel.setPersonNameValue(stdName);
StudentPanel.setStudentmatrikelValue(stdName);

if (eventSource ==”Student”)
 visualiseStudent();

Concerned with intra-panel geometric positioning

Concerned with inter-panel geometric positioning

setInvisibleAll();
studenPanel.setvisible(false);
personPanel.setvisible(true);
personPanelsetPersonNameValue(persName);

___ 49

Figure 5.2 shows the generated code design structure. This code structure is responsible
for creating the intended effect shown on figure 5.3. On the diagram (figure 5.2) one can
recognize the three classes mentioned at the beginning of this section. The idea here is
that the MainStaticWindow class acts as the main class for the visualization. It has
access to all the generated panel classes (see the navigation symbol leaving from
MainStaticWindow). As earlier mentioned in section 5.2 (under the heading
GenerateRoutine Helper) the helper method makeGBConstraints (generated
by the method makeGBC in the GenerateRoutineHelper class of figure 5.1) takes
care of adequately positioning the panels according to the input values given code
example 5.3.

The other methods are concerned with view adaptation. Depending on which asset is to
be visualized (upon an action event), the method actionPerformed is triggered,
wherein the corresponding visualization method is called. For instance, in order to
visualize a student, the menu action button on figure 5.3 is clicked to release an action
event. This action event is intercepted by the actionPerformed method. The source of this
action is analyzed (See note checking if the event source is from student in figure 5.2)
and then method visualizeStudent() is called. Notice from the note linked to
method visualizeStudent()in figure 5.2 that the person and student panels are set
visible (compare with the visualizePerson() note).

__
Figure 5.3 Prototype Visualization Display

Person

Student

___ 50

An interesting remark is the application of a structural design style called Façade pattern
[GoF95]. The Façade pattern provides a simplified interface to a larger body of code. It
reduces dependencies of external code, hence allowing for flexibility in evolving a
system. It is on the basis of these advantages that the façade pattern is applied. On figure
5.2, MainStaticWindow is a façade class the façade methods actionPerformed,
visualizePerson, visualizeStudent and setInvisibleAll. These
methods hide complexity by redirecting action to other methods.

___ 51

Chapter 6

Evaluation and Outlook

In this chapter, a brief assessment of the entire study will be made (section 6.1) including
a summary of the entire project work. Section 6.2 then closes the study by examining
some amelioration possibilities.

6.1 Evaluation

The original intent of this study was to come up with suitable ideas to model user
interfaces for conceptual content management systems. The study was motivated by the
fact that Conceptual Content Management Systems belong to the family of interactive
systems and as a result needs visualisations to interact with a user. The realization of this
claim was supported by the idea that the visualisation had to be generated in order to
match changes in the underlying system. Nevertheless one could not talk about
implementation without discussing some design models.

The formal goal of designing models for CCMS was fully achieved following the thought
process of an environment analysis to gather the main requirements of such a system

___ 52

(chapter 2). This was followed by inspecting various designs alternatives that could sooth
the requirements (chapter 3), with a final decision made on the basis of keeping things
simple for the user, and at the same time avoiding implementation complexity. The
advantages about the design models is the following:

• They give room for extension,
• They are scalable, and
• They offer flexibility.

Particular reference is made to the following core design diagrams: figures 3.2, 3.5 and
3.6. After the design procedure, the next step was to conceptually implement the chosen
model diagrams (chapter 4), with a concluding step of presenting how code for the user
would look like. The previous chapter took a step into the concrete realization of the
conceptual implementation models, by implementing a prototype. The goal behind the
prototype experiment, keeping all implementation limitations aside, was to validate the
fact that models designed so far are actually realizable.

6.2 Outlook

This section provides a brief outlook on improvement proposals for the realization of
future projects.

• The foremost proposal will be to have an improvement at the CCMS’ meta-level to

support instances. This is very vital for the full rollout of concrete user interfaces.

• A concise study of the on role of a controller for visualization and its implications for

CCMSs would be very beneficial since every development hovering around linking
the presentation layer and its application model makes use of the Model-View-
Controller architectural pattern.

• Close implications of the previous point are concerns about modeling and embedding

a suitable event-based system into the visualization construction. The main task
would be to design how events are triggered and handled.

• Another improvement proposal will be to enable the implementation of a mix of UI

technologies within an interface. The idea behind is of course to gain from the
benefits of each individual technology.

• It would also formally be nice to improve on the visualization scheme like displaying

other assets having a relationship with the present asset being visualized. See figure
6.1. The way to depict associations depends on the user, for example the figure below
uses the right side of the JSplitpane to display all associations

• More investigation has to be done for displaying a collection of instances.

___ 53

• There is also room for improvement at the level of including action states. Like for
instance having buttons executing some query action and displaying the results
maybe on a separate window.

• Open areas still remain in providing sound mechanisms for event management,

application flows, and widget control.

Figure 6.1 Association relationships

• Generators for conceptual interfaces could become extremely very complex with

robust UIs. It would be nice to have a generator performance test, analyzing the
feasibility of code when things get too complex.

• Last but not the least, multi-user authoring is a big issue with CMSs since there could

be many simultaneous users involved. Features such as record locking to ensure that
clashing changes are prevented still remains an area for further investigation.

___ 54

APPENDIX A

Detailed Component Model

==
model CompenentModel

class LayoutParam;
class GridBagLayoutParam refines LayoutParam{
 concept
 characteristic width : int
 characteristic height : int
 characteristic posx : int
 characteristic posy : int
 characteristic weightx: double
 characteristic weighty: double
 characteristic fill : String
 characteristic insets : java.awt.Insets
 characteristic anchor : String
}

__
_

55

class UIcomponent{
 concept
 characteristic name : String
 characteristic preferredsize : java.awt.Dimension
 characteristic visibility : boolean
 characteristic font : java.awt.Font
 characteristic bgcolor : java.awt.Color
 characteristic fgcolor : java.awt.Color
 characteristic height : int
 characteristic width : int
 characteristic lookandfeel : javax.swing.plaf.ComponentUI
 relationship layoutmgrparam : LayoutParam
 relationship modelattr : Attribute
};UIComponent

class AssetViewComponent refines UIComponent ;AssetViewComponent

class Action{
 concept
 characteristic name : String
 characteristic mnemonickey : String
 characteristic actioncommandkey : String
}

class ActiveComponent refines UIComponent{
 concept
 relationship a : Action
}

class UIContainer refines UIComponent{ ;UIContainer
 concept
 characteristic lytMgr : java.awt.LayoutManager
};UIContainer

;;;
;;AssetViewComponents
;;;

class Label refines AssetViewComponent{
 concept
 characteristic text : String
 characteristic image: javax.swing.Icon
}

class TextField refines AssetViewComponent{
 concept
 characteristic text : String
 characteristic columns : int
}

;;;
;;AssetViewComponents
;;;

__
_

56

;;;
;;ActiveComponents
;;;

class Icon
class Button refines ActiveComponent{
 concept
 characteristic label : String
 characteristic i : Icon
}
class MenuElement refines UIComponent;
class MenuItem refines MenuElement{
 concept
 characteristic mnemonic : int
 characteristic i : Icon
}
class Menu refines ActiveComponent, MenuElement{
 concept
 relationship menuelms : MenuElement*
}

;;;
;;Container Classes
;;;

class MenuBar refines UIContainer, MenuElement{
 concept
 relationship menus : Menu*
}

class ContentPane refines UIContainer{
 concept
 relationship comps : UIComponent*
};ContentPane

class Window refines UIContainer{
 concept
 characteristic title : String
 relationship mb : MenuBar
 relationship contentpane: ContentPane
};Window

class Panel refines UIContainer{
 concept
 relationship comps : UIComponent*
};Panel

class SplitPane refines UIContainer{
 concept
 characteristic newOrientation : int
 relationship newLeftComponent : UIComponent
 relationship newRightComponent : UIComponent
}
class ViewPort{
 concept
 characteristic newsize : java.awt.Dimension

;;;
;;ActiveComponents
;;;

;;;
;;Container Classes
;;;

__
_

57

 relationship view : UIComponent
}
class ScrollPane refines UIContainer{
 concept
 characteristic vsbPolicy : int
 characteristic hsbPolicy : int
 relationship view : UIComponent
 relationship vp : ViewPort
}

__ 58

APPENDIX B

Detailed Swing
Implementation Model

==
model SwingTechImplModel

from ComponentModel import Label, TextField, SplitPane, ScrollBar, Menu,
 Button, Window, Panel
from ComponentImplModel import UIComponentImpl, JavaConstructorDescription,
 JavaMethodDescription
from TechnologyModel import Swing

;;
;; Label
;;

let swing := create Swing{name= "Swing"}
let swingLabelImpl := create UIComponentImpl{
 jClass := javax.swing.JLabel.class
 component := Label
 tech := swing
 constructors := {create JavaConstructorDescription{
 parameterTypes := new Class[]{ String.class
}

;;
;; Label
;;

__
_

59

 componentAttributes := { Label.text}
 }
 };constructors
 setterMethods := { create JavaMethodDescription{
 methodName := "setIcon"
 parameterTypes := new Class[] { Icon.class}
 componentAttributes := {Label.image}
 }
 create JavaMethodDescription{
 methodName := "setText"
 parameterTypes := new Class[]{String.class}
 componentAttributes := {Label.modelattr}
 }
 };setterMethods
};c. swingUIComponentImpl

;;
;; TextField
;;;

let swingTextFieldImpl := create UIComponentImpl{
 jClass := javax.swing.JTextField.class
 component := TextField
 tech := swing
 constructors := {create JavaConstructorDescription{
 parameterTypes := new Class[]{ String.class
}
 componentAttributes := { TextField.text}
 }
 };constructors
 setterMethods := { create JavaMethodDescription{
 methodName := "setColumns"
 parameterTypes := new Class[] {
 Integer.type}
 componentAttributes := {TextField.columns}
 }
 create JavaMethodDescription{
 methodName := "setText"
 parameterTypes := new Class[]{String.class}
 componentAttributes := {TextField.modelattr}
 }
 };setterMethods
};c. swingUIComponentImpl

;;
;; MenuItem
;;;

let swingMenuItemImpl := create UIComponentImpl{
 jClass := javax.swing.JMenuItem.class
 component := MenuItem
 tech := swing
 constructors := {create JavaConstructorDescription{
 parameterTypes := new Class[]{ String.class }

;;
;; TextField
;;;

;;
;; MenuItem
;;;

__
_

60

 componentAttributes := { MenuItem.text}
 }
 }
 setterMethods := { create JavaMethodDescription{
 methodName := "setAction"
 parameterTypes :=new Class[] {Action.class}
 componentAttributes := {MenuItem.a}
 },
 create JavaMethodDescription{
 methodName := "setMnemonic"
 parameterTypes:=new Class[]{Character.class}
 componentAttributes := {MenuItem.mnemonic}
 },
 create JavaMethodDescription{
 methodName := "setIcon"
 parameterTypes := new Class[] {Icon.class}
 componentAttributes := {MenuItem.i}
 },
 create JavaMethodDescription{
 methodName := "add"
 parameterTypes:=new
Class[]{Component.class}
 componentAttributes :=
{MenuItem.comp}
 }
 };setterMethods

};c. swingUIComponentImpl

;;
;;Menu
;;;

let swingMenuImpl := create UIComponentImpl{
 jClass := javax.swing.JMenu.class
 component := Menu
 tech := swing
 constructors := {create JavaConstructorDescription{
 parameterTypes := new Class[]{ String.class
}
 componentAttributes := { Menu.text}
 }
 };constructors
 setAction := { create JavaMethodDescription{
 methodName := "add"
 parameterTypes := new Class[] {Action.class}
 componentAttributes := {MenuItem.a}
 },
 create JavaMethodDescription{
 methodName := "add"
 parameterTypes:=new Class[]{MenuElement.class}
 componentAttributes := {Menu.menuelms}
 },
 create JavaMethodDescription{
 methodName := "add"
 parameterTypes:=new Class[]{JMenuItem.class}
 componentAttributes := {Menu.mi}

;;
;;Menu
;;;

__
_

61

 }
 };setterMethods
};c. swingUIComponentImpl

;;
;;Button
;;

let swingButtonImpl := create UIComponentImpl{
 jClass := javax.swing.JButton.class
 component := Button
 tech := swing
 ;; constructors (use default constructor)

 setterMethods := { create JavaMethodDescription{
 methodName := "setLabel"
 parameterTypes := new Class[] { String.class}
 componentAttributes := {Button.label}
 },
 create JavaMethodDescription{
 methodName := "setActionCommand"
 parameterTypes := new Class[] { String.class}
 componentAttributes := {Button.actioncmd}
 }
 };setterMethods
};c. swingUIComponentImpl

;;
;;MenuBar
;;

let swingMenuBarImpl := create UIComponentImpl{
 jClass := javax.swing.JMenuBar.class
 component := MenuBar
 tech := swing
 ;; constructors (use default constructor)

 setterMethods := { create JavaMethodDescription{
 methodName := "add"
 parameterTypes := new Class[] { JMenu.class}
 componentAttributes := {MenuBar.menu}
 };c.JavaMethDescription
 };setterMethods
};c. swingUIComponentImpl

;;
;;ContentPane
;;;

let swingContentPaneImpl := create UIComponentImpl{
 component := ContentPane
 tech := swing
 setterMethods := { create JavaMethodDescription{
 methodName := "add"
 parameterTypes := new Class[] { Component.class}

;;
;;Button
;;

;;
;;MenuBar
;;

;;
;;ContentPane
;;;

__
_

62

 componentAttributes := {ContentPane.comps}
 }
 };setterMethods
};c. swingUIComponentImpl

;;
;;Window
;;;

let swingWindowImpl := create UIComponentImpl{
 jClass := javax.swing.JFrame.class
 component := Window
 tech := swing
 constructors := {create JavaConstructorDescription{
 parameterTypes := new Class[]{ String.class
}
 componentAttributes := { Window.title}
 };c.Javaconstructor
 };constructors

 setterMethods := { create JavaMethodDescription{
 methodName := "setLayout"
 parameterTypes := new Class[] {
 java.awt.LayoutManager.class}
 componentAttributes := {Window.lytMgr}
 }
 };setterMethods
};c. swingUIComponentImpl

;;
;; SplitPane
;;;

let swingSplitPaneImpl := create UIComponentImpl{
 jClass := javax.swing.JSplitPane.class
 component := SplitPane
 tech := swing
 constructors := {create JavaConstructorDescription{
 parameterTypes := new Class[]{
 Integer.type, Component.class, Component.class}
 componentAttributes := { SplitPane.newOrientation,
 SplitPane.newLeftComponent,
 SplitPane.newLeftComponent
 }
 };c.Javaconstructor
 };constructors
 setterMethods:= { create JavaMethodDescription{
 methodName := "setLayout"
 parameterTypes :=new Class[] {
 java.awt.LayoutManager.class}
 componentAttributes := {SplitPane.lytMgr}
 }
 };setterMethods
};c. swingUIComponentImpl

;;
;;Window
;;;

;;
;; SplitPane
;;;

__
_

63

;;
;; ViewPort
;;;

let swingViewPortImpl := create UIComponentImpl{
 jClass := javax.swing.JViewPort.class
 component := ViewPort
 tech := swing

 setterMethods := { create JavaMethodDescription{
 methodName := "add"
 parameterTypes := new Class[] {
 java.awt.Component.class}
 componentAttributes := {ViewPort.view}
 },
 create JavaMethodDescription{
 methodName := "add"
 parameterTypes := new Class[] {java.awt.Dimension.class}
 componentAttributes := {ViewPort.newsize}
 };c.JavaMethDescription
 },
 create JavaMethodDescription{
 methodName := "add"
 parameterTypes := new Class[] {java.awt.LayoutManager.class}
 componentAttributes := {ViewPort.lytMgr}
 };c.JavaMethDescription
 },
 create JavaMethodDescription{
 methodName := "add"
 parameterTypes:=new Class[]{Component.class}
 componentAttributes := {ViewPort.comp}
 };c.JavaMethDescription
 };setterMethods
};c. swingUIComponentImpl

;;
;; ScrollPane
;;;

let swingScrollPaneImpl := create UIComponentImpl{
 jClass := javax.swing.JScrollPane.class
 component := ScrollPane
 tech := swing
 constructors := {create JavaConstructorDescription{
 parameterTypes := new Class[]{Component.class}
 componentAttributes := { ScrollPane.view }
 };c.Javaconstructor
 };constructors
 setterMethods := { create JavaMethodDescription{
 methodName :="setVerticalScrollBarPolicy"
 parameterTypes:=new Class[] { Integer.type}
 componentAttributes:={ScrollPane.vsbPolicy}
 },
 create JavaMethodDescription{
 methodName :="setHorizontalScrollBarPolicy"
 parameterTypes:= new Class[] { Integer.type}
 componentAttributes:= {ScrollPane.hsbPolicy}

;;
;; ViewPort
;;;

;;
;; ScrollPane
;;;

__
_

64

 },
 create JavaMethodDescription{
 methodName := "setViewport"
 parameterTypes := new Class[] {javax.swing.class}
 componentAttributes := {ScrollPane.vp}
 },
 create JavaMethodDescription{
 methodName := "setLayout"
 parameterTypes := new Class[]{java.awt.LayoutManager.class}
 componentAttributes := {ScrollPane.lytMgr}
 }
 };setterMethods
};c. swingUIComponentImpl

;;
;; Panel
;;;

let swingPanelImpl := create UIComponentImpl{
 jClass := javax.swing.JPanel.class
 component := Panel
 tech := swing
 setterMethods := { create JavaMethodDescription{
 methodName :="add"
 parameterTypes:=new Class[] { Component.class}
 componentAttributes:={Panel.comps}
 },
 create JavaMethodDescription{
 methodName := "setLayout"
 parameterTypes := new Class[]{java.awt.LayoutManager.class}
 componentAttributes := {Panel.lytMgr}
 }

};setterMethods
};c. swingPanelImpl

;;
;; Panel
;;;

__ 65

APPENDIX C

User Model

==
model UserModel

from ComponentModel import Window, Label, TextField, MenuBar, Menu, Action,
 MenuItem,MenuElement,ContentPane,Panel,LayoutParam,

 GridBagLayoutParam,UIComponent

from ApplicationModel import Person, Student
from DisplayConstraintModel import DisplayConstraint

;***
;** Student Panel
;***

let pPanel:= create Panel{
 name :="PersonPanel"
 comps:={ create Label{text:="Name"
 layoutmgrparam := create GridBagLayoutParam{
 width =1
 height =1

;***
;** Person Panel
;***

__
_

66

 posx = 0
 posy = 0
 weightx =0.0
 weighty =0.0
 fill= "NONE"
 insets= new java.awt.Insets(3,10,0,0)
 anchor="EAST"
 };LayoutParam
 },;Label
 create TextField{

 modelattr := Person.name
 columns := 5
 layoutmgrparam := create GridBagLayoutParam{
 width =2
 height =1
 posx = 2
 posy = 0
 weightx =1.0
 weighty =0.0
 fill= "HORIZONTAL"
 insets=new java.awt.Insets(3,5,0,20)
 anchor="WEST"
 };LayoutParam
 };TextField
 };panel.comps
 lytMgr:= new GridBagLayout() ; layout of PersonPanel
 layoutmgrparam :=create GridBagLayoutParam{
 width =3
 height =1
 posx = 0
 posy = 0
 weightx =1.0
 weighty =0.0
 fill= "BOTH"
 insets= new java.awt.Insets(3,10,0,0)
 anchor="WEST"
 };LayoutParam
 };Panel

;***
;** Student Panel
;***

let sPanel:= create Panel{
 name:="StudentPanel"
 comps:={

 create Label{text:="Matrikel"
 layoutmgrparam :=
 create GridBagLayoutParam{
 width =1
 height =1
 posx = 0
 posy = 0
 weightx =0.0
 weighty =0.0
 fill= "NONE"
 insets=new java.awt.Insets(3,10,0,0)

;***
;** Student Panel
;***

__
_

67

 anchor="EAST"
 };LayoutParam within panel
 },
 create TextField{

 modelattr := Student.matrikel
 columns := 5
 layoutmgrparam :=
 create GridBagLayoutParam{
 width =2
 height =1
 posx = 2
 posy = 0
 weightx =1.0
 weighty =0.0
 fill= "HORIZONTAL"

 insets= new java.awt.Insets(3,5,0,20)
 anchor="WEST"
};LayoutParam within panel

 };TextField
 };panel.comps
 lytMgr:= new GridBagLayout()
 layoutmgrparam :=create GridBagLayoutParam{
 width =3
 height =1
 posx = 0
 posy = 2
 weightx =1.0
 weighty =0.0
 fill= "BOTH"
 insets= new java.awt.Insets(3,10,0,0)
 anchor="WEST"
 };LayoutParam
 };Panel

;***
;UI definition
;***

 let assetWindow := create Window{
 title:= "DisplayAssets"
 preferredsize := new java.awt.Dimension(500,300)
 mb:= create MenuBar{
 menus:={
 create Menu{name:="Assets"
 menuelms:={
 create MenuItem{
 name:="Person"
 action:=create Action{name:="Visualize Person"
 mnemonickey:="P"
 };Action
 },;MenuItem
 create MenuItem{
 name:="Student"
 action := create Action{name:="Visualize Student"
 mnemonickey:="S"
 };Action

;***
;UI definition
;***

__
_

68

 };MenuItem

 };menuelms
 };Menu
 };menus
 };MenuBar
 contentpane := create ContentPane{
 comps := {pPanel, sPanel}
 lytMgr:= new GridBagLayout()
 };ContentPane
};Window

;**
;***Application instances
;**

 let p := create Person{name:= "Joe Doe"}
 let s := create Student{name := "Gerald Mofor"
 matrikel:= 12345
 }

;***
;****DisplayConst instances
;***

 let pDisCons := create DisplayConstraint {
 applmodel:= Person
 comps:={pPanel}
 }

let sDisCons := create DisplayConstraint {
 applmodel:= Student
 comps:={sPanel}
 }

;**
;***Application instances
;**

;***
;****DisplayConst instances
;***

__

69

APPENDIX D

Modality Code

==
AssetClass cls = currentAsset.getType();
String clsName = currentAsset.getType().getName();

//***********SECTION ONE: Load all attributes of present AssetClass

HashSet<Attribute> attribs =

new HashSet<AttributeDescription>();
// load all the attributes of this current class
while(cls != null){
 for(Attribute attr: cls.getAttributes())
 attribs.add(attr);

 cls = cls.getSuperClass();
}//while

for(Attribute attr: attribs){
 String attrName = attr.getName();

AssetClass cls = currentAsset.getType();
String clsName = cls.getName();

__ 70

//************ SECTION TWO: Load value for modality attribute

String modalattrValue;

if(“Person”.equals(clsName)){
 if(“name”.equals(attrName))
 modalattrValue = ((AbstractPerson)currentAsset).getName();
}//if Person
else if(“Student”.equals(clsName)){
 if(“matrikel”.equals(attrName))
 modalattrValue =
 ((AbstractStudent)currentAsset).getMatrikel();
 else if(“name”).equals(attrName)
 modalattrValue =((AbstractPerson)currentAsset).getName();
}//Student

//************* SECTION THREE: Look for views constrained by this
//particular attribute

 AssetViewComponentQuery q =
(AssetViewComponentQuery)module.getClass(

“AssetViewComponent”).startQuery();
q.constrainModelattrEqual(attr);

AssetViewComponentIterator it =

 q.executeForAssetViewComponent();

//******* SECTION FOUR: Insert modality value on all constrained views

for(AssetViewComponent view: it){

 if(view instanceof JTextField)
 ((JTextField)view).setText(modalattrValue);

}//for it

}//for views constrained by the present attribute

String modalattrValue;

if(“Person”.equals(clsName)){
 if(“name”.equals(attrName))
 modalattrValue = ((AbstractPerson)currentAsset).getName();
}//if Person
else if(“Student”.equals(clsName)){
 if(“matrikel”.equals(attrName))
 modalattrValue =((AbstractStudent)currentAsset).getMatrikel();
 else if(“name”.equals(attrName))
 modalattrValue =((AbstractPerson)currentAsset).getName();

}//Student

for(AssetViewComponent view: it){
 if(view instanceof JTextField)
 ((JTextField)view).setText(modalattrValue);
 if(view instanceof JLabel)
 ((JLabel)view).setText(attrName);

 }//for it

Bibliography

[ABDM03] AGER, Mads S.; BIERNACKI, Dariusz; DANVY, Olivier;

MIDTGAARD, Jan: From Interpreter to Compiler and Virtual
Machine: A Functional Derivation, BRICS Report Series, RS-03-14,
March 2003.

[APBW+99] ABRAMS, Marc; PHANOURIOU, Constantinos; BATONGBACAL,

Alan; WILLIAMS Stephen and SHUSTER, Jonathan: UIML: An
Appliance Independent XML User Interface Language.
WWW8/Computer Networks 31(11-16), page 1695-1708, 1999.

[BMRS+98] BUSCGMANN, Frank; MEUNIER, Regine; ROHNERT, Hans;

SOMMERLAD, Peter and STAL, Michael: A System of Patterns.
Pattern-Oriented Software Architecture, John Wiley& Sons, 1998.

[BSD01] BULLGARD, Vaughn; SMITH, Kevin and DACONTA, Micheal:

Essential XUL Programming, Wiley, July 2001.

[Cass02] CASSIRER, Ernst: Die Sprache, Band 11 Philophie der symbolischen

Formen der Reihe Gesammelte Werke, Felix Meiner Verlag GmbH,
Hamburger Ausgabe Auflage, 2002.

[Chan04] CHANDLER, Daniel: Semiotics: The Basics, pages 17-78, Taylor &

Francis Books Ltd, 2004.

[Coll95] COLLINS, Dave: Designing Object Oriented User Interfaces,

Benjamin/Cummings INC, 1995.

__ 72

[Colw05] COLWELL, Bob: At Random: Complexity in Design, pages 10-12,
Paper, IEEE Computer Society, October 2005,

 http://csdl2.computer.org/comp/mags/co/2005/10/rx010.pdf

[CzEi00] CZARNECKI, Krzysztof and EISENECKER Ulrich. Generative

Programming – Methods, Tools, and Applications, pages 131-568,
Addison-Wesley Professional, 2000.

 [DFAB03] DIX, Alan; FINLEY, Janet; ABOWD, Gregory D.; BEALE, Russell:

Human-Computer Interaction, 3rd Edition, pages 141-259, Prentice
Hall, December 2003.

[DRDY05] DAVID, Jean-Luc; RYAN, Bill; DESERRANNO, Ron; YOUNG,

Alexandra: Professional WinFX Beta: Covers “Avalon” Windows
Presentation Foundation and “Indigo” Windows Communication
Foundation, Pages 3-56, Wrox, September 2005.

[EEES03] EMRICH, Marco; EISENECKER, Ulrich; ENDLER, Christian;

SCHLEE, Max: Emerging Product Line Implementation Technologies:
C++, Frames, and Generating User Interfaces, University of Applied
Sciences, Kaiserslautern, September 2003.

[GoF95] GAMMA, Erich; HELM, Richard; JOHNSON, Ralph and

VLISSIDES, John: Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley Professional, 1995.

[LiLa05] LITHBRIDGE, Timothy and LAGANIERE, Robert. Object-oriented

software engineering: practical software development using UML and
Java, McGraw Hill, 2005.

[MWK04] MERRICK, Roland; WOOD, Brain and KREBS, William: Abstract

User Interface Markup Language. In Kris Luyten, Marc Abrams, Jean
Vanderdonckt, and Quentin Limbourg, editors, Proceedings of the
Workshop on Developing User Interfaces with XML: Advances on
User Interface Description Languages, Gallipoli, Italy, May 2004.

[Peir31] PEIRCE, C.S.: Collected Papers of Charles Sanders Peirce, Harvard

University Press, Cambridge, 1931.

[Sehr04] SEHRING, Hans-Werner. Konzeptorientierte Inhaltsverwaltung

Model, Systemarchitektur und Prototypen, Dissertation,
pages 146-158, 2004.

[Sehr06] SEHRING, Hans-Werner: Code Generation Toolkit, Website,
 http://www.sts.tu-harburg.de/~hw.sehring/codegentk/doc/index.html,
 last visited, May 2006.

__ 73

[SeSc04] SEHRING, Hans-Werner and SCHMIDT, Joachim W. Beyond
Databases: An Asset Language for Conceptual Content Management,
In: András Benczúr, János Demetrovics, and Georg Gottlob (editors),
Proceedings of the 8th East European Conference on Advances in
Databases and Information Systems, volume 3255 of LNCS,
pages 99–112. Springer-Verlag, 2004.

[SJT05] SHARMA, Vibhu S.; JALOTE, Pankaj and TRIVEDI, Kishor S.:

Evaluating Performance Attributes of Layered Software Architecture.
Proceedings of the 8th International SIGSOFT Symposium on
Component-based Software Engineering (CBSE), refer LNCS 3489,
pages 66-81. St Louis, Missouri, USA, May 2005.

[Sowa76] SOWA, John F.: Conceptual Graphs for a Data Base Interface, pages

336-357, IBM Journal of Research and Development 20(4), July 1976.

[Webs95] WEBSTER, Bruce F. Pitfalls of Object Oriented Development, M&T

Books, 1995.

[Wegn87] WEGNER, Peter: Dimensions of Object-Based Language Design, In

Conference on Object Oriented Programming Systems Languages and
Applications Conference proceedings on Object-oriented programming
systems, languages and applications ’87 Proceedings. ACM Press,
October 1987.

[Xu04] XU, Fenfang: Asset Presentation in Open Dynamic Content

Management Systems: A Model of User Interface Components and
Design Considerations for a Visualization Engine or Generator,
Project Work, 2004.

Declaration

I declare that

this work has been prepared by me, all the literal or content-based quotations are
clearly pointed out, and no other sources or aids than the declared ones have been
used.

Hamburg, 17th August 2006
Gerald Mofor

