
Author: Sergei Pavlov Topic: User Clustering and Load Testing Page: 1

Project Work

User Clustering and

Load Testing

Student: Sergei Pavlov

Matriculation Number: 31379

Degree course: Information and Media Technologies

Supervising examiner: Prof. Dr. Joachim W. Schmidt

Supervisor: Dr. Hans-Werner Sehring

Delivery day: 6th April 2006

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

2

Table of Contents

1. Introduction.. 3
1.1 Motivation... 3

1.2 Objectives of this project .. 5

1.3 Case Study: “Warburg Electronic Library” (WEL).. 7

2. Approaches for the User Cluster Analysis... 11
2.1 Collecting Data about Usage of the System ... 11

2.1.1 Tracing .. 11

2.1.2 Tracking .. 12

2.2 Cluster Analysis .. 13

2.2.1 Introduction into Cluster Analysis .. 13

2.2.2 Distance Measure between Objects .. 14

2.2.3 Clustering Algorithms... 15

3. User Clusters in the WEL System ... 17
3.1 Preparation for the Cluster Analysis ... 17

3.1.1 Collecting the data .. 17

3.1.2 Selecting relevant variables .. 19

3.2 Performing the Cluster Analysis... 20

3.3 Analyzing the Results of the Cluster Analysis ... 24

4. Load Testing Tools .. 27
4.1 Introduction to the Load Testing... 27

4.2 Categorization of the Load Testing Tools .. 28

4.3 Configuration .. 30

4.3.1 WebUnit.. 30

4.3.2 JMeter’s configuration .. 31

4.4 Load Testing Tools for “Warburg Electronic Library” 33

5. Performing the Load Test .. 36
5.1 Designing a Load Test .. 36

5.2 Execution of a Load Test .. 37

5.3 Analysis of the Results.. 40

5.4 Case Study: “Warburg Electronic Library” .. 42

6. Summary and Future Work.. 47
6.1 Summary... 47

6.2 Future Work .. 49

Appendices.. 50
Appendix 1: Sample WebUnit program load-testing the WEL.................................... 50

Appendix 2: Detailed Data about WEL User Clusters ... 54

References... 56

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

3

1. Introduction
This chapter describes the motivation, goals and structure of the project work.

1.1 Motivation

 A large number of software projects are designed to serve a large number of

concurrent users. Most often these software systems have a web-based presentation layer,

quite complex structure, and a significant amount of dynamically generated content. An

example for this would be any web portal. They are also expected to meet the non-

functional requirement of being capable of coping with a certain number of concurrent

users. While the performance of such software might depend on many factors, it is

possible to ensure that the system can meet this requirement only by launching it and

observing how it works, or testing it as close as possible to the “real-life” conditions. If

the software project has not yet been launched or it is not too popular, predicting users’

behavior is difficult and imprecise. Otherwise, the behavior can be derived from the

system’s logs. If the system is already in use and its performance is to be improved, the

load generated by users is to be simulated on test server(s) and the system would need to

be tuned therein. This study concentrates on improving the performance of existing

systems.

 Most web servers by default collect information about users using services

residing on them. However, this information is often not sufficient for obtaining a clear

picture about the behavior of the users. Thus, other approaches are to be used. The main

idea is simply to log the required information while users’ are using the service

(tracking), and to analyze it and make relevant conclusions later.

 In order to benefit from the information obtained from tracking, the data must be

aggregated in one way or another, allowing for generalizations, although admitting some

inaccuracies to keep it simple. One way to do that is to generate some user clusters, so

that users who are in the same cluster are similar to each other (grouped by several

criteria) but different from users in other clusters. The criteria for judgments have to be

chosen carefully and the number of clusters should ensure that the groups are

homogeneous. The study called Cluster Analysis provides theoretical basis on how to

achieve all this.

Having aggregated several clusters of users, we can regard them as several

“typical” users. Describing the typical users in each cluster and finding out more about

their behavior gives very valuable information on where improvements in the software

systems can be implemented, how the needs of those users could be served best.

The optimization of performance might require simulation of real-life scenarios,

as explained earlier. By knowing how many users are in each cluster and how frequently

they use the system, the simulation of the real-life environment can be performed much

more easily.

 Normally it is not possible to load a system by creating a number of simultaneous

requests ‘manually’. Thus, some automated approach is essential. The load testing tools

serve this purpose. Roughly a half of the available load testing tools are commercial ones,

the prices of some of them reaching tens of thousand of dollars. At the same time the

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

4

learning curve for most of the tools is quite steep and it is easy to lose a lot of time with

the tools that are not capable to perform certain required operations, until one discovers

their limitations.

 The result of a load test allows one to judge how a software system performs

under a certain load generated by many concurrent users using the system. This allows

not only for the verification of whether the current implementation can fulfill the

requirement of being able to serve a certain number of concurrent users with the desired

level of service (measured, for instance, by the response time in seconds), but also has a

number of other benefits for the different parties involved. The results of a load test allow

management to know the capacity of their system and thus plan when the hardware is to

be added; system administrators would find out whether the system crashes under the

high load, or e.g. whether the number of the users accessing the system has to be limited

so that the system would not crash, etc. Finally, developers could identify bottlenecks in

the implementation and would become aware, the degree of optimization required. If

there are bugs that reproduce only under high load conditions, running the load test

allows them to be reproduced, so that developers can debug the system. Finally, the

difference between a load test and a performance test (which is targeted to compare the

performance of the system’s modifications) is rather small and the load test can easily

(depending on the tool used) be transformed into a performance test.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

5

1.2 Objectives of this project

The goal of this project work is to analyze all the steps that need to be followed in

order to perform a successful and effective load test. The major goal of a load test itself is

to measure the performance of a web-based software system under a high load.

The study looks into several major approaches which could be used and many

related techniques and aspects.

The stages of successful load test could be different depending on the approaches

used and decisions made, but can generally be represented as follows:

• Understanding the goals which are to be achieved with the load test and
the reasons to conduct it. (E.g. the goal might be to find out how many

simultaneous users a system can serve within reasonable response time,

which could determine the aggressiveness of a marketing campaign

promoting the system)

• Collecting the data about users’ behavior. (A load test simply simulates a
high number of concurrent users using a software system, hence to

construct a load test, the detailed knowledge about users’ behaviors is

essential)

• Analyzing how to perform the load test most effectively or efficiently
depending on what is more appropriate and desired. (It must be

understood, how important it is to be precise, fast or efficient with the

results, whether or not spending a unit of resources justifies a slight

increase in the quality of the results)

• Choosing corresponding load testing tools (There are plenty of the load
testing tools available. What are the criteria to choose the right one? Is it

reasonable to spend money on the commercial products?)

• Designing the test and configuring selected load testing tool accordingly
(What exactly, in which sequence and how should be done to simulate the

real-life conditions as good as possible with the information available and

the load testing tool chosen)

• Performing the load test (What are the constraints which need to be
satisfied to achieve correct results? Where in the network should the

machine(s) performing the test be placed? How many machines are

needed to perform a load test?)

• Validating and analyzing the results (Did it really work? Can the results be
trusted? What could be concluded from the results? Did the system

perform as has been expected? What are the bottlenecks of the system?

What should be the next steps?)

This project work tries to describe general approaches for answering all these

questions, as well as to analyze the most important aspects of each stage. A general

approach is used where possible. As an illustration the software project “Warburg

Electronic Library” (see next subchapter for more detailed description) has been taken,

analyzed and load-tested.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

6

This study describes and applies the techniques of cluster analysis in order to

collect and aggregate data about users of a software system. This approach allows making

conclusions which are beyond the scope of the load testing as such, but serve the same

purpose – understanding the reasons why a software system performs the way it does

under an increased load.

In case of the Warburg Electronic Library, the results of the cluster analysis give

some ideas of how the system could be made more convenient for its users, what do the

users look for when using the electronic library, how could the users be characterized by

their behavior on the system, and, with the help of the load test’s results, how could the

performance of the system be improved.

The implementation of the actual changes of some software system and the

assessment of their efficiency are beyond the scope of this project work.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page: 7

1.3 Case Study: “Warburg Electronic Library” (WEL)

The Warburg Electronic Library is an interdisciplinary project carried out in

conjunction with the art historians from Warburg-Haus Hamburg [http://www.warburg-

haus.hamburg.de]. The first implementation of the project has been launched in 1997.

Since 1999 the project has a web-based interface. The project’s data is used in research

and teaching. The system has currently more than 260 users, and classifies more than 10

000 pictures. Additionally, it holds other types of media documents, mainly videos. The

design of the system and the major part of the implementation has been carried out by Dr.

Hans-Werner Sehring. The project is built on the Coremedia platform. The following is

the description of the WEL project taken from [http://welib.de/e-entry.htm].

The Warburg Electronic Library (WEL) is conceived as an open platform for

interdisciplinary discourses: As a data-based working space linked to the Internet

the digital library offers general access to multimedia documents and

configurations adapted to the individual scientific requirements and research

methods.

In the course of a five-year research project conducted jointly by the Department

for Information and Communication Technology at the Technical University of

Hamburg-Harburg and the Research Centre for Political Iconography

(University of Hamburg, Department of Art History) at the Warburg Haus, the

"Picture Index of Political Iconography" was transformed into a digital

multimedia library.

The practical part of the project has been based on the analysis of the WEL

system. The real usage data has been taken from WEL logs. This data has been used for

the analysis of users’ behavior, clustering users according to their behavioral patterns,

suggesting improvements, performing the load tests of the WEL platform, and, finally,

analyzing the results of the system performance.

The system suits the objectives of this project, because it is a web-based

application with sufficient complexity, sufficient number of users who can access the

system simultaneously. Moreover, the system has been tracking the data about the users’

behavior over more than 4 years. The information contained in the log files is sufficient

for all objectives of this project work.

The following are look-and-feel screen shots of the Warburg Electronic Library

briefly giving an idea of platform’s functionality.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

8

The following screen shot displays a list of libraries one specific user has an

access to. By accessing links on the left hand side menu the user can look for some

concrete content using the Search functionality, edit own account’s settings (e.g. change

own password), create a new library, browse further to one of the libraries, log off, etc.

Figure 1: Screen shot of the WEL libraries listing page

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

9

 The screen shot below displays a sample Classifier page. Classifier page displays

objects (of different types) having some logical connection to it (please refer to the Figure

3 for a database model of WEL). A user can browse further to one of the related objects

of a classifier, edit this object (if s/he has corresponding roles and rights), etc.

Figure 2: Screen shot of the WEL classifier page

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

10

 The WEL system is organized in such a way, that every page (with very few

exceptions, like, for instance, log-in page or user’s settings page) is determined by the

object id. Objects can be of several types:

• Classifier Index - represents main listing of the “collections” of the
electronic library entries. An affiliation table links Classifiers into

“directories” / “collections”.

• Classifier – a categorization of objects, “category” (e.g. Money).

• Hierarchical Extent – represents additional hierarchical structures (e.g.
“Music” is a hierarchical extent, might organize all music related entries).

• Card – an actual content of the electronic library, e.g. pictureCard,
movieCard, textCard.

Figure 3: Database Model of the Warburg Electronic Library (simplified)

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

11

2. Approaches for the User Cluster Analysis
This chapter describes how to get the data about web application users, a theoretical basis

of the User Cluster Analysis and how has the user cluster analysis been applied to WEL.

2.1 Collecting Data about Usage of the System

2.1.1 Tracing

There are several ways to collect data about the usage of web applications.

If a web application does not log specific information about its users, most likely, there is

still a way to have a look at the default usage log files(unless disabled) and retrieve some

information about it.

The most popular WEB Server, Apache, (with the 68% of the market share

(according to [13])) has a possibility to log certain information about the incoming http-

requests.

The default logging format (according to [1]) is :

%h %l %u %t \"%r\" %>s %b

where

 %h - the IP address of the client (remote host)

e.g. 127.0.0.l

%l - the "hyphen" in the output indicates that the requested piece of

 information is not available.

%u - the user id of the person requesting the document as

 determined by HTTP authentication.

e.g. admin

%t - the time that the server finished processing the request.

 %r - the request line from the client.

e.g. GET /rg/login.jsp HTTP/1.0

 %>s - the status code that the server sends back to the client.

 e.g. 200

 %b - indicates the size of the object returned to the client, not including

 the response headers.

Hence, Apache logs some essential things by default, like: request time, IP

address, HTTP authentication user id (although, the HTTP authentication is relatively

rarely used), the path of the file accessed. However, that might be not enough in order to

collect information about user’s behavior. First, the HTTP POST/GET parameters might

contain valuable information about the resources being requested. Secondly, the IP

address cannot identify a user of the system uniquely, because some of the users might

use proxy-server, so that only proxy-server’s IP would be logged.

So, the information which could be found in the default Apache’s “access.log”

file does not have a way to identify a user precisely (a combination of the IP address and

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

12

a “User-agent” would be a slightly better approach) from the application logic point of

view.

Thus, tracing is insufficient for the purposes of this project work, unless some

constraints are met, for example, if the IP address identifies a logical application user

uniquely, etc.

2.1.2 Tracking

Another way to collect information about users is to actively log the information

which is needed for the later system usage analysis. The logging might be done in some

core library, which code is being executed with each http request, and also in some

decisive parts of the code.

The following are the minimum information needed to be logged in order to be

able to trace users’ behavior in the system:

• User identifier

• Exact time of the request

• Identifier of the requested resource

• Important parameters bypassed (POST and GET)

As for the WEL log files, all above mentioned information could be found there.

The WEL application is organized in such a way, that a user simply accesses different

objects (of different types) by specifying the object ID as a GET parameter of the http-

request. The requested path mostly stays the same.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

13

2.2 Cluster Analysis

2.2.1 Introduction into Cluster Analysis

Cluster analysis deals with grouping different objects (e.g. users) in such a way

that the objects from the same group are to the greatest possible extent similar to each

other and different from the objects from different groups. Those groups or categories of

objects are called clusters. The criteria for similarities or differences are called variables,

observations, or dimensions.

The conduction of cluster analysis consists of several major steps:

• Selection of the relevant variables

• Selection of the distance measure

• Selection of the clustering algorithm

• Determining the number of clusters

• Validation and the analysis of the results

In the simplest case there is just 1 variable for which classification or cluster analysis

is done. But normally there are more. Variables are selected logically, having the goal of

achievement an adequate characterization of the objects in mind. The approach used for

the selection of relevant variables should strive for the minimization of their number. But

the variables used might be measured in different units. For example, it is desired to

cluster people by 3 variables, say, age of a person and the observation whether a person

smokes (the value for it is, say, 1 or 0) and person’s high school’s average grade (e.g.

measured from 1 to 5). Obviously, these variables are measured by different units, so

before any algorithm for calculating the distance between 2 objects (measuring how

different or similar those 2 objects are) can be applied, the value of each variable for each

object (in the given case, for each user) has to be “normalized” according to the

variations of the variable. This is done by dividing the value of each object’s variable by

the standard deviation of the variable:

where

 δ - standard deviation

 N - number of objects

 xi - value of the variable for the object nr. “i”

 - arithmetic mean value of the variable

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

14

2.2.2 Distance Measure between Objects

When variables’ values are normalized for each object, one of the algorithms for the

calculation of the distance measure between 2 objects can be applied. The following are

some of such algorithms:

• Euclidean distance - probably the most widely used one. It is simply the
geometric distance in the multidimensional space. Computed as:

distance(x, y) = (∑i (xi - yi)
2
)
½

,

where “x” and “y” are 2 objects, between which the distance is being calculated.

• Squared Euclidean distance – placing progressively more weight on the objects
which are further from each other. Computed as:

distance(x, y) = (∑i (xi - yi)
2

• Chebychev distance – the distance is the greatest difference between dimensions.
Might be used if the difference in one of the dimensions is considered not to be

compensated by the similarities in other dimensions. Computed in the following

way:

distance(x, y) = max | xi - yi |

• Percent disagreement – could be used in case dimensions are of the categorical
and non-analogue nature. Computed as:

distance(x, y) = Count (xi ≠ yi) / N ,

 where “N” is the number of variables.

Each of these distance measure algorithms is particular useful under special conditions,

depending on the nature of objects and variables used for categorization.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

15

2.2.3 Clustering Algorithms

The following figure characterizes clustering algorithms.

Figure 4: Characterization of clustering algorithms

The simplest algorithm to implement in case of the hierarchical approach (when the

number of clusters in unknown (that would normally be the case when trying to classify

users of the web application)) is the agglomerative clustering. That algorithm can be

briefly described by the following steps:

• place each object into a separate cluster

• start unifying clusters according to a certain “combining method“

• assess the differences between objects within each cluster

• determine the number of clusters according to the principle: if there is a
sudden increase in the error measure, stop minimizing the clusters’ number;

otherwise continue unifying clusters

There are several ways how to combine clusters using agglomerative clustering

algorithm, among them:

• Linkage method

• single linkage (minimum distance; tendency for large clusters)

• complete linkage (maximum distance; tendency for small clusters)

• average distance (those clusters are combined, whose increase of the average
distance between objects in the combined cluster would be lowest)

• Ward’s method – most popular method (tendency for equal size clusters). The
algorithm includes the following steps:

• computing the sum of squared distances within clusters

• combine clusters where the minimum increase in the overall sum of squares
would be minimal

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

16

• Centroid method – the distance between 2 clusters is defined as the difference
between centroids (cluster’s average point in the multidimensional space)

As in case of selecting the distance measure algorithm, there is no single correct

answer for the selection of an agglomerative clustering algorithm.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

17

3. User Clusters in the WEL System
This chapter explains how the cluster analysis has been conducted for the Warburg

Electronic Library (WEL) system and which results have been achieved.

3.1 Preparation for the Cluster Analysis

3.1.1 Collecting the data

First of all, the performance of the WEL cluster analysis is for the needs of the

load testing. The load test has to simulate the http requests coming from many online

users. The simulated users should act in the way the real users are normally acting. For

example, some group of users generates on average, say, 15 page views, uses search

once, downloads 2 full size pictures and spends the rest of the browsing path in order to

find those pictures. Let’s assume that kind of users constitute 20% of all incoming

requests on the WEL system. This means that during the load testing, 1/5
th
 of all requests

should follow the same “browsing behavior”. Now the task is to acquire the

corresponding data about users’ behavior. For this purpose a program parsing WEL log

files and interpreting their data has been written. The figure below sketches its

functionality.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

18

Figure 5: Class diagram of the program parsing WEL log files

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

19

3.1.2 Selecting relevant variables

Having the goal of generation user clusters for the conduction of the load test later

in mind, the variables for the cluster analysis have to be chosen. All of the variables

chosen represent different average values per session, because the goal is to find users

acting in a similar way. The following 10 variables have been chosen:

• average number of objects accessed per session

• average number of following the browsing links per session

• average usage of search per session

• average usage of search for a card object per session

• average usage of the links on top of the card’s page

• average rate of re-accessing an object per session

• average rate of re-accessing a card object per session

• average rate of re-accessing a classifier object per session

• average rate of accessing a classifier-index object per session

• average rate of accessing a card object per session

Those variables are going to reveal the behaviors of users during their typical session.

Presumably, there are some behavioral patters, for example, more experienced users

would use the search of a card object, whereas less experienced one, would use the

default “search for a classifier” functionality, without changing the type of an object they

are looking for, to something else.

Still the selection of the variables is somewhat subjective and has been also based on my

experience of trying different options.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

20

3.2 Performing the Cluster Analysis

To determine the distance between 2 users’ data the Euclidean distance formula

has been used. This is a logical choice considering that relatively high number of

variables has been used, that the variables are of a very different structure and that the

objects (users) are also very different. Further, the hierarchical (determining the number

of clusters trying to find the best solution) agglomerative (minimizing the number of

clusters starting from N clusters) approach has been used. There has been no expected

result, so the number of clusters had to be determined by the cluster analysis itself. Since

there has been no suitable (free and simple) software found, a Java program has been

developed to conduct the cluster analysis. The agglomerative approach is the easiest one

to implement; therefore it has been chosen for the cluster analysis. In order to combine

two “closest” clusters one of the linkage methods, namely, the average distance principle

(combining clusters with the lowest increase in the clusters’ average distance between

objects) have been applied. This choice has been made taking into account high degree of

the differences between the objects.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

21

The class diagram below depicts the structure of the developed software, which

was used to conduct a cluster analysis for the WEL users.

Figure 6: Class diagram representing the structure of the program

“AgglomerativeClusterGenerator”

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

22

The following figure represents the results derived from the execution of the

program, namely, the dependency between the “error measure” (sum of squared distances

within clusters) and the number of clusters, in which the WEL users have been placed

according to the algorithms and approaches mentioned above.

Figure 7: Determining the number of clusters

As can be seen from the figure 7, there are two “sudden increases” (“elbows”) of

the error measure. The increase of the error in case of moving from 1 to 2 clusters is more

“sudden”. It should be stressed, that this figure represents absolute numbers and not the

relative ones, so the first impression might be a bit misleading.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

23

The following table shows the actual values revealed.

#Clusters

Sum of
squared
distances
within
clusters Increase in error when decreasing # clusters

10 58189 13%

9 65846 18%

8 77760 16%

7 90280 11%

6 100362 113%

5 213757 18%

4 253067 16%

3 293873 15%

2 338631 79%

1 606185

Table 1: Clusters’ error measures

The following figure explicitly shows the increase of the error when decreasing

the number of clusters by 1. The maximal increase of an “error measure’ happens when

the number of clusters is being decreased from 6 to 5. Thus, according to the principles

described in the previous chapter, 6 clusters should be taken as an optimal value.

Increase in Error (in percent) while decreasing

number of clusters

0%

20%

40%

60%

80%

100%

120%

10 9 8 7 6 5 4 3 2

Number of clusters

In
c
re
a
s
e
 i
n
 e
rr
o
r
(i
n

p
e
rc
e
n
t)

Figure 8: Increase of error when decreasing the number of clusters

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

24

There are more reasons why to choose 6 clusters, instead of 2. First, of course, is

that the “inaccuracy” of combining different users into 6 clusters is about 3 times less

than combining them to the 2 clusters. Secondly, having 6 clusters also allows

eliminating possible negligible groups of users which disturb the average values by being

too different.

3.3 Analyzing the Results of the Cluster Analysis

The following table contains the most important characteristics of the 6 clusters

retrieved in the cluster analysis. (See Appendix 2 for more detailed information.)

Cluster ID 1 2 3 4 5 6

Description

Users
looking
for
something
concrete

Browsing
users

Negligible Neglig. Neglig. Neglig.

Percentage of
users 54,8 39,2 2,3 1,5 1,5 0,8

Number of users 144 103 6 4 4 2

Percentage of
all objects
accessed 37,5 53,3 1,3 5,7 0,9 1,3

Percentage of
all objects re-
accessed 25,2 67,7 0,7 4,7 0,6 1,1

Total objects
accessed 6561 9329 219 1002 159 233

Average number
of sessions 7 7 5 3 1 2
Objects
accessed per
session on
avg. 7 12 7 78 40 58

Search used per
session 1 0 2 1 0 1

Objects re-
accessed per
session in avg. 1 3 2 21 11 18

-Classifier index 1,46 3,17 1,68 5,14 10,25 8,83

-Classifier 4,6 7,05 3,16 34,49 26,5 45

-Card 0,98 1,18 1,91 29,93 1,25 4,67

Table 2: Main characteristics of the clusters

For the ease of further analysis and load testing, 2 largest clusters (the 1
st
 and the

2
nd
 one) only, which constitute about 94% of all objects requests, are going to be taken

into consideration. The remaining 4 clusters are going to be neglected, because they

represent very rare users which are not important for the purposes of the load testing.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

25

 Users from both 1
st
 and 2

nd
 clusters have rather short browsing paths. This is

because of a high ratio of users who are new to the system and make very few requests to

check out what does the system offer, so the “browsing path” of the “active users” might

be longer.

The cluster 1 can be conventionally described as “Users looking for something

concrete”, because the users’ browsing path is quite short – on average they access just 7

objects, use search once and access the “Card” object once. After they found what they

wanted, they download one or two “Card” objects and leave. The 2
nd
 cluster can be

conventionally called “Browsing users”. These users access about 12 objects on average,

use almost no search (which is a more advanced functionality), but spend some time in

the WEL system browsing, going back to the libraries index choosing another category or

re-accessing the category their have already accessed.

The following sequence diagram represents typical (slightly shortened and

simplified) browsing path of a typical user from cluster 1. This sequence diagram helps to

understand, which database transactions lay behind the user’s requests. Each of the

interacting objects needs to execute several database queries in order to display the

resulting page.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

26

Figure 9: Sequence diagram depicting major actions

of users from cluster 1 during a single session.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

27

4. Load Testing Tools
This chapter gives an overview of the load testing tools, their configuration and usage,

and explains the choice of the load testing tool for the WEL application.

4.1 Introduction to the Load Testing

The load testing tests system’s performance under a high load generated by

simulating a number of concurrent users accessing it. Load testing does not have an

intention to verify, whether a web application is functional (that kind of test is called

functional testing, and implies checks like whether all links work, whether all input forms

are protected from a crap being entered etc). However, during the preparation to the load

testing some of such problems might be revealed. The load testing differs from the

performance testing in the way, that it does not compare the behavior of the application

under different settings (e.g. comparison of an earlier version towards a new one). During

the conduction of the load test, the greatest number of users, which the platform is

capable to serve within a reasonable response time, can be revealed.

The simulation of a high number of simultaneous users should be executed as

close to the real conditions as possible. Requests coming from real users are different,

because of many reasons, which include the following:

• Users behave differently (e.g. different frequency of accessing different resources,
different duration of time spent using the application per session)

• Users have internet connections of different speeds

• Users use different browsers, different versions of the same browser with different
settings (e.g. image caching), etc

• Users access a web application from different geographical places with IP
addresses of different ranges (which might mean the application generates the

output in several languages / with differentiated content)

• Users might have different settings in a web application (e.g. number of email
accounts configured or number of news blocks to be displayed)

All those variations and the high quantity of their combinations make it very

difficult to prepare the load test which is going to be close to the real-life conditions, and

even more difficult to have a tool which would be able to prepare and conduct good load

tests close to the real-life conditions for every possible web application. One argument to

support this is the fact that it would be difficult for an automated system to predict users’

behavior in a new sufficiently complicated application unless the experience with similar

frameworks already exists (e.g. user might misunderstand the meaning of some link and

will try to find another way to reach the resource s/he wants, which might have negative

or positive impact on the performance of the system).

Thus, “manual” work is most likely needed in order to conduct a good load test. But

usage of one or several available tools is definitely not only a great help in that, but also a

necessity, because it is impossible to simulate sufficient number of simultaneous users

“manually” in most cases.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

28

4.2 Categorization of the Load Testing Tools

There are many load testing tools available both commercial and free ones. They

differ as much as programs for a non-trivial and non-standardized area from different

producers might differ. Some of the differences have been categorized into the groups

listed below.

• Free or commercial
There is a high number of both (at least 50 in total). Normally, commercial

solutions have more convenient GUI and have nicer reporting, but the

functionality of the free ones is normally sufficient as well. Moreover, non-

commercial load testing tools are almost always open source, so they might be

changed or enhanced if needed.

• Interface
Different tools provide different user interfaces / presentation layers. Among

them: Graphical User Interface (most of them), command line interface (e.g.

httperf).

• Configuration
Four different types of configuring the test (combinations are possible and very

likely) might be distinguished:

• Configuring the test using graphical user interface (GUI). Normally, that
kind of tools would simply provide a way to specify URLs to be accessed,

as well as the way to configure additional things (e.g. random parameters,

requests depending on responses and so on).

• Tracking the user’s actions in a browser. User can simply browse to the
server to be tested and the testing tool will track the browsing path and all

the parameters and actions a user would be doing. Most likely, the tracked

data will be used as a template which could be changed later (e.g. using

some programming language).

• Tracing user’s actions by looking at the network traffic. In this case, user
may use several browsers or there could be several users as well.

• Writing a program in some programming language – existing or artificial.
That gives a great flexibility, but makes it more difficult to quickly

construct or change test plans.

• Availability of distributed testing
A single machine might be not enough to handle enough requests to a server. It is

essential that the machine performing the test had enough resources to cope with

the processing of the data; otherwise the results might be wrong. So, some tools

provide a possibility to perform a test using several machines (normally, one

being a “master” and several being “slaves”).

• Execution
Most commonly the intermediate results of going on test are displayed in the

interface the tool (e.g. as a command line output or in the GUI). Another aspect of

the execution is how exactly the outgoing http requests are made. There are 2

options: either by sending the http requests directly to the server (by connecting to

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

29

the server, possibly via a proxy server) or via a middleware standard browser,

which can interact with the tool (e.g. Watir [22]). In this case the browser is to

execute http requests in the most common way. This has several benefits, because

the resulting page is being displayed exactly in the way an end-user would

normally see it (with a real browser). The JavaScript will be executed as it should

and the test can even be configured to interact with JavaScript (e.g. pop-up

windows, JavaScript alerts) on behalf of a user. This would not be always

possible with other approaches. Also, that kind of approach allows a user behind a

proxy server to try out the tool faster, because the browser typically already has

proxy settings configured. But it has also negative aspects and the major one is

performance. That kind of tools might be used if they allow distributed testing and

there are a lot of computers available or in case the testable server’s performance

is really weak, so that the test does not require too many concurrent users.

• Performance
The load testing tools can differ with regard to performance quite a lot. Adding

one more simultaneous thread / user can require considerable amount of

resources. (e.g. testing tools displaying the test in a browser definitely require

much more physical resources on a testing machine(s), comparing to the

command line ones)

• Reports and metrics
Usually, commercial tools are much better in this aspect, making it convenient to

use the information obtained during the test, which might be not necessarily true

for the free tools. Among the options how to report or measure performance, there

are the following: number of various figures, which could be constructed by the

tool, whether the response times can be normalized by their standard deviation by

the tool, whether it is possible to adjust which information is desirable etc.

The measurable parameters may include:

• average, max, min, deviation of the response time per page type

• number of failures (e.g. 500 - server not responding)

• throughput - number of requests handled by server per minute

• Ease of use and steepness of the learning curve
Most of tools require quite a lot of learning before any reasonable test could be

performed. One reason for this is namely the great variety of them and different

approaches used. Another reason is the absence of standardization and even terms

used. On another hand, the test of non-static content of some relatively

complicated web application is simply not a trivial task, because there are too

many aspects which might differ from one application to another.

Of course, it is normally easier to start with a tool having test’s configuration in a

known programming language, than learning a made up language.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

30

4.3 Configuration

Different load testing tools provide different ways how the configuration of a load

test could be done – for instance, by writing a program (e.g. in Java) or via some GUI.

But whichever way is used, there is one underlying principle: a testing tool should be able

to simulate real-life conditions to the needed extent.

 Let’s have a look at several load testing tools in order to understand and compare

different configuration’s issues.

4.3.1 WebUnit

WebUnit is a free open source Java program, initially targeted to functional

testing, but can also be used for load and performance tests. The responses from the

server are not simply logged to a file (or temporarily to the memory), which is most

commonly done, but are actually displayed in a browser window(currently, only MS

Internet Explorer is supported). This has a number of advantages, because it makes the

test closer to the real-life conditions. For example, the delay required for a browser to

display the retrieved page could also be considered directly, which is not the case with

the other kinds of tools. The following quote from the WebUnit’s documentation explains

how it is done:

The ExplorerWebBrowser implementation is done using Microsoft’s Java-COM

VM. The actual Explorer COM API is used. The WebUnitCore will actually exec

the MSJava VM and communicate with that process(s) over its I/O streams. A

simple Java I/O – RPC mechanism is part of web-unit allowing this

communication to be efficient and not require any socket communication.

The test is being entirely controlled by a Java program, which might be seem to

be time consuming to configure, but at the same time it provides a great flexibility.

The sample script listed in the Appendix 1 is an illustration how a load test could

be performed with WebUnit. It goes to the Warburg Electronic Library site, logs in, and

browses around a bit, measuring the response time. The program consists of 2 classes:

• SimpleLoadTest – main program, which launches X threads ‘WELThread’

• WELThread – a thread, which simulates a user on the WEL. First, it goes to
the WEL start page, then clicks to the image-link, logs in, accesses list of

libraries, picks up one of them (by clicking on its name) and, finally, accesses

on of the subcategories (a “classifier”). In order to browse, the configuration

uses actual textual strings (e.g. links’ “names”) displayed to a user in a

browser window, names of the HTML variables (and sometimes names of the

image files (which could be escaped by changing server side code)). This is

different from what most of the load testing tools do, namely, require fully

hard coded URLs.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

31

The following few lines of code illustrate main principles of the scripts based on

WebUnit. The piece of code accesses few pages of the WEL system. As can be noticed,

there are no hardcoded URLs in the code (except for the very first one, which specifies

the start page), but they can be retrieved from the pages’ sources instead (e.g. by

specifying the image-link’s parameters, such as HTML tag’s id, image’s filename etc).

4.3.2 JMeter’s configuration

 JMeter is a free open source Java testing tool, which among other things allows

performing load tests. It supports both non-GUI and GUI modes. The configuration of a

test plan can be done by adding various “elements” to a test, such as Listeners (used for

reporting and the analysis purposes), Timers (used for scheduling or delaying events),

Thread Groups (concurrent executions), Assertions (to check whether the received

response is what has been expected) and others – to control the flow of a test and specify

the settings of the requests.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

32

Figure 10: The screen shot of JMeter’s configuration of cluster 1 threads

 Let’s have a look at how different test plan configuration issues can be addressed

with JMeter. Often each thread in a test plan must make very many similar requests to the

server, which might differ just by a part of arguments or a part of the requesting path. In

this case the addition of e.g. one thousand different http requests for each thread

especially in the GUI is not feasible. To address this kind of issues JMeter provides a

possibility to load data from external data files. This can be done by one of the following

ways:

• using the function _StringFromFile, which when called returns the next line

from a file. Then the returned string can be parsed by other means.

• using the function __CSVRead, which can return the value contained in a

CSV (coma separated values) file in a specific column on a specific line.

• using the special configuration element “CSV Data Set Config”, which allows

for extracting values from a CSV-like (coma separated values) file.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

33

4.4 Load Testing Tools for “Warburg Electronic Library”

After checking multiple tools JMeter has been chosen to perform the load testing

of the Warburg Electronic Library. This is because it is a good combination of relative

simplicity of configuration and flexibility in the functionality.

According to the performed cluster analysis (please refer to the earlier sections)

the load test should simulate the behavior of two types of users. The information about

the differences of those two groups is summarized in the following table (NB! All the

values are rounded).

 Cluster 1 Cluster 2

Description
Users looking for
something
concrete

Browsing
users

Percentage of all requests made 41% 59%

Search functionality used per
session 50% 0%

Number of objects accessed per
session 7 12

 - Access of Classifier per session 1 3

 - Access of Classifier-Index per
session 5 7

 - Access of Card per session 1 1

 - Access of Hierarchical Extent per
session 0 0

Number of objects re-accessed per
session 1 2

 - Re-accessing Classifier per
session 1 1

 - Re-accessing Classifier Index per
session 0 1

Table 3: Aggregated data per cluster used for the load test

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

34

 The following diagrams depict the browsing path of the users from each of the

clusters, used in the load test configurations.

Figure 11: Diagram displaying browsing path for cluster 1

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

35

 From the browsing path point of view, the users from cluster 2 are different from

1st cluster ones mainly because they do not use search, and access more objects per

session.

Figure 12: Diagram displaying browsing path for cluster 2

The load test has been configured according to the diagrams above. The delay

between requests has been measured by using the data from WEL log files. Random

objects ids of certain types have been put to several CSV files. This way the behavior of

users is being simulated as close as possible to the real-life conditions. The following

chapter contains results of the test performed.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

36

5. Performing the Load Test
This chapter describes various aspects of the conduction of the load test as well as the

analysis of its results.

5.1 Designing a Load Test

Before starting to design a load test, one should be clear about the goal which is to

be achieved. The questions like why the load test is needed, what exactly is to be tested,

how important is it to be as close as possible to the real live conditions, what depends on

the results of the test, and so on. The next steps depend on how these questions are

answered.

Generally, the purpose of a load test is to measure the performance of a system

under a high load. The underlying goal of conduction of a load test is to improve

performance, in case the load test shows that it is needed.

 There are 2 major use cases: testing an existing system and testing a new one. In

case of testing a new system, the goal is to find out, whether it can hold the needed

number of concurrent users. The behavior of the users should be rather guessed, based on

the subjective criteria. In the second case, when testing an existing system, the data about

the behavior of existing users should be analyzed. Already the aggregation of the usage

statistics will reveal many niches for optimization. Some functionalities might appear to

be more popular, whereas other less popular, than has been expected. Further step might

be to cluster users into groups. This has several benefits. Among them there are the

following: better overview about the users of a system, a possibility to design

modifications by predicting changes in the quantities of different types of users, limiting

the inaccuracies of using the average numbers.

 After the information about the behavior of users has been collected, it is time to

choose a proper load testing tool. The selection depends on the complexity of the users’

behavior and many other things. If the requests which have to be simulated are very few

(e.g. 5 different URLs which each user accesses), then the most simple tools should be

used, if the reporting they provide is sufficient. In more complicated cases, the performer

of a load test should use more flexible and “mature” tools. In the very rare cases it might

be suggested to use open source tools so that a load test performer had a full control over

the test and the testing tool, modifying the source code if needed. But normally, the

functionalities provided by a load tool are enough.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

37

5.2 Execution of a Load Test

 The location of the machine(s) performing a load test in the network must be

chosen according to the goals of a load test. If the intention is to measure the response

time from the end-user’s perspective, the machines are to be placed further away from the

server(s) which is/are being tested. Nevertheless, the network’s throughput should not

become a bottleneck, because it is solely the performance of the system what is being

tested. There are other (normally simpler) ways to find out whether network’s throughput

is sufficient. Thus, the machine(s) performing a test must be placed as close to the system

as possible to avoid limitations set by the network.

During the conduction of the load test some time is needed in the beginning for so

called “ramp up phase”. The ramp up phase is a period of time during which the testing

tool starts launching all of its threads. Threads normally should not start sending requests

all at once, because the intention is to simulate real users accessing the system

independently at the random points of time.

 The typical response times during the conduction of the load test could be seen

from the figure below. The ramp up phase with shorter response times could be easily

distinguished. The ramp up phase is not particularly important, unless the increase in the

response times is too rapid, which means that the system should probably be tested with

the smaller number of simultaneous users. As can be seen from the figure, there are

always some cases, when the response time is low, even when the overall load on the

system seems to be high. This is because of the presence of the completely static pages,

which are processed very fast, because they are not related to the bottle necks of the

system. (This can differ depending on the internal structure of the system tested.)

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

38

Figure 13: Sample response times during a load test

The execution should be performed till the moment, when the response times (or

another major metric used) do not vary very much (when its behavior is clear and

predictable). The figure below displays the change of the average response time and

individual response times during the conduction of a test. The test should be performed

until the line representing the metric used becomes pretty much horizontal, which means

it does not change much.

Figure 14: Average response time during a sample load test

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

39

The following figures represent the progress of a load test performed by WebUnit,

which, as mentioned earlier, executes a test via a WEB browser and can output data about

the progress of a test into the standard output, log it or send it somewhere else.

Figure 15: A WebUnit driven WEB browser is logging in into WEL

The result outputted by the WebUnit’s script (listed in the appendixes) during the

execution is displayed below.

Server:Starting Server--

Server:Starting Server--

Server:Starting Server--

Show Start Page [thread: 0] 1833 ms.

Current Avg Delay 1833 ms.

Show Start Page [thread: 1] 1141 ms.

Current Avg Delay 1487 ms.

Show Start Page [thread: 2] 2003 ms.

Current Avg Delay 1659 ms.

…

Go to Login Page [thread: 1] 3445 ms.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

40

Show ClassifierIndex [thread: 2] 2744 ms.

Current Avg Delay 4328 ms.

Show a Classifier [thread: 0] 4546 ms.

Current Avg Delay 4342 ms.

Show a Classifier [thread: 1] 4526 ms.

Current Avg Delay 4353 ms.

Show a Classifier [thread: 2] 3595 ms.

Current Avg Delay 4311 ms.

Server:End Server Normal

Server:End Server Normal

Server:End Server Normal

Table 4: Parsed result of a load test execution by WebUnit

The person in charge of the execution of a test should check the value of “Current

Avg Delay” and stop the test when the value does not vary much for a certain period of

time.

5.3 Analysis of the Results

First of all, it must be made clear whether a load test has been successful, which

means that the results of the test are correct and could be used to make judgments. It must

be checked whether the network has been a limiting factor, whether the measured

response times are fluctuating insignificantly, whether the system performed as had been

expected and so on.

The results of the load test have to be thoroughly analyzed. One of the first things

to do is to check, whether there were cases when the server crashed (in some way or

another) or there were other anomalies under a significant load. The reasons have to be

identified (what could cause this purely depends on the internal structure of the system. A

reason could be, for instance, that the database queries timeout).

Another very important aspect is to identify, what exactly slows the system down

most significantly, where are the current bottle necks. This can be done by checking,

which pages take more time to load on average. This is particularly bad, if the bottle neck

is the functionality which is used often enough. Sometimes, the black box testing might

be not enough to identify the problem. Thus, the load test can be conducted again and the

logging should be implemented in various parts of the code. The same load test’s

configuration might be used. This could result e.g. in finding out that there is one method,

which is too slow, and all the pages, which use it, are therefore affected.

 Particular attention should be driven to the way, how the resources used are

released, when there are fewer users. Ideally, the resources have to be released very fast,

after the processing of a request is finished.

 If there are no major pitfalls identified, the greatest value from the conduction of a

load test is the answer to the question, how many concurrent users can the software

system serve within a desired response time. This information can be used by different

parties, allowing for planning the investments into the platform, predict its behavior, find

the parts of the system which are most resources consuming and so on.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

41

 Load testing tools normally provide some means for representing the results of a

test, like constructing corresponding graphs, aggregating the data, etc. That enables to

make first conclusions quickly just by looking at the graphs.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

42

5.4 Case Study: “Warburg Electronic Library”

The load testing of the Warburg Electronic Library has been performed, using the

configuration described in the earlier chapters, with different numbers of concurrent

users: 5, 10, 20, 30, 40, 50, 75 and 100, acting according to the scenarios described in the

chapter 3. A single computer has been used to perform the test. The computer has been

placed close to the server regarding the network topology, but not in the local network of

the WEL server. During the test it has been monitored that neither network’s connection

nor test-computer’s resources became a bottleneck. The load test has been performed on

Friday evening when no significant usage of the service is expected. The figures below

represents the results derived.

Avg. Response Time vs. Number of Users

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

5 10 20 30 40 50 75 100

#Concurrent Users

T
im
e
 i
n
 S
e
c
o
n
d
s

Figure 16: Dependency of the average response time on the number of concurrent users

As can be seen from the figure 16 the increase in the average response time has

rather linear dependency until the delay becomes too high on a number of concurrent

users (The average response time approximates to the number of concurrent users divided

by 2). The figure also displays error bars, which represent standard deviation. The error

level is acceptable, which shows that the measurements have been taken when the ramp

up phase has already finished and the average delay did not fluctuate much. If we assume

that the delay which is not much disturbing for users, must be less than 5 seconds, then

the current system implementation (involving both hardware and software) can only

afford to have about 9-10 concurrent users. Whether it is a lot or not, generally depends

on the type of the application, its popularity, the desired quality of the service provided,

etc. The WEL has about 260 registered users. Most of them use the system occasionally,

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

43

spending very few (2-3 on average) minutes browsing, so the probability of having more

than 9-10 concurrent users is rather low.

From the user’s perspective the average delay between page-views, is normally short, but

the values of the maximal delay which user might experience are significantly higher.

Response Time vs. Number of Users

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

5 10 20 30 40 50 75 100

#Concurrent Users

R
e
s
p
o
n
s
e
 T
im
e
 i
n
 S
e
c
o
n
d
s

Avg Reponse Time

Max Response Time

Figure 17: Dependencies of the maximal and the average response

times on the number of concurrent users

The figure above displays both average, and the maximal delays between page-

views. It appears that the maximal delay grows much more significantly when the load

increases. Moreover, even with 5 concurrent users (which is quite probable situation) the

maximal delay reaches, as has been derived from the load test, 25 seconds! This means

that there is certain functionality which is simply slow regardless the load.

It also shows that there are pages of different complexity and structure. Some

WEL objects are associates with many categories, whereas others are too specific and the

retrieval of the pages associated with them does not take too much time. The graph below

gives an idea of the variation of the response times when the server is being tested with

40 simultaneous users. As can be seen from the figure, individual response times vary

very much. The objects which have been accessed during the load tests have been taken

from the earlier generated data files. The duration of the tests has been different, because

e.g. the ramp up phase for 100 concurrent users has been made to last longer than for 5

users. The part of the objects accessed in the beginning has been the same. If some test

has been running longer, of course, it has been accessing other objects as well, which

have not been used for other tests. But the behavior of the average response time of the

server has been quite stable after the ramp up phase in all of the tests.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

44

Response times for objects requests

tested with 40 concurrent users

0

20

40

60

80

100

1
6
8

1
8
2

1
9
1

2
0
3

2
3
3

2
7
4

3
0
0

3
0
9

3
2
0

3
3
4

3
4
4

3
6
3

3
8
1

3
8
9

4
3
5

4
5
3

Load test progress

R
e
s
p
o
n
s
e
 t
im
e
,
in

s
e
c
o
n
d
s

Figure 18: Response time for objects’ requests tested with 40 concurrent users

The next table reveals the data used to construct the figures above.

Concurrent
Users

Average
Response
Time

Max Response
Time

Standard Deviation of the
Avg. Response Time

5 3,30 25,30 0,085

10 5,50 29,20 0,162

20 9,14 50,60 0,894

30 14,10 70,10 1,948

40 17,70 92,30 0,725

50 22,01 117,90 1,386

75 34,40 176,60 2,502

100 71,90 342,50 3,328

Table 5: The results of the load test

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

45

Let’s look at the operations / pages, which are the slowest. As could be foreseen,

the order does not change with the increasing load. The following figures represent the

numerical values for the load test with 40 concurrent users.

Page Type

Average Response
Time

(in seconds)
Search 73,8
Object request by user from
cluster 2. 22,4
Object request by user from
cluster 1. 14,9
Log in 5,7
Start page 0,7
Log out 0,3

Table 6: Average response time per page type

The following figure visualizes the data from the table above.

Average Response Time per Page Type

0

10

20

30

40

50

60

70

80

Search Object

request by

user from

cluster 2.

Object

request by

user from

cluster 1.

Log in Start page Log out

Page Type

A
v
e
ra
g
e
 R
e
s
p
o
n
s
e
 T
im
e
,

in
 s
e
c
o
n
d
s

Figure 19: Average response time per page type

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

46

 The load test performed has been purely black box testing. So, the internal

implementation of the system to the large extend is unknown. Nevertheless, analyzing the

results, some decent assumptions can be made. Let’s have a look at each of the pages and

try to surmise the reasons explaining the results derived:

• The “Log out” page and the “Start page” apparently do not need to execute
any database queries and are very fast even when the load is high.

• The “Log in” page needs to execute at least one database query to check
whether the password for the username entered is correct. And probably some

more to apply corresponding roles and rights system for the user. The table

holding the users’ data is very small and presumably is indexed properly. The

average delay exceeds 5 seconds, which means that even very simple database

queries are very slow when the load is significant. This might be due to the

database’s configuration having a limited queries’ throughput.

• The pages displaying requested objects to the users from both clusters are
naturally slower than the “Log in” page, because the data is being taken from

the larger tables, access policies are to be checked, and the links to the related

objects have to be displayed, which requires making multiple database

queries.

• The “Search” page is currently the slowest. The maximal response times are
always contributed by the requests of the search pages. This page is too slow

even when the load on the system is minimal. This might be quite easily

explained. The search page looks for all Classifier, which names include a

certain keyword. This means the database query must run over a table with

several thousand rows, and check each (presumably) not indexed field with

the LIKE-type queries. Moreover, the search page counts all the matching

rows, and (by default) displays the list of the first 20 objects, with their related

links. It means that if the keyword is included into the names of at least 20

classifiers (e.g. “Präsident”), the number of “logical queries” which need to be

executed might be at least 60. Of course, the real number of the queries

depends on their complexity, database structure and the way to match data in

different tables, but deriving the data about 20 classifies is expensive from the

perspective of the resources consumption.

It is known, that every 2
nd
 user from the cluster representing “users looking for

something concrete” is using the search functionality once within his/her session. So,

even with the small load, that kind of user might need to spend around 15-20 seconds

waiting for the results of the search page.

Overall, considering the current number of users using the system, the

performance of the system might be sufficient, except for the very slow and heavy search

page. The search page could be changed to contain fewer references to the related

objects. Since most users use the default settings, the default behavior could also be

changed to include less functionality.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

47

6. Summary and Future Work
This chapter gives a brief summary about the both theoretical and practical parts of work,

as well as a view on a future work.

6.1 Summary

The goal of this study was to analyze the techniques for the performance

improvement of a web-based software system by analyzing its users’ behavior and

performing an adequate load test. The study described different ways to collect and

interpret the information about the system’s users, which is essential for the load test.

Two Java programs have been developed for this purpose within the practical part

of the work: the first one to parse the available WEL log files and identify browsing

behavior of the users (“LogFilesAnalyser”), and the second one (“ClusterGenerator”) to

perform cluster analysis over the collected data. Arranging users into 6 clusters allowed

for judgments about different types of users and the functionalities of the system they use

more frequently. Four clusters have been intentionally left out from the further stages of

preparation to the load test, because they represented too small groups of users (around

6% in total), who’s behavior did not affect the performance of the system much. The

behavior of the users from 2 major clusters has been analyzed more thoroughly. It

appeared to be that users from one of the clusters tended to look for something concrete,

while the users from another cluster preferred to browse around the system mainly.

Further, all conceptual stages of a load test have been analyzed. A number of load

testing tools has been reviewed and evaluated. A free open source load testing tool

JMeter has been chosen for the needs of the load test of the Warburg Electronic Library

system. This tool provided simple means to meet WEL load test requirements. This is

mainly related to the ability of using big amounts of variable data, which was needed to

simulate WEL users accessing different types of objects with different degree of their

interrelation’s complexity. To generate corresponding “browsing paths” for simulated

users, another Java program (“TestPathGenerator”) has been developed.

After that an adequate load test has been designed, configured and executed. The

results have revealed the performance of the Warburg Electronic Library system under

different loads (different number of concurrent users). The respective dependency

between a concurrent number of users and the average server’s response time has been

identified.

The following figure summarizes the practical part of the study, showing the

sequence of the interactions between different constituents involved into the performance

of the Warburg Electronic Library’s load test.

A
u
th
o
r:

S
er
g
ei
 P
av
lo
v

T
o
p
ic
:
 U
se
r
C
lu
st
er
in
g
 a
n
d
 L
o
ad
 T
es
ti
n
g

P
ag
e:

4
8

F
ig
u
re
 2
0
:
S
eq
u
en
ce
 d
ia
g
ra
m
 d
ep
ic
ti
n
g
 i
n
te
ra
ct
io
n
 b
et
w
ee
n
 d
if
fe
re
n
t
co
n
st
it
u
en
ts
 r
e
q
u
ir
ed
 f
o
r
th
e
lo
a
d
 t
es
t
p
er
fo
r
m
a
n
ce
.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page: 49

6.2 Future Work

The load test serves for measuring performance. The executed load test has

revealed several directions for potential performance improvement. A performance test

might be developed from the current load test in future, allowing for the evaluation of the

effectiveness of the system’s improvements and the correctness of the assumptions made

in this study regarding the bottlenecks.

To perform the load test on the WEL system, several loosely integrated

“components” have been used. This is suitable because all components can be replaced

by other ones if needed. But this also introduces some limitations, requiring some manual

work to be done to adopt data from one interface to another. In case load tests are to be

performed repeatedly, better integration of the components might be desirable. That

would decrease the time needed for one full load test cycle. This is not an easy task since

each software project has own unique requirements and limitations. Nevertheless, some

steps for performing an adequate load test, which would only have system usage logs and

a minimal human intervention as an input could be done.

The software programs and approaches developed in this study perfectly suit the

needs of the Warburg Electronic Library’s load test. However, the WEL system is quite

specific in some aspects. For instance, all the pages (except very few) are referred by a

unique object id. The log files only contain a sequence of object ids user accesses at

specific moments of time. The structure of most software systems with web

presentational layer is definitely different (the log files normally contain various URLs

with various number and character of parameters accesses by users). The extensions to

the developed programs supporting different types of logs, clustering algorithms, and

load testing tools might be added. That would make the approaches used in this study

more general and more widely applicable for testing other software projects.

The load testing tool JMeter has been an optimal choice for the needs of WEL

load test, but it lacks a convenient automated approach for measuring system

performance with different number of concurrent users in the system. JMeter, being a free

open source software, could be enhanced to be more convenient for frequent use.

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

50

Appendices

Appendix 1: Sample WebUnit program load-testing the WEL

Class SimpleLoadTest

/**

 * This simple program shows how the load test can be conceptually performed with

 * WebUnit.

 */

package project_work.load_test;

import com.zeborg.webunit.*;

import com.zeborg.webunit.util.*;

import java.io.*;

/** This simple example opens WEL site, logs in, and navigates around a little.*/

public class SimpleLoadTest

{

 static final int NUMBER_OF_CONCURRENT_USERS = 3;

 static final String login_username = "dummy";

 static final String login_psw = "dummy";

 static final String URL = "http://www.welib.de";

 public static void main(String[] args)

 {

 // initialize; set properties

 String webEnvVarName ="zeborg.webunit.msvm.cp";

 if (System.getProperty(webEnvVarName) == null)

 {

 File curDir = new File(".");

 File libDir = new File(curDir, "../lib");

 File rmijar = new File(libDir, "rmi.zip");

 File msJar = new File(curDir,"../webunit-ms.jar");

 String val = rmijar.getAbsolutePath() +";" + msJar.getAbsolutePath();

 System.setProperty(webEnvVarName,val);

 }

 // launch 'NUMBER_OF_CONCURRENT_USERS' threads

 WELThread[] threads = new WELThread[NUMBER_OF_CONCURRENT_USERS];

 for (int i = 0; i < NUMBER_OF_CONCURRENT_USERS; i++){

 threads[i] = new WELThread(URL, login_username, login_psw);

 }

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

51

 }

}

Class WELThread

package project_work.load_test;

import com.zeborg.webunit.*;

import com.zeborg.webunit.util.*;

import java.io.*;

import java.lang.Thread;

/**

 * This class is a Thread for accessing WEL start page, logging in,

 * and browsing around a little bit.

 */

public class WELThread implements Runnable

{

 static int threads_number = 0;

 static long total_delay = 0;

 static long page_views = 0;

 String URL, login_username, login_psw;

 long previous_timestamp = 0;

 int this_thread_number = 0;

 // Constructor, sets few properties to access WEL

 RequestThread(String URL, String login_username, String login_psw){

 this.URL = URL;

 this.login_username = login_username;

 this.login_psw = login_psw;

 this_thread_number = threads_number;

 threads_number++;

 Thread t = new Thread(this);

 t.start();

 }

 // Thread's executable method

 public void run()

 {

 try

 {

 WebClient wc = null;

 try

 {

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

52

 // the following line will initialize the IE browser

 wc = DefaultWebFactory.getFactory().newWebClient();

 // request the WEL start page

 register_pageview("Start");

 wc.openPage(URL);

 WebResponse currentPage = wc.getCurrentState();

 // measure the response time

 register_pageview("Show Start Page");

 // find the log-in link (the image 'zugang.gif') & click it!

 currentPage.getLink("zugang.gif", WebTag.FIND_CONTAINS).click();

 currentPage = wc.getCurrentState();

 register_pageview("Go to Login Page");

 // now log in!

 WebTextField username = (WebTextField) currentPage.getRootTag() .

findFirst("name", "user", WebTag.FIND_EQUALS, WebTextField.class);

 username.setValue(login_username);

 WebTextField password = (WebTextField) currentPage.getRootTag() .

findFirst("name", "password", WebTag.FIND_EQUALS, WebTextField.class);

 password.setValue(login_psw);

 // normally we would click a submit button, but as WEL does not have it,

 // contruct a GET request.

 WebForm form = currentPage.getFormWithName("loginform");

 String form_action = form.getAttribute("action").getValue();

 String form_submit_url = URL + form_action + "?user="

+ login_username + "&password=" + login_psw;

 Thread.currentThread().sleep(5000);

 // "submit" log in page

 wc.openPage(form_submit_url);

 // get the page

 currentPage = wc.getCurrentState();

 register_pageview("Perform Login");

 // go to the list of libraries (categories)

 currentPage.getLink("img/biblio.gif",

 WebTag.FIND_CONTAINS).click();

 currentPage = wc.getCurrentState();

 register_pageview("List Libraries");

 Thread.currentThread().sleep(2000);

 // go to the list of libraries (categories)

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

53

 currentPage.getLink("September", WebTag.FIND_CONTAINS).click();

 currentPage = wc.getCurrentState();

 register_pageview("Show ClassifierIndex");

 Thread.currentThread().sleep(3000);

 currentPage.getLink("Afghanistan", WebTag.FIND_CONTAINS).click();

 currentPage = wc.getCurrentState();

 register_pageview("Show a Classifier");

 // Sleeping 10s so that the browser window could be looked at.

 Thread.currentThread().sleep(10000);

 }

 finally

 {

 if (wc!=null) wc.close();

 }

 }

 catch(Exception e)

 {

 e.printStackTrace(System.out);

 }

 }

 /**

 * Outputs how much time has elapsed from the last call of this method

 * @return (long) delay from the last method's call

 */

 public long register_pageview(String sEvent_name) {

 long delay = 0;

 if (previous_timestamp > 1){

 page_views ++ ;

 delay = System.currentTimeMillis() - previous_timestamp;

 total_delay += delay;

 // display who much it took to retrieve page 'sEvent_name'

 System.out.println(sEvent_name + " [thread: "

 + this_thread_number +"];" + delay + "; ms.");

 // display the current average.

 System.out.println("Current Avg Delay ;"

+ (total_delay / page_views) + "; ms.");

 }

 previous_timestamp = System.currentTimeMillis();

 return delay;

 }

}

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

54

Appendix 2: Detailed Data about WEL User Clusters

Cluster ID 1 2 3 4 5 6

Description

Users
looking for
something
concrete

Browsing
users neglig. neglig. neglig. neglig.

percentage of
users 54,75 39,16 2,28 1,52 1,52 0,76

percentage of
objects accessed 37,49 53,3 1,25 5,72 0,91 1,33

percentage of
usage of relations 35,11 54,12 0,9 7,43 0,93 1,52

percentage of
going back 25,18 67,69 0,71 4,67 0,64 1,11

total users 144 103 6 4 4 2

total requests 6561 9329 219 1002 159 233

avg number of
sessions 7 7 5 3 1 2

avg session
objects accessed 7 12 7 78 40 58

avg session
follow links 5 8 4 72 29 48

avg session
usage of search 1 0 2 1 0 1
avg session
usage of search
for card 0 0 1 0 0 0
avg session
usage of card
chain 0 0 0 2 0 1

avg session
going back 1 3 2 21 11 18

avg session
reaccessing card 0 0 0 2 0 0

avg session
reaccessing
classifier 1 1 1 14 4 11

avg session
access of
classifierIndex 1 3 2 5 10 9

avg session
access of card 1 1 2 30 1 5

avg total objects
accessed 45,56 90,57 36,5 250,5 39,75 116,5

avg usage of
relations 30,77 66,31 18,83 234,5 29,25 96

avg usage of
search 5,14 3,6 10 2,75 0,25 3

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

55

avg objects not
identified 5,47 24,85 1 1,5 2 11,5
avg search a
Card 1,79 1,5 5,67 0 0 0

avg search
classifier 3,02 1,9 2,33 2,5 0,25 3

avg search
hierarchicalExtent 0,33 0,2 2 0,25 0 0

avg usage of
specialization 9,47 28,49 2,83 39 10,75 40,5

avg usage of
classification 5,84 5,14 3,67 73,75 1,25 11

avg usage of
classification
fromPic 2,73 1,5 1,5 34,75 0 4

avg usage of a
Card chain 0,45 0,88 0,5 6,5 0 2

avg usage of
classification
hierarchical 1,9 4,4 1 29,5 1,75 0

avg usage of
affiliation 9,73 25,11 8,33 24,5 15,5 38,5

avg usage of
aggregation 0,49 0,57 1 26,5 0 0

avg usage of
aggregation
reverse 0,16 0,23 0 0 0 0

avg access of
classifierIndex 9,65 20,66 7,67 13,25 10,25 17,5

avg access of
classifier 25,4 57,87 15,5 107,3 26,5 88

avg access of
hierarchicalExtent 2,39 4,83 3 29,75 1,75 0

avg access of a
Card 8,13 7,2 10,33 100,3 1,25 11

avg going back 11,8 44,35 8 78,75 10,75 37,5

avg reaccessing
classifierindex 3,94 13,42 2,67 8,5 6,75 14

avg reaccessing
classifier 6,35 26,67 3,83 54,25 4 23,5

avg reaccessing
hierarchicalExtent 0,56 2,61 0,83 6,5 0 0

avg reaccessing
a Card 0,08 0,04 0,07 2,16 0 0

- Java code to group users into clusters

- SQL queries to manipulate data from cluster analysis(?)

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

56

References

1. Apache web site http://httpd.apache.org/docs/1.3/logs.html#accesslog

http://httpd.apache.org/docs/1.3/mod/mod_log_config.html

2. Cheng, Yu-Chung, Hoelzle, Cardwell, Savage, Voelker: Monkey See, Monkey

Do: A Tool for TCP Tracing and Replaying. University of California, USA,

2004

3. Cluster analysis http://en.wikipedia.org/wiki/Data_clustering

4. Cluster analysis http://www.statsoft.com/textbook/stcluan.html

5. Definitions and explanations of different types of server tests

http://www.keylabs.com/faq.shtml

6. Elbaum, S., Karre, S., Rothermel, G.: Improving Web Application Testing with

User Session Data. Oregon State University Corvallis & University of Nebraska

- Lincoln, USA, 2003

7. Hendrickson, Elisabeth, Aveo Inc: Stress testing load on a server. International

Conference On Software Testing Analysis & Review, CA, USA, 2000

8. How to stress or load test

http://wiki.rubyonrails.org/rails/pages/HowToStressOrLoadTest/versions/1

9. Mobasher, B., Cooley, R., Srivastava, J.: Creating Adaptive Web Sites Through

Usage-Based Clustering of URLs, University of Minnesota, Minneapolis, USA

10. Mobasher, Dai, Luo, Sun, Zhu: Combining Web Usage and Content Mining for

More Effective Personalization, Illinois, USA, 2000

11. Montgomery, C. Douglas, Runger C. George Applied Statistics and probability

for engineers III edition, 2002

12. Multivariate statistics http://folk.uio.no/ohammer/past/multivar.html

13. Netcraft’s “February 2006 Web Server Survey”

http://news.netcraft.com/archives/web_server_survey.html

14. Sandino, R., Giachetti, R.: Using Simulation Modeling to Predict Scalability of

an E-commerce Website. Florida International University, USA, 2001

15. Talagala, Nisha, Asami, Satoshi, Patterson, David: Usage Patterns of a Web-

Based Image Collection, University of California at Berkeley, USA.

16. Testing tool Alertsite http://www.alertsite.com/

17. Testing tool FunkLoad http://funkload.nuxeo.org/

18. Testing tool Httperf http://www.hpl.hp.com/research/linux/httperf/

19. Testing tool JMeter http://jakarta.apache.org/jmeter/

20. Testing tool Siege http://joedog.org/siege/

21. Testing tool SiteStress http://www.webmetrics.com/loadtesting.html

22. Testing tool Watir http://wtr.rubyforge.org/

23. Testing tool Webserver Stress Tool http://www.paessler.com/webstress/

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

57

24. Testing tool WebUnit http://webunit.sourceforge.net/

25. UML Series http://www.developer.com/design/article.php/2206791

26. Variance information http://en.wikipedia.org/wiki/Variance

27. Ward’s linkage http://www.statistics.com/content/glossary/w/wardslnkg.php

28. Web site test tools and site management tools

http://www.softwareqatest.com/qatweb1.html

29. White box vs. Black box testing

http://www-128.ibm.com/developerworks/rational/library/1147.html

Author: Sergei Pavlov Topic: User Clustering and Load Testing Page:

58

Declaration

I declare within the meaning of the examination and study regulations of the international

master program course Information and Media Technologies: this project report has been

completed by myself independently without outside help.

 City Date Signature

_____________ ___________ _______________

