

Runtime Invariants Checking
In Plain Old Java Object

Master Thesis

Submitted By :

Sanga Lawalata
kampret77@hotmail.com

Information And Media Technologies
Matriculation Number: 29946

Supervised by :

Prof. Dr. Ralf MÖLLER
STS - TUHH

Prof. Dr. Helmut WEBERPALS
Institut für Rechnertechnologie – TUHH

M.Sc. Miguel GARCIA
STS - TUHH

Hamburg, Germany
31 October 2006

i

Declaration

I declare that:

This work has been prepared by myself,

all literally or content-related quotations from other sources are clearly pointed out,

and no other sources or aids than the ones that are declared are used.

Hamburg, 31 October 2006

ii

Table of Contents

Declaration...ii

Abstract...v

1 Introduction..1
1.1 Objective..2
1.2 Structure Of The Work...2

2 Rule Based System..3
2.1 Inefficient solution...4
2.2 Rete Algorithm...4

2.2.1 Preliminary Rete Algorithm..4
2.2.1.1 Data Type..4
2.2.1.2 Rule Compilation..6

2.2.2 Rete OO...7
2.2.2.1 Data Type..7
2.2.2.2 Rule Compilation..7
2.2.2.3 Rule Runtime...8
2.2.2.4 Rete Optimization..8

2.3 Why Use Rule Based System...10
2.4 When NOT To Use Rule Based System..11
2.5 Part of Rule Based System..11
2.6 ILOG Business Rule Studio..12

2.6.1 The Rule Engine..14
2.6.2 Rule...14

2.7 Summary...16

3 Object Constraint Language..17
3.1 Invariant..17
3.2 Octopus...18

3.2.1 Platform Specific Model...19
3.2.2 Generated Java code for association..19

3.2.2.1 LtoN Association..20
3.2.2.2 LtoOne Association..21

3.2.3 Octopus Code generator...21
3.2.4 Visitor Pattern..22
3.2.5 OCL Invariants Expression..23

3.3 Summary..27

iii

4 Run Time Invariant Checking...28
4.1 Invariant Checking in ILOG...28
4.2 Invariant Checking in POJO..29

4.2.1 Customer::ofAge invariant...30
4.2.2 Customer::cardSize Invariant ...31
4.2.3 Transaction::ofAge invariant...34
4.2.4 Production Rule Representation ..40
4.2.5 Eclipse Modeling Framework..41

4.2.5.1 Generated Java Code..41
4.2.5.2 EMF Adapter..41
4.2.5.3 Octopus Into Emfatic Plug-in..42

4.3 Summary..42

5 Summary And Outlook...43

Bibliography..xliv

Appendix A : The Royal And Loyal Class Diagram...............................xlvi

iv

Abstract

Model Driven Architecture introduces the concept of Platform Independent Model

(PIM), Platform Specific Model (PSM), and transformation tools that enable auto

code generation for a specific platform.

Now a days many MDA tools support these features using UML and OCL as a

modeling language. A software developer can model the business objects, business

rules and generate the implementation codes. Especially in Plain Old Java Object

(POJO), business rules are translated into invariant checking method that must be

explicitly called to ensure business object consistency. Run-time invariant checking is

highly needed to ensure business objects consistency during the business object life

time.

In modeling level, transformation level is actually mapping PIM into PSM that holds

its own constraints. In term of DSL, both PIM and PSM must achieve well formed

syntax. Such well formed-ness can be tested at the IDE level. An effective and fast

run time checking is thus needed to check whether each created DSL model meets

such constraints.

Run time checking in POJO is presented together with advantages and disadvantages.

Later the Rete algorithm is introduced to make run time checking more efficient and

effective.

v

1 Introduction

Object oriented (OO) approach has been widely used to produce software systems that try to

fulfill the business requirements. In OO analysis phase, a software developer creates the

abstraction view of the business requirements (problems to solve) which results in business

objects and business processes. Sometimes, inside the business objects and processes, there

are constraints that must be fulfilled. These constraints are called business rules. The abstract

view of the systems is known as model and the process is called modeling (these two terms

are much more emphasized in Modeling Driven Architecture - MDA). Later a software

developer takes the model and makes the implementation of the model based on the

programming languages and the chosen tools.

Even though the Unified Modeling Language (UML) is well known as a modeling language

to model the business requirements or problem domain (use case diagram), model entities

(class diagram) and their activities (activity diagram, sequence diagram), it has limitation to

model the business rules. For example, "A customer must have more than one customer card"

can be modeled using UML with association but UML can't define the business rule that

states "All customers must have valid customer cards". To respond to this need, Object

Constraint Language (OCL) is defined. With OCL invariant expression, the business rule that

states "All customer must have valid customer card" can be defined.

Currently, the new software development concept is emerging, known as Modeling Driven

Architecture. MDA is a model based software development that tries to increase the higher

level of design regardless of the implementation platforms. By defining Platform Independent

Model (PIM), a software developer can keep the abstraction of model. Using transformation

tools, PIM can be translated into Platform Specific Model (PSM) and later PSM can be used

to generate the platform specific code. Using UML +OCL as a modeling language and

supported by various modeling tools, MDA offers portability and interoperability in software

development.

Many MDA tools offer support or facility from model authoring to auto code generation.

Thats it, with these MDA tools, a software developer can model the business objects

(customer and customer card), business processes and also they can define the business rule

(customer must have valid customer card) using OCL inside the model. Not only transforming

the models into the specific platform code, checking that the models fulfill all the rules is also

important, this activity is know as consistency checking.

1

For example Octopus (as one of MDA tools) transforms the models which hold the OCL to

Java code [OCL03]. Consistency checking is performed by calling the generated OCL Java

code. Eclipse Modeling Framework (EMF) performs consistency checking after a user asks

for it [EMF03]. Meanwhile having the consistency checking during the run time is essential in

the large system or enterprise application which involves many business object and business

rules.

Meanwhile, the Rule base system offers a way to preserve the consistency during the object's

life time. Defining an inconsistency as a condition, a rule based system will try to

automatically find the object that match this condition and perform an action at run time. But

rule based system itself is bound to the specific platform and they have their own way to

express the rule.

1.1 Objective

At first time this project was aimed at invariant run time checking in EMF using the Rete

algorithm. But due to time limitation, the new task is defined which is the consistency

checking in POJO. The new transformation tools in Octopus will be defined.

1.2 Structure Of The Work

In the next chapter the overview of the-rule-based system will be explained and also which

components construct the Rule based system together with Rete algorithm. A proprietary rule-

based system and how it expresses an invariant will be explained briefly. Chapter 3 discusses

OCL (especially invariant expression), how Octopus takes the UML and OCL model to

generate Plain Old Java Objects (POJOs). Chapter 4 discusses the possibility to perform

runtime OCL invariant checking in POJO. One approach is by defining a new Rule meta

model and transformation tools and the other is by using the existing Octopus OCL meta

model with additional transformation processes. The EMF and its functionalities will be

presented for a future work, which enables the run time consistency checking in EMF.

The conclusions and opportunities for future work will be presented in chapter 5.

2

2 Rule Based System

Rule based system is a system that works continuously based on If {condition} then {action}

statement (rules) and a set of data (facts in the working memory). It examines which condition

inside the if statement can be fulfilled by the facts in the working memory. If rule's conditions

are fulfilled, it will perform the action part. The working memory is "a kind of database of

bits of factual knowledge about the world" [JES01] or something that holds all facts.

For example, there is a rule that says : "if there is a Customer object which attribute age is

greater than 18 available in the working memory, print to the console a message". This rule

can be expressed in iLog JRule rule syntax :

rule testAge {
when {

Customer(age>=18);
}
then {

System.out.println(
"Customer with age>18 is in working memory");

}
};

Because an action is based on the a condition which is fulfilled by a fact in the working

memory, this approach is known as the forward chaining method or data-driven method.

Below is another rule example that takes 2 conditions [Listing 1]. Rule testAge2 action part

will be run (fired) when the system finds a Customer object whose age >18 and a

CustomerCard object which is valid (or valid equals true).

rule testAge2 {
when {

Customer(age>18);
CustomerCard(valid==true);

}
then {

System.out.println("testAge2 rule is fired");
}

};

Listing 1: testAge2 in JRules rule

3

2.1 Inefficient solution

A rule-based system keeps a list of the rules condition (known as Left Hand Side/LHS) and

finds all facts that fulfill the LHS (this approach is called rules finding fact). Considering that

the facts can change, it means the system must recheck all the conditions in the LHS if these

new facts can fulfill one or more conditions in LHS which results in running RHS.

Considering testAge2 rule example, it takes time proportional to the product

NbCustomer . NbCustomerCard on each cycle where nbCustomer is the number of Customer objects

and NbCustomerCard is the number of CustomerCard objects. We could write the result RF P

where R is a number of Rules, F if total number of Facts, and P is the average

number of conditions per rule " [JES01].

2.2 Rete Algorithm

Rules finding facts approach is inefficient because the rule-based system has more or less

fixed set of rules even though facts inside the working memory change continuously. "And

also it is an empirical fact that in most rule-based system, rules inside the working memory

are also fairly fixed overtime. Although new facts arrive and old facts are removed as the

system runs, the percentage of facts that are changed per unit time is generally fairly small."

[JES01].

The Rete algorithm, invented by Dr. Charles Forgy [WFL01], is divided into two parts which

are rule compilation and runtime execution (which will be explained later). Compared to the

rule finding facts approach, Rete algorithm breaks down rules into a series of trees where each

nodes has memory to store facts so that if some facts are changed, the rule-based system just

needs to reevaluate the rule whose condition is affected by the changes and it doesn't

reevaluate all the rules. Rete algorithm also has mechanism to test the fact that is related with

specific rules and not testing all facts with all rules.

2.2.1 Preliminary Rete Algorithm

2.2.1.1 Data Type

At the earlier stage implementation, Rete was implemented without known object oriented

concept. A fact of "a customer whose age is 18" can be defined by (18). And another fact

john as customer's name and the two will be (18 john). This fact is an ordered fact because

4

(18 john) is different with (john 18). A fact structure is presented in order to represent the

facts regardless of their position. A fact structure consists of fact slot and fact template. A fact

slot defines a value or a fact such as 18 or john. Meanwhile a fact template is a groups of fact

slots. Below are two examples how to define the template and fact template to represent

unordered facts.

(Customer (name john) (age 18) (male true))

Listing 2: To define a fact using a template

(deftemplate Customer
 (slot name)
 (slot age)
 (slot male))

Listing 3: The Fact Template Structure

At that time, the rule language itself didn't define the data type. 18 (in age), john (in name),

true (is male) don't have a type of integer, string, or boolean. Even though the rule language

doesn't define the data type, but the underneath language in the rule engine has its own data

type [MXE01] . This is how to express testAge2 using fact template as a condition:

defrule testAge2(
AND(
 customer (name ?name) (age 18) (male ?male)
 customerCard (valid true)
))
=> "do some action"

Listing 4: testAge2 rule

defrule testAgeb(
AND(
 customer (name ?name) (age 20) (male ?male)
 customerCard (valid true)
))
=> "do some action"

Listing 5: testAge2b rule

5

2.2.1.2 Rule Compilation

In Rule Compilation, a rule is translated into Rete tree network which consists of RootNode,

OneInputNode or AlphaNode, TwoInputNode or BetaNode, and TerminalNode. All facts enter

the Rete tree network through a RootNode. From RootNode, every fact propagates into the

AlphaNode. A BetaNode receives two inputs from 2 AlphaNodes. A fact will be filtered inside

the AlphaNode based on the constrains. The constrains , in this case is a fact or an open

variable. AlphaNode compares the incoming fact if it matches AlphaNode constraints. Each

AlphaNode remembers all facts that match its constraint and pases the facts into the next

node. A BetaNode takes input from 2 AlphaNodes and does operations such as doing

comparation or AND operation, and passes all the facts down to TerminalNode. Let's take

testAge2 as an example and below is the Rete tree for testAge2.

(Customer (name john) (age 18) (male true))

(CustomerCard (valid true))

(Customer (name marry) (age 20) (male false))

(CustomerCard (valid false))

Listing 6: Facts presented in fact template

6

Figure 1: Rete Tree Network 1

Customer (age 18) Customer (age 20)CustomerCard (valid ?valid)

RootNode

AND 1 AND 2

Terminal Node 1 Terminal Node 2

When a fact of john (defined with a Customer fact template) enters the RootNode, it

propagates to AlphaNode Customer(age 18), CustomerCard(valid ?valid), and Customer (age

20). AlphaNode Customer(age 18) will compares the fact, first with its fact template name

(Customer), slot name (age), and slot value (18).If they are equal, AlphaNode Customer (age

18) saves this fact inside its AlphaMemory and sends the fact down to the BetaNode And1.

AlphaNode Cutomer (age 18) ignores the fact CustomerCard (valid true). The AlphaNode

CustomerCard (valid ?valid) takes all CustomerCard fact. ?valid is an open variable which

stores value to be used later. AlphaNode CustomerCard(valid ?valid) stores

CustomerCard(valid true) and CustomerCard(valid false) in its AlphaMemory and sends them

to the BetaNode AND1 and AND2.

BetaNode AND1 receives inputs Customer(name john) fact which is stored in AND1

LeftMemory , and CustomerCard(valid true), CustomerCard(valid false) facts which are

stored in AND1 RightMemory. Later, AND1 will send all the facts from AND1 LeftMemory

and RightMemory into TerminalNode. TerminalNode calls the action has been defined and

takes all facts from the above nodes.

In the Rete Network testOfAge2 [Figure 1], the node CustomerCard(valid? valid) sends

output into 2 BetaNodes. It is called sharing node which is one of the Rete optimization. It

will be explained in more details in the ReteOO.

2.2.2 Rete OO

2.2.2.1 Data Type

In the Rete OO implementation, instead of using fact template and fact slot, it adopts Object

Oriented data type which defines classifier, attributes, and value. In short fact template and

fact slot are similar with classifier and its attributes. Adopting this new data type, new types

of AlphaNode are introduced, such as ObjectTypeNode, LiteralConstrainstNode, etc.

2.2.2.2 Rule Compilation

In Rule Compilation, a rule is translated into Rete Tree networks which consists of RootNode,

AlphaNode , BetaNode and TerminalNode. All objects enter the network through the

RootNode. From there, they will go to the ObjectTypeNode. ObjectTypeNode will filter the

object based on its object type (or class/classifier). The system doesn't have to evaluate every

single node for every single object by attaching one or two input nodes after

ObjectTypeNode. When a new Customer object is inserted into working memory, it will not go

or propagate into nodes that aren't for Customer object.

7

AlphaNode is used to evaluate literal conditions. age>18 is a Customer literal condition or

literal constraint. If a rule has more than one literal condition for one object, there are a few

AlphaNodes that are linked to each other. One object must satisfy the first literal constraint

before it can proceed to the next AlphaNode. ObjectTypeNode which has been mentioned

before can be considered as a specialized AlphaNode [WFL01].

BetaNode is used to compare 2 objects which either a different or the same object type. It

receives the list or object for its right input and receives one object for its left input.

At the end of tree node for a rule is TerminalNode. It indicates that a rule's conditions have

been satisfied. It will put all the facts and the actions in the agenda to be executed later.

2.2.2.3 Rule Runtime

In Runtime execution, when an object enters into working memory, the rule-based system will

pass the object into the root node. The object will enter the ObjectTypeNode and propagates

down to the network. AlphaNodes will put in its memory all objects that matche its condition.

In the case of testAge2 [Figure 2], Customer's ObjectTypeNode (blue node) will store all

objects with class type Customer. The AlphaNode (red) will store all objects which match age

> 18 and valid == true. The BetaNode will store the list of Customer objects (taken as left

input and saved in its LeftMemory) and a single CustomerCard object as a right input (saved

in its RightMemory). If all conditions are satisfied (in this case AND), this BetaNode sends all

the objects to the TerminalNode. TerminalNode will add all the facts (all the objects) and the

action into agenda to be executed.

Because each AlphaNode and BetaNode has memory which stores all the objects, if there is a

change in an object value, e.g. an object Customer changes its attribute age into 10, then all

the nodes that store this object will update their memory and reevaluate the rule tree in where

there nodes are attached to.

2.2.2.4 Rete Optimization

Until now, many improvements have been done in Rete implementation. One of the

improvements is node sharing. For example, there are two rules : testAge2 and

customerAndTransaction. They share the same condition which is age>18. Instead of building

2 trees that reflect the 2 rules, AlphaNode (age>18) can be shared between the rule.

8

Node sharing optimization reduces the amount of memory used in each node because there is

just one AlphaNode age>18 instead of two AlphaNode age>18s, which store the same

information (one AlphaMemory). If an an object of Customer changes its age attribute,

AlphaNode age>18 must check in its memory if the object of Customer still satisfies the

age>18 constraint. It means that the rule-based system needs to update only one AlphaNode

age>18 memory and automatically reevaluate all rule trees where this Alpha Node age>18 is

attached to.

9

Figure 2: Rete Tree Network with Node Sharing

Customer CustomerCard Transaction

points > 1800

age > 18 valid == true

AND

System.out.println("testAge2 rule is fired")

AND

System.out.println("customerAndTransaction rule is fired")

rule customerAndTransaction {
when {

Customer(age>18);
Transaction(points>1800);

}
then {

System.out.println("customerAndTransaction rule is
fired");

}
};

Listing 7: customerAndTransaction rule in JRules

2.3 Why Use Rule Based System

If there are a Customer with age>18 and CustomerCard with valid==true as conditions and

someone wants to change the condition from age>18 into age<17 then he/she must change

the code and compile the application. In the enterprise application, if someone wants to

change the conditions because of some circumstances (usually because of additional

requirements or changes of business activities), changing the code and recompiling the

application cost additional resource and are inefficient. Using a rule-based system, someone

can just define a new rule or pull out the old rule, put it in the working memory without adding

or compiling the running application which is much more complex than a single Java class.

Rule based system is suitable for a system whose facts or conditions (or rules) are changing

all the time or dynamically.

The separation between rule (or business logic) and application logic is one of the reasons

why a software architecture considers rule based system. Look at the Java code snapshot

above [Listing 20]. Someone must know in Java programming language how to specify if

statement. Also, both objects Customer and CustomerCard are presented as variable cus and

cc. To get their attributes, their setters must be called. Compared to the testAge2 (written in

iLog), someone can easily define that testAge2 rule which needs a Customer and

CustomerCard object. A rule can be defined regardless of the programming language that

builds up the rule-based system. Using the specific characteristic of the programming

language, the Rete algorithm can be optimized to speed up the matching procedures to action

activation.

10

Separation between rule and application algorithm enables rule developer to concentrate on

developing rules without necessarily knowing the application logic or the platform specific

language. At this point, rules are considered as other assets for a company.

2.4 When NOT To Use Rule Based System

A rule-based system can't answer all problems. It is just a small solution of software

engineering. "Rule Engine (or rule-based System) is not really intended to handle work flow

or process executions" [DRL01]. Rule-based system can't guarantee that actions are processed

in sequences, because action part or RHS depends on LHS and LHS depends on the facts

(which match LHS condition) that are available in the working memory at that time. testAge2

conditions doesn't emphasize that a Customer object must be available earlier in the working

memory than CustomerCard. It can be that an object of CustomerCard is already on the

working memory first and later there is an object of Customer. testAge2 just states if there are

Customer (with age>18) and CustomerCard (valid==true) objects in the working memory, do

some actions (prints message to the console).

2.5 Part of Rule Based System

Based on its characteristics, usually there are several parts which build a rule-based system,

which are :

● Rules Management module, accesses the repository and loads the correct rules-set into

engine

● The agenda : tracks the prioritized rules selected by the inference engine during the

pattern-matching logic cycle.

● The working memory : contains the current state of facts that led to the current rules in the

agenda.

● Execution Context Module : represent the runtime environment for the inference engine's

execution. During the inference engine's execution cycle (logic cycle), an execution

context would hold a physical grouping between a specific instance of the agenda and the

working memory. More than one execution context can simultaneously exist and share the

same rules-set.

11

● The Inference Engine : will pass the data inserted in the working memory to the root node.

From there, it enters the ObjectTypeNode and propagates downs the network. Later it puts

rules into the agenda based on the facts in the working memory.

If a rule is executed, then more facts are added and inserted into the working memory to

be used later to match rules until the logic cycle's end, when no more rules can be

matched with facts from the working memory.

2.6 ILOG Business Rule Studio

JRule is one of the rule-based systems which implement Rete algorithm on their rule engine

and use Java as their programming language. Instead of just offering the rule based system, it

offers ILOG Business Studio for business rule authoring, testing and debugging in eclipse

environment.

The interaction between ILOG Business Rule Studio and JRules rule engine is the following:

● JRules rule engine executes the business rules created by business rule studio based on the

available business data.

● The Application logic is not aware of the business logic. It represents the business data to

the user and change the business data. Meanwhile the JRules rule engines can interact

with the application logic.

12

Figure 3: The DROOLS rule based system

● To create, test, and debug a rule, a rule developer uses the ILOG Business Rule Studio.

When the rules are ready, they will be deployed in the JRules rule engines. Rules can be

added when the rule engine is running. In the time a new rule is added into rule engines,

the new business rule will be applied automatically.

For these purposes, ILOG Business Rule Studio offers 2 perspective layouts: rule authoring

and rule debugging. Rule authoring layout helps rule developers to create a rule based on the

eXecution Object Model (XOM). Like Java programming perspective, it provides a rule

syntax checking, available objects, and auto completion. Rule debugging layout helps a rule

developer to debug which objects (or facts) are available in working memory, which rules are

fired, and the sequence of rule executions.

JRule rule engine consists of several parts which are inference engine/rule engine itself, the

rule, the working memory, agenda.

13

Figure 4: Scenario between ILog Business Studio, JRule rule engine, and Application

2.6.1 The Rule Engine

As a system that implements Rete algorithm and is built on Java, it has two main parts which

are actually a Java class. IlrRuleset is taking care of rule compilations and a Java class

IlrContext is the rule engine. It has a working memory, agenda, inference engine. But all of

them are transparent from users and rule developers.

// load the rule from stream
IlrRuleset ruleset= new IlrRuleset();
boolean parsed = ruleset.parseStream(stream);

// check if it is a correct set of a rules
if(!parsed) return;

// load the rule
IlrContext context = new IlrContext(ruleset);

// insert the rule
context.insert(obj1);

//run all the rule
context.execute();

Listing 8: How to use JRule rule engines in Java application (load rules, insert a fact, and
execute rules)

Rules are defined in a file (with .dl extension), read as a stream of text. A instance of

IlrRuleset will take the stream as the input and transform the text into a set of Rete tree where

each tree is represented by java class IlrRule.

A user inserts the object (or facts) through an instance of IlrContext, which puts the object to

the working memory. After execute(), IlrContext performs pattern matching and puts a set of

actions and facts into agenda to be executed.

2.6.2 Rule

Rules can be used to express the business rules. Considering business rules as conditions that

must be fulfilled first (e.g : Customer with age>18) before doing some actions (e.g : allow

transferring money), the business rule developers define all the conditions within a rule using

ILOG Rule Language which has a number of keywords and reserved words.

14

rule ruleName {
priority = propertyValue;
property propertyName = value1;

when { conditions }
then { actions }
else { actions }

};

Listing 9: JRule rule structure

An IRL rule has structures as follows :

● Header part, defines the rule name, the priority of the rule, and properties associated with

the rule.

● Conditions part (or LHS), defines conditions or a set of patterns that refers to the Java

object.

In our example, Classifier constraint (Customer) and Integer constraint (age>18) are the

conditions.

● Actions part (or RHS), defines the actions if conditions are either fulfilled (in then part) or

not fulfilled (in else part).

testAge JRule rule below is the example how to define business rule which is a Customer with

age > 18 as a condition.

rule testAge {
priority = 1;

when {
Customer(age>18);

}
then {

System.out.println(
"Customer with age>18 is in working memory");

// or transferring money
}

};

15

2.7 Summary

In this chapter, the idea behinds Rete rule-based system is presented. Rete algorithm is used to

speeds up the pattern matching based on the idea that just small rules are changed during the

system life time. Rules will be translated into Rete trees which consist of nodes that have

Alpha and Beta memories. These memories will remember all related facts and prevent not all

rules be reevaluate when there is some fact changes.

Rete algorithm has disadvantages. It consumes more memory resources because each node

has its own memory which stores the related facts. Node sharing is a way to reduce memory

size by sharing the same node between Rete trees.

16

3 Object Constraint Language

From object oriented analysis, the conceptual model (or subsequently just called "model") of

the system is defined. To define a model, a well formed language is needed so that this

modeling language can be interpreted by a computer. It must be well-defined in form (syntax)

and meaning (semantic).It is why a computer can't process the natural language. Today UML

is widely used as an modeling language to define a model of a system. Using UML, an

activity diagram can be used to model the dynamic part of the business requirements (such as

business activities) and class diagram can be used to define a static part of the business

requirement (business object).

But UML has limitations in expressing some business rules that are applied inside the model.

For example, UML can express "a customer must have more than one customer card" using an

association, but it can't express "a customer must have age>18" or "customer must have valid

customer card". UML can't define the preconditions before executing and postconditions

after executing an action either. In respond to these needs, Object Constraints Language is

defined. Together, UML and OCL make a model more robust.

3.1 Invariant

An Invariant defines the constraint inside the model that must be valid (or true) during the

constructor and completion of every public operations, but it is not necessary for it to hold

during the execution of operations [OCL01]. An invariant is a boolean statement that must

return true. If it returns false, it means the invariant is broken. This is how to express the

business rule "all customer must have valid customer card" in OCL using invariant statement.

context Customer
inv allValidCards : cards->forAll(valid=true)

Listing 10: allValidCard invariant

Starting with context, it shows in which class this invariant is applied. inv is the OCL keyword

for invariant, cards->forAll(valid=true) means that cards is a collection and each card must

have an valid attribute which is equal to true. Figure 5 shows the association between

Customer and CustomerCard classes.

17

3.2 Octopus

OCL Tool for Precise UML Specifications (or Octopus) is one of the modeling tools to model

the business objects and business rules using UML and to add OCL expression inside your

business models. Octopus is an eclipse plug-in, providing environment model authoring

using UML and OCL. It has not only syntax checking for UML and OCL languages but also

capabilities to generate the Java codes for the defined models.

Adopting Model Driven Architecture, Octopus has defined its own model of UML and OCL

expression. The models that defines UML and OCL expression are called meta-model that

means a model that defines another model. Octopus instantiated IClassifier (UML meta-

model) to express the term class in UML meanwhile a term class models a business object

called Customer.

These meta-models (UML and OCL meta-models) are independent from any platform. But

still these meta-model are expressed using Java language. Independent refers to the term

Classifier, Attribute, Reference (in UML), or Invariant (in OCL) not to the programming

language in which these models are written. These models (UML and OCL models) are called

Platform Independent Model (PIM). Octopus also has a Platform Specific Model to a targeted

platform which is Java. When generating a Java code from UML and OCL models, the code

generator takes the UML and OCL models as an input and creates the Java model and later

the Java code is generated from the Java model. The UML and OCL models are created

during the model authoring in eclipse.

Octopus consists of 3 main Java packages which are nl.klasse.octopus (PIM of OCL and

UML model), nl.klasse.octopus.javametamodel (PSM of Java Model) , and

nl.klasse.octopus.codegen (for Java code generation).

18

Figure 5: Association between Customer and CustomerCard classes (RandL)

As an open source MDA tools, Octopus can be extended easily. A software developer can

define other PSMs. For an instance, the project "Translation of OCL Invariants into SQL:99

Integrity Constraints". This project defines the new SQL PSM and transformation tools which

transform from OCL PIM to SQL PSM [OCL01].

3.2.1 Platform Specific Model

Octopus has Java Platform Specific Model. Java PSM is needed to map UML and OCL

models into Java code, which has platform specific technical details . Let's take the Customer

in RoyalAndLoyal (RandL) class diagram as an example. It has an age as its attribute and it

has a public visibility. In Java rather than setting the age visibility as public , it is better to set

age visibility as private and create the age setter visibility as public (public setAge()). The

PSM defines platform-specific technical details such as Class in Java and table in database so

that a bridge can be defined between 2 PSMs. For each class model in Java PSM, a bridge

creates the table model in DBMS PSM. In code level, a Customer Java class, a code bridge

will creates the Customer table in DBMS.

Even though it sounds promising, the differences of the target platform specifications can't

make all of the features mapped from one PSM into another PSM. A good PSM and platform

specific technical details in this case are very essential.

3.2.2 Generated Java code for association

UML defines an association between classes. In some case, an association is equal to

programming term a pointer. A pointer can be used to refer to another element. An element

can be either a single object or an n-object collection. But a referred element usually isn't

aware that another element holds a reference to it, meanwhile an association shows

awareness of 2 classes. Two way association means both classes hold the other sides

references. One way association means just one class holds the other class's references and it

is not vice versa.

Figure 5 shows two way association between Customer and CustomerCard classes in

generated Plain Old Java Object (POJO). Customer class has attribute cards which holds

references to CustomerCard objects, while CustomerCard class has attributes owner which

holds Customer's reference.

19

To express awareness, Octopus adds some additional methods to implement association in

UML models which are :

attribute set_()

L to 1 set_ ()

z_internalRemoveFrom_()

z_internalAddTo_()

L to N set <Role>(Collection)

z_internalRemoveFrom_()

z_internalAddTo_()

addTo_(collection)

addTo_()

removeFrom_(collection)

removeFrom_()

removeAllFrom()

Listing 11: Octopus Additional Methods

3.2.2.1 LtoN Association

Customer to CustomerCard is an example of LtoN association. For example there is an object

cus1:Customer wants to add cc1:CustomerCard into its list of cards (f_cards). cus1:Customer

will do the following steps :

1. cus1:Customer will check if another object refers to cc1:CustomerCard.

2. if there is an object that refers to cc1:CustomerCard e.g cus2:Customer ,

cc1:CustomerCard cuts its reference with cus2:Customer by calling

z_internallyRemoveFromCards(cc1).

3. cus1:Customer sets reference to cc1:CustomerCard.

4. cc1:CustomerCard sets reference to cus1:Customer as its new owner.

20

Figure 6: LtoN Sequence Diagram

3.2.2.2 LtoOne Association

CustomerCard to Customer is an example of LtoOne association. For example there is an

object cc1:CustomerCard wants to add cus1:Customer as its new owner. cc1:CustomerCard

will do the following steps :

1. If there is another object of Customer, e.g cus2:Customer refers to cc1:CustomerCard

then cus2:Customer cuts its reference to cc1:CustomerCard by calling

z_internallyRemoveFromCards(cc1).

2. cc1:CustomerCard sets reference into cus1:Customer as its new owner.

3. cus1:Customer will set reference into cc1:CustomerCard by calling

z_internallyAddToCard(cc1).

3.2.3 Octopus Code generator

The Octopus core does the following step :

1. It reads the UML files that define the UML models, parses and analyzes them if they

contain errors. If they are error free, it creates the UML models by instantiating UML

model classes and continues with step 2.

2. It reads the OCL files, parses and analyzes them against the UML models. If they are all

correct, the core adds the OCL expression in the UML model by instantiating OCL

Expression model classes and putting them inside the UML model (inside ClassImpl

object) based on OCL expression context. It there is an error, it shows an error message.

3. If a user changes the UML model, it goes to step 1 and if a user changes the OCL files, it

goes to step 2.

21

Figure 7: LtoOne Sequence Diagram

3.2.4 Visitor Pattern

To generate the Java code, first the code generator takes the UML model as an input and

generates the Octopus Java model based on the UML model. The code generator will add

OCL expression by updating Java model based on the OCL model. At the end of code

generation, the Octopus Java model will be translated into POJO.

The code generator consists of sub code generators which are controlled by

com.klasse.octopus.codegen.TransformationController. Taking an object of

com.klasse.octopus.model.IPackages (UML model) as an input, the code generator calls the

InvariantGenerator (as a sub code generator) to update the Java model based on the invariant

expressions.

Visitor pattern is used by code generator to update the Java model based on invariant

expression. The visitor will visit all the nodes in the Java model tree and performs process

when visiting the node. With Visitor pattern, the code generator can do a specific process

without changing the structure of Java model. All visitors implements IPackageVisitor

22

Figure 8: UML Meta-model Structure

interface which defines the visited Java model nodes such as Classifier (IClassifier), Package

(IPackage), Interface (IInterface), etc. The visitor implementation defines the process while it

visits the intended Java model node. In case InvariantGenerator, it defines an operation while

visiting a Classifier (IClassifier) node.

The InvariantGenerator checks if there is an invariant expression inside a Classifier

(IClassifier) node and if yes, the InvariantGenerator will take the OCL expression models and

update Java model for each OCL expression model through ExpressionCreator.

3.2.5 OCL Invariants Expression

An OCL expression, for example an invariant ofAge , is formed by a few instances of few

OCL expression model classes (to avoid ambiguity, these instances will be called just OCL

model). The OCL models are linked together and can be looked as a tree which is called an

Abstract Syntax Tree (AST).

ExpressionCreator translates an OCL Invariant expression into a Java class method that has a

conditional statement (if then else statement). The constraint of the invariant expression is

placed inside the condition statement. The method name is "invariant_"+invariant name (e.g

invariant_ofAge) or Octopus will generate the method name automatically if the invariant

name is not defined. This method throws an InvariantException if the invariant is broken.

The ExpressionCreator will check the type of OCL expression and call the specific

ExpressionCreator based on an order in Figure 10.

For example, there is an invariant named ofAge inside the Customer. The InvariantGenerator

will call ExpressionCreator and put the OCLExpression object as an input. ExpressionCreator

will call getAppliedProperty() in the OCLExpression object and based on OCLExpression

type, it will call the related expression generator and starts to update the Java model.

23

Figure 9: Abstract Syntax Tree of OfAge invariant

In ofAge invariant, started by VariableExp, ExpressionGenerator calls makeVariableExp and

subsequently calls getAppliedProperty() in OCLExpression object to get sets of applied

properties, which are AttributeExp, OperactionCallExp, IntegerLiteralExp.

All the sub creators return the Java codes that construct the conditional part of If statement.

VariableExp : self is translated into this in the Java code, AttributeCallExp : age is translated

into getAge(). OperactionCallExp: referredOperation :[<] istranslated into < and

IntegerLiteralExp : symbol:[18] into 18 .

24

Figure 10: OCL Metamodel In Octopus

Listing 12 shows the Java code generated by the Octopus code generator.

/** Implements self.age < 18
 */
public void invariant_ofAge() throws InvariantException {

boolean result = false;
try {

result = (this.getAge() < 18);
} catch (Exception e) {

e.printStackTrace();
}
if (! result) {

throw new InvariantException(this, message);
... message error

}
}

Listing 12: Java code for ofAge invariant generated by Octopus

Let's take another invariant example : "All card of customer must be valid" [Listing 13].

context Customer
inv allCards : cards->forAll(valid=true)

Listing 13: Customer::allCard invariant

For a more complex OCL Expression such as forAll() , ExpressionCreator calls

LoopExpCreator.

25

Figure 11: Abstract Syntax Tree of allCards invariant

LoopExpCreator creates the forAll1() method based on information stored inside IteratorExp

object [Figure 11] . It creates iteration with i_CustomerCard as a variable whose type is

CustomerCard and a loop operation which each loop, i_CustomerCard will compare its valid

attribute equals with true. This generated methods returns boolean because forAll in essence is

a boolean expression (either all or not all).

private boolean forAll1() {
Iterator it = this.getCards().iterator();
while (it.hasNext()) {

CustomerCard i_CustomerCard = (CustomerCard) it.next();
if (!(i_CustomerCard.getValid() == true)) {

return false;
}

}
return true;

}

Listing 14: Java code for forAll(valid=true) expression generated by Octopus

As a result, the forAll11 method is generated as an intermediate method to process the iterator

expression (in this case it is forAll1()) [Figure 13].

An the end, f invariant_allCards() calls forAll1() method to perform invariant checking.

/** Implements self.cards>forAll(
i_CustomerCard : CustomerCard | i_CustomerCard.valid = true)
*/
public void invariant_allCards() throws InvariantException {

boolean result = false;
try {

result = forAll1();
} catch (Exception e) {

e.printStackTrace();
}
if (! result) {

String message = "invariant allCards ";
message = message + "is broken in object '";
message = message + this.getIdString();
message = message + "' of type '" +

this.getClass().getName() + "'";
throw new InvariantException(this, message);

}
}

Listing 15: Java code of allCards invariant generated by Octopus

26

3.3 Summary

Octopus is one of MDA tools that use UML and OCL languages (PIM) to define business

models and business rules. Octopus has its own UML and OCL meta-model and Java PSM

meta-model. During the UML and OCL syntax parsing process, Octopus instantiates the

UML and OCL models based on the UML and OCL expressions. It uses visitor pattern to

visit and do process inside the specific visitable node (Java PSM). This pattern allows the

visitor classes to visit and do some process inside visited node without changing visited nodes

structures.

Some works have been done in Octopus to transform OCL invariant into domain specific

languages by defining new domain specific language PSMs.

27

4 Run Time Invariant Checking

The automatic business rule checking during runtime is highly desirable. Consider an

enterprise application which deals with many business objects holding a business rule, an

action can change the business object and make the business object inconsistent.

We need the way not only to detect the broken business rules, but also how to deal with the

broken business rules. In other words, a runtime invariant checking is necessary to preserve

the model's consistency.

Let's consider another example. In MDA we are dealing with PSM such as SQL. SQL-PSM

developers define SQL model so that an invariant can be mapped into the database layer.

SQL-PSM will be transformed into SQL statements. A user must run the generated SQL

statement into database and see if it works. PSM-SQL developers can define the constraints

inside their model in order to get an the error free or well formed SQL syntax. In this case,

runtime checking is needed to ensure that see the PIM-into-PSM transformation fits SQL-

PSM constraints. With run-time invariant checking, any model creation can be checked if it

fulfills its own constraints without going into the model implementation.

As one of MDA tools, besides generating Java code for the UML model, Octopus also

generates the Java code that reflects OCL invariant expressions. A user can call the

invariant_ofAge() method to check if this object breaks the ofAge invariant.

When a class is instantiated and it becomes an object in a runtime , users can change the

object attribute values and these changes can break one of the object constraints. Meanwhile

the constraints must be true or satisfied during its life time or must be consistent. It is why

consistency checking is needed.

The easier way is to call the checkAllInvariants() method after user changed any value. But it

will run all the invariant checking of an object regardless of the possibility that some

invariants might not be affected by the value change.

4.1 Invariant Checking in ILOG

A rule based system can be used to preserve the invariant during the object life time. An

invariant can be translated into a rule. JRule rule engines will try to find which rule can be

satisfied by the present fact in the working memory. ofAge invariant defines that all Customer

must have age < 18 . Inside condition part of testAge iLog rule, age>=18 is set as the reverse

28

condition of age <18, because we want to detect the Customer object that breakes this

invariant. Listing 15 is the example code of how to preserve the allCards invariant in JRule

rule.

The advantages of using property rule-based system are it is already a integrated system (from

rule authoring until rule testing), and it has implemented the highly customized Rete

algorithm, which can speed up the proses of rule matching. JRule also has the rule conflict

resolution in case one rule cancels another action activation from the agenda.

One of its disadvantages is that it has its own rule language (rule structure and special key

word). It is also bound into Java programming language. All facts must be presented in the

Java classes and a rule developer must have at least basic knowledge in Java.

rule allCards {
when {

?cus : Customer();
exists ?CustomerCard (valid==false;owner=?cus);

}
then {

System.out.println("allCards invariant is broken");
}

};

Listing 16: allCard Invariant in JRule rule

There is an option to use JRule rule engine to preserve the invariant. Using Octopus, all

business objects (UML model) which are represented in PIM can be translated into Java PSM

and later they are inserted into the JRule rule engines. The OCL invariant (PIM) can be

translated into Domain Specific Language (DSL) which is JRule rule using the transformation

tool.

4.2 Invariant Checking in POJO

Another approach is to deal with the transformation tools that transform PIM into PSM in

Octopus. Additional process or transformations are added inside ExpressionCreator especially

the InvariantGenerator.

The idea is to make object call the invariant checking method after any value change which

can break the invariant. In Java, a user can change the object attribute value through object

29

setter that calls the invariant checking method. For example setAge() method calls

invariant_ofAge() method automatically after the setAge() changed age value.

The DSL developers also can use Octopus to generated Java code for their DSL meta-models .

And these meta-model codes can be used by Octopus to transform PIM into PSM.

Transformation itself is instantiating DSL meta-model classes. After instantiated, these

objects automatically can call the invariant checking method to check their constraints. This

automatically invariant checking can help the DSL developer to get the "well-formed" syntax

based on the constraints inside the DSL meta-model.

In the same time in this project, the new rule meta-model based on the proprietary rule

languages will be defined to model the OCL invariant instead of using the defined OCL meta-

model. There is a pre-assumption that OCL expression has similarities with rule expression.

This step wants to see the possibility whether the OCL meta-model can be reused to define

rule in rule-based system (or let's say it is enough to use OCL language). A new

transformation tool will be defined to transform the Rule meta-model PIM into Java PSM.

The process will be started based on invariant expression from the simplest into the more

complex one.

4.2.1 Customer::ofAge invariant

ofAge invariant involves the age attribute and the Customer classifier. Inside rule, a classifier

can be used as a condition. Customer() means if there is an object of Customer in working

memory, the ClassifierExp is made to present that condition. AttributeExp::[age],

OperationExp::[>=] and IntegerExp::[18] express the rest of the expression.

Below is the Java code created by RuleGenerator.

public class Customer{

public void setAge(int element) {
if (f_age != element) {

f_age = element;
}
this.ofAge();

}

public void ofAge() {
if(this.getAge()<18){

System.out.println("ofAge is Broken");
}

}
}

30

The prototype of the rule meta-model is defined based on ofAge invariant. The Rule meta-

model object will be instantiated manually. The RuleGenerator, which implements

IPackageVisitor interface, takes the UML model and Java model as inputs. When visiting

IClassifier node inside IPackage, The RuleGenerator will call ClassifierCreator,

AttributeCreator, OperationalCreator, and IntegerCreator to update the Java model

Figure 12 shows the UML diagram of the rule meta-model

.

4.2.2 Customer::cardSize Invariant

The next invariant example is cardSize which involves an association between Customer and

CustomerCard classes.

context Customer
inv cardSize : cards->size()>=5

Listing 17: allCards Invariant

31

Figure 12: First of Rule Meta-model prototype

cardSize imposes that an object of Customer must have CustomerCard objects more than or

equal to 5. cards is the navigation from the Customer to the CustomerCard. Before adding a

new rule expression meta-model, this is the rule cardSize expressed in JRule rule.

rule cardSize {
when {

?cus : Customer();
?cards : Collect(CustomerCard (owner=?cus));
evaluate(?cards.size()<5);

}
then {

System.out.println("allCards invariant is broken");
}

};

Listing 18: cardSize invariant in JRule rule

A new VariableExp which refers to classfifier is defined. CollectExp defines collecting an

object based on ClassifierExp and AttributeExp. CollectExp always returns a collection.

EvaluateExp accomodates the expression that returns boolean. size() is expressed by

OperationExp.

Octopus generates the additional method to express the association. The degree of association

(toMany or toOne) influences the setter. toMany association creates two additional setters

which are addToXX() and removeFromXX()methods, while toOne association creates setXX()

method. The additional code which calls the invariant will be added inside these setters as

well as additional Octopus generated methods for association

(z_internalRemoveFromCards(), z_internalAddToCards()).

There is a case when an object of CustomerCard changes its owner, it potentially brakes the

allCard invariant. When changing its owner, the object of CustomerCard will call

z_internalRemoveFromCards() which will make the previous owner cut its reference with

current CustomerCard object and z_internalAddToCards() which will make the new owner

set a reference to the current CustomerCard object.

32

The following Java code is a set of methods with additional codes generated by

RuleGenerator :

public class Customer{

public Set collect_CustomerCard() {
Set tempSet = new Set();
for (Iterator it =

CustomerCard.allInstances().iterator();
it.hasNext();) {
 CustomerCard el = (CustomerCard) it.next();
 if (el.getOwner().equals(this)){
 tempSet.add(el)
 }

}
return tempSet;

}

public void cardSize() {
if(this.collect_Customer().size()>5){

System.out.println("ofCards is Broken");
}

}
public void addToCards(CustomerCard element) {
...

this.f_cards.add(element);
this.cardSize();

...
}
public void z_internalAddToCards(CustomerCard element) {

this.f_cards.add(element);
this.cardSize();

}
public void z_internalRemoveFromCards(CustomerCard element) {

this.f_cards.remove(element);
this.cardSize();

}
public void removeFromCards(CustomerCard element) {
..

this.f_cards.remove(element);
this.cardSize();

..
}

}

33

The rule meta-model will be updated with additional VariableExp, CollectExp,OperationExp

meta-models.

4.2.3 Transaction::ofAge invariant

In the last 2 attempts, a new Rule meta-model is defined and all related Rule expression

generators are made to translate Rule PSM into Java meta-model. After some efforts to model

the rule language, it comes to a (pre) conclusion that new defined rule meta-model goes like

the OCL meta-model or OCL meta-model can be reused in rule meta-model because still

there are some differences between a rule and an OCL expression.

In this approach, instead of defining a new meta-model, OCL meta-model will be used and

the same Java code will be produced and just the additional process in code generator will be

added.

For a run time checking for an invariants that involves association in two or more classes, a

non context object must navigate into the context class object and call the invariant checking

method from the context object.

context Transaction
inv ofAge : card.owner.age >18

Listing 19: Transaction::ofAge invariant

34

Figure 13: Rule meta-model prototype 2

If an object of a Customer changes its age attribute, it has to navigate to its context object,

which is an object of Transaction, and call the invariant checking method from Transaction

object. When navigating to the context class, the degree of association has to be considered. In

this case, an object of Customer must iterate over a collection of Transaction objects and call

the Transaction invariant checking method. Taking the OCL expression [Figure 14] as an

input, the updated InvariantGenerator will generate the additional code to do the navigation.

OCL expression has def expression to define an additional operation inside the UML model.

Meng Xue in his master thesis proposes "Back Navigation Algorithm" to generate a def OCL

expression from existing OCL invariant expression that involves the association.

This def OCL expression does the navigation to the context object and retrieves the context

objects [MXE01]. In short the back navigation algorithm implementation is a visitor that

visits all OCL invariant nodes, saves AssociationEndCallExp and AssociationClassExp, and

builds the back path navigation.

From the Transaction::ofAge OCL expression the new operations are generated inside def.ocl

file [Listing 20].

35

Figure 14: The Transaction::ofAge Abstract Syntax Tree

context randl::Customer
def : getContext_OfAge()

: Bag(Transaction)
= cards.transactions

context randl::CustomerCard
def : getContext_OfAge()

: Set(Transaction)
= transactions

Listing 20: def OCL expressions generated by back path navigation

Later by the Octopus ExpressionGenerator, these def operation is translated into the following

code in Java Customer class :

public class Customer{

public List<Transaction> getContext_OfAge() {
return collect1();

}

private List<Transaction> collect1() {
List /*(Transaction)*/ result =

new ArrayList(/*Transaction*/);
Iterator it = this.getCards().iterator();
while (it.hasNext()) {

CustomerCard i_CustomerCard
= (CustomerCard) it.next();

Object bodyExpResult =
i_CustomerCard.getTransactions();

result.addAll((Collection)bodyExpResult);
}
return result;

}
}

If an object of Customer changes its age attribute, it must call the getContext_OfAge() method

and iterate over the list of Transaction,and then call the Transaction invariant checking

method which is generated automatically by InvariantGenerator.

36

public void setAge(int element) {
if (f_age != element) {

f_age = element;
}
Iterator it = this.getContext_OfAge().iterator();
while (it.hasNext()) {

Transaction t = (Transaction) it.next();
t.invariant_ofAge();

}
}

Listing 21: setAge() with additional Transaction::ofAge invariant checking

The ExpressionGenerator will be extended to deal with the degree of association. This

generator will add additional code to call the invariant checking method over a collection or a

single object. The InvariantGenerator will call Java code creators based on OCL expression

to add Java code into Java model. Taking the same OCL expression, a new expression creator

(testCreator) uses the following algorithm to add the additional code inside the Java model.

many = false
makeExpression(OCLExp,invariantName){

If AssociationEndExp or AssociationClassEndExp
get the associated end variable name
get the other end association type (classifier or collection)

if classifier
construct Java code :

getContext_XXX().invariant_xxxx().
add code inside setter of variable name (plus additional
association methods)

if collection
construct Java code :

iterate over item from getContext_XXX()
each item do invariant_XXX()

add code inside setter variable name (plus additional
association methods)
many=true

If AttributeExp
if many

construct Java code :
iterate over item from getContext_XXX()
each item do invariant_XXX()

add code inside attribute setter
else

construct Java code :
getContext_XXX().invariant_XXX()
add code inside attribute setter

}

37

The invariant checking method will be called when there is a change in attributes and in the

attribute that maps association. These following methods will trigger

Transaction.invariant_OfAge() method :

● Transaction.invariant_ofAge()

● Transaction.setCard()

● CustomerCard.addToTransactions(),

● CustomerCard.removeFromTransactions()

● CustomerCard.setOwner()

● Customer.addToCards()

● Customer.removeFromCards()

● Customer.setAge()

Listing 22 shows generated Java code inside CustomerCard class.

public Set<Transaction> getContext_OfAge() {
return this.getTransactions();

}

Listing 22: additional method to retrieve the Transaction object as a context object

Listing 23 shows generated Java inside setOwner() method.

public class CustomerCard{
public void setOwner(Customer element) {

if (this.f_owner != element) {
if (this.f_owner != null) {

this.f_owner.z_internalRemoveFromCards(
(CustomerCard)this);

}
this.f_owner = element;
if (element != null) {

element.z_internalAddToCards(
(CustomerCard)this);

}
}

/** the additional code **/
Iterator it = this.getContext_OfAge().iterator();
while (it.hasNext()) {

Transaction t = (Transaction) it.next();
t.invariant_ofAge();

}
/** end additional code**/
}

}

Listing 23: additional Java code inside setOwner()

38

public class CustomerCard{

public void z_internalRemoveFromOwner(Customer element) {
this.f_owner = null;

/** the additional code **/
Iterator it = this.getContext_OfAge().iterator();
while (it.hasNext()) {

Transaction t = (Transaction) it.next();
t.invariant_ofAge();

}
/** end additional code**/
}

public void z_internalAddToOwner(Customer element) {
this.f_owner = element;

/** the additional code **/
Iterator it = this.getContext_OfAge().iterator();
while (it.hasNext()) {

Transaction t = (Transaction) it.next();
t.invariant_ofAge();

}
/** end additional code**/

}

Listing 24: Additional Java code inside Octopus additional methods

Customer and CustomerCards objects must navigate to the context object whose type is

Transaction, and from this Transaction object, it will navigate to Customer object through

CustomerCard to check if the attribute age is greater than 18. Even though it has not been

proven yet (statistically or mathematically), this approach is inefficient. It must do navigation

back and forward through the object to check if the invariant is broken.

In rule based system that implements the Rete algorithm, only the LiteralNode that stores the

condition age<=18 will update its AplhaMemory. For example an object of Customer changes

age attribute from 17 (which breaks the transaction::ofAge invariant) to 20. The LiteralNode

will discard this from its AlphaMemory. Later LiteralNode [age<=18] will pass all objects in

its AlphaMemory to all nodes below which triggers rule reevaluation.

Another disadvantage of implementing OCL invariant directly into code is that it can't handle

additional action if there is any inconsistency. In Octopus generated code, a invariant method

simply returns the InvariantException. It means a system that uses this class must do

exception handling (with try catch statement) to deal with inconsistency. By Applying rule-

based system, inconsistency can be handled easily inside action part. The application and the

39

rule itself are loosely coupled. In practice, a software developer can add new rules during

runtime or remove the old rules during the runtime. Compared to with Octopus invariant

checking code, a new code must be generated based on the newly defined invariant and the

system must use the new Java classes and remove the old ones which do not apply the new

invariant.

4.2.4 Production Rule Representation

Object Management Group has proposed the draft of the Production Rule Representation

(PRR), which addresses the need for modeling the production rule. This draft specifies that

the target platform as a rule based system that uses forward chaining method specially

implementing Rete algorithm.

One of the purposes of this draft is to speed up the adoption of production rule component in

every software system and allow interoperability between rule based system implementations.

Stating that UML isn't enough to define the business rule, it argues the need of constraint

expression (OCL) to represent business rule. Below is the PRR meta model suggested by

OMG :

From Figure 15, OCL expression is used as filters to represent the constraints. This PRR

supports the pre-assumption that OCL expression can be reused inside rule meta-model

instead of defining a completely new rule meta-model.

40

Figure 15: Production Rule Representation

4.2.5 Eclipse Modeling Framework

Eclipse Modeling Framework is Java framework and code generation facility for building

tools and other applications based on structured model [EMF01]. As an MDA tool, it helps

software developers to define their software structure based on model and generates the Java

code in an efficient, correct, and easily customized manner. A model can be defined using the

annotated Java, XML, and XML Meta-data Interchange (XMI).

As a framework, EMF offers several capabilities to help in modeling software, which are

serializing from and into XML file, graphically editing and manipulating models. It offers run

time capabilities such as change notification, persistence support, and reflective API.

4.2.5.1 Generated Java Code

EMF divides the generated Java code based on models into three packages : xxx (stands for

the name of the model package like randl), xxx.impl, xxx.util. The util package consists of the

Adapter Factory and Adapter classes. And the xxx package contains all Java interfaces that

contains the setter and getter for each attribute and reference of the corresponding model

class [EMF01]. The xxx.impl consists of all implementation classes that extend EObject which

has capabilities to participate in EMF notification framework.

4.2.5.2 EMF Adapter

EMF adapters are what other programing language frameworks called observer. It is called

Adapter because instead of observing changes, it can extend the model behavior without

changing the model structure [EMF01]. A generated Java class can be attached with an

adapter. An additional behavior can be added inside the adapter,, that will responds if there

are changes inside attached class. While generating the Java code, EMF also generates the

AdapterImpl which has public void notificationChanged(Notification notification) method.

The additional behaviors are implemented inside the adapter implementation class which

extends the AdapterImpl class. Beside observing changes, an adapter can also find out what

has been changed such as age attribute in Customer class from Notification class which is

passed as an argument in notificationChanged method [Listing 25].

41

public class CustomerAdapter extends RandlAdapterFactory {
public void notifyChanged(Notification notification){

switch (notification.getFeatureID(Customer.class)){
case RandlPackage.CUSTOMER__AGE:

if((Integer)notification.getOldValue()<=18)
System.out.println(

"Customer::ofAge is broken");
}

}
}

Listing 25: CustomerAdapter example in EMF

4.2.5.3 Octopus Into Emfatic Plug-in

Emfatic format is human-readable textual notation for EMF model. In essence, it represents

ecore model in textual format. Works to transform invariant from Octopus into Emfatic have

been developed [JIB01]. This project extends Octopus into Emfatic plug in to include OCL

expression, such as invariant into Emfatic annotation. Using JET, the Java code that reflects

the OCL invariant expression, derived attributes and references, and operations can be

generated without requiring any post generation custom code [ECL02].

4.3 Summary

The run-time checking can be done in POJO. An extended transformation tools (in Octopus)

will create additional methods for associations and doing navigations to the context class.

This approach is inefficient because non context object must navigate to the context object

and call the invariants checking from context object.

In contrast, EMF offers some features through its framework. There is a possibility to

implement Rete algorithm to speed up the runtime model checking based on the model

constraints.

OCL meta-model can be reused inside the rule meta-model to express rule constraints or

conditions. It saves developer efforts to define a completely new rule meta-model.

42

5 Summary And Outlook

MDA emphasis high level abstraction or modeling throughout the software development

process. Not only well formed languages like UML and OCL are needed to create a model but

also tools that support the modeling process. From model authoring to transformation

between PIM and PSM are done automatically by modeling tools. A precise model is needed

to accommodate the modeled system and precise model makes the transformation possible.

PSMs have their own constraints and transformation from PIM into PSM must confirm PSM

constraints. In many case, MDA tools don't offer run-time constrains checking while doing

transformation from PIM to PSM. The constrains checking usually must be done by running

the generated platform codes.

Run time constraints checking is highly desirable in order to know that the transformation

from PIM to PSMs meets PSM constraints immediately. It helps PIM into DSL

transformation to achieve "well formed syntax" in the transformation level without going into

specific DSL implementation platform. In business application, invariant runtime checking

guarantees that each business object meets its business rule and the system offers future

actions if there are business rule violations.

In this project, it is shown that runtime checking in platform specific code is inefficient

meanwhile a rule-based system which implements Rete algorithm offers capabilities to

perform runtime checking in better way. Using the proprietary rule-based system, OCL

invariant expression can be transformed into Rule DSL and UML model can be generated into

specific rule engine implementation platform. Another approach is to implement the Rete

algorithm inside the modeling tools such as EMF. Further works can be done by

implementing Rete algorithm inside MDA tools such as EMF. Octopus to Emfatic invariant

transformation and EMF notification framework offer support to the Rete implementation. So

that run-time checking can be done in the modeling level.

During the project, it is shown that the OCL expression has almost the same characteristic

compared with the rule characteristic and OCL expression has been used by Production Rule

Representation to express constraints. PRR tries to make meta-model for business rules and

uses OCL to define the constraints. In this case OCL meta-model can be reused into another

PSM like rule in rule-based system.

43

Bibliography

[CGW01] Modeling Rule-Based Systems with EMF.November. 2004. October. 2006.
[http://www.eclipse.org/articles/Article-Rule%20Modeling%20With%20EMF/article.html].

[DRL01] DROOLS Documentation.September. 2006. October. 2006.
[http://labs.jboss.com/file-
access/default/members/jbossrules/freezone/docs/3.0.3/html_single/index.html].

[ECL01] The Eclipse Modeling Framework (EMF) Overview.June. 2005. October.
2006.
[http://dev.eclipse.org/viewcvs/indextools.cgi/~checkout~/org.eclipse.emf/doc/org.eclipse.
emf.doc/references/overview/EMF.html].

[ECL02] Implementing Model Integrity in EMF with EMFT OCL.August. 2006.
October. 2006. [http://www.eclipse.org/articles/Article-EMF-Codegen-with-
OCL/article.html].

[EMF01] Budinsky. Frank, et all. Eclipse Modeling Framework: A Developer's Guide.
Addison Wesley, 2003.

[EMF02] Daly, Chris. Emfatic Language Reference (draft). 2004.

[EMF03] Implementing Model Integrity in EMF with EMFT OCL.August. 2006.
October. 2006. [http://www.eclipse.org/articles/Article-EMF-Codegen-with-
OCL/article.html].

[JAV01] Weiss, Mark Allen. Data Structure And Algorithm Analysis In Java. Addison
Wesley, 1999.

[JES01] Hill, E Friedman . Jess In Action. Manning, 2003.

[JIB01] Shidqie, A. Jibran. Conversion of Octopus UML Models Into Eclipse UML2
Models. Technische Universität Hamburg Harburg. 2006.

[MDA01] Kleppe Anneke, Jos Warmer, Wim Bast. MDA Explained: The Model Driven
Architecture™: Practice and Promise. Addison Wesley, 2003.

[MXE01] Xue, Meng. Prototype for Solving Consistency Problems in Model Engineering.
Technische Universität Hamburg Harburg. 2006.

[OCL01] Kleppe Anneke, Jos Warmer. Object Constraint Language, The: Getting Your
Models Ready for MDA, Second Edition. Addison Wesley, 2003.

44

[OCL02] Giese, Martin, Reiner Hähnle, Daniel Larsson. Rule-based Simplification of
OCL Constraints. 2004.

[OCL03] Octopus. October. 2005. October. 2006.
[http://www.klasse.nl/octopus/index.html].

[RET01] The RETE Algorithm.December. 2005. October. 2006.
[http://www.cis.temple.edu/~ingargio/cis587/readings/rete.html].

[RET02] Rete: Language And Mind.October. 2003. October. 2006.
[http://www.ai.mit.edu/courses/6.034b/recitation6.pdf#search=%22rete%20language%20a
nd%20mind%2BMIT%22].

[VNT01] Tedjasukmana, Veronica N. Translation of OCL Invariants into SQL:99
Integrity Constraints. Technische Universität Hamburg Harburg. 2006.

[WFL01] Explaining RETE.April. 2006. October. 2006.
[http://woolfel.blogspot.com/2006/04/explaining-rete.html].

[WIKI01] The Visitor Pattern.September. 2006. October. 2006.
[http://en.wikipedia.org/wiki/Visitor_pattern].

45

Appendix A : The Royal And Loyal Class Diagram

46

	1 Introduction
	1.1 Objective
	1.2 Structure Of The Work

	2 Rule Based System
	2.1 Inefficient solution
	2.2 Rete Algorithm
	2.2.1 Preliminary Rete Algorithm
	2.2.1.1 Data Type
	2.2.1.2 Rule Compilation

	2.2.2 Rete OO
	2.2.2.1 Data Type
	2.2.2.2 Rule Compilation
	2.2.2.3 Rule Runtime
	2.2.2.4 Rete Optimization

	2.3 Why Use Rule Based System
	2.4 When NOT To Use Rule Based System
	2.5 Part of Rule Based System
	2.6 ILOG Business Rule Studio
	2.6.1 The Rule Engine
	2.6.2 Rule

	2.7 Summary

	3 Object Constraint Language
	3.1 Invariant
	3.2 Octopus
	3.2.1 Platform Specific Model
	3.2.2 Generated Java code for association
	3.2.2.1 LtoN Association
	3.2.2.2 LtoOne Association

	3.2.3 Octopus Code generator
	3.2.4 Visitor Pattern
	3.2.5 OCL Invariants Expression

	3.3 Summary

	4 Run Time Invariant Checking
	4.1 Invariant Checking in ILOG
	4.2 Invariant Checking in POJO
	4.2.1 Customer::ofAge invariant
	4.2.2 Customer::cardSize Invariant
	4.2.3 Transaction::ofAge invariant
	4.2.4 Production Rule Representation
	4.2.5 Eclipse Modeling Framework
	4.2.5.1 Generated Java Code
	4.2.5.2 EMF Adapter
	4.2.5.3 Octopus Into Emfatic Plug-in

	4.3 Summary

	5 Summary And Outlook

