
 1

Translation of UML Statecharts to AspectJ

Project Work

Submitted by:
Jesus Elias Sierra Paramo
elias.sierra@gmail.com

IMT
Matriculation Number: 31539

Supervised by:

Prof. Dr. Ralf Möller
STS - TUHH

M.Sc. Miguel GARCIA
STS - TUHH

Hamburg, Germany

2006-05-26

 2

Declaration

I declare that:
this work has been prepared by myself, all literally or content-related quotations from
other sources are clearly pointed out, and no other sources or aids than the ones
that are declared are used.

Hamburg, 18.05.2005

Jesus Elias Sierra Paramo

 3

Table of Contents

1. Introduction ……………………………………………………………………………….. 4
1.1 Objectives…………………………………………………………………………….. 4
1.2 Structure of the Work…………………………………………………………….. 4

2. Statecharts………………………………………………………………………………….. 6
2.1 Statecharts introduction…………………………………………………………. 6
2.2 Statechart components…………………………………………………………… 6
2.3 Statechart example………………………………………………………………… 7

3. Aspect Oriented Programming……………………………………………………. 8
3.1 AOP Introduction……………………………………………………………………. 8

3.1.1 Terminology……………………………………………………………………… 8
3.1.2 Existing Frameworks and Tools…………………………………………… 8

3.2 AspectJ…………………………………………………………………………………. 9
4. Executable UML……………………………………………………………………………. 10

4.1 xUML Introduction…………………………………………………………………… 10
4.2 Model Driven Architecture………………………………………………………… 10

4.2.1 Introduction………………………………………………………………………. 10
4.2.2 Components………………………………………………………………………. 10

5. OCL………………………………………………………………………………………………… 12
5.1 OCL Introduction…………………………………………………………………….. 12
5.2 OCL Components……………………………………………………………………. 12

6. Octopus…………………………………………………………………………………………. 13
6.1 Octopus Introduction………………………………………………………………. 13
6.2 Octopus Code Generation………………………………………………………… 13

7. Statecharts Generation…………………………………………………………………. 16
7.1 Statecharts metamodel definition……………………………………………… 16
7.2 Prototype specification…………………………………………………………….. 17
7.3 Generating Statecharts based on prototype……………………………….. 19

7.3.1 Bahnübergang example………………………………………………………. 19
7.3.2 Elevator Example……………………………………………………………….. 29

8. Octopus Integration……………………………………………………………………… 38
8.1 Generation of metamodel with Octopus…………………………………….. 38
8.2 Generation of Elevator example with Octopus……………………………..40

9. Conclusion…………………………………………………………………………………….. 43
10. References…………………………………………………………………………………… 44
11. Appendix………………………………………………………………………………………. 45

 4

1. Introduction

Nowadays, Object-Oriented modeling has gained more importance in the first steps of the
Software Development Process; having a conceptual design and with the help of existing
tools can facilitate the code implementation and reduce time in this stage.
The most common modeling language used today is by far the UML (Unified Modeling
Language). This provides standards for defining different model diagrams to help and
improve the conceptual understanding of the application to be developed. The most
commonly modeling diagrams used for representing a conceptual view of the application and
its behavior are Class diagrams and Statecharts diagrams.
The Object Constraint Language (OCL) provides facilities to add constraints to the values
that the objects can take during runtime, among other features. These constraints normally
cannot be defined using only the UML class diagrams. OCL are used in this work to ensure a
better performance during runtime.
Aspect Oriented Programming takes also an important role in the Design Phase.
Complements the Object-Oriented programming, allowing modifying dynamically the static
model by the so-called weaving. AOP defines (part of) the behavior of an application.
Executable UML is a relatively new tool in the development process of the Model Driven
Architecture. It helps to generate an executable application using an abstract program model
with a platform-specific model compiler.
This project is focused on the Statecharts involving the previous mentioned background.
More details on these topics will be introduced later on.

1.1 Objectives

The intention of this project work at the beginning was to generate a specification to
translate UML statechart diagrams to AspectJ starting from .uml and .ocl specifications
defined in Octopus. Nevertheless, during the development of this work, another solution was
found for specifying behavior in statecharts different than the intended AspectJ specification.
This will be pointed out later on.
The intended approach is achieved by doing several iterations following the Incremental
Software Development Process, during each of them introducing and exploring more
advanced concepts of statechart diagrams.
Before starting the Iterations was necessary to get a background about Executable UML,
Statecharts, AST’s, Model Driven Architecture concepts, AOP (Aspect Oriented
Programming), OCL (Object Constraint Languages) and the Octopus tool for code
generation.
The intention of the iterations was to explore different techniques and find problems in the
implementation of Statecharts and, when possible, suggest how these problems can be
solved out by developing a statechart metamodel and generating instances with Octopus.
The selected technology to be used on this project work is Eclipse as IDE and AspectJ as
AOP language for exploring behavior of statecharts.

1.2 Structure of the work

This project work is divided into several chapters. Chapters 2 to 6 provide a short and
necessary background needed to understand the objectives and intentions of the related
work; this background is mainly used on Chapters 7 and 8. Nevertheless in this work is
assumed a previous knowledge from the reader in the topics covered from Chapter 2 to 6.

 5

For more extensive information about this topics, please consult the sources and references
at the end of this work.

Next, a small description about each chapter is given:

Chapter 1
Provides a brief introduction on the main topics used to develop this project work as well as
the objectives.

Chapter 2
Gives a small introduction to Statecharts and a description of their main components and
notations, as well as one example.

Chapter 3
Introduces the basic concepts of Aspect Oriented Programming.

Chapter 4
Provides a brief description of Executable UML (xUML) and Model Driven Architecture (MDA)
and the relation between them.

Chapter 5
Gives a brief description of the Object Constraint Language and its principal constraints.

Chapter 6
Introduces the Octopus tool used with the Eclipse IDE and provides a brief description of the
Code generation process.

Chapter 7
In this chapter is where the main work comes into action. Here the proposed metamodel for
Statechart is shown, it generates various iterations of the Software Development Process and
shows some examples generated by them.

Chapter 8
Here the last example from the previous chapter with Octopus is implemented, by using
defined .uml and OCL expressions.

Chapter 9
Conclusion of the related work

 6

2. Statecharts

2.1 Introduction

Statecharts are used to describe behavior of specified objects in a system. Each object can
have different states in a program execution. It consists of discrete states and transitions.
Each state represents different context of the behavior.
State machine modeling is the basis for various real-time methods, and according to Ben
Meadowcroft1, there are some benefits of Statecharts that overcome the limitations of State
Machines by providing a construct known as the and-state, allowing the state chart to have
substates of a higher level state active at the same time.

2.2 Statechart components

The components of a statechart diagram are2:

Finite abstract machine

A finite abstract machine (M) is an abstract model consisting of:

• A finite State set (S)
• A starting State (s 0)
• An input alphabet (S)
• A mapping function d=SxS Æ S
• An input sequence acceptance function b= S Æ {0,1} such that M= (S, S, s 0, d, b)

A finite abstract machine is an abstract machine that defines a set of conditions of existence
(called “states”), a set of behaviors or actions performed on each of those states, and a set
of events that cause changes in states according to a finite and well-defined rule set.

Basic notation of Statecharts

Transitions
Indicate that the state machine responds to an event while in certain states.
Transitions affecting a superstate apply at all levels of nesting within that superstate.
Transitions are modeled taking approximately zero time to execute, as implied that by the
statement that an object spends all of its time in states. If a transition can take a significant
amount of time, then the object should be decomposed into more states so that eventually,
the time taken to get from a predecessor state to a subsequent state is insignificant.
A null transition is a transition which is evaluated only once upon entrance to the source
state. If it has no guard, or if the guard evaluates to TRUE, then the transition is taken
immediately.

The general syntax for a transition is:
event-name ‘(‘ parameter-list’)’ ‘[‘ guard ‘]’ ‘/’ action-list ‘^’ event-list

Guards
A guard is a Boolean condition that returns a TRUE or FALSE value that controls whether or
not a transition is taking following the receipt of a triggering event. A transition with a guard
is only taken if the triggering event occurs and the guard evaluates to TRUE.

 7

Pseudostates
Conditional pseudostates are a notational shorthand for multiple exiting transitions all
triggered by the same event but each having different guards

Events
The UML defines 4 different kinds of events:

• Signal Event: an event due to some external asynchronous process
• Call Event: an event due to the execution of an operation within the object
• Change Event: an event due to the change in the value of an attribute
• Time Event: an event due to the lapse of an interval of time

Actions
Actions are small atomic behaviors executed at specified points in a state machine. They are
assumed to take an insignificant amount of time to execute and are non-interruptible.
Actions are separated from the event-name and guard with slash (“/”) and are always
executed in a predefined order:
1. Exit actions of the source state(s)
2. Transition actions
3. Entry actions of the target state(s)

2.3 Statechart Diagram example

A basic statechart diagram is displayed in the next page:

Figure 1: Basic statechart diagram

In the previous example, transitions are represented as arrows, states are represented as
squares and the small black circles represent Pseudostates: initial and entry. We can
observe, that the State B contains 2 Sub-states (BA and BB), while BB contains also 2
Sub-states (BBA and BBB). The initial state is the small black circle at the left that makes
an automatic transition to state A. with the event A is possible to go to state B and then
with the entry Pseudo state drives you to state BA. The same happens with event b
which leads you to state BB and then the Sub-state BBA is reached.

 8

3. Aspect Oriented Programming

3.1 Introduction

AOP is a new methodology that allows the separation of crosscutting concerns in
applications by introducing the so called “aspects”.
According to James Holmes from Oracle3, AOP provides a solution for abstracting cross-
cutting code that spans object hierarchies without functional relevance to the code it
spans. Instead of embedding cross-cutting code in classes, AOP allows you to abstract
the cross-cutting code into a separate module (known as an aspect) and then apply the
code dynamically where it is needed. You achieve dynamic application of the cross-
cutting code by defining specific places (known as pointcuts) in your object model where
cross-cutting code should be applied. At runtime or compile time, depending on your
AOP framework, cross-cutting code is injected at the specified pointcuts. Essentially, AOP
allows you to introduce new functionality into objects without the objects' needing to
have any knowledge of that introduction.

3.1.1 Terminology

AOP is composed mainly by the following concepts:

Join points
Specifies well-defined points in the execution of the program where an aspect can apply.
Includes method execution, instantiation of an object and the throwing of an exception.
These join points can only be identified at runtime.
Advice
Is a way of affecting behavior at the specified join points; executes the code that is
applied to a specified pointcut, or cross-cuts, your existing object model. Can be
executed before, after or around the join point. Advice code is what modifies the
behavior or properties of an existing object. Advice is also commonly referred to as
introductions or mix-ins.
Pointcuts
These define the points in your model where advice will be applied. Pointcuts can collect
the context by selecting join points.
Aspects
These encapsulate advice and pointcuts into functional units in much the same way that
OOP uses classes to package fields and methods into cohesive units. For example, you
might have a logging aspect that contains advice and pointcuts for applying logging code
to all setter and getter methods on objects.

3.1.2 Existing Frameworks and Tools

In order to start implementing AOP; it is necessary to get a framework to work with.
Until now, neither JAVA nor any other O-O programming language provides built-in
support for AOP. There are differences within the existing Frameworks that need to be
considered before choosing one. One difference is the way aspects are defined and

 9

applied; aspects could be defined and applied with code whereas with other frameworks
could be defined in a XML configuration file. Another difference is that some frameworks
use bytecode manipulation to tie into an object model, and others use proxy-based
systems.

Currently, there exist several AOP frameworks, some of them providing integration with
Eclipse. For the development of this work, AspectJ for Eclipse was selected for AOP.
Following are some of the existing frameworks:

Name Language support
Spring Java (Platform independent)
AspectJ Java Eclipse plug in
AspectJ browser Java
Encase C# (.NET Platform)
Nanning 4 Java
JBoss 5 Java
Aspectwerkz 2 6 Java

Table 1 : AOP Frameworks

3.2 AspectJ
AspectJ for Eclipse7 is a seamless aspect-oriented extension to the Java programming
language; enables a clean modularization of crosscutting concerns, such as error
checking and handling, synchronization, context-sensitive behavior, performance
optimizations, monitoring and logging, debugging support, and multi-object protocols.

In the development of this project, several implementations using aspects in Statecharts
were made for controlling the statechart behavior. Nevertheless, the same behavior-
controlling was reached by implementing this control in one method of the metamodel I
developed.
This migration of behavior-controlling will be pointed out in the chapter 7 and explained
with some examples.

 10

4. Executable UML

4.1 xUML Introduction
According to Stephen J. Mellor and Marc J. Balcer8, Executable UML is a major innovation
in the field of software development. It is designed to produce a comprehensive and
understandable model of a solution independent of the organization of the software
implementation. It is a highly abstract thinking tool that aids in the formalization of
knowledge, and is also a way of describing the concepts that make up abstract solutions
to software development problems.
As a foundation for Model Driven Architecture, Executable UML provides the key
technology for expressing application domains in a platform-independent manner.

4.2 Model Driven Architecture

4.2.1 Introduction
MDA is an architecture defined by the OMG9 for the Software Development; provides a
new way for writing specifications in a platform-independent way by raising the level of
abstraction. A complete MDA specification consists of a definitive platform-independent
base UML model, plus one or more platform-specific models and interface definition sets,
each describing how the base model is implemented on a different middleware platform.

4.2.2 MDA Components
Following are the components of the MDA, taken from MDA Explained10:

Figure 2: Model Driven Architecture components

 11

Platform Independent Model
The first model that MDA defines is a model with a high level of abstraction that is
independent of any implementation technology. This is called a Platform Independent Model
(PIM).

Platform Specific Model
In the next step, the PIM is transformed into one or more Platform Specific Models (PSMs). A
PSM is tailored to specify your system in terms of the implementation constructs that are
available in one specific implementation technology.
 A PIM is transformed into one or more PSMs. For each specific technology platform a
separate PSM is generated. Most of the systems today span several technologies, therefore it
is common to have many PSMs with one PIM.

Code
The final step in the development is the transformation of each PSM to code. Because a PSM
fits its technology rather closely, this transformation is relatively straightforward.
The MDA defines the PIM, PSM, and code, and also defines how these relate to each other.
A PIM should be created, then transformed into one or more PSMs, which then are
transformed into code. The most complex step in the MDA development process is the one in
which a PIM is transformed into one or more PSMs.

 12

5. OCL

5.1 OCL Introduction
There is a need to describe additional constraints about the objects in the model that cannot
be described in UML models. OCL is used to specify these additional constraints.
According to Jos Warmer and Anneke Kleppe11, the Object Constraint Language (OCL) is a
language that enables one to describe expressions and constraints on object-oriented models
and other object modeling artifacts. An expression is an indication or specification of a value.
A constraint is a restriction on one or more values of (part of) an object-oriented model or
system.
In combination with UML, allows developing more effective, consistent, and coherent models
that are critical to working with MDA.

5.2 OCL Components

There are four types of constraints (from 12):

• An invariant is a constraint that states a condition that must always be met by all
instances of the class, type, or interface. An invariant is described using an
expression that evaluates to true if the invariant is met. Invariants must be true all
the time.

• A precondition to an operation is a restriction that must be true at the moment that
the operation is going to be executed. The obligations are specified by
postconditions.

• A postcondition to an operation is a restriction that must be true at the moment that
the operation has just ended its execution.

• A guard is a constraint that must be true before a state transition fires.

The context definition of an OCL expression specifies the model entity for which the OCL
expression is defined. Usually this is a class, interface, datatype, or component. In terms of
the UML standard, this is called a Classifier.

http://www.csci.csusb.edu/dick/samples/ocl.html#OCL

 13

6. Octopus

6.1 Octopus Introduction
Octopus 13 is an Eclipse Tool that conforms to version 2.0 of the OCL standard; provides two
main functionalities:
1. Statically check OCL expressions. It checks the syntax, as well as the expression types,
and the correct use of model elements like association roles and attributes.
2. Transform the UML model, including the OCL expressions, into Java code.

6.2 Octopus code generation
Next, the process of code Generation in Octopus is briefly described.
The process of Octopus code generation encompasses three important things: the reading,
processing and code generation of the Octopus models (.uml files) , the reading, processing
and code generation of the OCL expressions (.ocl files), and the merge within them.

In order to analyze the code generation in Octopus, a second instance of Eclipse using the
Octopus that generates generics is debugged. I made this second instance by using the
corresponding Octopus and other plug-ins as show below:

Figure 3: Selection of plug-ins for debugging in Octopus

After creating my second instance I created there a new Java project, added the Octopus
nature and created one .uml and one .ocl file. Then I ran the Generate Java Code to debug
in the original Eclipse instance.

 14

The process of generating java code, is mainly done in the class TransformationController
with the method generate. The instance of TransformationController is created in the class
GenerateCodeAction and then it s method generate is called. This method takes as input an
instance of IPackage and IProgressMonitor.

The first step is to split the interfaces using the method generateInterfaceSplit, which reads
the .uml model and returns a IPackage instance, in this case a PackageImpl instance called
“Example”, which is the package I specified in my .uml file.

The second step generates a Java model with an instance of the class OJPackage using the
method generateMiddleTier(). This method performs the following actions:

1. Transform the IPackage to OJPackage using the method transform() from an
instance of the class ModellController.

2. Validates the OJPackage java model to be well formed and get the errors and
warnings.

3. Generate the OCL expressions using the method generateExpressions(). This
method creates an instance of the class ExpressionController and executes
the method transform. The latter method performs several important task that
are described next:

a. Check if the transformation is possible using a visitor.
b. An OclUtilityCreator instance is created and its method makeOclUtilities

is called which create the Tuple types, standard library and the
invariant helper classes. This must be done before any other OCL
processing.

c. The OCL operations definitions are added by creating an instance of
the class DefOperationGenerator and using a visitor in the class
IPackage.

d. The OCL attributes definitions are added by creating an instance of the
class DefAttributeGenerator and using a visitor. This is very similar to
the DefOperationGenerator.

e. Add OCL initial expressions by creating an instance of the class
AttrExpressionGenerator and the correspoinding visitor

f. An instance of OperExpressionGenerator is created with its
corresponding visitor to add the OCL expressions attached to the
operations

g. The invariant operations are added by calling a visitor of the instance
InvariantGenerator.

h. Finally, the OverwritesGenerator instance add other features by calling
a visitor.

4. The generateMultChecks method is executed, which in turn creates an
instance of the class MultCheckGenerator and its visitor. This method
performs the multiplicity check.

5. Generate extra operations: toString(), getIdentifyingString(), getCopy() and
allInstances(). This methods are added to every generated class by calling the
method generateExtraOpers().

6. Finally, the generateVisitor() method is called to create the Visitor interface to
visit all elements.

The third step generates the storage tier calling the method generateStore(). This creates an
XML file if was selected in the Octopus codegen properties.

The fourth step encompass the generations of User Interface if the option is selected in the
Octopus codegen properties. This is done by calling the method generateUI().

 15

The fifth step is to split the generated classes in the middle tier by calling the method
generateGenSplit(). This method creates an instance of the class GenerationSpliter which in
turn executes its method transformModel(OJPackage). This method generates the classes
defined by the user.

Finally, the sixth step is to write the generated code in files by creating an instance of the
class FileGenerator and executing its method write()

 16

7. Statecharts Generation

7.1 Statechart metamodel definition
The first step for implementing statecharts I made was to develop a metamodel.
After several iterations implementing statecharts, to the following metamodel was achieved
at the last of these iterations.

Figure 4: Statechart metamodel

Next I describe each of the classes of this metamodel and the role they play.

StateMachine.java.
Has a top state, to which everything belongs. Acts as container for the states and transitions.
StateVertex.java
Is an abstract class. Contains a name; a set of transitions, each of them is triggered by only
one event. Also contains an outgoing and incoming transition, but they are not implemented
in this example, also has a parent of the type CompositeState.
State.java
Inherits from StateVertex. Contains internal transitions and a set of events.
CompositeState.java

 17

Inherits from State; contains a set of sub-states of the type StateVertex.
SimpleState.java
Inherits from State and represent a simple state; doesn’t have sub-states.
Guard.java
Boolean expression to restrict a transition to be executed.
Event.java
Event that triggers a transition. Contains a set of States and a set of Transitions. One event
can trigger different transitions depending on the current State. Also contains a method
called addTransition that add the inherited transitions from its parent, this will be explained
later.
Transition.java
Specifies transitions between states. Contains a source State, target State, trigger Event and
a Guard.

7.2 Prototype specification
After the metamodel definition, I explain how my proposed prototype can be implemented.
Having the metamodel pre-defined classes, it is necessary to create a new class instancing
the state machine and creating the corresponding states, events and transitions.
The first step is to define a Statemachine:

// statemachine declaration
public StateMachine statemachine1=null;

The second step is to define the existing states, including composite States, simple States
and Pseudostates. A declaration of them is expressed as following respectively:

// States declaration
public static final StateVertex SIMPLESTATE_1 = new
SimpleState("SIMPLESTATE_1 ");
public static final StateVertex COMPOSITESTATE_1 = new CompositeState
("COMPOSITESTATE_1");
public static final StateVertex PSEUDOSTATE_1 = new PseudoState
("PSEUDOSTATE_1 ", "INITIAL");

Then, the events and transitions must be declared.

// Event declaration
public Event event1 = new Event("event1");

//transition declaration
public Transition t1 = new Transition(SOURCESTATE, TARGETSTATE, event1);

The guards also must be declared

// Guard declaration
Public Guard guard1 = null;

Next, in the constructor, the statemachine initialization is created. In the final
implementation of the metamodel, the sub-states for the composite states are added
automatically in the CompositeState constructor and the parents are respectively added in
the StateVertex constructor. The transitions are also added to their corresponding trigger
events in the Transition constructor. The same way, the corresponding guards of a transition
are added in the Guard constructor.

 18

// Initializes the statemachine
statemachine1= new StateMachine (new State (“statemachine1”));

In an earlier version of the metamodel implementation, it was necessary to manually
aggregate the substates, the transitions triggered by events as well as the guards to
transitions. These were specified as follows:

// Assign substates
COMPOSITESTATE1.addSubState(COMPOSITESTATE2);
COMPOSITESTATE1.addSubState(COMPOSITESTATE3);

// Add the transitions generated by Events
Event1.addTransition(t1);
Event1.addTransition(t2);

// Add the guards to the corresponding transitions
t1.addGuard(guard1);

Now it is necessary to define the executeEvent() and doTransition() methods, which are
always the same. In the first one is where the behavior-controlling was migrated from
aspects to this method. Whenever an Event occurs, it looks if the invoked event exists for
the current state; if so, the transition takes place, otherwise raises a
ProtocolViolationException and there is where the behavior-controlling exists. These methods
would look like the following:

public void executeEvent(Event e) throws ProtocolViolationException{
 Iterator it=e.transitions.iterator();
 while (it.hasNext()){
 Transition t= (Transition)it.next();
 if (t.source==currentState){
 doTransition(t);
 return;
 }
 }
 throw new ProtocolViolationException();
}

public void doTransition(Transition transition) throws
ProtocolViolationException {
 if (executeGuard(transition.guard)||transition.guard==null){

onExit(transition.source); //executes onExit action for source
 //State in transition

 currentState=transition.target;
 onEntry(transition.target); //executes onEntry action for

 //target State in transition
}

}
Having this done, it is necessary to implement the executeGuard(), onEntry() and onExit()
methods. Here is where all the actions definitions rely. The corresponding actions followed
by the onEntry() and onExit() are precisely user-defined methods.
The way this is implemented for identifying the current state is done by if-else statements.
Next, the onEntry() actions are shown would look like:

public void onEntry(StateVertex state) throws ProtocolViolationException{
 if (state==STATE1){
 System.out.println("onEntry Action from TrafficLight."+

state.getName());
 state1Action(state);
 }

 19

 else if (state==STATE2){
 System.out.println("onEntry Action from TrafficLight."+

state.getName());
 state2Action(state);
 }
 else if (state==STATE3){
 System.out.println("onEntry Action from TrafficLight."+

state.getName());
 state3Action(state);
 }

}

In the previous code, the methods state1Action(), state2Actions() and state3Action() are
user-defined to specify the actions to execute (if any) when the entry to a new state is
performed.
The same applies for the onExit() actions.

The executeGuard() method will looks something like the following:

public void executeGuard(Guard guard){
 boolean result=false;
 if (guard==guard1){
 // some conditional evaluation
 }
 else if (guard==guard2){
 // some conditional evaluation
 }
 return result;
}

After all of this is defined, it is necessary to create an entry point to the application; this is
done by creating a main method in the implementation, creating an instance and calling the
executeEvent method to execute the first and subsequent events.

7.3 Generating Statecharts based on prototype
In order to implement statecharts, it was necessary to make several iterations of the SDP, on
each of them I instantiated the metamodel implementing an example.
The following examples go from the implementation of simpler statechart metamodel to a
more complex one, including each time more components like sub-states, history states,
guards and so on.

7.3.1 Bahnübergang example
After analyzing some example results of simple Statecharts omitted in this report, I moved
towards a more complex example beginning the next iteration. This time I implemented a
Bahnübergang statechart example.
This example and statechart diagrams are taken from14 and consists of four different
statecharts. Here are introduced and implemented new elements of the statecharts:
composite states, initial Pseudo-states, when clause and concurrent statemachines.
The components of this example are:

Traffic Light
Has four states, as depicted in the diagram below; and four events. The top states are
activated and deactivated; and the states on and off are sub-states of activated. The initial
state of the traffic light is deactivated, when the activate event occurs, then moves toward

 20

the state activate, which is a composite state. Once has entered to the activate state, then
moves automatically to the off state, as depicted in the black circle representing a
Pseudostate of initial state. When the event switchOn occurs, then a transition is triggered to
the state on and the switchLightOn action is executed. The opposite happens when the
event switchOff is triggered.
The statechart representing the traffic light is shown below:

Figure 5: Traffic Light statechart diagram

Gate
As well as the traffic light diagram, has two top states activated and deactivated. In this
case, the state activated has 6 sub-states: opening, closing, opened, closed, faulty and one
Pseudostate that is the initial state when entering into the activate state. When the event
close triggers the transition from state opened to closing, the onEntry actions are performed
and the startEngineDown action takes place; if after a maximum period of time which is
represented by MAX_CLOSING_DURATION, the signal gateClosed does not come, then a
transition to the faulty state is performed, executing the onExit actions from the closing state
before doing the transition; otherwise a transition to the state closed is performed. When the
current state is faulty, then until the event repaired is triggered, a transition will take place
going to the deactivate state. Something similar happens when the event open occurs as is
depicted in the diagram shown in the next page.

 21

Figure 6: Gate Statechart diagram

Trail Observer
This diagram has also the two top components activated and deactivated as the previous
ones. The initial state after entering in the activate state is the idle state. When the
trainApproaching signal Event is triggered, a transition to the trainPassing state is
performed; once this state is reached, stays there waiting for an event signal. If before
receiving a signal the MAX_PASSING_DURATION time is reached, then a transition to the
faulty state takes place. If the event signal received is trainPassed, also a transition to the
faulty state is done. Otherwise, if the signal trainApproaching is received, a transition to the
idle state is performed.
Whenever a transition reaches the faulty state, a transition take place to the deactivated
state only after the repaired event occurs.
The diagram representing the Trail Observer statechart is shown in the next page:

 22

Figure 8: Trail Observer statechart diagram

Bahnübergang
This is the main controller statechart that integrates everything. It has two traffic light
statemachines, two gates and two trail observers. Has also two top states, activated and
deactivated. The initial state is deactivated. When the activate event occurs, a transition is
made to the state activated, and then to the idle state. Then when the state trainPassing
state is reached in either the trail observer 1 or the trail observer 2, a transition to the state
preparingToClose is performed and the actions of this transition take place; switching on the
lights of the traffic light 1 and 1 respectively. Once in the preparingToClose state, after a the
time reaches the CAR_STOP_DURATION time, another transition is done by going to the
state closedForCars and executing the actions closing the gate 1 and 2. From there, when
both trail observers are in the state idle, the actions of open both gates are performed and
stay there until both gates arrive to the state opened. When this occurs, a transition to the
state idle is done and both traffic lights are switched off.
Whenever one of the gates or trail observer reaches the faulty state, a transition to the
deactivated state is done no matter the current state, the gates are closed and the traffic
lights are turned off.
The depiction of this diagram is shown in the next page:

 23

Figure 9: BahnÜbergang statechart diagram

 24

Implementation

To implement this example, instances of the pre-defined classes of the metamodel where
created. Additionally these classes were also implemented:

ProtocolViolationException.java
Raises a Protocol Violation Exception when an event generates an invalid transition. In other
words, when an event call is executed, if the transition generated by this event does not
exist in the current state, then the ProtocolViolationException is raised, this helps to control
behavior on the implementation.
Gate.java
StateMachine instance that contains the states representing the gate statechart, its
corresponding events, transitions, onEntry(), onExit() actions and the executeEvent()
method.
TrafficLight.java
Statemachine instance representing the traffic light state chart, as the same as the Gate
class, contains its corresponding states, events, transitions and methods.
TrailObserver.java
The same as the previous two classes, this one representing the Trail Observer statechart.
Bahn.java
This class represents the whole application, has the same elements as the previous three
classes, but these also creates two instances to each of them to perform the concurrent
statecharts.

Implementation details
Before showing an example of the execution of this implementation, is important to mention
some aspects needed to introduce in these classes in order to achieve the expected result.
In the declaration of the classes of the four statecharts, all the states, events and transitions
are created and some of them initialized. In the constructor of these classes the instance to
the statemachine is created and the transitions are assigned to their corresponding events.
Each statechart implementation has its own onEntry(), onExit() and executeEvent()
methods, this last one is the same for all the classes and the other ones are adapted specific
for the states corresponding on each of the classes.
Next, how looks like the declaration and constructor of the Traffic Light statechart
implementation is shown in the next page:

 25

Figure 10: Constructor declaration of traffic light statechart

In the class Event.java, the method addTransition() was modified to allow to automatically
create the transitions from all the substates to their parent’s existing transitions, this is a
kind of transition inheritance. With this, for example, in the Gate statechart implementation,
there was no necessary to define transitions from all the substates of the activated state to
the deactivated state. This was done automatically in the mentioned method. Next I show
the corresponding “transition inheritance” of the method.

Figure 11: Declaration of the method addTransition()

 26

For representing the initial states in the composite states, I created one Pseudostate on each
statechart implementation called INITIALACTIVATED. When the onEntry() action of the
ACTIVATED state is executed, then automatically 2 transitions are performed; one from the
ACTIVATED state to the INITIALACTIVATED, and later from INITIALACTIVATED to the initial
state defined in the transition.

With this as previous introduction, the implementation of the Bahn statechart is shown.
First all the states, transitions, events, and instances to the other statecharts are created and
initialized. By default, everything is deactivated, including the Bahn statechart. In the main
method, only the execution of the event activate is necessary, since from that point, the
system starts to interact with the other statemachines following the protocol defined at the
beginning of this example.
Is important to mention that in order to simulate failures of the gate, was implemented a
random function that from time to time generate a transition to the faulty state, generating
an alteration of the application enforcing the rules previously specified.
The Thread.sleep() method is invoked in several methods of the onEntry() actions of the
Bahn class to make a delay and understand the process is following.
Several validations were made to avoid the raising of a protocolViolationException and to
guarantee the protocol but if an invalid transition is forced, then it will in turn generate the
Exception.
The activate event of the Bahn statechart, also activates the gates, traffic lights and trail
observers. When entering to a state in the Bahn statechart, a checking is performed to see
whether any gate or trail observer is faulty; when this case happens, the Bahn statechart
executes a transition to the state DEACTIVATED; once in this state, verifies which element is
in faulty state and repairs them. After that generates a transition automatically to the
ACTIVATED state and thus, activating also all the deactivated components and starting over
again the whole protocol. This is how the execution of the Bahn implementation keeps
executing infinitely.

In the next page, part of the implementation of the onEntry() action of the Bahn class is
shown, where the validations and delays are set.

 27

Figure 12: Part of the onEntry() method implementation

After executing the event Activate in the main method, as was pointed out before, all the
other statechart instances are activated and entering into their corresponding initial state.
Then the Bahn waits until the state of the other instances changes and then takes the
corresponding action.

 28

Next, part of the output of the execution of this implementation is shown:

Figure 13: Output of the Bahnübergang statechart implementation

In this part we can see that one of the TrailObserver instances, got into the faulty state and
then was deactivated, this deactivated transition was triggered from the Gate
implementation. Then at almost the bottom of the output, we can see that again is changed
from deactivated state to activated state, and again, performed from the Gates
implementation.

For more detail of the implementation, refer to the appendix at the end of this report.

 29

7.3.2 Elevator example

In this implementation, new components from statechart are introduced: guards, choice-
Pseudostate and history state.
For the development of this example, the following is assumed:
The elevator has 10 buttons representing a floor each one, starting from 0 until 9.
The floor 0 is the main and starting floor.
After reaching a floor, it stays there until a press-Button event is executed.
The alarm-button is not considered.

Next, I present the description of the components if the Elevator State chart.

Button
A Button inside an elevator represents a Floor. It has only two states: pressed and not-
pressed. It has also an initial Pseudostate that goes to the not-pressed state.

The statechart diagram representing the Button used in this example is the following:

Figure 14: Button statechart diagram

Door
A door is another component of the Elevator and only has one. It has two main states called
activated and deactivated; activated is a Composite state that includes the following sub-
states: faulty, opened, closed, opening, closing. When the door is in the opening state, and a
timeout limit of opening a door is reached, then a transition is executed to the faulty state.
The similar happens while in the closing state. This is simulated by a random function in the
implementation.
Only after the repaired event occurs, the door goes from the faulty state to the deactivated
state.
The initial state of this statechart is deactivated and the representation of this statechart
diagram used in this example is the following:

 30

Figure 15: Door statechart diagram

Elevator
This represents the main statechart. It has a series of Buttons and one Door. Each of these
components represented in orthogonal regions. Here is introduced the choice-Pseudostate,
represented by a diamond in the diagram. In this implementation, a history-state is used to
store the last moving-direction of the elevator. Depending on the history-State and the next
Floor to move to, the decision is made to generate a transition to the MovingUp state or the
MovingDown state.
Three guards are implemented to control the transitions. One is to verify that the next floor
to move is not the current floor, and the other two are to verify that the door is closed
before start moving either up or down.
The representation of this statechart used in this example is shown in the next page:

 31

Figure 16: Elevator statechart diagram

Note that the State called Button... is used to abbreviate the states from Button3 to Button9.

 32

Implementation
To implement the elevator example, instances of the pre-defined classes of the metamodel
where created. Additionally these classes were implemented:

ProtocolViolationException.java
Raises a Protocol Violation Exception when an event generates an invalid transition. In other
words, when an event call is executed, if the transition generated by this event doesn’t exist
in the current state, then the ProtocolViolationException is raised, this helps to control
behavior on the implementation.
Door.java
StateMachine instance that contains the states representing the Door statechart, its
corresponding events, transitions, onEntry(), onExit() actions and the executeEvent() and
executeGuard() methods.
Button.java
Represent a different floor in the elevator, can be pressed or not pressed.
Elevator.java
Main statemachine instance containing 10 Buttons, each of them in a different orthogonal
region; and one door.
Here is implemented all the functionality and behavior of the interacting statecharts.

Implementation details
To create the 10 buttons of this elevator, an array of type Button was created, and then
initialized automatically in the constructor. This was done in order to avoid to generate a lot
of code for each Button (suppose that the elevator has 100 Buttons).
Two methods are created to retrieve the next floor to move depending on the moving
direction, these methods iterate over the array starting from the current state, and return
the next floor to go. The implementations of such methods are the following:

Figure 17: getNextFloorUp() and getNextFloorDown methods implementation

Like the example before, all the States are declared and initialized, as well as the new
choice-Pseudostate.
A history-state is defined to store the last moving direction of the elevator. This is necessary
to establish a well behavior of the elevator; suppose that the elevator is moving upwards
going to the floor 5th, then, it still has 2 more floors to visit, the floors 7th and 9th. If the floor
2nd is pressed, first it has to go up and stop by the floor 7th and 9th respectively, and after
that it should go down to the 2nd floor.
Two Integer variables are defined to store the current floor and the next floor to move.

 33

When there are no more floors pressed, then the elevator stays in the last floor visited and
wait until one button is pressed.
All this behavior specification is defined in the following methods: the onEntry() method of
the Idle state (initial state after is activated), which performs the following:
If the last moving direction of the elevator (represented by the history-state) is going up and
the next floor to move is bigger than the current floor, or the moving direction is going down
and there are no more floors downwards to visit but there is one floor upwards to visit, then
the next floor to visit is retrieved, the moving direction is updated and the transition to the
choice Pseudostate is performed. Something similar happens when moving down. All of this
is represented in the following code:

Figure 18: behavior for the elevator defined in the state IDLE of the onEntry() method

After a transition to the choice-Pseudostate is performed, is necessary to open and close the
door and update the current moving direction and retrieve the next floor to move, this is
defined in the onExit() method of the Idle state. This is necessary due to avoid falling in a
false Guard validation in the initial state when the current floor and the next floor are both 0.
This specification is defined as follows:

 34

Figure 19: Definition of opening and closing the elevator’s door in the onExit() method

After retrieving the next floor to move correctly in the right direction defined in the previous
code, is necessary to implement the behavior for the choice-Pseudostate (represented by the
MOVING state).
When a transition arrives to this Pseudostate, a decision is made depending on the direction
to move based on the history-state. After one decision is made, evaluates the corresponding
Guard and after successful validation, moves either towards MovingUp state or MovingDown
state.
This decision making is defined in the onEntry() actions of the choice-Pseudostate and looks
like the following.

Figure 20: Using the history-state in the choice-state

Once the target floor is reached, it is important to turn off the corresponding button in the
array. This is implemented in the onExit() actions from the MOVINGUP and MOVINGDOWN
states, as shown in the next page:

 35

Figure 21: Turning off the button of the reached floor

As difference from the Bahnübergang implementation, here is introduced the guards in the
code to validate the execution of transactions.
In order to achieve the functionality of the guards, the method executeGuard() is created
which validates the execution of a transition in some state.
After several attempts to find out the best way to implement this validation, I decided to
implement them in a similar manner like the onEntry() and onExit() methods. Thus, the code
validation has to be introduced only once within this method and it will be executed before
whenever a transition takes place.
The code enforcing the guards validation in this example is the following:

Figure 22: Implementation of the guards in the elevators statechart example

In this code, the first and second Guards, establishes that the door must be closed and that
the next floor to move is a valid one depending on the direction. The third Guard defines
that when a button is pressed, it will execute a transition only when the next floor to move is
not the same as the current floor.

 36

Once the behavior definition for the statechart is defined as explained before, a main method
was created to have an entry-point to the statechart.
In this run-execution, I created an instance to the Elevator class; next, I activated the door.
After that I activated the Elevator. Then, I simulated that two persons request the service of
the elevator at different floors; in this case at the floor 5th. and 8th. This is done by explicitly
indicating the floor as shown in the code.
Then the pressButton event is triggered in order to attend to these requests and start
moving. After this floors are visited, then its simulated that another request is done for the
2nd floor by either somebody requesting the service in that floor, or somebody inside the
Elevator pressed the 2nd button. Then the method pressButton is executed again and the
elevator moves to the corresponding floor and stays there.
The code for the main method in this test is the following:

Figure 23: Main method implementation

 37

The output of the execution of this implementation is the following:

Figure 24: Output for the Elevator statechart implementation

As we could see in this output, the desired behavior is reached. First, the elevator is moved
from the 0th to the 5th and 8th floor and stays there, then is moved effectively to the second
floor and stays there waiting for further requests.
Note: For a complete view of the code of this implementation, please refer to the appendix
at the end of this report.

 38

8. Octopus Integration
In order to follow the MDA paradigm, I developed in the last iteration a PIM (Platform
Independent Model) for representing the metamodel. In this case I used Octopus to
generate big part of the code of the Statecharts in Java by using .uml and .ocl specifications.
Nevertheless it was not possible to generate the complete functionality of the model by using
only these specifications because of the existing code-generation limitations on the MDA
process. So it was needed to manually adapt some of them.

8.1 Generation of metamodel with Octopus

To generate the metamodel using Octopus, I created a .uml specification that generates the
classes I developed manually in the last iterations. This .uml specification follows a specified
syntax defined by Octopus; which is quite understandable by the readers.
Part of the .uml model I implemented is the following:

<package> test

<class> StateVertex
 <attributes>
 + name: String;
 + transitions: Set(Transition);
 <operations>
 + addParent(s: StateVertex);
 + addSubState(s: StateVertex);
 + getSubStates(): Set(StateVertex);
<endclass>

<class> Transition
<endclass>

<class> Event
 <attributes>
 + name: String;
<endclass>

<class> PseudoState <specializes> StateVertex
 <attributes>
 + kind: String;
<endclass>

<class> CompositeState <specializes> State
<endclass>

<associations>
 + StateMachine.statemachine[0..1] <-> State.top[1];
 + Transition.<noName>[0..*] -> + StateVertex.source[1];
 + Transition.<noName>[0..*] -> + StateVertex.target[1];
 + Transition.transition[1] <-> + Guard.guard[0..1];
 + Transition.transitions[0..*] <-> + Event.trigger[0..1];
 + State.<noName>[0..*] -> + Transition.internalTransition[1];
 + State.states[0..*] <-> + Event.defferedEvent[0..*];
 + StateVertex.substates[0..*] <-> CompositeState.parent[1];
<endpackage>

Here, the definition of a class is specified inside the tags <class> <endclass>, with their
respective attributes and methods (if any). The associations are specified after the tag
<associations>, with their respective cardinality and navigation.
For a complete view of the .uml specification, refer to the appendix at the end of this report.

 39

After defining the model, I defined some OCL expressions in order to constraint a bit more
the .uml model.
OCL is powerful for complementing UML models, and by adding OCL expressions in my
model, more information can be added to it. Because of the project deadline time limitation,
in this iteration at the last stage of my project work I implemented just a few OCL
expressions for specifying the initial values that some objects needs to take. But more things
can be carried out with these expressions like constraining guards or any other object’s vale.
In this case, I didn’t use OCL expressions in the metamodel generation, but in the Elevator
example implemented and explained later on in this report.

Once the .uml and .ocl specifications are defined in Octopus, the code by using the Octopus
code-generation feature is generated. Some code adaptations needed to be done for getting
the desired functionality. One of the methods to be adapted was the method
addToTransitions(Transition t) from the generated class Event.
The adaptation looks like the following:

Figure 25: Adaptation of the method addToTransitions() generated by Octopus

In this method implementation, we added the functionality to add the outgoing transitions of
a composite state to all of its sub-states.
Another method to be adapted was the constructor of the generated classes Transition and
Guard; in the first one was necessary to add automatically the transition to the triggered
event, and in the second case, the Guard added itself to the corresponding transition
received as parameter in the constructor. Both cases look as follows respectively:

 40

Figure 26: Adaptation of the Transition constructors

Figure 27: Adaptation of the Guard constructor

For a complete view of the adaptation of the generated code with Octopus, refer to the
appendix at the end of this report.

8.2 Generation of the Elevator example with Octopus

After having the code of the metamodel generated with Octopus. I implemented in a similar
way a .uml and .ocl specifications to generate the skeleton of the Elevator example.
One of the classes defined in the .uml specification looks like follows:

Figure 28: Definition of the Button class in the .uml specification

Some of the OCL expressions I generated are the following. Refer to the appendix to a
complete view of these expressions.

 41

context Elevator:: nextFloor: Integer
 init: 0

context Door:: currentState: StateVertex
 init: DEACTIVATED

context Door:: MAX_CLOSING_DURATION: Integer
 init: 10

The first expression refers to the Elevator class defined by the context Elevator, then
specifies the attribute nextFloor of type Integer will have the initial value of “0”. The similar
happens with the next expressions.
To a complete view of the .uml and .ocl specification for this example, refer to the appendix
at the end of this report.

Like in the metamodel code generation, some methods needed to be adapted. In this case,
the behavior of the Elevator’s Statecharts relies on the onEntry() and onExit() methods and
needed to be implemented by hand. As well as the initialization of the States, Transitions,
Events and so on.
One of such adaptations looks as follows:

Figure 29: Adaptation of the onExit() actions of the state f_iDLE generated by Octopus

To get a complete view of the adapted source code, refer to the appendix at the end of this
report.

 42

After having adapted the generated code from the .uml and .ocl specifications, the following
main method was implemented as an entry point in a similar way as the one defined in the
first Elevator implementation:

Figure 30: Implementation of the main method for the Elevator example generated by Octopus

With this, I got the same functionality of the Elevator example as the previous
implementation done without Octopus, but simplifying the code implementation by
generating a big part of the metamodel and the skeleton of the desired Statechart.

 43

9. Conclusion

During the development of this project work, I discovered and dealt with different existing
difficulties when implementing Statecharts. That drove me to analyze different situations the
Statecharts can fall into and to develop a prototype that helps for an easier implementation
of the basic statechart notation.

Starting from getting background knowledge of Statecharts and exploring different
technologies to develop a prototype, I ended up by just choosing a few of them, the ones I
considered necessary to not make my prototype too complex to understand and implement.

Even though at the beginning of the project I had the intention to generate a prototype for
implementing Statecharts using Aspects in a compilation based style, I arrived to a different
implementation based on an interpretative one. Thus, having the potentially advantage of
allowing adapting the statechart at runtime and giving more flexibility.

Because of the time limit of the duration of this project work, only the main components of
the Statechart diagrams are able to be implemented with this prototype, leaving place for
future extension and adaptability of this prototype with further components like Fork and
Join Pseudostates.

At the last stage of the project, the integration with Octopus was done and I generated my
metamodel prototype from .uml specifications and reducing considerably the implementation
effort of it. Further adaptability and improvements can be done by using also OCL
expressions like the ones used in the examples implementations.

I hope this work helps the reader to get a better understanding about the implementation of
Statecharts and the possible different solutions that can be reached by using the prototype I
developed following the MDA in the incremental software development way.

 44

10. References

1 Statecharts, by Ben Meadowcroft. http://www.benmeadowcroft.com/reports/statechart/
2 UML Statecharts, by Bruce Powel Douglass http://www.embedded.com/1999/9901/9901feat1.htm
3 Taking Aspect One Step Further, By James Holmes.
http://www.oracle.com/technology/oramag/oracle/04-sep/o54aop.html
4 Nanning Aspects. http://nanning.codehaus.org/
5 JBoss Aspect Oriented Programming. http://labs.jboss.com/portal/jbossaop/index.html
6 AspectWerkz, Plain Java AOP. http://aspectwerkz.codehaus.org/
7 AspectJ for Eclipse. http://www.eclipse.org/aspectj/
8 Executable UML: A foundation for Model Driven Architecture. By Stephen J. Mellor, Marc J. Balcer.
Addison Wesley. May 14, 2002.
9 OMG Model Driven Architecture.http://www.omg.org/mda/
10 MDA Explained: The Model Driven Architecture™: Practice and Promise, By Anneke Kleppe, Jos
Warmer, Wim Bast. Addison Wesley. April 21, 2003.
11 Object Constraint Language, by Jos Warmer and Anneke Kleppe. http://www.klasse.nl/ocl
12 Introduction to OCL, by Jos Warmer and Anneke Kleppe. http://www.klasse.nl/ocl/ocl-
introduction.html
13 Octopus: OCL Tool for precise UML Specifications, by Jos Warmer and Anneke Kleppe.
http://www.klasse.nl/octopus/
14 UML Statecharts, by Max Göbel. http://tfs.cs.tu-
berlin.de/vila/www_ws03/folien/statecharts_ausarbeitung_final.pdf

Additional sources

- AspectJ in Action, Practical Aspect Oriented Programming. Ramnivas Laddad. Manning
- The Object Constraing Language. Jos Warmer, Anneke Kleppe. Addison Wesley. August 29,

2003.
- UML2 Diagrams. http://www.visual-paradigm.com/VPGallery/diagrams/State.html
- UML2 Statechart Diagrams, by SPARX Systems.

http://www.sparxsystems.com/resources/uml2_tutorial/uml2_statediagram.html
- UML Metamodel.

http://www.cse.msu.edu/~cse870/Materials/UML11_Metamodel_Diagrams.pdf
- Mapping UML Statecharts to Java code. By Azim Niaz, Jiro Tanaka.

http://www.iplab.cs.tsukuba.ac.jp/paper/international/niaz_se2004.pdf
- Using Aspects to Abstract and Modularize Statecharts, by Mark Mahoney, Atef Bader, Tzilla

Elrad, Omar Aldawud. http://www.cs.iit.edu/~oaldawud/AOM/mahoney.pdf

 45

11. Appendix

Metamodel source code

StateMachine.java

public class StateMachine {
 public State top;

 public StateMachine(State state){
 this.top=state;
 }
}

StateVertex.java

public class StateVertex {
 private String name;
 private CompositeState parent;
 public Set <Transition> transitions= new HashSet();

 public StateVertex(String state){
 this.name=state;
 this.parent=null;
 }
 public StateVertex(String state, CompositeState parent){
 this.name=state;
 this.parent=parent;
 }
 public void addSubState(StateVertex state){}
 public Set<StateVertex> getSubStates(){return null;}
 public String getName(){
 return name;
 }
 public void setName(String name){
 this.name=name;
 }
}

State.java

public class State extends StateVertex{
 public StateMachine statemachine;
 public Transition internalTransition=null;
 public Set <Event> deferredEvents= new HashSet();

 public State(String state){
 super(state);
 }
}

PseudoState.java

public class PseudoState extends StateVertex{
 public String kind;

 public PseudoState(String name, String kind){
 super(name);
 this.kind=kind;
 }
}

SimpleState.java

 46

public class SimpleState extends State{
 public SimpleState(String name){
 super(name);
 }
}

CompositeState.java

public class CompositeState extends State {
 public Set <StateVertex> substates= new HashSet();

 public CompositeState(String name){
 super(name);
 }
 public CompositeState(String name, StateVertex parent){
 super(name);
 if (parent!=null)
 parent.addSubState(this);
 }
 public void addSubState (StateVertex state){
 substates.add(state);
 }
 public Set<StateVertex> getSubStates(){
 return substates;
 }
}

Transition.java

public class Transition {
 public StateVertex source=null;
 public StateVertex target=null;
 public Event trigger=null;
 public Guard guard=null;

 public Transition(StateVertex source, StateVertex target, Event trigger, Guard guard){
 this.source= source;
 this.target=target;
 this.trigger=trigger;
 this.guard=guard;
 trigger.addTransition(this);
 }
 public Transition(StateVertex source, StateVertex target, Event trigger){
 this.source= source;
 this.target=target;
 this.trigger=trigger;
 this.guard= null;
 trigger.addTransition(this);
 }
 public void addGuard(Guard g){
 this.guard=g;
 }
}

Event.java.

public class Event {
 private String name;
 public Set <Transition> transitions=new HashSet();
 public Set <State> states=new HashSet();

 public Event(String name){
 this.name=name;
 }

 // This function add the trasition to the event set and to the StateVertex set.
 // Also generate automatically the outgoing transitions in Composite states by inheriting
 // the trasitions from its parent
 public void addTransition(Transition transition){
 if (transition.source instanceof CompositeState){
 Iterator it=transition.source.getSubStates().iterator();
 while (it.hasNext()){

 47

 StateVertex st= (StateVertex)it.next();
 Transition t=new Transition(st,transition.target,transition.trigger);
 st.transitions.add(t);
 transitions.add(t);
 }
 }
 transitions.add(transition);
 transition.source.transitions.add(transition);
 }
 public void addToState(State state){
 states.add(state);
 }
}

Guard.java

public class Guard {
 Transition transition=null;

 public Guard(Transition t){
 this.transition=t;
 t.addGuard(this);
 }
}

ProtocolViolationException.java

public class ProtocolViolationException extends Exception{
 public ProtocolViolationException(){
 super();
 System.out.println(""+"ProtocolViolationException");
 }
}

BahnÜbergang example code :

TrafficLight.java

public class TrafficLight {
 // Define Statemachine
 StateMachine trafficLight=null;
 // Define States
 public static final StateVertex DEACTIVATED=new SimpleState("DEACTIVATED");
 public static final StateVertex ACTIVATED= new CompositeState("ACTIVATED");//no parent
 public static final StateVertex ON = new CompositeState("ON",ACTIVATED);
 public static final StateVertex OFF= new CompositeState("OFF",DEACTIVATED);
 public static final StateVertex INITIALACTIVATED= new PseudoState("INITIALACTIVATED", "INITIAL");
 public StateVertex currentState= DEACTIVATED;
 public StateVertex historyState=null;
 // Define Events
 public Event switchOn=new Event("switchOn");
 public Event switchOff=new Event("switchOff");
 public Event activate=new Event("activate");
 public Event deactivate=new Event("deactivate");
 // Define Transitions
 public Transition t1= new Transition(OFF,ON,switchOn);
 public Transition t2= new Transition(ON,OFF,switchOff);
 public Transition t3= new Transition(ACTIVATED,DEACTIVATED,deactivate);
 public Transition t4= new Transition(DEACTIVATED,ACTIVATED,activate);
 public Transition t5= new Transition(ACTIVATED,INITIALACTIVATED,activate);
 public Transition t6= new Transition(INITIALACTIVATED,OFF,activate);

 public TrafficLight(String name){
 trafficLight= new StateMachine(new State(name));
 // Assign Substates
 ON.addParent(ACTIVATED);
 OFF.addParent(ACTIVATED);
 ACTIVATED.addSubState(ON);
 ACTIVATED.addSubState(OFF);
 // Add the transitions generated by Events

 48

 switchOn.addTransition(t1);
 switchOff.addTransition(t2);
 activate.addTransition(t4);
 activate.addTransition(t5);
 activate.addTransition(t6);
 deactivate.addTransition(t3);
 }

 public void executeEvent(Event e) throws ProtocolViolationException{
 Iterator it=e.transitions.iterator();
 while (it.hasNext()){
 Transition t= (Transition)it.next();
 if (t.source==currentState){
 doTransition(t);
 return;
 }
 }
 throw new ProtocolViolationException();
 }

 public void doTransition(Transition transition) throws ProtocolViolationException{

 onExit(transition.source); //executes onExit action for source State in transition
 currentState=transition.target;
 onEntry(transition.target); //executes onEntry action for target State in transition

 }

 public void onEntry(StateVertex state) throws ProtocolViolationException{
 if (state==ON){
 System.out.println("onEntry Action from TrafficLight."+state.getName());
 switchLightOn(state);
 }
 else if (state==OFF){
 System.out.println("onEntry Action from TrafficLight."+state.getName());
 switchLightOff(state);
 }
 else if (state==ACTIVATED){
 System.out.println("onEntry Action from TrafficLight."+state.getName());
 onEntryActivated(state);
 }
 else if (state==DEACTIVATED){
 System.out.println("onEntry Action from TrafficLight."+state.getName());
 }
 else if (state==INITIALACTIVATED){
 System.out.println("onEntry Action from TrafficLight."+state.getName());
 }
 }

 private void onEntryActivated(StateVertex state) throws ProtocolViolationException{
 historyState= state;
 doTransition(t5);
 doTransition(t6);

 }

 private void switchLightOn(StateVertex state){
 System.out.println("switchLightOn() executed in State TrafficLight."+state.getName());
 }
 private void switchLightOff(StateVertex state){
 System.out.println("switchLightOff() executed in State TrafficLight."+state.getName());
 }

 public void onExit(StateVertex state){

 if (state==ON){
 System.out.println("onExit Action from TrafficLight."+state.getName());
 }
 else if (state==OFF){
 System.out.println("onExit Action from TrafficLight."+state.getName());
 }
 else if (state==ACTIVATED){
 System.out.println("onExit Action from TrafficLight."+state.getName());
 }
 else if (state==DEACTIVATED){
 System.out.println("onExit Action from TrafficLight."+state.getName());
 }

 49

 }
}

Gate.java

public class Gate {
 public static final int MAX_CLOSING_DURATION=10;
 public static final int MAX_OPENING_DURATION=10;

 // State declaration
 StateMachine gate= null;
 public static final StateVertex DEACTIVATED= new SimpleState("DEACTIVATED");
 public static final StateVertex ACTIVATED= new CompositeState("ACTIVATED");
 public static final StateVertex INITIALACTIVATED= new PseudoState("INITIALACTIVATED", "INITIAL");
 public static final StateVertex OPENED= new CompositeState("OPENED", ACTIVATED);
 public static final StateVertex CLOSED= new CompositeState("CLOSED", ACTIVATED);
 public static final StateVertex OPENING= new CompositeState("OPENING", ACTIVATED);
 public static final StateVertex CLOSING= new CompositeState("CLOSING", ACTIVATED);
 public static final StateVertex FAULTY= new CompositeState("FAULTY", ACTIVATED);
 public StateVertex currentState= DEACTIVATED;
 public StateVertex historyState=null;

 // Event declaration
 public Event gateOpened= new Event("gateOpened");
 public Event gateClosed= new Event("gateClosed");
 public Event open= new Event("open");
 public Event close= new Event("close");
 public Event repaired= new Event("repaired");
 public Event activate= new Event("activate");
 public Event deactivate= new Event("deactivate");
 public Event timeout= new Event("timeout");

 // Transition declaration

 public Transition t1= new Transition(DEACTIVATED,ACTIVATED,activate,null);
 public Transition t2= new Transition(ACTIVATED,DEACTIVATED,deactivate,null);
 public Transition t3= new Transition(ACTIVATED,INITIALACTIVATED,activate,null);
 public Transition t4= new Transition(INITIALACTIVATED,CLOSED,activate,null);
 public Transition t5= new Transition(OPENED,CLOSING,close,null);
 public Transition t6= new Transition(CLOSING,CLOSED,gateClosed,null);
 public Transition t7= new Transition(CLOSING,FAULTY,timeout,null); // Transition generated
 public Transition t8= new Transition(CLOSED,OPENING,open,null);
 public Transition t9= new Transition(OPENING,OPENED,gateOpened,null);
 public Transition t10= new Transition(OPENING,FAULTY,timeout,null);
 public Transition t11= new Transition(FAULTY,DEACTIVATED,repaired,null);

 // Constructor

 public Gate(String name){
 gate= new StateMachine(new State(name));

 // Assign Substates
 ACTIVATED.addSubState(OPENED);
 ACTIVATED.addSubState(CLOSED);
 ACTIVATED.addSubState(OPENING);
 ACTIVATED.addSubState(CLOSING);
 ACTIVATED.addSubState(FAULTY);

 // Add the transitions generated by Events
 activate.addTransition(t1);
 deactivate.addTransition(t2);
 activate.addTransition(t3);
 activate.addTransition(t4);
 close.addTransition(t5);
 gateClosed.addTransition(t6);
 timeout.addTransition(t7);
 open.addTransition(t8);
 gateOpened.addTransition(t9);
 timeout.addTransition(t10);
 repaired.addTransition(t11);

 }
 public void executeEvent(Event e) throws ProtocolViolationException{
 Iterator it=e.transitions.iterator();

 50

 while (it.hasNext()){
 Transition t= (Transition)it.next();
 if (t.source==currentState){
 doTransition(t);
 return;
 }
 }
 throw new ProtocolViolationException();
 }

 public void doTransition(Transition transition) throws ProtocolViolationException{

 onExit(transition.source); //executes onExit action for source State in transition
 currentState=transition.target;
 onEntry(transition.target); //executes onEntry action for target State in transition

 }

 public void onEntry(StateVertex state) throws ProtocolViolationException{
 if (state==OPENED){
 System.out.println("onEntry Action from Gate."+state.getName());
 }
 else if (state==CLOSED){
 System.out.println("onEntry Action from Gate."+state.getName());
 }
 else if (state==ACTIVATED){
 System.out.println("onEntry Action from Gate."+state.getName());
 doTransition(t3);
 doTransition(t4);
 }
 else if (state==OPENING){
 System.out.println("onEntry Action from Gate."+state.getName());
 startEngineUp();
 double randomValue = 3+ (Math.random() * 10);
 System.out.println(randomValue);
 if (randomValue<MAX_OPENING_DURATION)
 doTransition(t9);
 else
 doTransition(t10);

 }
 else if (state==CLOSING){
 System.out.println("onEntry Action from Gate."+state.getName());
 startEngineDown();
 double randomValue = 3+ (Math.random() * 10);
 System.out.println(randomValue);
 if (randomValue<MAX_CLOSING_DURATION)
 doTransition(t6);
 else
 doTransition(t7);

 }
 else if (state==FAULTY){
 System.out.println("onEntry Action from Gate."+state.getName());
 // doTransition(t11);
 }
 else if (state==DEACTIVATED){
 System.out.println("onEntry Action from Gate."+state.getName());
 // doTransition(t1);
 }
 else if (state==INITIALACTIVATED){
 System.out.println("onEntry Action from Gate."+state.getName());
 }

 }
 public void startEngineDown(){
 System.out.println("Gate.startEngineDown()");
 }
 public void startEngineUp(){
 System.out.println("Gate.startEngineUp()");
 }
 public void stopEngine(){
 System.out.println("Gate.stopEngine()");
 }

 public void onExit(StateVertex state){

 51

 if (state==OPENED){
 System.out.println("onExit Action from Gate."+state.getName());
 }
 else if (state==CLOSED){
 System.out.println("onExit Action from Gate."+state.getName());
 }
 else if (state==FAULTY){
 System.out.println("onExit Action from Gate."+state.getName());
 }
 else if (state==OPENING){
 System.out.println("onExit Action from Gate."+state.getName());
 stopEngine();
 }
 else if (state==CLOSING){
 System.out.println("onExit Action from Gate."+state.getName());
 stopEngine();
 }
 else if (state==ACTIVATED){
 System.out.println("onExit Action from Gate."+state.getName());
 }
 else if (state==DEACTIVATED){
 System.out.println("onExit Action from Gate."+state.getName());
 }
 else if (state==INITIALACTIVATED){
 System.out.println("onExit Action from Gate."+state.getName());
 }
 }
}

TrailObserver.java

public class TrailObserver {
 public static final int MAX_PASSING_DURATION=30;
 public StateMachine trailObserver=null;
// State declaration
 public static final StateVertex DEACTIVATED= new SimpleState("DEACTIVATED");
 public static final StateVertex ACTIVATED= new CompositeState("ACTIVATED");
 public static final StateVertex INITIALACTIVATED= new PseudoState("INITIALACTIVATED", "INITIAL");
 public static final StateVertex IDLE= new CompositeState("IDLE", ACTIVATED);
 public static final StateVertex TRAINPASSING= new CompositeState("TRAINPASSING", ACTIVATED);
 public static final StateVertex FAULTY= new CompositeState("FAULTY", ACTIVATED);
 public StateVertex currentState= DEACTIVATED;
 public StateVertex historyState=null;

 // Event declaration

 public Event trainPassed=new Event("trainPassed");
 public Event trainApproaching=new Event("trainApproaching");
 public Event activate=new Event("activate");
 public Event deactivate=new Event("deactivate");
 public Event repaired=new Event("repaired");
 public Event timeout=new Event("timeout");

 // Transition Declaration

 public Transition t1= new Transition(DEACTIVATED, ACTIVATED, activate,null);
 public Transition t2= new Transition(ACTIVATED,DEACTIVATED,deactivate,null);
 public Transition t3= new Transition(ACTIVATED,INITIALACTIVATED,activate,null);
 public Transition t4= new Transition(INITIALACTIVATED,IDLE,activate,null);
 public Transition t5= new Transition(IDLE,TRAINPASSING,trainApproaching,null);
 public Transition t6= new Transition(TRAINPASSING,IDLE,trainPassed,null);
 public Transition t7= new Transition(TRAINPASSING,FAULTY,trainApproaching,null);
 public Transition t8= new Transition(TRAINPASSING,FAULTY,timeout,null);
 public Transition t9= new Transition(IDLE,FAULTY,trainPassed,null);
 public Transition t10= new Transition(FAULTY,DEACTIVATED,repaired,null);

 public TrailObserver(String name){
 trailObserver=new StateMachine(new State(name));

 // Assign substates
 ACTIVATED.addSubState(IDLE);
 ACTIVATED.addSubState(TRAINPASSING);
 ACTIVATED.addSubState(FAULTY);

 // Add transitions generated by Events

 52

 activate.addTransition(t1);
 deactivate.addTransition(t2);
 activate.addTransition(t3);
 activate.addTransition(t4);
 trainApproaching.addTransition(t5);
 trainPassed.addTransition(t6);
 trainApproaching.addTransition(t7);
 timeout.addTransition(t8);
 repaired.addTransition(t10);
 }

 public void executeEvent(Event e) throws ProtocolViolationException{
 Iterator it=e.transitions.iterator();
 while (it.hasNext()){
 Transition t= (Transition)it.next();
 if (t.source==currentState){
 doTransition(t);
 return;
 }
 }
 throw new ProtocolViolationException();
 }

 public void doTransition(Transition transition) throws ProtocolViolationException{

 onExit(transition.source);
 currentState=transition.target;
 onEntry(transition.target);
 }

 public void onEntry(StateVertex state) throws ProtocolViolationException{
 if (state==IDLE){
 System.out.println("onEntry Action from TrailObserver."+state.getName());
 boolean signalTrainPassed=false;
 boolean signalTrainApproaching=false;
 if (signalTrainPassed)
 doTransition(t9);
 else if (signalTrainApproaching)
 doTransition(t5);

 }
 else if (state==TRAINPASSING){
 System.out.println("onEntry Action from TrailObserver."+state.getName());
 double randomValue = 23+ (Math.random() * 10);
 boolean signalTrainApproaching=false;
 boolean signalTrainPassed=true;
 System.out.println(randomValue);
 if(signalTrainApproaching){
 doTransition(t7);
 return;
 }
 if (randomValue<MAX_PASSING_DURATION){
 doTransition(t6);
 return;
 }
 else if (signalTrainPassed)
 doTransition(t8);
 }
 else if (state==ACTIVATED){
 System.out.println("onEntry Action from TrailObserver."+state.getName());
 doTransition(t3);
 doTransition(t4);
 }
 else if (state==FAULTY){
 System.out.println("onEntry Action from TrailObserver."+state.getName());
 }
 else if (state==DEACTIVATED){
 System.out.println("onEntry Action from TrailObserver."+state.getName());
 }
 else if (state==INITIALACTIVATED){
 System.out.println("onEntry Action from TrailObserver."+state.getName());
 }

 }
 public void onExit(StateVertex state) throws ProtocolViolationException{

 53

 if (state==IDLE){
 System.out.println("onExit Action from TrailObserver."+state.getName());
 }
 else if (state==TRAINPASSING){
 System.out.println("onExit Action from TrailObserver."+state.getName());
 }
 else if (state==FAULTY){
 System.out.println("onExit Action from TrailObserver."+state.getName());
 }
 else if (state==ACTIVATED){
 System.out.println("onExit Action from TrailObserver."+state.getName());
 }
 else if (state==DEACTIVATED){
 System.out.println("onExit Action from TrailObserver."+state.getName());

 }
 }
}

Bahn.java

public class Bahn {
 StateMachine Bahn=null;
 public static final int CAR_STOP_DURATION=30;
 public TrafficLight trafficLight1=new TrafficLight("trafficLight1");
 public TrafficLight trafficLight2=new TrafficLight("trafficLight2");
 public Gate gate1=new Gate("Gate1");
 public Gate gate2=new Gate("Gate2");
 public TrailObserver trail1= new TrailObserver("TrailObserver1");
 public TrailObserver trail2= new TrailObserver("TrailObserver2");

 public static final StateVertex DEACTIVATED= new SimpleState("DEACTIVATED");
 public static final StateVertex ACTIVATED= new CompositeState("ACTIVATED");
 public static final StateVertex INITIALACTIVATED= new PseudoState("INITIALACTIVATED", "INITIAL");
 public static final StateVertex IDLE= new CompositeState("IDLE", ACTIVATED);
 public static final StateVertex CLOSEDFORCARS= new CompositeState("CLOSEDFORCARS", ACTIVATED);
 public static final StateVertex PREPARINGTOCLOSE= new CompositeState("PREPARINGTOCLOSE", ACTIVATED);
 public StateVertex currentState= DEACTIVATED;
 public StateVertex historyState=null;

 public Event activate=new Event("activate");
 public Event deactivate=new Event("deactivate");
 public Event change=new Event("change"); // Generated to follow the metamodel
 public Event faulty=new Event("faulty");

 public Transition t1= new Transition(DEACTIVATED, ACTIVATED, activate,null);
 public Transition t2= new Transition(ACTIVATED,DEACTIVATED,deactivate,null);
 public Transition t3= new Transition(ACTIVATED,INITIALACTIVATED,activate,null);
 public Transition t4= new Transition(INITIALACTIVATED,IDLE,activate,null);
 public Transition t5= new Transition(IDLE,PREPARINGTOCLOSE,change,null);
 public Transition t6= new Transition(PREPARINGTOCLOSE,CLOSEDFORCARS,change,null);
 public Transition t7= new Transition(CLOSEDFORCARS,IDLE,change,null);
 public Transition t8= new Transition(ACTIVATED,DEACTIVATED,faulty,null);
 public Transition t9= new Transition(CLOSEDFORCARS,DEACTIVATED,faulty,null);

 public Bahn(String name) throws ProtocolViolationException{
 Bahn= new StateMachine(new State(name));

 ACTIVATED.addSubState(IDLE);
 ACTIVATED.addSubState(CLOSEDFORCARS);
 ACTIVATED.addSubState(PREPARINGTOCLOSE);

 activate.addTransition(t1);
 deactivate.addTransition(t2);
 activate.addTransition(t3);
 activate.addTransition(t4);
 change.addTransition(t5);
 change.addTransition(t6);
 change.addTransition(t7);
 faulty.addTransition(t8);
 faulty.addTransition(t9);
 }
 public void executeEvent(Event e) throws ProtocolViolationException, InterruptedException{
 Iterator it=e.transitions.iterator();

 54

 while (it.hasNext()){
 Transition t= (Transition)it.next();
 if (t.source==currentState){
 doTransition(t);
 return;
 }
 }
 throw new ProtocolViolationException();
 }

 public void doTransition(Transition transition) throws ProtocolViolationException, InterruptedException{

 onExit(transition.source);
 currentState=transition.target;
 onEntry(transition.target);
 }

 public void onEntry(StateVertex state) throws ProtocolViolationException, InterruptedException{
 if (state==IDLE){
 System.out.println("onEntry Action from "+state.getName());
 while(trail1.currentState!=trail1.TRAINPASSING && trail2.currentState!=trail2.TRAINPASSING){
 Thread.sleep(1000);
 double randomValue = 3+ (Math.random() * 10);
 System.out.println(randomValue);
 if(checkFaulty())
 doTransition(t2);
 if (randomValue>7)
 trail1.executeEvent(trail1.trainApproaching);
 else
 trail2.executeEvent(trail2.trainApproaching);
 }
 if(checkFaulty())
 doTransition(t2);
 doTransition(t5);
 }
 else if (state==PREPARINGTOCLOSE){
 System.out.println("onEntry Action from "+state.getName());
 Thread.sleep(1000);
 if (gate1.currentState==gate1.OPENED)
 gate1.executeEvent(gate1.close);
 if (gate2.currentState==gate2.OPENED)
 gate2.executeEvent(gate2.close);
 if(checkFaulty()){
 doTransition(t2);
 }
 doTransition(t6);;
 }
 else if (state==ACTIVATED){
 System.out.println("onEntry Action from "+state.getName());
 if (trail1.currentState==trail1.FAULTY)
 trail1.executeEvent(trail1.repaired);
 if (trail2.currentState==trail2.FAULTY)
 trail2.executeEvent(trail2.repaired);
 if (gate1.currentState==gate1.FAULTY)
 gate1.executeEvent(gate1.repaired);
 if (trafficLight1.currentState==trafficLight1.DEACTIVATED)
 trafficLight1.executeEvent(trafficLight1.activate);
 if (trafficLight2.currentState==trafficLight2.DEACTIVATED)
 trafficLight2.executeEvent(trafficLight2.activate);
 if (trail1.currentState==trail1.DEACTIVATED)
 trail1.executeEvent(trail1.activate);
 if (trail2.currentState==trail2.DEACTIVATED)
 trail2.executeEvent(trail2.activate);
 if (gate1.currentState==gate1.DEACTIVATED)
 gate1.executeEvent(gate1.activate);
 if (gate2.currentState==gate2.DEACTIVATED)
 gate2.executeEvent(gate2.activate);
 if(checkFaulty()){
 doTransition(t2);
 }
 doTransition(t3);
 doTransition(t4);
 }
 else if (state==CLOSEDFORCARS){
 System.out.println("onEntry Action from "+state.getName());

 if (gate1.currentState==gate1.CLOSED)

 55

 // ensure that both gates are closed
 gate1.executeEvent(gate1.open);
 if (gate2.currentState==gate2.CLOSED)
 gate2.executeEvent(gate2.open);
 if(checkFaulty()){
 doTransition(t2);
 }
 while(gate1.currentState!=gate1.OPENED && gate2.currentState!=gate2.OPENED){

 // if one door is faulty, then move to deactivated
 if(gate1.currentState==gate1.FAULTY || gate2.currentState==gate2.FAULTY){
 doTransition(t9);
 }
 Thread.sleep(1000);
 }
 if (trafficLight1.currentState==trafficLight1.ON)
 trafficLight1.executeEvent(trafficLight1.switchOff);
 if (trafficLight2.currentState==trafficLight2.ON)
 trafficLight2.executeEvent(trafficLight2.switchOff);
 doTransition(t7);
 //return;
 }
 else if (state==DEACTIVATED){
 System.out.println("onEntry Action from "+state.getName());
 if (trail1.currentState==trail1.FAULTY)
 trail1.executeEvent(trail1.repaired);
 if (trail2.currentState==trail2.FAULTY)
 trail2.executeEvent(trail2.repaired);
 if (gate1.currentState==gate1.FAULTY)
 gate1.executeEvent(gate1.repaired);
 if (gate2.currentState==gate2.FAULTY)
 gate2.executeEvent(gate2.repaired);
 if (gate1.currentState==gate1.OPENED)
 gate1.executeEvent(gate1.close);
 if (gate2.currentState==gate2.OPENED)
 gate2.executeEvent(gate2.close);
 if(trafficLight1.currentState==trafficLight1.ON)
 trafficLight1.executeEvent(trafficLight1.switchOff);
 if(trafficLight2.currentState==trafficLight2.ON)
 trafficLight2.executeEvent(trafficLight2.switchOff);
 if(checkFaulty()){
 doTransition(t2);

 }
 doTransition(t1);
 }
 else if (state==INITIALACTIVATED){
 System.out.println("onEntry Action from "+state.getName());
 }

 }
 public boolean checkFaulty(){
 if (trail1.currentState==trail1.FAULTY || trail2.currentState==trail2.FAULTY ||
 gate1.currentState==gate1.FAULTY || gate2.currentState==gate2.FAULTY)
 return true;
 return false;
 }

 public void onExit(StateVertex state){

 if (state==IDLE){
 System.out.println("onExit Action from "+state.getName());
 }
 else if (state==PREPARINGTOCLOSE){
 System.out.println("onExit Action from "+state.getName());
 }
 else if (state==CLOSEDFORCARS){
 System.out.println("onExit Action from "+state.getName());
 }
 else if (state==ACTIVATED){
 System.out.println("onExit Action from "+state.getName());
 }
 else if (state==DEACTIVATED){
 System.out.println("onExit Action from "+state.getName());
 }
 }

 56

 public static void main(String [] args)throws ProtocolViolationException, InterruptedException {
 try {
 System.out.println("Begin test1() <<<<<<<<");
 Bahn o= new Bahn("Bahn Übergang");
 o.executeEvent(o.activate);
 o.executeEvent(o.deactivate);
 o.executeEvent(o.activate);
 o.executeEvent(o.change);
 //o.executeEvent(o.deactivate);
 System.out.println("End test1() >>>>>>>>");
 } catch (ProtocolViolationException e) {
 e.printStackTrace();
 }
 }
}

Elevator example code :

Door.java

public class Door {
 public static final int MAX_CLOSING_DURATION=10;
 public static final int MAX_OPENING_DURATION=10;

 // State declaration
 StateMachine door= null;
 public static final StateVertex DEACTIVATED= new SimpleState("DEACTIVATED");
 public static final StateVertex ACTIVATED= new CompositeState("ACTIVATED");
 public static final StateVertex INITIALACTIVATED= new PseudoState("INITIALACTIVATED", "INITIAL");
 public static final StateVertex OPENED= new CompositeState("OPENED",ACTIVATED);
 public static final StateVertex CLOSED= new CompositeState("CLOSED",ACTIVATED);
 public static final StateVertex OPENING= new CompositeState("OPENING",ACTIVATED);
 public static final StateVertex CLOSING= new CompositeState("CLOSING",ACTIVATED);
 public static final StateVertex FAULTY= new CompositeState("FAULTY",ACTIVATED);
 public StateVertex currentState= DEACTIVATED;
 public StateVertex historyState=null;

// Event declaration
 public Event gateOpened= new Event("gateOpened");
 public Event gateClosed= new Event("gateClosed");
 public Event open= new Event("open");
 public Event close= new Event("close");
 public Event repaired= new Event("repaired");
 public Event activate= new Event("activate");
 public Event deactivate= new Event("deactivate");
 public Event timeout= new Event("timeout");
 public Event personDetected= new Event ("personDetected");

 // Transition declaration

 public Transition t1= new Transition(DEACTIVATED,ACTIVATED,activate,null);
 public Transition t2= new Transition(ACTIVATED,DEACTIVATED,deactivate,null);
 public Transition t3= new Transition(ACTIVATED,INITIALACTIVATED,activate,null);
 public Transition t4= new Transition(INITIALACTIVATED,CLOSED,activate,null);
 public Transition t5= new Transition(OPENED,CLOSING,close,null);
 public Transition t6= new Transition(CLOSING,CLOSED,gateClosed,null);
 public Transition t7= new Transition(CLOSING,FAULTY,timeout,null); // Transition generated
 public Transition t8= new Transition(CLOSED,OPENING,open,null);
 public Transition t9= new Transition(OPENING,OPENED,gateOpened,null);
 public Transition t10= new Transition(OPENING,FAULTY,timeout,null);
 public Transition t11= new Transition(FAULTY,DEACTIVATED,repaired,null);
 public Transition t12= new Transition(CLOSING,OPENING,personDetected,null);

 // Contructor
 public Door(String name){
 door=new StateMachine(new State(name));
 }

 public void executeEvent(Event e) throws ProtocolViolationException{
 Iterator it=e.transitions.iterator();
 while (it.hasNext()){
 Transition t= (Transition)it.next();
 if (t.source==currentState){

 57

 doTransition(t);
 return;
 }
 }
 throw new ProtocolViolationException();
 }

 public boolean executeGuard(Transition t){
 return true;
 }

 public void doTransition(Transition transition) throws ProtocolViolationException{
 onExit(transition.source); //executes onExit action for source State in transition
 currentState=transition.target;
 onEntry(transition.target); //executes onEntry action for target State in transition
 }

 public void onEntry(StateVertex state) throws ProtocolViolationException{
 if (state==OPENED){
 System.out.println("onEntry Action from Door."+state.getName());
 }
 else if (state==CLOSED){
 System.out.println("onEntry Action from Door."+state.getName());
 }
 else if (state==ACTIVATED){
 System.out.println("onEntry Action from Door."+state.getName());
 doTransition(t3);
 doTransition(t4);
 }
 else if (state==OPENING){
 System.out.println("onEntry Action from Door."+state.getName());
 double randomValue = 3+ (Math.random() * 10);
 System.out.println(randomValue);
 if (randomValue<MAX_OPENING_DURATION){
 doTransition(t9);
 return;
 }
 else{
 doTransition(t10);
 return;
 }
 }
 else if (state==CLOSING){
 System.out.println("onEntry Action from Door."+state.getName());
 double randomValue = 3+ (Math.random() * 10);
 System.out.println(randomValue);
 if (randomValue>=MAX_CLOSING_DURATION){
 doTransition(t7);
 return;
 }
 else if (randomValue<MAX_CLOSING_DURATION && randomValue >5){
 doTransition(t6);
 return;
 }
 else // Person detected
 doTransition(t12);
 return;

 }
 else if (state==FAULTY){
 System.out.println("onEntry Action from Door."+state.getName());
 }
 else if (state==DEACTIVATED){
 System.out.println("onEntry Action from Door."+state.getName());
 }
 else if (state==INITIALACTIVATED){
 System.out.println("onEntry Action from Door."+state.getName());
 }

 }

 public void onExit(StateVertex state){

 if (state==OPENED){
 System.out.println("onExit Action from Gate."+state.getName());
 }
 else if (state==CLOSED){

 58

 System.out.println("onExit Action from Gate."+state.getName());
 }
 else if (state==FAULTY){
 System.out.println("onExit Action from Gate."+state.getName());
 }
 else if (state==OPENING){
 System.out.println("onExit Action from Gate."+state.getName());
 }
 else if (state==CLOSING){
 System.out.println("onExit Action from Gate."+state.getName());
 }
 else if (state==ACTIVATED){
 System.out.println("onExit Action from Gate."+state.getName());
 }
 else if (state==DEACTIVATED){
 System.out.println("onExit Action from Gate."+state.getName());
 }
 else if (state==INITIALACTIVATED){
 System.out.println("onExit Action from Gate."+state.getName());
 }
 }
}

Button.java

public class Button {

 public StateMachine button= null;
 public static final StateVertex PRESSED= new SimpleState("PRESSED");
 public static final StateVertex NOTPRESSED= new SimpleState("NOTPRESSED");
 public static final StateVertex INITIAL= new PseudoState("INITIAL", "INITIAL");
 public StateVertex currentState= NOTPRESSED;
 public StateVertex historyState=null;
 // Event Declaration
 public Event pressButton=new Event("pressButton");
 public Event resetButton=new Event("resetButton");
 public Event initial=new Event("initial");
 // Transition Declaration
 public Transition t1 = new Transition(NOTPRESSED,PRESSED,pressButton,null);
 public Transition t2 = new Transition(PRESSED,NOTPRESSED,resetButton,null);
 public Transition t3 = new Transition(INITIAL,NOTPRESSED,initial,null);

 public Button(String name){
 button= new StateMachine(new State(name));
 }
 public void executeEvent(Event e) throws ProtocolViolationException{
 Iterator it=e.transitions.iterator();
 while (it.hasNext()){
 Transition t= (Transition)it.next();
 if (t.source==currentState){
 doTransition(t);
 return;
 }
 }
 throw new ProtocolViolationException();
 }
 public void doTransition(Transition transition) throws ProtocolViolationException{

 onExit(transition.source);
 currentState=transition.target;
 onEntry(transition.target);
 }

 public void onEntry(StateVertex state) throws ProtocolViolationException{
 if (state==PRESSED){
 System.out.println("onEntry Action from Button."+state.getName());
 }
 else if (state==NOTPRESSED){
 System.out.println("onEntry Action from Button."+state.getName());
 }
 }
 public void onExit(StateVertex state) throws ProtocolViolationException{
 if (state==PRESSED){
 System.out.println("onExit Action from Button."+state.getName());
 }

 59

 else if (state==NOTPRESSED){
 System.out.println("onExit Action from Button."+state.getName());
 }
 }
}

Elevator.java

public class Elevator {
 public Door door=new Door("Door");
 public Button[] buttons= new Button[10];
 // State declaration
 public StateMachine elevator= null;
 public static final StateVertex DEACTIVATED= new SimpleState("DEACTIVATED");
 public static final StateVertex ACTIVATED= new CompositeState("ACTIVATED");
 public static final StateVertex MOVINGUP= new CompositeState("MOVINGUP", ACTIVATED);
 public static final StateVertex MOVINGDOWN= new CompositeState("MOVINGDOWN", ACTIVATED);
 public static final StateVertex INITIALACTIVATED= new PseudoState("INITIALACTIVATED", "INITIAL");
 public static final StateVertex MOVING= new PseudoState("MOVING", "CHOICE");
 public static final StateVertex IDLE= new CompositeState("IDLE",ACTIVATED);
 public StateVertex currentState= DEACTIVATED;
 public StateVertex historyState=MOVINGUP; //Starts on floor 0
 public int currentFloor=0;
 public int nextFloor=0;

 // Events declaration
 public Event activate=new Event("activate");
 public Event deactivate=new Event("deactivate");
 public Event faulty=new Event("faulty");
 public Event floorReached=new Event("floorReached");
 public Event pressButton= new Event("pressButton");

 // Guards declaration
 public Guard movingUpGuard= null;
 public Guard movingDownGuard= null;
 public Guard buttonPressedGuard= null;

 // Transitions declaration
 public Transition t1= new Transition(DEACTIVATED, ACTIVATED, activate);
 public Transition t2= new Transition(ACTIVATED,DEACTIVATED,deactivate);
 public Transition t3= new Transition(ACTIVATED,INITIALACTIVATED,activate);
 public Transition t4= new Transition(INITIALACTIVATED,IDLE,activate);
 public Transition t7= new Transition(MOVINGUP,IDLE,floorReached);
 public Transition t8= new Transition(MOVINGDOWN,IDLE,floorReached);
 public Transition t9=new Transition(IDLE,MOVING,pressButton,buttonPressedGuard);
 public Transition t10=new Transition(MOVING,MOVINGUP,pressButton,movingUpGuard);
 public Transition t11=new Transition(MOVING,MOVINGDOWN,pressButton,movingDownGuard);

 public Elevator(String name){
 elevator= new StateMachine(new State(name));
 // initialize Guards on transitions
 buttonPressedGuard=new Guard(t9);
 movingUpGuard= new Guard (t10);
 movingDownGuard= new Guard (t11);
 // Assign buttons for each floor
 for (int i=0;i<10;i++){
 buttons[i]=new Button("Button"+i);
 }
 }

 public void executeEvent(Event e) throws ProtocolViolationException, InterruptedException{
 Iterator it=e.transitions.iterator();
 while (it.hasNext()){
 Transition t= (Transition)it.next();
 if (t.source==currentState){
 doTransition(t);
 return;
 }
 }
 throw new ProtocolViolationException();
 }

 public boolean executeGuard(Guard guard){

 60

 boolean result=false;
 if (guard==movingUpGuard){
 if (door.currentState==door.CLOSED&&nextFloor>currentFloor)
 result=true;
 else
 result=false;
 }
 else if (guard==movingDownGuard){
 if (door.currentState==door.CLOSED&&nextFloor<currentFloor)
 result=true;
 else
 result=false;
 }
 else if (guard==buttonPressedGuard){
 if (currentFloor!=getNextFloorUp()||currentFloor!=getNextFloorDown())
 result=true;
 else
 result=false;
 }
 return result;
 }

 public void doTransition(Transition transition) throws ProtocolViolationException, InterruptedException{
 if (executeGuard(transition.guard)||transition.guard==null){
 onExit(transition.source);
 currentState=transition.target;
 onEntry(transition.target);
 }
 else
 System.out.println("Transition not executed, Guard=false");
 }
 public int getNextFloorUp(){
 for (int i =currentFloor;i<=9;i++){
 if (buttons[i].currentState==Button.PRESSED)
 return i;
 }return currentFloor;
 }
 public int getNextFloorDown(){
 for (int i =currentFloor;i>=0;i--){
 if (buttons[i].currentState==Button.PRESSED)
 return i;
 }return currentFloor;
 }

 public void onEntry(StateVertex state) throws ProtocolViolationException, InterruptedException{
 if (state==IDLE){
 System.out.println("onEntry Action from Elevator."+state.getName());
 Thread.sleep(1000);
 if((historyState==MOVINGUP&&getNextFloorUp()>currentFloor)||(historyState==MOVINGDOWN&&
 getNextFloorUp()>currentFloor&&getNextFloorDown()==currentFloor)){
 nextFloor=getNextFloorUp();
 historyState=MOVINGUP;
 doTransition(t9);
 return;
 }
 else
if((historyState==MOVINGDOWN&&getNextFloorDown()<currentFloor)||(historyState==MOVINGUP&&
 getNextFloorDown()<currentFloor&&getNextFloorUp()==currentFloor)){
 nextFloor=getNextFloorDown();
 historyState=MOVINGDOWN;
 doTransition(t9);
 return;
 }
 else
 System.out.println("No Button Pressed");
 }
 else if (state==ACTIVATED){
 System.out.println("onEntry Action from Elevator."+state.getName());
 doTransition(t3);
 doTransition(t4);
 }
 else if (state==MOVING){
 System.out.println("onEntry Action from Elevator."+state.getName());
 Thread.sleep(1000);
 if (historyState==MOVINGUP){
 System.out.println("Current Floor = "+currentFloor);
 System.out.println("Next Floor Up= "+nextFloor);

 61

 doTransition(t10);
 return;
 }
 else if (historyState==MOVINGDOWN){
 System.out.println("Current Floor = "+currentFloor);
 System.out.println("Next Floor Down= "+nextFloor);
 doTransition(t11);
 return;
 }
 }
 else if (state==MOVINGUP){
 System.out.println("onEntry Action from Elevator."+state.getName());
 Thread.sleep(1000);
 currentFloor=nextFloor;
 executeEvent(floorReached);
 }
 else if (state==MOVINGDOWN){
 System.out.println("onEntry Action from Elevator."+state.getName());
 Thread.sleep(1000);
 currentFloor=nextFloor;
 executeEvent(floorReached);

 }
 else if (state==DEACTIVATED){
 System.out.println("onEntry Action from Elevator."+state.getName());
 }
 }
 public void onExit(StateVertex state) throws ProtocolViolationException, InterruptedException{
 if (state==IDLE){
 System.out.println("onExit Action from Elevator."+state.getName());
 if((historyState==MOVINGUP&&getNextFloorUp()>currentFloor)||(historyState==MOVINGDOWN&&
 getNextFloorUp()>currentFloor&&getNextFloorDown()==currentFloor)){
 nextFloor=getNextFloorUp();
 historyState=MOVINGUP;
 if (door.currentState==door.CLOSED){
 door.executeEvent(door.open);
 System.out.println("Opening door...");
 }
 Thread.sleep(500);
 if (door.currentState==door.OPENED){
 door.executeEvent(door.close);
 System.out.println("Closing door...");
 }
 }
 else if((historyState==MOVINGDOWN&&getNextFloorDown()<currentFloor)||(historyState==MOVINGUP&&
 getNextFloorDown()<currentFloor&&getNextFloorUp()==currentFloor)){
 nextFloor=getNextFloorDown();
 historyState=MOVINGDOWN;
 if (door.currentState==door.CLOSED){
 door.executeEvent(door.open);
 System.out.println("Opening door...");
 }
 Thread.sleep(500);
 if (door.currentState==door.OPENED){
 door.executeEvent(door.close);
 System.out.println("Closing door...");
 }
 }

 }
 else if (state==ACTIVATED){
 System.out.println("onExit Action from Elevator."+state.getName());
 }
 else if (state==MOVINGUP){
 System.out.println("onExit Action from Elevator."+state.getName());
 if (buttons[currentFloor].currentState==buttons[currentFloor].PRESSED){
 buttons[currentFloor].executeEvent(buttons[currentFloor].resetButton);
 System.out.println("Button "+currentFloor+" reseted");
 }
 }
 else if (state==MOVINGDOWN){
 System.out.println("onExit Action from Elevator."+state.getName());
 if (buttons[currentFloor].currentState==buttons[currentFloor].PRESSED){
 buttons[currentFloor].executeEvent(buttons[currentFloor].resetButton);
 System.out.println("Button "+currentFloor+" reseted");
 }
 }

 62

 else if (state==MOVING){
 System.out.println("onExit Action from Elevator."+state.getName());
 }
 else if (state==DEACTIVATED){
 System.out.println("onExit Action from Elevator."+state.getName());
 }
 }
 public static void main (String[] args)throws ProtocolViolationException, InterruptedException{
 Elevator e=new Elevator("Elevator");
 e.door.executeEvent(e.door.activate);
 e.executeEvent(e.activate);
 e.buttons[5].executeEvent(e.buttons[5].pressButton);
 e.buttons[8].executeEvent(e.buttons[8].pressButton);
 e.executeEvent(e.pressButton);
 e.buttons[2].executeEvent(e.buttons[2].pressButton);
 e.executeEvent(e.pressButton);
 e.executeEvent(e.pressButton);
 }
}

Files used to generate metamodel and Elevator example with Octopus:

model.uml

<package> test

<class> ProtocolViolationException
<endclass>

<class> StateMachine
<endclass>

<class> StateVertex
 <attributes>
 + name: String;
 + transitions: Set(Transition);
 <operations>
 + addParent(s: StateVertex);
 + addSubState(s: StateVertex);
 + getSubStates(): Set(StateVertex);
<endclass>

<class> Transition
<endclass>

<class> Event
 <attributes>
 + name: String;
<endclass>

<class> Guard
<endclass>

<class> State <specializes> StateVertex
<endclass>

<class> PseudoState <specializes> StateVertex
 <attributes>
 + kind: String;
<endclass>

<class> SimpleState <specializes> State
<endclass>

<class> CompositeState <specializes> State
<endclass>

<associations>
 + StateMachine.statemachine[0..1] <-> State.top[1];
 + Transition.<noName>[0..*] -> + StateVertex.source[1];
 + Transition.<noName>[0..*] -> + StateVertex.target[1];
 + Transition.transition[1] <-> + Guard.guard[0..1];
 + Transition.transitions[0..*] <-> + Event.trigger[0..1];

 63

 + State.<noName>[0..*] -> + Transition.internalTransition[1];
 + State.states[0..*] <-> + Event.defferedEvent[0..*];
 + StateVertex.substates[0..*] <-> CompositeState.parent[1];
<endpackage>

Elevator.uml

<package> test

<class> Door
 <attributes>
 + MAX_CLOSING_DURATION: Integer;
 + MAX_OPENING_DURATION: Integer;
 + statemachine: StateMachine;
 + DEACTIVATED: StateVertex;
 + ACTIVATED: StateVertex;
 + INITIALACTIVATED: StateVertex;
 + OPENED: StateVertex;
 + CLOSED: StateVertex;
 + OPENING: StateVertex;
 + CLOSING: StateVertex;
 + FAULTY: StateVertex;
 + currentState: StateVertex;
 + gateOpened: Event;
 + gateClosed: Event;
 + open: Event;
 + close: Event;
 + repaired: Event;
 + activate: Event;
 + deactivate: Event;
 + timeout: Event;
 + personDetected: Event;
 + t1: Transition;
 + t2: Transition;
 + t3: Transition;
 + t4: Transition;
 + t5: Transition;
 + t6: Transition;
 + t7: Transition;
 + t8: Transition;
 + t9: Transition;
 + t10: Transition;
 + t11: Transition;
 + t12: Transition;
 <operations>
 + executeEvent(e: Event);
 + executeGuard(g: Guard): Boolean;
 + doTransition(t: Transition);
 + onEntry(state: StateVertex);
 + onExit(state: StateVertex);
<endclass>

<class> Button
 <attributes>
 + statemachine: StateMachine;
 + PRESSED: StateVertex;
 + NOTPRESSED: StateVertex;
 + INITIAL: StateVertex;
 + currentState: StateVertex;
 + pressButton: Event;
 + resetButton: Event;
 + initial: Event;
 + t1: Transition;
 + t2: Transition;
 + t3: Transition;
 <operations>
 + executeEvent(e: Event);
 + executeGuard(g: Guard): Boolean;
 + doTransition(t: Transition);
 + onEntry(state: StateVertex);
 + onExit(state: StateVertex);
<endclass>

<class> Elevator
 <attributes>

 64

 + statemachine: StateMachine;
 + door: Door;
 + DEACTIVATED: StateVertex;
 + ACTIVATED: StateVertex;
 + INITIALACTIVATED: StateVertex;
 + MOVINGUP: StateVertex;
 + MOVINGDOWN: StateVertex;
 + MOVING: StateVertex;
 + IDLE: StateVertex;
 + historyState: StateVertex;
 + currentState: StateVertex;
 + currentFloor: Integer;
 + nextFloor: Integer;
 + activate: Event;
 + deactivate: Event;
 + faulty: Event;
 + floorReached: Event;
 + pressButton: Event;
 + movingUpGuard: Guard;
 + movingDownGuard: Guard;
 + buttonPressedGuard: Guard;
 + t1: Transition;
 + t2: Transition;
 + t3: Transition;
 + t4: Transition;
 + t5: Transition;
 + t6: Transition;
 + t7: Transition;
 + t8: Transition;
 + t9: Transition;
 + t10: Transition;
 + t11: Transition;
 <operations>
 + getUpNextFloor(): Integer;
 + getDownNextFloor(): Integer;
 + executeEvent(e: Event);
 + executeGuard(g: Guard): Boolean;
 + doTransition(t: Transition);
 + onEntry(state: StateVertex);
 + onExit(state: StateVertex);
<endclass>

<endpackage>

Elevator.ocl

package test

context Elevator:: currentState: StateVertex
 init: DEACTIVATED

context Elevator:: historyState: StateVertex
 init: MOVINGUP

context Elevator:: currentFloor: Integer
 init: 0

context Elevator:: nextFloor: Integer
 init: 0

context Door:: currentState: StateVertex
 init: DEACTIVATED

context Door:: MAX_CLOSING_DURATION: Integer
 init: 10

context Door:: MAX_OPENING_DURATION: Integer
 init: 10

endpackage

Adapted Elevator class generated with Octopus:

 65

Elevator.java (partially)

public class Elevator {
 private StateMachine f_statemachine = null;
 public Button[] buttons= new Button[10];
 public Door door=new Door("Door");
 private StateVertex f_dEACTIVATED = new SimpleState("DEACTIVATED");
 private StateVertex f_aCTIVATED = new CompositeState("ACTIVATED");
 private StateVertex f_iNITIALACTIVATED = new PseudoState("INITIALACTIVATED", "INITIAL");
 private StateVertex f_mOVINGUP = new CompositeState("MOVINGUP", f_aCTIVATED);
 private StateVertex f_mOVINGDOWN = new CompositeState("MOVINGDOWN", f_aCTIVATED);
 private StateVertex f_mOVING = new PseudoState("MOVING", "CHOICE");
 private StateVertex f_iDLE = new CompositeState("IDLE",f_aCTIVATED);
 private StateVertex f_historyState = null;
 private StateVertex f_currentState = f_dEACTIVATED;
 private int f_currentFloor = 0;
 private int f_nextFloor = 0;
 private Event f_activate = new Event("activate");
 private Event f_deactivate = new Event("deactivate");
 private Event f_faulty = new Event("faulty");
 private Event f_floorReached = new Event("floorReached");
 private Event f_pressButton = new Event("pressButton");
 private Guard f_movingUpGuard = null;
 private Guard f_movingDownGuard = null;
 private Guard f_buttonPressedGuard = null;
 private Transition f_t1 = new Transition(f_dEACTIVATED, f_aCTIVATED, f_activate);
 private Transition f_t2 = new Transition(f_aCTIVATED,f_dEACTIVATED,f_deactivate);
 private Transition f_t3 = new Transition(f_aCTIVATED,f_iNITIALACTIVATED,f_activate);
 private Transition f_t4 = new Transition(f_iNITIALACTIVATED,f_iDLE,f_activate);
 private Transition f_t7 = new Transition(f_mOVINGUP,f_iDLE,f_floorReached);
 private Transition f_t8 = new Transition(f_mOVINGDOWN,f_iDLE,f_floorReached);
 private Transition f_t9 = new Transition(f_iDLE,f_mOVING,f_pressButton,f_buttonPressedGuard);
 private Transition f_t10 =new Transition(f_mOVING,f_mOVINGUP,f_pressButton,f_movingUpGuard);
 private Transition f_t11 =new Transition(f_mOVING,f_mOVINGDOWN,f_pressButton,f_movingDownGuard);
 static private boolean usesAllInstances = false;
 static private List allInstances = new ArrayList();

 /** Constructor for Elevator
 *
 * @param currentFloor
 * @param nextFloor
 */
 public Elevator(int currentFloor, int nextFloor) {
 super();
 this.setCurrentFloor(currentFloor);
 this.setNextFloor(nextFloor);
 this.setHistoryState(this.getMOVINGUP());
 this.setCurrentState(this.getDEACTIVATED());
 this.setCurrentFloor(0);
 this.setNextFloor(0);
 if (usesAllInstances) {
 allInstances.add(this);
 }
 }

 /** Default constructor for Elevator
 */
 public Elevator(String name) {
 f_statemachine=new StateMachine(new State(name));
 f_buttonPressedGuard=new Guard(f_t9);
 f_movingUpGuard= new Guard (f_t10);
 f_movingDownGuard= new Guard (f_t11);
 this.setHistoryState(this.getMOVINGUP());
 this.setCurrentState(this.getDEACTIVATED());
 this.setCurrentFloor(0);
 this.setNextFloor(0);

 for (int i=0;i<10;i++){
 buttons[i]=new Button("Button"+i);
 }
 if (usesAllInstances) {
 allInstances.add(this);
 }
 }

 /** Implements the user defined operation '+ executeEvent(e: Event)'

 66

 *
 * @param e
 */
 public void executeEvent(Event e) throws ProtocolViolationException, InterruptedException{
 Iterator it=e.getTransitions().iterator();
 while (it.hasNext()){
 Transition t= (Transition)it.next();
 if (t.getSource()==f_currentState){
 doTransition(t);
 return;
 }
 }
 throw new ProtocolViolationException();
 }

 /** Implements the user defined operation '+ executeGuard(g: Guard) : Boolean'
 *
 * @param g
 */
 public boolean executeGuard(Guard g){
 boolean result=false;
 if (g==f_movingUpGuard){
 if (door.getCurrentState()==door.getCLOSED()&&f_nextFloor>f_currentFloor)
 result=true;
 else
 result=false;
 }
 else if (g==f_movingDownGuard){
 if (door.getCurrentState()==door.getCLOSED()&&f_nextFloor<f_currentFloor)
 result=true;
 else
 result=false;
 }
 else if (g==f_buttonPressedGuard){
 if (f_currentFloor!=getNextFloorUp()||f_currentFloor!=getNextFloorDown())
 result=true;
 else
 result=false;
 }
 return result;
 }

 /** Implements the user defined operation '+ doTransition(t: Transition)'
 *
 * @param t
 */
 public void doTransition(Transition transition) throws ProtocolViolationException, InterruptedException{
 if (executeGuard(transition.getGuard())||transition.getGuard()==null){
 onExit(transition.getSource()); //executes onExit action for source State in transition
 f_currentState=transition.getTarget();
 onEntry(transition.getTarget()); //executes onEntry action for target State in transition
 }
 else
 System.out.println("Transition not executed, Guard=false");
 }
 public int getNextFloorUp(){
 for (int i =f_currentFloor;i<=9;i++){
 if (buttons[i].getCurrentState()==buttons[i].getPRESSED())
 return i;

 }return f_currentFloor;
 }
 public int getNextFloorDown(){
 for (int i =f_currentFloor;i>=0;i--){
 if (buttons[i].getCurrentState()==buttons[i].getPRESSED())
 return i;

 }return f_currentFloor;
 }
 /** Implements the user defined operation '+ onEntry(state: StateVertex)'
 *
 * @param state
 */
 public void onEntry(StateVertex state) throws ProtocolViolationException, InterruptedException{
 if (state==f_iDLE){
 System.out.println("onEntry Action from Elevator."+state.getName());
 Thread.sleep(1000);

 67

 if((f_historyState==f_mOVINGUP&&getNextFloorUp()>f_currentFloor)||(f_historyState==f_mOVINGDOWN&&
 getNextFloorUp()>f_currentFloor&&getNextFloorDown()==f_currentFloor)){
 f_nextFloor=getNextFloorUp();
 f_historyState=f_mOVINGUP;
 doTransition(f_t9);
 return;
 }
 else
if((f_historyState==f_mOVINGDOWN&&getNextFloorDown()<f_currentFloor)||(f_historyState==f_mOVINGUP&&
 getNextFloorDown()<f_currentFloor&&getNextFloorUp()==f_currentFloor)){
 f_nextFloor=getNextFloorDown();
 f_historyState=f_mOVINGDOWN;
 doTransition(f_t9);
 return;
 }
 else
 System.out.println("No Button Pressed");
 }
 else if (state==f_aCTIVATED){
 System.out.println("onEntry Action from Elevator."+state.getName());
 doTransition(f_t3);
 doTransition(f_t4);
 }
 else if (state==f_mOVING){
 System.out.println("onEntry Action from Elevator."+state.getName());
 Thread.sleep(1000);
 if (f_historyState==f_mOVINGUP){
 System.out.println("Current Floor = "+f_currentFloor);
 System.out.println("Next Floor Up= "+f_nextFloor);
 doTransition(f_t10);
 return;
 }
 else if (f_historyState==f_mOVINGDOWN){
 System.out.println("Current Floor = "+f_currentFloor);
 System.out.println("Next Floor Down= "+f_nextFloor);
 doTransition(f_t11);
 return;
 }
 }
 else if (state==f_mOVINGUP){
 System.out.println("onEntry Action from Elevator."+state.getName());
 Thread.sleep(1000);
 f_currentFloor=f_nextFloor;
 executeEvent(f_floorReached);
 }
 else if (state==f_mOVINGDOWN){
 System.out.println("onEntry Action from Elevator."+state.getName());
 Thread.sleep(1000);
 f_currentFloor=f_nextFloor;
 executeEvent(f_floorReached);

 }
 else if (state==f_dEACTIVATED){
 System.out.println("onEntry Action from Elevator."+state.getName());
 }

 }

 /** Implements the user defined operation '+ onExit(state: StateVertex)'
 *
 * @param state
 */
 public void onExit(StateVertex state) throws ProtocolViolationException, InterruptedException{

 if (state==f_iDLE){
 System.out.println("onExit Action from Elevator."+state.getName());

 if((f_historyState==f_mOVINGUP&&getNextFloorUp()>f_currentFloor)||(f_historyState==f_mOVINGDOWN&&
 getNextFloorUp()>f_currentFloor&&getNextFloorDown()==f_currentFloor)){
 f_nextFloor=getNextFloorUp();
 f_historyState=f_mOVINGUP;
 if (door.getCurrentState()==door.getCLOSED()){
 door.executeEvent(door.getOpen());
 System.out.println("Opening door...");
 }
 Thread.sleep(500);

 68

 if (door.getCurrentState()==door.getOPENED()){
 door.executeEvent(door.getClose());
 System.out.println("Closing door...");
 }
 }
 else
if((f_historyState==f_mOVINGDOWN&&getNextFloorDown()<f_currentFloor)||(f_historyState==f_mOVINGUP&&
 getNextFloorDown()<f_currentFloor&&getNextFloorUp()==f_currentFloor)){
 f_nextFloor=getNextFloorDown();
 f_historyState=f_mOVINGDOWN;
 if (door.getCurrentState()==door.getCLOSED()){
 door.executeEvent(door.getOpen());
 System.out.println("Opening door...");
 }
 Thread.sleep(500);
 if (door.getCurrentState()==door.getOPENED()){
 door.executeEvent(door.getClose());
 System.out.println("Closing door...");
 }
 }

 }
 else if (state==f_aCTIVATED){
 System.out.println("onExit Action from Elevator."+state.getName());
 }
 else if (state==f_mOVINGUP){
 System.out.println("onExit Action from Elevator."+state.getName());
 if (buttons[f_currentFloor].getCurrentState()==buttons[f_currentFloor].getPRESSED()){
 buttons[f_currentFloor].executeEvent(buttons[f_currentFloor].getResetButton());
 System.out.println("Button "+f_currentFloor+" reseted");
 }
 }
 else if (state==f_mOVINGDOWN){
 System.out.println("onExit Action from Elevator."+state.getName());
 if (buttons[f_currentFloor].getCurrentState()==buttons[f_currentFloor].getPRESSED()){
 buttons[f_currentFloor].executeEvent(buttons[f_currentFloor].getResetButton());
 System.out.println("Button "+f_currentFloor+" reseted");
 }
 }
 else if (state==f_mOVING){
 System.out.println("onExit Action from Elevator."+state.getName());
 }
 else if (state==f_dEACTIVATED){
 System.out.println("onExit Action from Elevator."+state.getName());
 }
 }

 public static void main (String[] args)throws ProtocolViolationException, InterruptedException{
 Elevator e=new Elevator("Elevator");
 e.door.executeEvent(e.door.getActivate());
 e.executeEvent(e.getActivate());
 e.buttons[5].executeEvent(e.buttons[5].getPressButton());
 e.buttons[8].executeEvent(e.buttons[8].getPressButton());
 e.executeEvent(e.getPressButton());
 e.buttons[2].executeEvent(e.buttons[2].getPressButton());
 e.executeEvent(e.getPressButton());
 e.executeEvent(e.getPressButton());
 }

}

	1. Introduction ……………………………………………………………………………….. 4
	Platform Independent Model
	Platform Specific Model
	Code

