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Abstract 

 
Description Logics have been recognized as a general purpose language 

for knowledge representation. Some application domains in which 

Description Logics have shown their strengths are medical applications, 

libraries and information systems, configuration tasks and also software 

engineering. This Thesis will evaluate the non-standard reasoning services 

in Description Logics, contraction and abduction algorithm, and 

implement the given algorithm in an Image Retrieval System. 
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Chapter 1 

Introduction 

1.1. Background 
 As the impact of digital technology, huge amount of image collections are made 

available through the World Wide Web for almost everyone. There are also enormous 

numbers of images exist in many type of organizations and institutions such as museums, 

libraries, archives, information centers, hospitals, educational institutions, newspapers as 

well as in personal archives [11].  

 Some image collections may exist in well-defined domains like architecture or 

medical, while some others exist in a very general domain like collections from stock 

photography.  For image collections with ten thousands of images, an automatic 

indexing is a very good solution. The Content-Based Image Retrieval (CBIR) method is 

the answer for auto-indexing system but this is worth only in a well-defined domain, i.e. 

in a narrow field where the images in the collection have similar shapes, colors or 

textures. 

 The human-annotated images are still the best solution for most of image retrieval 

systems with broad collections of images and some studies have shown that users prefer 

to search by higher-level concepts [18]. Despite of its popularity among the users, 

Annotation-Based Image Retrieval (ABIR, [23]) has some limitations. Some of the main 

problems of manual annotation by human are: 
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• A keyword in a document does not necessarily mean that the document is relevant, 

and relevant document may not contain the explicit word [20, 21]. 

• The meaning of an image or what message it delivers depends on the purpose of 

the image [17]. 

• Lower recall rate of synonyms and lower precision rate of homonyms (precision 

and recall in information retrieval will be discussed in section 3.3.1.), also 

semantic relations such as hyponymy, meronymy and antonymy [22] are not 

exploited [19]. 

• Manual image annotation is time-consuming, thus it is costly [24]. 

• Human annotation is subjective [24]. 

• Some images could not be (human-) annotated since their content is difficult to 

describe using words [12]. 

  

 There are many ways to overcome the problems mentioned above, some of the 

common approaches are by using thesaurus like WordNet [28] and by using classification 

systems like ICONCLASS [27] and Art and Architecture Thesaurus (AAT) [26]. A few 

researches have been using description logic based approaches to find the solution. 

 The research in this Thesis will also use a description logic based approach by 

implementing concept contraction and concept abduction algorithm given in [4]. 

 

1.2. Objectives 
 The main objective of this Thesis is to evaluate the concept contraction and concept 

abduction algorithm for matchmaking given by Cali et.al. [4], and implement it in an 

image retrieval system using Java programming language and RacerPro as the inference 

service. 

 The system should overcome the common problems in traditional image retrieval 

systems which are normally text- / metadata-based as mentioned in section 1.1. Other 

goals would be:  

• To achieve better precision and recall rates. 
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• To give users a logical ranking system. 

• Higher user satisfaction and lower user frustration.  

  

1.3. Structure of this Thesis 
 

Chapter 1: Introduction 

This chapter gives the idea what is the background of the research, some objectives and 

structure of this document. 

 

Chapter 2:  Description Logics 

The definition of description logic and its architecture will be discussed in this chapter. 

Also, the standard reasoning services, satisfiability and subsumption, and especially the 

non-standard concept contraction and concept abduction which are used in the 

matchmaking algorithm. There is also an overview of some known description logic 

systems at the end of this chapter. 

 

Chapter 3:  

Chapter 3 focuses on image management, annotation and retrieval, what constraints they 

have, the current methods and techniques in annotation and retrieval system. It will 

discuss some important issues in information retrieval and image retrieval. The 

description logic approach for image retrieval systems is explained in this chapter with 

the algorithm which will be implemented. How the algorithm works and how to represent 

image profiles are also the main topics in chapter 3. 

 

Chapter 4: 

This part is dedicated to analysis and design process. It begins from knowledge domain 

and problem analysis. After that, a brief explanation on the knowledge base design and 

then the programming design. The ontology can be found in this chapter. 
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Chapter 5:  

Chapter 5 shows how the implemented system works from annotation process to the 

retrieving process and calculating the penalties. Some demonstrations can be found at the 

end of this chapter. 

 

Chapter 6: 

This is the last chapter of the document. It presents some conclusions of the work, 

advantages and disadvantages of image retrieval system using concept contraction and 

concept abduction. Some thoughts about what can be or should be done to improve the 

system for future works are given as ending of this Thesis. 
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Chapter 2 

Description Logics 

2.1. What are Description Logics? 

 Description Logics (DLs) are family of knowledge representation (KR) 

formalisms which can be used to represent the knowledge of an application domain 

in a structured and formally well-understood way. The first step is defining the 

relevant concepts of the domain (its terminology), and then using these concepts to 

specify properties of objects and individuals occurring in the domain (the world 

description).  

 The main characteristic of these languages which distinguishes it to its 

predecessors is that, they are equipped with a formal logic-based semantics. Another 

distinguished feature is the emphasis on reasoning as a central service. 

Here, reasoning can be interpreted as a process of making inferences through logical 

thinking. Reasoning allows one to infer implicitly represented knowledge from the 

knowledge that is explicitly contained in the knowledge base. 

 Knowledge representation itself is the study of how knowledge about the world can 

be represented and what kinds of reasoning can be done with that knowledge. 

Description Logic languages are then viewed as the core of knowledge represen-
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tation systems, considering both the structure of a DL knowledge base and its 

associated reasoning services. 

 

2.2. Architecture of Description Logics 

 Figure 2.1. shows the architecture of a knowledge representation system based 

on Description Logics [1]. 

 

 
Figure 2.1. Architecture of a knowledge representation system based on 

Description Logics. 
 

 A knowledge representation system based on Description Logics provides 

facilities to set up knowledge bases, to reason about their content, and to 

manipulate them. 

 Two components of a knowledge base (KB) as seen in Figure 2.1. are: 

1. the Terminological Box (TBox), which introduces the terminology, that is,  

the vocabulary of an application domain. 
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2. the Assertional Box (ABox), which contains assertions about named 

individuals in terms of this vocabulary. 

 

The vocabulary comprises two components: 

• concepts, denote sets of individuals, and  

• roles, denote binary relationships between those individuals 

 

 It is also allowed for the users of all DL systems to build complex descriptions of 

concepts and roles, in addition to atomic concepts and roles (concept and role names), 

by using the TBox to assign names to complex descriptions. The language for 

building descriptions is a characteristic of each DL system, and different systems are 

distinguished by their description languages. 

 

2.2.1. Description Languages 

 As stated before, complex descriptions can be built from elementary descriptions, that 

is atomic concepts and atomic roles, inductively with concept constructors. 

 The letters A and B will be used for atomic concepts, the letter R for atomic roles, and 

the letters C and D for concept descriptions The basic description language AL 

(attributive language) will be used for a brief explanation since other languages of this 

family are extensions of AL. 

 Concept descriptions in AL are formed according to the following syntax rule [1]: 

 

C, D  $ A | (atomic concept) 

 < | (universal concept) 

 = | (bottom concept) 

 JA | (atomic negation) 

 C  - D |  (intersection) 

 "R.C | (value restriction) 

 $R.< (limited existential quantification)   
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 In attributive language AL, negation can only be applied to atomic concepts, 

and only the top concept is allowed in the scope of an existential quantification 

over a role. 

 For a brief example, let’s assume that Person and Male are atomic concepts. 

An AL concept Person-Male is describing persons that are male while its negation 

Person--Male is describing persons that are not male. Next, let’s suppose that 

hasChild is an atomic role, we can use it together with the atomic concepts to 

compose the concepts [1]: 

 
Person - $hasChild.< 

and  

Person - $hasChild.Female 
 

the first denoting those persons that have a child, while the second denoting those 

persons, all of whose children are female. Persons without a child can be described 

by the concept Person - "hasChild.=. Here, the bottom concept (=) is used. 

 In AL, an Interpretation I consists of a non-empty set DI (the domain of the 

interpretation) and an interpretation function, that assigns to: 

• each concept name A, a subset AI of DI  ( A ⊆ DI I ) 

• each role name R, a binary relation RI over DI  ( xR ⊆ D DI I   I ) 

• each feature name f, associated with the concrete domain D, a partial 

function f I : DI $ D. 

The interpretation function is extended to concepts descriptions by following 

inductive definitions: 

   <I = DI

   =I = ∅  

           (JA) I = DI \ AI

                      (C - D) I = CI  + DI
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  ("R.C) I = {a ! DI | "b.(a,b) ! RI $ b ! CI } 

  ($R.<) I = {a ! DI | $b.(a,b) ! RI } 

 

For more expressive languages, we can add further constructors to AL, as following: 

- The union of concepts, written as CuD and interpreted as: 
 

(C . D) I  =  C I . D I

 
- Full existential quantification, written as $R.C and interpreted as: 
 

($R.C) I  =  {a ! DI | Ab.(a,b) ! RI  / b ! CI } 
 
- Number restrictions, written as HnR (at-least restriction) and as ≤ nR (at-most 

restriction), where n ranges over the nonnegative integers. They are interpreted as: 

 
(HnR) I  =  { a ! DI d |{b | (a,b) ! RI }| Hn },  

and 

(GnR) I  =  { a ! DI d |{b | (a,b) ! RI }| Gn }, 
 
respectively, where “| . |” denotes the cardinality of a set.  

 

- The negation of arbitrary concepts, written as -C and interpreted as: 
 

(JC) I  =  DI \ CI. 
 
 With those additional constructors, now we can describe, for instance, persons 
that have no more than 2 children or at least three children, one of which is male: 
 

Person - (G2 hasChild . (H3 hasChild . $hasChild.Male)) 
 

2.2.2. Terminological Box (TBox) 

 After discussing how to form complex descriptions of concepts to describe classes of 

objects, now e look at terminological axioms which make statements about how concepts 

or roles are related to each other. 
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 In most general situation, terminological axioms have the forms either inclusions or 

equalities. The inclusions are denoted as C 5 D or R 5 S, and the equalities are denoted 

as C = D or R = S, where C, D are concepts and R, S are roles. 

 The basic form of declaration in a TBox is a concept definition, that is, the definition 

of a new concept in terms of other previously defined concepts, or an equality hose left 

hand side is an atomic concept. Definitions are used to introduce symbolic names for 

complex descriptions. For example, a woman can be defined as a female person by the 

following axiom: 

 
Woman = Person - Female 

 
The above declaration provides such sufficient and necessary conditions for classifying 

an individual as a woman. Another example which is using role 

 
Mother = Woman - $hasChild.Person 

 
has gave an association to the description of the right hand side the name Mother. If 

Father is defined analogously to Mother, we can define Parent as 

 
Parent = Mother . Father 

 
There are some important common assumptions usually made about DL terminologies: 

• only one definition for a concept name is allowed 

• definitions are acyclic in the sense that concepts are neither defined in terms of 

themselves nor in terms of other concepts that directly refer to them. 

 This kind of restriction is common to many DL knowledge bases and implies that 

every defined concept can be expanded in a unique way into a complex expression 

containing only atomic concepts by replacing every defined concept with the right-hand 

side of its definition.  

 

 Woman  =  Person - Female 

 Man  = Person - JWoman 
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 Mother = Woman - $hasChild.Person 

 Father = Man - $hasChild.Person 

 Parent = Mother . Father 

 Brother = Man -  H1 hasSibling 

 Sister = Woman -  H1 hasSibling 

 Grandmother = Mother  - $hasChild.Parent 

 Wife = Woman - $hasSpouse.Man      

    

Figure 2.2. A simple TBox with concepts about family relationships. 

 

Below are the replacements of every defined concepts in Figure 2.2. to its definition: 

 

            Woman   =  Person - Female 

 Man  = Person - J ( Person - Female) 

     Mother = (Person - Female) - $hasChild.Person 

      Father = (Person - J (Person - Female)) - $hasChild.Person                     

 Parent = ((Person - Female) - $hasChild.Person) . 

   (J (Person - Female) - $hasChild.Person))      

            Brother = J (Person - Female) - ≥1 hasSibling 

          Sister = (Person - Female) - ≥1 hasSibling 

            Grandmother = ((Person - Female) - $hasChild.Person) - 

   $hasChild.(((Person - J (Person - Female)) 

   $hasChild.Person) . ((Person - Female)  

   $hasChild.Person)) 

 Wife = (Person - Female) - $hasSpouse.(J (Person - Female)) 

Figure 2.3. The expansion of Family TBox 

 

2.2.3. Assertional Box (ABox) 

 The ABox, which is also known as world description, contains assertions about 
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individuals. Two kinds of assertions in an ABox are 

 
C(a)     and     R(b,c) 

 
where a, b, c are individual names with C as concepts and R as roles. In concept 

assertions C(a), one states that a belong to C. And in role assertions R(b,c), one 

states that c is the filler of the role R for b. For example, 

 
Mother(EMMA) 

 
states that the individual EMMA is a mother, and 

 
hasChild(EMMA, SUSAN) 

 
describes that EMMA has SUSAN as a child. 

 

 A DL system not only stores terminologies and assertions, but also offers 

services that reason about them. The basic reasoning services of a DL system will 

be discussed in the next chapter. 

 

2.2.4. Reasoning Services 

2.2.4.1. Standard Reasoning Services 

 The basic reasoning services on concept expression are concept subsumption and 

concept satisfiability.  

 If supply is denoted by the concept C and demand by the concept D, unsatisfiability 

of C - D identifies the incompatible between supply and demand, and satisfiability 

identifies potential partners between them. 

 Determining subsumption (typically written as C D) is the problem whether the 

concept D is more general than the concept C. In other words, a concept C is subsumed 

by a concept D if in every model of T, the set denoted by C is the subset of the set 

denoted by D.   
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 For example, w.r.t. Family TBox in Figure 2.2., it can be verified whether Woman  

Wife (Woman is subsumed by Wife), or the other way around Wife  Woman (Wife is 

subsumed by Woman). 

 The basic reasoning mechanism provided by DL systems can check the subsumption 

of concepts. Hence, it is also sufficient to implement the other inferences, one of them is 

reduction to subsumption as the following [1]: 

 

For concepts C, D, w.r.t. a TBox, we have: 

• C is unsatisfiable  C is subsumed by = ⇔

• C and D are equivalent  C is subsumed by D and D is subsumed by C ⇔

• C and D are disjoint  C - D is subsumed by = ⇔

 

 There also exists other relationships between concepts which can be reduced to 

subsumption and (un)satisfiability, equivalence and disjointness. The formal definitions 

of these properties are as follows: [1] 

Let T  be a TBox 

• Satisfiability: A concept C is satisfiable with respect to T if there exists a model I 

of T such that CI is nonempty. In this case we say also that I is a model 

of C. 

• Subsumption: A concept C is subsumed by a concept D with respect to T if 

CI⊆DI for every model I of T. In this case we write C T D or T F 

C D. 

• Equivalence: Two concepts C and D are equivalent with respect to T if  CI = DI for 

every model I of T. In this case we write C=T D or T F C=D. 

• Disjointness: Two concepts C and D are equivalent with respect to T if CI�DI = 

 for every model I of T. ∅

 

For instances, in TBox  the concept expression: 
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Woman - Mother 

 
is satisfiable with regards to the Family TBox defined in Figure 2, and 
 

JWoman - Mother 
 
is unsatisfiable, since if we unfold this: 
 

JWoman - Mother / 

J(Person - JMan) - (Woman - EhasChild.Person) / 

(JPerson . Man) - Person - JMan - EhasChild.Person / 

Man - JMan - EhasChild.Person / = 

 

We have the bottom/empty concept as a result (=). 

 

2.2.4.2. Non-Standard Reasoning Services 

 Colucci et.al. have defined non-standards reasoning services (inferences) in 

[3], named contraction and abduction. 

 For matchmaking services in the WWW, ranking of potential counteroffers is very 

critical to make the service useful for its users. Since image retrieval system does just the 

same thing with such a system, ranking of potential images which match the user’s 

demand has become a very significant task. 

 With the standard reasoning services for TBox which have been mentioned before, 

concept subsumption and satisfiability, it is not possible to perform the ranking task. 

Therefore the non-standard reasoning services for concepts which have this capability are 

needed. Those reasoning services are known as concept abduction and concept 

contraction. 

 

Concept Contraction 

 Concept contraction extends concept satisfiability. We have concept C as supply, 

concept D as demand and the demander is the one who is actively starting the search, if 
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their conjunction C - D is unsatisfiable in the TBox T, the aim is to retract requirements 

in D to obtain a concept K (for Keep) such that K - C is satisfiable in T. 

 The demander is weakening or even removing his requests to investigate whether 

what is left of the original request is still worth an interest. A user is interested in what he 

must trade to initiate the transaction; a concept G (for Give Up) such that D was made by 

G and K, that is, S  / G - K. 

 

Definition 1: Let L be a DL. C, D, be two concepts in L, and T be a set of axioms in L, 

where both C and D are satisfiable in T. A Concept Contraction Problem (CCP), 

identified by (L, C, D, T ), is finding a pair of concepts (G, K) ∈  L x L such that  

T  t C / G - K, and K - D is satisfiable in T. We call K a contraction of C according to 

D and T.  [3] 

 

 The symbol Q is used for a CCP, and the set of all solutions to a CCP c is denoted by 

SOLCCP(Q). Note that there is always the trivial solutions (G, K) = (C, <) to a CCP. This 

solution is the most drastic contraction that gives up everything of C. On the other hand, 

when C - D is satisfiable in T, the best possible solution is (<, C), that is, give up nothing 

if possible. Since one wants to give up as little as possible, some minimality in the 

contraction must be defined. The subsumption relation between concepts w.r.t. a TBox T 

is denoted by 5T . 

 

Definition 2: Let Q = (L, C, D, T ) be a CCP. The set SOLCCP5 (Q) is the subset of 

solution (G, K) in SOLCCP(Q) such that G is maximal under . The set SOLCCP (Q) is 

the subset of SOLCCP(Q) such that G has minimum length. [3] 

≤

 

 Even if contraction has been performed and the consistency between supply and 

demand has been recovered, partial specifications still need to be solved. It could be in 

such a situation that the supply does not explicitly imply the demand, although they are 
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compatible. Hence, it is necessary to assess what should be hypothesized in the supply in 

order to start the transaction with the demand. Therefore we need the other non-standard 

inference service, concept abduction which will be discussed in the next section. 

 

Concept Abduction 

 Concept abduction extends concept subsumption in particular, by providing new 

concept H when C is not subsumed by D. 

 

Definition 3: Let L be a DL. C, D, be two concepts in L, and T be a set of axioms in L, 

where both C and D are satisfiable in T. A Concept Abduction Problem (CAP), identified 

by (L, C, D, T ), is finding a concept H ! L such that T  t C - H 5 D, and moreover 

 C - H is satisfiable in T. We call H a hypothesis about C according to D and T. [3] 

 

 The set of all solutions to a CAP P is denoted with SOLCAP(P) where P is a symbol 

for a CAP. Note that in the definition it is limited to satisfiable C and D since C 

unsatisfiable implies that the CAP has no solution at all, while D unsatisfiable leads to 

counterintuitive results (JC would be a solution in that case). 

 In CAP, there is no distinction between manifestations and hypotheses, which is very 

common when using abduction for diagnosis. 

 

2.3. Description Logic Systems 

A DL system is a reasoner for knowledge base; a DL system which is expressive and 

efficient is considered to be a good one although there are still some conditions that 

should be taken into account like security, size (should be small and simple) and the user 

friendliness.  All DL systems provide subsumption and satisfiability as standard inference 

services. Some known Description Logic Systems are: 

• CLASSIC - A description logic from AT&T Laboratories implemented first in 

Lisp and later in C and C++. It has aimed to balance expressive power and 
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computational complexity and is one of the less expressive implemented systems. It is 

the basis of a number of configuration and data mining applications, notably PROSE 

from AT&T and Lucent and the Management Discovery Tool from NCR. 

• DLP  

• FaCT  

• FLEX - A description logic from the Technical University of Berlin. It is the basis 

of a very large natural language application. 

• KRIS - An expressive description logic originally from DFKI (the German 

Institute for Artificial Intelligence). 

• Loom - A highly expressive description logic-based system from University of 

California - Information Sciences Institute. It is the basis of many applications funded 

by ARPA. 

• RacerPro - Renamed ABox and Concept Expression Reasoner. 

 DLP, FaCT and RacerPro belong to the new optimized generation of very 

expressive but sound and complete DL systems. RacerPro is used as a reasoner for 

this Thesis’ research. 

 

2.3.1. More about RacerPro 

Some key features of the RacerPro are: 

• compiling the source code for various operating systems  

• versions for large-scale applications (i.e., on 64bit computer systems)  

• developing specific versions tailored to various ways description logic 

systems are used in applications (e.g., for processing OWL documents and 

processing specific patterns of queries).  

• integration of RacerPro into the user's computational environment  

• importing data from relational databases 

 17



 

 

 

 

 

 

 

 

 

 

Chapter 3 

A Description Logic Approach for  
Image Retrieval Systems 
 
 This Thesis, like the title says, will try to evaluate the non-standard reasoning services 

in DLs, concept contraction and concept abduction, using the algorithm given by Cali 

et.al. (2004) which can be found in their paper [4]. The algorithm for matching user 

profiles in [4] is tailored for dating services but it can be modified to meet this Thesis’ 

needs. 

 This chapter discusses the image retrieval and image annotation and the algorithm 

given in [4], how to modify and implement it in an image retrieval system. 

 

3.1. Overview 

 As the old adage goes, a picture says more than a thousand words, so with that in 

human life, from the prehistoric time where humans made paintings on cave walls up to 

now, where millions of pictures are produced every single day. 

 It was impossible to transport cave-wall paintings so it can be seen by others. But 

since humans have made writings and paintings on transportable materials like woods, 
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stones, canvas and papers, it is made possible to move it from one place to another and 

even to reproduce it.  

 Another human invention which had a great impact on humankind is the computer. 

Together with the evolving of photography, they have a great product named digital 

camera. Since then, reproducing an image can be done within a second. 

 The born of World Wide Web had made the world “wider”, it does not have 

boundaries anymore. The World Wide Web is a world without borders. There is no easier 

way to distribute photographs, pictures, images (or whatever you named it) other than 

through World Wide Web. But that’s not the only way where people search for images, 

exchange pictures or buy and sell them. 

 One may ask, why do people search for images? The answers for it may be as 

followings: 

• To make a clear perception of something, examples for this are images using 

for illustration on magazines / newspapers, images of two species of orchids 

which are totally difference but have a same appearance.  

• To collect certain images, a dog lover who collects dog pictures is a good 

example for it.  

• To satisfy one’s curiousness, for example, someone just wants to know how 

the new wife of Prince Charles looks like. 

 

 Those are just a few reasons from many others, but in general, there are three main 

entities what people normally search for: 

• Object 

• Event (happening) 

• Location 

 

The next questions would be these HOWs: 

• How to retrieve the right images?  

• How to deliver an appropriate number of results? 

 19



• How to satisfy the user? 

• How not to make the user frustrating? 

• Altogether, it’s just one question remaining: how to design a good image 

retrieval system. 

 

 Before we go further to discuss about image retrieval, let’s take a look at how can one 

query images. According to Eakins and Graham [5], there are three characteristics of 

image queries: 

• Level 1 comprises retrieval by primitive features such as color, texture, shape or 

the spatial location of image elements. Examples of such queries might be like 

“find images with bluish background”, “find images containing red brown 

corners” or a most general one like “find more images like this”. This level of 

image retrieval is often called content-based image retrieval. 

• Level 2 comprises retrieval by derived (sometimes known as logical) features, 

involving some degree of logical inference about the identity of the objects 

depicted in the image. It can usefully be divided further into retrieval of objects of 

a given type (e.g. “find sunset images”) and retrieval of individual objects or 

persons (“find images of Liberty Statue”).  

• Level 3 comprises retrieval by abstract attributes, involving a significant amount 

of high-level reasoning about the meaning and purpose of the objects or scenes 

depicted. This kind of retrieval can be named events or types of activity (e.g. 

“find images of a wedding ceremony”) or emotional significance (“find images 

depicting happiness”).  

 

 There is a significant gap between level 1 and level 2. Some authors like Gudivada 

and Raghavan [10] refers to level 2 and 3 together as semantic image retrieval, and thus 

the gap between levels 1 and 2 as semantic gap [5]. 

 Inoue in his paper [23] has defined two types of image retrieval as Query-by-Text 

(QbT) and Query-by-Example (QbE). The QbT is a cross-medium retrieval since queries 
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are texts and targets are images, as opposed to QbE, a mono-medium retrieval where 

queries and targets are images. 

  

3.2. Image Retrieval Systems:  
Current Methods and Techniques 

3.2.1. Low-Level Retrieval 

 Regarding to the three characteristics of image queries by Eakins and Graham [5] (in 

section 3.1.), the first level of image query is the primitive level which comprises 

retrieval by primitive features such as color, shape and texture. This kind of image 

retrieval is called content-based image retrieval (usually abbreviated as CBIR), also 

known as query by image content (QBIC) and content-based visual information retrieval 

(CBVIR). 

 There is no or only a little human intervention needed in the annotation process of 

this kind of image retrieval. In CBIR, an image is represented by its signature, which is 

composed of features derived from its physical contents (i.e. pixel values) [11]. Users of 

these systems “naively expect to search for a specific object or person”, but in reality can 

only search for images with a similar distribution of image properties [12]. Some known 

CBIR are: 

• CIRES (http://amazon.ece.utexas.edu/~qasim/research.htm) 

• SIMPLIcity and ALIP (http://wang.ist.psu.edu/IMAGE/) 

• GIFT, The GNU Image Finding Tool (http://www.gnu.org/software/gift/) 

• SIMBA (http://simba.informatik.uni-freiburg.de/) 

• imgSeek (http://www.imgseek.net/) 

• Cortina (http://cortina.ece.ucsb.edu/) 

• Octagon (http://users.utu.fi/jukvii/octagon) 

 

 The CBIR method will not be discussed more in great detail since this Thesis’ 

research will be focused on semantic level of image queries.  
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 The next level of image queries is the semantic level, which comprises retrieval by 

logical features and abstract attributes. 

 

3.2.2. High(er)-Level Retrieval 

  As an opposed to CBIR, Inoue refers the high-level retrieval as Annotation-Based 

Image Retrieval or ABIR [23]. Currently more researches have been conducted in CBIR 

than ABIR. Researchers working on CBIR claim that ABIR has limitations [23]. Brahmi 

and Ziou have mentioned some of these limitations [24]: manual image annotation is time 

consuming, thus it is costly and annotation made by human is very subjective. Other 

authors like Sclaroff et.al. mentioned that some images are difficult to annotate since 

their content cannot be described with words [12]. Examples for the last could be a 

radiology image or a satellite picture. 

 In spite of the fact that CBIR is a more popular topic among the researchers, the 

CBIR community is becoming aware of this: “It is becoming clear in the image retrieval 

community that content-based Image Retrieval is not a replacement of, but rather a 

complementary component to, the text-based Image Retrieval. Only the integration of the 

two can result in satisfactory retrieval performance” [29]. This awareness has stimulated 

research into the addition of other text-based techniques to image retrieval system [11]. 

Jörgensen has done a summary of several methods and techniques used in high(er)-level 

image retrieval [11], some of them are: 

• Methods for exploiting linguistic context in image interpretation, supplementing 

feature-based approach. The associated text is used as a set of constraints to 

identify the (physical) content of an image. The author of PICTION*) used the 

information obtained from the associated caption to identify human faces in 

newspaper photographs. 

• Using a technique called Latent Semantic Analysis (LSA), LSA works by using 

statistical techniques to associate words to the “semantic” concept of a given 

documents and it assumes that there is an underlying or “latent” structure in the 

patterns of words usage across “documents” (text, paragraphs or sentences). 
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• Semiautomatic methods have been experimented by the authors of WebSEEk*) 

system. The system uses text derived from image addresses and HTML tags  

 

3.3. Important Issues in Image Retrieval 

3.3.1. Information Retrieval: Precision and Recall 

 In information retrieval, there are two basic measures in evaluating search 

effectiveness called precision and recall. Precision is the proportion of relevant 

documents retrieved to the total numbers of retrieved documents and recall is the 

proportion of the relevant documents retrieved to the number of all relevant documents. 

 

 

 Relevant Not Relevant 

Retrieved A C 

Not Retrieved B D 

  

Figure 3.1. Precision and Recall 
 

A = relevant documents - retrieved 

B = relevant documents – not retrieved 

C = irrelevant documents – retrieved 

D = irrelevant documents – not retrieved 

A + B = all relevant documents in the database 

A + C = all retrieved documents 

 

APrecision =  x 100%
A+B

                 ARecall =  x 100%
A+C
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 There will be perfection if precision and recall are both 100%, it means all retrieved 

documents are relevant documents, but it is very hard (if not impossible) to achieve. In 

reality, we can only achieve a good balance between precision and recall. Figure 3.2. 

shows two venn diagrams, one depicts perfection (precision = recall = 100%), while the 

other depicts bad precision.  

 
Figure 3.2. Perfection in information retrieval is depicted in the left diagram while bad 

precision is depicted in the right diagram. 

 

3.3.2. User’s Perspective: Satisfaction and Frustration 

Two main processes in an image retrieval system are image annotation and image 

retrieval. In a traditional image retrieval systems which are metadata-based, the first 

stands for the process of creating the metadata in order to describe the images while the 

later stands for the process of finding images through the metadata. Nevertheless, image 

annotation is a key of success of such systems where the success is defined by its user 

satisfaction. 

 Poorly annotated images give the user small number of results, thus it can cause user 

dissatisfaction. But excessively annotated images, its popular term “keywords 

spamming”, do not guarantee that the user will then be satisfied with a large amount of 

results he gets. Figure 3.x depicts the correlation between number of results and user 

satisfaction. 
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Figure 3.3. The correlation between number of results and user satisfaction 

with the annotation. 
 

 On the other hand, excessively annotated images give the user a large number of 

results though, but it causes high user frustration since the user gets what he doesn’t want. 

As we can see in figure 3.x., it shows the correlation between number of results and the 

level of user frustration. 

 
Figure 3.4. The correlation between number of results and user frustration 

with the annotation. 
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 If we merge both diagrams of figure 3.x. and figure 3.x., we have a complete 

illustration of how a good image retrieval system should be. Figure 3.x. shows us the 

complete illustration. 

 
Figure 3.5. A merge of Figure 3.3. and Figure 3.4. 

 

 From the above diagram we have the so called “acceptable results” as shown by the 

yellow line and “optimal results” as shown by the blue line. The yellow line shows a 

range of results where user satisfaction is equal or greater than user frustration and the 

blue line shows a smaller range of results where the level of user frustration is equal or 

almost zero. The diagram also indicates that the highest level of user satisfaction is in the 

range of blue line. 

 

  Poor Annotation Good Annotation Excessive Annotation 

Numbers of results Low Low – Medium High 

User satisfaction Low Medium – High Medium – Low 
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User frustration Medium – Low Low Medium - High 

 

 Although good annotation does not provide user with large number of results, it 

delivers user with high accuracy and hence it satisfies the user. 

 Now let’s take a look at some examples of image annotation below: 

 Poor Annotation Good Annotation Excessive 

Annotation 

 

dogs dalmatian dogs dogs,  
dalmatian dogs, pet,  
cute dogs, domestic 
dogs, standing dogs 

 

man, 
fish 

fishermen,  
small boat,  
fishing, 
lake 

man, fishermen, 
fish, big fish, 
fishing,  
fishing boat, lake, 
lake tahoe 

 

man, cat, train policeman, cat, 
running train 

policeman, postman, 
clerk, officer, train, 
cat, wild cat, brown 
cat, brown wild cat 

Figure 3.6. Some examples of poor, good and excessive annotation. 

 

 A good image retrieval system must have a good annotation which really describes 

what an image is or consists of and a reliable back-end which can retrieve images based 

on the retrievers’ (users’) needs with the possibility to rank the result based on . 

 

3.4. Contraction and Abduction Algorithm for Matchmaking 
in an Image Retrieval System 
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3.4.1. The Matchmaking Algorithm 

 Cali et.al. [4] have designed an algorithm based on description logic for 

matching user profiles. The algorithm is using the non-standard reasoning 

services, concept contraction and concept abduction explained in section 2.2.4.2. 

The user profiles are tailored for dating service, though with small modifications 

the same framework can be used for different applications, for example finding 

job and in classified ads. The term for this problem domain is known as 

matchmaking. In this case, the algorithm will be modified for matching image 

profiles in image retrieval system. 

 The original algorithm can be found in Appendix A, below is the modified 

one used in this Thesis’ research. 

 

------------------------------------------ Begin Algorithm ------------------------------------------ 

Algorithm CalculatePenalty 

 Input demand profile Pd, supply profile Ps, concept Hierarchy H 

 Output real value penalty H 0 

 penalty := 0; 

 // Contraction 

 foreach Ad ! Names( Pd ) do 

  if there exists As ! Names( Ps )  

   such that H  t Ad 5 JAs  

  then remove Ad from Pd

    penalty := penalty + �c ( Ad ) 

 foreach  pd(f) ! Features( Pd+ ) do 

  if there exists ps(f) ! Features( Ps ) 

   such that $x. pd(x) / ps(x) is unsatisfiable in the domain associated to f 

  then remove pd(f) from Pd 

    penalty := penalty + �cf  (pd(f), ps(f)) 
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 foreach $has-segment.(Cd - Hxd (level)) ! Segments( Pd ) do 

  foreach "has-segment.(JCs . Gxs (level)) ! NoSegments( Ps ) do 

   if H  t Cd 5 Cs and xd  H xs 

   then replace $has-segment.(Cd - Hxd (level)) in Pd    

      with $has-segment.(Cd - Hxs (level))  

     penalty := penalty + �cl (xd, xs) 

 foreach "has-segment.(JCd . Gxd (level)) ! NoSegments( Pd ) do 

  foreach $has-segment.(Cs – Hxs (level)) ! Segments( Ps ) do 

   if H  t Cs 5 Cd and xd G xs

   then replace "has-segment.(JCd . Gxd (level)) in Pd  

      with "has-segment.(JCd . Gxs (level)) 

     penalty := penalty + �cl (xs, xd) 

 

 // Abduction 

 foreach Ad ! Names( Pd ) do  

  if there does not exist As ! Names( Ps ) such that H  t As 5 Ad  

  then add Ad to Ps   

    penalty := penalty + �a ( Ad ) 

  foreach pd(f) ! Features( Pd ) do  

   if there exists ps(f) ! Features( Ps )   . pd(x) / ps(x) 

   then if "x.ps(x) & pd(x) is false in the domain associated to f  

     then add pd(f) to Ps  

       penalty := penalty + �af (pd(f), ps(f)) 

   else add pd(f) to Ps

           penalty := penalty + �af (pd(f), <(f)) 

 foreach $has-segment.(Cd - Hxd (level)) ! Segments( Pd ) do 

  if there does not exist $has-segment.(Cs - Hxs (level)) ! Segments( Ps )  

   such that H  t Cs 5 Cd and xs  H xd  
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  then if there exists $has-segment.(Cs - Hxs (level)) ! Segments( Ps ) 

     such that H  t Cs 5 Cd

    then let $has-segment.(Cs - Hxs (level)) be the concept in Segments( Ps ) 

      with maximum xs among those for which H  t Cs 5 Cd holds 

      penalty := penalty + �al (xd, xs) 

    else penalty := penalty + �a ($has-segment.(Cd - Hxd (level)))  

    add $has-segment.(Cd - Hxd (level)) to Ps

 foreach "has-segment.(JCd . Gxd (level)) ! NoSegments( Pd ) do 

  if there does not exist "has-segment.(JCs . Gxs (level)) ! NoSegments( Pd ) 

   such that H  t Cd 5 Cs and xd  H xs

  then if there exists "has-segment.(JCs . Gxs (level)) ! NoSegments( Pd ) 

     such that H  t Cd 5 Cs

    then let "has-segment.(JCs . Gxs (level)) be the concept in Segments( Ps ) 

       with minimum xs among those for which H  t Cd 5 Cs holds    

      penalty := penalty + �al (xs, xd) 

    else penalty := penalty + �a ("has-segment.(JCd . Gxd (level)))  

    add "has-segment.(JCd . Gxd (level)) to Ps

 return penalty 

-------------------------------------------- End Algorithm -------------------------------------------- 

 

3.4.2. Representing Image Profiles to Fit the Algorithm 

 The conjunction of an image profile P is composed of [4]: 

• A conjunction of atomic concepts to represent atomic properties, denoted as 

Names(P).  

For examples: film-image, digital-image, bw-image. 

• A conjunction of concepts which have form p(f) represent physical 

characteristics. The predicate p can be one of =l (.), ≥ l (.), and ≤ l (.), l is the 
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value of the concrete domain associated to f. 

For examples: ISO value and image resolution, for brevity, only one feature 

will be used that is ISO value. 

• A conjunction of concepts which have form ER.(Cn (level)), where R is a role, 

in this case, the role has-segment, C is a conjunction of a concept names and 

0

x≥

x≤ ≤ 1. A concept in this form represents a category in a concept C with level at 

least x, and the set of such concepts is denoted with Segments(P). 

For example: $has-segment.(DOG - H0.75 (level)) 

• A conjunction of concepts which have form "R.(JC . x≤ (level)), where R is a 

role, in this case, the role has-segment, C is a conjunction of a concept names 

and 0 x≤ ≤ 1. A concept in this form represents a category in a concept C with 

level at least x, and the set of such concepts is denoted with NoSegments(P) 

For example: "has-segment.(JCAT - G0.30 (level)) 

 

3.4.3. Contraction Part 

 In contraction phase, if Pd - Ps is not satisfiable in Hierarchy H, then it removes or 

weakens conjuncts from Pd so as to make Pd - Ps satisfiable in H and adds a penalty. In 

other words, if the supplier has something that the demander does not like, the demander 

gives up or weakens his request in order to make the profile match. 

 

3.4.4. Abduction Part 

 In the abduction phase, when the demander wants something that the supplier 

does not provide explicitly, it assumes that the supplier may or may not satisfy the 

demander’s request, it then adds or strengthens conjuncts in Ps to make H FPs Pd. 

 

3.4.5. Penalty Functions   

The penalty functions given in [4]: 
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In the contraction phase, the penalty function for the predicate restriction  

pd (f) and ps (f) is: 

 

  
| | ( ( ), ( )) = 
   Gc f d s

d s

Gp f p f
I I∪ ∪

�
| |

 

 
 where Id and are Is are the intervals associated to pd and ps respectively, and 

G is the gap between them. 

 For instance, a supply Ps with range predicate (ps(f)) ( (iso) 

which does not match the demand P

400  800)≥ ≤v

d for images with range predicate (pd(f)) 

(iso)  is shown in the diagram below: ( 100  200)≥ ≤v

 
 
                                          Id               G                     Is

         
               iso                100         200                     400                        800 
 
                            Id = 100;      G = 200;          Is = 400 
 

 Then we have   
100 1 (( 100 200), ( 400 800)) =  

100+400+200 7c f ≥ ≤ ≥ ≤ =v v�  

 
 Note that if both pd(f) and ps(f) are equality predicates instead of range 

predicates as in the above example, then we get a highest penalty, since Id 

and Is equal 0 (means no interval), therefore: 

 

  
| |( ( ), ( )) = 
Gc f d s
Gp f p f 1=

| |
�  

 
Also note that there is no gap G in the abduction phase and since  

"x .ps (x) & pd (x) is  false in the domain associated to f, we have | Is | > 0. The 

penalty function for the predicate restriction pd (f) and ps (f) in the abduction 

phase is as follows: 
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 For instance, a supply (ps(f)) (iso) which does not 

explicitly satisfy the demand (p

( 400  1000)≥ ≤v

d(f)) ( (iso) is shown in the 

diagram below: 

200  640)≥ ≤v

                  
                                                                                             Is \ Id
                                                                   Id
                                                                                         Is

         
               iso                              200                     400            640                1000 
 
                                                                  Is = 600;  Is \ Id = 360 
 
 The penalty is calculated as follows: 
 

 a 
360 3 (( 200 640), ( 400 1000)) =  
600 5f ≥ ≤ ≥ ≤ =v v�  

 

  Given , [0,1],  ( , )   and  ( , )
1
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d s cl d s d s al d s
s

x xx x x x x x x x
x
−

∈ = − =
−

� �  

 
1For n

d iC A==n i

a i

 

  
1

( hasCategory.(  (level)))  =  . ( )
n

a d d d
i

C x x A
=

∃ ≥ ∑� � n  

 

 

1  

1( hasCategory.(  (level)))  = 
1
( )

d
a d d n

i a i

xC x

A=

−
∀ ¬ ≤

∑
�

�

 n   

 
 
 The penalty functions for atomic concepts Ad, �c(Ad) and �a (Ad) depend merely from 

domain knowledge [4].  

 There are some codes in section 5.2.3. which calculate �c(Ad) and �a (Ad) in general 

(using the path of Ad) using logarithm. 
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Chapter 4 

ContAb Image Retrieval System: 
Analysis and Design 
   

4.1. Knowledge Domain and Problem Analysis 

 Starting from this chapter, the term “image” or “images” will be narrowed and refer 

to photograph images which are produced by photo camera either digital or film. Also the 

term “film camera” is used rather than “analog camera” as an opposed to digital camera 

since the term “analog” in this case will be misleading. 

 If we talk about images (once again, photograph images), what comes in mind? One 

has been mentioned in the first paragraph of this chapter, the camera. Next question 

would be: where to save images? Before digital technology affects our life, the answer 

for this might be only film. But now there is digital film or more precisely digital image 

sensor. Both film and digital image sensor (like CCD, CMOS, etc) are the most common 

recording media for images. And the most important is: what does an image have in it? 

Of course it has colors, and it has a meaning. “A meaning” of an image here means what 

can one say about an image. One may say: “It is an image of a dog” while the other says 

“It is an image of a sitting dog on the beach”. There would be different interpretations of 
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an image from two persons. But they agreed that there is a dog on the image. The dog on 

the image is a logical segment which needs human interpretation to describe it. Now we 

have four related entities of an image, camera, recording media, color and segment.

 The picture below shows all entities and their relationship of the ContAb Image 

Retrieval System. The name “ContAb” has been chosen since it uses concept Contraction 

and concept Abduction for its “engine”. 

 

 
Figure 4.1. The main entities in ContAb Image Retrieval System. 

 

 The above picture shows the IMAGE entity and its relationship to other entities 

and also the relationship between CAMERA and RECORDING-MEDIA as well as 

relationship between RECORDING-MEDIA and COLOR. 
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 As discussed earlier, CAMERA can be DIGITAL-CAMERA or FILM-CAMERA with 

the related RECORDING-MEDIA which can be DIGITAL-IMAGE-SENSOR or FILM. 

The color of an image is normally spread into two categories, black and white 

and color image. But if it comes to the general term of color in photography, 

black and white image refers to image with GRAYSCALE-COLOR and color image 

refers to image with all possible COLOR including GRAYSCALE-COLOR and NON-

GRAYSCALE-COLOR. 

 The categorization of SEGMENT is a significant process in designing the 

system, since this is where the ontological categorization should be applied. 

Depends on the image collections, SEGMENT can be very specific, moderate or 

very general. For instance, image collections from a historical museum have a 

very specific SEGMENT, and image collections from stock photography (like Getty 

Image or Corbis) have a general SEGMENT. ContAb image retrieval system is 

designed more likely for the last one. 

 

4.2. Knowledge Base Design 

 

 
Figure 4.2. All main entities as upper levels in the taxonomy. 

  

 According to [7], the word ontology comes from the Greek ων = being and 
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λόγος = word/speech. In philosophy, it is the study of being or existence as well as 

the basic categories thereof--trying to find out what entities and what types of 

entities exist. Ontology has strong implications for the conceptions of reality. In 

computer science, an ontology is the attempt to formulate an exhaustive and 

rigorous conceptual schema within a given domain, a typically hierarchical data 

structure containing all the relevant entities and their relationships and rules 

(theorems, regulations) within that domain.  

 The categorization of images in this Thesis has three general entities below the 

most general entity (root/top) which are OBJECT, EVENT and LOCATION. Each 

entity is divided to the more specific entities until it reaches its most specific 

entities. For example, the OBJECT entity has LIVING-THING and NONLIVING-THING 

as successors, the NONLIVING-THING has HUMAN, ANIMAL and PLANT as successors, 

and so on. For brevity, only OBJECT entity will be used for examples thtoughout 

this paper. 
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Figure 4.3. The ontology of ContAb Image Retrieval System. 

 

4.3. System Design 

 As mentioned earlier, the implementation will be using Java as the 

programming language and RacerPro as the description logic reasoner. Derb 
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database will also be used to save the annotated data before they are loaded in 

the ABox.  

 

4.3.1. Overall Architecture 

 The main components architecture of ContAb Image Retrieval System is 

illustrated below: 

 
 

Figure 4.4. The Main Components Architecture of  
ContAb Image Retrieval System 
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 In the above figure, there are two main processes shown: 

• Annotation process shown by the black arrowed lines and numbers prefixed with 

“A” (A1 – A2). 

• Retrieval process shown by the blue arrowed lines and numbers prefixed with “R” 

(R1 - R10). 

 

The annotation process is quiet simple: 

A1: The annotator puts the image data through the user interface and then submits it. 

A2: The user interface class (ImageAnnotatorGUI) passes the data to DerbyDB class to 

be saved in the database. The DerbyDB class checks first whether the data exist, if 

yes, the data will be updated, otherwise the data will be inserted. 

 

The summary of retrieval process is as following: 

R1:  The demander interacts with the user interface, puts some details about images he 

wants (and optional precision level) and then submits them. 

R2:  After the demander submitted the form, image demand profile is built. 

R3:  The ImageRetriever now handles the process. 

R4:  After demand profile is built, the ImageRetriever asks the ABox class to find 

images with / without the corresponding positive / negative keywords by querying 

the Racer System using JRacer as the interface. 

R5:  The query results are sent to the ImageRetriever. 

R6:  Image supply profiles are built by making an instance of ImageSupplyProfile class. 

R7:  Matching profiles are built by making an instance of MatchingProfile class. Each 

pair of matching profile consists of the image demand, one matching image supply 

and a corresponding penalty with initial value equal to zero. 

R8:  The ImageRetriever class will now perform the CalculatePenalty algorithm for 

every pair of matching profile. The TBox class is responsible for sending the query 

to the Racer System, starting from contraction phase for atomic concepts to the end 

of the algorithm. 
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R9:  The answers from the Racer System are sent to the ImageRetriever class and the 

penalty calculation will be performed if it’s necessary. After all matching profiles 

are evaluated against the algorithm; the results will be ranked based on penalty 

values and (optional) precision level defined by the demander. 

R10: The ranked matching profiles are sent to the user interface to be shown to the 

demander. 

 

4.3.2. Graphical User Interface Design 

 Graphical User Interface (GUI) is a critical part of a computer application. 

Galitz has mentioned some benefits of a good GUI design as following [30]: 

1. Lower training costs, because the screen data is displayed in a more 

intuitive and self-explanatory manner.  

2. Less user stress, because the interface helps rather than impedes users 

3. Better user satisfaction 

 

 This section explains how the represented image profile will be implemented 

in Annotation-GUI and Retrieval-GUI. 

 The Annotation-GUI will have two mode options, simple mode and detail 

mode. The difference between them is, in simple mode all concept names can be 

selected straight forward, where in detail mode the origin of an image will be 

inferred from the camera used. This will be explained more clearly in 

demonstration (section 5.3.1.). 

 Furthermore, both Annotation- and Retrieval-GUI will follow these rules: 

• The items will be placed in order from most simple and important to more 

complex and less important (except for keywords and segment annotation, 

since this needs a wider space than others).  

• The use of drop down menu is only for item with more than 3 options. 

• What is not needed will be made invisible. 
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4.3.3. UML Class Diagram 
 

 
Figure 4.5. The class diagram. 
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Chapter 5 

Implementation  

5.1. Annotation Process 

 Since Annotation is not the main point of this Thesis, this part is 

implemented in an easy way, that is, all tasks are put in the ImageAnnotatorGUI 

class except the tasks for storing data in the database. 

 

5.1.1. Annotation-GUI 

 The ImageAnnotationGUI class extends JFrame in javax.swing package. 

public class ImageAnnotatorGUI extends javax.swing.JFrame {  
    private JDesktopPane jDesktopPane1; 
    private JLabel imageLabel; 
    private JComboBox imageComboBox; 
    private JLabel showImageLabel; 
    private JLabel keyLabel1; 
    private JTextField keyTextField1;     
    private JButton modeButton;     
    private JButton addImageButton; 
    private JButton resetButton; 
    private JSpinner isoLowSpinner; 
    private JSpinner isoHiSpinner; 
  … 
  … 
   
} 

 45



 
Figure 5.1. ContAb Image Annotation Graphical User Interface. 

 

 First of all, the annotator must select an image to annotate. Since all images 

are found in one single directory, the image names will be read from that 

directory using listNames() method: 

 
public static String[] listNames (String directory) {   
    File dir = new File(directory); 
    FilenameFilter filter = new FilenameFilter() { 
        public boolean accept(File dir, String name) { 
            return name.endsWith(".jpg"); 
        } 
    }; 
    String[] f = dir.list(filter); 
    return f; 
} 

 

The listNames() method uses FilenameFilter to read files with .jpg extension 

only since all images are stored in this format. 
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 Since all individuals will be loaded to ABox in the beginning of retrieval 

process and it assumes that the annotation process happens before the retrieval 

process, the individuals will be taken from the database. Those individuals are of 

camera and recording-media. The DerbyDB class does the job with the 

methods getCameras() and getRecordingMedia(). 

 It assumes that the knowledge base is already loaded to TBox at the very 

beginning, so the system can query the TBox for image categories and segments. 

To get all categories, the ImageAnnotatorGUI class calls the getConceptChildren 

method in the TBox class with "IMAGE-BY-CATEGORY" as the argument since all 

categories are concept children of "IMAGE-BY-CATEGORY" concept. 

 
Tbox.getConceptChildren("IMAGE-BY-CATEGORY"); 

 

Below is the getConceptChildren method: 
 
public static String[] getConceptChildren(String parent) { 
    String que, res; 
    que = "(concept-children " + parent + ")"; 
    res = r.getRacerOutput(que); 
    String[] child = res.split(" ", 0);                
    return child; 
} 

 

where “r” is an instance of the RacerServer class. Some important parts of 

RacerServer class can be found in Appendix C. 

 The segments are displayed as a tree, for example: 
OBJECT > LIVING-THING > HUMAN. 

The easiest way to get this is through iteration from the most general concept to 

most specific concepts. The method in TBox which is responsible for this is the 

getConceptDescendantsTree method. 

 

public static List getConceptDescendantsTree(String ancestor) {         
    String[] tree;          
    String branch; 
    List t = new ArrayList(); 
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    String[] child = getConceptChildren(ancestor); 
             
    for ( int i = 0; i < child.length; i++ ) {            
        if ( !child[i].contains("BOTTOM") ) { 
            t.add(child[i]); 
             
            String[] gChild = getConceptChildren(child[i]); 
            for ( int j = 0; j < gChild.length; j++ ) { 
                if ( !gChild[j].contains("BOTTOM") ) { 
                    branch = child[i] + " > " + gChild[j]; 
                    t.add(branch); 
 
// there are total 7 iterations  
// to the deepest path of the segment. 
 
} 
 

 

 The keywords fields and the corresponding level-bound, level-value and 

segment fields are limited to seven rows. 

 

5.1.2. Data Collection and Storing 

 Once the annotator put all the data for an image and submitted them, the 

system checks whether the image and its data exist in the database. If they exist, 

the old data will be deleted first before inserting the new data, otherwise it just 

does inserting the data. This way is chosen for the sake of simplicity. 

 The insertImage() method which will be performed at the end of a single 

annotation process is as following: 

private void insertImage() {         
    String img = getImageName(); 
    String col = getImageColor(); 
    String orig = getImageOrigin(); 
    String cam = getCameraModel(); 
    String med = getRecordingMedia(); 
    String[] iso = getISOValue(); 
    String isoLow = iso[0]; 
    String isoHi = iso[1]; 
    String cat = getSelectedCategory(); 
             
    String sql = "INSERT INTO APP.IMAGES VALUES " + 
                 ('"+img+"','"+cat+"','"+col+"','"+orig+"','"+ 
                 cam+"','"+med+"','"+isoLow+"','"+isoHi+ 
                 "','"+this.mode+"')"; 
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    if ( DerbyDB.executeUpdate(conn, sql) > 0 ) { 
        List v = getKeywordsProperties(); 
         
        for ( ListIterator i = v.listIterator(); i.hasNext(); ) { 
            String kp = i.next().toString(); 
            String[] prop = kp.split(":"); 
             
            double level = Double.parseDouble(prop[2]); 
             
            String sql2 = "INSERT INTO APP.KEYWORDS " + 
               "(IMAGE_NAME,KEYWORD,LEVEL_BOUND,LEVEL,SEGMENT) "+ 
               "VALUES ('" + img + "','"+prop[0]+"','"+prop[1]+ 
               "',"+level+",'"+prop[3]+"')";                         
             
            DerbyDB.executeUpdate(conn, sql2); 
        }     
    } 
} 

 

 As can be seen in the insertImage() method above, all the annotated data 

will be gathered by these getter methods: 

• getImageName(), it returns the image name only, the extension will be 

omitted. 

• getImageColor(), returns either bw-image or color-image. 

• getImageOrigin(), returns either film-image or digital-image, this 

method is for simple mode annotation only. 

• getCameraModel(), returns the selected camera, in detail mode only. 

• getRecordingMedia(), returns the selected recording media, detail mode 

only. 

• getISOValue(), returns ISO Value as string array in format { low-bound, 

high-bound } 

• getSelectedCategory(), returns the selected category, if a subcategory 

selected, it returns only that subcategory. 

 
private String getSelectedCategory() {         
    String cat =     
       catComboBox.getModel().getSelectedItem().toString(); 
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    if ( !cat.equals("IMAGE-BY-CATEGORY") ) { 
        String subCat =  
           subCatComboBox.getModel().getSelectedItem().toString(); 
        if ( !subCat.equals("ANY-SUBCATEGORY") ) cat = subCat; 
    }             
    return cat; 
} 

 

• getKeywordsProperties() collects all positive / negative keywords and 

their corresponding level-bound, level-values and segments. It returns the 

properties as a list. This method will first check whether a keyword has a 

minimum length of 3 characters or not, if not, the keyword and its 

properties will be ignored. The minimum length of a keyword can be 

changed by giving the constant variable MIN_KEY_LENGTH another value. 

 
private List getKeywordsProperties() { 
    String key, bound, level, segment, prop; 
    List keyProps = new ArrayList(); 
     
    if ( keyTextField1.getText().length() >= MIN_KEY_LENGTH ) { 
        key = keyTextField1.getText(); 
        segment = getMostSpecificSegment(egmentComboBox1. 
                      getModel().getSelectedItem().toString()); 
        level = levelSpinner1.getModel().getValue().toString(); 
        bound = boundSpinner1.getModel().getValue().toString(); 
        prop = key + ":" +  bound + ":" +  level + ":" +  segment; 
        keyProps.add(prop); 
    } 
    if ( keyTextField2.getText().length() >= MIN_KEY_LENGTH ) { 
    … 
    } 
    …  
    // if ( keyTextField3 … up to keyTextField7 
 
    return keyProps; 
} 

        

 

5.2. Retrieval Process 

5.2.1. Retrieval-GUI 
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 Same as the implementation of the annotation-GUI, the retrieval GUI also 

extends javax.swing.JFrame. 

public class ImageRetrieverGUI extends javax.swing.JFrame { 
    private JDesktopPane jDesktopPane1; 
    private JLabel originLabel; 
    private JRadioButton originRadioButton1; 
    private JLabel colorLabel; 
    … 
} 
  

5.2.2. Image Demand Profiling 

 The image demand profile is built directly in the ImageRetrieverGUI class 

as soon as the demander submits the image query. 

 

private void findButtonActionPerformed(ActionEvent evt) {  
    
    ImageDemandProfile d = buildDemandProfile(); 
    … 
} 

 

 But before the demand profile is built, the following condition must be met:  

1. If a keyword belongs to two segments which have a subsumption relation 

then the more general segment will be taken. For example, if the system 

found the keyword “pretty woman” is an instance of segment FEMALE-

HUMAN and also WOMAN, then only the segment FEMALE-HUMAN will be taken. 

This is done by the method findMostGeneralSegments() in the class 

TBox. 

private List findMostGeneralSegments(List s) { 
    List discardSegments = new ArrayList(); 
     
    for ( ListIterator li = s.listIterator(); li.hasNext(); ) { 
        String seg = (String) li.next(); 
        String[] desc = Tbox.getConceptDescendants(seg); 
         
        for ( int i = 0; i < desc.length; i++ ) { 
            discardSegments.add(desc[i]); 
        }             
    } 
    s.removeAll(discardSegments);         
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    return s; 
} 

 

2. If a segment query subsumes another one then the subsumee (the one 

which is more specific) will be discarded. This may happen since the 

system assumes that the demander has no knowledge about how the 

system works. For example, consider the following scenario, a demander 

is searching for: 

  “white dog” H0.70 (level), and 

  “pet” H0.80 (level) 

 In ABox we have: “white dog” as an instance of concept DOG and “pet” 

 as an instance of concept ANIMAL.  

 In TBox there is an axiom: DOG implies ANIMAL (DOG 5 ANIMAL).  

 So, (ANIMAL H0.80 (level)) subsumes (DOG H0.70 (level)).    

 Thus, the query “white dog” H0.70 (level) will be discarded.  

 The method hasSubsumptionRelation() and isSubsumedBy() in class 

 TBox is used for querying the RacerPro in this case. It returns true if  

 a conjunction of concept subsumes another one, otherwise false. 

 
public static boolean hasSubsumptionRelation(String cn1, String 
cn2) { 
 
    boolean subsumption = false; 
   
    if (isSubsumedBy(cn1,cn2) || isSubsumedBy(cn2, cn1) )       
       subsumption = true; 
 
    return subsumption; 
} 
 
public static boolean isSubsumedBy(String cn1, String cn2) { 
    boolean isSubsumed = false; 
    String que, res; 
    que = "(concept-subsumes? " + cn2 + " " + cn1 + ")"; 
    res = r.getRacerOutput(que); 
 
    if ( res.equals("T") ) isSubsumed = true; 
     
    return isSubsumed; 
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} 

 

 Below is the buildDemandProfile() method which builds the image demand 

profile: 

 
private ImageDemandProfile buildDemandProfile() {      
  List posSegments = new ArrayList(); 
  List negSegments = new ArrayList(); 
  List keyProps = getKeywordsProperties(); 
  List posKeyList = new ArrayList(); 
  List negKeyList = new ArrayList(); 
     
  for (ListIterator k=keyProps.listIterator(); k.hasNext(); ) { 
     String[] prop = (String[]) k.next(); 
     String key = prop[0]; 
     String bnd = prop[1];             
     double lvl = Double.parseDouble(prop[2]);                                   
     List seg = findMostGeneralSegments( findSegments(key) ); 
         
     if ( bnd.equals(">=") ) posKeyList.add(key); 
     else negKeyList.add(key); 
                     
     for (ListIterator i = seg.listIterator(); i.hasNext(); ) {                 
        String sg = (String) i.next(); 
        Segment s = new Segment(sg, bnd, lvl); 
             
        if ( bnd.equals(">=") ) posSegments.add(s); 
        else negSegments.add(s); 
     }             
  }                
     
  List demandSegments =fixDemandSegments(posSegments,negSegments); 
     
  List cNames = buildCNames(); 
  List features = buildFeatures();                
  List segments = getSegments(demandSegments);        
  List noSegments = getNoSegments(demandSegments);         
     
  ImageDemandProfile d = new ImageDemandProfile(cNames, features,          
                                            segments, noSegments); 
     
  d.posKeyList = posKeyList; 
  d.negKeyList = negKeyList; 
     
  return d; 
} 
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5.2.3. Finding the Matching Supplies 

 A decision on how to retrieve the image supplies have to be made before. It 

depends on the amount of the collections and how dispersed they are. A 

dispersed collection is for example a collection which has images from dog to 

UFO (Unidentified Flying Object) and from beach to shoes. Thus, these 

scenarios can be applied: 

• For small and dispersed collections, it’s good to retrieve all available 

images and evaluate them one by one, since finding the exact matches in 

this case is considerably hard or the possible exact matches are too little. 

• For big or moderate and concentrated collections, it is better to retrieve 

only the exact matches and rank the result from the most promising one to 

the less promising. An example of this kind of collections would be a 

collection from an architecture image database with hundreds or 

thousands of images. 

• For other kind of image collections between first point and second point, 

it depends on what goal the system designer wants to achieve. When 

precision matters, the second approach should be taken into account, 

otherwise the first approach. 

 

 In the case of ContAb Image Retrieval System, the first approach will be 

taken since there are less than one hundred images in its collection and they are 

dispersed. 

 The method getAllSupplies() in class ABox returns a list of all image supplies 

as  ImageSupplyProfile instances. 

 
public static List getAllSupplies() { 
 
  List supplies = new ArrayList(); 
    
  String[] sup = r.getRacerOutput("(concept-instances image)").split("            
                 "); 
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  for ( int i = 0; i < 10; i++ ) { 
     String img = sup[i];             
     List cn = findCNames(img); 
     List f = DerbyDB.findFeatures(img); 
     List s = DerbyDB.findSegments(img); 
     List ns = DerbyDB.findNoSegments(img); 
         
     ImageSupplyProfile is = new ImageSupplyProfile(img, cn, f, s, ns); 
        supplies.add(is); 
  }         
     
  return supplies; 
} 

 

 For the sake of simplicity, Features, Segments and NoSegments are taken 

from the database as can bee seen on the code snippets above. 

 

5.2.4. Do Contraction 

 The method doContraction() in class ImageRetriever evaluates the image 

demand profile against every image supply profile in matching profile. Just like 

the given algorithm, it starts from evaluating every CNames in demand profile 

and ends with NoSegments. 

 
private static void doContraction(MatchingProfile mp) {    
 
  ImageDemandProfile d = mp.demandProfile; 
  ImageSupplyProfile s = mp.supplyProfile; 
 
  // CNames(Pd) 
  for ( ListIterator i1 = d.cNames.listIterator(); i1.hasNext(); ) { 
    String dName = (String) i1.next();              
         
    for ( ListIterator i11 = s.cNames.listIterator(); i11.hasNext(); ) { 
      String sName = (String) i11.next();                 
      if ( TBox.isDisjoint(dName, sName) ) { 
        d.cNames.remove(dName); 
        mp.penalty += addPenaltyPIc(dName); 
      } 
    }       
  } 
     
  // Features(Pd) 
  for ( ListIterator i2 = d.features.listIterator(); i2.hasNext(); ) { 
    Feature dFeature = (Feature) i2.next(); 
    String featName = dFeature.name; 
    double dFeatMin = dFeature.minValue; 
    double dFeatMax = dFeature.maxValue;                 
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    for (ListIterator i21 = s.features.listIterator(); i21.hasNext(); ) { 
      Feature sFeature = (Feature) i21.next(); 
      double sFeatMin = sFeature.minValue; 
      double sFeatMax = sFeature.maxValue;                     
             
      if ( sFeature.name.equalsIgnoreCase(featName) ) { 
        String pdF = "(and (>= " + featName + " " + dFeatMin + ") (<= " +  
                     featName + " " + dFeatMax + "))"; 
        String psF = "(and (>= " + featName + " " + sFeatMin + ") (<= " +  
                     featName + " " + sFeatMax + "))"; 
        if ( !TBox.isSatisfiable(pdF, psF) ) { 
          d.features.remove(dFeature); 
          mp.penalty += addPenaltyPIcf(dFeature, sFeature);           
        } 
      } 
    } 
  } 
 
  // Segments(Pd) 
  for ( ListIterator i3 = d.segments.listIterator(); i3.hasNext(); ) { 
    Segment dSeg = (Segment) i3.next(); 
    … 
    … 
  } 
 
  // NoSegments(Pd) 
  for ( ListIterator i4 = d.noSegments.listIterator(); i4.hasNext(); ) { 
    NoSegment dNoSeg = (NoSegment) i4.next(); 
    … 
    … 
  } 
} 

 

 The code snippet below: 
  for ( ListIterator i1 = d.cNames.listIterator(); i1.hasNext(); ) { 
    String dName = (String) i1.next();              
         
    for ( ListIterator i11 = s.cNames.listIterator(); i11.hasNext(); ) { 
      String sName = (String) i11.next();                 
      if ( TBox.isDisjoint(dName, sName) ) { 
        d.cNames.remove(dName); 
        mp.penalty += addPenaltyPIc(dName); 
      } 
    }       
  } 
 

 

is the implementation this algorithm part: 

 foreach Ad ! Names( Pd ) do 

    if there exists As ! Names( Ps )  

   such that H  t Ad 5 JAs  
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  then remove Ad from Pd

    penalty := penalty + �c ( Ad ) 

 

And these codes: 
  for ( ListIterator i2 = d.features.listIterator(); i2.hasNext(); ) { 
    Feature dFeature = (Feature) i2.next(); 
    String featName = dFeature.name; 
    double dFeatMin = dFeature.minValue; 
    double dFeatMax = dFeature.maxValue;                 
        
    for (ListIterator i21 = s.features.listIterator(); i21.hasNext(); ) { 
      Feature sFeature = (Feature) i21.next(); 
      double sFeatMin = sFeature.minValue; 
      double sFeatMax = sFeature.maxValue;                     
             
      if ( sFeature.name.equalsIgnoreCase(featName) ) { 
        String pdF = "(and (>= " + featName + " " + dFeatMin + ") (<= " +  
                     featName + " " + dFeatMax + "))"; 
        String psF = "(and (>= " + featName + " " + sFeatMin + ") (<= " +  
                     featName + " " + sFeatMax + "))"; 
        if ( !TBox.isSatisfiable(pdF, psF) ) { 
          d.features.remove(dFeature); 
          mp.penalty += addPenaltyPIcf(dFeature, sFeature);           
        } 
      } 
    } 
  } 

 

are the implementation of the following algorithm part: 

 foreach  pd(f) ! Features( Pd ) do 

  if there exists ps(f) ! Features( Ps ) 

   such that $x. pd(x) / ps(x) is unsatisfiable in the domain associated to f 

  then remove pd(f) from Pd 

    penalty := penalty + �cf  (pd(f), ps(f)) 

 

 

5.2.5. Do Abduction 

 The method doAbduction() also implements the abduction algorithm in the 

same order as in the algorithm, first it evaluates the concept names: 
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private static void doAbduction(MatchingProfile mp) { 
     
 ImageDemandProfile d = mp.demandProfile; 
 ImageSupplyProfile s = mp.supplyProfile; 
     
 // CNames(Pd) 
 for (ListIterator i1 = d.cNames.listIterator();i1.hasNext(); ) { 
   String dName = (String) i1.next();              
   boolean abducted = true; 
 
   for (ListIterator i11 = s.cNames.listIterator();     
                                                  i11.hasNext();){ 
     String sName = (String) i11.next();                 
     if ( TBox.isSubsumedBy(sName, dName) ) abducted = false;  
   } 
   if ( abducted ) { 
     s.cNames.add(dName); 
     mp.penalty += addPenaltyPIa(dName); 
   } 
 } 
 
 … 
 … 
 

 

The codes above are the implementation of this algorithm part: 

 foreach Ad ! Names( Pd ) do  

  if there does not exist As ! Names( Ps ) such that H  t As 5 Ad  

  then add Ad to Ps   

    penalty := penalty + �a ( Ad ) 

 

Evaluation of Features in abduction phase: 

for (ListIterator i2 = d.features.listIterator(); i2.hasNext();) { 
  Feature dFeature = (Feature) i2.next(); 
  String featName = dFeature.name; 
  double dFeatMin = dFeature.minValue; 
  double dFeatMax = dFeature.maxValue;                 
  boolean featureExists = false; 
         
´ for (ListIterator i21 = s.features.listIterator();                             
                                                  i21.hasNext();){ 
    Feature sFeature = (Feature) i21.next(); 
    double sFeatMin = sFeature.minValue; 
    double sFeatMax = sFeature.maxValue;                     
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    if ( sFeature.name.equalsIgnoreCase(featName) ) { 
      featureExists = true; 
      String pdF = "(and (>= "+ featName +" " +dFeatMin+") (<= "+  
                                 featName + " " + dFeatMax + "))"; 
      String psF = "(and (>= "+featName+ " " +sFeatMin+ ") (<= " +  
                                 featName + " " + sFeatMax + "))"; 
      if ( !TBox.isSubsumedBy(psF, pdF) ) { 
        s.features.remove(sFeature); 
        s.features.add(dFeature); 
        mp.penalty += addPenaltyPIaf(dFeature, sFeature); 
      } 
    } 
  } 
  if (!featureExists) mp.penalty += addPenaltyPIaf(dFeature, "T"); 
} 

 

From the algorithm part: 

   foreach pd(f) ! Features( Pd ) do  

   if there exists ps(f) ! Features( Ps )   . pd(x) / ps(x) 

   then if "x.ps(x) & pd(x) is false in the domain associated to f  

     then add pd(f) to Ps  

       penalty := penalty + �af (pd(f), ps(f)) 

   else add pd(f) to Ps

           penalty := penalty + �af (pd(f), <(f))                

            

5.2.6. Penalty Calculations and Ranking 

 Only three implementations of penalty functions will be explained here, �c 

( Ad ), �a ( Ad ) and �cf (pd(f), ps(f)) since  

• �cl (xd, xs) and �al (xd, xs) are clear, and 

• �a ($has-segment.(Cd - Hxd (level))) and  

      �a ("has-segment.(JCd . Gxd (level))) are based on �a ( Ad ), 

 

The implementation of penalty function �c ( Ad ) is as following: 

private static double addPenaltyPIc(String dName, String sName) {         
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  double nPath = (double) TBox.getDeepestPathInTaxonomy(dName);         
  double posAd = (double) TBox.getPositionInHierarchy(dName); 
  double posDis = (double) TBox.getDisjointPositionInHierarchy(dName,          
                                                                sName);             
  double logAd = logBaseOf(nPath, posAd); 
  double logDis = logBaseOf(nPath, posDis); 
     
  double pen = logAd - (logAd*logDis) + Math.pow(logDis, 2); 
  return pen; 
} 

 

There are three methods from TBox class involved: 

• getDeepestPathInTaxonomy() gets the deepest path in SEGMENT or IMAGE 

taxonomy. It returns a value of type double which is used as the base for 

logarithm in the penalty calculation. 

• getPositionInHierarchy() gets the position / path of a concept in SEGMENT or 

IMAGE taxonomy. 

• getDisjointPositionInHierarchy() gets the position of the disjoint axioms in 

the hierarchy. 

 

The implementation of penalty function �a ( Ad ) is as following: 

private static double addPenaltyPIa(String dName, String sName) {         
    double nPath = (double) TBox.getDeepestPathInTaxonomy(dName);    
    double posAd = (double) TBox.getPositionInHierarchy(dName); 
    double posAs = (double) TBox.getPositionInHierarchy(sName);         
     
    double logAd = logBaseOf(nPath, posAd); 
    double logAs = logBaseOf(nPath, posAs); 
     
    double pen = logAd - logAs; 
    return pen; 
} 

 

The penalty function �a ( Ad ) above is simpler than its counterpart in contraction phase,  

�c ( Ad ). It only calculates the difference between the two paths, Ad and As. 

 

The logBaseOf(double b, double n) method does the calculation of logarithm base 

on b of n. 
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public static double logBaseOf(double base, double n) { 
    return Math.log(n)/Math.log(base); 
} 
 

The implementation of penalty function  
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 is as following: 

private static double addPenaltyPIcf(Feature pdf, Feature psf) {         
    double pdfMin = pdf.minValue; 
    double pdfMax = pdf.maxValue; 
    double psfMin = psf.minValue; 
    double psfMax = psf.maxValue; 
    double dInterval = pdfMax - pdfMin; 
    double sInterval = psfMax - psfMin; 
    double gap = 0; 
     
    if ( pdfMax < psfMin ) gap = psfMin - pdfMax; 
    if ( psfMax < pdfMin ) gap = pdfMin - psfMax;             
     
    double pen = gap / (dInterval + sInterval + gap); 
    return pen; 
} 
 
where gap = G, dInterval = Id, and sInterval = Is. 

 After all matching profiles are evaluated and penalty functions are calculated, 

the method doRanking() will perform the sorting task. It compares the previous 

penalty value of a matching profile with the next value; if the previous value is 

greater then it swaps the position with the next value and so on. At the end, the 

matching profiles are sorted from the smaller penalty value to the bigger. With 

these results and the precision level given by the demander, it is easy to adjust 

how many images the system should provide to the demander. Higher precision 

level means lower number of results, lower precision level means higher number 

of results. 

 

5.3. Demonstrations 
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5.3.1. Image Annotation 

There are two annotation modes, simple and detail annotation. The picture below shows a 

part of image annotation in simple mode. 

 

 
Figure 5.2. Image annotation in simple mode. 

 
 In simple mode, the annotation process is straight forward. There are only direct 

(atomic) concepts for TBox: 

1. IMAGE-BY-COLOR: BW-IMAGE or COLOR-IMAGE 

2. IMAGE-BY-ORIGIN: FILM-IMAGE or DIGITAL-IMAGE 

3. IMAGE-BY-CATEGORY: category or its subcategory 

  

 It may seem that an overlapping occurs between categories / subcategories (subset of 

IMAGE-BY-CATEGORY) and SEGMENT. In fact, they do have the same idea but play different 

roles, SEGMENT must have all “entities” of images in the collections while IMAGE-BY-

CATEGORY must not. In other words, SEGMENT gives the user specificity and IMAGE-BY-

CATEGORY gives the user generality.  

 

The ISO feature can be annotated in 5 ways: 

1. Single value, for example:  
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2. A range of values, for example:  

3. A range of values without lower bound, for example:  

In this case, a lowest possible value will be given automatically as a lower bound, 

which is 25 (lowest ISO). 

4. A range of values without upper bound, for example:  

In this case, a highest possible value will be given automatically as a higher 

bound, which is 3200 (highest ISO). 

5. No values:  

In this case, no values will be given and the system assumes this as missing 

information. 

 

 In detail mode, the annotator has the possibility to add some metadata like camera 

model and film used. 

 
Figure 5.3. Image annotation in detail mode. 

 

 In detail annotation, the system will know the origin of the image through the 

reasoning service (in this case RacerPro). Here is a brief explanation of how it works: 
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In TBox: 

DL notation: digital-image = image / "taken-with-camera.digital-camera 

Racer syntax: (equivalent digital-image (and image (all taken-with-camera digital- 

camera))) 

In natural language: “All images taken with digital camera are digital images.” 

 

In Abox: 

Racer syntax: (instance any-digital-camera digital-camera) 

Racer syntax: (related img001 camera-x has-been-taken-with-camera) 

It means: “img001 has been taken with camera x which is a digital camera.” 

Therefore the system knows that img001 is a DIGITAL-IMAGE. 

 

 Next step in annotation process is keywording, choosing the right segment for the 

keyword(s) and weighting the keyword for the selected segment. These are some 

examples: 

 
IMG021 

Keywords Level Segment 

fish sticks MIN 0.90 FOOD 

white plate MAX 0.20 PLATE 
 

 
IMG026 

Keywords Level Segment 

black cat MIN 0.65 CAT 

gold fish MIN 0.65 FISH 
 

 

Keywords Level Segment 

agricultural 

landscape 

MIN 0.70 ON-EARTH-

NATURE-

OBJECT 
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IMG033 sunflower field MIN 0.50 FLOWER 

hanging clouds MIN 0.45 CLOUDS-AND-

SKY 
 

Figure 5.4. Some examples of annotated images. 

 

5.3.2. Image Retrieval 

 This section provides a simple example of image retrieval process: a 

demander looks for dog images. 

 

 
Figure 5.5. ContAb Image Retrieval Graphical User Interface. 
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 As can be seen in the Figure 5.5., the demander has a demand profile as following: 

$has-segment.(DOG - H0.75 (level))  - film-image - (H100(iso) - G200 (iso)). 

The results indicate that there are only 2 exact matching for query DOG. The third result is 

shown as “most promising result”, since it still has an ANIMAL segment. It shows a good 

performance of contraction and abduction algorithm, in particular when it is combined 

with the precision option. 
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Chapter 6 
Conclusions & Future Work 
 The practical evaluation of contraction and abduction algorithm has shown that 

contraction gives a higher precision rate since conflicting information has to be given up 

and abduction gives the demander more results by adding the missing information to the 

domain knowledge. 

 This system gives the user (demander) a transparent idea about how the results are 

ranked. Also with this precision level, user satisfaction is self-adjustable but, like user 

frustration, it depends on the image collections and the quality of the annotation. As long 

as there is a human involved in the annotation process, it will always be subjective and it 

can be only minimized. 

 For future work, using thesaurus and a more expressive description language for the 

system would be a great challenge since these offer a great improvement. 
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Appendix A 

 
 
Algorithm CalculatePenalty 

 Input demand profile Pd, supply profile Ps, concept Hierarchy H 

 Output real value penalty H 0 

 penalty := 0; 

 // Contraction 

 foreach Ad ! Names( Pd ) do 

  if there exists As ! Names( Ps )  

   such that H  t Ad 5 JAs  

  then remove Ad from Pd

    penalty := penalty + �c ( Ad ) 

 foreach  pd(f) ! Features( Pd ) do 

  if there exists ps(f) ! Features( Ps ) 

   such that $x. pd(x) / ps(x) is unsatisfiable in the domain associated to f 

  then remove pd(f) from Pd 

    penalty := penalty + �cf  (pd(f), ps(f)) 

 foreach $hasInterest.(Cd - Hxd (level)) ! Interests( Pd ) do 

  foreach "hasInterest.(JCs . Gxs (level)) ! NoInterests( Ps ) do 

   if H  t Cd 5 Cs and xd  H xs 

   then replace $hasInterest.(Cd - Hxd (level)) in Pd    

      with $hasInterest.(Cd - Hxs (level))  

     penalty := penalty + �cl (xd, xs) 

 foreach "hasInterest.(JCd . Gxd (level)) ! NoInterests( Pd ) do 

  foreach $hasInterest.(Cs – Hxs (level)) ! Interests( Ps ) do 

   if H  t Cs 5 Cd and xd G xs
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   then replace "hasInterest.(JCd . Gxd (level)) in Pd  

      with "hasInterest.(JCd . Gxs (level)) 

     penalty := penalty + �cl (xs, xd) 

 

 // Abduction 

 foreach Ad ! Names( Pd ) do  

  if there does not exist As ! Names( Ps ) such that H  t As 5 Ad  

  then add Ad to Ps   

    penalty := penalty + �a ( Ad ) 

  foreach pd(f) ! Features( Pd ) do  

   if there exists ps(f) ! Features( Ps )   . pd(x) / ps(x) 

   then if "x.ps(x) & pd(x) is false in the domain associated to f  

     then add pd(f) to Ps  

       penalty := penalty + �af (pd(f), ps(f)) 

   else add pd(f) to Ps

           penalty := penalty + �af (pd(f), <(f)) 

 foreach $hasInterest.(Cd - Hxd (level)) ! Interests( Pd ) do 

  if there does not exist $hasInterest.(Cs - Hxs (level)) ! Interests( Ps )  

   such that H  t Cs 5 Cd and xs  H xd  

  then if there exists $hasInterest.(Cs - Hxs (level)) ! Interests( Ps ) 

     such that H  t Cs 5 Cd

    then let $hasInterest.(Cs - Hxs (level)) be the concept in Interests( Ps ) 

      with maximum xs among those for which H  t Cs 5 Cd holds 

      penalty := penalty + �al (xd, xs) 

    else penalty := penalty + �a ($hasInterest.(Cd - Hxd (level)))  

    add $hasInterest.(Cd - Hxd (level)) to Ps

 foreach "hasInterest.(JCd . Gxd (level)) ! NoInterests( Pd ) do 

  if there does not exist "hasInterest.(JCs . Gxs (level)) ! NoInterests( Pd ) 
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   such that H  t Cd 5 Cs and xd  H xs

  then if there exists "hasInterest.(JCs . Gxs (level)) ! NoInterests( Pd ) 

     such that H  t Cd 5 Cs

    then let "hasInterest.(JCs . Gxs (level)) be the concept in Interests( Ps ) 

       with minimum xs among those for which H  t Cd 5 Cs holds    

      penalty := penalty + �al (xs, xd) 

    else penalty := penalty + �a ("hasInterest.(JCd . Gxd (level)))  

    add "hasInterest.(JCd . Gxd (level)) to Ps

 return penalty 
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Appendix B 
 
(full-reset) 
 
(in-knowledge-base image-tbox image-abox) 
 
; ATTRIBUTE 
 
(define-primitive-role taken-with-camera :domain image :range camera :feature-p t)  
 
(define-primitive-role produced-using-recording-media :domain image :range recording-media :Feature-p t) 
 
(define-primitive-role produces-color :domain recording-media :range color) 
 
(define-primitive-role has-color :domain image :range color) 
 
(define-primitive-role using-recording-media :domain camera :range recording-media) 
 
(define-primitive-role has-segment :domain image :range segment) 
 
; CONCRETE DOMAIN 
 
(define-concrete-domain-attribute iso :type real) 
 
; TOP 
 
(disjoint image camera recording-media color segment) 
 
; IMAGE 
 
(implies (or image-by-color image-by-contrast image-by-category image-by-origin) image) 
 
; IMAGE BY COLOR   
 
(disjoint bw-image color-image) 
 
(implies (or bw-image color-image) image-by-color) 
           
(implies (some produced-using-recording-media bw-film) bw-image) 
 
(implies bw-image (all has-color grayscale-color)) 
 
(implies (some produced-using-recording-media color-film) color-image) 
 
(implies color-image (some has-color color)) 
  
; IMAGE BY ORIGIN 
 
(disjoint film-image digital-image) 
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(implies (or film-image digital-image) image-by-origin) 
 
(equivalent film-image (and image (all taken-with-camera film-camera))) 
 
(equivalent digital-image (and image (all taken-with-camera digital-camera))) 
 
(equivalent bw-film-image (and bw-image film-image)) 
 
(equivalent bw-digital-image (and bw-image digital-image)) 
 
(equivalent color-film-image (and color-image film-image)) 
 
(equivalent color-digital-image (and color-image digital-image)) 
 
; IMAGE BY CONTRAST 
 
(implies (or low-contrast-image medium-contrast-image high-contrast-image) image-by-contrast) 
 
(disjoint low-contrast-image medium-contrast-image high-contrast-image) 
 
(implies (<= iso 50) very-low-contrast-image) 
 
(implies (<= iso 100) low-contrast-image) 
 
(implies (and (> iso 100) (< iso 400)) medium-contrast-image) 
 
(implies (>= iso 400) high-contrast-image) 
 
(implies (>= iso 800) very-high-contrast-image) 
 
(implies very-low-contrast-image low-contrast-image) 
 
(implies very-high-contrast-image high-contrast-image) 
 
; IMAGE BY CATEGORY 
 
(implies (or people-image animal-image architecture-image landscape-image transportation-image still-life-
image) image-by-category) 
 
(disjoint people-image animal-image architecture-image landscape-image transportation-image still-life-
image) 
 
(implies (or mature-people-image male-image female-image children-image family-image) people-image) 
 
(disjoint mature-people-image children-image) 
 
(disjoint male-image female-image) 
 
(implies (or domestic-animal-image mammal-image reptile-image amphibia-image bird-image aquatic-
animal-image wild-animal-image) animal-image) 
 
(disjoint domestic-animal-image wild-animal-image) 
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(disjoint mammal-image reptile-image amphibia-image bird-image aquatic-animal-image) 
 
(implies (or interior-arch-image exterior-arch-image) architecture-image) 
 
(disjoint interior-arch-image exterior-arch-image) 
 
(implies (or mountains-image river-lake-image ocean-beach-image city-landscape-image agricultural-
fields-image) landscape-image) 
 
(disjoint mountains-image river-lake-image ocean-beach-image city-landscape-image agricultural-fields-
image) 
 
(implies (or water-transportation-image air-transportation-image land-transportation-image) transportation-
image) 
 
(disjoint water-transportation-image air-transportation-image land-transportation-image) 
 
(implies (or nature-still-life product-still-life) still-life-image) 
 
; SEGMENT 
 
(disjoint event location object) 
 
(implies (or event location object) segment) 
 
(disjoint living-thing nonliving-thing) 
 
(implies (or living-thing nonliving-thing) object) 
 
(disjoint animal plant human) 
 
(implies (or animal plant human) living-thing) 
 
(implies (or bird fish amphibia insect reptile mammal) animal) 
 
(disjoint bird fish amphibia insect reptile mammal) 
 
(implies (or primate horse dog cat) mammal) 
 
(disjoint primate horse dog cat) 
 
(implies (or tree bush grass flower fruit vegetable) plant) 
 
(disjoint tree flower grass fruit vegetable) 
 
(disjoint tree flower bush fruit) 
 
(implies (or male-human female-human young-human mature-human) human) 
 
(disjoint male-human female-human) 
 
(disjoint young-human mature-human) 
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(implies (or infant-human child teenager) young-human) 
 
(disjoint infant-human teenager) 
 
(implies elderly-human m3ature-human) 
 
(equivalent man (and male-human mature-human)) 
 
(equivalent boy (and male-human young-human)) 
 
(equivalent woman (and female-human mature-human)) 
 
(equivalent girl (and female-human young-human)) 
 
(equivalent old-woman (and woman elderly-human)) 
 
(equivalent old-man (and man elderly-human)) 
 
(implies (or human-made-object nature-object) nonliving-thing) 
 
(disjoint human-made-object nature-object) 
 
(implies (or construction vehicle appliance furniture utensil nourishment clothes houseware toy tool art 
jewellery) human-made-object) 
 
(disjoint construction vehicle appliance furniture utensil nourishment clothes toy tool art jewellery) 
 
(disjoint construction vehicle appliance furniture nourishment clothes houseware toy tool art jewellery) 
 
(implies (or bridge street building tunnel) construction) 
 
(implies (or residential-building historical-building commercial-building educational-building religious-
building) building) 
 
(implies (or water-vehicle aircraft land-vehicle) vehicle) 
 
(disjoint water-vehicle aircraft land-vehicle) 
 
(implies (or helicopter airplane) aircraft) 
 
(implies (or boat ship) water-vehicle) 
 
(implies (or special-purpose-vehicle train car motorcycle bicycle) land-vehicle) 
 
(disjoint special-purpose-vehicle train car motorcycle bicycle) 
 
(implies (or writing-utensil kitchen-utensil eating-utensil) utensil) 
 
(disjoint writing-utensil kitchen-utensil) 
 
(disjoint writing-utensil eating-utensil) 
 
(implies (or food beverage) nourishment) 
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(disjoint food beverage) 
 
(implies (or tableware decorative-houseware kitchenware) houseware) 
 
(implies (or dishes cutlery) tableware) 
 
(disjoint dishes cutlery) 
 
(equivalent cutlery eating-utensil) 
 
(implies (or plate glass bowl cup) dishes) 
 
(disjoint plate glass bowl cup) 
 
(implies (or on-earth-nature-object above-earth-nature-object) nature-object) 
 
(disjoint on-earth-nature-object above-earth-nature-object) 
 
(implies (or clouds-and-sky moon-sun-stars) above-earth-nature-object) 
 
(disjoint clouds-and-sky moon-sun-stars) 
 
(implies (or park-and-garden soil-sand-stone lake-river-ocean mountain-and-hill) on-earth-nature-object) 
 
(disjoint park-and-garden soil-sand-stone lake-river-ocean mountain-and-hill) 
 
(implies (or antarctica europe asia africa america australasia) location) 
 
(equivalent eurasia (and europe asia)) 
 
(implies (or australia new-zealand melanesia micronesia polynesia) australasia) 
 
(disjoint asia africa america australasia) 
 
(disjoint europe africa america australasia) 
 
(disjoint antarctica asia africa) 
 
(implies (or north-america central-america south-america) america) 
 
(disjoint north-america central-america south-america) 
 
(implies (or northern-europe western-europe eastern-europe southern-europe) europe) 
 
(disjoint northern-europe western-europe eastern-europe southern-europe) 
 
(implies (or northern-africa western-africa middle-africa eastern-africa southern-africa) africa) 
 
(disjoint northern-africa western-africa middle-africa eastern-africa southern-africa) 
 
(implies (or western-asia central-asia eastern-asia southern-asia southeastern-asia) asia) 
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(disjoint western-asia central-asia eastern-asia southern-asia southeastern-asia) 
 
; COLOR 
 
(disjoint grayscale-color non-grayscale-color) 
 
(implies (or grayscale-color non-grayscale-color) color) 
 
; CAMERA 
 
(disjoint film-camera digital-camera) 
 
(implies (or film-camera digital-camera) camera) 
 
(equivalent digital-camera (and camera (all using-recording-media digital-image-sensor))) 
 
(equivalent film-camera (and camera (all using-recording-media film))) 
 
(equivalent (and image (all produced-using-recording-media film)) (and image (all taken-with-camera film-
camera))) 
 
(equivalent (and image (all produced-using-recording-media digital-image-sensor)) (and image (all taken-
with-camera digital-camera))) 
 
; RECORDING MEDIA 
 
(disjoint bw-film color-film) 
 
(disjoint negative-film transparency-film) 
 
(implies (or film digital-image-sensor) recording-media) 
 
(implies (or bw-film color-film negative-film transparency-film) film) 
 
(equivalent bw-negative-film (and bw-film negative-film)) 
 
(equivalent bw-transparency-film (and bw-film transparency-film)) 
 
(equivalent color-negative-film (and color-film negative-film)) 
 
(equivalent color-transparency-film (and color-film transparency-film)) 
 
(implies bw-film (all produces-color grayscale-color)) 
 
(implies color-film (some produces-color color))
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Appendix C 
 

package jracer ;  
 
impor t  java. io .* ;  
import  java.net .* ;  
import  java.u t i l .* ;  
 
 
/** This  c lass  implements  a  racer  c l ient  wi th a  pla in  in terface.  I t  a l lows to  es tablish  a  
connect ion with the RACER server ,  and send to  i t  p la in  s tr ing messages.  
* /  
 
publ ic  c lass  RacerServer  {  
 
    /**  The socket  that  enables communicat ion  with the racer  server .  * /      
    pr ivate Socket  racerSocket ;  
     
    /**  The input  s tream from the RACER server  socket .  * /  
    pr ivate  InputStream racerInputStream; 
 
    /**  The output  s tream to  the RACER server  socket .  * /  
    pr ivate Pr in tStream racerOutputStream; 
     
    /** The IP locat ion where the  racer  server  is  located.  */  
    pr ivate Str ing racerServerIP;  
 
    /**  The por t  used by the racer  server .  * /  
    pr ivate in t  racerServerPor t ;  
 
    /**  This  is  the  s tr ing for  le t t ing know the racer  server  the process  has  ended.  * /  
    pr ivate  s ta t ic  f inal  Str ing SERVER_END_STRING = ":eof";  
 
/** This  method bui lds a  new racer  c l ient .  * /  
 
publ ic  RacerServer(Str ing ip , in t  por t)  {  
    racerServerIP=ip;  
    racerServerPort=port ;  
}  
 
/** This  method tr ies  to  es tabl ish a  connection with the racer  server .  I f  there  is  any 
problem,  an IOExcept ion is  thrown.  * /  
 
publ ic  void openConnect ion()  throws IOExcept ion { 
    racerSocket  = new Socket( racerServerIP,racerServerPor t) ;  
    racerInputStream = racerSocket .getInputStream();  
    OutputStream out  = racerSocket .getOutputStream() ;  
    racerOutputStream = new Pr in tStream(out , t rue) ;          
}  
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/** This  method checks if  a  connect ion is  a lready opened.  * /  
 
publ ic  boolean isOpened()  {  
    i f  (  ( racerOutputStream != nul l )  && (racerSocket  != nul l )  )  re turn t rue;  
    e lse  return fa lse;  
}  
 
publ ic  void closeConnect ion()  throws IOExcept ion { 
    i f  (  ( racerOutputStream == nul l )  && (racerSocket  == nul l )  )   
        System.out.pr in t ln("No opened connect ion or  connect ion is  a lready closed.") ;  
    e lse {  
        i f  ( racerOutputStream!=nul l)  {  
            racerOutputStream.pr in t(SERVER_END_STRING);  
            racerOutputStream.f lush() ;  
            racerInputStream.close() ;  
            racerOutputStream.close() ;  
            racerOutputStream=null ;  
        }  
        i f  ( racerSocket!=nul l)  {  
            racerSocket .c lose() ;  
            racerSocket=nul l ;  
        }  
        / /System.out .pr int ln("Connection is  c losed.") ;  
    }      
}  
 
/** This  method reads a  s tr ing from the racer  socket  connect ion.  * /  
 
pr ivate  s ta t ic  Str ing  readFromSocket(InputStream in)  throws IOExcept ion { 
     ByteArrayOutputStream baos = new ByteArrayOutputStream() ;  
     in t  c=in .read() ;  
     baos.write(c) ;  
     while  (c!=10) {  
                     c=in.read() ;  
                     i f  (c!=10)  {  
                           baos.wri te(c) ;  
                          }  
 
             }  
    re turn  baos. toStr ing() ;  
 
}  
 
/** This  method sends a  command to the RACER server  and returns a  s tr ing with  the 
answer.  I f  the racer  
    server  returns an " :ok" message,  the answer  is  the  nul l  Str ing;  i f  the racer  server  
re turns  an  
    " :answer"  message,  the returned value is  the Str ing  corresponding to  the answer;  
and f inal ly,  i f  the  
    racer  server  re turns an " :er ror"  message,  a  RacerExcept ion is  thrown.  * /  
     
publ ic  Str ing send(Str ing command) throws RacerException,  IOExcept ion { 
    racerOutputStream.pr in t ln(command);  
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    Str ing resul t=readFromSocket(racerInputStream);  
    re turn  parseResul t(command,resul t) ;  
}  
 
publ ic  Str ing sendRacerQuery(Str ing query)  {  
    Str ing resul t  =  "Error" ;  
    t ry  {  
        i f  (  ! isOpened()  )  openConnect ion() ;  
        resul t  = send(query) ;          
    }  
    ca tch(Exception e)  {  
        e .pr in tStackTrace() ;              
    }  
    re turn  resul t ;  
}  
 
publ ic  Str ing getRacerOutput(Str ing query)  {  
    Str ing rOutput  = "" ;  
     
    t ry  {  
        i f  (  ! isOpened()  )  openConnect ion() ;  
        rOutput  = send(query) ;  
        rOutput  = rOutput . replace("(" ,"") ;          
        rOutput  = rOutput . replace(")" ,"") ;                                    
    }  
    ca tch(Exception e)  {  
        e .pr in tStackTrace() ;              
    }  
    re turn  rOutput ;  
}  
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Notes: 
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