

Master Thesis

Migration Methodologies for Web Applications

A Case Study with the IVY to JSF Presentation Frameworks

Author: Wei Sun

Student Number: 27409

Subject: Information & Media Technologies

Date: 16.03.2006

Supervisor: Prof. Dr. Joachim W. Schmidt

Prof. Dr. Helmut Weberpals

Mr. Rainer Marrone

Table of Contents

Table of Contents ... I

Statement ... III

Acknowledgement ... IV

Abstract..V

List of Figures.. VI

List of Tables...VII

List of Abbreviations.. VIII

1 Introduction...1
1.1 Task Description ..2
1.2 Vision and Guidelines ..3

2 Overview of Migration Technology ...5
2.1 Impact of Migration on Enterprise...5
2.2 Overview of Migration Strategies..7
2.3 Strategy Selection for BBS-S&T Migration Projects10
2.4 Model-Driven Migration Approach ...13
2.5 Formulation of Migration Plan ..14
2.6 Migration Planning for BBS-S&T...17

3 Comparison between IVY Presentation and JavaServer Faces......................23
3.1 Overview of IVY Presentation...23

3.1.1 Architecture and Concepts of Web Application Framework....................24
3.1.2 Architecture and Concepts of Portal Application Framework30

3.2 Overview of JavaServe Faces ..32
3.2.1 Architecture of JavaServer Faces ..33
3.2.2 Key Concepts of JavaServer Faces..36

3.3 Comparison between IVY Presentation and JavaServer Faces....................42
4 Development of Mapping Rules...46

4.1 Mapping of Framework Libraries..46
4.2 Mapping of Servlet Configuration File..47
4.3 Mapping of Application Configuration Class ..48
4.4 Mapping of Navigation Web Control...49
4.5 Mapping of Message Resources ..51
4.6 Mapping of Business Beans and Logics ..52
4.7 Mapping of Web Forms ...54
4.8 Mapping of other Items..55

 I

5 Migration Tools, Templates and Methods...57
5.1 Migration Tool for Project Duration Estimation..58
5.2 Migration Tool to Facilitate the JSP Mapping ...61
5.3 JavaServer Faces Project Templates ..62
5.4 Migration Guideline...65

6 Evaluation of Migration Methodologies ...70
6.1 Verification with Migration Projects..70
6.2 Performance Test on IVY and JSF Applications..71
6.3 Code-Evaluation Test on IVY and JSF Applications73

7 Conclusion and Outlook ...75
7.1 Conclusion ...75
7.2 Outlook ..76

References ...77

 II

Statement

Hereby I do state that this work has been undertaken by me. All literally or content

related quotations from other sources are clearly pointed out and no other sources

rather than the ones declared are used.

Wei Sun

Hamburg, March 2006

 III

Acknowledgement

I have received great many supports to accomplish this master thesis.

I would like to thank Prof. Dr. Joachim W. Schmidt, Prof. Dr. Helmut Weberpals, and
Mr. Rainer Marrone for giving me the opportunity to work on this thesis project under
their supervision and for their constructive suggestions and instructions to help me
improve this master thesis.

I would like to thank Dr. Christian Pütter, Dr. Holger Schimanski, Mr. Ronald Brill,
Mr. Andre Klaassen, and Mr. Frank Danek, who were always willing to provide me
with useful advices, technical supports and timely feedbacks. With them together I
had a pleasant and fruitful working experience at Bayer Business Services GmbH to
conduct this master thesis.

Beside me there are also my family and dear friends, who are continuously
encouraging me to conquer the hardship with optimism and to meet new challenges
with perseverance. I would like to thank them, too.

 IV

Abstract

Support for business processes in the general domain of science, technology and
environmental protection is a high-ranking goal for many companies engaged in the
production and distribution industries. For example, the Bayer Business Services
GmbH (BBS) provides by its Science & Technology Department (S&T) Bayer-wide
software development support with a particular focus on information systems based
on web applications. With the specific aim to support the development of
chemistry-oriented web applications, BBS has developed the so-called IVY
Framework which is mainly based on J2EE and Oracle technology. So far, BBS-S&T
has developed more than sixty web applications of various scales using IVY
Framework, and they will be kept in operation for years.

Due to the decision made by BBS-S&T to adopt the JSF Framework, all the IVY web
applications are planned to be migrated within the next two or three years. The
migration from one legacy web application framework to the standard is a fairly new
case, and researches and practical experience are required. This paper presents the
optimized migration methodologies developed for BBS-S&T with the objectives to
make its migration projects executed in a smooth and successful approach.
Nevertheless, these migration methodologies can also be applied by other
organizations with the similar migration projects of web applications.

 V

List of Figures

Figure 1-1: Architecture of IVY Framework ...2

Figure 2-1: Model of Enterprise Infrastructure..6

Figure 2-2: Effectiveness and Business Needs ..8

Figure 2-3: Handle Improvement for Migration Project..12

Figure 2-4: Model Driven Migration Approach...13

Figure 2-5: Dynamic of Migration Planning ...15

Figure 2-6: Migration Plan for BBS ..17

Figure 2-7: Distribution of Tasks during Migration Phases...17

Figure 3-1: Architecture of IVY Framework ...23

Figure 3-2: Front-Controller Pattern in IVY Presentation ...24

Figure 3-3: Architecture of Web Application Framework ...25

Figure 3-4: Architecture of IVY Web Application...26

Figure 3-5: Life-Cycle of IVY Web Application ...27

Figure 3-6: Relationship among JSP, WebForm and WebControl28

Figure 3-7: Corporate Design of Bayer ...29

Figure 3-8: Architecture of IVY Collaboration Model ..30

Figure 3-9: Architecture of Portal Application Framework...31

Figure 3-10: High-level Overview of JSF Framework ..32

Figure 3-11: MVC implemented in JavaServer Faces ...33

Figure 3-12: Request Processing Flow ..34

Figure 3-13: Life-cycle of JavaServer Faces ...35

Figure 3-14: Example of JSF Default Converter ...38

Figure 3-15: Example of JSF Default Validator...38

Figure 3-16: Binding UI to Managed Bean ...39

Figure 3-17: Usage of Action Listener Attribute and Tag..40

Figure 3-18: Dynamic Navigation ...41

Figure 3-19: Internationalization and Localization..42

Figure 4-1: Add JSF Framework into Web Application...47

Figure 4-2: New Architecture of Configuration Class for JSF48

Figure 4-3: Migration of BayerNavigation to Navigation ...50

Figure 4-4: Multilingual Support of JSF..51

Figure 4-5: Design of Model Architecture in JSF..53

 VI

Figure 4-6: Mapping Procedures of Web Form ...54

Figure 5-1: Tool for Project Duration Estimation..58

Figure 5-2: Migration Tool to Map JSP ...62

Figure 5-3: Project Structure of JSF Application...63

Figure 5-4: Package Structure of JavaSource ..64

Figure 6-1: Result Comparison of Performance Test A...71

List of Tables

Table 1-1: Chapter Outlines of Master Thesis ...4

Table 2-1: Migration Strategy Decided by Application Architecture9

Table 3-1: Scope of JSF Managed Beans...37

Table 3-2: Comparison between IVY Presentation and JSF..43

Table 5-1: Sample of Project Duration Estimation File...60

Table 6-1: Comparison of Metrics Test Results...73

 VII

List of Abbreviations

JSF JavaServer Faces

JCP Java Community Process

QoS Quality of Service

TCO Total Cost of Ownership

JSP JavaServer Pages

COTS Common Off-The-Shelf

CVS Concurrent Versions System

RI Reference Implementation

MVC Model-View-Controller

MLC Method Lines of Code

DIT Depth of Inheritance Tree

WMC Weighted Methods per Class

LCM Lack of Cohesion of Methods

Ca Afferent Coupling

Ce Efferent Coupling

 VIII

Chapter 1 Introduction

1 Introduction

Before the release of JavaServer Faces (JSF) by the Java Community Process (JCP)1,
it was a rather complicated and time-consuming task to choose the right framework
for Java web development. The reason2 was that there were too many choices, for
instance, Apache Struts, the most well-known one, and other alternatives. All of these
frameworks are built upon the J2EE technology3 to provide robust functionalities for
form handling, layer separation, navigation handling, templates, internationalization,
etc. However, none of them was regarded as the optimal choice on the market. It was
driven by such a demand for a new standard framework of web applications that JSF
got its prosperous development and the initial version of its specification was
published by Sun and other famous vendors in 2004.

JSF offers several favorable features, such as a solid component framework, support
for multiple client devices, the user interface event-oriented development, robust tool
supports, and an extensible architecture, to name a few. With JSF growing to be a
mature technology, organizations, which may have standardized on other web
frameworks, are evaluating their options for future development. They are interested
in the key benefits that the migration to JSF and the JSF tool support will bring about.
Meanwhile, they are examining the possibilities for leveraging their existing code
base and skill sets.

The Science & Technology Department (S&T) of Bayer Business Services GmbH
(BBS) is one of those organizations. BBS-S&T provides Bayer-wide supports for
business process in the domain of science, technology and environmental protection.
One of its focuses is to develop the information systems on the basis of web
applications. With the specific aim to support the development of chemistry-oriented
web applications, it has developed the so-called IVY Framework mainly with the
J2EE and Oracle technology. With JSF being the new standard of Java web
development framework, BBS-S&T has determined to migrate all its web applications
into JSF in the near future.

The migration projects, if not well organized, are likely destined to performance
failures, behind schedule and financial loss. This paper presents optimized migration
methodologies developed for BBS-S&T with the objectives to enable its migration
projects to be carried out in a smooth and successful approach. Nevertheless, these
migration methodologies can also be useful for other organizations with similar
migration projects of web applications.

1 JSR 127: JavaServer Faces
2 See Kito D. Mann (2005)
3 See J2EE 1.4 Turorial

 1

Chapter 1 Introduction

1.1 Task Description

The IVY Framework, developed by BBS-S&T to facilitate the development of
chemistry-oriented web applications, is composed of four models, namely IVY
Foundation, IVY Chemistry, IVY Presentation, and IVY Collaboration. Figure 1-1
outlines its architecture and the relationship among the four models. IVY Foundation
is the base library to provide services for database access, exception handling, logging,
multilingual support, security, utilities, to name a few. IVY Chemistry is developed to
simplify the implementation of web applications with chemical features. IVY
Presentation is mainly applied to develop web applications complying with the Bayer
Standard Layout Guideline. Detailed information about IVY Presentation is
introduced in Chapter 3. IVY Collaboration is a collection of web services, which are
utilized to integrate varieties of web applications for the BBS portal. So far BBS-S&T
has developed about sixty web applications of various scales using IVY Framework.
These web applications will be still kept in operation for years. Since BBS-S&T has
decided to adopt the JavaServer Faces Framework, all the IVY web applications are
going to be migrated within the next two or three years.

IVY Foundation

IVY
Collaboration

IVY
Chemistry

IVY
Presentation

Figure 1-1: Architecture of IVY Framework

Nowadays the technology is continuously replaced or upgraded by new and advanced
ones. Under such a circumstance, migration is no longer a brand-new topic in the IT
industry. However, the migration of web applications to a different web development
framework is still a fairly new case. Researches and practical experience are in highly
demand. Therefore, the mission of this master project is to work out suitable
migration methodologies for web applications and the migration of web applications
from IVY Presentation to JSF for BBS-S&T is taken as a case study.

To be specific, the task assigned to this master project consists of four parts. The first
task is to conduct a research on the existing migration technology with the particular
aim to learn from the proven migration techniques and to design effective and

 2

Chapter 1 Introduction

actionable migration methodologies for BBS-S&T. This goal can only be achieved
with a thorough comprehension of the source IVY Presentation framework and the
target JSF framework. So the second task is to make an in-depth comparison of the
two frameworks in terms of the architecture and concepts and to identify their
commonality and difference. The objective is to formulate mapping rules with regard
to how the migration can be performed in practice. The third task is to develop some
useful tools, templates and methods, which must conform to the migration rules and
enable the migration task to be done effectively and efficiently. Since the theory must
be appraised and improved by practice, the last but not the least task is to verify the
usefulness and feasibility of the developed migration methodologies with concrete
migration projects.

1.2 Vision and Guidelines

A clear vision and working guidelines are helpful to guarantee the quality of the
project execution. The vision of this master project is to develop effective
methodologies for the migration of web applications. Through the interview with
several migration engineers of BBS-S&T, the following guidelines are drawn up to
lead the progress of this master project.

First of all, migration engineers are the end-users of the developed migration
methodologies, so their expectations and requirements must be given sufficient
attention. Besides, it should be pointed out that the migration methodologies are
evolving processes, the effectiveness of which needs to be improved continuously
through the experience gained from previous migration projects. The aim of the
project is to develop the fundamental migration methodologies that are applicable to
all migration projects, and not to explore every single detail that may change itself
over time.

As to the migration tools, the objective is to accelerate the migration process and to
simplify the migration tasks, so they should fulfill end-users’ requirements for the
simple usage and the effective reduction of tedious workload. Because the tools to be
developed are only required for the migration of the existing web applications, the
implementation of these tools must be cost-effective.

Last but not the least, the migration guideline is an important outcome of the project.
It needs to be organized in a clear and logic structure. The focus is to provide
migration engineers with adequate information to apply the migration methodologies.

 3

Chapter 1 Introduction

Table 1-1 lists the main contents for each chapter. Readers can select information
according to their interests and needs.

Chapter Outline

Chapter 2

 Describe the influence of migration on enterprise

 Introduce existing migration strategies

 Select optimal migration strategies for BBS-S&T

 Describe the model-driven migration approach

 Illustrate the formulation of migration plan

 Propose migration plan for BBS-S&T

Chapter 3

 Introduce the IVY web application framework and portal

application framework

 Introduce the JavaServer Faces framework

 Comparison between IVY and JSF frameworks

Chapter 4 Describe the mapping rules

Chapter 5

 Introduce the developed migration tools

 Illustrate the migration project template

 Outline the migration guideline

Chapter 6

 Verify the migration methodologies with practical projects

 Demonstrate the performance test results

 Exhibit the code-evaluation test results

Chapter 7
 Conclusion

 Outlook

Table 1-1: Chapter Outlines of Master Thesis

 4

Chapter 2 Overview of Migration Technology

2 Overview of Migration Technology

Migration, referring to the definition given by Sun Microsystems, Inc. is “the
transition of an environment's people, processes, or technologies from one
implementation to another”. The value achieved by migration is derived from
improved quality of service (QoS) and reduced total cost of ownership (TCO) as a
significant characteristic of the new platform, environment, and overall IT
infrastructure. In the IT industry the frequently occurring migration contexts cover,
for instance, the upgrade of common off-the-shelf (COTS) software to its up-to-date
version, the migration of applications from one operating environment to another, the
migration of data from one database to another, and the migration of a legacy
application from one programming language to another. With the rapid development
of web technology, the migration contexts are certainly enriched by the migration of
web applications from one legacy framework to the standard. It is this wide scope that
leads to the various interpretations of migration.

2.1 Impact of Migration on Enterprise

In order to understand the typical impact that the migration has on an enterprise, it is
essential to have the knowledge of the enterprise infrastructure. Figure 2-1 illustrates a
model of the infrastructure that an enterprise normally has.

The enterprise infrastructure is divided into three levels, namely the decision level, the
execution level and the management level. On the decision level, issues with regard to
business strategy, people and process are primarily determined by the executive team
of the enterprise. It is these crucial decisions that distinguish the vision and
development strategy of each enterprise from the other. These decisions must be in
turn executed and supported by the lower levels. Moreover, these decisions set the
priorities of how resources are allocated to the involved business functions.

On the execution level the business application locates right under the business
process. Generally speaking, changes of business process are most likely to trigger the
corresponding changes in the business application, so a rapidly evolving enterprise
must cultivate the capacity to implement the application changes in a timely and
organized manner. Business applications are supported by application infrastructure
including web server, application server, middleware and database technology, which
build upon the multilayer architecture. The application infrastructure is operating on
the computing and storage platforms, which are composed of a heterogeneous mix of
hardware from different vendors. Nowadays the communication through network
technology is widely employed, so the network infrastructure is an indispensable
component of the enterprise infrastructure. The facilities infrastructure is equally

 5

Chapter 2 Overview of Migration Technology

important, because if it doesn’t work, the whole system is unable to operate at all.
This execution level is featured with some system properties, namely availability,
scalability, measurability and security, which are critical to every enterprise.

Decision Level

Execution Level

Management Level

Figure 2-1: Model of Enterprise Infrastructure4

The management level consists of the tools, processes and people, which are

In conclusion, the migration affects the enterprise as a whole, but to varied extents. As

combined to control, measure and manage the execution level. The tools and
processes are applied to support changes, services, deployment and maintenance. The
IT people take the full responsibility to develop and maintain these tools and
processes. Therefore, to adapt to changes responsively, enterprise should encourage
its IT people for innovation and equip them with required knowledge and skills, so
that they can confront changes with more willingness and ease.

a team work, the migration requires harmonious cooperation among the decision,
execution and management levels. Therefore, it is critical for the execution team of
BBS-S&T to be aware of the potential impacts, to provide sufficient supports to IT
people, and to work out feasible solutions to minimize possible risks.

4 See: Migration Strategies

 6

Chapter 2 Overview of Migration Technology

2.2 Overview of Migration Strategies

There exist various strategies 5 for migration, namely refronting, replacement,
rehosting, rearchitecture, interoperation, and retirement. The introduction to these
strategies aims to set the foundation for the selection of the optimal migration strategy
for BBS-S&T.

Refronting means to add or improve the graphical user interface, instead of rewriting
the entire application. This strategy is suitable for applications, which have good
functionalities, but aren’t user friendly.

Replacing means to substitute part of a complex and often customer-written legacy
application with a COTS application, When the legacy application is decomposed into
functional building blocks.

Rehosting refers to moving a complete application from a legacy environment
without any change in functionality. It can be realized in several ways, namely
recompilation, emulation and technology porting. Recompilation, as its name reveals,
needs to recompile the source codes, which can be done in two approaches. The first
approach is to develop or acquire a compatibility library that provides identical
functionality of the legacy environment. The second is to alter the source codes in
order to call the APIs of the new environment. Emulation is to remain the source
codes intact and to introduce an additional layer to emulate the instruction set used in
the source binary. Technology porting is to supplement the new environment with the
capability to execute the code that runs natively in the original environment.

Rearchitecture stands for a tailored approach, which enables the whole application
architecture to be migrated to the new environment, probably using new programming
paradigms and languages.

Interoperation is to leave the legacy application as it is and surround it with new
technology if it is required by an enterprise.

Retirement is utilized, when changes in technology obviate the need for specific
functionality of an application or an overall solution. In this case, legacy utilities or
applications are retired because they are no long required or applied in the solution.

In order to determine which migration strategy be chosen, both the IT environment
and the application itself need to be taken into consideration. First of all, the selected
migration strategy of an application must fit into its overall IT environment. As is

5 See: Migration Strategies

 7

Chapter 2 Overview of Migration Technology

indicated by Figure 2-2, the existing environment can be evaluated from two aspects,
namely how the application meets business needs and how technically effective it is.

The X-axis of the diagram indicates the adequacy of meeting business needs, which
an be evaluated by the time required to introduce new features, the ease of use, the
ability to support the functional requirements of the enterprise and the ability to
support the future growth of the enterprise. The Y-axis reflects its IT effectiveness in
terms of total cost of ownership (TCO), technological stability, functional separation,
service level issues and implementation technologies.

Rehost

Rearchitect

Replace
/ Refront

Interoperate

High

High

Low

Low
TCO Issue
Technology High
Many Dependencies
Service Level Issue

Low TCO
Technology Stability
Functional Separation
No Service Level Issues

Adequacy of
Meeting Business needs

Functionality, business growth,
time to adapt, ease of use

IT
 E

ffe
ct

iv
en

es
s

Figure 2-2: Effectiveness and Business Needs6

After the comprehensive evaluation of applications according to the two criteria, those
falling in the lower-left quadrant are meeting business needs well and are highly
technically effective. They should be maintained as they are, and interoperation
strategy can be applied to make them compatible with the new environment. Those in
the lower-right quadrant have high IT effectiveness, but fail to meet business
requirements. They need to be enhanced, instead of being migrated, so refront or
replace is the right choice. For those in the upper-left quadrant, which meet functional
business requirements, but show lower IT effectiveness, rehost is the right solution.
For those in the upper-right quadrant, which are low in IT effectiveness and lack of
adequate business functionality, rearchitect is a better choice.

In addition to the overall IT environment, the selection of migration strategy is also
influenced by the application architecture. Nowadays most modern applications are

6 See Migration Strategies

 8

Chapter 2 Overview of Migration Technology

built upon the multi-tier architecture, and its decomposition allows for the different
migration strategies to be applied to each tier separately. Table 2-1 on the next page
lists migration strategies appropriate for each tier.

Tier Purpose Common Approaches

Presentation Hosts the processing that adapts the display and
interaction as appropriate for the accessing client
device, be it a desktop computer, a cell phone, a
PDA, or any other device.

Refronting, rehosting,
interoperating, and
replacing

Application or
Business Logic

Hosts the logic that embodies the rules of the
enterprise, irrespective of access device or resource
implementation.

Rehosting, interoperating,
and replacing

Integration Allows for the connection of disparate applications
and data sources.

Rehosting, interoperating,
and replacing

Resource or
Database

Consists of legacy systems, relational databases,
data warehouses, or any other back-end or external
processing system that accesses and organizes data.

Rehosting and replacing

Persistence Holds the permanent data for the enterprise. In the
past, this was considered part of the Resources tier,
but with the growth of intelligent storage, it has
become a tier in itself.

Rehosting and replacing

Table 2-1: Migration Strategy Decided by Application Architecture7

It is well-known that migration strategies require different amount of effort and bring
about varied values as well. Generally speaking, the achieved value is proportional to
the effort committed to the migration project.

Interoperation requires the least amount of effort, and provides the least amount of
benefit. The architecture and infrastructure remain unchanged and simple connector
technology is deployed to support the interaction with new applications or hardware.
Since no new functionality is added, this task requires minimal time and expense.

Rearchitecture occupies the other extreme. It supports tailored functionality, modular,
tiered design, and a modern implementation language. So it leads to great benefits.
But on the other hand, the effort and associated cost can be significant. Moreover, this
solution is error-prone, so it requires a rigorous validation and verification effort.

7 See Migration Strategies

 9

Chapter 2 Overview of Migration Technology

Refronting or replacement enhances the application by adding a presentation layer,
which will add new functionality. But given that the application is considered to be
somewhat unacceptable, this enhancement adds minimal overall benefit compared
with the amount of effort it requires.

Rehosting is the solution that provides the most value for the least effort. It typically
involves modifying the source code and building the environment for an application,
so that it compiles and runs on the new target system.

2.3 Strategy Selection for BBS-S&T Migration Projects

After the overview of migration and its actable strategies, this sub-chapter presents a
detailed analysis and selection of the migration strategy suitable for BBS-S&T.

It is essential to have a good knowledge of the influence that the migration has on
BBS-S&T. Since the executive team of BBS-S&T made the decision to migrate the
web applications from IVY Presentation to JavaServer Faces, they should attach great
importance to the projects and provide migration engineers with sufficient supports.
Web applications and their operating environment belong to the business application
layer and the application infrastructure layer in the enterprise infrastructure, where
most of the changes take place. The rest layers of the execution level can remain to a
great extend the same. Besides, the migration will have great impact on the manage
level as well. The tools and processes that people are used to utilize may change, and
some new tools or processes need to be introduced for the development, deployment
and maintenance of web applications with the new framework. Most important is that
IT people must have the knowledge to manage the changes and the willingness to
learn new techniques. Therefore, good supports to prepare them ready for the
migration is of highly necessity. Therefore, for BBS-S&T the migration of web
applications will have major influence on the decision level, the business application
layer and the application infrastructure layer of the execution layer and the
management level. This paper is focused specially on the development of migration
methodologies to deal with the changes to the business application layer.

The influence of migration on the business application layer reveals itself on both
IVY Framework and web applications, so migration strategies should be selected for
the most appropriate usage. Let’s discuss the strategy for the migration of IVY
Framework first. From the perspective of IT environment, IVY Framework shows a
high standard in IT effectiveness. However, its IVY Presentation model cannot fulfill
the business needs, especially in terms of its capacity to support the future growth of
the enterprise. JSF has grown to be a standard and mature technology for web
application development and it has powerful vendor and industry supports. Therefore,

 10

Chapter 2 Overview of Migration Technology

for the migration of IVY Presentation, replacement is the most suitable solution. To
integrate JSF into IVY Framework seamlessly, some extra work needs to be done and
this task is in the charge of the JSF research project currently conducted in BBS-S&T.
The so-called IVY Faces model has been implemented to provide JSF web
applications with convenient access to services of IVY Framework. Besides, services
of IVY Faces are utilized in this project, and that will be introduced in Chapter 4.

Now let’s focus on the strategy for the migration of web applications, which is the
main task of this master project. From the aspect of IT environment, web applications
built upon IVY Presentation are able to fulfill the business needs with satisfactory
functionalities and ease of use. From technical point of view, it is stable in technology.
However, since BBS decides not to apply IVY Presentation for the web application
development any more, the total cost of ownership to maintain these web applications
will be high and in the future there will be service issues involved. Through the
analysis, rehosting proves to be the optimal strategy. Besides, from the perspective of
application architecture, web applications fall into the application and business logic
category, and rehosting is again considered to be a better choice. As is introduced
Chapter 2.2, rehosting can be realized using different approaches. Due to the service
issue, it is suggested that BBS-S&T adopt the source code porting approach, which
modifies the source codes to call APIs of the JSF Framework directly.

Normally rehosting constrains its scope by adding no new features and functionality.
However, many companies want to take the chance to add new features or
functionality during the migration, and the migration of IVY web applications will
involve improvement as well. Therefore, BBS-S&T is also interested to know the
appropriate approach to deal with improvement and migration. The improvement can
be classified to three levels, namely great improvement, small improvement and no
improvement. If great improvement is required, it indicates that the web application
doesn’t meet the business requirements. In this case, rehosting isn’t a proper
migration strategy, instead rearchitecture should be used. The web application can be
redesigned by using reverse engineering or redeveloped from scratch, and the general
software development process can be applied.

Due to the time constraint, this project pays more attention to the migration of IVY
web applications with small or no modification in terms of its presentation and
business logic, which are also the cases in BBS-S&T. IVY web applications have
been put in operation for years. End-users are used to the outlook and the functionality
of the existing web applications. Any change in the application especially on the
outlook will result in some cost for training the end-users and in consequence increase
the productivity loss to some extend. Due to concern of potential risks, careful
consideration should be taken for the decision of changes. However, in some cases

 11

Chapter 2 Overview of Migration Technology

changes are necessary and some new features need to be added, two approaches can
be chosen to handle the improvement. One is to implement the improvement after the
completion of the migration, while the other is the carry out the improvement during
the migration process. The criteria used to select the proper approach for one specific
scenario are the complexity of the IVY web application, the knowledge that migration
engineers have about the IVY web application, and the code reuseness of the IVY
web application.

Application Complexity

After Migration

During Migration

High

High

Low

Low

Low

High
Code Reuseness

K
no

w
le

dg
e

of
 IV

Y
A

pp
s

Figure 2-3: Handle Improvement for Migration Project

To determine what and how improvement to be made, migration engineers need to
know the architecture and functionality of the IVY web applications very well. When
the application complexity is high, it is difficult for them to manage changes when
they are lack in the knowledge of the web application. It is recommended to do the
migration first with the purpose to acquire the comprehension of the web application.
However, if changes are made afterwards, it may cause the loss of migration efforts
and time cost. To solve this problem some standards and good practices are
introduced in Chapter 4, so that migration can be done as efficiently as possible.
Figure 2-3 can be used by migration engineers to decide when the right time for
improvement is. When the application complexity is high and the knowledge of the
application is low, it is suggested to make the improvement after the migration. When
the application complexity is low and the knowledge of the application is sufficient,
improvement can be done during the migration. As to the other two cases,
improvement can be carried out either after or during the migration. When codes of
the IVY web applications, such as codes for test, can be reused, it is better to do the
improvement afterwards.

 12

Chapter 2 Overview of Migration Technology

In conclusion, rehosting is selected to be the migration strategy for BBS-S&T to
migrate web applications, and the rehosting will be realized with the source code
porting approach. Because fewer changes are involved, the migration projects are
expected to be completed rather quickly and less expensive.

2.4 Model-Driven Migration Approach

Through the investigation of the existing migration techniques, the model-driven
migration approach illustrated in Figure 2-4 is adopted to lead the master project. This
model divides the whole migration process into a succession of sub-models, so that
the migration task is accomplished in an organized manner.

Define Source Model Define Target Model

Define Migration Map

Formulate Migration Plan

Execute Migration Key Learning Update Knowledge Base

Methods

Tools

Templates Migration framework

Migration
Plan

Knowledge Base

Figure 2-4: Model Driven Migration Approach8

The first activity of the model-driven migration approach is to set up the source and
target environment models. A comprehensive knowledge of the two environments is
highly demanded, and a comparison of their architectures and concepts is carried out
in comparable terms, so that the development of the migration map is simplified.

The migration map, which is the second task, defines what elements in the source
system need to be migrated to the target system, and how the migration is actually
implemented. The migration map is stored in the migration knowledge base, and is
enriched by experiences obtained from each migration project.

8 See Patrick DJ Kulandaisamy(2004)

 13

Chapter 2 Overview of Migration Technology

Through the experience obtained from practical migration projects, it is found out that
migration project rather complicated and error-prone due to the numerous details and
the lack of documentation of the source model. Only if the migration is
well-organized, will it end up with success. In this case, a well-prepared migration
plan with detailed list of required tasks is a great help.

The execute migration phase is where individual migration project is conducted using
the migration map and being managed by the migration plan. However, the migration
process doesn’t end here. Migration is a dynamically self-evolving process. The last
but also the most valuable activity is to summarize knowledge acquired from the
previous projects and placed it into the knowledgebase, so that it is shared by others
and the benefit is maximized.

This master project has followed the model-driven migration approach. The study of
the source and target systems, i.e. IVY Presentation and JSF is presented in Chapter 3.
The mapping rules are described in Chapter 4. The design of the migration plan is
introduced immediately. And the tools, templates and methods developed to facilitate
the migration process are presented in Chapter 5.

2.5 Formulation of Migration Plan

The formulation of migration plan is by no means a simple task. To ensure the
feasibility of the migration plan developed for BBS-S&T, some experience is learned
from the research on software migration planning conducted by the Department of
Defense, U.S. in 2002. They have worked out a set of criteria9 that a good software
migration plan should meet and the criteria are listed below.

 clearly describe the approach for migrating users and operations from the
legacy system to the new system

 contain sufficient detail to verify that the approach is complete, coherent, and
consistent, and to validate that the approach is on target

 provide a basis for communication and understanding among stakeholders,
managing resources and staff, managing the project, establishing the
appropriate relationships with and commitments from stakeholders,
establishing a framework under which any related contract efforts can be
managed

 provide a means for executive management to monitor the effort

 reduce risk and increase the likelihood of a successful migration effort

9 see Bergey, O’Brien, Smith(2002)

 14

Chapter 2 Overview of Migration Technology

As a high-level overview, the migration plan normally identifies the principal factors,
such as the key tasks, roles and responsibilities, the current environment, the new
environment, migration timing and priorities, migration policies and risk factors.
However, it needs an additional level of detail to make migration plan actionable and
a mechanism to make it a live document that evolves throughout the duration of
migration. Therefore, they put forward six critical focus areas for general migration
projects and worked out detailed activities related to each focus area. These six focus
areas are10:

1. migration planning and management
2. deployment and transition assistance
3. database conversion
4. customer relationship management
5. management of the legacy system interface
6. customer training

For each focus area, a responsible person can be designated to develop a mini-plan of
actions down to additional levels of detail. The mini-plans need to answer the
questions, like what needs to be done, who is going to do it, how it will be done and
how to make sure that it is done satisfactorily.

Figure 2-5: Dynamic of Migration Planning11

10 see Bergey, O’Brien, Smith(2002)
11 see Bergey, O’Brien, Smith(2002)

 15

Chapter 2 Overview of Migration Technology

Figure 2-5 demonstrates vividly an active and dynamic view of migration planning,
which is a continuous effort that begins with the first increment of the migration plan.
The first increment of the plan identifies the primary issues and concerns. Successive
iterations add more substance and make the plan actionable and manageable. The
iteration provides more elaboration in the form of detailed mini-plans of action for a
set of focus areas that are most relevant to the project. At any point in time, the
migration plan can be viewed as the sum of the mini-plans of action.

The Department of Defense focused the analysis of the migration planning in the
horizontal manner, while the other companies like Oracle design their migration
planning more in the vertical manner. The Oracle Relational Migration Maps12 is
intended to provide an overview of the recommended process for the migration of an
existing third-party database to Oracle. This map consists of six phases, and they are:

1. Definition: The Definition phase describes how to gather sufficient
information about the source system to create migration estimates.

2. Analysis: The Analysis phase marks the true start of the project. During this
phase the findings of the Definition phase are confirmed and more details
about the source system are retrieved, so that more thorough project planning
can be undertaken.

3. Design: During the Design phase the Migration Engineers use the information
from the Definition and Analysis phases to investigate and design solutions for
any migration issues that have been identified.

4. Migration: It is the phase where the migration task is implemented.

5. Transition: The Transition phase includes instantiation of the newly migrated
system at the customer site, customer testing, and go-live.

6. Production: During the Production phase, it may be necessary to provide
post-production support to the customer depending on what was agreed in the
contract.

In face, Oracle has also utilized some concept identical to the Focus Areas. Therefore,
it is concluded that to make a good migration planning it is critical to identify the
main tasks and to define a reasonable road map. Chapter 2-6 is going to present the
migration plan developed for BBS-S&T.

12 see Oracle Relational Migration Map

 16

http://www.oracle.com/technology/tech/migration/maps/definition_body.html
http://www.oracle.com/technology/tech/migration/maps/analysis_body.html
http://www.oracle.com/technology/tech/migration/maps/design_body.html
http://www.oracle.com/technology/tech/migration/maps/migration_body.html
http://www.oracle.com/technology/tech/migration/maps/transition_body.html
http://www.oracle.com/technology/tech/migration/maps/production_body.html

Chapter 2 Overview of Migration Technology

2.6 Migration Planning for BBS-S&T

Based on the theoretical research and the practical experience from migration projects,
the migration plan is designed for BBS-S&T with consideration in both vertical and
horizontal aspects. Figure 2-6 outlines the vertical representation of the migration plan,
which consists of seven phases, including definition, analysis/mapping, design,
migration/restructure, deployment on test server, production and knowledge transfer.

Figure 2-6: Migration Plan for BBS

Figure 2-7: Distribution of Tasks during Migration Phases

When analyzed horizontally, the BBS-S&T migration project should pay attention to
five focus areas, namely, migration planning and management, integration to the
overall IT environment, testing issues and deployment and transition issues. Figure

Application
Mapping

Integration

Testing

Deployment
and transition

Planning and
management

Definition Analysis /

Mapping

Design Migration/

restructure

Test /

Deployment

Production Knowledge

Transfer

Definition Analysis

Mapping

Design Migration

Restructure

Deployment

on Test Server

Production Knowledge

Transfer

1 2 3 4 5 6 7

 17

Chapter 2 Overview of Migration Technology

2-7 provides a visual representation of how the five focus areas are distributed across
the seven phases. In each of the seven migration phases, there are specific tasks of the
above mentioned focus areas should be accomplished.

Task Distribution in Definition Phase

o
complete the definition phase successfully, it needs to complete the following tasks.

established, the IVY
application can be checked out of CVS for the analysis phase.

e project manager can better supervise the
progress of the project.

The definition phase is the kick-off period for the complete migration team to be
formally built up and to set the common goals they want to achieve. Team members
should know clearly how to obtain information about the IVY web applications to be
migrated and make preparations for the real start of the migration projects. T

First make sure that the development environment is well integrated to the overall IT
environment. In BBS-S&T the migration projects are performed using Eclipse with
Exadel plugin13. Due to the rapid upgrade of Java Development Toolkit, Tomcat
Servlet Engine and the base libraries developed by BBS-S&T internally, the project
manager should make sure to set up the local development environment identical to
the productive environment, in order to minimize the risk caused by incompatibility
afterwards. When the local development environment is

The project manager should start to compose the project plan. In order to make a
rough estimation of the project duration and to get an impression of the project
complexity, the project manager can use the migration tool developed with this
project, and the details can be seen in chapter 5. This initial knowledge allows the
project manager to find out the resources required to complete this project. If any
external resources are needed, the contact person should be identified. Besides, the
project manager can assign the tasks to team members. It is important to make sure
that all the team members have the sufficient knowledge for tasks and they are
informed of the available supporting resources. If necessary, team members should
work out their own mini-plans, so that th

No test is to be made in this early phase, but it is necessary to regulate the testing
policies in terms of test methods, test priority and related reports. Ideally, test cases
should be designed by team members who understand the function or technology to
be tested, and each test case should be submitted for peer review. It is obvious that it
is not feasible to test everything. Instead, tests should be prioritized to perform the
most important ones. It is ideal to have automatic tests, which can be repeated easily.
However, for test cases which can’t be done automatically, documentation of test

13 See Exadel Tutorials & Demos

 18

Chapter 2 Overview of Migration Technology

cases is a helpful supplement. Normally documentation of test cases can be done as
detailed and recipe-like steps or as general description. The detailed test cases are
ideal in situations where testers do not have the intimate knowledge of the original
application. In descriptive test cases, the tester who has an intimate knowledge of the
legacy application decides at the time of the test how to perform the test and what data
to use. Besides, project manager should make sure that every team member
understands and agrees with the testing policies..

Task Distribution in Analysis/Mapping Phase

ing can be done in this phase with the purpose to
improve the migration efficiency.

s in the knowledge should be identified,
which will be dealt with in the design phase.

eds to be
clarified how the JSF web application can better fit into the overall system.

n the mapped controls can be made. It is
suggested to do the test on the page basis.

The analysis and mapping phase is the second phase, but actually it signals the real
start of the migration project. The main task of this phase is to acquire a good
comprehension of the IVY web application in terms of its architecture and
functionality. However, because the migration of web application is primarily about
the mapping of web controls and its underlying business objects and business logics
into the new framework, some mapp

In the focus area of application mapping, three tasks need to done. One is to create the
JSF web application project in Eclipse. To simplify the task a project template can be
used, which helps to speed up the migration process by delivering some standard java
codes. The new project created with the template needs to be adjusted to get running
properly. The detailed instruction of this project template and guideline can be seen in
Chapter 5. The running JSF web application project should be checked in CVS. The
second task is to examine the IVY web application carefully. Meanwhile, some
mapping can be performed, when appropriate. To do the work effectively, the
mapping done in this phase should follow standards and good practices introduced in
Chapter 5. Thirdly, problems without solution

In the focus area of integration, the main task is to find out if there is any dependency
that other web applications may have on this one, and vice versa. It ne

In the focus area of test, it needs to find out if the IVY project provides any test codes
insides the project packages. If yes, how these codes can be reused in the JSF project.
Besides, it is also the task to design task cases and decide the test methods. Since
some mapping is done in this phase, tests o

In the focus area of deployment and transition, the main responsibility is to clarify if
any hardware or software needs to be deployed before that of the new JSF web

 19

Chapter 2 Overview of Migration Technology

application. Information should be collected as to how the preparation can be made.
The project manager can set the date roughly for deployment and find out what
preparation needs to be done for the deployment and transition

be made, the approach introduced in Figure 2-3 can assist in the
decision making.

Task Distribution in Design Phase

In the focus area of project management, since more accurate information of the
project has been obtained, the migration plan needs to be updated in terms of project
duration and cost in order to reflect the current situation. Team member should report
to project manager regularly with regard to project progress, identified problems and
potential risk. Project manager is responsible to provide prompt feedback. Moreover,
decision needs be made if any improvement is necessary. As to when the
improvement should

lve the open issues and to design
how the application architecture can be optimized.

igration, migration engineer could
consider how to accomplish the improvement.

 solutions can be applied to the migration, and the
migrated pages should be tested.

ance. Project manager should take corrective measures to
deal with or avoid risks.

Task Distribution in Migration/Restructure Phase

The design phase is the time specially allocated to so

In the focus area of application mapping, the main task is to work out solutions for
open issues identified in the analysis phase. The open issues may cover the
development of composite components, customized validator or converter, to name a
few. The new solutions need to be tested and entered into the knowledge base, so they
can be shared by others. Besides, in this phase migration engineers have obtained
better knowledge of the IVY web application and are able to work out optimized
design for the application architecture. In case it is determined in the analysis phase
that improvement should be done during the m

In the focus area of test, the new

In the focus area of project management, project manager needs to control if the
migration project is proceeding on schedule, if the allocated time and resources are
sufficient and if the team members have sufficient knowledge to handle the open
issues. Any external resources, which are required, should be identified in time to
make arrangement in adv

 using solutions available in the knowledge base and developed the
design phase.

The migration/restructure phase is when the focus is fully placed on the
implementation

 20

Chapter 2 Overview of Migration Technology

In the focus area of application migration, the task is to complete the migration task as
a whole. The mapping done in the analysis phase needs to be restructured in order to
match the design optimization made in the design phase. In case some new open
issues are identified, go back to the analysis or design phase.

In the focus area of test, make sure that the functionality of each web page is tested
and in the end an integrated test needs to be performed. Besides, if there is any
dependency between this web application and the other, test should be done to see if
they can work properly. For those test cases which can’t be tested automatically,
descriptive test cases are considered necessary, so that migration engineers have a
good knowledge of what should be tested when the web application is deployed either
on the test server or go productive. Prepare the report of the testing results.

In the focus area of Project Management, project manager should update the project
plan. The date for the web application to go productive can be fixed.

Task Distribution in Deployment on Test Server Phase

In the deployment on test server phase, the main task is to deploy the JSF web
application on the test server in order to verify its performance. Besides, migration
engineers should collect experience of deployment, so that the web application can be
deployed on the productive server smoothly.

In the focus area of application migration, in case any error takes place, the JSF web
application needs to be evaluated and modified.

In the focus area of integration, the focus is to check if the web application can work
compatibly with others.

In the focus area of test, the web application needs to be test carefully in terms of
functionality and performance. Project manager should inform the end-users of the
web application to test jointly.

In the focus area of project management, project manager needs to update the project
plan and start to prepare for the documentation. Project manager should work
intensively to analyze the potential risks, which may occur during the production
phase. It is highly important that project manager has figured out measures to handle
any possible emergency.

Task Distribution in Production Phase

In the production phase, the JSF web application is deployed on the productive server
and the IVY web application is cut off.

 21

Chapter 2 Overview of Migration Technology

In the focus area of deployment and transition, the IVY application is switched off
and removed from the web server and the JSF application is deployed for operation.

In the focus area of test, the tests of the JSF web application should be conducted
again carefully on the productive server by following the descriptive testing scenario.
Migration engineers should get prepared to handle any unexpected situation.

In the focus area of project management, the project manager should make a good
summary of the project and get all required documentation ready.

Task Distribution in Knowledge Transfer Phase

As indicated by Figure 2-5, migration plan should be a dynamic process. Before the
official end of the project, it is of great importance to put all the new migration
patterns and methods and the experience of project management into the knowledge
base. If any existing migration patterns and methods need to be updated, they should
be done, too.

In conclusion, this chapter presents the results of the researches in term of the
migration strategies and the techniques to manage migration project and to formulate
migration plans. Besides, it introduces the migration strategy and migration plan
specially selected and designed for BBS-S&T. The purpose is to put emphasize on
some fundamental issues that migration engineers should know in advance. In the
practice, migration engineers are welcomed to develop their own migration strategy
and plans to fit for their expertise and the real migration situation.

 22

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

3 Comparison between IVY Presentation and JavaServer Faces

3.1 Overview of IVY Presentation

IVY Presentation 14 is designed and implemented with the objective to relieve
developers from the complexity of underlying technologies. It provides standard
services shared by all the web applications, so developers can concentrate on the
presentation and business logics, which vary web applications from one another. On
the client side, IVY Presentation supports a number of browsers including Netscape
4.7 and above, Internet Explorer 4.0 and above, Mozilla, and Opera, while on the
server side, the minimum system requirements are JDK 1.3, Servlet 2.2 and JSP 1.1.15

IVY Foundation

IVY
Collaboration

IVY
Chemistry

IVY Presentation

HTML Utilities

Web Application Framework

Portal Application Framework

Corporate Design

Figure 3-1: Architecture of IVY Framework

Inside the IVY Framework, IVY Presentation is the core library for the development
of web applications. Figure 3-1 illustrates the relationship that it has with IVY
Foundation, IVY Chemistry and IVY Collaboration. IVY Foundation16 is the base
library of IVY Presentation, IVY Chemistry and IVY Collaboration. IVY Chemistry17
provides chemistry-oriented services. To make the use of IVY Chemistry convenient,
IVY Presentation implements a web control, which wraps the services of IVY
Chemistry. IVY Collaboration offers the infrastructure to develop portal applications.
Its Portal Application Framework, which is built upon the Web Application
Framework of IVY Presentation, is applied specially for the development of portal

14 See IVY Presentation Documentation
15 See Ronald Brill (2004)
16 See IVY Foundation Documentation
17 See IVY Chemistry Documentation

 23

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

applications. Therefore, in BBS-S&T the web applications can be categorized to two
types, namely the stand-alone web application and the portal application.

After the brief introduction to the relationship among the four models in IVY
Framework, the following discussion is to be focused on the IVY Presentation, which
consists of three components. On the bottom are the HTML utilities, which are
collections of utility classes for the rendering of web controls in HTML18. On top of
the HTML utilities is the Corporate Design (CD), which is „The official design of the
logo and name of a company or institution used on letterheads, envelopes, forms,
folders, brochures, etc. The house style is created in such a way that all the elements are
arranged in a distinguished design and pattern.19. It automates the creation of web
pages with the layout in accordance with the Bayer Standard Layout guideline, so that
all the Bayer web pages have the identical outlook to emphasize the corporate identity
of Bayer. The Web Application Framework is established upon the Corporate Design
and the HTML utilities, and is composed of two parts, namely the base classes
constructing the Web Application Framework and a collection of basic and complex
web controls. The web control called BayerNavigation wraps the services provided by
the Corporate Design for convenient use.

3.1.1 Architecture and Concepts of Web Application Framework

User A

User B

Web Application

W
eb

A
pp

lic
at

io
nS

up
po

rtS
er

vl
et

Fr

on
t-C

on
tro

lle
r S

er
vl

et

WebApplication
for User A

WebApplication
for User B

WebApplicationConfiguration

Request

Reply

Get

Create instance for user A
and Assign
WebApplicationConfiguration

Create instance for user B
and Assign
WebApplicationConfiguration

Request

Reply

Figure 3-2: Front-Controller Pattern in IVY Presentation

18 See HTML Tutorial
19 See Wikipedia – Corporate Design

 24

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

Since the Web Application Framework is the key component of IVY Presentation, its
architecture and concepts are to be explicated in detail. IVY Presentation adopts the
Front-controller20 pattern in combination with the Model-View-Controller21 pattern.
As is shown in Figure 3-2, the class WebApplicationSupportServlet is the controller
servlet, which is the central place to receive client requests for the desired web
application. Besides the controller servlet, migration engineers should have the
knowledge about other essential classes of the Web Application Framework, namely
WebApplication, WebApplicationConfiguration, WebForm and WebControl. Their
relationship is illustrated in Figure 3-3. WebApplication is functionally equivalent to
HTTPSession of the HTTPServletRequest, so an instance of WebApplication is created
for each user. WebApplicationConfiguration is utilized to set and get the configuration
data of the web application. Because it is shared by all the users, the singleton pattern
is applied and a copy of its instance is assigned by WebApplicationSupportServlet to
each instance of WebApplication. WebForm offers the fundamental services to declare
controls contained in one web page and to define the control behavior, so that they
can handle user requests in the desired manner. WebControl is the super-class of web
components provided by IVY Presentation.

WebApplication

- WebApplicationConfiguration

WebApplicationConfiguration

WebForm

- WebApplication
- WebFormPanel

WebControl

has

1

declares

 *

has
1

*

Figure 3-3: Architecture of Web Application Framework

In IVY Presentation, the role of controller is jointly played by
WebApplicationSupportServlet, WebApplication and Webform. WebApplication
determines the lifecycle in general and delegates the control of the lifecycles to
WebForm, which has the concrete knowledge of the declared web controls, involved
action listeners and the dynamic navigation rules. The role of view is played together
by WebForm and corresponding JSP files. The web controls and their behavior are
defined in WebForm, while JSP file is only a layout machine to determine the outlook
of the whole web page. As to the role of model, IVY Presentation has no explicit

20 See Core J2EE Patterns – Front Controller
21 See Model-View-Controller

 25

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

specification. To develop a web application using IVY Presentation, developers need
to create a subclass for WebApplicaiton, a subclass for WebApplicationConfiguration,
several subclasses for WebForm and their JSP files as is shown in Figure 3-4. To
make the following explanation clear, those subclasses are referred to as
IVYWebApplication, IVYWebApplicationConfiguration and IVYWebForm. Besides,
the IVY web application needs to have a servlet configuration file web.xml, where the
names of IVYWebApplication and IVYWebApplicationConfiguration are given as
init-parameters.

IVY Web Application

WebApplication

- WebApplicationConfiguration

WebApplicationConfiguration

Web Application Framework of IVY Presentation

WebForm

- WebApplication

IVYWebApplication

IVYWebApplicationConfiguration

IVYWebForm1

IVYWebForm2

IVYWebForm2.jsp IVYWebForm2.jsp

has

* 1

has 1
*

Figure 3-4: Architecture of IVY Web Application

After the general introduction to the architecture of the Web Application Framework,
let’s take a look at its life-cycle, which is outlined in Figure 3-5 on the next page. The
life-cycle consists of five phases, namely initiate IVYWebApplication, determine
IVYWebForm, process request, create successor and render IVYWebForm.

The initiate IVYWebApplication starts, when a user sends out a request for the web
application. WebApplicationSupportServlet retrieves from its web.xml the class names
of IVYWebApplication and IVYWebApplicationConfiguration. An instance of
IVYWebApplication is created for the user on the server. Then an instance of

 26

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

IVYWebApplicationConfigutaion is generated and assigned to IVYWebApplication.
Then WebApplicationSupportServlet creates an instance of WebPageContext with
ServletContext, HttpServletRequest and HttpServletResponse using the facade pattern
and assigns the instance to IVYWebApplication to provide the unified access for all
request information.

Next the life-cycle enters into the second phase of determine IVYWebForm.
IVYWebApplication checks first if the WebPageContext contains target IVYWebForm
name. If the name of IVYWebForm isn’t available, it searches for the requested servlet
path and looks up the mathcing IVYWebForm in IVYWebApplicationConfiguration. If
the web form name is still null, it calls for the default authorized IVYWebForm
defined in IVYWebApplicationConfiguraton or the default IVYWebForm when the
default authorized IVYWebForm is undefined. Otherwise, it throws an exception and
an error page is to be rendered. Therefore, in each IVY web application two JSP files
called error.jsp and error404.jsp are used to display error messages.

Instantiate
WebApplication

Determine
WebForm

Request

Figure 3-5: Life-Cycle of IVY Web Application

In the third phase, IVYWebForm updates its state and history of binding
IVYWebApplication, creates instances of WebControl contained in its inner class
WebPanel. Each WebControl is given a chance to check if there is any parameter in
WebPageContext for it. Then it checks if the user has triggered any event, and the
corresponding action listener, which contains the business logics, is activated. In the
forth phase, IVYWebApplication checks if a successor of IVYWebForm exists. For
example, when IVYWebForm is called for the first time, then it has no successor. In

Render
WebForm

Response

No Successor Process
Request

Has Successor

Create
Successor

 27

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

the fifth phase, the reply IVYWebForm is created and rendered. The whole life-cycle
will start to process the next request.

After the introduction to the life-cycle of the Web Application Framework, let’s dive
deeper into the above-mentioned classes for a better comprehension of their
functionalities. WebApplication is mainly used to keep an instance of the
WebApplicationConfiguration in order to handle the locale that users may change
during the session, and to provide the multilingual support since it has the knowledge
of the current locale. WebApplication is designed specially to substitute the
HTTPSession, where developers must set the properties explicitly for values that they
want to maintain in the session.

WebApplicationConfiguration is used to store the configuration data, which normally
includes the context root, the log level, and the name and path of the properties file for
multilingual support and parameters used to initiate required web services and
databases. The configuration data are given in the web.xml as init-parameters and
assigned to WebApplicationConfiguration by the control servlet.

<%@ page import="com.bayer.near.web.app.WebForm" %>

<% WebForm NearWebForm = (WebForm)request.getAttribute("NearWebForm"); %>
<html>
 <head>
 <% NearWebForm.renderColleciveJavascriptOn(pageContext); %>
 </head>
 <body>
 <% NearWebForm.renderFormStartOn(pageContext); %>
 <h2>NearWeb button demo</h2>

<% NearWebForm.renderComponentOn("Submit", pageContext); %>
 <% NearWebForm.renderFormEndOn(pageContext); %>
 </body>
</html>

WebForm

+ renderFormEndOn(PageContext)

+ renderComponentOn(String, PageContext)

+ renderFormStartOn(PageContext)

+ renderCollectiveJavascriptOn(PageContext)

WebControl

+ renderOn(WebPageContext)

Figure 3-6: Relationship among JSP, WebForm and WebControl

 28

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

WebForm provides the fundamental methods to declare web controls, to initialize
them statically, to process requests, to set successor and to get the URL of the
corresponding JSP and render the successor in HTML. The JSP is only a layout
machine for each web form and it calls the methods of WebForm using JavaScript.
Therefore, each WebForm must have a matching JSP.

WebControl is the super-class of the various web controls provided by the Web
Application Framework. All the controls must implement a rendering method, which
is used to render itself in HTML by WebForm at run time. The Figure 3-6 illustrates a
standard format of JSP and how it works with its aligning WebForm and WebControl.

The web controls provided by the Web Application Framework include the basic
control types for navigation, input, output, selection, command, and a number of
composite controls like Calendar, Chimepro, Fileupload, etc. The detailed
documentation of web controls can be seen in IVY Presentation Documentation.

 Page Head
 Upper Navigation List
 Left Navigation List
 Support Navigation List

Figure 3-7: Corporate Design of Bayer

The BayerNavigation is the web control, which wraps the services of the Corporate
Design mentioned earlier. It defines the webpage in terms of the page head, the upper
navigation list, the left navigation list, and the support navigation list as shown in
Figure 3-7. Moreover, it also specifies the colors, fonts, and images etc. With this
control, developers can have the page head and the three navigation lists inside their
JSP files as conveniently as using basic web controls. All the requirements stated in
the Bayer Web Layout Guide and the navigation items are realized by this navigation
control using a set of configuration data. The configuration data can be defined in
various formats, such as XML file or Java classes. To retrieve the configuration data

 29

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

flexibly, the reader concept is applied, and the ConfiguraitonReaderManager
manages the readers for various formats, for example, the XMLConfigurationReader
for XML file. The normal practice is to use the navigation.xml file. The automatic
generation of the navigation items has two advantages. Firstly when a web page is
added, renamed or removed, it is unnecessary to modify the navigation item for each
related webpage. Instead, changes only need to be made in the central configuration
file. Secondly when one of the navigation items is selected, the web page updates its
presentation automatically.

In conclusion, the Web Application Framework is mainly used to develop stand-alone
application. Due to the demand to build BBS portal, the Portal Application
Framework is implemented with the basis on the Web Application Framework.

3.1.2 Architecture and Concepts of Portal Application Framework

IVY Collaboration model is developed for the construction of BBS portal.

IVY Collaboration

WsNavigation

WsSession

IVY Portal
Applicaton

1

IVY Portal
Applicaton

2

IVY Portal
Applicaton

3

Customer
Management

Logbook

Other
Web Services

Figure 3-8: Architecture of IVY Collaboration Model

Figure 3-8 shows the architecture of IVY Collaboration. The web services
WsNavigation and WsSession set up the Portal Application Framework, and must be
employed by all portal applications. WsNavigation is used to generate a unified
outlook of the portal. The communication between WsNavigation and portal
application is a two-way connection, which is managed by the servlet
PortalListenerServlet. When a new portal application joins the portal, it needs to
register itself with the WsNavigation, which will in turn inform the other portal

 30

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

applications to update their navigation configuration file dynamically. Meanwhile,
WsNavigation traces the status of all the registered web applications. When it detects
that one web application has been removed, it will notice the other applications. Some
data need to be passed among portal applications, for example, the user authentication
data and selected locale. These data are communicated using WsSession. There are
some other web services, such as customer management and logbook, which can be
used by portal applications, when appropriate. WsCustomerManagement is mainly
used for user authentication and authorization, and WsLogbook is to log information
required for business logics.

WebApplication

- WebApplicationConfiguration

WebApplicationConfiguration

WebForm

- WebApplication
- WebFormPanel

WebControl

PortalApplication

navigationVisible : Boolean

bayerTicket : BayTicket

PortalApplicationConfiguration

+ getWsSessionClient()

PortalForm

- WebApplication
- WebFormPanel

Figure 3-9: Architecture of Portal Application Framework

The portal application framework is an extension to the Web Application Framework
of IVY Presentation as is illustrated in Figure 3-9. PortalApplicationConfiguration is
a subclass of WebApplicationConfiguration. It allows developers to supply the
configuration data of applied web services through an XML file and it provides
methods to retrieve the information automatically. Because all the portal applications
need to possess a BayerNavigation control, and to provide the user authentication,
these two features are built into PortalForm, the subclass of WebForm. The visibility

 31

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

of the BayerNavigation control, the BayTicket used to control user session and
authentication by WsSession are added to PortalApplication, the subclass of
WebApplication.

In conclusion, IVY Presentation utilizes the Front-Controller pattern and the
Model-View-Control pattern for its architecture. Its Web Application Framework
provides a set of basic and complex web controls and supports for action listener,
navigation, authentication and internationalization. The Portal Application Framework
is en extension of the Web Application Framework with some portal features. To
distinguish the web applications developed with the two frameworks, those using the
Web Application Framework are still referred to as web applications, while the others
using the Portal Application Framework are called portal applications.

3.2 Overview of JavaServe Faces

JavaServer Faces (JSF) is by definition the server-side user interface component
framework for java technology-based web application. JSF is based on the Servlet 2.3
and JSP 1.2. The JSF framework is responsible for interacting with client devices, and
it provides tools for tying together the visual presentation, application logic and
business logic of the web application. However, the scope of JSF is restricted to the
presentation tier. Database persistence, web services and other back-end connections
are outside of the scope of JSF, as is highlighted by Figure 3-10.

Servlet Container

Web Application

JSF Framework

Presentation

Application logic

Navigation

Validation

Event handling

Business

Logic

Database

Web
Service

Figure 3-10: High-level Overview of JSF Framework22

22 See David Geary, Cay Horstmann (2004)

 32

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

As a new standard for web application development, JSF has made improvement in
the following areas. It allows the creation of user interfaces from a set of standard,
reusable server-side components using JSF tag libraries in JSP. It provides extendable
component model and rendering architecture. It transparently saves the state
information and repopulates the forms when they redisplay. Moreover, the JSF
specification enables tool vendors to develop Integrated Development Environment
for a more standard Web application framework.

There are several implementations of JSF available, among which the most
well-known are the Reference Implementation (RI) by Sun and MyFaces by Apache.
In BBS-S&T, MyFaces is selected, because it has fewer bugs than RI. Furthermore,
MyFaces offers better supports for component models.

3.2.1 Architecture of JavaServer Faces

FacesServlet

Controller / JSF Framework

Application Configuration
face-config.xml

Action Handler
Event Handler

View / JSP Model / Bean

Bussiness

Objects

Component

Tree

Component
Model

Delegates

Message
Bundles

Servlet Engine

Request

Reply

Figure 3-11: MVC implemented in JavaServer Faces23

23 See Bill Dudney (2004)

 33

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

The architecture of JSF is also built up the Front-Controller pattern combined with the
MVC pattern. The controller servlet in MyFaces is implemented by the class
javax.faces.webapp.FacesServlet. Every JSF web application needs to supply an
application configuration file, which is by default called faces-config.xml. Through
this configuration file, FacesServlet retrieves the knowledge of the bean resources, the
navigation rules, the supported locales and other important application-related
information. The business logic and application logic are dealt with by action handler
and event handler respectively.

As is illustrated in Figure 3-11, FacesServlet together with faces-config.xml, the
action handler and the event handler plays the role as controller. JSP, which contains
web components declared by JSF tag libraries, serves as view, and bean object as the
model. FacesServlet synchronizes the view and the model by wiring a view
component to a bean property of a model object. Besides, it responds to the user
requests through action and event handlers and then routes the requests to codes that
update the model and the view. Figure 3-12 shows the operation workflow of
FaceServlet. When it receives a user request, it creates the FacesContext and then
passes the control to the Lifecycle, which will in turn process FacesContext in various
phases.

FacesServlet

Lifecycle FacesContext

1. Create FacesContext 2. Pass control to Lifecycle

3. Process FacesContext in various phases

Figure 3-12: Request Processing Flow24

The JSF specification defines six distinct phases25 as is outlined in Figure 3-13. The
restore view phase retrieves the component tree for the requested page if it was
displayed previously, or constructs a new component tree if it is displayed for the first
time. When the page is called for the first time, FacesServlet initializes the application
codes and reads the matching JSP, which contains JSF tags. Each tag has an
associated tag handler class and the tag handlers collaborate with each other to build a

24 See Deepak Goyal, Vikas Varma
25 See David Geary, Cay Horstmann (2004)

 34

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

component tree. The components tree is a data structure that contains java objects for
all the user interface elements on the requested page. Then the web application goes
directly to its last phase render response as is shown by the red dash line in Figure
3-13. In the JSP texts that are not JSF tags are simply passed through. Each JSP tag
associates with a component, has a default renderer that produces HTML output. This
process to convert JSF tags into HTML is called encoding. The encoded page is then
sent to the browser on the client side. After the page is displayed in the browser, the
user fills in the form fields and clicks the submit button. The browser sends the form
data back to the web server, formatted as a post request. As part of the normal servlet
processing, the form data are placed in a hash table that all components can access.

Afterwards, the life-cycle enters into the second phase Apply Request Values. The
JSF framework iterates over the component objects in the component tree, and gives
each component a chance to inspect that hash table. This process to retrieve user’s
input parameters is called decoding. Each component decides on its own how to
interpret the form data.

Restore

View

Apply Request

Values

Process

Valication

Update Model

values

Invoke

Application

Render

Response

Process

Events

Process

Events

Process

Events

Process

Events

No
Query
Data

Response
Complete

Response
Complete

Response
Complete

Response
Complete

Render Response

Conversion errors/Render response

Validation or Conversion errors/Render response

Request

Reply

Figure 3-13: Life-cycle of JavaServer Faces26

In the process validation phase, the submitted string values are first converted to local
values, which can be objects of any type. Validators can be attached to a JSF to
perform correctness checks on the local values. If validation passes, the JSF life cycle

26 See David Geary, Cay Horstmann (2004)

 35

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

proceeds normally. However, when conversion or validation errors occur, the JSF
Framework invokes the render response phase directly and redisplays the current page,
so that the user has another chance to give correct inputs. After the converters and
validators have done their work, it is assumed that it is safe to update the model data.

During the update Model phase, the local values are used to update the beans that are
wired to the components. In the invoke application phase, the action method of the
button or link component that caused the form submission is executed. That method
can carry out arbitrary application processing. It returns an outcome string that is
passed to the navigation handler. The navigation handler looks up the next page.
Finally, the render response phase encodes the response and sends it to the browser.
When a user submits a form, clicks on a link, or otherwise generates a new request,
the cycle starts anew.

This is a brief overview of the architecture and life-cycle of JavaServer Faces
framework. In the next sub-chapter, the context will be focused on the introduction to
its concepts.

3.2.2 Key Concepts of JavaServer Faces

The key concepts of JSF includes User Interface (UI) Components, renderers, model
objects, validators and converters, events and listeners, expression language,
navigation and internationalization support.

Components and Renderers

In JSF UIComponent and UIComponentBase are the base classes for all user interface
components on the server side. JSF provides standard UIComponent subclasses
including UICommand, UIForm, UIOutput, UIInput, UIGraphic, UISelectBoolean, to
name a few. UI Components can render themselves using the default HTML 4.01
render kit shipped with JSF or delegate the display task to a renderer, which is
responsible for encoding and decoding components.

Each UI Component has a corresponding tag handler, which declares the component
in JSP. The JSF tag libraries are composed of core tags and HTML tags. The core tags
are independent of the rendering technology. Most of the core tags represent objects
added to components, for example, attributes, listeners, converters, validators, facets,
parameters, select items. In addition, they also contain tags for defining views and
subviews, loading resource bundles and adding arbitrary text to a page. The HTML
tags generate HTML specific markup for components of type inputs, outputs,
commands, selections and others. The Login.jsp in Figure 3-17 is a simple example of
using JSF tags. The detailed usage of JSF tag libraries can be seen in the book Core

 36

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

JavaServer Faces. The declared components in one JSP are stored in a tree called view
on the server. JSF retains the state of components transparently on the server side or
on the client side. Developers only need to set the mode of state management in the
servlet configuration file web.xml. If the server side is selected, the component
hierarchy is stored in session, while on the client side components are serialized and
stored in a hidden field. MyFaces doesn’t support the server-side state management
very well, so the client-side state management is recommended.

Model Objects

Model objects in JSF are regular JavaBeans with read and write properties. The
UserBean.java in Figure 3-16 shows a simple example. They are used by JSF as the
conduits between the user interface and the backend of the application. JSF introduces
two new terms: managed bean and backing bean. JSF provides a strong managed-bean
facility. JavaBean object managed by a JSF framework is called managed bean, which
describes how a bean is created and managed. It has nothing to do with the bean's
functionalities. Managed bean need to be configured in faces-config.xml with a proper
scope as is shown in Figure 3-16.

JSF supports four bean scopes, namely none, request, session and application. The
request scope is short-lived. It starts when an HTTP request is submitted and ends
when the response is sent back to the client. The session scope persists from the time
that a session is established until session termination. The application scope persists
for the entire duration of the web application. A bean has scope none if it is never
requested from a JSP page. Managed beans can be wired together as is shown in
Table 3-1, it is important to make sure that their scopes are compatible.

A bean of this scope Can use beans of these scopes

none none

application none, application

session none, application, session

request none, application, session, request

Table 3-1: Scope of JSF Managed Beans

The backing bean defines properties and handling-logics associated with the UI
components used on the page. Each backing-bean property is bound to either a
component instance using JSF API or its value. A backing bean also defines a set of
methods that perform functions for the component, such as validating the component's

 37

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

data, handling events that the component activates, and performing processing
associated with navigation when the component activates.

A typical JSF application couples a backing bean with each page in the application.
However, sometimes in the real world, forcing a one-to-one relationship between a
backing bean and a page is not the ideal solution. It can cause problems like code
duplications. Therefore, several pages may share one backing bean behind the scenes.

Validator and Converter

In order to guarantee that invalid inputs will never end up in the business logic, JSF
carries out the conversion and validation in the Processing Validation phase of the
life-cycle. Because the web user interface deals exclusively with strings and the web
application stores data of various types, the converter is fully responsible for
converting user inputs into the component values, and vice versa. Besides, JSF
supplies standard converters for the conversion from String to a primitive type or
BigInteger/BigDecimal. JSF also provides standard converters for numbers and dates
and these converters needs to be explicitely specified with <f:convertNumber> and
<f:convertDateTime> and their attributes as is shown in Figure 3-14. Besides, it also
supports the development of custom converters. Details can reference the book Core
JavaServer Faces.

Convert Date:
<h:inputText value=“#{payment.date}“>

 <f:convertDateTime pattern=”MM/yyy” />

</h:inputText>

Convert Number:
<h:outputText value=”#{payment.amount”>

 <f:convertNumber type=”currency” />

</h:outputText>

Figure 3-14: Example of JSF Default Converter

The converted values are not immediately transmitted to the beans. Instead, they are
first stored inside the component objects as local values. Then validator performs the
correctness check on local values.

Validate String Length:
<h:inputText value=“#{payment.card }“

required=”true” >

 <f:validateLength minimum=”13” />

</h:inputText>

Validate Long Range:
<h:outputText value=”#{payment.amount”

required=”true” >

 <f:validateLongRange maximum=”1000” />

</h:outputText>

Figure 3-15: Example of JSF Default Validator

 38

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

JSF provides standard validators to check string lengths and numeric ranges using
<f:validateLength>, <f:validageLongRange> and <f:validateDoubleRange> and
attributes as is exemplified in Figure 3-15. It also supports to develop custom
validators. Details can reference the book Core JavaServer Faces.

Both converter and validator are combined with message. When a conversion error or
a validation error occurs, the component, which failed, posts a message and declares
itself to be invalid. The JSF redisplays the current page immediately after the process
validations phase has complete.

Expression Languages

Figure 3-16: Binding UI to Managed Bean

Expression languages are used to assocaite UI components with backing beans and
model objects. Properties of beans are referenced with value binding using the
expression #{myBean.myProperty}, while methods are referenced with method
binding using the expression #{myBean.myMethod}. Besides, JSF supports the

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<html>
<f:view>
 <f:loadBundle basename="com.bayer.icsportalloginjsf.beans.messages" var="msgs" />
 <head><link href="ics.css" rel="stylesheet" type="text/css" /></head>
 <body>

<h:form>
<h:inputText id="cwidTxt" value="#{

Login.jsp

user.name}" />
 </h:form>
 </body>
</f:view>
</html>

<managed-bean>
 <managed-bean-name> </managed-bean-name> user
 <managed-bean-class>
 com.bayer.icslogin.UserBean
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>

Package com.bayer.icslogin;

Public class UserBean{

 String name;

 Public void setName(…){...}

 Public String getName(){…}

}

Faces-config.xml UserBean.java

 39

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

mixture of literal values and implicit variables. Figure 3-16 illustrates how
faces-config.xml, bean and JSP coordinate with each other.

Events and Listener

JSF supports three kinds of events, namely value change events, action events and
phase events. Value change events are fired by input components, such as h:inputText,
h:selectOneRadio, and h:selectManyMenu, when the components’s value changes and
the enclosing form is submitted. The value change listeners are notified after the
Processing Validations phase of the life-cycle.

Figure 3-17: Usage of Action Listener Attribute and Tag

Action events are fired by command components, when the component is activated.
To handle action events, JSF introduces both action listener and action to separate
user interface logic and business logic. Action is designed for business logic and
participates in navigation handling and it has no access to the event and component
that fire them. The action listener typically performs user interface logic and doesn’t
participate in navigation handling. Action listeners and actions are notified after the
Invoke Appliation phase of the lifecycle and action listeners are executed prior to
actions. Listeners can be implemented either by a backing bean method or a separate
class. Value change listeners must implement the ValueChangeListener interface,

<h:commandButton actionListener="#{user.loginListener}"

action="#{user.

Login.jsp: using actionListener attribute

doLogin}" value="Login" />

package com.bayer.icslogin;

public class UserBean{

 public void loginListener(ActionEvent e)

 {…}

 public String (){…}

}

doLogin

LoginListener.java

package com.bayer.icslogin;

public class LoginListener implements

ActionListener{

 public void processAction(ActionEvent e)

 {…}

}

UserBean.java

Login.jsp: using f:actionListener tag

<h:commandButton action="#{user. }" value="Login" >

 <f:actionListener type=”com.bayer.icslogin.LoginListener”>

doLogin

</h:commandButton>

 40

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

while the action listeners must implement the ActionListener interface. The Figure
3-17 demonstrates the usage of action listener attribute and tag respectively.

Phase events are triggered before and after each life-cycle phase. Unlike value change
and action listeners which are attached to individual components, phase listeners need
to be specified in faces-config.xml. Phase listeners can be created as many as required
and they are invoked in the order in which they are declared in the faces-config.xml.
Phase listeners need to implement the PhaseListener interface.

Navigation

JSF provides full support for declarative navigation, which depends on the outcome of
action methods to select the next page. Figure 3-18 demonstrates what takes place
when users click a command button whose action attributes is a method binding. The
specified bean is retrieved and the referenced method is called. The returned string is
passed to the navigation handler, which in turn look up the next page. In case an
action returns null, it indicates that the same page is to be redisplayed.

Figure 3-18: Dynamic Navigation

Internationalization

JSF provides internationalization supports using the Java properties file, which is
called message bundle in JSF. The message bundles contain message string in
key-value pairs. The bundle file can be localized by adding a locale suffix to the file
name, for example, messages_de.properties.

As Figure 3-19 shows, the message bundle must be declared in JSP and
faces-config.xml. With the default and supported locales in faces-config.xml, JSF can

<h:commandButton action="#{user.

Login.jsp

doLogin}" value="Login" />

package com.bayer.icslogin;

public class UserBean{

 public String (){

return “login” ;

}

}

doLogin

<navigation-rule>
 <from-view-id>/Login.jsp</from-view-id>
 <navigation-case>
 <from-outcome>login</from-outcome>
 <to-view-id>/Welcome.jsp</to-view-id>
 </ navigation-case >
 </navigation-rule>

UserBean.java Faces-config.xml

 41

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

find the best matching locale according to the request header sent by the client
browser.

Figure 3-19: Internationalization and Localization

In conclusion, this sub-chapter introduced the architecture, life-cycle and key
concepts of the JavaServer Faces Framework. Some examples have the provided to
exemplify the concepts of User Interface (UI) Components, renderers, model objects,
validators and converters, events and listeners, expression language, navigation and
internationalization support. With the knowledge of both IVY Presentation and JSF,
the comparison of the two web framework is made in the next sub-chapter.

3.3 Comparison between IVY Presentation and JavaServer Faces

To make preparation for the development of mapping rules, the comparison between
IVY Presentation and JSF is carried out and the comparison results are highlighted in
Table 3-2 on the next page.

JSF demands higher system settings than IVY Presentation does. JSF needs to run
with JDK 1.4, Servlet 2.3, JSP 1.2, WebSphere 5.2 and Tomcat 4.1, while IVY
Presentation requires lower settings of JDK 1.3, Servlet 2.2, JSP 1.1, WebSphere 3.5
and Tomcat 3.x and iPlanet.

<f:view>
 <f:loadBundle basename="com.bayer.icslogin.messages" var="

Login.jsp

msgs

msgs

" />
 <head><link href="ics.css" rel="stylesheet" type="text/css" /></head>
 <body><h:form>

<h:outputText value="#{ .name}" />
<h:inputText value="#{user.name}" />

 </h:form></body>
</f:view>

messages_en.properties

name = User Name
Faces-config.xml

<application>
 <locale-config>
 <default-locale>de</default-locale>
 <supported-locale>en</supported-locale>
 <supported-locale>de</supported-locale>
 </locale-config>
<message-bundle>com.bayer.icslogin.messages</message-bundle>
 </application>

 42

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

JavaServer Faces IVY Presentation

Minimum System Requirements

JDK 1.4, Servlet 2.3, JSP 1.2
WebSphere 5.2, Tomcat 4.1

JDK 1.3, Servlet 2.2, JSP 1.1
WebSphere 3.5, Tomcat 3.x, iPlanet

Architecture

Front-Controller pattern
Model-View-Controller model
Mix with other servlets possible

Front-Controller pattern
Model-View-Controller model
Mix with other servlets possible

Central Components

FaceContext
Faces-config.xml

WebPageContext
WebApplication
WebApplicationConfiguration
WebForm

LifeCycle

Defined lifecycle
Connection to lifecycle through
Faces-config.xml and event listeners

Define lifecycle
Connection to lifecycle through implementation
of the strategy pattern and event listener

State Management

Service of the framework to provide server and
client state management through configuration

State is stored on server. Provides API for
client state, but must be implemented

UI Components

Provides both basic and complex components Provides both basic and complex components

Events

Action event, value-change event and phase
event

Action event

Validation and Conversion

Framework provides default validators and
converters and Interfaces for customized
validators and converters

No direct support, must be implemented

Navigation

Defined in Faces-config.xml and dependent on
the event listener

Implemented in the action listeners

Other Supports

Internationalization
API for complex components
Value-binding
Method-binding

Internationalization
API for complex components
Authentication
Logging

Table 3-2: Comparison between IVY Presentation and JSF

 43

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

Both frameworks utilize the Front-Controller pattern. In IVY Presentation the
controller servlet is WebApplicationSupportServlet, and the WebPageContext
maintains the data of ServletContext, HttpServeletRequest and HTTPServletResponse,
while in JSF the controller servlet is FacesServle,t and the FaceContext keeps the
information. So they both utilize the servlet configuration file web.xml and they
support to work with other servlets as well.

The Model-View-Controller pattern is the common architecture adopted by both IVY
Presentation and JSF, but the implementation by the two frameworks is varied. In
IVY Presentation, the role of controller is jointly played by the
WebApplicationSupportServlet, WebAppliation and the actions attached in WebForm.
There is no explicit specification and support for model. Data objects used to hold
values of controls are stateless. In case the state of the data objects needs to be
retained, they are either stored in WebApplication as member variables, or passed
through WebForms as hidden value or through the constructors of WebForms. In IVY
web applications, subclasses of WebForm are views where web controls are created.
JSP plays only a minor role as the layout machine referring to web controls in
WebForms through JavaScript. In JSF there is clearer separation among model, view
and controller. FacesServlet together with faces-config.xml, action handler and event
handler operates as controller. JSP serves as view and JavaBean as model. Besides,
JSF provides good facility to manage beans.

Both IVY Presentation and JSF have defined life-Cycle. In IVY Presentation, web
application is connected to the framework by extending the abstract classes of
WebApplication, WebApplicationConfiguration and WebForm using strategy pattern.
In JSF, web application is attached to the framework by declaring managed beans,
navigation flow and other important information through the application configuration
file faces-config.xml.

In IVY Presentation the state is stored on the server, and support for client state must
be self-programmed using API. JSF provides the state management on both server and
client sides, and developer only needs to set the mode in web.xml.

IVY Presentation and JSF support validator and converter in different approaches. In
IVY Presentation strategy pattern is applied. To implement validator and converter
some methods in IVYWebApplication need to be overridden to get desired
performance. However, in JSF the validator and converter are declared as listener.
The lifecycle of JSF leaves specific interface for the registration of validator and
converter. Besides, JSF offers standard converters and validators combined with
messages.

 44

Chapter 3 Comparison between IVY Presentation and JavaServer Faces

JSF supports three kinds of events, namely value change event, action event and phase
event and it motivates clear separation between user interface logic and business logic.
IVY Presentation supports only action events, which are attached to the command
controls in IVYWebForm.

JSF applies the declarative navigation, which is controlled by navigation handler
according to the outcome of actions. The navigation flow is specified in
faces-config.xml. In IVY Presentation the navigation flow is dynamically determined
by the setSuccesser method of the action listener bund to command controls.

Last but not the least, JSF doesn’t provide supports for security and logging utilities,
and some additional efforts are needed to make JSF compatible with IVY Framework.

The practical experience obtained through the migration projects has proven that
compared to IVY Presentation JSF is easier to master and convenient for use. JSF
achieves a better separation between the web development framework and the web
application. Web developers don’t need to know much about the inner architecture of
the framework, so they can better concentrated on the development of the web
application using the services provided by the framework. Besides, JSF has a better
implementation of view than IVY Presentation. The JSP and JSF tag library
combination is much easier for use than the JSF and WebForm combination in IVY
Presentation. The connection to the life-cycle of JSF using configuration file is more
convenient and flexible than that of IVY Presentation using strategy pattern.
Moreover, JSF provides more favorable services, such as value-binding,
method-binding, validation and conversion, which has to a great extend simplify the
web development task. The source codes of JSF applications have much clearer
structure and less dependency than those of IVY application. Therefore, the JSF
applications are more readable and easier to comprehend, so the maintenance of JSF
applications is then less expensive. The performance test and the quality test presented
in chapter 6 will also confirm that JSF web applications produce more throughputs
and possess better code quality. BBS-S&T has developed the so-called IVY Faces
model, so JSF can be implemented more conveniently with IVY Framework for
services of Corporate Design, chemical-oriented supports, security and logging
support.

In conclusion, it is a wise decision to migrate web applications from IVY Presentation
into JSF. After BBS-S&T finally standardizes on JSF, its web development projects
can be carried out with higher quality and greater efficiency.

 45

Chapter 4 Development of Mapping Rules

4 Development of Mapping Rules

In accordance with the model-driven migration approach, the next step is to
development mapping rules with the basis on the comprehension of both IVY
Presentation and JavaServer Faces frameworks. This chapter presents the detailed
description of the mapping rules designed for both web and portal applications.

For any web application, it is necessary to have the following building items.

 Framework Libraries
 Servlet Configuration File
 Application Configuration Class
 Navigation Web Control
 Message Resources
 Business Objects and Business Logics
 Web Forms
 Validation and Conversion
 Composite Controls
 Security
 Logging
 Build Scripts
 Tests

Therefore, the mapping rules for these items are developed and introduced below.

4.1 Mapping of Framework Libraries

The framework is included in a web application in the form of libraries, for example,
IVY Foundation as nearweb.jar, IVY Presentation as nearweb.jar, IVY Chemistry as
ivychemistry.jar, the Portal Application Framework as nearportal.jar, and the IVY
Collaboration as various jars corresponding to web services. To have JSF framework
in the migrated web application, the Apache implementation myfaces-impl.jar needs
to be added to the web application libraries. Besides, to use Apache Myfaces some
third party libraries need to be applied. Further information can be found in MyFaces
library dependencies documentation27. Moreover, when composite web components
developed by Apache MyFaces are used, the library tomahawk.jar needs to be
included. With the purpose to integrate the JSF into the IVY Framework, IVY Faces
ivyfaces.jar is required as well. For ICS portal application, the library icdev.jar must
be added, too.

27 See Library Dependencies

 46

Chapter 4 Development of Mapping Rules

Therefore, to map the framework, MyFaces-related libraries need to be added to the
web application library path, which is by default set to /WebContent/WEB-INF/lib.
Since IVY Faces is built upon IVY Presentation and the migrated JSF application still
requires the services offered by IVY Framework, IVY-related libraries should be
added to the library path as well. However, remember to use the latest version of IVY
libraries. For IVY portal applications, nearportal.jar and icdev.jar are additionally
demanded. In the end, the migrated web applications or portal applications should
have the libraries as is shown in Figure 4-1.

Application JavaSource and WebContent

IVY Framework

IVY Foundation

IVY
Collaboration

IVY
Chemistry

IVY Presentation

Migrated Web Application in JSF

Servlet Container

JavaServer Faces
Framework

IVY Faces

Figure 4-1: Add JSF Framework into Web Application

4.2 Mapping of Servlet Configuration File

Both IVY and JSF web applications require the servlet configuration file web.xml.
The servlet declaration should be changed to FacesServlet together with the
servlet-mapping element. Migration engineers should pay attention to three context
parameters. The first parameter is javax.faces.CONFIG_FILES, which specifies the
relative path and name of the JSF application configuration file. By default,
/WEF-INF/faces-config.xml is the value of this parameter. The second one is
javax.faces.STATE_SAVING_METHOD, which sets the mode of state management. As is
mentioned in Chapter 3, it is recommended to use the client mode for Myfaces. The
third one is org.apache.myfaces.AUTO_SCROLL, which value must be set to false for

 47

Chapter 4 Development of Mapping Rules

ExcelTest. Besides, org.apache.myfaces.webapp.StartupServletContextListener needs
to be specified as listener. For both migrated web and portal applications, the
declaration of servlets GraphicProvider and FrameProvider and their servlet mappings
are required, so that BayerNavigation control can be used to handle frame and
graphical objects on the web pages. The index.html defined as welcome file simply
redirects the request to the entry page of the JSF web application.

For portal application exclusively, the IVYConfiguration, which is to be explained in
chapter 4.3, needs to be specified as listener. Besides, to build up the communication
with WsNavigation web service, the servlet PortalListenerServlet and its servlet
mapping must be declared.

This is a basic configuration of the web.xml. For advanced purpose, for example, the
use of file upload component, please refer to the corresponding documentation.

4.3 Mapping of Application Configuration Class

As is illustrated in Figure 3-4, in both IVY web and portal applications a subclass of
WebApplicationConfiguration or PortalApplicationConfiguration is generated to
retrieve application-specific configuration data and to initialize required web services.
To keep the application logic and business logic of the source IVY application intact,
this configuration class must be mapped to the target JSF application. BBS-S&T has
supplemented the IVY Presentation, IVY Faces and icdev.jar classes as shown in
Figure 4-2 to simplify the task.

nearweb.jar

Configuration

ivyfaces.jar

PortalConfiguration

icdev.jar

ICSConfiguration

nearweb.jar

ConfigurationBean

ivyfaces.jar

PortalConfigurationBean

icdev.jar

ICSConfigurationBean

Figure 4-2: New Architecture of Configuration Class for JSF

Configuration is now equivalent to WebApplicationConfiguration for IVY web
applications, and PortalConfiguration, which is a sub-class of Configuration,

 48

Chapter 4 Development of Mapping Rules

equivalent to PortalApplicationConfiguration for IVY portal application.
ICSConfiguration, a sub-class of PortalConfiguration, is specially implemented for
ICS portal applications where the SwitchBoard service is used. What this new
architecture is different from that of IVY application is the adoption of beans to store
the configuration data read from the configuration.xml. As is shown in Figure 4-2
each configuration class has a matching bean class.

Therefore, as the first step to migrate the IVY configuration class, a proper sub-class
of Configuration should be created according to the type of the source IVY
application. Besides, some methods of configuration need to be overridden for the
desired performance. Next, the configuration data must be mapped to the
configuration.xml of the migrated JSF application by following certain format. In IVY
web applications these configuration data are stored in web.xml. In IVY portal
application they can be found in the configuration.template under /WEB-INF. In the
last step, if the migrated application has configuration data not defined in the super
bean classes, then migration engineers should generate a sub-class of the super bean
class for those additional configuration data. The detailed information regarding these
configuration and bean classes and the format of the configuration.xml can be seen in
the document “Struktur der Configuration”28.

4.4 Mapping of Navigation Web Control

To comply with the Bayer Standard Layout guideline, both IVY web and portal
applications utilize the BayerNavigation web control. In IVY web applications,
BayerNavigation is declared and initialized in IVYWebForm as is shown in Figure 4-3.
An action listener is attached to it with the method handleNavigation, which is
responsible to toggle languages and sometimes to manage the navigation flow. The
portal application framework makes some improvements. It declares and initializes
the BayerNavigation in PortalForm with the functionality to handle toggle language
and show/hide navigation, so that IVYPortalForm can use the service directly and
only overrides the handleNavigation method, when necessary. Migration engineers
should have good knowledge of the usage in both frameworks, because the
HandleNavigation method may define the navigation flow, which is important
information for the migration to JSF. Because JSF applications must comply to the
Bayer Standard Layout guideline as well, the counterparts of BayerNavigation are
generated in IVY Faces with Navigation for JSF web applications and
PortalNavigation for JSF portal Applications. Like BayerNavigation, these two
components also use navigation.xml for configuration. Moreover, a backing bean for
these two web components is created as the class NavigationBean in ivyfaces.jar.

28 See Frank Danek, Andre Klaaßen (2006)

 49

Chapter 4 Development of Mapping Rules

Therefore, as the first step to migrate BayerNavigation, a managed bean of
NavigationBean must be registered in faces-config.xml with the fixed name
“navigation” and the scope of request. Secondly, migration engineers should replace
BayerNavigation with Navigation or PortalNavigation in each JSP of the migrated
JSF application. Figure 4-3 exemplifies the migration of BayerNavigation to
Navigation. To inform the JSP of the customized tags for Navigation, the URI of the
tag library “http://by-near.bayer-ag.com/” must be declared. The Navigation is
configured using attributes, and actually it has more attributes than shown in Figure
4-3. The actionListener attribute refers to the handleNavigation method of the
managed bean called navigation. The usage of PortalNavigation control is rather
similar, but with one more attribute called applicationUrl, which refers to the URL of
the migrated JSF application and is used to integrate this application with others.
Besides, to support the show/hide navigation functionality, another managed bean of
class PortalUserBean in ivyfaces.jar must be declared in faces-config.xml with the
name “user” and the scope of session.

navigationControl = BayerNavigation.createForNavigationUrl(
 "Navigation", “/WEB-INF/navigation.xml”, getApplication());

navigationControl.addActionListener(new WebActionListener() {
 public void actionPerformed(ActionEvent anActionEvent)throws ApplicationException {
 handleNavigation(anActionEvent.getActionCommand()); }
});
addComponent(navigationControl);

<%@ taglib uri="http://by-near.bayer-ag.com/" prefix="ivy" %>
<h:form>
 <ivy:navigation configfile="/WEB-INF/navigation.xml" immediate="true"
 selection="Login" id="navigation"

actionListener="#{navigation.handleNavigation}">
 </ivy:navigation>
</h:form>

IVY Control: BayerNavigation

JSF Control: Navigation

Figure 4-3: Migration of BayerNavigation to Navigation

In the last step, the navigation.xml is to be mapped to the JSF application. The
navigation.xml takes the same format as in IVY application. However, some attribute

 50

Chapter 4 Development of Mapping Rules

values should be changed. The detailed information can be seen in the document
“Einbinden der Navigation”29.

4.5 Mapping of Message Resources

The IVY Presentation supports internationalization by using the Java properties file,
which is a file keeping key-value pairs delimited either by equal sign “=” or colon “:”.
Frequently the properties file contains the texts for output labels, button labels or the
error messages. Inside the IVY web or portal applications the properties file has by
default the identical name and location as IVYWebApplicationConfiguration. The
functionality to retrieve the translated text according to the current locale is provided
by the method getTranslatedText() of WebApplication with an object of
Translationkey. The TranslationKey object is constructed using the key in the
properties file as the input parameter. In the JSF Framework, the properties file is also
applied to support internationalization.

<h:outputText value="#{messages.text_with_html}" escape="false"/>
HREF="mailto:STServiceDesk@BayerBBS.com">ServiceDesk.

text_with_html = Please contact our <A
Case 4: text with html-tag

</h:outputText>

<h:outputText value="#{messages. text_with_parameters}" >
<f:param value="#{user.firstName}"/>
<f:param value="#{mailbox.countNewMails}"/>

Case 3: text with parameters
text_with_parameters = Hello {0}! You have {1} new mails.

<h:outputText value="#{messages['some.more.text']}" />

some.more.text = Here is another sample text in english.
Case 2: key delimited by dot

some_text = Here is a sample text in English
<h:outputText value="#{messages.some_text}" />

Case 1: normal key

<f:loadBundle basename="com.bayer.myapp.MyMessages" var="messages" />

<f:view locale="#{localeUtil.userLocale}">

Figure 4-4: Multilingual Support of JSF

Therefore, as the first step to migrate the message resources, the properties files can
be directly moved to the migrated JSF web applications. The recommended practice is

29 See Frank Danek, Andre Klaaßen (2006)

 51

Chapter 4 Development of Mapping Rules

to create for each desired locale a messages_locale.properties file. Migration
engineers shouldn’t use messages.properties for English locale, instead use
messages_en.properties. The reason is that if JSF searches for the English locale, but
fails to find it, it will use JVM default locale depending on the locale of the server.

Secondly, the properties file needs to be declared in the faces-config.xml. Thirdly, to
use the build-in services of JSF in JSP, the properties file must be declared with the
f:loadBundle tag. If the key is in different formats, the expression to use them varies
as is demonstrated in Figure 4-4. To make the use of message resources convenient in
the java codes, IVY Faces provides a utility class called LocaleUtil, which offers
methods to retrieve the current locale and to get the translated text of the
currently-applied locale.

4.6 Mapping of Business Beans and Logics

Even though there is no explicit definition in IVY Presentation, there are classes
containing objects and business logics in IVY web and portal applications. Migration
engineers need to identify these classes and map them into beans in JSF. There are
various ways to arrange the beans in JSF web and portal applications. One approach is
to create beans for each JSP to hold the values of the contained controls. The
advantage is the clear one-to-one relationship between JSP and bean, while the
disadvantage is the code redundancy and the dependency between the web application
framework and the business logic. Although JSF is an advanced technology nowadays,
it may become out-of-date in the future. In case it is to be replaced by another more
advanced web application framework, the web application needs to be migrated again
and the codes can’t be reused. The other approach is to generate beans according to
the design of business logics. The advantage is the code efficiency and the clear
separation between presentation and business logics and high code reuseness. The
disadvantage is that this approach requires that migration engineers have good
knowledge in both software design and the business logics of the web application.
However, in BBS-S&T lots of work is done by external and students of various
proficiencies, so it is rather difficult to control the quality of the design if this second
approach is taken. Besides, this approach isn’t effective and efficient in migration
projects, because business logics are distributed in IVYWebForm classes, and it takes
migration engineers great time to get a complete view of the functionality as a whole.
After the careful study of the situation in BBS-S&T and the special features of
migration project, the bean architecture is designed as shown in Figure 4-5, and it is
recommended to be applied as a standard.

 52

Chapter 4 Development of Mapping Rules

This design separates the codes for presentation and those for business logic. In the
presentation section, beans are created for each JSP and they are declared in
faces-config.xml as managed bean of proper scopes. The manage beans should only
have the properties to match the values of controls contained in the corresponding
JSPs. The actions attached to command controls should be placed in backing beans,
which can be used for single JSP or shared by several JSP to reduce code redundancy.
The main responsibility of backing beans is to map the managed beans to business
beans, to delegate the action to business logic and the map the return values to
managed beans. Because these backing beans are combined with messages, they
should be declared in the faces-config.xml with the scope request. The business
section should contain well designed business object and logics.

JSP JSP JSP

Managed
Bean

Managed
Bean

Managed
Bean

Backing Bean
Actions

Business
Logic

Business
Bean

Business
Logic

Business
Bean

JSP

Backing Bean
Actions

Managed
Bean

Web Services and Database

read

JSF Web or Portal Application

write

creat Call with business bean

read write

Figure 4-5: Design of Model Architecture in JSF

This approach shows many advantages. First of all, the separation between
presentation and business improves the code reuses, and it is easier to learn. Besides,
it allows BBS-S&T to better control the application quality by focusing on the
business section. Most important is that it works well with the migration plan
designed in Chapter 2. The mapping done in the analysis phase will be more effective,

 53

Chapter 4 Development of Mapping Rules

because the work is mainly done for the presentation section. After migration
engineers have collected sufficient knowledge, they can work on the design of
business section in the design and migration phase. Therefore, the combined
efficiency and effectiveness are improved.

4.7 Mapping of Web Forms

During the migration process, the mapping of web forms is the most complicated and
error-prone task, and that requires great attention and carefulness. The migration of
web forms are divided into three subtasks, namely the migration of their layouts, the
mapping of contained web controls and the declaration of navigation rules in
faces-config.xml. Through the practical projects, the procedure for the migration of
web forms has been developed and can be applied in migration projects. To help the
explanation Figure 4-6 takes the button control as an example to illustrate the
mapping procedure.

Figure 4-6: Mapping Procedures of Web Form

<table>
<tr><td >
<% NearWebForm.renderComponentOn

("login ", pageContext); %>
</td></tr>

</table>

private WebSubmitButton login;
login = new WebSubmitButton("login");
login.addActionListener(new WebActionListener() {
 public void actionPerformed (ActionEvent anActionEvent)
 throws ApplicationException {
 doLogin();}});
start.setText(“ ”);
addComponent(start);

Login

<h:panelGrid columns="1" >
<h:commandButton

action="#{user.doLogin}"
value=" " />

</h:panelGrid>

login

public class UserBean{
 public String doLogin(){

return “login” ;
}

}

<navigation-rule>
 <from-view-id>/Login.jsp</from-view-id>
 <navigation-case>
 <from-outcome>login</from-outcome>
 <to-view-id>/Welcome.jsp</to-view-id>
 </ navigation-case >
 </navigation-rule>

JavaServer Faces

IVY Presentation

Login.jsp Login.java

Login.jsp UserBean.java Face-config.xml

2

1

4

43

5

 54

Chapter 4 Development of Mapping Rules

The mapping of layout is the first step. Even though the JSP in JavaServer Faces
supports HTML tags, it is still recommended to use the JSF HTML tag library.
Afterwards, the web controls contained in the JSP are mapped, so the second step is to
search for the detailed information about the controls in its corresponding web form
class of the IVY project. Normally web form class needs to create its own constructor
and override the methods of createStaticItems() and prepareResponse(). The
declaration of web controls can be made either in the constructor or the method
createStaticItems(). The method prepareResponse() is used to update the values of
web controls before they are rendered. For a button control the basic information
needed to know is its text and action listener. Having found its text, the button control
can be mapped to the JSP of the JSF project using JSF HTML tags. According to the
design of model architecture in JSF as is shown in Figure 4-5, each web form in JSF
has or shares one backing bean. Therefore, in step four the action listener method is
moved into the backing bean and the navigation rule is declared in faces-config.xml.
In the last step, the button control is bund to its backing bean by assigning the action
method to its action attribute. By following this procedure, the mapping of web forms
can be done in a rather organized manner.

Comparatively speaking, the migration of layout and the declaration of navigation
rules can be done with ease, while the mapping of web controls is the most difficult
task.

4.8 Mapping of other Items

To complete the migration project, mapping rules for validation/conversion,
composite controls, security, logging, build scripts and tests are developed as well.
Because the mapping rules for these items are relatively simple, they are put together
in this sub-chapter.

Validation and Conversion

Because there is no direct support for validation and conversion in IVY Presentation,
they are applied not so often in IVY web and portal applications. Most likely they are
performed in the action listeners of web controls. Therefore, migration engineers need
to identify these codes and map them to the validation and conversion services
provided by JSF. They need to decide where validation and conversion are
appropriate.

Composite Controls

In IVY web and portal applications there are some composite controls, which must be
migrated to JSF applications. JSF provides the API to develop customized web

 55

Chapter 4 Development of Mapping Rules

components. Since it is a rather complicated topic, the detailed information can be
seen in the book Core JavaServer Faces30.

Security

Especially for IVY portal applications, user authentication and authorization are
required. The portal application ICSLoginJSF is used by all others for user
authentication. With the purpose to simplify the security task, BBS-S&T has
developed in IVY Faces the LoginListener that is an implementation of PhaseListener
and the PortalService to perform authentication and authorization respectively. The
detailed information for usage can be seen in the documentation “Einbinden der
Login-Funktionalität”31.

Logging

Since JSF applications also applies the logging services of IVY Foundation. The
source codes for logging can be mapped directly. Besides, migration engineers need
to override the getLoggerIdentifier method of Configuration in order to return the
actual application name.

Build Scripts

BBS-S&T provides build scripts to facilitate the task of deployment. They can be
directly applied in JSF web applications.

Tests

To test the functionality of IVY web and portal applications automatically, BBS-S&T
has developed the so-called ICS ExcelTester. The test case can be written down in
Microsoft Excel sheet, HTML or XML. The ExcelTester can be configured using java
properties. The ExcelTest has been extended to be able to test JSF applications. Since
the migrated JSF applications are expected to have the identical behaviors as the IVY
applications. The ExcelTests, if available, are worthwhile to be mapped to test the JSF
application.

Therefore, for the mapping purpose the interpreter of the ExcelTester must be
changed to com.bayer.ics.autotester.interpreter.jsf.JSFDBWebInterpreterGermanEnglish.
Besides, ExcelTester uses the name attribute to identify the IVY web controls. But for
JSF web components it uses the id attribute. So in ExcelTests the values used to identify
web components must be actualized. Moreover, migration engineers should make sure
that the any change to the workflow of JSF application is updated in ExcelTests.

30 David Geary, Cay Horstmann (2004)
31 See Frank Danek, Andre Klaaßen (2006)

 56

Chapter 5 Migration Tools, Templates and Methods

5 Migration Tools, Templates and Methods

In accordance with the model-driven migration approach, this project also developed
some migration tools, templates and methods to facilitate the migration process. To
make sure that they are useful, interviews were conducted with staff of BBS-S&T
who had some experience with migration projects in order to find out their
expectations and requirements. A brief summary of their requirements is presented
below.

Firstly, all the interviewees prefer a well-structured and detailed migration guideline
to an automatic migration tool. The reasons are the following. IVY web and portal
applications vary from each other in application architecture and implementation, so it
is difficult to develop an automatic tool that can deal with such variety intelligently.
Besides, it is hard to identify mistakes in the automatically-generated codes. In case
something is wrong, migration engineers have to check the correctness of all the
codes, because there is no knowledge where the mistake can possibly be. In this way,
the automatic tool doesn’t simplify the task. Instead it makes migration engineer feel
frustrated and increases the time and effort cost. Therefore, a clear migration
guideline is more helpful, because it provides instructions, but migration engineers
have a full control of the migration process.

Secondly, all the interviewees think, that a tool, which can help estimate the time
duration of migration projects, is useful. With this tool, project leaders can manage
migration project with more accuracy.

Thirdly, both IVY and JSF projects use lot of xml files for configuration, for example,
web.xml, configuration.xml and navigation.xml. The mapping of these files is mainly
labor work. Therefore, some interviewees would like to have a tool that can
automatically map these files.

Last but not the least, some interviewees want a tool that can generate the navigation
flow diagrams of the IVY web and portal applications automatically. The navigation
flow diagram can help migration engineers to understand the business logic of IVY
web and portal applications. Besides, in JSF the navigation rule needs to be declared
in faces-config.xml.

To fulfill their requirements, tools that can be used to estimate project duration and to
facilitate the generation of navigation rules by mapping JSP are designed and
implemented. Method to create a JSF project template are introduced. A migration
guideline with instruction to carry out a complete migration project is composed.
They are to be introduced in this chapter in detail.

 57

Chapter 5 Migration Tools, Templates and Methods

5.1 Migration Tool for Project Duration Estimation

The migration of web applications from IVY Presentation to JSF is conducted using
Eclipse. For the sake of convenience, the tool used for the estimation of migration
duration is designed and implemented as an Eclipse plugin32, which is an extension to
the popup menu as is shown in Figure 5-1.

Figure 5-1: Tool for Project Duration Estimation

The mechanism to calculate the migration duration is based on the total number of
web controls contained in the IVY web or portal application. If migration engineers
utilize the JSF project template, which is to be introduced afterwards, the time spent
on the fundamental configuration can be effectively reduced. Therefore, most of the
migration time is consumed by the migration of web controls and their underlying
business logics. On the other hand, the number of web controls is a value that can be
quantized, and the time spent on the migration business logics can be distributed to
the number of web controls. Furthermore, the class WebForm provides the services to
retrieve the number and types of web controls contained in each web form using the
method getComponents. Attributed to the above-mentioned reasons, the duration of

32 See John Arthorne, Chris Laffra

 58

Chapter 5 Migration Tools, Templates and Methods

migration projects can be derived from the number of web controls in the IVY
projects.

This tool utilizes HSSF33, which is POI project’s pure java implementation of the
Excel ‘97(-2002) file format, to output the analysis results in an Excel file. This Excel
file is created under the root of the IVY web application, and consists of three sheets.
Sheet one contains the table of time unit used to calculate the migration time and the
analyzed result. Sheet two lists all the web controls in terms of their affiliated
WebForm class name, the name, the class, the category, time for the phases analysis,
design, migration and test respectively. With this Excel file project leaders can
manipulate the data freely for the desired information. IVY projects normally have
abstract subclasses of WebForm, so sheet three records these abstract classes.

It needs to be pointed out, that this tool needs to know the name of
IVYWebApplication and IVYWebApplicationConfiguration in order to process
IVYWebForm classes in the IVY web Applications. For IVY portal applications, a
mocker class of PortalApplicationConfiguration needs to be created by simply
copying a code sample. To simplify the development, the tool is designed to be
available whenever a file with suffix .java is selected. Migration engineers must set
IVYWebApplication and IVYWebApplicationConfiguration or the mocker class
manually. Below is the instruction to use this tool.

1. Select the java file of the class IVYWebApplication, click on the right mouse,
and then click Migration Tools 1. Set WebApplication.

2. Only for IVY portal application, create the mocker class of
PortalApplicationConfiguration.

3. Select the java file of the class IVYWebApplicationConfiguration or the
mocker class, click on the right mouse, and then click Migration Tools 2.
Set WebApplicationConfiguration.

4. Select the java files of IVYWebForm to be processed, click Migration Tools
3. Parse Component Info

5. When all the IVYWebForms are processed, click Migration Tools 4. Take
Time cost Analysis.

According to the design, when the Time Cost Analysis is completed, all the cache is
cleared. By clicking Migration Tools Clear Settings, the cache can be cleared any
time.

Table 5-1 exhibits the sheet one of the project duration estimation result. The values
given in the Migration Time Cost Estimation Unit should be the approximate time

33 See HSSF

 59

Chapter 5 Migration Tools, Templates and Methods

spent on various control types during the analysis, design, implementation and test
phase. Attributed to the utilization of HSSF, the cells of the Analysis of Migration
Time Estimation are assigned with formula referring to the Migration Time Cost
Estimation Unit. Therefore, they are updated when the values in the Migration Time
Cost Estimation Unit changes.

Migration Time Cost Estimation Unit (Min):

Control Type Analysis Design Implementation Test

IVY Bayernavigation and

WebBorder 0 0 3 2

IVY Output Control Types 10 3 3 10

IVY Input Control Types 10 3 3 10

IVY Button Control Types 15 3 60 3

IVY Select Control Types 10 3 10 10

IVY Composite Control Types 5 5 30 15

IVY Composite Control Types not

in IVY Presentation 5 25 30 15

IVY Controls without need for test 5 0 3 0

Analysis of Migration time Estimation:

Number of Processed

WebForm Classes: 83

Type Analysis Design Implementation Test Total

Per Project (hours) 137.67 143.78 375.67 116.27 773.4
per WebForm Class

(hours)
1.66 1.73 4.53 1.4 9.32

 Table 5-1: Sample of Project Duration Estimation File

The values of Migration Time Cost Estimation unit in Table 5-1 are derived from
practical experience of migration projects, which are valid for migration engineers
who have rather good knowledge of IVY presentation and JSF. However, there are
some potential risks, which are:

• The IVY project is very complicated and migration engineers are unfamiliar
with its functionality. It may take them more time to understand the
navigation, business logics and class relations.

• The development of customized JSF component may take longer time.

• The development environment may be slow and takes extra time.

 60

Chapter 5 Migration Tools, Templates and Methods

• If several migration engineers are doing the project together, it also takes time
for communication.

• Migration engineers may not be able to work eight hours with high efficiency,
some additional time is required.

On the other hand, if migration engineers are familiar with IVY projects and the
development of customized JSF components is not as difficult as expected, less time
is needed. Based on the above analysis, the time variation percentage due to risks can
be set to 15%. In conclusion, project leader should update the time cost units to better
reflect the actual situation and to improve the accuracy.

5.2 Migration Tool to Facilitate the JSP Mapping

Normally there is no document about the navigation rules available in IVY web or
portal application. For the migration task, it is helpful to generate such a navigation
flow diagram in order to analyze the web forms systematically. The Navigation
Diagram Editor provided by Exadel can be applied for such a purpose. Migration
engineers need to analyze the navigation rules of the IVY web or portal application by
themselves. However, this task can be easily done by looking for the SetSuccessor
method of the action listener attached to web controls such as buttons, or the
handleNavigation method of the BayerNavigation control. Then they can use the
Navigation Diagram Editor of Exadel to draw the diagram, which will automatically
add the navigation rules into faces-config.xml. To make better use of the feature, it is
recommended to use the name of next web form as the navigation flag, which is
self-explaining and easier for migration engineer to remember. The only
inconvenience to use this editor is that JSP must be created before they are referenced
in the editor. To simplify the task, another tool shown in Figure5-2 is developed.

To use this tool, the following instruction needs to be applied.

1. Prepare one JSP in the JSF application as the template. The template needs to
have a comment exactly as <!-- Content --> to indicate the tool where the
content of the copied JSP from the IVY application is placed.

2. Select that JSP, click the right mouse and then click Migration Tools Set
JSP Template.

3. Select the JSP of the IVY web or portal Application, right click the mouse and
then click Migration Tools Copy IVY JavaSErver Pages.

4. Select the folder where the JSPs should be pasted, right click the mouse and
then click Migration Tools Paste IVY JavaSErver Pages.

By default, after the paste all the cache is cleared. But the command Clear Template
and Copied JSPs can be used any time to clear up the cache.

 61

Chapter 5 Migration Tools, Templates and Methods

 Figure 5-2: Migration Tool to Map JSP

5.3 JavaServer Faces Project Templates

The practical experience obtained from the migration project of the portal application
called ICSChemistryWorkbench has proven that the migration process can be
accelerated by the use of a JSF project template. Migration engineers can generate the
project template on their own, so that they can decide with great flexibility the
functionality, which the project template should provide. To create the project
template, migration engineers need to have some knowledge of the standard project
structure and the recommended package structure of the source codes. The knowledge
is also useful for them to create the JSF project from scratch, if they decide not to use
project template. The standard project structure is outlined in Figure 5-3, where the
JSFSampleApp is used for an example.

The folders of the project are introduced in the order that they are listed in Figure 5-3.
The source codes are placed in the JavaSource, and its package structure is illustrated
in Figure 5-4. To examine the quality of the migrated application, BBS-S&T requires
that the following test be performed, namely JUnit test for business logics, ExcelTest
for the correct performance, Emma for the code coverage, FindBugs for the quality of
codes, CheckStyles for the quality of code style and Metrics for the evaluation of the

 62

Chapter 5 Migration Tools, Templates and Methods

codes. These test files are stored in the Test folder. The Ant folder contains the build
scripts and the required libraries. The Docs folder keeps the JavaDoc, the project
documentations and the presentation PowerPoint. The WebContent folder is the root
of the web application, which contains the images subfolder, the WEB-INF subfolder
and JSP files. The WEB-INF subfolder has a subfolder called lib to store the libraries
referenced by the source codes, and various configuration files, namely
configuration.xml, faces-config.xml, navigation.xml and web.xml. The work folder is
the working directory.

Figure 5-3: Project Structure of JSF Application

With the purpose to achieve a clean separation of JSF-related codes and business logic
codes, the package structure inside the JavaSource folder is recommended to follow
the standard illustrated in Figure 5-4. The JSF-oriented source codes should be placed
in the package of “com.bayer.applicationname.jsf” and the source codes related to
business logics in the package of “com.bayer.applicationname.logic”. Besides, for
JSF-related codes it is suggested to categorize the codes for application configuration,
beans, action listeners, value change listeners, phase listener, message bundles,
validators and convertors, and put them into separate sub-packages. By following this
practice, the project is ensured to have a clear structure, and it is easier to identify the
functionality of each package. This practice will also bring benefits for the
maintenance in the future.

Since all the migrated web and portal applications should comply with the standard
project structure, it is a good motivation to utilize project template. Besides, web and
portal applications share quite a lot of other commonalities. For example, in the
JavaSource folder they all need the code for version, application configuration,

 63

Chapter 5 Migration Tools, Templates and Methods

message bundles, and navigation listener. For portal applications, they need in
addition codes for the authentication. In the Test folder, they should all have the
libraries for Emma and Exceltester. In the ant folder, they need to have the libraries
and the build scripts. In the docs folder, they need to have the standard project
document templates. In the WebContent folder, the images stored in the images
subfolder are standard. In the lib subfolder they all need the basic libraries for IVY
Framework and MyFaces. Since the configuration files take standard formats,
migration engineers can create templates for them. Last but not the least, they should
all have the JSP files for error pages and the stylesheet file ics.css is also standard.

Presentation
Layer

Business logic
Layer

Figure 5-4: Package Structure of JavaSource

In conclusion, it is worthwhile for migration engineers to invest some time to create
their own project template to speed up the migration process. They can be flexible to
design the project template in their own preferred way with desired functionality. This
project can be registered with Exadel of the Eclipse and applied for future projects.
However, it should be pointed out that normally some values in the project templates
needs to be updated to match the specific project. It is recommended for the migration
engineers to make a checklist for their project templates, so that the fine tuning task
can be performed correctly and systematically.

 64

Chapter 5 Migration Tools, Templates and Methods

5.4 Migration Guideline

After the study of IVY Presentation and JSF, three migration projects of various
scales have been carried with the purpose to accumulate practical experience of the
migration process and to complement the comprehension of the two frameworks and
the generation of the mapping rules. First of all, four migration principles have been
derived from the practical experience. Migration engineers can apply them flexibly
and develop their own principles.

Principle 1: Do the migration in a systematic approach

Migration project is complicated and error-prone, because the migration engineers
may lack the sufficient knowledge of the source application, and on the other hand,
the numerous details of the migration project can be easily overlooked by migration
engineers. Therefore, it is of great importance for migration engineers to handle the
migration project in a systematic approach. Only in this way will the potential
mistakes be avoided and will the migration process proceed efficiently. An optimized
order to perform the migration projects will be introduced afterwards. Migration
engineers can try it out and make improvement.

Principle 2: Cope with the complexity through subdivision

This is a common approach to deal with complexity and hence is applicable to the
migration projects as well, especially for large migration projects. The complicated
migration project is difficult to be managed as a whole. In consequence, it must be
divided into several small actionable migration projects. The navigation rules can be
good criteria for migration engineers to divide the migration tasks and for project
manager to allocate migration tasks. Therefore, it is helpful to generate the navigation
rules before the execution of the migration projects, so that migration engineers can
master an accurate knowledge of the project complexity.

Principle 3: Make small progress

It is optimal to set the migration of each web form as a task unit. The web application
is a coherent work flow of several web forms, which is heavily dependent on the
output of the previous web form. Therefore, the aim should set to make small progress
and make each web form run correctly before moving to work on the next web form.

Principle 4: Do test when appropriate

With each web form as one task unit, it is recommended to perform tests for each
migrated web form, so that any missing information required for tests can be added

 65

Chapter 5 Migration Tools, Templates and Methods

immediately. ExcelTest should be performed for functionalities that can be tested
automatically. Otherwise, descriptive test cases need to be documented, so that
migration engineers can perform the test manually and systematically.

Generally speaking, the above-mentioned principles can be applied to manage all
migration projects. To execute individual migration project, the following instructions
are derived from the practical experience, and are supplied as reference to migration
engineers. The list stated below shows the suggested order to lead the migration
process and it corresponds to the migration plan presented in Chapter 2.

1. Get the new JSF web application running with the HelloWorld web form

2. Map the JSP files and generate the navigation rules

3. Map the message bundles and the source codes for business logics

4. Map the web forms and create corresponding managed bean and action listeners.

5. Redesign the application architecture to separate the presentation and logic layer.

6. Complete the migration of each web form and perform test

7. Test the migrated web application as a whole and deployment

In the Analysis/Mapping phase, the target JSF project is to be first generated in
Eclipse either using the project template or creating a blank project. The task is to get
this new JSF application running in the local development environment with
configuration, navigation and authentication, if appropriate. In case the project
template is applied, migration engineers need to update the template according to their
checklist with data retrieved from the source IVY project. If the migration engineers
decide to start with a blank project, they need to create the project with the structure
as shown in Figure 5-3 and add all the required source codes and configuration files.
BBS-S&T has now detailed documentation available to show the standard way of
how the configuration, user authentication, and the navigation are implemented. At
last, the JSF project must be able to run on the local Tomcat with a simple JSP to
show “HelloWorld” or similar. Moreover, the show navigation, the toggle language
and login/logout buttons on the support navigation list of the web page should
function correctly.

The HelloWorld JSP can be used as a template to map all the JSP files from the
source IVY project to the target JSF project. For this purpose the migration tool for
the JSP mapping introduced in Chapter 5.2 can be utilized. Then the next task is to
generate the navigation rules using the Navigation Diagram Editor of Exadel in the
target JSF project. To help migration engineers remember of the navigation rules, it is
suggested to use the name of the JSP files as the outcome of actions. The navigation

 66

Chapter 5 Migration Tools, Templates and Methods

rules can be derived from the source IVY project either through the setSuccessor
method of the action listeners linked to the command controls, or the
handleNavigation method of the action listener linked to the BayerNavigation control.

Afterwards, the massage bundles can be mapped directly to the target JSF project.
Because BBS-S&T doesn’t recommend to use dot “.” in the key name, any violation
in the properties files needs to be modified to meet the requirement. The business
beans and logics in the source IVY project can also be mapped to the target project for
the time being. In the design phase, the application architecture needs to be redesigned
in order to achieve a clean separation of the presentation layer and the business logic
layer. Therefore, some changes to the business beans and logics are necessary to be
made.

Next migration engineers can concentrate on the comprehension of the subclasses of
WebForm in the source IVY project and, meanwhile, map the web controls into the
JSP of the target JSF project using the JSF core and HTML tags. Besides, the
corresponding JavaBeans for component values and backing beans for action listeners
should be created for each JSP as described in the mapping rule of business beans and
logics. These beans need to be registered in faces-config.xml. Normally the
JavaBeans should have the scope of session, while the beans for action listeners have
the scope of request.

With the purpose to facilitate the migration of web controls, a mapping method has
been designed, which performs the migration in three steps. The first step is to
determine the type of the web control. The second step is to find out the related
information of the web control. The third step is to map the web control using JSF
tags. The web controls are categorized to five types, namely output, input, select,
command, and composite controls. The mapping of these five kinds of web controls is
explained below.

Mapping of the Type Output

The functionality of this kind of web controls is to show their values on the web page
as strings. They can be mapped using JSF tags <h:outputText> or <h:outputArea>.
Their values can be set either by the message bundles or the binding managed beans.
If the value source is message bundles, the translation keys must be identified and set
to the value attribute of the JSF tag. If the value source is managed beans, the value
binding needs to be used for the value attribute. Besides, it is necessary to find out if
any converter should be applied to this output control and in which condition the web
control is rendered.

 67

Chapter 5 Migration Tools, Templates and Methods

Mapping of the Type Input

The functionality of this kind of web controls is to get user inputs, store them in the
corresponding managed bean. Normally their values are used as input parameters for
the action listeners triggered by web controls of type command. They can be mapped
using JSF tags <h:inputText>, <h:inputArea>, <h:inputSecret> for secret inputs and
<h:inputHidden> for hidden values. Therefore, they must be bund to the matching
managed bean. Besides, migration engineers need to find out if any validator or
converter is required for these web controls, before their corresponding managed
beans need to be updated. At this point a good knowledge of the JSF life-cycle is
helpful. They should also look for information about the condition of rendering.
Besides, the input web controls can be bund to the value change listener as well, in
case the web form needs to be updated when the input value changes.

Mapping of the Type Select

The functionality of this kind of web controls is also to get user inputs, which are used
as input parameters for the action listeners triggered by web controls of type
command. Therefore, migration engineers need to identify the available select items
and their values must be bund to the matching managed beans as well. Besides, they
need to find out their default values and in which condition they should be rendered.
Besides, the select web controls can be bund to the value change listener, in case the
web form needs to be updated when the selected value changes.

Mapping of the Type Command

The functionality of this kind of web controls is to trigger the attached action listeners,
which contains the business logics to process users’ inputs and determine the
navigation flow dynamically. The action listeners of the command web controls in the
IVY project need to be moved into the backing beans of the JSF project. These
methods are attached to the action listener attributes of the JSF command web
controls using the method binding. The method setSuccessor of the IVY action
listeners must be removed, since in the JSF project the return values of the actions are
used to determine the navigation flow dynamically. In the IVY projects, the action
listeners may also contain codes to perform the validation and conversion. Therefore,
in mapping the command web controls, another task is to extract these codes and
place them into the proper validator or converter classes, so that users’ inputs can be
processed earlier before the action listeners are activated. Besides, in IVY projects,
some business logics may be contained in the constructor of the WebForm. They
should be moved into the corresponding actions of the backing beans in the JSF
projects.

 68

Chapter 5 Migration Tools, Templates and Methods

Mapping of the Type Composite

IVY Presentation provides a set of composite web controls. To simplify the mapping
of composite controls, BBS-S&T has developed some JSF customized controls for
navigation, chemipro, etc. Besides, Apache MyFaces has also provided good supports
for composite web components and some customized validators. The detailed
information can be found in http://myfaces.apache.org/tomahawk/overview.html. If
migration engineers need to develop customized controls to meet their specific
requirements, detailed instruction to build customized components can be seen in the
book Core JavaServer Faces.

Having completed the mapping of the web forms, migration engineers should have
acquired good understanding of the source IVY project and hence are able to redesign
the application architecture in the design phase, so that the migrated JSF application
has a clean separation of the presentation layer and the business logic layer and shows
less dependency on the JSF framework. The business logics extracted from the action
listeners need to be integrated to the originally existing business logics. Besides,
migration engineers need to redesign the business beans, when appropriate. Moreover,
the JUnit34 tests can be performed to examine the functionality of the business logic
layer. In the end the application architecture of the migrated JSF project should
comply with the design illustrated in Figure 4-5.

In the migration phase, migration engineers can concentrate on the migration of each
web form based on the well-designed application architecture. It is important to
perform tests for each migrated web form.

After the whole migration project is completed, the new application should be tested
as a whole. And at this stage, the other tests, such as CheckStyle, FindBugs and
Metrics can be performed as well. When the application is evaluated to have met the
requirements, it can be deployed on the test server. End-users should be informed to
test the functionality of the web application. If there is any requirement for
improvements, the requests should be fulfilled. If everything is fine, the application
can be deployed on the production server and the IVY application will be retired.

In conclusion, the migration tools implemented to facilitate the migration process
have been presented first in this chapter with instructions for usage. Because the
project template can really accelerate the migration process, migration engineer can
create their own project template with flexibility. In the end, the migration guideline,
which is derived from experience of practical migration projects, has been introduced.
Migration engineers can try it out and make further modification or improvement.

34 See JUnit Cookbook

 69

http://myfaces.apache.org/tomahawk/overview.html

Chapter 6 Evaluation of Migration Methodologies

6 Evaluation of Migration Methodologies

6.1 Verification with Migration Projects

The migration plan, mapping rules and the migration tools, templates and methods,
which are introduced in previous chapters, are derived not only from the
comprehension of IVY Presentation and JSF, but also from the first-hand practical
experience acquired from three migration projects.

At the beginning of the master project, a portal application called ICSPortalLogin and
a web application called CDRom were migrated into JSF. ICSPortalLogin is a rather
simple application with only one web form. However, it is a very important one,
because it is used by all other IVY portal applications for authentication. Compared to
ICSPortalLogin, CDRom is a little bit more complicated with four web forms. These
two migration projects are mainly carried out to facilitate the comprehension of IVY
Presentation and JSF, to develop the mapping rules and to find out what kinds of tools,
templates and methods are helpful. Based on the experience from these two projects
and the research on the good practices from the internet resources, the migration plan,
mapping rules and the migration tools are developed. To evaluate their feasibility,
another portal application called ICSChemistryWorkbench is migrated to JSF. It is
composed of eight web forms and is more complicated than the previous two projects.
Besides, as its name indicates, it deals with chemical objects, so this project is a good
supplement to the comprehension of IVY Chemistry model. Through the migration of
the three applications, most features of IVY Framework have been practiced.

Attributed to the developed migration plan, the mapping rules and the migration tools,
templates and methods, the migration of ICSChemistryWorkbench turns out to be
much easier and more successful. First of all, the migration tool enables the estimation
of the project duration more accurately. Guided by the migration plan, migration
engineer is equipped with good knowledge of the task description and the execution
order. The mapping rules provide migration engineer with a clear instruction of how
the migration is realized. The migration templates relieve the migration engineer from
the tedious common tasks, so that the working efficiency is improved. The migration
guideline provides migration engineer with integrated instruction to make good use of
the migration plan, mapping rues and the migration tools and template.

In conclusion, the practical experience has proven the feasibility of the migration plan,
the mapping rules, the migration tools and the migration project template. With these
supports migration tasks can be carried out with better organization and finished on
time and with more satisfactory quality and higher efficiency.

 70

Chapter 6 Evaluation of Migration Methodologies

6.2 Performance Test on IVY and JSF Applications

In order to compare the performance of web applications implemented with IVY
Presentation and JSF, the tests have been performed using Apache JMeter35 on both
IVYChemistryWorkbench and IVYChemistryWorkbenchJSF. Two groups of tests
have been carried out with ExcelTest files of various complexities. Both tests are
conducted under the same conditions of 10 threads and 100 repeating times. The
interval between threads is set to 300 ms in order to simulate the real situation. The
first group of test utilizes an ExcelTest files, which calls for the first two web pages of
the portal application. The test results are illustrated in Figure 6-1.

ICSChemistryWorkbench

Throughput:
43.136494/minute

Average:
1310 ms

Median:
1274 ms

Deviation:
258 ms

ICSChemistryWorkbenchJSF

Throughput:
46.33437/minute

Average:
1173 ms

Median:
1146 ms

Deviation:
204 ms

Figure 6-1: Result Comparison of Performance Test A

35 See Apache JMeter

 71

Chapter 6 Evaluation of Migration Methodologies

In the result view, the green line stands for the throughput, the blue line for average
processing time, the purple line for median processing time and the read line for
standard deviation. The second group of test utilizes a more complicated ExcelTest
file, which calls for the first three web pages of application. The test results are
illustrated in Figure 6-2.

ICSChemistryWorkbench

Throughput:
31.539656/minute

Average:
1709 ms

Median:
1614 ms

Deviation:
401 ms

ICSChemistryWorkbenchJSF

Throughput:
37.597637/minute

Average:
1485 ms

Median:
1437 ms

Deviation:
267 ms

Figure 6-2: Result Comparison of Performance Test B

It can be observed that in the first group of test, ICSChemistryWorkbenchJSF has a
higher throughput than ICSChemistryWorkbench by 7.41%, while in the second
group of test by 19.21%. Besides, ICSChemistryWorkbenchJSF has a smaller

 72

Chapter 6 Evaluation of Migration Methodologies

standard deviation compared to ICSChemistryWorkbench, which indicates that JSF
application has a more stable performance than the IVY application. The trends of the
throughput lines can also confirm this conclusion, since the throughput of
ICSChemistryWorkbenchJSF increases quickly to high values and remains stable.
Through the comparison of the two pairs of test results, it can be concluded that the
application built upon JSF demonstrates a better performance than the one upon IVY
Presentation.

6.3 Code-Evaluation Test on IVY and JSF Applications

Besides the performance test, the two applications have been also examined in terms
of the code quality using Metrics36. The comparison result is listed in Table 6-1.

Metrics IVY JSF

Method Lines of Code 1830 1391

Number of Packages 7 8

Number of Classes 29 26

Number of Attributes 118 67

Number of Methods 203 212

Number of Interfaces 0 0

Number of Children 14 0

Number of Static Attributes 48 46

Number of Static Methods 12 11

Number of Overridden Methods 7 2

Depth of Inheritance Tree 3.067 1.385

McCab Cyclomatic Complexity 2.228 2.076

Weighted Methods per Class 479 463

Instability 0.45 0.442

Lack of Cohesion of Methods 0.387 0.306

Abstractness 0.008 0

Afferent Coupling 5.571 3.25

Efferent Coupling 4 2.75

Table 6-1: Comparison of Metrics Test Results

The analysis of the test results is focus on the following indexes, Method Lines of
Code (MLC), Depth of Inheritance Tree (DIT), McCab Cyclomatic Complexity,

36 See Metrics 1.3.6 – Getting Started

 73

Chapter 6 Evaluation of Migration Methodologies

Weighted Methods per Class (WMC), Lack of Cohesion of Methods (LCM), Afferent
Coupling (Ca), Efferent Coupling (Ce), and Instability37.

Method Lines of Codes shows the total number of method lines without including the
comments and blank lines. A small value for MLC is preferred, since the large value
indicates that the development and maintenance are more expensive and that the
application is more complicated and error-prone. MLC of the JSF implementation is
1391, a reduction of 24% compared to the IVY implementation with 1830.

Depth of Inheritance Tree shows the distance from class Object in the inheritance
hierarchy. A small value is preferred for less dependency. DIT of the JSF
implementation is 1.385, a reduction of 55% compared to the IVY implementation of
3.067. This value truly reflects that the IVY application adopts the inheritance more
than the JSF application.

McCab Cyclomatic Complexity counts the number of flows through a piece of code.
Each time a branch occurs, such as if, for, while, do, case, catch, the ?: ternary
operator, as well as the && and || conditional logic operators in expressions, this
metric is incremented by one. Weighted Methods per Class is sum of the McCabe
Cyclomatic Complexity for all methods in a class. Small values for these two indexes
are preferred, because large values indicate that the work flow is inefficient and
time-consuming and that the application is more complicated and error-prone. McCab
Cyclomatic Complexity and WMC of the JSF implementation have a slightly better
performance of 2076 and 463, an improvement of 7% and 3.3% compared to the IVY
implementation of 2228 and 479.

Lack of Cohesion of Methods measures the Cohesiveness of a class. A low value is
preferred and a value close to 1 indicates the lack of cohesion and suggests the class
should better be split into a number of subclasses. LCM of the JSF implementation is
0.306, an improvement of 21% compared to IVY implementation of 0.387.

Afferent Coupling shows the number of classes outside a package that depend on
classes inside the package, while Efferent Coupling shows the number of classes
inside a package that depend on classes outside the package. The lower values are
preferred and higher values indicate greater dependency. The Ca and Ce of JSF
implementation are 3.25 and 2.75, an improvement of 42% and 71% compared to
those of IVY implementation of 5.571 and 4.Instability (I) is calculated using the
formula Ce / (Ca + Ce). I of JSF implementation is 0.442, an improvement of 18%
compared to that of IVY implementation of 0.45.

In conclusion, the JSF implementation demonstrates a better performance and quality.

37 See Metric 1.3.6 – Getting Started

 74

Chapter 7 Conclusion and Outlook

7 Conclusion and Outlook

7.1 Conclusion

The vision of the master project to develop migration methodologies for web
application from IVY Presentation to JSF is accomplished with a complete package of
migration strategy, migration plan, mapping rules, migration tool, migration template
and migration guidelines.

The four tasks have been completed in accordance with the task description of
Chapter 1.1. The research on the existing migration strategies and technology is
conducted. Based on the research, the influence of migration on BBS-S&T is
analyzed and the source code porting method of rehosting is selected as the migration
strategy. The model-driven migration approach is applied to guide the master project.
Through the experience learned from the Department of Defence, U.S. and Oracle, the
migration plan is formulated to manage the migration projects of BBS-S&T. To
ensure the feasibility of the migration methodologies developed by this master project,
an in-depth comparison between IVY Presentation and JSF has been made and two
migration projects are carried out to facilitate the comprehension of the two
framework. Based on both theoretical knowledge and practical experience, the
mapping rules, migration tools and templates are developed. The migration guideline
provides an integrated instruction to combine the migration plan, mapping rules and
migration tools and templates for the implementation of one migration project. At last
the migration methodologies are tested with the migration project of
ICSChemistryWorkbench. This evaluation project proves the feasibility and
usefulness of the migration methodologies, since ICSChemistryWorkbench is
migrated with better quality and higher efficiency. Besides, the proposed migration
methodologies have been acknowledged by other migration engineers at BBS-S&T
and begin to be utilized in migration projects.

 75

Chapter 7 Conclusion and Outlook

7.2 Outlook

The tests results presented in Chapter 6 have confirmed that JSF implementation of
ICSChemistryWorkbench excels the IVY implementation in both application
performance and code quality. Therefore, it is a wise decision to replace IVY
Presentation with JSF and to migrate the existing web applications into JSF. The
migration of web application from IVY Presentation to JSF is a rather complicated
topic with the involvement of tremendous details and varieties. Due to the time
constrain, this master project attaches the focus mainly on the most fundamental and
major issues, while some details may be left out of the scope of this paper. However,
these details are also critical for the efficiency and quality of the migration projects.
Migration engineers need to accumulate these crucial details and store them into the
knowledge base, so that they can be accessed by other people as well.

As is mentioned in Chapter 2, the migration is a dynamically evolving process, which
needs to be improved and updated with continuous efforts. Therefore, the migration
methodologies put forward in this master thesis are serving as a starting point of the
iterative process, and as a basis for the future development. Therefore, they are open
for further improvement and enhancement. The migration methodologies which are
derived from the practical projects are more suitable for small and mid-scale
migration projects. So they need to be improved to be able to manage more
complicated migration projects. Besides, Migration engineers, who have their own
style for working, can make good use of these migration methodologies and develop
their own methodologies.

Furthermore, JSF is growing to be a more mature and powerful web development
framework, and more vendor and industrial supports will be available in the market.
Besides, BBS-S&T is also taking great effort to develop IVY Faces. Therefore, it can
be foreseen that the migration projects can be accomplished with greater ease in the
future. Consequently the migration methodologies presented in this master thesis will
need to be changed and updated.

 76

References

References

A: Books and Articles

[1] Migration Strategies:
Migrating to Solaris Operating System

 Sun Microsystems, Inc.

[2] Patrick DJ Kulandaisamy(2004): Patrick DJ Kulandaisamy

Model Driven Legacy Migration
Infosys Technologies Limited, Bangalore, India

[3] Bergey, O’Brien, Smith(2002): John Bergey, Liam O’Brien, Dennis Smith
 An Application of an Interative Approach to DoD Software Migration Planning

CMU/SEI-2002-TN-027

[4] David Geary, Cay Horstmann (2004): David Geary, Cay Horstmann
 Core JavaServer Faces
 ISBN 0-13-146305-5, Copyright 2004 Sun Microsystems, Inc.

[5] Ed Burns: Ed Burns
 About Faces: The JavaServerTM Faces API and how it relates to Struts
 Sun Microsystems, Inc.

[6] Jim Keogh, James Edward (2002)

J2EE – The Complete Reference
New York, NY [u.a.] : McGraw-Hill/Osborne, c2002, ISBN: 0-07-222472-X

[7] Bill Dudney (2004): Bill Dudney

Building JSF Applications – Architecting JSF Based Web Applications for the
Real World
Object System Group

[8] O’Hara, Kausmeyer, Zhang: Jim O’Hara, Ed Kausmeyer, Jingming Zhang
 JavaServer Faces
 MyFaces

[9] Jeff Swisher: Jeff Swisher
 Introduction to JavaServer Faces

Dunn Solutions Group

[10] Erich Gamma, Kent Beck: Erich Gamma, Kent Beck
 Contributing to Eclipse: Principles, Patterns, and Plug-Ins
 ISBN 0-321-20575-8, Copyright © 2004 by Pearson Education, Inc.

 77

https://katalog.b.tu-harburg.de/DB=1/SET=1/TTL=31/MAT=/NOMAT=T/CLK?IKT=1008&TRM=New+York,+NY+%5Bu.a.%5D
https://katalog.b.tu-harburg.de/DB=1/SET=1/TTL=31/MAT=/NOMAT=T/CLK?IKT=1008&TRM=McGraw-Hill%2FOsborne
http://www.informit.com/safari/author_bio.asp@ISBN=0321205758
http://www.informit.com/safari/author_bio.asp@ISBN=0321205758
http://www.informit.com/safari/author_bio.asp@ISBN=0321205758
http://www.informit.com/safari/author_bio.asp@ISBN=0321205758

References

[11] Ludwin Poertzgen: Ludwin Poertzgen
 Legacy Application Modernization

[12] John Arthorne, Chris Laffra: John Arthorne, Chris Laffra

Official Eclipse 3.0 Faqs
 ISBN: 0321268385 Addison-Wesley Professional; (July 2, 2004)

[13] Legacy Systems Migration: Bing Wu, Deirdre Lawless, Jesus Bisbal, Jane

Grimson, Vincent Wade D O’Sullivan1, Ray Richardson
Legacy Systems Migration - A Method and its Tool-kit Framework
Trinity College, Broadcom Éireann Research, Dublin, Ireland.

[14] Deepak Goyal, Vikas Varma: Deepak Goyal, Vikas Varma

Introduction to Java Server Faces(JSF)
Sun Microsystems

[15] Ronald Brill (2004): Ronald Brill
 NearWeb – Bayer Corporate Design Support
 BBS-IM-RDS

[16] Ronald Brill (2004): Ronald Brill
 NearWeb Overview
 BBS-S&T, 2004-02-10

[17] Ronald Brill, Christian Zander (2005): Ronald Brill, Christian Zander
 JavaServer Faces vs. IVY Presentation – Ein Vergleich
 BBS-S&T

[18] Kito D. Mann (2005): Kito D. Mann

From Struts to JavaServer Faces - Evolving Your Web Applications to
Support the New Standard
Kito D. Mann, editor-in-chief, JSF Central May, 2005

[19] Deepak Goyal, Vikas Varma: Deepak Goyal, Vikas Varma

Introduction to Java Server Faces(JSF)
Sun Microsystems, Inc.

[20] Frank Danek, Andre Klaaßen(2006)
Sturktur der Configuration

 BBS-S&T

[21] Frank Danek, Andre Klaaßen(2006)

Einbinden der Navigation
 BBS-S&T

 78

References

[22] Frank Danek, Andre Klaaßen(2006)
Binbinden der Login-Funktionalitaet

 BBS-S&T

B: Web Resources

[23] Library Dependencies
http://wiki.apache.org/myfaces/Library_dependencies

[24] J2EE 1.4 Tutorial: The J2EE 1.4 Tutorial
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/
Sun Microsystems

[25] HSSF: POI-HSSF - Java API To Access Microsoft Excel Format Files
 http://jakarta.apache.org/poi/hssf/index.html , 09.03.2006

[26] Oracle Relational Migration Map

http://www.oracle.com/technology/tech/migration/maps/index.html ,
09.03.2006

[27] EMMA: a free java code coverage tool
http://emma.sourceforge.net/index.html, 09.03.2006

[28] Core J2EE Patterns – Front Controller,

http://java.sun.com/blueprints/corej2eepatterns/Patterns/FrontController.html
08.03.2006

[29] JUnit Cookbook,

http://junit.sourceforge.net/doc/cookbook/cookbook.htm, 25.08.2005

[30] IVY Presentation Documentation

http://by-near.bayer-ag.com/near/products/Products_javaLib_web_de.jsp
09.03.2006

[31] IVY Foundation Documentation

http://by-near.bayer-ag.com/near/products/Products_javaLib_base.jsp
09.03.2006

[32] IVY Chemistry Documentation

http://by-near.bayer-ag.com/near/products/Products_baycof_de.jsp
09.03.2006

[33] HTML Tutorial

http://www.w3schools.com/html/

 79

http://wiki.apache.org/myfaces/Library_dependencies
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/
http://jakarta.apache.org/poi/hssf/index.html
http://www.oracle.com/technology/tech/migration/maps/index.html
http://by-near.bayer-ag.com/near/products/Products_javaLib_web_de.jsp
http://by-near.bayer-ag.com/near/products/Products_javaLib_base.jsp
http://by-near.bayer-ag.com/near/products/Products_baycof_de.jsp
http://www.w3schools.com/html/

References

Copyright 1999-2006 by Refsnes Data

[34] Bayer Corporate Design Guidelines

http://www.corporatedesign.bayer.com/ , 09.03.2006

[35] Model-View-Control
http://java.sun.com/blueprints/patterns/MVC.html, 09.03.2006

[36] JSR 127: JavaServer Faces

http://www.jcp.org/en/jsr/detail?id=127, 09.03.2006
Java Community Process

[37] Metrics 1.3.6 – Getting Started
 http://metrics.sourceforge.net/ Stand: 09.03.2006

[38] Apache JMeter
 http://jakarta.apache.org/jmeter/, 09.03.2006

[39] Exadel Tutorials and Demos
 http://www.exadel.com/web/portal/products/Tutorials, 09.03.2006

 80

http://www.w3schools.com/about/about_copyright.asp
http://www.corporatedesign.bayer.com/
http://java.sun.com/blueprints/patterns/MVC.html
http://www.jcp.org/en/jsr/detail?id=127
http://www.exadel.com/web/portal/products/Tutorials

	ThesisCover.pdf
	final-thesis.pdf
	Table of Contents
	Statement
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Task Description
	1.2 Vision and Guidelines
	2 Overview of Migration Technology
	2.1 Impact of Migration on Enterprise
	2.2 Overview of Migration Strategies
	2.3 Strategy Selection for BBS-S&T Migration Projects
	2.4 Model-Driven Migration Approach
	2.5 Formulation of Migration Plan
	2.6 Migration Planning for BBS-S&T

	3 Comparison between IVY Presentation and JavaServer Faces
	3.1 Overview of IVY Presentation
	3.1.1 Architecture and Concepts of Web Application Framework
	3.1.2 Architecture and Concepts of Portal Application Framework

	3.2 Overview of JavaServe Faces
	3.2.1 Architecture of JavaServer Faces
	3.2.2 Key Concepts of JavaServer Faces

	3.3 Comparison between IVY Presentation and JavaServer Faces

	4 Development of Mapping Rules
	4.1 Mapping of Framework Libraries
	4.2 Mapping of Servlet Configuration File
	4.3 Mapping of Application Configuration Class
	4.4 Mapping of Navigation Web Control
	4.5 Mapping of Message Resources
	4.6 Mapping of Business Beans and Logics
	4.7 Mapping of Web Forms
	4.8 Mapping of other Items

	5 Migration Tools, Templates and Methods
	5.1 Migration Tool for Project Duration Estimation
	5.2 Migration Tool to Facilitate the JSP Mapping
	5.3 JavaServer Faces Project Templates
	5.4 Migration Guideline

	6 Evaluation of Migration Methodologies
	6.1 Verification with Migration Projects
	6.2 Performance Test on IVY and JSF Applications
	6.3 Code-Evaluation Test on IVY and JSF Applications

	7 Conclusion and Outlook
	7.1 Conclusion
	7.2 Outlook

	References

