

__

Conceptual Content Management
Application Development by Means of

Storyboarding
__

Jolita Savolskytė

Submitted in partial fulfilment of the requirements for the degree

Master of Science in Information and Media Technologies.

supervised by:

Prof. Dr. Joachim W. Schmidt (STS)

Prof. Dr. Helmut Weberpals (TI6)

M.Sc. Sebastian Boßung (STS)

Institute for Software Systems

Hamburg University of Science and Technology

August 2006

Abstract

These days the union of two existing information systems or using one system to

complement the other with its specific features becomes a very common issue. The

first system does not have a mechanism to specify a user interface in the mode of

web applications; however the other system is a web application specification

language which allows to generate a prototype web application by means of

Storyboarding. Therefore, it would be beneficial to connect them and develop a web

application by means of Storyboarding.

The first approach is based on the objects which have both data and behaviour

whereas the web application entities are stored in the relational database. The goal of

this project is to map this two different data models by bridging the “impedance

mismatch”. For that, the mapping is defined which converts one data model into

another.

Declaration

I declare that:

this work has been prepared by myself,

all literal or content based quotations are clearly pointed out,

and no other sources or aids than the declared ones have been used.

Hamburg, 28 August 2006

Jolita Savolskytė

Acknowledgement

I would like to thank Professor Joachim W. Schmidt of Institute for Software
Systems (STS) for supervising my Master Thesis and Professor Helmut Weberpals of
Distributed Systems Department (TI6) for being the co-supervisor.

Special thanks go to M.Sc.Sebastian Boßung for the interesting topic. He was very
patient in guidance and providing advice during the project.

Thanks also to Alexander Bienemann of the University of Kiel and. Dr. Hans-
Werner Sehring for answering the questions about the project.

I am grateful to my fiancé Piotr for the inspiration and moral support he provided
throughout my project.

I would like to thank my mother and sister and all whose direct and indirect support
helped me completing my thesis in time.

Contents

List of Figures__ 7

List of Tables___ 8

1 Introduction __ 9
1.1 Motivation __ 9

1.2 Structure of this Thesis _______________________________________ 10

2 Conceptual Content Management Systems_____________________________ 11

2.1 Asset Definition Language ____________________________________ 12

2.2 ADL Compiler __ 13

3 Storyboarding__ 15
3.1 Overview of Website specification language SiteLang_______________ 15

3.2 The SiteLang database structure ________________________________ 18

4 Integration of Conceptual Content Management Systems into SiteLang _____ 22
4.1 Mapping CCMS data model to relational database schema ___________ 24

4.2 Mapping asset class member ___________________________________ 26

4.3 Mapping the content ___ 26

4.4 Mapping characteristics _______________________________________ 26

4.5 Mapping data types __ 27

4.6 Mapping inheritance structures _________________________________ 28

4.6.1 One inheritance tree one table _____________________________ 29

4.6.2 Each asset subclass to different table________________________ 30

4.6.3 Each asset class to its own table ___________________________ 30

4.6.4 Mapping to the generic table structure ______________________ 31

4.6.5 Comparing the mapping strategies _________________________ 32

4.7 Mapping relationships __ 33

4.7.1 Mapping one-to-one relationships __________________________ 34

4.7.2 Mapping many-to-many relationships_______________________ 35

___ 5

Contents___

4.7.3 Mapping recursive relationships ___________________________ 36

5 Mapping Implementation __ 37
5. 1 SiteLang XML specification___________________________________ 37

5.2 SiteLang XML Schema _______________________________________ 38

5.3 Mapping asset classes to SiteLang entities in XML format ___________ 41

5.3.1 Compilation ___ 41

5.3.2 Marshalling to the XML file ______________________________ 41

5.3.3 Adding the content to the XML file_________________________ 42

5.4 Mapping asset classes to the SiteLang database ____________________ 46

5.4.1 Symbol table __ 46

5.4.2 Mapping to the MetaTables table __________________________ 47

5.4.3 Mapping to the MetaComponents table______________________ 48

5.4.4 Mapping to the MetaAttributes table________________________ 49

6 Conclusions and Future Work ______________________________________ 50
6.1 Conclusions __ 50

6.2 Future work __ 51

Bibliography __ 52

Appendix A ___ 54

Appendix B ___ 59

___ 6

List of Figures

2.1: Representation of Asset Model... 11

2.2: Asset model definition example ... 12

2.3: Model compiler architecture... 14

3.1: Representation of the main storyboarding elements... 16

3.2: The structure of the part of the meta database.. 18

3.3: An example database structure of a business trip application (developed at the
University of Kiel) ... 21

4.1: Mapping CCMS model into the SiteLang specification..................................... 23

4.2: Mapping asset classes to the tables... 25

4.3: Example asset classes used for mapping inheritance ... 29

4.4: Mapping to one table .. 29

4.5: Mapping subclasses to the tables.. 30

4.6: Mapping each class to its own table ... 31

4.7: A generic data schema for storing objects .. 31

4.8: Example asset classes for the relationship mapping... 34

4.9: Mapping one-to-one relationships .. 34

4.10: Mapping using an associative table .. 35

4.10: Mapping recursive relationship into the tables... 36

5.1: A fragment of the application database specification in XML format 38

5.2: The partial diagram of the SiteLang XML Schema.. 40

5.3: Marshalling sample code .. 42

5.4: Method to add new table... 43

5.5: Method to add an Attribute element to the Table ... 43

5.6: Method to add a ForeignKey element to the Table .. 44

5.7: Method to add new associative table .. 45

5.8: Methods to add and get tables of the symbol table... 47

___ 7

List of Tables

3.1: Tables of the Meta database .. 19

3.2: Attributes of the tables and their meaning ... 20

3.3: Cardinality constraints between tables ... 21

4.1: Mapping between Java and SiteLang data types .. 28

4.2: Comparing the mapping strategies ... 33

5.1: An example of the setter and getter methods from the class Table 40

___ 8

Chapter 1

Introduction

1.1 Motivation

The bringing together two information systems is a common task since many years.
The system can be fully integrated into other system or it can use only the beneficial
features of the other.

Conceptual Content Management (CCM) systems are represented by content-concept
pairs which are called Assets. The conceptual part is needed to explain the way
content refers to an entity. Content serves as an existential proof of the validity of
concepts [SeSc04]. CCMS are open and dynamic, in the sense that users are able to
change the assets definition and the system dynamically reacts to these changes
without human intervention.

The storyboarding SiteLang language does not have this feature of openness and
dynamics but a means of web application. On the other hand, CCMS does not have a
mechanism to specify web applications, which makes a conjunction between
SiteLang and CCMS beneficial.

Web Information Systems (WIS) is database-backed information systems that are
distributed over the web and accessed via web browsers. These information systems
retrieve data from the database and present them in a structured form, pages with
text, images etc. The storyboarding paradigm gives the way to model such web
information systems in terms of story space, scenarios, scenes, media objects and
dialogs definitions. The websites are generable on the basis of the specification
which is advantageous for the information-intensive web applications and error
prone. Using this model various prototypical web applications could be generated,
which correspond to volatile infrastructure requirements. They allow specifying the
user interaction flow and the database behaviour in parallel. SiteLang is a
storyboarding language developed at the University of Kiel and its semantics are
based on operational and axiomatic semantics of Abstract State Machines (ASM)
[BiZ01]. Its operational semantics are based on entity-relationship structuring.

The storyboarding SiteLang language allows specification of the complete web
application, i.e. of structuring (structure, static integrity constraints), behaviour
(processes and dynamic integrity constraints), information support (views, units and

___ 9

Chapter 1: Introduction___

containers) and of the interaction and story space (scenes, media objects, dialogs and
dialogue steps with transaction semantics) as well as the relationships between them.
Using such a structuring, it is easier to modify the complex specifications.

To compliment the features of these two systems, the CCM asset model has to be
made available to the SiteLang specification. A mapping between assets model and
the SiteLang data model has to be defined. The CCM systems can be extended by
means of the generator which converts the domain model defined by asset class
definitions into the SiteLang application entities stored in the relational database.
Then using the SiteLang specification we can generate an application which is able
to communicate with the user, web server, and the underlying database. It accepts the
user input and generates database transactions and appropriate user dialogues. The
dynamically generated dialogues are filled with data that are retrieved from the
database views which are called media objects.

1.2 Structure of this Thesis

This thesis is organized into six chapters. This chapter describes the problem of this
project.

Chapter 2 introduces one of two main technologies used in this project – Conceptual
Content Management Systems as well as the asset modelling language.

Chapter 3 introduces the web application specification language SiteLang and its
data model.

Chapter 4 discusses how to map two different data models introduced in chapter 2
and chapter 3.

Chapter 5 describes two CCMS generators developed to implement the mapping
between CCMS and SiteLang entities according to the mapping rules defined in
chapter 4.

Finally, the thesis ends with a conclusion in chapter 6 summarizing the key results of
the presented work and giving an outlook on future works.

___ 10

Chapter 2

Conceptual Content Management
Systems

Content Management Systems (CMS) provide a complete framework for creating,
managing, organizing, and publishing of documents and other content. Often, they
are web applications for managing websites and web content, which have a user
interface and a permanent data repository (disks, databases) for storing the content.
CMSs usually provide much less information about how the content of an entity is
related to its concept, that explains the characteristics and rules for the content, and
limited functionality for presenting and using the content, particularly multimedia
content.

Conceptual Content Management Systems (CCMS) connect the content and concept
of the application entities. These content-concept pairs are called Assets. Figure 2.1
represents an Asset Model. The conceptual part is needed to explain the way content
refers to an entity and how the content serves as existential proof of the validity of
concepts [HSS04], thereby the value of content is improved. These two parts of an
asset cannot exist in isolation since they refer to the same entity.

Figure 2.1: Representation of Asset Model [HWS03]

___ 11

Chapter 2: Conceptual Content Management Systems_______________________

CCMSs allow a user to express his individual view on the application entities. The
user is able to change the asset definitions. This property of the system is called
openness, which is complemented by dynamics, i.e. the system reacts to the changes
automatically without human intervention.

2.1 Asset Definition Language

The users may exchange information within the assets, therefore the definitions
formulated have to be standardized and explicit. The modelling language Asset
Definition Language (ADL) was developed for this purpose and is based on objects
similar to the variables in object-oriented languages. The application entities are
described by the asset classes, the structure of which is based on class definitions
similar to the object-oriented world.

The structure of the asset classes will be described in more detail because it is a
major subject of this project, and it will be used throughout the whole report.

The code in Figure 2.2 gives an example of the asset classes’ definition. The
definition of the asset model starts with the keyword model followed by its name and
then includes all asset classes which belong to the model. The model has the ability
to import asset definitions from other models using the keyword import.

Figure 2.2: Asset model definition example

The structure of the assets is similar to Java class definitions. They are introduced by
the keyword class then follow the class name and its structure. It follows thence that
the asset class can be addressed by the model and its name combination. The ADL
language supports an inheritance of asset classes and this is implemented by the
keyword refines. The asset class Photo subclasses the asset class Picture, i.e. as in
object-oriented languages, all components of a base class will be inherited by a
subclass or they may be overwritten.

___ 12

Chapter 2: Conceptual Content Management Systems_______________________

As described above and shown in Figure 2.2, a body of the asset class is comprised
of content and concept parts.

The content part of an asset has two assignments: firstly, it holds a reference to the
asset location and access to its content. Secondly, it should provide preview
information to the user so that he can imagine the content without seeing it. In the
example above, the content contents of asset class Picture has a type of Java class
Image. The content handles are defined by some object-oriented language type,
standard or user-derived. Currently, the base language for handle types is Java
language.

The conceptual part of an entity description is covered in the concept section of an
asset class. It consists of two types of attributes and constraints:

1. characteristic. The characteristics describe the inherent properties of an
entity. Each characteristic is identified by a name, and the type of their values
is given after the colon. It could be either a Java class or a build-in data type.
In the example, the type of the characteristic title in the asset class Picture is
the standard Java class String.

2. relationship. It defines the relationships between assets. The relationship
artist constrains a reference to the entity described by the asset class Artist.
The asterisk (*) after the type Subject determines that the attribute topic refers
to a set of asset Subject instances (many-to-many relationship).

3. constraint. The constraints restrict the values of the attributes of instances. In
the example shown above, the placeOfBirth of the artist has to be the same as
the placeOfCreation of the picture. The constraints can be expressed in many
other ways which are not mentioned here but are found in [HWS03] and
[RAD03].

2.2 ADL Compiler

In order to grasp the meaning of the generator used for data model mapping and,
what it is used for, and where it fits in Conceptual Content Management Systems,
this section will briefly introduce the architecture of the CCMS. About the generators
is described in detail in [Sma04].

Because of the dynamics demand, the system should be able to adapt itself to
changes. The model compiler generates the CCM systems based on the user defined
domain model input. It is designed as a framework of generators, the structure of
which follows the classical compiler architecture. It consists of a front-end and a
back-end which communicate by interchanging the intermediate model.

The front-end compiler reads the user defined Asset Definition Language (ADL)
input model, does the full lexical and syntax analysis of the model, and produces an
intermediate representation of the input to produce an Intermediate model. This
model is used by the back-end generators. For each asset class definition the
Intermediate model creates the Java classes.

The back-end consists of the API generator which is a central generator of the system
and produces the uniform module API and various module generators. The modules
implement the functionality in order to offer the appropriate operations. “The

___ 13

Chapter 2: Conceptual Content Management Systems_______________________

specific requirements of a concrete model are reflected by the asset parameters of the
module’s operations.”[ScSe03]. Every generator is responsible for one kind of
module. They receive input from the front-end. The model compiler starts the
generators with the parameter Intermediate model. It decides itself the order in which
generators should run.

Two generators which perform the mapping between the asset domain model and the
SiteLang application entities are inserted in the CCMS architecture. The generators
communicate with one another by means of symbol table. Every generator may read
any number of symbol tables and produce exactly one symbol table.

The generated modules are combined into components which comprise the
functionality of the CCM systems. The modules of the component are joined up to
complete a specific task. Furthermore, the modules are arranged in the layers in the
component, related to each other, and use the services supplied by the component.
More detail description about the CCMS could be found in [HWS03].

Figure 2.3: Model compiler architecture

___ 14

Chapter 3

Storyboarding

This chapter will give a very brief introduction to the website specification language
SiteLang that is used in this thesis. A more complete description can be found either
in the [ABZ01] or in the Diploma Thesis of Ioannis Stragalis [IST05].

3.1 Overview of Website specification language SiteLang

The keyword Storyboarding comes from the movie industry. It comprises everything
that will be contained in the website, e.g. what menu screens will look like, how the
websites will be hyperlinked, in other words, everything that can be seen or heard or
experienced by the end-user of the Web Information System (WIS). The SiteLang
approach introduces a few new keywords to describe the WIS design. The whole
WIS is understood as a story and the business logic flow of the application is
represented by scenes. The user can specify the application story to his own needs by
using the Storyboard editor.

The specification of the web application is stored in the meta database; the
specification is developed by a sophisticated Storyboard editor, which integrates a
generator that generates the XML files for the application and the files which provide
the functionality and interactivity.

The storyboarding language SiteLang introduces several elements which describe the
structure and semantics of the WIS. To get an overall picture, the main elements and
terms will be described briefly below. Figure 3.1 is a graphical representation of the
main storyboarding elements.

___ 15

Chapter 3:Storyboarding__

Figure 3.1: Representation of the main storyboarding elements

Story

An abstract layer, which describes the business logic of the Web Information System
in terms of Storyboarding, is called a story. The subject of the story is the end-user,
therefore while creating the story we have to take into consideration who will be
using the system and then design the workflow.

Scenarios

While the user navigates in the WIS, he goes through a number of web pages to
accomplish a defined task. This path is called a scenario (displayed by blue arrows in
Figure 3.1). The story can be played in many scenarios which are separated into
dialogues. The storyboarding often begins by modelling scenarios which are
integrated into the story space.

Scenes

A scenario is composed of several scenes. The scene is the web page, which displays
information to the user and offers an interface for interaction with the WIS. It is
associated with involved actors, a media object, dialog steps and the representation
styles (see Figure 3.1).

___ 16

Chapter 3:Storyboarding__

Actors

The users may have different behaviour, intentions and roles in relation to the Web
Information System. They are grouped depending on their individual characteristics,
assigned tasks, access to the system rights and roles. In order to distinguish the
groups from single users, the user group profile is called an actor. The scenes are
assigned to the actors who are allowed to access and execute the actions within them.

Dialog Objects

The end-user interacts with the Web Information System through a user interface
which displays the information and accepts the input from the user. The user
interface is characterized by dialog objects. They hold information which may be
static and dynamic. The static elements display information to the end-user, such as
simple text, labels of buttons, text input fields, and pictures, and the dynamic
elements are linked with media objects which will be discussed in the next
paragraphs. Other kinds of dialog objects trigger events depending on the user’s
action. A typical event is the user pressing a button. The actions triggered by users
are called dialog steps which will also be discussed later.

Application Database

Today’s Web Information Systems are database-backed systems to store the content
of the application. The application database holds a complete description of the WIS
specification in the SiteLang language. The SiteLang database contains a meta
database for a full description of the application database structure which is based on
the Higher-order Entity-Relationship Model (HERM) [BTH00].

In this Master’s Thesis, mapping the CCMS data schema to the SiteLang database
will be related to the Meta database. The schemata will be introduced in section 3.2.

Media Objects

The media objects are the mechanism to get the data from the application database.
They are ordinary views on the application database.

Media objects may be created during the design stage of the application and
parameterized by representation style, involved actors, and the context access. Other
kinds of media objects are runtime media objects which are created dynamically
depending on the information users enter, and all parameters are instantiated and
extended by escort information [Tha00]. This information allows the user to see the
history of performed steps.

The queries of media objects are in Query-by-Example (QBE) form. The basic
syntax of QBE is introduced in [ABZ01], [JohQBE] and enhanced syntax in order to
gain a better semantic and create complex queries in [IST05].

Dialog States

While the user interacts with the WIS, he executes a sequence of actions. The state of
the system changes and it is associated with the scenario, e.g., based upon input

___ 17

Chapter 3:Storyboarding__

information provided by the user. The state of the system in Storyboarding is
represented by dialog states.

Dialog Steps

As mentioned above, the dialog steps are the events triggered by user. They are the
basic units of an action and use media objects. In a Web Information System, a
webpage is a dialog step.

Dialog steps have pre- and postconditions, i.e. preconditions specify under which
condition a dialog step may execute, and a dialog step may exit if postconditions are
fulfilled. The dialog steps change the state of the system.

3.2 The SiteLang database structure

Nowadays, a database is necessary to hold and support almost every Web
Information System with content data; therefore the web application prototype
generated by SiteLang is not an exception. As mentioned above, it contains a meta
database which part storing the application entities is depicted in Figure 3.2. For a
complete description of the application database structure which data model is close
to the HERM model see in [Tha00]. The used database management system is
Sybase. The whole database structure is used to store the information about the
structure and functionality, developed by a sophisticated Storyboard editor which
also plays a major role in the consistent maintenance of database integrity
constraints.

MetaTables

PK TableID

TableName
CoordX
CoordY
StoryID

MetaAttributes

PK AttributeID

AttributeName
AttributeType
AttributeKey

FK1 OwnerTableID
ForeignKeyID

FK2 ForeignKeyForComponentID
CoordX1
CoordY1
CoordX2
CoordY2

MetaContent

FK1 TableID
FK2 AttributeID

RowNo
Value

MetaComponents

PK ComponentID

ComponentLabel
ConstraintType

FK1 SourceTableID
FK2 DestinationTableID

DestinationTableType
CoordX1
CoordY1
CoordX2
CoordY2

Figure 3.2: The structure of the part of the meta database

___ 18

Chapter 3:Storyboarding__

Table 3.1 explains briefly the tables shown in Figure 3.2 which comprise the meta
database for the application entitties. Only these four tables will be used for the
mapping, and they store all the application entities. The attributes and their meaning
are listed in the table 3.2 as well as the cardinality constraints in case of a foreign
key. The extended description of the tables will be given below the two tables.

Table Explanation

MetaTables Contains all tables of the application database structure
MetaAttributes Contains the attributes of each table
MetaComponents Contains the relations between the tables
MetaContent Contains the content of each table

Table 3.1: Tables of the Meta database [IST05]

Table Attribute Explanation Cardinality
constraint

MetaTables TableID The ID of a table.
MetaTables TableName The name of a table.

MetaTables CoordX The X coordinate of the
table.

MetaTables CoordY The Y coordinate of the
table.

MetaTables StoryID The ID of the story. (0,N)
MetaComponents ComponentID The ID of the relation.
MetaComponents ComponentLabel The label of the relation.
MetaComponents ConstraintType The constraint type.

MetaComponents DestinationTableType The type of the
destination table.

MetaComponents CoordX1 The X1 coordinate of
the relation.

MetaComponents CoordY1 The Y1 coordinate of
the relation.

MetaComponents CoordX2 The X2 coordinate of
the relation.

MetaComponents CoordY2 The Y2 coordinate of
the relation.

MetaComponents SourceTableID The ID of the source
table. (0,N)

MetaComponents DestinationTableID The ID of the
destination table. (0,N)

MetaAttributes AttributeID The ID of the attribute.

MetaAttributes AttributeName The name of the
attribute.

MetaAttributes AttributeType The type of the attribute.

MetaAttributes AttributeKey
Indicates whether the
attribute is a primary
key.

MetaAttributes CoordX1 The X1 coordinate of

___ 19

Chapter 3:Storyboarding__

the attribute.

MetaAttributes CoordY1 The Y1 coordinate of
the attribute.

MetaAttributes CoordX2 The X2 coordinate of
the attribute.

MetaAttributes CoordY2 The Y2 coordinate of
the attribute.

MetaAttributes ForeignKeyID

The ID of the referred
attribute, if the current
attribute is a foreign
key.

(0,N)

MetaAttributes ForeignKeyFor
ComponentID

The ID of the relation
which created the
foreign key.

(0,N)

MetaAttributes OwnerTableID
The ID of the table
which owns the
attribute.

(0,N)

MetaContent TableID The ID of the table. (0,N)
MetaContent AttributeID The ID of the attribute. (0,N)

MetaContent RowNo The row index of the
value.

MetaContent Value The value.

Table 3.2: Attributes of the tables and their meaning [IST05]

The MetaTables table contains all the tables of the application database. Since all the
application elements can be created, managed and represented in the graphical
Storyboard editor, each table has the attributes CoordX and CoordY for its
rectangular representation. The tables are associated with a particular story.

The MetaAttributes table contains all attributes of each table defined in the
MetaTables table. The attributes are identified by ID and the name. The contained
value type is stored in the AttributeType column. The supported data types in
SiteLang are integer, string, float, Boolean, image, audio and video. The attributes
are represented in the editor as simple lines (see Figure 3.3), therefore this table must
contain the coordinates of the starting and the ending points. The AttributeKey
indicates whether an attribute is a primary key and its value is assigned to “1”, if the
attribute is a primary key, otherwise it is equal to “0”. To represent the foreign keys,
the MetaAttributes table needs two attributes the ForeignKey and the
ForeignKeyForComponentID. “The ForeignKey holds the ID of the primary key to
which the foreign key refers. It will be noticed, that the MetaAttributes table uses a
recursive relation. The ForeignKeyForComponentID holds the ID of the relation for
which the foreign key is created.” [IST05]. It is not enough to represent the foreign
key only by ForeignKeyID because between two tables may exist more than one
relation. So each relation creates a different foreign key column.

The MetaComponents table contains all relationships between application tables.
Each relation owns an ID and a label. They are represented as arrows in the editor so
their coordinates are also included in this table. As a relation is defined between two
tables, the attribute SourceTableID denotes that the table identified by the

___ 20

Chapter 3:Storyboarding__

DestinationTableID is a component of the table identified by the SourceTableID.
The source table owns foreign keys which point to the primary key or the foreign
keys of the destination table. The cardinality of the relationship is stored by the
ConstraintType attribute. The possible integer values of cardinalities are showed in
Table 3.3. The DestinationTableType attribute defines the type of the relation which
could be Tuple, Set, or List and contains the integer values: respectively: “0”, “1”,”
2”.

ConstraintType

value Meaning Explanation

0 (0,1) An entity of a foreign key may exist max. 1 time.
1 (0,N) An entity of a foreign key may exist unlimited.
2 (1,1) An entity of a foreign key may exist exactly 1 time.
3 (1,N) An entity of a foreign key may exist min. 1 time.

Table 3.3: Cardinality constraints between tables

Figure 3.3: An example database structure of a business trip application
(developed at the University of Kiel)

___ 21

Chapter 3:Storyboarding__

Chapter 4

Integration of Conceptual Content
Management Systems into SiteLang

Both systems, Conceptual Content Management Systems and SiteLang, represent
and store the application entities in different formats. The previous two sections
introduced both data models, one of which is based on object-oriented languages,
whereas the other stores the application entities in a relational database. In order to
extend CCM systems in such a way that generator provides an output which
corresponds to the format generated by the storyboarding specification. To achieve
such a format, this project implements the mapping of the CCMS data model into the
SiteLang entities stored in the relational database.

This section will briefly introduce the whole process to achieve the above described
goal which is shown in Figure 4.1. The documents which are manually written are
depicted by the orange colour symbols. The first part of this figure shows two
generators integrated into the CCMS framework which perform the data model
mapping and their input and output information. Other part of the figure depicts the
way from the generated document to the WIS application. The process description
will begin from the latter part because it is important to know what is needed to be
generated and how the generated document is useful.

The Storyboard editor introduced in Chapter 3 is used to create the full SiteLang
specification which is stored in the database as well as the whole application
database structure. It is also used to format the specification and export it either into
a single XML file or into the actual SiteLang code. Since the SiteLang code is based
on ASM semantics, it would be quite complicated in this project to generate it
without a prior knowledge about it. Therefore we confine us to use only an XML
specification which could be translated via an XSLT [W3C01] engine into a textual
SiteLang code. The XSL file for the translation of the XML file as well as the XML
Schema for the XML file structure is available as a package together with the
Storyboard editor. The XML file will not contain the complete specification of the
web application but only the part which defines the application entities. For this
purpose, two generators are developed.

The first generator, called SiteLangXMLGenerator and shown in the first part of
Figure 4.1, generates the above mentioned SiteLang XML file. It generates an XML

___ 22

Chapter 4: Integration of Conceptual Content Management Systems into SiteLang

document by taking a user defined asset domain model as input and applying the
mapping rules which will be introduced in Chapter 4. The XML document conforms
to the XML Schema (see [W3C02] for details) that has been created during the
development of the Storyboard editor and can be found in the Diploma Thesis
[Str05].

In order to see the application entities in the Storyboard editor, it is insufficient to
generate an XML document because the editor does not support the functionality to
import an XML document. Therefore, a second generator, called
SiteLangSQLGenerator, is needed. Similar to the first generator, this one takes a user
defined asset domain model as input and generates SQL statements. The same
mapping rules and the SiteLang XML Schema are taken into consideration by the
generator. The SQL statements could be executed directly from the generator or
exported to a text file and later executed in the database management system. An
implementation of both generators will be described in detail in Chapter 5.

Figure 4.1: Mapping CCMS model into the SiteLang specification

___ 23

Chapter 4: Integration of Conceptual Content Management Systems into SiteLang

4.1 Mapping CCMS data model to relational database schema

The basic goal is to achieve that the generator could automatically identify as many
mapping rules as possible in order to convert between Conceptual Content
Management Systems domain model and SiteLang data model. Since there is no
direct mapping between asset classes based on the object-oriented model and the
SiteLang entities stored in the relational database, this chapter will provide the
mapping rules between these two paradigms which implementation is described in
the next chapter.

As described above, the asset classes are based on object-oriented languages while
the SiteLang entities are tuples in the relational database. The asset classes do not
have the same properties and behaviour as objects but anyway the mapping between
these two modelling approaches will be done using the object-relational mapping
techniques.

While asset classes are related using direct references, the tables in relational
databases are related via primary and foreign keys. Furthermore, the relational
databases do not support an inheritance of data and behaviour as the asset classes do.
The constraints in the asset classes set the restrictions on the values of instances;
however the SiteLang does not specify any constraints on the data direct in the
application database. The only possibility, the SiteLang language supports, is the
media objects where the SQL queries filter the data. First, the mapping of the “body”
of an asset class definition will be described, then the content part, its characteristics,
the inheritance mapping strategies and finally relationships.

Figure 4.2 depicts an example of asset class definitions which are combined in a
model and the tables which could be generated from the defined asset classes using
the defined mapping rules. The parts of this example will be taken to demonstrate
each mapping case throughout this chapter.

___ 24

Chapter 4: Integration of Conceptual Content Management Systems into SiteLang

Figure 4.2: Mapping asset classes to the tables

___ 25

Chapter 4: Integration of Conceptual Content Management Systems into SiteLang

4.2 Mapping asset class member

The mapping of asset classes begins with the asset class declaration. Each asset class
in the model is represented in the SiteLang database by one or more tables. Different
mapping solutions for the asset classes are described in the next section about
inheritance and relationships mapping.

The mapped class is identified by the table name according to the pattern
cocoma_<AssetCalssName>, e.g. the asset class Picture is mapped to the table
cocoma_Picture (see Figure 4.2). The prefix cocoma is used in order to distinguish
the mapped tables between already existing tables in the SiteLang database.

An identification column is automatically designated to each table which is also a
primary key. This key will be later used as a foreign key reference in relationship
mapping. The column is named <AssetClassName>ID and its value is of type int,
e.g. the identification column of the table cocoma_Picture is PictureID. The
stereotypes “PK” and “FK” in front of the column name (see Figure 4.2) indicate the
primary and foreign keys respectively.

4.3 Mapping the content

The mapping of the asset class content part is rather straightforward. It is mapped to
a column of the table and the name of the content handle is also a column name, e.g.
the content contents of the asset class Picture is mapped to the column contents in
the appropriate table. Since the content part explains a multimedia view of an entity,
it is defined by some class object, e.g. Image. This content type has to be mapped to
the value type of the table column which must be supported by SiteLang.

SiteLang language does not support binary type information. An ASM engine
basically works with the data of type string. Since the SiteLang application entities
are stored in the relational database it would be advantageous to represent
multimedia objects (images, documents, audio files and so on) by a path where is the
file located, instead of working with the binary form of the content. Eventually, the
column corresponding to the content of an asset class definition always contains the
values of type string which are the absolute or relative path to the media object
(URL).

4.4 Mapping characteristics

Characteristics are defined in the conceptual part of an asset class under the keyword
characteristic. They could be mapped to the relational database without difficulties
similar like the content part. Each characteristic maps to single column in the table
and the column is named the same as the handle of the characteristics, e.g. the
characteristic title of type String from the asset class Picture maps to the column title
in the asset corresponding table cocoma_Picture (see Figure 4.2).

The possible types for characteristics are determined by Java language. They may be
all supported Java primitive data types or build-in Java classes. Each primitive data

___ 26

Chapter 4: Integration of Conceptual Content Management Systems into SiteLang

type has a corresponding build-in container class. The conversion of the primitive
types to the SiteLang data types is described in the next section. Some other common
Java data types are also listed in Table 4.1.

4.5 Mapping data types

Since SiteLang language supports only a few data types and the characteristics of
asset classes may have any Java data type, the conversion for these data types must
be performed. The generator has to recognise and convert automatically as many
tapes as possible. Java automatically converts a numeric type value to more general
numeric type but in databases this should be foreseen before the column has been
added to the table.

If the data types of the asset class instances and the objects of a target language
mismatch, it could cause the problem firstly, by inserting them into the tables in the
database, and secondly, much later when generating a web application by an ASM
engine.

The task of this project is not the conversion of values of instances but the
conversion of the column data types. Because the types of the characteristics of asset
class are defined in Java language, it is obviously to appeal to type conversions in
Java (see [GJSB05] for details). On the other hand, we are limited by the SiteLang
supported data types. Type conversion of primitive numeric data is separated into
two main categories according to the loss of precision: widening and narrowing
conversions. For mapping numeric data types, we have only two choices in SiteLang,
either int or float. Most likely conversion is a widening one where the order of types
looks as following:

byte short char int long float double

Thus, the types byte and short and their corresponding built-in Java classes are
mapped into int type and as it is a widening conversion these types do not loose any
information. Conversion of a long type to float may result in loss of precision
because the least significant bits of the value may be lost.

Although a char is a numeric data type but it is meaningful to map it to a string
because its corresponding built-in Java object String is usually used in the defining
asset class characteristics.

A narrowing conversion is applied only to a double type. Whereas a double is a
floating-point numeric type, it is mapped to a float type. This conversion may cause a
loss of precision of the least significant bits. In some cases, it would be possible to
convert any type to a string. The summary of mapping all above mentioned data
types and few others is listed in the table 4.1.

___ 27

Chapter 4: Integration of Conceptual Content Management Systems into SiteLang

Java primitive data types Java built-in data types SiteLang data types

int java.lang.Integer
short java.lang.Short
byte java.lang.Byte
long java.lang.Long

int

float java.lang.Float
double java.lang.Double

float

char java.lang.String
java.lang.Character string

boolean java.lang.Boolean boolean
 java.util.Date
 java.util.Time
 java.util.Calendar
 java.sql.Timestamp

string

Table 4.1: Mapping between Java and SiteLang data types

4.6 Mapping inheritance structures

New asset classes can be defined regarding the existing asset classes using the
keyword refines after the asset class name and by specifying the extended asset
class. They inherit the definitions of all components (content objects, characteristics,
relationships and constraints) that the parent class defines but the subclass may
redefine them. In contrast to the asset classes, relational databases do not natively
support inheritance therefore when mapping asset classes into relational databases it
should be taken into consideration how to organize the inherited structures in the
tables.

There are various strategies for representing an asset class inheritance in the
relational database tables which could be used also in combination. The methods are
based on object-relational mapping and more exhaustive description could be found
in [Amb04] and [ORM31]. In this report, four mapping techniques will be introduced
and one of them chosen for the implementation of the mapping asset classes to the
SiteLang entities.

An example in Figure 4.3 is taken from Figure 4.2 and is be used to demonstrate
different mapping patterns. For the sake of simplicity, each asset class has just one
characteristic and that is enough to present the mapping. An inheritance tree is made
up of the asset class Picture from which the asset classes FlowerPicture and
PanoramaPicture inherit the characteristic title.

___ 28

Chapter 4: Integration of Conceptual Content Management Systems into SiteLang

Figure 4.3: Example asset classes used for mapping inheritance

Next subsections discuss different inheritance mapping approaches and by
comparing them the most suitable one will be selected for the implementation of
inheritance mapping.

4.6.1 One inheritance tree one table

Following this approach all attributes of the asset classes are mapped to a single
database table. This table contains columns for all attributes of the parent class and
subclasses and it is named as a parent class, e.g. the asset class Picture is a parent
class for FlowerPicture and PanoramaPicture (see Figure 4.3) therefore all three
asset classes are mapped to the table cocoma_Picture (see Figure 4.4). Each asset
class instance stores its relevant data in one table row. The columns that are not
relevant to the asset class are filled with a null value.

cocoma_Picture

Column name Data type
<PK> PictureID int
 type int
 title string
 flowerName string
 place string

Figure 4.4: Mapping to one table

Two additional columns are created in the table cocoma_Picture: column PictureID
and column type. The first one is the primary key column indicated by <PK> in front
of the column name in Figure 4.4. Its creation is described in the section 4.2. The
value of the type column is used to distinguish between subclasses therefore in
[ORM31] this strategy is called filtered mapping. In this example, the type column
contains the int values which could be equal to “1” for FlowerPictures and equal to
“2” for PanoramaPictures.

___ 29

Chapter 4: Integration of Conceptual Content Management Systems into SiteLang

4.6.2 Each asset subclass to different table

With this mapping strategy each asset subclass in the inheritance hierarchy is
mapped to a separate table. Each mapped table includes the attributes implemented
by the asset class and all inherited attributes from its parent classes. It means that any
attribute in the superclass is duplicated across the tables of the subclasses.

Using this mapping approach the asset class definitions in Figure 4.3 are mapped to
two tables as shown in Figure 4.5.

cocoma_Picture

Column name Data type
<PK> PictureID int
 title string

cocoma_FlowerPicture

Column name Data type
<PK> FlowerPictureID int
 title string
 flowerName string

cocoma_PanoramaPicture
Column name Data type

<PK> PanoramaPictureID int
 title string
 place string

Figure 4.5: Mapping subclasses to the tables

The new tables get the names from the relevant asset classes and the additional
primary key columns, e.g. the inheritance structure is mapped into three tables:
cocoma_Picture, cocoma_FlowerPicture, and cocoma_PanoramaPicture. A parent
asset class Picture is mapped to its own table in order to keep the instances of it.
Each table corresponding to the asset subclass includes the column title of type string
for the inherited characteristic title. In [ORM31], mapping each subclass to the
different table is called a horizontal mapping.

4.6.3 Each asset class to its own table

This kind of mapping represents each asset class in the inheritance hierarchy with
one table for each asset class (described as the vertical mapping strategy in
[ORM31]). The attributes of the asset class map directly to the columns in the
matching tables. Additionally, the primary key is assigned to each table for
identification information and the tables corresponding to the asset subclasses
contain the foreign key column that references the primary key of the parent table.

In the example tables of Figure 4.6, the foreign key column PictureID, which links to
the parent table cocoma_Picture, is inserted in every subclass table
cocoma_PanoramaPicture and cocoma_FlowerPicture. The foreign key in the figure
is indicated by <FK> in front of the column name. The data of the asset class
PanoramaPicture, as well as the asset class FlowerPicture, are stored in two tables
therefore in order to retrieve an instance of the subclass requires a join of the
cocoma_Picture and cocoma_PanoramaPicture tables.

___ 30

Chapter 4: Integration of Conceptual Content Management Systems into SiteLang

cocoma_Picture

Column name Data type
<PK> PictureID int
 title string

cocoma_PanoramaPicture
Column name Data type

<PK> PanoramaPictureID int
<FK> PictureID int
 place string

cocoma_FlowerPicture
Column name Data type

<PK> FlowerPictureID int
<FK> PictureID int
 flowerName string

Figure 4.6: Mapping each class to its own table

4.6.4 Mapping to the generic table structure

The last inheritance mapping strategy which is introduced in this paper is “a generic,
sometimes called meta-data driven approach. This approach isn’t specific to
inheritance structures; it supports all forms of mapping” [Amb04]. The tables in the
figure 4.7 represent the mapping according to this approach.

Figure 4.7: A generic data schema for storing objects [Amb04]

This kind of mapping is described here because of its resemblance to the SiteLang
Meta database schema which was described in the section 3.2. The correspondence
between tables would be as listed below:

___ 31

Chapter 4: Integration of Conceptual Content Management Systems into SiteLang

Value MetaContent
Class MetaTables

Attribute MetaAttributes
Inheritance MetaComponents

There is a small inadequacy between the tables Inheritance and MetaComponents
because the latter one stores the relationships between the tables which could be
better suitable for the relationships (associations) between asset classes mapping.

The table Class contains all the asset classes defined in the domain model therefore
the mapping has to begin with this table. The table AttributeType, in the case of this
project, would contain all the SiteLang supported data types. The attributes of the
asset class are stored in the table Attribute which column AttributeTypeID refers to
the relevant column in the table AttributeType. The table also is linked to the table
Class via ClassID. An inheritance between asset classes is defined in the table
Inheritance where each leaf in the inheritance tree is represented by one row, e.g.
SuperClassID would refer to the row in the table Class representing Picture and
SubClassID to the asset class PanoramaPicture (see Figure 4.3).

4.6.5 Comparing the mapping strategies

The table 4.2 lists advantages and disadvantages of each mapping approach
described above.

None of the mapping techniques is perfect, each of them has strengths and
weaknesses. However, the each class to its own table meets the most of the
requirements for mapping asset classes to the relational database. First of all, this
approach conforms to the object-oriented concept best. It supports very well the
polymorphism and facilitates modification and adding the tables conforming to the
superclasses as well as subclasses. Consequently, this mapping strategy will be used
for the inheritance mapping implementation. This choice will be also advantageous
later when mapping relationships between assets.

The fourth mapping method to the generic table structure would be difficult to
implement due to the fact that the SiteLang Meta database is organized according to
this principle.

___ 32

Chapter 4: Integration of Conceptual Content Management Systems into SiteLang

Strategy Advantages Disadvantages

One inheritance
tree one table

+ Single table

+ No joins in retrieving
data

+ Easy to add new asset
classes to the hierarchy

+ Useful for simple
hierarchies

- Not all fields are relevant –
confusing

- Space wasted in the database

- Frequent locks on the table –
may cause poor performance

- Need to think about naming of
fields because they can repeat
among subclasses

Each asset
subclass to
different table

+ Instance retrieved by
only one query

+ No irrelevant fields in
the table

+ Good performance –
spread access load among
tables

- Difficult to implement the
relationships to the parent asset
class

- In case of changes in the
superclass, have to be changed
every table

Each asset class
to its own table

+ Conforms best to the
object-oriented concept

+ No irrelevant fields in
the table

+ Only one table needed to
update when asset class is
changed

+ Easy to add new asset
subclasses

+ Flexible relationship
mapping

- Many tables in the database

- The tables corresponding to the
superclasses have to be accessed
often – may cause a bottleneck.

- A join to access the tables
corresponding to the subclasses.

Generic table
structure

+ Could be extended to
support relationship
mapping

+ Easy to update, flexible

- Difficult reporting against the
data because an instance of one
asset class is stores in several
rows.

- Difficult to implement

Table 4.2: Comparing the mapping strategies

4.7 Mapping relationships

In asset modelling, the entities may be related to other entities. Not only asset classes
must be mapped to the relational database but the relationships must be mapped too
and the multiplicities must be kept the same as defined in the domain model. There
are four kinds of relationships that an asset class could be involved with: inheritance,

___ 33

Chapter 4: Integration of Conceptual Content Management Systems into SiteLang

one-to-one, many-to-many, and recursive relationships. The solutions how to mimic
an inheritance to the relational databases are described in the section above. The
three last types of relationships are based on the cardinalities between the entities and
are defined in the asset class under the keyword relationship. Their mapping to the
relational model will be discussed in the next sections.

Figure 4.8 depicts an example asset classes which will be used to represent
relationships between assets in the database.

Figure 4.8: Example asset classes for the relationship mapping

4.7.1 Mapping one-to-one relationships

As described above, the relationships between asset classes are defined in the
concept part of asset class definition using the keyword relationship. The simplest
type of relationships is a one-to-one relationship. Consider one-to-one class
relationship artist of the asset class Picture to the asset class Artist as depicted in
Figure 4.8, it means that each Picture is drawn by at most one Artist.

In the relational databases one-to-one relationship is implemented by means of a
foreign key. Since in the section 4.5.5 was decided to implement an inheritance
relationship using the strategy “each asset class to its own table”, as a result each
asset class is represented by its own table, as in Figure 4.9.

cocoma_Picture
Column name Data type

<PK> PictureID int
<FK> ArtistID int

cocoma_Artist
Column name Data type

<PK> ArtistID int

Figure 4.9: Mapping one-to-one relationships

___ 34

Chapter 4: Integration of Conceptual Content Management Systems into SiteLang

The foreign key column holds the value of the primary key of the row being
referenced. The column ArtistID in the table cocoma_Picture is a foreign key column
which holds the value of the primary key column ArtistID in the cocoma_Artist table.
The relationship handle artist is not shown in the result of this mapping example but
it is not lost since the reverse mapping should be also possible when required. That
will be described in the implementation chapter 5.

Since the above described relationship is uni-directional (the Picture knows about its
Artist but not the other way around) the foreign key column is embedded only in one
table. If it would be a bi-directional relationship then the table cocoma_Artist have
had a foreign key column PictureID.

4.7.2 Mapping many-to-many relationships

We cannot present a many-to-many relationship in the relational databases using a
foreign key strategy described above because it does not have a single-valued end of
the relationship to hold a foreign key. The asset class may reference to more than one
asset class. The asterisk “*” after the relationship type identifies a referenced set of
asset classes as depicted in Figure 4.8. The relationship subject indicates that each
Picture could be classified by many Subjects.

In order to map a many-to-many relationship between asset classes into relational
database we need three tables: two of them are derived from the mapping asset class
definitions and the third is introduced as an associative table [Amb04]. The
associative table maintains the relationships between two tables in the relational
database. The name of the table is composed of the two asset classes involved in the
relationship and the name of the relationship it implements as follows:

cocoma_<SourceAssetClass>_<RelashionshipName>_<TargetAssetClass>.

The asset classes involved in the relationship don’t embed any new columns in their
corresponding tables. However, the associative table contains two foreign key
columns that point to each of the primary key IDs of the tables in the relationship. In
addition, it has also a primary key column which is a combination of the names of
the asset classes that the associative table joins and the suffix “ID” as shown in
Figure 4.10. Each table according to the SiteLang language must have a primary key
column.

cocoma_Picture_album_Album

Column name Data type
<PK> PictureAlbumID int
<FK> PictureID int
<FK> AlbumID int

cocoma_Picture

Column name Data type
<PK> PictureID int
<FK> ArtistID int

cocoma_Album
Column name Data type

<PK> AlbumID int

Figure 4.10: Mapping using an associative table

___ 35

Chapter 4: Integration of Conceptual Content Management Systems into SiteLang

It is possible that both foreign key columns in an associative table point to a primary
key on the same table. This case is discussed in the next section.

4.7.3 Mapping recursive relationships

In the previous section, the two types of relationships were introduced. The mapping
strategies were applied for the relationships between two different asset classes.
However, the asset class Album in the example in Figure 4.8 defines one more kind
of relationship. The relationship albums relates the asset class Album to itself and is
called recursive relationship [Amb04]. However, because the asterisk “*” follows the
relationship type, it is a many-to-many recursive relationship. Figure 4.11 depicts its
implementation into the relational database.

cocoma_Album

Column name Data type
<PK> AlbumID int

cocoma_Album_albums_Album

Column name Data type
<PK> AlbumAlbumID int
<FK> AlbumID1 int
<FK> AlbumID2 int

Figure 4.10: Mapping recursive relationship into the tables

The asset class defining a recursive relationship is mapped into two tables similar
like in the many-to-many mapping described above. The only difference is that an
associative table contains two foreign key columns which refer to the same table in
the relational database. Since the table cannot have two columns with the same name,
the foreign key columns will get the numerical suffix to the name as shown in Figure
4.10.

When the asset class is related to itself it does not mean that its instance is related to
itself. However, an instance of this asset class is related to another instance of the
asset class. An instance of Album can be a part of other Album instance.

___ 36

Chapter 5

Mapping Implementation

The previous chapter introduced the mapping rules used to map the entities of
Conceptual Content Management Systems - asset class definitions - to the
application entities described in the web specification language SiteLang. This
chapter describes the mapping implementation. The first generator maps asset classes
to the SiteLang entities in XML format whereas the second maps to the SiteLang
application database.

5. 1 SiteLang XML specification

This section briefly explains the entire structure of the XML file that contains the
specification of the web application. This file is created by the Storyboard editor. The
file generated by the CCMS generator SiteLangXMLGenerator introduced in the
previous chapter and described in detail in Section 5.3 and its subsections contains
only part of the full XML specification. This project deals only with the application
entities of the WIS generated using the SiteLang specification; therefore, the part of
the XML file to be generated is related to the application database definitions.

Before generating an XML file with the generator it is necessary to be familiar with
its structure. Chapter 3 describes quite clearly all storyboarding elements. This
includes the declarations of the events defined by the name, local and global
variables and their initialization. Each scene description in the XML file includes all
properties, local variables, dialog steps with their events, pre- and post-conditions
and involved dialog objects, as well as media objects of the scene. Following these
elements is the representation of the application database and its initial content. This
part of the XML file is discussed in the next section in detail.

The application database structure in the XML file is enclosed within the
<MetaDatabase> tag. A part of the table cocoma_Picture from Figure 4.2 is
described in the XML format in Figure 5.1. Since the entities are stored in the
relational database as tables, the database definition tag contains the declarations of
the tables within the <Table> tags as child elements. The name of the table is
declared in the <TableName> tag, e.g. cocoma_Picture. The columns of the table
correspond to the elements <Attribute>, which define the name of the column by
the <AttributeName> tag and the type of the column by the <AttributeType> tag.

___ 37

Chapter 5: Mapping Implementation_____________________________________

Figure 5.1 describes two columns: PictureID, which is the primary key of the table;
and the column artist, which is the foreign key, as explained below.

The <PrimaryKeys> tag contains all primary keys of the table. Each column that is a
primary key of the table is declared within the <PrimaryKey> tag, where the name of
the primary key column is an element text, e.g. PictureID.

The <ForeignKeys> tag contains all foreign keys of the table where each foreign key
is enclosed within the <ForeingKey> tag. It encloses the <ReferenceTable> tag,
which defines the table the foreign key refers to, while the <ReferenceType> tag
contains the type of the referenced table. The <Attributes> tag declares the foreign
key of the table and the <ReferenceAttributes> tag contains the primary key of
the referenced table defined in the <ReferenceTable> tag. The column artist is a
foreign key of the table cocoma_Picture, and it contains the value of the primary key
ArtistID from the table cocoma_Artist.

<MetaDatabase>
 <Table>
 <TableName>cocoma_Picture</TableName>
 <Attribute>
 <AttributeName>PictureID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 ...
 <Attribute>
 <AttributeName>artist</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <PrimaryKeys>
 <PrimaryKey>PictureID</PrimaryKey>
 </PrimaryKeys>
 <ForeignKeys>
 <ForeignKey>
 <ReferenceTable>cocoma_Artist</ReferenceTable>
 <ReferenceType>Tuple</ReferenceType>
 <Attributes>
 <AttributeName>artist</AttributeName>
 </Attributes>
 <ReferenceAttributes>
 <AttributeName>ArtistID</AttributeName>
 </ReferenceAttributes>
 </ForeignKey>
 </ForeignKeys>
 </Table>
 <Table>
 ...
 </Table>
</MetaDatabase>

Figure 5.1: A fragment of the application database specification in XML format

The XML file may contain more information than the Storyboarding supports, e.g.
HERM modelling (according to how the application database schema is modelled),
which provides the possibility to define the destination tables of the relations by
tuple, set and list types, which Storyboard editor supports but the SiteLang language
and ASM machine do not.

5.2 SiteLang XML Schema

___ 38

Chapter 5: Mapping Implementation_____________________________________

An XML Schema describes the structure of the XML file. The Storyboard editor also
includes with its source code the XML Schema for the exported storyboarding
specification in XML format. The XML Schema meets the requirements of the
storyboarding language. It defines all the constructs that encapsulate the story.

In order to generate the WIS specification in XML format, the supported XML
Schema is very useful, even for the part related to the application database. Since the
CCMS generator is written in Java language, it is necessary to have control over the
structure and content of the generated XML document.

JAXB [JAXB20] is a Java technology that provides the possibility to bind the XML
Schema components to Java classes and interfaces that reflect the rules defined in the
schema. The Java classes generated with the JAXB represent the different top-level
elements and top-level complex types in an XML Schema. An XML document that
conforms to the XML Schema may be constructed from the Java classes. There is no
need to worry about the XML syntax.

Figure 5.2 depicts an XML Schema for defining the application database SiteLang
specification in XML format. Each class in the UML class diagram represents a
complex type of XML Schema, which are also the Java classes generated by JAXB.

The fragment of the XML Schema that describes the meta database depicted in
Figure 5.2 is generated by JAXB into nine Java classes corresponding to each top-
level element. A factory class ObjectFactory consisting of methods to create new
instances of the Java representation for XML content is also generated. To get a
deeper look into the generated classes, the class Table is a good example because it is
generated by the XML element Table, which is a complex element and encapsulates
a sequence of four elements, as depicted in the diagram. The child elements are
declared in the class as follows:

protected String tableName;
protected List<Attribute> attribute;
protected PrimaryKeys primaryKeys;
protected ForeignKeys foreignKeys;

The first element TableName contains only the text node; therefore, it is converted to
a Java variable type String. The class Table includes the setter and getter methods to
set and get the name of the table. Table 5.1 lists all methods of the class Table. The
complex element Attribute can occur in the table as many times as the columns it
contains. Since the Attribute is mapped to the Java class Attribute, the
getAttribute() method returns a List by reference where the new Attribute element
can be added to the table by the method of the class java.util.List. The element Table
must contain only one element PrimaryKeys, which is also a complex element that
means that the variable primaryKeys declared in the class Table is of Java class type
PrimaryKeys. The getter method returns an instance of the class.

___ 39

Chapter 5: Mapping Implementation_____________________________________

Figure 5.2: The partial diagram of the SiteLang XML Schema

Setter method Getter method
public void setTableName(String
value) {
 this.tableName = value;
}

public String getTableName() {
 return tableName;
}

 public List<Attribute> getAttribute() {
 if (attribute == null) {
 attribute = new ArrayList<Attribute>();
 }
 return this.attribute;
}

public void
setPrimaryKeys(PrimaryKeys value)
{
 this.primaryKeys = value;
}

public PrimaryKeys getPrimaryKeys() {
 return primaryKeys;
}

public void
setForeignKeys(ForeignKeys value)
{
 this.foreignKeys = value;

public ForeignKeys getForeignKeys() {
 return foreignKeys;
}

}

Table 5.1: An example of the setter and getter methods from the class Table

___ 40

Chapter 5: Mapping Implementation_____________________________________

Section 5.3 discusses how the Java classes generated from the SiteLang XML
Schema are integrated into the SiteLangXMLGenerator to marshal the generated
content from asset class definitions into the SiteLang XML document.

5.3 Mapping asset classes to SiteLang entities in XML format

As described in chapter 3, to map the asset class definitions to the SiteLang entities
two CCMS generators are developed. The first of them will be described in this
section. The generator SiteLangXMLGenerator maps the asset classes to the
SiteLang entities described in the XML format. Section 5.1 introduced the structure
of the XML document, which is defined by the XML Schema. It is described in the
previous section, as well as the binding of the element declarations to the Java
classes.

5.3.1 Compilation

The mapping generator SiteLangXMLGenerator is an extension of the Conceptual
Content Management Systems framework. It enables a uni-directional CCMS
domain model mapping to the entities of the web application specified by the
Storyboarding language SiteLang. The generators composing the framework are
dependent on each other and the compiler controls the order of their execution by the
requested Symbol tables. The generator is started by invoking the actual performance
method
public SymbolTable generate(IntermediateModel im, SymbolTable[] symTabs,
 Map<String, ? extends Object> params) method.

of which the input parameters are the Intermediate model introduced in chapter 2,
symbol table created by the central API generator and the parameters defined in the
configuration file. This method returns the symbol table it creates (this feature is
common for every generator) and the mapping results in the XML file, which is a
side effect of the generator, but the intention of what the generator is created for. In
this case, the produced symbol table is empty, but more about symbol tables is
discussed in Section 5.4.1, together with other generators that create and use a
symbol table.

5.3.2 Marshalling to the XML file

The generator output XML document is created using the Java classes generated with
JAXB from the XML Schema definitions, as described in section 5.2. The starting
point of the marshalling of the XML document is the instantiating of the
JAXBContext class, which takes care of the binding relationship between XML
element names to the Java class. The package name containing the JAXB mapped
classes as well as the SiteLangXMLGenerator class is given as a parameter. Once the
domain object is initialized, the Marshaller object is created. The JAXBElement
corresponds to the root complex element Sitelang of the generated XML document
and wraps the content of this element. The generated XML content is formatted to

___ 41

Chapter 5: Mapping Implementation_____________________________________

the human readable text and marshalled to the given file. The described marshalling
code is as follows:

JAXBContext jc =
JAXBContext.newInstance("de.tuhh.sts.cocoma.compiler.generators.sitelang");

SitelangType slt = new SitelangType();

 … create the domain object …
Marshaller m = jc.createMarshaller();

JAXBElement<SitelangType> SLelement = (new

 ObjectFactory()).createSitelang(slt);

m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);

m.marshal(SLelement, new FileOutputStream("SiteLangXMLMetaDatabase.xml"));

Figure 5.3: Marshalling sample code

5.3.3 Adding the content to the XML file

The framework parser translates the asset model to an internal representation in the
form of an Intermediate model IntermediateModel, which contains:

• AssetClass (an asset class defined by its name, superclass and members)
• Content (a content attribute with its name and type)
• Characteristic (a characteristic attribute with its name and type)
• Relationship (a relationship attribute with its name, referred type and the

cardinality)
• Constraint (a constraint with an associated rule. Currently, the constraints are

not supported by the parser.)

As mentioned above, we get the asset class definitions from the Intermediate model.
It returns an array of asset classes AssetClass by invoking its method getClasses().
By iterating through the array, we get all asset classes from the asset model that
should be mapped to the relational database tables applying the mapping rules
described in the previous chapter. This section describes the mapping to an XML
document, but the mapping rules are the same as those defined for mapping to the
tables because the structure of an XML document is based on the table definitions.
The complete SiteLang XML file describing the application database generated by
the SiteLangXMLGenerator can be found in Appendix A.

Asset class member

Each asset class in the array is mapped to the separate element Table in the XML
file. The table is created immediately after getting the new asset class (see Figure
5.4).

___ 42

Chapter 5: Mapping Implementation_____________________________________

ltbs.add(addNewTable(tbPrefix + a.getName(), a.getName() + "ID", "int"));

public static Table addNewTable(String tbName, String attrName,

 String attrType) {
 Table tb = new Table();
 tb.setTableName(tbName);
 List<Attribute> attrs = tb.getAttribute();
 attrs.add(addNewAttribute(attrName, attrType));
 PrimaryKeys prKeys = new PrimaryKeys();
 prKeys.setPrimaryKey(attrName);
 tb.setPrimaryKeys(prKeys);
 return tb;

}

Figure 5.4: Method to add new table

where tbPrefix is the table prefix “cocoma_”, and a is the current AssetClass. The
new table is created by instantiating the class Table, which is generated by JAXB
from the XML Schema definitions. It contains the methods to set and get all possible
attributes. In the above listed code, the method addNewTable(...) creates the element
Table, sets the table name according to the pattern cocoma_<AssetClassName>,
adds the child element Attribute corresponding to the column
<AssetClassName>ID (the method to add the Attribute is shown in Figure 5.5),
here the type of the column by default is int and sets it as a primary key. The newly
created Table is added to the list of Table elements List<Table> ltbs.

Content

The next step is mapping the content part of the asset class. An object of the
AssetClass contains an array of the Content objects having the values of the name
and the type of the content. Each content member is mapped to the column of the
table, which means it is added to the Table element as an Attribute element. The
column of the content attribute by default contains the values of the type string since
the content type is a URL to the media. The methods to add the Attribute are as
follows:

addTableAttr(neededTable, c.getName(), "string");

public static void addTableAttr(Table tb, String attrName, String attrType)
{
 List<Attribute> attrs = tb.getAttribute();
 attrs.add(addNewAttribute(attrName, attrType));
}

public static Attribute addNewAttribute(String attrName, String attrType) {
 Attribute attr = new Attribute();
 attr.setAttributeName(attrName);
 attr.setAttributeType(attrType);
 return attr;
}

Figure 5.5: Method to add an Attribute element to the Table

___ 43

Chapter 5: Mapping Implementation_____________________________________

where c is a content object.

Characteristics

The characteristics are generated using the similar principle as the content part. The
difference is only that the type of the characteristic is converted according to Table
4.1. For that, the generator includes a separate method that converts as many
expected characteristic types as possible into SiteLang supported data types.

If the type of the characteristic is not found in the list then the message “The data
type <dataType> is not recognized by the generator!” is returned. Such being the
case, the generated XML file could be reviewed and either a text of the element
AttributeType changed manually or the asset model edited so that the type would
be one of those listed in Table 4.1 and the file generated once again. It is suggested
that the second option be performed in order to avoid the same problem by
generating the SQL statements.

Relationships

The method getRelationships() of the AssetClass returns an array of the Relationship
objects. Each object contains the name of the relationship and the referred type
AssetType. This type contains the referred AssetClass and the property indicating
whether this relationship type refers to a collection of assets.

As described in Chapter 4, the relationships between asset classes are divided into
three categories: one-to-one, many-to-many and recursive relationships. The
previously defined mapping rules are applied and discussed in this section.

If the asset class is involved in the one-to-one relationship, the table implementing it
adds an additional column for the foreign key value. The new Attribute with the
child elements for the name value <RelationshipName> and the column type int is
appended to the Table element. Since this column is a foreign key, it is defined in
the new element ForeignKey. The code in Figure 5.6 shows how the new foreign
key is added:

public static ForeignKey addNewForeignKey(Table tb, Relationship r,
 String refType, String nr) {

 ForeignKey frKey = new ForeignKey();
 frKey.setReferenceTable(tbPrefix + r.getReferredClass().getName());
 frKey.setReferenceType(refType);

 Attributes attrs = new Attributes();
 attrs.setAttributeName(r.getName() + nr);
 frKey.setAttributes(attrs);

 ReferenceAttributes refAttrs = new ReferenceAttributes();
 refAttrs.setAttributeName(r.getReferredClass().getName()+"ID");
 frKey.setReferenceAttributes(refAttrs);
 return frKey;
}

Figure 5.6: Method to add a ForeignKey element to the Table

___ 44

Chapter 5: Mapping Implementation_____________________________________

where refType is a type of the table that is equal to Tuple (explained in Chapter 3).
The property nr is used in the recursive relationship mapping and will be explained
later.

The many-to-many relationship is implemented by a similar method as the one-to-
one relationship. The difference is that it doesn’t add an extra Attribute to the
element Table but creates a new Table element, which is an associative table
between two tables. Adding of the new Table element is described in the paragraph
“Asset class member” of this section and the name of the table is combined, as
defined in Chapter 4.

public static Table addNewUnionTable(String relName, Relationship r) {
 Table tb = new Table();
 tb.setTableName(tbPrefix + relName + "_" + r.getName() + "_"
 + r.getReferredClass().getName());
 List<Attribute> attrs = tb.getAttribute();
 String sourceTb = "", targetTb = "";
 if (relName.equals(r.getReferredClass().getName())) {
 sourceTb = "1";
 targetTb = "2";
 }
 attrs.add(addNewAttribute(relName + r.getReferredClass().getName() +
"ID", "int"));
 attrs.add(addNewAttribute(relName + "ID" + sourceTb, "int"));
 attrs.add(addNewAttribute(r.getReferredClass().getName() + "ID" +
targetTb, "int"));
 PrimaryKeys prKeys = new PrimaryKeys();
 prKeys.setPrimaryKey(relName + r.getReferredClass().getName() +
"ID");
 tb.setPrimaryKeys(prKeys);
 ForeignKeys foreignKeys = new ForeignKeys();
 List<ForeignKey> frKeys = foreignKeys.getForeignKey();
 frKeys.add(addNewForeignKeyForUnion(tb, relName, "Tuple",sourceTb));
 frKeys.add(addNewForeignKeyForUnion(tb,
r.getReferredClass().getName(), "Tuple", targetTb));
 tb.setForeignKeys(foreignKeys);
 return tb;
}

Figure 5.7: Method to add new associative table

where relName is the name of the asset class holding the relationship, sourceTB and
targetTB are indicators used for recursive relationships, and here they are equal to “”.

The associative Table element encloses three Attribute elements, where one is a
primary key and the other two are foreign key columns pointing to the primary keys
of the tables participating in the relationship. The method to add a new Attribute
addNewAttribute(...) is described in the paragraph “Content”. The difference in
adding a ForeignKey element from a one-to-one relationship is the name of the
foreign key column. Here, it is the same as the primary key in the referenced table.

The last type of the relationships is a recursive relationship. Its mapping rules are
described in Section 4.6.3. Its implementation is similar to the many-to-many
relationship. The same method addNewUnionTable(…) listed in Figure 5.7 is used to
append a new associative Table element. Since both foreign key columns in the
associative table refer to the same primary key column, the suffixes sourceTb and
targetTb are added to the foreign key column name to differentiate them. The
recursive relationship is detected if the AssetType refers to a collection of assets and

___ 45

Chapter 5: Mapping Implementation_____________________________________

the AssetClass name of the relationship type is equal to the name of the asset class
implementing the relationship.

Inheritance

An asset class inheritance is implemented using the mapping strategy “Each asset
class to its own table”. The mapping rules of this strategy are introduced in Section
4.5.3 and its implementation is quite simple.

The AssetClass objects include a property that contains the value null if the asset
class doesn’t refine any asset class, otherwise it contains the asset superclass object
AssetClass. If the method getSuperClass() returns an object then the inheritance is
implemented in a similar way as the one-to-one relationship. The Table element
adds the Attribute element, which is the foreign key column; therefore, the
ForeignKey element is also appended. The AttributeName contains the text, which
is the name of the asset superclass and a suffix ID. The AttributeType is by default
set to int.

5.4 Mapping asset classes to the SiteLang database

The previous section discussed how the asset model is mapped to the SiteLang meta
database in XML format and introduced the main methods to implement the mapping
and their performing tasks in regard to an XML document.

This section describes the asset model mapping to the SiteLang database. The
application entities are stored in the meta database, which consists of four tables. It is
described in Section 3.2 in detail, and Figure 3.2 depicts the structure of the meta
database. The mapping rules defined in Chapter 4 are implemented for the mapping
asset class definitions to the relational database tables and the second generator
SiteLangSQLGenerator is developed. Since the structure of the above described
XML file reflects the tables in the database, the Java classes generated by JAXB
from SiteLang XML Schema definitions are also integrated into this generator.

The generator creates the symbol table SiteLangSQLGeneratorSymbolTable and a
text file with the SQL statements, which are later executed by the database. Since the
task of this project is to map the data model, the SQL INSERT statements deal only
with three tables of the SiteLang meta database. The table MetaContent contains the
instances of the application entities.

5.4.1 Symbol table

The generator SiteLangSQLGenerator creates the symbol table, whose main purpose
is to enable the communication between generators. The symbol tables contain all
information about the generated tables, their columns, the relations between asset
classes and tables, and some other information that will be described in the next
sections. This generator includes the mapping methods from the first generator with
small modifications. The first generator creates an output file in XML format and
adds all generated Table elements to the MetaDatabase node.
SiteLangSQLGenerator also creates the Table objects with all properties, similar to

___ 46

Chapter 5: Mapping Implementation_____________________________________

the XML document, but adds them to the symbol table. It contains a number of Map
objects with key-value pairs, e.g. the object tables associates the asset classes to the
Table objects:

Map<AssetClass, Table> tables = new HashMap<AssetClass, Table>();

Each object in the symbol table has the getter and setter methods.

5.4.2 Mapping to the MetaTables table

The table MetaTables of the SiteLang meta database contains all tables of the
application database. As described in Chapter 4, the asset class definitions are
mapped to the tables. This table inserts a row for each asset class and also additional
associative tables for the relationship mapping, which contains the number of the
table, table name, coordinates for the graphical representation in the Storyboard
editor, and ID of the story (Figure 3.2 depicts all the tables of the meta database). For
this example, a new story is created by the editor, of which the ID is equal to “2”.

SiteLangSQLGenerator implements the method generateSQL(), which generates the
SQL statements from the given asset model. First, the content of the
MetaComponents is generated. Then by iterating through the tables the statements
for the MetaTables and their columns for the MetaAttributes table are generated.
Actually, the generation order is not very important because all data needed for the
SQL statements are stored in the symbol table’s objects. This is important when
creating the application entities by the Storyboard editor.

The analogous method to the addNewTable(…) listed in Figure 5.3 is used to create a
new Table object, but here the created object is added to the symbol table, as shown
in Figure 5.8.

getMyST().addTable(a, addNewTable(...));

Map<AssetClass, Table> tables = new HashMap<AssetClass, Table>();

public void addTable(AssetClass a, Table t) {
 tables.put(a, t);
}
public Table getTable(AssetClass a) {
 return tables.get(a);
}
public List<Table> getTables() {
 return new ArrayList(tables.values());
}

Map<Relationship, Table> unionTables = new HashMap<Relationship, Table>();

Figure 5.8: Methods to add and get tables of the symbol table

The Map object tables associates a Table object to the AssetClass. Since the
associative tables are created when iterating throughout all relationships of the asset
class, the Map unionTables associates each many-to-many and recursive
Relationship to the associative table. These two objects contain all the tables that
have to be inserted into MetaTables.

___ 47

Chapter 5: Mapping Implementation_____________________________________

Since each table must have an ID, after adding a new table, a Map object is updated
with the integer value for each newly created table. We assume that the tables of this
project are identified by the IDs starting from 1000. The generated SQL statements
can be found in Appendix B.

5.4.3 Mapping to the MetaComponents table

The table MetaComponents of the SiteLang meta database contains the relationships
between tables defined in the MetaTables. The relation owns an ID, a label, a source
and destination tables, the starting and ending coordinates of the arrow, the
cardinality constraints, and the type.

The mapping into MetaComponents is divided into three groups according to the
cardinality constraints:

1. One-to-one relationships mapping. This kind of relationship creates one
row in the MetaComponents table. The relationship adds an object to the
Map object in the symbol table where Relationship is associated with the
ID. The relation label is the name of the relationship. The Relationship
object contains the referred asset class; therefore, the source table is taken
from the Map tables containing the AssetClass associated with the Table
(see Figure 5.8). Since the relationship one-to-one has its own object,
which relates the AssetClass to the Relationship object, the destination
table is taken from this association. The IDs of the tables are stored in the
Map object tableIDs.

2. Many-to-many and recursive relationships mapping. This type of
relationship inserts two rows in the MetaComponents table because it is
mapped using an associative table. This table includes two foreign key
columns, which point to different tables or the same table in the case of
the recursive relationship. The label of the relation is composed from the
relationship name and the table the foreign key refers to:
<RelationshipName>_<TableName>. The source tables are the tables
corresponding to the asset class containing the relationship and the other
is the table corresponding to the referred asset class. The destination table
is an associative table, whose ID is stored in the Map unionTables (see
Figure 5.8).

3. Inheritance mapping. If the asset class is involved in the inheritance with
other asset classes it is added to the Map object mapping the AssetClass
to the ID that belongs to the same numeration as the relationships
described above. Each inheritance relationship contains one record in the
MetaComponents table. The relation label is composed of the asset class
name and its superclass name: <AssetClassName>_
<AssetSuperClassName>. The source table is the table corresponding to
the asset superclass. The destination table is the table corresponding to the
inheriting asset class. Their IDs are added to the separate Map object
containing an ID for each asset class that implements a superclass.

___ 48

Chapter 5: Mapping Implementation_____________________________________

5.4.4 Mapping to the MetaAttributes table

The table MetaAttributes contains the attributes of each table defined in MetaTables.
Each column of the table corresponds to one row. The attribute owns an ID, a name,
and a column type. The column AttributeKey indicates whether an attribute is a
primary key of the table. It also includes the ID of the table that owns an attribute,
and the coordinates of the line for the Storyboard editor. To represent a foreign key
attribute, two columns are used. The ForeignKey holds the ID of the primary key that
the foreign key refers to. The ForeignKeyForComponentID column has the ID of the
relation for which the foreign key is created (see Section 3.2 for details).

The SQL statements to insert the attributes are generated in the same loop iterating
tables. The attributes are kept in the Map object of the symbol table, whose key is
composed of the table and attribute names map the Attribute object. The ID of each
attribute is stored in the Map. The Attribute object encapsulates the properties for the
name and type, which are returned by the methods getAttributeName() and
getAttributeType(), accordingly. The Map object of the symbol table contains the
object for all ForeignKeys, whose keys are the table name and attribute name. While
adding foreign keys to the table the Map is created to hold the Attribute and the ID of
the relationship it created, whose ID is a value of the column
ForeignKeyForComponentID.

___ 49

Chapter 5: Mapping Implementation_____________________________________

Chapter 6

Conclusions and Future Work

This chapter gives a brief assessment of this project. First of all, the evaluation of the
achieved results is made and then the ideas on further work are given.

6.1 Conclusions

The intent of this project was to extend Conceptual Content Management Systems
with the web application. The SiteLang language is a web specification language that
allows the generation of applications by means of Storyboarding. Since it supports
the structuring of the web specification, it is easy to modify the complex
specification by separating it into parts. One of the important parts is a data model
specification, which was chosen as a first step for the integration with CCMS, and
the mapping of both data models is a subject of this project.

The CCMS entities are modelled by means of asset class definition whereas the
SiteLang application entities are stored in the tables of the relational database. The
mapping rules to map these two different paradigms were defined. They are based on
object-relational mapping.

The asset class is mapped to the table in the SiteLang meta database. The content
part and characteristics mimic the columns of the table. Since SiteLang only supports
several data types (see Table 4.1) and the characteristics defined in the Asset
Definition Language may have any type of Java language, if the narrowing
conversion is applied to the value, it may loose its precision.

Two generators were implemented in the CCMS framework that convert the asset
class definitions into the SiteLang entities by applying the defined mapping rules.
First generator creates an XML document which contains the definitions of the tables
in the XML format. In order to modify the entities and create the web specification,
the second generator was developed. It converts the asset classes to the SQL
statements which could be executed in the database.

The requirements of this project were successfully fulfilled. The asset class
definitions are mapped into the SiteLang meta database tables. The future work,
which could be done as an extension of this project, is offered in the next section.

___ 50

Chapter 6: Conclusions and Future Work_________________________________

6.2 Future work

This section provides a brief overview on further work to enhance the quality of the
mapping. Since the asset class definitions are mapped to the relational database
tables quite well, there are still several proposals.

First of all, the user should take care defining the asset classes if he has an intent to
map them into the SiteLang entities. The data types supported by SiteLang language
are described in Section 4.5 that is much less than the Asset Definition Language
has. On the other hand, the generator may automatically recognize more data types
as listed in Table 4.1.

The constraints on the characteristics and relationships are not yet supported by the
CCMS parser. There could be found some way to integrate them into SiteLang data
model.

Theoretically, the asset class may inherit from several asset classes. Now the CCMS
parser therefore the mapping generators as well support the inheritance only from
one asset class. As soon as the new parser is developed the generators also should be
adapted.

After the SQL statements are executed in the SiteLang meta database the web
application can be created using the Storyboard editor. The graphical representation
of the entities may be adjusted in the editor because this aspect was not considered
while implementing the mapping.

___ 51

Bibliography

[Amb04] Scott W. Ambler. Mapping Objects to Relational Databases: O/R

Mapping In Detail, Essay from Chapter 14 of Agile Database Techniques,
2004,
http://www.objectarchitects.de/ObjectArchitects/orpatterns/index.htm

[BiZ01] A. Binemann-Zdanowicz. Towards information system modeling on the
basis of ASM semantics. In Computer Science Report I-12/2001,
Brandenburg University of Technology at Cottbus, 2001.

[GJSB05] James Gosling, Bill Joy, Guy Steele and Gilad Bracha. The Java™
Language Specification, 3rd Edition, Addison-Wesley, 2005

[JAXB20] Sun Microsystems. JSR-000222 Java™ Architecture for XML Binding
(JAXB) 2.0, Proposed Final Draft, September 30, 2005,
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html, JAXB
2.0.

[JohQBE] Samuel Johnson. Query-by-Example (QBE),
http://www.cs.wisc.edu/~dbbook/openAccess/thirdEdition/qbe.pdf.

ccessed 26 August 2006. A
[ORM31] Objectmatter Inc., Mapping Tool Guide, Version 3.1, Chapter 2: Object

Relational Mapping Strategies,
http://www.objectmatter.com/vbsf/docs/maptool/ormapping.html

[ScSe03] Joachim W. Schmidt and Hans-Werner Sehring: Conceptual Content
Modeling and Management. In: Manfred Broy and Alexandre V. Zamulin
(editors), Perspectives of System Informatics, volume 2890 of Lecture
Notes in Computer Science, pp. 469-493. Springer-Verlag, 2003.

[Seh03a] Hans-Werner Sehring: Konzeptorientierte Inhaltsverwaltung: Modell,
Systemarchitektur und Prototypen, Dissertation, Hamburg University of
Science and Technology, 2003.

___ 52

http://www.cs.wisc.edu/%7Edbbook/openAccess/thirdEdition/qbe.pdf
http://www.sts.tu-harburg.de/%7Ehw.sehring/publ/Hans-Werner_Sehring_-_COCoMa.pdf
http://www.sts.tu-harburg.de/%7Ehw.sehring/publ/Hans-Werner_Sehring_-_COCoMa.pdf

Bibliography___

[Seh03b] Hans-Werner Sehring. Report on an Asset Definition, Query, and
Manipulation Language. Version 1.0. Technical report, Software Systems
Department, Hamburg University of Science and Technology, Germany,
2003.

[SeSc04] Hans-Werner Sehring and Joachim W. Schmidt: Beyond Databases: An
Asset Language for Conceptual Content Management. Proc. ADBIS
2004, 2004.

[Sma04] Yannis Smaragdakis, Shan Shan Huang, and David Zook. Program
Generators and the Tools to Make Them. In PEPM ’04: Proceedings
of the 2004 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation, pages 92–100. ACM Press,
2004.

[Str05] Ioannis Stragalis. Storyboard editor for SiteLang. Diploma Thesis,
Christian Albrecht University at Kiel, Institute of Computer Science and
Applied Mathematics, Kiel August 2005.

[Tha00] B. Thalheim. Entity-Relationship Modelling – Foundations of Database
Technology. Springer, 2000

[W3C01] World Wide Web Consortium, XSL Transformations (XSLT) Version
1.0, http://www.w3.org/TR/xslt. W3C Recommendation 16 November
1999.

[W3C02] World Wide Web Consortium, XML Schema,
http://www.w3.org/XML/Schema, Recommendation 28 October 2004.

___ 53

Appendix A

The generated meta database content in XML format
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Sitelang>
 <MetaDatabase>
 <Table>
 <TableName>cocoma_PanoramaPicture</TableName>
 <Attribute>
 <AttributeName>PanoramaPictureID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <Attribute>
 <AttributeName>place</AttributeName>
 <AttributeType>string</AttributeType>
 </Attribute>
 <Attribute>
 <AttributeName>PictureID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <PrimaryKeys>
 <PrimaryKey>PanoramaPictureID</PrimaryKey>
 </PrimaryKeys>
 <ForeignKeys>
 <ForeignKey>
 <ReferenceTable>cocoma_Picture</ReferenceTable>
 <ReferenceType>Tuple</ReferenceType>
 <Attributes>
 <AttributeName>PictureID</AttributeName>
 </Attributes>
 <ReferenceAttributes>
 <AttributeName>PictureID</AttributeName>
 </ReferenceAttributes>
 </ForeignKey>
 </ForeignKeys>
 </Table>
 <Table>
 <TableName>cocoma_Artist</TableName>
 <Attribute>
 <AttributeName>ArtistID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <PrimaryKeys>
 <PrimaryKey>ArtistID</PrimaryKey>
 </PrimaryKeys>
 </Table>
 <Table>
 <TableName>cocoma_Picture</TableName>
 <Attribute>

___ 54

Appendix A___

 <AttributeName>PictureID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <Attribute>
 <AttributeName>contents</AttributeName>
 <AttributeType>string</AttributeType>
 </Attribute>
 <Attribute>
 <AttributeName>title</AttributeName>
 <AttributeType>string</AttributeType>
 </Attribute>
 <Attribute>
 <AttributeName>placeOfCreation</AttributeName>
 <AttributeType>The data type Place is not recognized
by the generator!</AttributeType>
 </Attribute>
 <Attribute>
 <AttributeName>artist</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <PrimaryKeys>
 <PrimaryKey>PictureID</PrimaryKey>
 </PrimaryKeys>
 <ForeignKeys>
 <ForeignKey>
 <ReferenceTable>cocoma_Artist</ReferenceTable>
 <ReferenceType>Tuple</ReferenceType>
 <Attributes>
 <AttributeName>artist</AttributeName>
 </Attributes>
 <ReferenceAttributes>
 <AttributeName>ArtistID</AttributeName>
 </ReferenceAttributes>
 </ForeignKey>
 </ForeignKeys>
 </Table>
 <Table>
 <TableName>cocoma_Picture_album_Album</TableName>
 <Attribute>
 <AttributeName>PictureAlbumID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <Attribute>
 <AttributeName>PictureID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <Attribute>
 <AttributeName>AlbumID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <PrimaryKeys>
 <PrimaryKey>PictureAlbumID</PrimaryKey>
 </PrimaryKeys>
 <ForeignKeys>
 <ForeignKey>
 <ReferenceTable>cocoma_Picture</ReferenceTable>
 <ReferenceType>Tuple</ReferenceType>
 <Attributes>
 <AttributeName>PictureID</AttributeName>
 </Attributes>
 <ReferenceAttributes>
 <AttributeName>PictureID</AttributeName>
 </ReferenceAttributes>

___ 55

Appendix A___

 </ForeignKey>
 <ForeignKey>
 <ReferenceTable>cocoma_Album</ReferenceTable>
 <ReferenceType>Tuple</ReferenceType>
 <Attributes>
 <AttributeName>AlbumID</AttributeName>
 </Attributes>
 <ReferenceAttributes>
 <AttributeName>AlbumID</AttributeName>
 </ReferenceAttributes>
 </ForeignKey>
 </ForeignKeys>
 </Table>
 <Table>
 <TableName>cocoma_Picture_topic_Subject</TableName>
 <Attribute>
 <AttributeName>PictureSubjectID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <Attribute>
 <AttributeName>PictureID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <Attribute>
 <AttributeName>SubjectID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <PrimaryKeys>
 <PrimaryKey>PictureSubjectID</PrimaryKey>
 </PrimaryKeys>
 <ForeignKeys>
 <ForeignKey>
 <ReferenceTable>cocoma_Picture</ReferenceTable>
 <ReferenceType>Tuple</ReferenceType>
 <Attributes>
 <AttributeName>PictureID</AttributeName>
 </Attributes>
 <ReferenceAttributes>
 <AttributeName>PictureID</AttributeName>
 </ReferenceAttributes>
 </ForeignKey>
 <ForeignKey>
 <ReferenceTable>cocoma_Subject</ReferenceTable>
 <ReferenceType>Tuple</ReferenceType>
 <Attributes>
 <AttributeName>SubjectID</AttributeName>
 </Attributes>
 <ReferenceAttributes>
 <AttributeName>SubjectID</AttributeName>
 </ReferenceAttributes>
 </ForeignKey>
 </ForeignKeys>
 </Table>
 <Table>
 <TableName>cocoma_FlowerPicture</TableName>
 <Attribute>
 <AttributeName>FlowerPictureID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <Attribute>
 <AttributeName>flowerName</AttributeName>
 <AttributeType>string</AttributeType>
 </Attribute>

___ 56

Appendix A___

 <Attribute>
 <AttributeName>PictureID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <PrimaryKeys>
 <PrimaryKey>FlowerPictureID</PrimaryKey>
 </PrimaryKeys>
 <ForeignKeys>
 <ForeignKey>
 <ReferenceTable>cocoma_Picture</ReferenceTable>
 <ReferenceType>Tuple</ReferenceType>
 <Attributes>
 <AttributeName>PictureID</AttributeName>
 </Attributes>
 <ReferenceAttributes>
 <AttributeName>PictureID</AttributeName>
 </ReferenceAttributes>
 </ForeignKey>
 </ForeignKeys>
 </Table>
 <Table>
 <TableName>cocoma_Album</TableName>
 <Attribute>
 <AttributeName>AlbumID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <PrimaryKeys>
 <PrimaryKey>AlbumID</PrimaryKey>
 </PrimaryKeys>
 </Table>
 <Table>
 <TableName>cocoma_Album_albums_Album</TableName>
 <Attribute>
 <AttributeName>AlbumAlbumID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <Attribute>
 <AttributeName>AlbumID1</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <Attribute>
 <AttributeName>AlbumID2</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <PrimaryKeys>
 <PrimaryKey>AlbumAlbumID</PrimaryKey>
 </PrimaryKeys>
 <ForeignKeys>
 <ForeignKey>
 <ReferenceTable>cocoma_Album</ReferenceTable>
 <ReferenceType>Tuple</ReferenceType>
 <Attributes>
 <AttributeName>AlbumID1</AttributeName>
 </Attributes>
 <ReferenceAttributes>
 <AttributeName>AlbumID</AttributeName>
 </ReferenceAttributes>
 </ForeignKey>
 <ForeignKey>
 <ReferenceTable>cocoma_Album</ReferenceTable>
 <ReferenceType>Tuple</ReferenceType>
 <Attributes>
 <AttributeName>AlbumID2</AttributeName>

___ 57

Appendix A___

 </Attributes>
 <ReferenceAttributes>
 <AttributeName>AlbumID</AttributeName>
 </ReferenceAttributes>
 </ForeignKey>
 </ForeignKeys>
 </Table>
 <Table>
 <TableName>cocoma_Subject</TableName>
 <Attribute>
 <AttributeName>SubjectID</AttributeName>
 <AttributeType>int</AttributeType>
 </Attribute>
 <PrimaryKeys>
 <PrimaryKey>SubjectID</PrimaryKey>
 </PrimaryKeys>
 </Table>
 </MetaDatabase>
 <MetaDatabaseContent></MetaDatabaseContent>
</Sitelang>

___ 58

Appendix B

The generated SQL INSERT statements into the meta database
tables

INSERT INTO MetaComponents (ComponentID, ComponentLabel, ConstraintType,
SourceTableID, DestinationTableID, DestinationTableType)VALUES (1004, 'artist',
0, 1002, 1003, 0)

INSERT INTO MetaComponents (ComponentID, ComponentLabel, ConstraintType,
SourceTableID, DestinationTableID, DestinationTableType)VALUES (1008,
'albums_Album', 3, 1007, 1008, 0)

INSERT INTO MetaComponents (ComponentID, ComponentLabel, ConstraintType,
SourceTableID, DestinationTableID, DestinationTableType)VALUES (1009,
'albums_Album', 3, 1007, 1008, 0)

INSERT INTO MetaComponents (ComponentID, ComponentLabel, ConstraintType,
SourceTableID, DestinationTableID, DestinationTableType)VALUES (1005,
'topic_Picture', 3, 1003, 1005, 0)

INSERT INTO MetaComponents (ComponentID, ComponentLabel, ConstraintType,
SourceTableID, DestinationTableID, DestinationTableType)VALUES (1006,
'topic_Subject', 3, 1009, 1005, 0)

INSERT INTO MetaComponents (ComponentID, ComponentLabel, ConstraintType,
SourceTableID, DestinationTableID, DestinationTableType)VALUES (1002,
'album_Picture', 3, 1003, 1004, 0)

INSERT INTO MetaComponents (ComponentID, ComponentLabel, ConstraintType,
SourceTableID, DestinationTableID, DestinationTableType)VALUES (1003,
'album_Album', 3, 1007, 1004, 0)

INSERT INTO MetaComponents (ComponentID, ComponentLabel, ConstraintType,
SourceTableID, DestinationTableID, DestinationTableType)VALUES (1007,
'FlowerPicture_Picture', 2, 1003, 1006, 0)

INSERT INTO MetaComponents (ComponentID, ComponentLabel, ConstraintType,
SourceTableID, DestinationTableID, DestinationTableType)VALUES (1001,
'PanoramaPicture_Picture', 2, 1003, 1001, 0)

INSERT INTO MetaTables VALUES(1009, 'cocoma_Subject', 450, 450, 2)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1031, 'SubjectID', 'int', 1, 1009, -1, -1)

___ 59

Appendix B___

INSERT INTO MetaTables VALUES(1002, 'cocoma_Artist', 100, 100, 2)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1006, 'ArtistID', 'int', 1, 1002, -1, -1)

INSERT INTO MetaTables VALUES(1003, 'cocoma_Picture', 150, 150, 2)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1007, 'PictureID', 'int', 1, 1003, -1, -1)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1017, 'ArtistID', 'int', 0, 1003, -1, 1004)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1008, 'contents', 'Image', 0, 1003, -1, -1)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1010, 'title', 'string', 0, 1003, -1, -1)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1012, 'placeOfCreation', 'The data type Place is not recognized by the
generator!', 0, 1003, -1, -1)

INSERT INTO MetaTables VALUES(1007, 'cocoma_Album', 350, 350, 2)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1027, 'AlbumID', 'int', 1, 1007, -1, -1)

INSERT INTO MetaTables VALUES(1006, 'cocoma_FlowerPicture', 300, 300, 2)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1022, 'FlowerPictureID', 'int', 1, 1006, -1, -1)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1025, 'PictureID', 'int', 0, 1006, -1, 1007)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1023, 'flowerName', 'string', 0, 1006, -1, -1)

INSERT INTO MetaTables VALUES(1001, 'cocoma_PanoramaPicture', 50, 50, 2)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1004, 'PictureID', 'int', 0, 1001, -1, 1001)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1002, 'place', 'string', 0, 1001, -1, -1)

___ 60

Appendix B___

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1001, 'PanoramaPictureID', 'int', 1, 1001, -1, -1)

INSERT INTO MetaTables VALUES(1008, 'cocoma_Album_albums_Album', 400,
400, 2)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1028, 'AlbumAlbumID', 'int', 1, 1008, -1, -1)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1029, 'AlbumID1', 'int', 0, 1008, -1, 1008)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1030, 'AlbumID2', 'int', 0, 1008, -1, 1009)

INSERT INTO MetaTables VALUES(1005, 'cocoma_Picture_topic_Subject', 250,
250, 2)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1019, 'PictureSubjectID', 'int', 1, 1005, -1, -1)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1020, 'PictureID', 'int', 0, 1005, -1, 1005)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1021, 'SubjectID', 'int', 0, 1005, -1, 1006)

INSERT INTO MetaTables VALUES(1004, 'cocoma_Picture_album_Album', 200,
200, 2)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1014, 'PictureAlbumID', 'int', 1, 1004, -1, -1)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1015, 'PictureID', 'int', 0, 1004, -1, 1002)

INSERT INTO MetaAttributes (AttributeID, AttributeName, AttributeType,
AttributeKey, OwnerTableID, ForeignKeyID, ForeignKeyForComponentID)
VALUES (1016, 'AlbumID', 'int', 0, 1004, -1, 1003)

___ 61

