

Practical Evaluation of
Contraction and Abduction Algorithm

in Description Logic

Master Thesis

submitted in partial fulfillment of the requirements for the degree of Master of Science in
Information and Media Technologies.

Submitted by

Yonny Sutanto

January 2006

Supervisor:

Prof. Dr. Ralf Möller

Prof. Dr. Friedrich H.Vogt

Technical University of Hamburg Harburg

Department of Software, Technology & System (STS)

Declaration

Hereby, I declare that this master thesis with the subject “Practical

Evaluation of Contraction and Abduction Algorithm in Description Logic”,

has been prepared by myself. All literally or content related quotations

from other sources have been pointed out and no other sources than

declared have been used.

Hamburg, January 2006

Yonny Sutanto

 ii

Abstract

Description Logics have been recognized as a general purpose language

for knowledge representation. Some application domains in which

Description Logics have shown their strengths are medical applications,

libraries and information systems, configuration tasks and also software

engineering. This Thesis will evaluate the non-standard reasoning services

in Description Logics, contraction and abduction algorithm, and

implement the given algorithm in an Image Retrieval System.

 iii

Acknowledgements

First of all, I would like to thank Prof. Dr. Ralf Möller from Software, Technology and

Systems (STS) of Technical University of Hamburg-Harburg for giving me an

opportunity to work on this topic of Master Thesis.

I would like to thank Michael Wessel for all his guidance and support from the time I

started my project work until I finish my Master Thesis.

Finally, I would like to thank the Racer System Team (http://www.racer-systems.com)

for providing an educational license of RacerPro.

 iv

Contents

List of Figures ………………………………………………………………………. vii

1. Introduction

 1.1. Background ………………………………………………………………..... 1
 1.2. Objectives …………………………………………………………………... 2
 1.3. Structure of This Thesis …………………………………………………….. 3
2. Description Logics
 2.1. What are Description Logics? ………………………………………………. 5
 2.2. Architecture of Description Logics …………………………………………. 6
 2.2.1. Description Languages ……………………………………………… 7
 2.2.2. Terminological Box (TBox) ………………………………………… 9
 2.2.3. Assertional Box (ABox) …………………………………………….. 11
 2.2.4. Reasoning Services ……...…………………………………………... 12
 2.2.4.1. Standard Reasoning Services ……………………………….. 12
 2.2.4.2. Non-Standard Reasoning Services ………………………….. 14
 2.3. Description Logic Systems ………………………………………………….. 16
 2.3.1. More about RacerPro ………………………………………………… 17

3. A Description Logic Approach for Image Retrieval Systems
 3.1. Overview …………………………………………………………………….. 18
 3.2. Image Retrieval Systems: Current Methods and Techniques ……………….. 19
 3.2.1. Low-Level Retrieval …………….…………………………………… 19
 3.2.2. High(er)-Level Retrieval …………………………………………….. 22
 3.3. Important Issues in Image Retrieval …………………………………………. 23
 3.3.1. Information Retrieval: Precision and Recall …………………………. 23
 3.3.2. User’s Perspective: Satisfaction and Frustration …………………….. 24
 3.4. Contraction and Abduction Algorithm for Matchmaking
 in an Image Retrieval System ……………………………………………….. 27
 3.4.1. The Matchmaking Algorithm ……………………………………….. 28
 3.4.2. Representing Image Profiles to Fit the Algorithm …………………... 30
 3.4.3. Contraction Part ……………………………………………………… 31
 3.4.4. Abduction Part ……………………………………………………….. 31

 v

 3.4.5. Penalty Functions ……………………………………………………. 31

4. ContAb Image Retrieval System: Analysis and Design
 4.1. Knowledge Domain and Problem Analysis …………………………………. 34
 4.2. Knowledge Base Design and the Ontology …………………………………. 36
 4.4. System Design ………………………………………………………………. 39
 4.4.1. Overall Architecture …………………………………………………. 40
 4.4.2. Graphical User Interface Design …………………………………….. 42
 4.4.3. Class Diagram …………..…………………………………………… 43

5. Implementation
 5.1. Annotation Process ………………………………………………………….. 44
 5.1.1. Annotation-GUI ………………………………………….………….. 44
 5.2.2. Data Collection and Storing …………………………………………. 47
 5.2. Retrieval Process …………………………………………………………….. 49
 5.2.1. Retrieval-GUI ……………………………………………………….. 49
 5.2.2. Image Demand Profiling …………………………………………….. 50
 5.2.3. Finding the Matching Supplies ……………………………………… 53
 5.2.4. Do Contraction ………………………………………………………. 54
 5.2.5. Do Abduction ………………………………………………………… 56
 5.2.6. Penalty Calculations and Ranking …………………………………… 58
 5.3. Demonstrations ………………………………………………………………. 60
 5.3.1. Image Annotation ………..…………………………………………… 61
 5.3.2. Image Retrieval ………………………………………………………. 64

6. Conclusions and Future Work …………………………………………………… 66

References ……………………………………………………………………………... 67

Appendix A …………………………………………………………………………….. 70

Appendix B …………………………………………………………………………….. 74

Appendix C …………………………………………………………………………….. 79

 vi

List of Figures

2.1. Architecture of a knowledge representation system based on Description Logics .. 6

2.2. A simple TBox with concepts …………………………………………………….. 11

2.3. The expansion of Family TBox …………………………………………………… 11

3.1. Precision and Recall ……………………………………………………………….. 23

3.2. Perfection and bad precision in Information Retrieval ……………………………. 24

3.3. The correlation between number of results and user satisfaction with the quality of

Annotation ……………………………………………………………………………….25

3.4. The correlation between number of results and user frustration with the annotation

quality of annotation ……………………………………………………………………. 25

3.5. A merge of Figure 3.3. and Figure 3.4. ……………………………………………. 26

3.6. Some examples of poor, good and excessive annotation. …………………………. 27

4.1. The main entities in ContAb Image Retrieval System …………………………….. 35

4.2. All main entities as upper levels in the taxonomy …………………………………. 36

4.3.a.. The ontology of ContAb Image Retrieval System …………..…………………. 38

4.3.b.. The ontology of ContAb Image Retrieval System …………..…………………. 39

4.4. The Main Components Architecture of ContAb Image Retrieval System ……… 40

4.5. The class diagram …….……………………………………………………………. 43

5.1. ContAb Image Annotation Graphical User Interface ……………………………… 45

5.2. Image Annotation in simple mode ………………………………………………… 61

5.3. Image annotation in detail mode …………………………………………………… 62

5.4. Some examples of annotated images ………………………………………………. 63

5.5. ContAb Image Retrieval Graphical User Interface ………………………………… 64

 vii

Chapter 1

Introduction

1.1. Background
 As the impact of digital technology, huge amount of image collections are made

available through the World Wide Web for almost everyone. There are also enormous

numbers of images exist in many type of organizations and institutions such as museums,

libraries, archives, information centers, hospitals, educational institutions, newspapers as

well as in personal archives [11].

 Some image collections may exist in well-defined domains like architecture or

medical, while some others exist in a very general domain like collections from stock

photography. For image collections with ten thousands of images, an automatic

indexing is a very good solution. The Content-Based Image Retrieval (CBIR) method is

the answer for auto-indexing system but this is worth only in a well-defined domain, i.e.

in a narrow field where the images in the collection have similar shapes, colors or

textures.

 The human-annotated images are still the best solution for most of image retrieval

systems with broad collections of images and some studies have shown that users prefer

to search by higher-level concepts [18]. Despite of its popularity among the users,

Annotation-Based Image Retrieval (ABIR, [23]) has some limitations. Some of the main

problems of manual annotation by human are:

 1

• A keyword in a document does not necessarily mean that the document is relevant,

and relevant document may not contain the explicit word [20, 21].

• The meaning of an image or what message it delivers depends on the purpose of

the image [17].

• Lower recall rate of synonyms and lower precision rate of homonyms (precision

and recall in information retrieval will be discussed in section 3.3.1.), also

semantic relations such as hyponymy, meronymy and antonymy [22] are not

exploited [19].

• Manual image annotation is time-consuming, thus it is costly [24].

• Human annotation is subjective [24].

• Some images could not be (human-) annotated since their content is difficult to

describe using words [12].

 There are many ways to overcome the problems mentioned above, some of the

common approaches are by using thesaurus like WordNet [28] and by using classification

systems like ICONCLASS [27] and Art and Architecture Thesaurus (AAT) [26]. A few

researches have been using description logic based approaches to find the solution.

 The research in this Thesis will also use a description logic based approach by

implementing concept contraction and concept abduction algorithm given in [4].

1.2. Objectives
 The main objective of this Thesis is to evaluate the concept contraction and concept

abduction algorithm for matchmaking given by Cali et.al. [4], and implement it in an

image retrieval system using Java programming language and RacerPro as the inference

service.

 The system should overcome the common problems in traditional image retrieval

systems which are normally text- / metadata-based as mentioned in section 1.1. Other

goals would be:

• To achieve better precision and recall rates.

 2

• To give users a logical ranking system.

• Higher user satisfaction and lower user frustration.

1.3. Structure of this Thesis

Chapter 1: Introduction

This chapter gives the idea what is the background of the research, some objectives and

structure of this document.

Chapter 2: Description Logics

The definition of description logic and its architecture will be discussed in this chapter.

Also, the standard reasoning services, satisfiability and subsumption, and especially the

non-standard concept contraction and concept abduction which are used in the

matchmaking algorithm. There is also an overview of some known description logic

systems at the end of this chapter.

Chapter 3:

Chapter 3 focuses on image management, annotation and retrieval, what constraints they

have, the current methods and techniques in annotation and retrieval system. It will

discuss some important issues in information retrieval and image retrieval. The

description logic approach for image retrieval systems is explained in this chapter with

the algorithm which will be implemented. How the algorithm works and how to represent

image profiles are also the main topics in chapter 3.

Chapter 4:

This part is dedicated to analysis and design process. It begins from knowledge domain

and problem analysis. After that, a brief explanation on the knowledge base design and

then the programming design. The ontology can be found in this chapter.

 3

Chapter 5:

Chapter 5 shows how the implemented system works from annotation process to the

retrieving process and calculating the penalties. Some demonstrations can be found at the

end of this chapter.

Chapter 6:

This is the last chapter of the document. It presents some conclusions of the work,

advantages and disadvantages of image retrieval system using concept contraction and

concept abduction. Some thoughts about what can be or should be done to improve the

system for future works are given as ending of this Thesis.

 4

Chapter 2

Description Logics

2.1. What are Description Logics?

 Description Logics (DLs) are family of knowledge representation (KR)

formalisms which can be used to represent the knowledge of an application domain

in a structured and formally well-understood way. The first step is defining the

relevant concepts of the domain (its terminology), and then using these concepts to

specify properties of objects and individuals occurring in the domain (the world

description).

 The main characteristic of these languages which distinguishes it to its

predecessors is that, they are equipped with a formal logic-based semantics. Another

distinguished feature is the emphasis on reasoning as a central service.

Here, reasoning can be interpreted as a process of making inferences through logical

thinking. Reasoning allows one to infer implicitly represented knowledge from the

knowledge that is explicitly contained in the knowledge base.

 Knowledge representation itself is the study of how knowledge about the world can

be represented and what kinds of reasoning can be done with that knowledge.

Description Logic languages are then viewed as the core of knowledge represen-

 5

tation systems, considering both the structure of a DL knowledge base and its

associated reasoning services.

2.2. Architecture of Description Logics

 Figure 2.1. shows the architecture of a knowledge representation system based

on Description Logics [1].

Figure 2.1. Architecture of a knowledge representation system based on

Description Logics.

 A knowledge representation system based on Description Logics provides

facilities to set up knowledge bases, to reason about their content, and to

manipulate them.

 Two components of a knowledge base (KB) as seen in Figure 2.1. are:

1. the Terminological Box (TBox), which introduces the terminology, that is,

the vocabulary of an application domain.

 6

2. the Assertional Box (ABox), which contains assertions about named

individuals in terms of this vocabulary.

The vocabulary comprises two components:

• concepts, denote sets of individuals, and

• roles, denote binary relationships between those individuals

 It is also allowed for the users of all DL systems to build complex descriptions of

concepts and roles, in addition to atomic concepts and roles (concept and role names),

by using the TBox to assign names to complex descriptions. The language for

building descriptions is a characteristic of each DL system, and different systems are

distinguished by their description languages.

2.2.1. Description Languages

 As stated before, complex descriptions can be built from elementary descriptions, that

is atomic concepts and atomic roles, inductively with concept constructors.

 The letters A and B will be used for atomic concepts, the letter R for atomic roles, and

the letters C and D for concept descriptions The basic description language AL

(attributive language) will be used for a brief explanation since other languages of this

family are extensions of AL.

 Concept descriptions in AL are formed according to the following syntax rule [1]:

C, D $ A | (atomic concept)

 < | (universal concept)

 = | (bottom concept)

 JA | (atomic negation)

 C - D | (intersection)

 "R.C | (value restriction)

 $R.< (limited existential quantification)

 7

 In attributive language AL, negation can only be applied to atomic concepts,

and only the top concept is allowed in the scope of an existential quantification

over a role.

 For a brief example, let’s assume that Person and Male are atomic concepts.

An AL concept Person-Male is describing persons that are male while its negation

Person--Male is describing persons that are not male. Next, let’s suppose that

hasChild is an atomic role, we can use it together with the atomic concepts to

compose the concepts [1]:

Person - $hasChild.<

and

Person - $hasChild.Female

the first denoting those persons that have a child, while the second denoting those

persons, all of whose children are female. Persons without a child can be described

by the concept Person - "hasChild.=. Here, the bottom concept (=) is used.

 In AL, an Interpretation I consists of a non-empty set DI (the domain of the

interpretation) and an interpretation function, that assigns to:

• each concept name A, a subset AI of DI (A ⊆ DI I)

• each role name R, a binary relation RI over DI (xR ⊆ D DI I I)

• each feature name f, associated with the concrete domain D, a partial

function f I : DI $ D.

The interpretation function is extended to concepts descriptions by following

inductive definitions:

 <I = DI

 =I = ∅

 (JA) I = DI \ AI

 (C - D) I = CI + DI

 8

 ("R.C) I = {a ! DI | "b.(a,b) ! RI $ b ! CI }

 ($R.<) I = {a ! DI | $b.(a,b) ! RI }

For more expressive languages, we can add further constructors to AL, as following:

- The union of concepts, written as CuD and interpreted as:

(C . D) I = C I . D I

- Full existential quantification, written as $R.C and interpreted as:

($R.C) I = {a ! DI | Ab.(a,b) ! RI / b ! CI }

- Number restrictions, written as HnR (at-least restriction) and as ≤ nR (at-most

restriction), where n ranges over the nonnegative integers. They are interpreted as:

(HnR) I = { a ! DI d |{b | (a,b) ! RI }| Hn },

and

(GnR) I = { a ! DI d |{b | (a,b) ! RI }| Gn },

respectively, where “| . |” denotes the cardinality of a set.

- The negation of arbitrary concepts, written as -C and interpreted as:

(JC) I = DI \ CI.

 With those additional constructors, now we can describe, for instance, persons
that have no more than 2 children or at least three children, one of which is male:

Person - (G2 hasChild . (H3 hasChild . $hasChild.Male))

2.2.2. Terminological Box (TBox)

 After discussing how to form complex descriptions of concepts to describe classes of

objects, now e look at terminological axioms which make statements about how concepts

or roles are related to each other.

 9

 In most general situation, terminological axioms have the forms either inclusions or

equalities. The inclusions are denoted as C 5 D or R 5 S, and the equalities are denoted

as C = D or R = S, where C, D are concepts and R, S are roles.

 The basic form of declaration in a TBox is a concept definition, that is, the definition

of a new concept in terms of other previously defined concepts, or an equality hose left

hand side is an atomic concept. Definitions are used to introduce symbolic names for

complex descriptions. For example, a woman can be defined as a female person by the

following axiom:

Woman = Person - Female

The above declaration provides such sufficient and necessary conditions for classifying

an individual as a woman. Another example which is using role

Mother = Woman - $hasChild.Person

has gave an association to the description of the right hand side the name Mother. If

Father is defined analogously to Mother, we can define Parent as

Parent = Mother . Father

There are some important common assumptions usually made about DL terminologies:

• only one definition for a concept name is allowed

• definitions are acyclic in the sense that concepts are neither defined in terms of

themselves nor in terms of other concepts that directly refer to them.

 This kind of restriction is common to many DL knowledge bases and implies that

every defined concept can be expanded in a unique way into a complex expression

containing only atomic concepts by replacing every defined concept with the right-hand

side of its definition.

 Woman = Person - Female

 Man = Person - JWoman

 10

 Mother = Woman - $hasChild.Person

 Father = Man - $hasChild.Person

 Parent = Mother . Father

 Brother = Man - H1 hasSibling

 Sister = Woman - H1 hasSibling

 Grandmother = Mother - $hasChild.Parent

 Wife = Woman - $hasSpouse.Man

Figure 2.2. A simple TBox with concepts about family relationships.

Below are the replacements of every defined concepts in Figure 2.2. to its definition:

 Woman = Person - Female

 Man = Person - J (Person - Female)

 Mother = (Person - Female) - $hasChild.Person

 Father = (Person - J (Person - Female)) - $hasChild.Person

 Parent = ((Person - Female) - $hasChild.Person) .

 (J (Person - Female) - $hasChild.Person))

 Brother = J (Person - Female) - ≥1 hasSibling

 Sister = (Person - Female) - ≥1 hasSibling

 Grandmother = ((Person - Female) - $hasChild.Person) -

 $hasChild.(((Person - J (Person - Female))

 $hasChild.Person) . ((Person - Female)

 $hasChild.Person))

 Wife = (Person - Female) - $hasSpouse.(J (Person - Female))

Figure 2.3. The expansion of Family TBox

2.2.3. Assertional Box (ABox)

 The ABox, which is also known as world description, contains assertions about

 11

individuals. Two kinds of assertions in an ABox are

C(a) and R(b,c)

where a, b, c are individual names with C as concepts and R as roles. In concept

assertions C(a), one states that a belong to C. And in role assertions R(b,c), one

states that c is the filler of the role R for b. For example,

Mother(EMMA)

states that the individual EMMA is a mother, and

hasChild(EMMA, SUSAN)

describes that EMMA has SUSAN as a child.

 A DL system not only stores terminologies and assertions, but also offers

services that reason about them. The basic reasoning services of a DL system will

be discussed in the next chapter.

2.2.4. Reasoning Services

2.2.4.1. Standard Reasoning Services

 The basic reasoning services on concept expression are concept subsumption and

concept satisfiability.

 If supply is denoted by the concept C and demand by the concept D, unsatisfiability

of C - D identifies the incompatible between supply and demand, and satisfiability

identifies potential partners between them.

 Determining subsumption (typically written as C D) is the problem whether the

concept D is more general than the concept C. In other words, a concept C is subsumed

by a concept D if in every model of T, the set denoted by C is the subset of the set

denoted by D.

 12

 For example, w.r.t. Family TBox in Figure 2.2., it can be verified whether Woman

Wife (Woman is subsumed by Wife), or the other way around Wife Woman (Wife is

subsumed by Woman).

 The basic reasoning mechanism provided by DL systems can check the subsumption

of concepts. Hence, it is also sufficient to implement the other inferences, one of them is

reduction to subsumption as the following [1]:

For concepts C, D, w.r.t. a TBox, we have:

• C is unsatisfiable C is subsumed by = ⇔

• C and D are equivalent C is subsumed by D and D is subsumed by C ⇔

• C and D are disjoint C - D is subsumed by = ⇔

 There also exists other relationships between concepts which can be reduced to

subsumption and (un)satisfiability, equivalence and disjointness. The formal definitions

of these properties are as follows: [1]

Let T be a TBox

• Satisfiability: A concept C is satisfiable with respect to T if there exists a model I

of T such that CI is nonempty. In this case we say also that I is a model

of C.

• Subsumption: A concept C is subsumed by a concept D with respect to T if

CI⊆DI for every model I of T. In this case we write C T D or T F

C D.

• Equivalence: Two concepts C and D are equivalent with respect to T if CI = DI for

every model I of T. In this case we write C=T D or T F C=D.

• Disjointness: Two concepts C and D are equivalent with respect to T if CI�DI =

 for every model I of T. ∅

For instances, in TBox the concept expression:

 13

Woman - Mother

is satisfiable with regards to the Family TBox defined in Figure 2, and

JWoman - Mother

is unsatisfiable, since if we unfold this:

JWoman - Mother /

J(Person - JMan) - (Woman - EhasChild.Person) /

(JPerson . Man) - Person - JMan - EhasChild.Person /

Man - JMan - EhasChild.Person / =

We have the bottom/empty concept as a result (=).

2.2.4.2. Non-Standard Reasoning Services

 Colucci et.al. have defined non-standards reasoning services (inferences) in

[3], named contraction and abduction.

 For matchmaking services in the WWW, ranking of potential counteroffers is very

critical to make the service useful for its users. Since image retrieval system does just the

same thing with such a system, ranking of potential images which match the user’s

demand has become a very significant task.

 With the standard reasoning services for TBox which have been mentioned before,

concept subsumption and satisfiability, it is not possible to perform the ranking task.

Therefore the non-standard reasoning services for concepts which have this capability are

needed. Those reasoning services are known as concept abduction and concept

contraction.

Concept Contraction

 Concept contraction extends concept satisfiability. We have concept C as supply,

concept D as demand and the demander is the one who is actively starting the search, if

 14

their conjunction C - D is unsatisfiable in the TBox T, the aim is to retract requirements

in D to obtain a concept K (for Keep) such that K - C is satisfiable in T.

 The demander is weakening or even removing his requests to investigate whether

what is left of the original request is still worth an interest. A user is interested in what he

must trade to initiate the transaction; a concept G (for Give Up) such that D was made by

G and K, that is, S / G - K.

Definition 1: Let L be a DL. C, D, be two concepts in L, and T be a set of axioms in L,

where both C and D are satisfiable in T. A Concept Contraction Problem (CCP),

identified by (L, C, D, T), is finding a pair of concepts (G, K) ∈ L x L such that

T t C / G - K, and K - D is satisfiable in T. We call K a contraction of C according to

D and T. [3]

 The symbol Q is used for a CCP, and the set of all solutions to a CCP c is denoted by

SOLCCP(Q). Note that there is always the trivial solutions (G, K) = (C, <) to a CCP. This

solution is the most drastic contraction that gives up everything of C. On the other hand,

when C - D is satisfiable in T, the best possible solution is (<, C), that is, give up nothing

if possible. Since one wants to give up as little as possible, some minimality in the

contraction must be defined. The subsumption relation between concepts w.r.t. a TBox T

is denoted by 5T .

Definition 2: Let Q = (L, C, D, T) be a CCP. The set SOLCCP5 (Q) is the subset of

solution (G, K) in SOLCCP(Q) such that G is maximal under . The set SOLCCP (Q) is

the subset of SOLCCP(Q) such that G has minimum length. [3]

≤

 Even if contraction has been performed and the consistency between supply and

demand has been recovered, partial specifications still need to be solved. It could be in

such a situation that the supply does not explicitly imply the demand, although they are

 15

compatible. Hence, it is necessary to assess what should be hypothesized in the supply in

order to start the transaction with the demand. Therefore we need the other non-standard

inference service, concept abduction which will be discussed in the next section.

Concept Abduction

 Concept abduction extends concept subsumption in particular, by providing new

concept H when C is not subsumed by D.

Definition 3: Let L be a DL. C, D, be two concepts in L, and T be a set of axioms in L,

where both C and D are satisfiable in T. A Concept Abduction Problem (CAP), identified

by (L, C, D, T), is finding a concept H ! L such that T t C - H 5 D, and moreover

 C - H is satisfiable in T. We call H a hypothesis about C according to D and T. [3]

 The set of all solutions to a CAP P is denoted with SOLCAP(P) where P is a symbol

for a CAP. Note that in the definition it is limited to satisfiable C and D since C

unsatisfiable implies that the CAP has no solution at all, while D unsatisfiable leads to

counterintuitive results (JC would be a solution in that case).

 In CAP, there is no distinction between manifestations and hypotheses, which is very

common when using abduction for diagnosis.

2.3. Description Logic Systems

A DL system is a reasoner for knowledge base; a DL system which is expressive and

efficient is considered to be a good one although there are still some conditions that

should be taken into account like security, size (should be small and simple) and the user

friendliness. All DL systems provide subsumption and satisfiability as standard inference

services. Some known Description Logic Systems are:

• CLASSIC - A description logic from AT&T Laboratories implemented first in

Lisp and later in C and C++. It has aimed to balance expressive power and

 16

computational complexity and is one of the less expressive implemented systems. It is

the basis of a number of configuration and data mining applications, notably PROSE

from AT&T and Lucent and the Management Discovery Tool from NCR.

• DLP

• FaCT

• FLEX - A description logic from the Technical University of Berlin. It is the basis

of a very large natural language application.

• KRIS - An expressive description logic originally from DFKI (the German

Institute for Artificial Intelligence).

• Loom - A highly expressive description logic-based system from University of

California - Information Sciences Institute. It is the basis of many applications funded

by ARPA.

• RacerPro - Renamed ABox and Concept Expression Reasoner.

 DLP, FaCT and RacerPro belong to the new optimized generation of very

expressive but sound and complete DL systems. RacerPro is used as a reasoner for

this Thesis’ research.

2.3.1. More about RacerPro

Some key features of the RacerPro are:

• compiling the source code for various operating systems

• versions for large-scale applications (i.e., on 64bit computer systems)

• developing specific versions tailored to various ways description logic

systems are used in applications (e.g., for processing OWL documents and

processing specific patterns of queries).

• integration of RacerPro into the user's computational environment

• importing data from relational databases

 17

Chapter 3

A Description Logic Approach for
Image Retrieval Systems

 This Thesis, like the title says, will try to evaluate the non-standard reasoning services

in DLs, concept contraction and concept abduction, using the algorithm given by Cali

et.al. (2004) which can be found in their paper [4]. The algorithm for matching user

profiles in [4] is tailored for dating services but it can be modified to meet this Thesis’

needs.

 This chapter discusses the image retrieval and image annotation and the algorithm

given in [4], how to modify and implement it in an image retrieval system.

3.1. Overview

 As the old adage goes, a picture says more than a thousand words, so with that in

human life, from the prehistoric time where humans made paintings on cave walls up to

now, where millions of pictures are produced every single day.

 It was impossible to transport cave-wall paintings so it can be seen by others. But

since humans have made writings and paintings on transportable materials like woods,

 18

stones, canvas and papers, it is made possible to move it from one place to another and

even to reproduce it.

 Another human invention which had a great impact on humankind is the computer.

Together with the evolving of photography, they have a great product named digital

camera. Since then, reproducing an image can be done within a second.

 The born of World Wide Web had made the world “wider”, it does not have

boundaries anymore. The World Wide Web is a world without borders. There is no easier

way to distribute photographs, pictures, images (or whatever you named it) other than

through World Wide Web. But that’s not the only way where people search for images,

exchange pictures or buy and sell them.

 One may ask, why do people search for images? The answers for it may be as

followings:

• To make a clear perception of something, examples for this are images using

for illustration on magazines / newspapers, images of two species of orchids

which are totally difference but have a same appearance.

• To collect certain images, a dog lover who collects dog pictures is a good

example for it.

• To satisfy one’s curiousness, for example, someone just wants to know how

the new wife of Prince Charles looks like.

 Those are just a few reasons from many others, but in general, there are three main

entities what people normally search for:

• Object

• Event (happening)

• Location

The next questions would be these HOWs:

• How to retrieve the right images?

• How to deliver an appropriate number of results?

 19

• How to satisfy the user?

• How not to make the user frustrating?

• Altogether, it’s just one question remaining: how to design a good image

retrieval system.

 Before we go further to discuss about image retrieval, let’s take a look at how can one

query images. According to Eakins and Graham [5], there are three characteristics of

image queries:

• Level 1 comprises retrieval by primitive features such as color, texture, shape or

the spatial location of image elements. Examples of such queries might be like

“find images with bluish background”, “find images containing red brown

corners” or a most general one like “find more images like this”. This level of

image retrieval is often called content-based image retrieval.

• Level 2 comprises retrieval by derived (sometimes known as logical) features,

involving some degree of logical inference about the identity of the objects

depicted in the image. It can usefully be divided further into retrieval of objects of

a given type (e.g. “find sunset images”) and retrieval of individual objects or

persons (“find images of Liberty Statue”).

• Level 3 comprises retrieval by abstract attributes, involving a significant amount

of high-level reasoning about the meaning and purpose of the objects or scenes

depicted. This kind of retrieval can be named events or types of activity (e.g.

“find images of a wedding ceremony”) or emotional significance (“find images

depicting happiness”).

 There is a significant gap between level 1 and level 2. Some authors like Gudivada

and Raghavan [10] refers to level 2 and 3 together as semantic image retrieval, and thus

the gap between levels 1 and 2 as semantic gap [5].

 Inoue in his paper [23] has defined two types of image retrieval as Query-by-Text

(QbT) and Query-by-Example (QbE). The QbT is a cross-medium retrieval since queries

 20

are texts and targets are images, as opposed to QbE, a mono-medium retrieval where

queries and targets are images.

3.2. Image Retrieval Systems:
Current Methods and Techniques

3.2.1. Low-Level Retrieval

 Regarding to the three characteristics of image queries by Eakins and Graham [5] (in

section 3.1.), the first level of image query is the primitive level which comprises

retrieval by primitive features such as color, shape and texture. This kind of image

retrieval is called content-based image retrieval (usually abbreviated as CBIR), also

known as query by image content (QBIC) and content-based visual information retrieval

(CBVIR).

 There is no or only a little human intervention needed in the annotation process of

this kind of image retrieval. In CBIR, an image is represented by its signature, which is

composed of features derived from its physical contents (i.e. pixel values) [11]. Users of

these systems “naively expect to search for a specific object or person”, but in reality can

only search for images with a similar distribution of image properties [12]. Some known

CBIR are:

• CIRES (http://amazon.ece.utexas.edu/~qasim/research.htm)

• SIMPLIcity and ALIP (http://wang.ist.psu.edu/IMAGE/)

• GIFT, The GNU Image Finding Tool (http://www.gnu.org/software/gift/)

• SIMBA (http://simba.informatik.uni-freiburg.de/)

• imgSeek (http://www.imgseek.net/)

• Cortina (http://cortina.ece.ucsb.edu/)

• Octagon (http://users.utu.fi/jukvii/octagon)

 The CBIR method will not be discussed more in great detail since this Thesis’

research will be focused on semantic level of image queries.

 21

 The next level of image queries is the semantic level, which comprises retrieval by

logical features and abstract attributes.

3.2.2. High(er)-Level Retrieval

 As an opposed to CBIR, Inoue refers the high-level retrieval as Annotation-Based

Image Retrieval or ABIR [23]. Currently more researches have been conducted in CBIR

than ABIR. Researchers working on CBIR claim that ABIR has limitations [23]. Brahmi

and Ziou have mentioned some of these limitations [24]: manual image annotation is time

consuming, thus it is costly and annotation made by human is very subjective. Other

authors like Sclaroff et.al. mentioned that some images are difficult to annotate since

their content cannot be described with words [12]. Examples for the last could be a

radiology image or a satellite picture.

 In spite of the fact that CBIR is a more popular topic among the researchers, the

CBIR community is becoming aware of this: “It is becoming clear in the image retrieval

community that content-based Image Retrieval is not a replacement of, but rather a

complementary component to, the text-based Image Retrieval. Only the integration of the

two can result in satisfactory retrieval performance” [29]. This awareness has stimulated

research into the addition of other text-based techniques to image retrieval system [11].

Jörgensen has done a summary of several methods and techniques used in high(er)-level

image retrieval [11], some of them are:

• Methods for exploiting linguistic context in image interpretation, supplementing

feature-based approach. The associated text is used as a set of constraints to

identify the (physical) content of an image. The author of PICTION*) used the

information obtained from the associated caption to identify human faces in

newspaper photographs.

• Using a technique called Latent Semantic Analysis (LSA), LSA works by using

statistical techniques to associate words to the “semantic” concept of a given

documents and it assumes that there is an underlying or “latent” structure in the

patterns of words usage across “documents” (text, paragraphs or sentences).

 22

• Semiautomatic methods have been experimented by the authors of WebSEEk*)

system. The system uses text derived from image addresses and HTML tags

3.3. Important Issues in Image Retrieval

3.3.1. Information Retrieval: Precision and Recall

 In information retrieval, there are two basic measures in evaluating search

effectiveness called precision and recall. Precision is the proportion of relevant

documents retrieved to the total numbers of retrieved documents and recall is the

proportion of the relevant documents retrieved to the number of all relevant documents.

 Relevant Not Relevant

Retrieved A C

Not Retrieved B D

Figure 3.1. Precision and Recall

A = relevant documents - retrieved

B = relevant documents – not retrieved

C = irrelevant documents – retrieved

D = irrelevant documents – not retrieved

A + B = all relevant documents in the database

A + C = all retrieved documents

APrecision = x 100%
A+B

 ARecall = x 100%
A+C

 23

 There will be perfection if precision and recall are both 100%, it means all retrieved

documents are relevant documents, but it is very hard (if not impossible) to achieve. In

reality, we can only achieve a good balance between precision and recall. Figure 3.2.

shows two venn diagrams, one depicts perfection (precision = recall = 100%), while the

other depicts bad precision.

Figure 3.2. Perfection in information retrieval is depicted in the left diagram while bad

precision is depicted in the right diagram.

3.3.2. User’s Perspective: Satisfaction and Frustration

Two main processes in an image retrieval system are image annotation and image

retrieval. In a traditional image retrieval systems which are metadata-based, the first

stands for the process of creating the metadata in order to describe the images while the

later stands for the process of finding images through the metadata. Nevertheless, image

annotation is a key of success of such systems where the success is defined by its user

satisfaction.

 Poorly annotated images give the user small number of results, thus it can cause user

dissatisfaction. But excessively annotated images, its popular term “keywords

spamming”, do not guarantee that the user will then be satisfied with a large amount of

results he gets. Figure 3.x depicts the correlation between number of results and user

satisfaction.

 24

Figure 3.3. The correlation between number of results and user satisfaction

with the annotation.

 On the other hand, excessively annotated images give the user a large number of

results though, but it causes high user frustration since the user gets what he doesn’t want.

As we can see in figure 3.x., it shows the correlation between number of results and the

level of user frustration.

Figure 3.4. The correlation between number of results and user frustration

with the annotation.

 25

 If we merge both diagrams of figure 3.x. and figure 3.x., we have a complete

illustration of how a good image retrieval system should be. Figure 3.x. shows us the

complete illustration.

Figure 3.5. A merge of Figure 3.3. and Figure 3.4.

 From the above diagram we have the so called “acceptable results” as shown by the

yellow line and “optimal results” as shown by the blue line. The yellow line shows a

range of results where user satisfaction is equal or greater than user frustration and the

blue line shows a smaller range of results where the level of user frustration is equal or

almost zero. The diagram also indicates that the highest level of user satisfaction is in the

range of blue line.

 Poor Annotation Good Annotation Excessive Annotation

Numbers of results Low Low – Medium High

User satisfaction Low Medium – High Medium – Low

 26

User frustration Medium – Low Low Medium - High

 Although good annotation does not provide user with large number of results, it

delivers user with high accuracy and hence it satisfies the user.

 Now let’s take a look at some examples of image annotation below:

 Poor Annotation Good Annotation Excessive

Annotation

dogs dalmatian dogs dogs,
dalmatian dogs, pet,
cute dogs, domestic
dogs, standing dogs

man,
fish

fishermen,
small boat,
fishing,
lake

man, fishermen,
fish, big fish,
fishing,
fishing boat, lake,
lake tahoe

man, cat, train policeman, cat,
running train

policeman, postman,
clerk, officer, train,
cat, wild cat, brown
cat, brown wild cat

Figure 3.6. Some examples of poor, good and excessive annotation.

 A good image retrieval system must have a good annotation which really describes

what an image is or consists of and a reliable back-end which can retrieve images based

on the retrievers’ (users’) needs with the possibility to rank the result based on .

3.4. Contraction and Abduction Algorithm for Matchmaking
in an Image Retrieval System

 27

3.4.1. The Matchmaking Algorithm

 Cali et.al. [4] have designed an algorithm based on description logic for

matching user profiles. The algorithm is using the non-standard reasoning

services, concept contraction and concept abduction explained in section 2.2.4.2.

The user profiles are tailored for dating service, though with small modifications

the same framework can be used for different applications, for example finding

job and in classified ads. The term for this problem domain is known as

matchmaking. In this case, the algorithm will be modified for matching image

profiles in image retrieval system.

 The original algorithm can be found in Appendix A, below is the modified

one used in this Thesis’ research.

-- Begin Algorithm --

Algorithm CalculatePenalty

 Input demand profile Pd, supply profile Ps, concept Hierarchy H

 Output real value penalty H 0

 penalty := 0;

 // Contraction

 foreach Ad ! Names(Pd) do

 if there exists As ! Names(Ps)

 such that H t Ad 5 JAs

 then remove Ad from Pd

 penalty := penalty + �c (Ad)

 foreach pd(f) ! Features(Pd+) do

 if there exists ps(f) ! Features(Ps)

 such that $x. pd(x) / ps(x) is unsatisfiable in the domain associated to f

 then remove pd(f) from Pd

 penalty := penalty + �cf (pd(f), ps(f))

 28

 foreach $has-segment.(Cd - Hxd (level)) ! Segments(Pd) do

 foreach "has-segment.(JCs . Gxs (level)) ! NoSegments(Ps) do

 if H t Cd 5 Cs and xd H xs

 then replace $has-segment.(Cd - Hxd (level)) in Pd

 with $has-segment.(Cd - Hxs (level))

 penalty := penalty + �cl (xd, xs)

 foreach "has-segment.(JCd . Gxd (level)) ! NoSegments(Pd) do

 foreach $has-segment.(Cs – Hxs (level)) ! Segments(Ps) do

 if H t Cs 5 Cd and xd G xs

 then replace "has-segment.(JCd . Gxd (level)) in Pd

 with "has-segment.(JCd . Gxs (level))

 penalty := penalty + �cl (xs, xd)

 // Abduction

 foreach Ad ! Names(Pd) do

 if there does not exist As ! Names(Ps) such that H t As 5 Ad

 then add Ad to Ps

 penalty := penalty + �a (Ad)

 foreach pd(f) ! Features(Pd) do

 if there exists ps(f) ! Features(Ps) . pd(x) / ps(x)

 then if "x.ps(x) & pd(x) is false in the domain associated to f

 then add pd(f) to Ps

 penalty := penalty + �af (pd(f), ps(f))

 else add pd(f) to Ps

 penalty := penalty + �af (pd(f), <(f))

 foreach $has-segment.(Cd - Hxd (level)) ! Segments(Pd) do

 if there does not exist $has-segment.(Cs - Hxs (level)) ! Segments(Ps)

 such that H t Cs 5 Cd and xs H xd

 29

 then if there exists $has-segment.(Cs - Hxs (level)) ! Segments(Ps)

 such that H t Cs 5 Cd

 then let $has-segment.(Cs - Hxs (level)) be the concept in Segments(Ps)

 with maximum xs among those for which H t Cs 5 Cd holds

 penalty := penalty + �al (xd, xs)

 else penalty := penalty + �a ($has-segment.(Cd - Hxd (level)))

 add $has-segment.(Cd - Hxd (level)) to Ps

 foreach "has-segment.(JCd . Gxd (level)) ! NoSegments(Pd) do

 if there does not exist "has-segment.(JCs . Gxs (level)) ! NoSegments(Pd)

 such that H t Cd 5 Cs and xd H xs

 then if there exists "has-segment.(JCs . Gxs (level)) ! NoSegments(Pd)

 such that H t Cd 5 Cs

 then let "has-segment.(JCs . Gxs (level)) be the concept in Segments(Ps)

 with minimum xs among those for which H t Cd 5 Cs holds

 penalty := penalty + �al (xs, xd)

 else penalty := penalty + �a ("has-segment.(JCd . Gxd (level)))

 add "has-segment.(JCd . Gxd (level)) to Ps

 return penalty

-- End Algorithm --

3.4.2. Representing Image Profiles to Fit the Algorithm

 The conjunction of an image profile P is composed of [4]:

• A conjunction of atomic concepts to represent atomic properties, denoted as

Names(P).

For examples: film-image, digital-image, bw-image.

• A conjunction of concepts which have form p(f) represent physical

characteristics. The predicate p can be one of =l (.), ≥ l (.), and ≤ l (.), l is the

 30

value of the concrete domain associated to f.

For examples: ISO value and image resolution, for brevity, only one feature

will be used that is ISO value.

• A conjunction of concepts which have form ER.(Cn (level)), where R is a role,

in this case, the role has-segment, C is a conjunction of a concept names and

0

x≥

x≤ ≤ 1. A concept in this form represents a category in a concept C with level at

least x, and the set of such concepts is denoted with Segments(P).

For example: $has-segment.(DOG - H0.75 (level))

• A conjunction of concepts which have form "R.(JC . x≤ (level)), where R is a

role, in this case, the role has-segment, C is a conjunction of a concept names

and 0 x≤ ≤ 1. A concept in this form represents a category in a concept C with

level at least x, and the set of such concepts is denoted with NoSegments(P)

For example: "has-segment.(JCAT - G0.30 (level))

3.4.3. Contraction Part

 In contraction phase, if Pd - Ps is not satisfiable in Hierarchy H, then it removes or

weakens conjuncts from Pd so as to make Pd - Ps satisfiable in H and adds a penalty. In

other words, if the supplier has something that the demander does not like, the demander

gives up or weakens his request in order to make the profile match.

3.4.4. Abduction Part

 In the abduction phase, when the demander wants something that the supplier

does not provide explicitly, it assumes that the supplier may or may not satisfy the

demander’s request, it then adds or strengthens conjuncts in Ps to make H FPs Pd.

3.4.5. Penalty Functions

The penalty functions given in [4]:

 31

In the contraction phase, the penalty function for the predicate restriction

pd (f) and ps (f) is:

| | ((), ()) =
 Gc f d s

d s

Gp f p f
I I∪ ∪

�
| |

 where Id and are Is are the intervals associated to pd and ps respectively, and

G is the gap between them.

 For instance, a supply Ps with range predicate (ps(f)) ((iso)

which does not match the demand P

400 800)≥ ≤v

d for images with range predicate (pd(f))

(iso) is shown in the diagram below: (100 200)≥ ≤v

 Id G Is

 iso 100 200 400 800

 Id = 100; G = 200; Is = 400

 Then we have
100 1 ((100 200), (400 800)) =

100+400+200 7c f ≥ ≤ ≥ ≤ =v v�

 Note that if both pd(f) and ps(f) are equality predicates instead of range

predicates as in the above example, then we get a highest penalty, since Id

and Is equal 0 (means no interval), therefore:

| |((), ()) =
Gc f d s
Gp f p f 1=

| |
�

Also note that there is no gap G in the abduction phase and since

"x .ps (x) & pd (x) is false in the domain associated to f, we have | Is | > 0. The

penalty function for the predicate restriction pd (f) and ps (f) in the abduction

phase is as follows:

 32

| \ ((), ()) = |s d

a f d s
s

I Ip f p f
I

�
| |

 For instance, a supply (ps(f)) (iso) which does not

explicitly satisfy the demand (p

(400 1000)≥ ≤v

d(f)) ((iso) is shown in the

diagram below:

200 640)≥ ≤v

 Is \ Id
 Id
 Is

 iso 200 400 640 1000

 Is = 600; Is \ Id = 360

 The penalty is calculated as follows:

 a
360 3 ((200 640), (400 1000)) =
600 5f ≥ ≤ ≥ ≤ =v v�

 Given , [0,1], (,) and (,)
1
d s

d s cl d s d s al d s
s

x xx x x x x x x x
x
−

∈ = − =
−

� �

1For n

d iC A==n i

a i

1

(hasCategory.((level))) = . ()
n

a d d d
i

C x x A
=

∃ ≥ ∑� � n

1

1(hasCategory.((level))) =
1
()

d
a d d n

i a i

xC x

A=

−
∀ ¬ ≤

∑
�

�

 n

 The penalty functions for atomic concepts Ad, �c(Ad) and �a (Ad) depend merely from

domain knowledge [4].

 There are some codes in section 5.2.3. which calculate �c(Ad) and �a (Ad) in general

(using the path of Ad) using logarithm.

 33

 34

Chapter 4

ContAb Image Retrieval System:
Analysis and Design

4.1. Knowledge Domain and Problem Analysis

 Starting from this chapter, the term “image” or “images” will be narrowed and refer

to photograph images which are produced by photo camera either digital or film. Also the

term “film camera” is used rather than “analog camera” as an opposed to digital camera

since the term “analog” in this case will be misleading.

 If we talk about images (once again, photograph images), what comes in mind? One

has been mentioned in the first paragraph of this chapter, the camera. Next question

would be: where to save images? Before digital technology affects our life, the answer

for this might be only film. But now there is digital film or more precisely digital image

sensor. Both film and digital image sensor (like CCD, CMOS, etc) are the most common

recording media for images. And the most important is: what does an image have in it?

Of course it has colors, and it has a meaning. “A meaning” of an image here means what

can one say about an image. One may say: “It is an image of a dog” while the other says

“It is an image of a sitting dog on the beach”. There would be different interpretations of

 35

an image from two persons. But they agreed that there is a dog on the image. The dog on

the image is a logical segment which needs human interpretation to describe it. Now we

have four related entities of an image, camera, recording media, color and segment.

 The picture below shows all entities and their relationship of the ContAb Image

Retrieval System. The name “ContAb” has been chosen since it uses concept Contraction

and concept Abduction for its “engine”.

Figure 4.1. The main entities in ContAb Image Retrieval System.

 The above picture shows the IMAGE entity and its relationship to other entities

and also the relationship between CAMERA and RECORDING-MEDIA as well as

relationship between RECORDING-MEDIA and COLOR.

 36

 As discussed earlier, CAMERA can be DIGITAL-CAMERA or FILM-CAMERA with

the related RECORDING-MEDIA which can be DIGITAL-IMAGE-SENSOR or FILM.

The color of an image is normally spread into two categories, black and white

and color image. But if it comes to the general term of color in photography,

black and white image refers to image with GRAYSCALE-COLOR and color image

refers to image with all possible COLOR including GRAYSCALE-COLOR and NON-

GRAYSCALE-COLOR.

 The categorization of SEGMENT is a significant process in designing the

system, since this is where the ontological categorization should be applied.

Depends on the image collections, SEGMENT can be very specific, moderate or

very general. For instance, image collections from a historical museum have a

very specific SEGMENT, and image collections from stock photography (like Getty

Image or Corbis) have a general SEGMENT. ContAb image retrieval system is

designed more likely for the last one.

4.2. Knowledge Base Design

Figure 4.2. All main entities as upper levels in the taxonomy.

 According to [7], the word ontology comes from the Greek ων = being and

 37

λόγος = word/speech. In philosophy, it is the study of being or existence as well as

the basic categories thereof--trying to find out what entities and what types of

entities exist. Ontology has strong implications for the conceptions of reality. In

computer science, an ontology is the attempt to formulate an exhaustive and

rigorous conceptual schema within a given domain, a typically hierarchical data

structure containing all the relevant entities and their relationships and rules

(theorems, regulations) within that domain.

 The categorization of images in this Thesis has three general entities below the

most general entity (root/top) which are OBJECT, EVENT and LOCATION. Each

entity is divided to the more specific entities until it reaches its most specific

entities. For example, the OBJECT entity has LIVING-THING and NONLIVING-THING

as successors, the NONLIVING-THING has HUMAN, ANIMAL and PLANT as successors,

and so on. For brevity, only OBJECT entity will be used for examples thtoughout

this paper.

 38

 39

Figure 4.3. The ontology of ContAb Image Retrieval System.

4.3. System Design

 As mentioned earlier, the implementation will be using Java as the

programming language and RacerPro as the description logic reasoner. Derb

 40

database will also be used to save the annotated data before they are loaded in

the ABox.

4.3.1. Overall Architecture

 The main components architecture of ContAb Image Retrieval System is

illustrated below:

Figure 4.4. The Main Components Architecture of
ContAb Image Retrieval System

 41

 In the above figure, there are two main processes shown:

• Annotation process shown by the black arrowed lines and numbers prefixed with

“A” (A1 – A2).

• Retrieval process shown by the blue arrowed lines and numbers prefixed with “R”

(R1 - R10).

The annotation process is quiet simple:

A1: The annotator puts the image data through the user interface and then submits it.

A2: The user interface class (ImageAnnotatorGUI) passes the data to DerbyDB class to

be saved in the database. The DerbyDB class checks first whether the data exist, if

yes, the data will be updated, otherwise the data will be inserted.

The summary of retrieval process is as following:

R1: The demander interacts with the user interface, puts some details about images he

wants (and optional precision level) and then submits them.

R2: After the demander submitted the form, image demand profile is built.

R3: The ImageRetriever now handles the process.

R4: After demand profile is built, the ImageRetriever asks the ABox class to find

images with / without the corresponding positive / negative keywords by querying

the Racer System using JRacer as the interface.

R5: The query results are sent to the ImageRetriever.

R6: Image supply profiles are built by making an instance of ImageSupplyProfile class.

R7: Matching profiles are built by making an instance of MatchingProfile class. Each

pair of matching profile consists of the image demand, one matching image supply

and a corresponding penalty with initial value equal to zero.

R8: The ImageRetriever class will now perform the CalculatePenalty algorithm for

every pair of matching profile. The TBox class is responsible for sending the query

to the Racer System, starting from contraction phase for atomic concepts to the end

of the algorithm.

 42

R9: The answers from the Racer System are sent to the ImageRetriever class and the

penalty calculation will be performed if it’s necessary. After all matching profiles

are evaluated against the algorithm; the results will be ranked based on penalty

values and (optional) precision level defined by the demander.

R10: The ranked matching profiles are sent to the user interface to be shown to the

demander.

4.3.2. Graphical User Interface Design

 Graphical User Interface (GUI) is a critical part of a computer application.

Galitz has mentioned some benefits of a good GUI design as following [30]:

1. Lower training costs, because the screen data is displayed in a more

intuitive and self-explanatory manner.

2. Less user stress, because the interface helps rather than impedes users

3. Better user satisfaction

 This section explains how the represented image profile will be implemented

in Annotation-GUI and Retrieval-GUI.

 The Annotation-GUI will have two mode options, simple mode and detail

mode. The difference between them is, in simple mode all concept names can be

selected straight forward, where in detail mode the origin of an image will be

inferred from the camera used. This will be explained more clearly in

demonstration (section 5.3.1.).

 Furthermore, both Annotation- and Retrieval-GUI will follow these rules:

• The items will be placed in order from most simple and important to more

complex and less important (except for keywords and segment annotation,

since this needs a wider space than others).

• The use of drop down menu is only for item with more than 3 options.

• What is not needed will be made invisible.

 43

4.3.3. UML Class Diagram

Figure 4.5. The class diagram.

 44

Chapter 5

Implementation

5.1. Annotation Process

 Since Annotation is not the main point of this Thesis, this part is

implemented in an easy way, that is, all tasks are put in the ImageAnnotatorGUI

class except the tasks for storing data in the database.

5.1.1. Annotation-GUI

 The ImageAnnotationGUI class extends JFrame in javax.swing package.

public class ImageAnnotatorGUI extends javax.swing.JFrame {
 private JDesktopPane jDesktopPane1;
 private JLabel imageLabel;
 private JComboBox imageComboBox;
 private JLabel showImageLabel;
 private JLabel keyLabel1;
 private JTextField keyTextField1;
 private JButton modeButton;
 private JButton addImageButton;
 private JButton resetButton;
 private JSpinner isoLowSpinner;
 private JSpinner isoHiSpinner;
 …
 …

}

 45

Figure 5.1. ContAb Image Annotation Graphical User Interface.

 First of all, the annotator must select an image to annotate. Since all images

are found in one single directory, the image names will be read from that

directory using listNames() method:

public static String[] listNames (String directory) {
 File dir = new File(directory);
 FilenameFilter filter = new FilenameFilter() {
 public boolean accept(File dir, String name) {
 return name.endsWith(".jpg");
 }
 };
 String[] f = dir.list(filter);
 return f;
}

The listNames() method uses FilenameFilter to read files with .jpg extension

only since all images are stored in this format.

 46

 Since all individuals will be loaded to ABox in the beginning of retrieval

process and it assumes that the annotation process happens before the retrieval

process, the individuals will be taken from the database. Those individuals are of

camera and recording-media. The DerbyDB class does the job with the

methods getCameras() and getRecordingMedia().

 It assumes that the knowledge base is already loaded to TBox at the very

beginning, so the system can query the TBox for image categories and segments.

To get all categories, the ImageAnnotatorGUI class calls the getConceptChildren

method in the TBox class with "IMAGE-BY-CATEGORY" as the argument since all

categories are concept children of "IMAGE-BY-CATEGORY" concept.

Tbox.getConceptChildren("IMAGE-BY-CATEGORY");

Below is the getConceptChildren method:

public static String[] getConceptChildren(String parent) {
 String que, res;
 que = "(concept-children " + parent + ")";
 res = r.getRacerOutput(que);
 String[] child = res.split(" ", 0);
 return child;
}

where “r” is an instance of the RacerServer class. Some important parts of

RacerServer class can be found in Appendix C.

 The segments are displayed as a tree, for example:
OBJECT > LIVING-THING > HUMAN.

The easiest way to get this is through iteration from the most general concept to

most specific concepts. The method in TBox which is responsible for this is the

getConceptDescendantsTree method.

public static List getConceptDescendantsTree(String ancestor) {
 String[] tree;
 String branch;
 List t = new ArrayList();

 47

 String[] child = getConceptChildren(ancestor);

 for (int i = 0; i < child.length; i++) {
 if (!child[i].contains("BOTTOM")) {
 t.add(child[i]);

 String[] gChild = getConceptChildren(child[i]);
 for (int j = 0; j < gChild.length; j++) {
 if (!gChild[j].contains("BOTTOM")) {
 branch = child[i] + " > " + gChild[j];
 t.add(branch);

// there are total 7 iterations
// to the deepest path of the segment.

}

 The keywords fields and the corresponding level-bound, level-value and

segment fields are limited to seven rows.

5.1.2. Data Collection and Storing

 Once the annotator put all the data for an image and submitted them, the

system checks whether the image and its data exist in the database. If they exist,

the old data will be deleted first before inserting the new data, otherwise it just

does inserting the data. This way is chosen for the sake of simplicity.

 The insertImage() method which will be performed at the end of a single

annotation process is as following:

private void insertImage() {
 String img = getImageName();
 String col = getImageColor();
 String orig = getImageOrigin();
 String cam = getCameraModel();
 String med = getRecordingMedia();
 String[] iso = getISOValue();
 String isoLow = iso[0];
 String isoHi = iso[1];
 String cat = getSelectedCategory();

 String sql = "INSERT INTO APP.IMAGES VALUES " +
 ('"+img+"','"+cat+"','"+col+"','"+orig+"','"+
 cam+"','"+med+"','"+isoLow+"','"+isoHi+
 "','"+this.mode+"')";

 48

 if (DerbyDB.executeUpdate(conn, sql) > 0) {
 List v = getKeywordsProperties();

 for (ListIterator i = v.listIterator(); i.hasNext();) {
 String kp = i.next().toString();
 String[] prop = kp.split(":");

 double level = Double.parseDouble(prop[2]);

 String sql2 = "INSERT INTO APP.KEYWORDS " +
 "(IMAGE_NAME,KEYWORD,LEVEL_BOUND,LEVEL,SEGMENT) "+
 "VALUES ('" + img + "','"+prop[0]+"','"+prop[1]+
 "',"+level+",'"+prop[3]+"')";

 DerbyDB.executeUpdate(conn, sql2);
 }
 }
}

 As can be seen in the insertImage() method above, all the annotated data

will be gathered by these getter methods:

• getImageName(), it returns the image name only, the extension will be

omitted.

• getImageColor(), returns either bw-image or color-image.

• getImageOrigin(), returns either film-image or digital-image, this

method is for simple mode annotation only.

• getCameraModel(), returns the selected camera, in detail mode only.

• getRecordingMedia(), returns the selected recording media, detail mode

only.

• getISOValue(), returns ISO Value as string array in format { low-bound,

high-bound }

• getSelectedCategory(), returns the selected category, if a subcategory

selected, it returns only that subcategory.

private String getSelectedCategory() {
 String cat =
 catComboBox.getModel().getSelectedItem().toString();

 49

 if (!cat.equals("IMAGE-BY-CATEGORY")) {
 String subCat =
 subCatComboBox.getModel().getSelectedItem().toString();
 if (!subCat.equals("ANY-SUBCATEGORY")) cat = subCat;
 }
 return cat;
}

• getKeywordsProperties() collects all positive / negative keywords and

their corresponding level-bound, level-values and segments. It returns the

properties as a list. This method will first check whether a keyword has a

minimum length of 3 characters or not, if not, the keyword and its

properties will be ignored. The minimum length of a keyword can be

changed by giving the constant variable MIN_KEY_LENGTH another value.

private List getKeywordsProperties() {
 String key, bound, level, segment, prop;
 List keyProps = new ArrayList();

 if (keyTextField1.getText().length() >= MIN_KEY_LENGTH) {
 key = keyTextField1.getText();
 segment = getMostSpecificSegment(egmentComboBox1.
 getModel().getSelectedItem().toString());
 level = levelSpinner1.getModel().getValue().toString();
 bound = boundSpinner1.getModel().getValue().toString();
 prop = key + ":" + bound + ":" + level + ":" + segment;
 keyProps.add(prop);
 }
 if (keyTextField2.getText().length() >= MIN_KEY_LENGTH) {
 …
 }
 …
 // if (keyTextField3 … up to keyTextField7

 return keyProps;
}

5.2. Retrieval Process

5.2.1. Retrieval-GUI

 50

 Same as the implementation of the annotation-GUI, the retrieval GUI also

extends javax.swing.JFrame.

public class ImageRetrieverGUI extends javax.swing.JFrame {
 private JDesktopPane jDesktopPane1;
 private JLabel originLabel;
 private JRadioButton originRadioButton1;
 private JLabel colorLabel;
 …
}

5.2.2. Image Demand Profiling

 The image demand profile is built directly in the ImageRetrieverGUI class

as soon as the demander submits the image query.

private void findButtonActionPerformed(ActionEvent evt) {

 ImageDemandProfile d = buildDemandProfile();
 …
}

 But before the demand profile is built, the following condition must be met:

1. If a keyword belongs to two segments which have a subsumption relation

then the more general segment will be taken. For example, if the system

found the keyword “pretty woman” is an instance of segment FEMALE-

HUMAN and also WOMAN, then only the segment FEMALE-HUMAN will be taken.

This is done by the method findMostGeneralSegments() in the class

TBox.

private List findMostGeneralSegments(List s) {
 List discardSegments = new ArrayList();

 for (ListIterator li = s.listIterator(); li.hasNext();) {
 String seg = (String) li.next();
 String[] desc = Tbox.getConceptDescendants(seg);

 for (int i = 0; i < desc.length; i++) {
 discardSegments.add(desc[i]);
 }
 }
 s.removeAll(discardSegments);

 51

 return s;
}

2. If a segment query subsumes another one then the subsumee (the one

which is more specific) will be discarded. This may happen since the

system assumes that the demander has no knowledge about how the

system works. For example, consider the following scenario, a demander

is searching for:

 “white dog” H0.70 (level), and

 “pet” H0.80 (level)

 In ABox we have: “white dog” as an instance of concept DOG and “pet”

 as an instance of concept ANIMAL.

 In TBox there is an axiom: DOG implies ANIMAL (DOG 5 ANIMAL).

 So, (ANIMAL H0.80 (level)) subsumes (DOG H0.70 (level)).

 Thus, the query “white dog” H0.70 (level) will be discarded.

 The method hasSubsumptionRelation() and isSubsumedBy() in class

 TBox is used for querying the RacerPro in this case. It returns true if

 a conjunction of concept subsumes another one, otherwise false.

public static boolean hasSubsumptionRelation(String cn1, String
cn2) {

 boolean subsumption = false;

 if (isSubsumedBy(cn1,cn2) || isSubsumedBy(cn2, cn1))
 subsumption = true;

 return subsumption;
}

public static boolean isSubsumedBy(String cn1, String cn2) {
 boolean isSubsumed = false;
 String que, res;
 que = "(concept-subsumes? " + cn2 + " " + cn1 + ")";
 res = r.getRacerOutput(que);

 if (res.equals("T")) isSubsumed = true;

 return isSubsumed;

 52

}

 Below is the buildDemandProfile() method which builds the image demand

profile:

private ImageDemandProfile buildDemandProfile() {
 List posSegments = new ArrayList();
 List negSegments = new ArrayList();
 List keyProps = getKeywordsProperties();
 List posKeyList = new ArrayList();
 List negKeyList = new ArrayList();

 for (ListIterator k=keyProps.listIterator(); k.hasNext();) {
 String[] prop = (String[]) k.next();
 String key = prop[0];
 String bnd = prop[1];
 double lvl = Double.parseDouble(prop[2]);
 List seg = findMostGeneralSegments(findSegments(key));

 if (bnd.equals(">=")) posKeyList.add(key);
 else negKeyList.add(key);

 for (ListIterator i = seg.listIterator(); i.hasNext();) {
 String sg = (String) i.next();
 Segment s = new Segment(sg, bnd, lvl);

 if (bnd.equals(">=")) posSegments.add(s);
 else negSegments.add(s);
 }
 }

 List demandSegments =fixDemandSegments(posSegments,negSegments);

 List cNames = buildCNames();
 List features = buildFeatures();
 List segments = getSegments(demandSegments);
 List noSegments = getNoSegments(demandSegments);

 ImageDemandProfile d = new ImageDemandProfile(cNames, features,
 segments, noSegments);

 d.posKeyList = posKeyList;
 d.negKeyList = negKeyList;

 return d;
}

 53

5.2.3. Finding the Matching Supplies

 A decision on how to retrieve the image supplies have to be made before. It

depends on the amount of the collections and how dispersed they are. A

dispersed collection is for example a collection which has images from dog to

UFO (Unidentified Flying Object) and from beach to shoes. Thus, these

scenarios can be applied:

• For small and dispersed collections, it’s good to retrieve all available

images and evaluate them one by one, since finding the exact matches in

this case is considerably hard or the possible exact matches are too little.

• For big or moderate and concentrated collections, it is better to retrieve

only the exact matches and rank the result from the most promising one to

the less promising. An example of this kind of collections would be a

collection from an architecture image database with hundreds or

thousands of images.

• For other kind of image collections between first point and second point,

it depends on what goal the system designer wants to achieve. When

precision matters, the second approach should be taken into account,

otherwise the first approach.

 In the case of ContAb Image Retrieval System, the first approach will be

taken since there are less than one hundred images in its collection and they are

dispersed.

 The method getAllSupplies() in class ABox returns a list of all image supplies

as ImageSupplyProfile instances.

public static List getAllSupplies() {

 List supplies = new ArrayList();

 String[] sup = r.getRacerOutput("(concept-instances image)").split("
 ");

 54

 for (int i = 0; i < 10; i++) {
 String img = sup[i];
 List cn = findCNames(img);
 List f = DerbyDB.findFeatures(img);
 List s = DerbyDB.findSegments(img);
 List ns = DerbyDB.findNoSegments(img);

 ImageSupplyProfile is = new ImageSupplyProfile(img, cn, f, s, ns);
 supplies.add(is);
 }

 return supplies;
}

 For the sake of simplicity, Features, Segments and NoSegments are taken

from the database as can bee seen on the code snippets above.

5.2.4. Do Contraction

 The method doContraction() in class ImageRetriever evaluates the image

demand profile against every image supply profile in matching profile. Just like

the given algorithm, it starts from evaluating every CNames in demand profile

and ends with NoSegments.

private static void doContraction(MatchingProfile mp) {

 ImageDemandProfile d = mp.demandProfile;
 ImageSupplyProfile s = mp.supplyProfile;

 // CNames(Pd)
 for (ListIterator i1 = d.cNames.listIterator(); i1.hasNext();) {
 String dName = (String) i1.next();

 for (ListIterator i11 = s.cNames.listIterator(); i11.hasNext();) {
 String sName = (String) i11.next();
 if (TBox.isDisjoint(dName, sName)) {
 d.cNames.remove(dName);
 mp.penalty += addPenaltyPIc(dName);
 }
 }
 }

 // Features(Pd)
 for (ListIterator i2 = d.features.listIterator(); i2.hasNext();) {
 Feature dFeature = (Feature) i2.next();
 String featName = dFeature.name;
 double dFeatMin = dFeature.minValue;
 double dFeatMax = dFeature.maxValue;

 55

 for (ListIterator i21 = s.features.listIterator(); i21.hasNext();) {
 Feature sFeature = (Feature) i21.next();
 double sFeatMin = sFeature.minValue;
 double sFeatMax = sFeature.maxValue;

 if (sFeature.name.equalsIgnoreCase(featName)) {
 String pdF = "(and (>= " + featName + " " + dFeatMin + ") (<= " +
 featName + " " + dFeatMax + "))";
 String psF = "(and (>= " + featName + " " + sFeatMin + ") (<= " +
 featName + " " + sFeatMax + "))";
 if (!TBox.isSatisfiable(pdF, psF)) {
 d.features.remove(dFeature);
 mp.penalty += addPenaltyPIcf(dFeature, sFeature);
 }
 }
 }
 }

 // Segments(Pd)
 for (ListIterator i3 = d.segments.listIterator(); i3.hasNext();) {
 Segment dSeg = (Segment) i3.next();
 …
 …
 }

 // NoSegments(Pd)
 for (ListIterator i4 = d.noSegments.listIterator(); i4.hasNext();) {
 NoSegment dNoSeg = (NoSegment) i4.next();
 …
 …
 }
}

 The code snippet below:
 for (ListIterator i1 = d.cNames.listIterator(); i1.hasNext();) {
 String dName = (String) i1.next();

 for (ListIterator i11 = s.cNames.listIterator(); i11.hasNext();) {
 String sName = (String) i11.next();
 if (TBox.isDisjoint(dName, sName)) {
 d.cNames.remove(dName);
 mp.penalty += addPenaltyPIc(dName);
 }
 }
 }

is the implementation this algorithm part:

 foreach Ad ! Names(Pd) do

 if there exists As ! Names(Ps)

 such that H t Ad 5 JAs

 56

 then remove Ad from Pd

 penalty := penalty + �c (Ad)

And these codes:
 for (ListIterator i2 = d.features.listIterator(); i2.hasNext();) {
 Feature dFeature = (Feature) i2.next();
 String featName = dFeature.name;
 double dFeatMin = dFeature.minValue;
 double dFeatMax = dFeature.maxValue;

 for (ListIterator i21 = s.features.listIterator(); i21.hasNext();) {
 Feature sFeature = (Feature) i21.next();
 double sFeatMin = sFeature.minValue;
 double sFeatMax = sFeature.maxValue;

 if (sFeature.name.equalsIgnoreCase(featName)) {
 String pdF = "(and (>= " + featName + " " + dFeatMin + ") (<= " +
 featName + " " + dFeatMax + "))";
 String psF = "(and (>= " + featName + " " + sFeatMin + ") (<= " +
 featName + " " + sFeatMax + "))";
 if (!TBox.isSatisfiable(pdF, psF)) {
 d.features.remove(dFeature);
 mp.penalty += addPenaltyPIcf(dFeature, sFeature);
 }
 }
 }
 }

are the implementation of the following algorithm part:

 foreach pd(f) ! Features(Pd) do

 if there exists ps(f) ! Features(Ps)

 such that $x. pd(x) / ps(x) is unsatisfiable in the domain associated to f

 then remove pd(f) from Pd

 penalty := penalty + �cf (pd(f), ps(f))

5.2.5. Do Abduction

 The method doAbduction() also implements the abduction algorithm in the

same order as in the algorithm, first it evaluates the concept names:

 57

private static void doAbduction(MatchingProfile mp) {

 ImageDemandProfile d = mp.demandProfile;
 ImageSupplyProfile s = mp.supplyProfile;

 // CNames(Pd)
 for (ListIterator i1 = d.cNames.listIterator();i1.hasNext();) {
 String dName = (String) i1.next();
 boolean abducted = true;

 for (ListIterator i11 = s.cNames.listIterator();
 i11.hasNext();){
 String sName = (String) i11.next();
 if (TBox.isSubsumedBy(sName, dName)) abducted = false;
 }
 if (abducted) {
 s.cNames.add(dName);
 mp.penalty += addPenaltyPIa(dName);
 }
 }

 …
 …

The codes above are the implementation of this algorithm part:

 foreach Ad ! Names(Pd) do

 if there does not exist As ! Names(Ps) such that H t As 5 Ad

 then add Ad to Ps

 penalty := penalty + �a (Ad)

Evaluation of Features in abduction phase:

for (ListIterator i2 = d.features.listIterator(); i2.hasNext();) {
 Feature dFeature = (Feature) i2.next();
 String featName = dFeature.name;
 double dFeatMin = dFeature.minValue;
 double dFeatMax = dFeature.maxValue;
 boolean featureExists = false;

´ for (ListIterator i21 = s.features.listIterator();
 i21.hasNext();){
 Feature sFeature = (Feature) i21.next();
 double sFeatMin = sFeature.minValue;
 double sFeatMax = sFeature.maxValue;

 58

 if (sFeature.name.equalsIgnoreCase(featName)) {
 featureExists = true;
 String pdF = "(and (>= "+ featName +" " +dFeatMin+") (<= "+
 featName + " " + dFeatMax + "))";
 String psF = "(and (>= "+featName+ " " +sFeatMin+ ") (<= " +
 featName + " " + sFeatMax + "))";
 if (!TBox.isSubsumedBy(psF, pdF)) {
 s.features.remove(sFeature);
 s.features.add(dFeature);
 mp.penalty += addPenaltyPIaf(dFeature, sFeature);
 }
 }
 }
 if (!featureExists) mp.penalty += addPenaltyPIaf(dFeature, "T");
}

From the algorithm part:

 foreach pd(f) ! Features(Pd) do

 if there exists ps(f) ! Features(Ps) . pd(x) / ps(x)

 then if "x.ps(x) & pd(x) is false in the domain associated to f

 then add pd(f) to Ps

 penalty := penalty + �af (pd(f), ps(f))

 else add pd(f) to Ps

 penalty := penalty + �af (pd(f), <(f))

5.2.6. Penalty Calculations and Ranking

 Only three implementations of penalty functions will be explained here, �c

(Ad), �a (Ad) and �cf (pd(f), ps(f)) since

• �cl (xd, xs) and �al (xd, xs) are clear, and

• �a ($has-segment.(Cd - Hxd (level))) and

 �a ("has-segment.(JCd . Gxd (level))) are based on �a (Ad),

The implementation of penalty function �c (Ad) is as following:

private static double addPenaltyPIc(String dName, String sName) {

 59

 double nPath = (double) TBox.getDeepestPathInTaxonomy(dName);
 double posAd = (double) TBox.getPositionInHierarchy(dName);
 double posDis = (double) TBox.getDisjointPositionInHierarchy(dName,
 sName);
 double logAd = logBaseOf(nPath, posAd);
 double logDis = logBaseOf(nPath, posDis);

 double pen = logAd - (logAd*logDis) + Math.pow(logDis, 2);
 return pen;
}

There are three methods from TBox class involved:

• getDeepestPathInTaxonomy() gets the deepest path in SEGMENT or IMAGE

taxonomy. It returns a value of type double which is used as the base for

logarithm in the penalty calculation.

• getPositionInHierarchy() gets the position / path of a concept in SEGMENT or

IMAGE taxonomy.

• getDisjointPositionInHierarchy() gets the position of the disjoint axioms in

the hierarchy.

The implementation of penalty function �a (Ad) is as following:

private static double addPenaltyPIa(String dName, String sName) {
 double nPath = (double) TBox.getDeepestPathInTaxonomy(dName);
 double posAd = (double) TBox.getPositionInHierarchy(dName);
 double posAs = (double) TBox.getPositionInHierarchy(sName);

 double logAd = logBaseOf(nPath, posAd);
 double logAs = logBaseOf(nPath, posAs);

 double pen = logAd - logAs;
 return pen;
}

The penalty function �a (Ad) above is simpler than its counterpart in contraction phase,

�c (Ad). It only calculates the difference between the two paths, Ad and As.

The logBaseOf(double b, double n) method does the calculation of logarithm base

on b of n.

 60

public static double logBaseOf(double base, double n) {
 return Math.log(n)/Math.log(base);
}

The implementation of penalty function

| | ((), ()) =

 Gc f d s
d s

Gp f p f
I I∪ ∪

�
| |

 is as following:

private static double addPenaltyPIcf(Feature pdf, Feature psf) {
 double pdfMin = pdf.minValue;
 double pdfMax = pdf.maxValue;
 double psfMin = psf.minValue;
 double psfMax = psf.maxValue;
 double dInterval = pdfMax - pdfMin;
 double sInterval = psfMax - psfMin;
 double gap = 0;

 if (pdfMax < psfMin) gap = psfMin - pdfMax;
 if (psfMax < pdfMin) gap = pdfMin - psfMax;

 double pen = gap / (dInterval + sInterval + gap);
 return pen;
}

where gap = G, dInterval = Id, and sInterval = Is.

 After all matching profiles are evaluated and penalty functions are calculated,

the method doRanking() will perform the sorting task. It compares the previous

penalty value of a matching profile with the next value; if the previous value is

greater then it swaps the position with the next value and so on. At the end, the

matching profiles are sorted from the smaller penalty value to the bigger. With

these results and the precision level given by the demander, it is easy to adjust

how many images the system should provide to the demander. Higher precision

level means lower number of results, lower precision level means higher number

of results.

5.3. Demonstrations

 61

5.3.1. Image Annotation

There are two annotation modes, simple and detail annotation. The picture below shows a

part of image annotation in simple mode.

Figure 5.2. Image annotation in simple mode.

 In simple mode, the annotation process is straight forward. There are only direct

(atomic) concepts for TBox:

1. IMAGE-BY-COLOR: BW-IMAGE or COLOR-IMAGE

2. IMAGE-BY-ORIGIN: FILM-IMAGE or DIGITAL-IMAGE

3. IMAGE-BY-CATEGORY: category or its subcategory

 It may seem that an overlapping occurs between categories / subcategories (subset of

IMAGE-BY-CATEGORY) and SEGMENT. In fact, they do have the same idea but play different

roles, SEGMENT must have all “entities” of images in the collections while IMAGE-BY-

CATEGORY must not. In other words, SEGMENT gives the user specificity and IMAGE-BY-

CATEGORY gives the user generality.

The ISO feature can be annotated in 5 ways:

1. Single value, for example:

 62

2. A range of values, for example:

3. A range of values without lower bound, for example:

In this case, a lowest possible value will be given automatically as a lower bound,

which is 25 (lowest ISO).

4. A range of values without upper bound, for example:

In this case, a highest possible value will be given automatically as a higher

bound, which is 3200 (highest ISO).

5. No values:

In this case, no values will be given and the system assumes this as missing

information.

 In detail mode, the annotator has the possibility to add some metadata like camera

model and film used.

Figure 5.3. Image annotation in detail mode.

 In detail annotation, the system will know the origin of the image through the

reasoning service (in this case RacerPro). Here is a brief explanation of how it works:

 63

In TBox:

DL notation: digital-image = image / "taken-with-camera.digital-camera

Racer syntax: (equivalent digital-image (and image (all taken-with-camera digital-

camera)))

In natural language: “All images taken with digital camera are digital images.”

In Abox:

Racer syntax: (instance any-digital-camera digital-camera)

Racer syntax: (related img001 camera-x has-been-taken-with-camera)

It means: “img001 has been taken with camera x which is a digital camera.”

Therefore the system knows that img001 is a DIGITAL-IMAGE.

 Next step in annotation process is keywording, choosing the right segment for the

keyword(s) and weighting the keyword for the selected segment. These are some

examples:

IMG021

Keywords Level Segment

fish sticks MIN 0.90 FOOD

white plate MAX 0.20 PLATE

IMG026

Keywords Level Segment

black cat MIN 0.65 CAT

gold fish MIN 0.65 FISH

Keywords Level Segment

agricultural

landscape

MIN 0.70 ON-EARTH-

NATURE-

OBJECT

 64

IMG033 sunflower field MIN 0.50 FLOWER

hanging clouds MIN 0.45 CLOUDS-AND-

SKY

Figure 5.4. Some examples of annotated images.

5.3.2. Image Retrieval

 This section provides a simple example of image retrieval process: a

demander looks for dog images.

Figure 5.5. ContAb Image Retrieval Graphical User Interface.

 65

 As can be seen in the Figure 5.5., the demander has a demand profile as following:

$has-segment.(DOG - H0.75 (level)) - film-image - (H100(iso) - G200 (iso)).

The results indicate that there are only 2 exact matching for query DOG. The third result is

shown as “most promising result”, since it still has an ANIMAL segment. It shows a good

performance of contraction and abduction algorithm, in particular when it is combined

with the precision option.

 66

Chapter 6
Conclusions & Future Work
 The practical evaluation of contraction and abduction algorithm has shown that

contraction gives a higher precision rate since conflicting information has to be given up

and abduction gives the demander more results by adding the missing information to the

domain knowledge.

 This system gives the user (demander) a transparent idea about how the results are

ranked. Also with this precision level, user satisfaction is self-adjustable but, like user

frustration, it depends on the image collections and the quality of the annotation. As long

as there is a human involved in the annotation process, it will always be subjective and it

can be only minimized.

 For future work, using thesaurus and a more expressive description language for the

system would be a great challenge since these offer a great improvement.

 67

References

 [1] F. Baader and W. Nutt. Basic Description Logic. In The Description Logic

Handbook, Chapter 2, Cambridge University Press, 2003.

 [2] D. Nardi, R. J. Brachman. “An Introduction to Description Logics”. In The

Description Logic Handbook, Cambridge University Press, 2003, pages 5-20.

 [3] S. Colucci, T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello. Concept

Abduction and Contraction in Description Logics. In Proc. of DL 2003. CEUR

Electronic Workshop Proceedings, http://ceur-ws.org/Vol-81/, 2003.

 [4] A. Cali, D. Calvanese, S. Colucci, T. Di Noia and F. M. Donini. “A Description

Logic Based Approach for Matching User Profiles”. In Proc. of the 2004 Int.

Workshop on Description Logics (DL 2004), 2004.

 [5] J. P. Eakins and M. E. Graham. “Content-based image retrieval: A report to the

JISC Technology Applications Programme”, January 1999.

http://www.unn.ac.uk/iidr/report.html

 [6] I. Horrocks and P. F. Patel-Schneider. “DL Systems Comparison”. http://www.ceur-

ws.org/Vol-11/

 [7] Wikipedia, http://en.wikipedia.org/

 [8] Description Logic Systems,

http://www.ida.liu.se/labs/iislab/people/patla/DL/systems.html

 [9] Racer System, http://www.racer-systems.com/

[10] V.N. Gudivada and V.V. Raghavan. “Content-Based Image Retrieval Systems”,

IEEE Computer Society (Vol.28 No.9) in Eakins and Graham [5], section 2.3.

[11] C. Jörgensen. “Image Retrieval, Theory and Research”. The Scarecrow Press, Inc,

2003, Chapter 1 – 4.

[12] S. Sclaroff, M. L. Cascia, S. Sethi and L. Taycher. “Unifying Textual and Visual

Cues for Content-Based Image Retrieval on the World Wide Web.” Computer

Vision and Image Understanding, 75(1-2):86-98, 1999.

 68

[13] C. Shirky. “Ontology is Overrated: Categories, Links, and Tags”,

http://www.shirky.com/writings/ontology_overrated.html

[14] R. Datta, J. Li, and J.Z. Wang. “Content-Based Image Retrieval - Approaches and

Trends in the New Age“, http://www-db.stanford.edu/~wangz/project/imsearch/

 review/ACM05/.

[15] H. Chuge. “Semantic-based Web Image Retrieval”,

http://www2003.org/cdrom/papers/poster/p172/p172-zhuge/p172-zhuge.htm

[16] K. Mahesh. “Text Retrieval Quality: A Primer”, Oracle Corporation,

http://www.oracle.com/technology/products/text/htdocs/imt_quality.htm?_template

=/ocom/ocom_item_templates/print

[17] H. Evans. “Practical Picture Research: A Guide to Current Practice, Procedure,

Techniques and Resources”, Blueprint, London, 1996.

[18] S.F. Chang, J.R. Smith, M. Beigi and A. Benitez. “Visual Information Retrieval

from Large Distributed Online Repositories.” Communications of the ACM 40,

no.12 (1997), in [11].

[19] E. Hyvönen, A.Styrman, S. Saarela. “Ontology-Based Image Retrieval.“

 http://www.cs.helsinki.fi/u/eahyvone/publications/yomuseum.pdf

[20] D.Fensel (ed.). “The Semantic Web and Its Languages.” IEEE Intelligence Systems,

Nov / Dec 2000, in [19].

[21] E. Hyvönen, K. Viljanen and A.Hätinen. “Yellow Pages on the Semantic

Web.“ Number 2002-03, in [19].

[22] C. Fellbaum, (ed.). “WordNet. An Electronic Lexical Database.” The MIT Press,

Cambridge, Massachusetts, 2001.

[23] M. Inoue. “On the Need for Annotation-Based Image Retrieval.”

http://research.nii.ac.jp/~m-inoue/paper/inoue04irix.pdf

[24] D. Brahmi and D. Ziou. “Improving CBIR Systems by Integrating Semantic

Features.” In Proc. RIAO, pages 291-305, Vaucluse, France, April 2004.

[25] Measuring Search Effectiveness.

http://www.hsl.creighton.edu/hsl/Searching/Recall-Precision.html

 69

[26] T. Peterson. Introduction to the Art and Architecture Thesaurus, 1994.

 http://shiva.pub.getty.edu.

[27] J. van den Berg. Subject Retrieval in Pictorial Information Systems. In Proceedings

of the 18th international congress of historical sciences, Montreal, Canada, pages

21-29, 1995. http://www.iconclass.nl/texts/hixtory05.html.

[28] WordNet. A Lexical Database for English Language, Princeton University,

 Princeton, New Jersey. http://wordnet.princeton.edu/

[29] Y. Rui, T. S. Huang and S. F. Chang. “Image Retrieval: Current Techniques,

Promising Directions, and Open Issues.” Journal of Visual Communication and

Image Representation 10 no.4 (1999): 39-62.

[30] W.O. Galitz. “The Essential Guide to User Interface Design: An Introduction to

GUI Design Principles and Techniques.” Second Edition. Wiley Computer

Publishing, 2002.

 70

Appendix A

Algorithm CalculatePenalty

 Input demand profile Pd, supply profile Ps, concept Hierarchy H

 Output real value penalty H 0

 penalty := 0;

 // Contraction

 foreach Ad ! Names(Pd) do

 if there exists As ! Names(Ps)

 such that H t Ad 5 JAs

 then remove Ad from Pd

 penalty := penalty + �c (Ad)

 foreach pd(f) ! Features(Pd) do

 if there exists ps(f) ! Features(Ps)

 such that $x. pd(x) / ps(x) is unsatisfiable in the domain associated to f

 then remove pd(f) from Pd

 penalty := penalty + �cf (pd(f), ps(f))

 foreach $hasInterest.(Cd - Hxd (level)) ! Interests(Pd) do

 foreach "hasInterest.(JCs . Gxs (level)) ! NoInterests(Ps) do

 if H t Cd 5 Cs and xd H xs

 then replace $hasInterest.(Cd - Hxd (level)) in Pd

 with $hasInterest.(Cd - Hxs (level))

 penalty := penalty + �cl (xd, xs)

 foreach "hasInterest.(JCd . Gxd (level)) ! NoInterests(Pd) do

 foreach $hasInterest.(Cs – Hxs (level)) ! Interests(Ps) do

 if H t Cs 5 Cd and xd G xs

 71

 then replace "hasInterest.(JCd . Gxd (level)) in Pd

 with "hasInterest.(JCd . Gxs (level))

 penalty := penalty + �cl (xs, xd)

 // Abduction

 foreach Ad ! Names(Pd) do

 if there does not exist As ! Names(Ps) such that H t As 5 Ad

 then add Ad to Ps

 penalty := penalty + �a (Ad)

 foreach pd(f) ! Features(Pd) do

 if there exists ps(f) ! Features(Ps) . pd(x) / ps(x)

 then if "x.ps(x) & pd(x) is false in the domain associated to f

 then add pd(f) to Ps

 penalty := penalty + �af (pd(f), ps(f))

 else add pd(f) to Ps

 penalty := penalty + �af (pd(f), <(f))

 foreach $hasInterest.(Cd - Hxd (level)) ! Interests(Pd) do

 if there does not exist $hasInterest.(Cs - Hxs (level)) ! Interests(Ps)

 such that H t Cs 5 Cd and xs H xd

 then if there exists $hasInterest.(Cs - Hxs (level)) ! Interests(Ps)

 such that H t Cs 5 Cd

 then let $hasInterest.(Cs - Hxs (level)) be the concept in Interests(Ps)

 with maximum xs among those for which H t Cs 5 Cd holds

 penalty := penalty + �al (xd, xs)

 else penalty := penalty + �a ($hasInterest.(Cd - Hxd (level)))

 add $hasInterest.(Cd - Hxd (level)) to Ps

 foreach "hasInterest.(JCd . Gxd (level)) ! NoInterests(Pd) do

 if there does not exist "hasInterest.(JCs . Gxs (level)) ! NoInterests(Pd)

 72

 such that H t Cd 5 Cs and xd H xs

 then if there exists "hasInterest.(JCs . Gxs (level)) ! NoInterests(Pd)

 such that H t Cd 5 Cs

 then let "hasInterest.(JCs . Gxs (level)) be the concept in Interests(Ps)

 with minimum xs among those for which H t Cd 5 Cs holds

 penalty := penalty + �al (xs, xd)

 else penalty := penalty + �a ("hasInterest.(JCd . Gxd (level)))

 add "hasInterest.(JCd . Gxd (level)) to Ps

 return penalty

 73

Appendix B

(full-reset)

(in-knowledge-base image-tbox image-abox)

; ATTRIBUTE

(define-primitive-role taken-with-camera :domain image :range camera :feature-p t)

(define-primitive-role produced-using-recording-media :domain image :range recording-media :Feature-p t)

(define-primitive-role produces-color :domain recording-media :range color)

(define-primitive-role has-color :domain image :range color)

(define-primitive-role using-recording-media :domain camera :range recording-media)

(define-primitive-role has-segment :domain image :range segment)

; CONCRETE DOMAIN

(define-concrete-domain-attribute iso :type real)

; TOP

(disjoint image camera recording-media color segment)

; IMAGE

(implies (or image-by-color image-by-contrast image-by-category image-by-origin) image)

; IMAGE BY COLOR

(disjoint bw-image color-image)

(implies (or bw-image color-image) image-by-color)

(implies (some produced-using-recording-media bw-film) bw-image)

(implies bw-image (all has-color grayscale-color))

(implies (some produced-using-recording-media color-film) color-image)

(implies color-image (some has-color color))

; IMAGE BY ORIGIN

(disjoint film-image digital-image)

 74

(implies (or film-image digital-image) image-by-origin)

(equivalent film-image (and image (all taken-with-camera film-camera)))

(equivalent digital-image (and image (all taken-with-camera digital-camera)))

(equivalent bw-film-image (and bw-image film-image))

(equivalent bw-digital-image (and bw-image digital-image))

(equivalent color-film-image (and color-image film-image))

(equivalent color-digital-image (and color-image digital-image))

; IMAGE BY CONTRAST

(implies (or low-contrast-image medium-contrast-image high-contrast-image) image-by-contrast)

(disjoint low-contrast-image medium-contrast-image high-contrast-image)

(implies (<= iso 50) very-low-contrast-image)

(implies (<= iso 100) low-contrast-image)

(implies (and (> iso 100) (< iso 400)) medium-contrast-image)

(implies (>= iso 400) high-contrast-image)

(implies (>= iso 800) very-high-contrast-image)

(implies very-low-contrast-image low-contrast-image)

(implies very-high-contrast-image high-contrast-image)

; IMAGE BY CATEGORY

(implies (or people-image animal-image architecture-image landscape-image transportation-image still-life-
image) image-by-category)

(disjoint people-image animal-image architecture-image landscape-image transportation-image still-life-
image)

(implies (or mature-people-image male-image female-image children-image family-image) people-image)

(disjoint mature-people-image children-image)

(disjoint male-image female-image)

(implies (or domestic-animal-image mammal-image reptile-image amphibia-image bird-image aquatic-
animal-image wild-animal-image) animal-image)

(disjoint domestic-animal-image wild-animal-image)

 75

(disjoint mammal-image reptile-image amphibia-image bird-image aquatic-animal-image)

(implies (or interior-arch-image exterior-arch-image) architecture-image)

(disjoint interior-arch-image exterior-arch-image)

(implies (or mountains-image river-lake-image ocean-beach-image city-landscape-image agricultural-
fields-image) landscape-image)

(disjoint mountains-image river-lake-image ocean-beach-image city-landscape-image agricultural-fields-
image)

(implies (or water-transportation-image air-transportation-image land-transportation-image) transportation-
image)

(disjoint water-transportation-image air-transportation-image land-transportation-image)

(implies (or nature-still-life product-still-life) still-life-image)

; SEGMENT

(disjoint event location object)

(implies (or event location object) segment)

(disjoint living-thing nonliving-thing)

(implies (or living-thing nonliving-thing) object)

(disjoint animal plant human)

(implies (or animal plant human) living-thing)

(implies (or bird fish amphibia insect reptile mammal) animal)

(disjoint bird fish amphibia insect reptile mammal)

(implies (or primate horse dog cat) mammal)

(disjoint primate horse dog cat)

(implies (or tree bush grass flower fruit vegetable) plant)

(disjoint tree flower grass fruit vegetable)

(disjoint tree flower bush fruit)

(implies (or male-human female-human young-human mature-human) human)

(disjoint male-human female-human)

(disjoint young-human mature-human)

 76

(implies (or infant-human child teenager) young-human)

(disjoint infant-human teenager)

(implies elderly-human m3ature-human)

(equivalent man (and male-human mature-human))

(equivalent boy (and male-human young-human))

(equivalent woman (and female-human mature-human))

(equivalent girl (and female-human young-human))

(equivalent old-woman (and woman elderly-human))

(equivalent old-man (and man elderly-human))

(implies (or human-made-object nature-object) nonliving-thing)

(disjoint human-made-object nature-object)

(implies (or construction vehicle appliance furniture utensil nourishment clothes houseware toy tool art
jewellery) human-made-object)

(disjoint construction vehicle appliance furniture utensil nourishment clothes toy tool art jewellery)

(disjoint construction vehicle appliance furniture nourishment clothes houseware toy tool art jewellery)

(implies (or bridge street building tunnel) construction)

(implies (or residential-building historical-building commercial-building educational-building religious-
building) building)

(implies (or water-vehicle aircraft land-vehicle) vehicle)

(disjoint water-vehicle aircraft land-vehicle)

(implies (or helicopter airplane) aircraft)

(implies (or boat ship) water-vehicle)

(implies (or special-purpose-vehicle train car motorcycle bicycle) land-vehicle)

(disjoint special-purpose-vehicle train car motorcycle bicycle)

(implies (or writing-utensil kitchen-utensil eating-utensil) utensil)

(disjoint writing-utensil kitchen-utensil)

(disjoint writing-utensil eating-utensil)

(implies (or food beverage) nourishment)

 77

(disjoint food beverage)

(implies (or tableware decorative-houseware kitchenware) houseware)

(implies (or dishes cutlery) tableware)

(disjoint dishes cutlery)

(equivalent cutlery eating-utensil)

(implies (or plate glass bowl cup) dishes)

(disjoint plate glass bowl cup)

(implies (or on-earth-nature-object above-earth-nature-object) nature-object)

(disjoint on-earth-nature-object above-earth-nature-object)

(implies (or clouds-and-sky moon-sun-stars) above-earth-nature-object)

(disjoint clouds-and-sky moon-sun-stars)

(implies (or park-and-garden soil-sand-stone lake-river-ocean mountain-and-hill) on-earth-nature-object)

(disjoint park-and-garden soil-sand-stone lake-river-ocean mountain-and-hill)

(implies (or antarctica europe asia africa america australasia) location)

(equivalent eurasia (and europe asia))

(implies (or australia new-zealand melanesia micronesia polynesia) australasia)

(disjoint asia africa america australasia)

(disjoint europe africa america australasia)

(disjoint antarctica asia africa)

(implies (or north-america central-america south-america) america)

(disjoint north-america central-america south-america)

(implies (or northern-europe western-europe eastern-europe southern-europe) europe)

(disjoint northern-europe western-europe eastern-europe southern-europe)

(implies (or northern-africa western-africa middle-africa eastern-africa southern-africa) africa)

(disjoint northern-africa western-africa middle-africa eastern-africa southern-africa)

(implies (or western-asia central-asia eastern-asia southern-asia southeastern-asia) asia)

 78

(disjoint western-asia central-asia eastern-asia southern-asia southeastern-asia)

; COLOR

(disjoint grayscale-color non-grayscale-color)

(implies (or grayscale-color non-grayscale-color) color)

; CAMERA

(disjoint film-camera digital-camera)

(implies (or film-camera digital-camera) camera)

(equivalent digital-camera (and camera (all using-recording-media digital-image-sensor)))

(equivalent film-camera (and camera (all using-recording-media film)))

(equivalent (and image (all produced-using-recording-media film)) (and image (all taken-with-camera film-
camera)))

(equivalent (and image (all produced-using-recording-media digital-image-sensor)) (and image (all taken-
with-camera digital-camera)))

; RECORDING MEDIA

(disjoint bw-film color-film)

(disjoint negative-film transparency-film)

(implies (or film digital-image-sensor) recording-media)

(implies (or bw-film color-film negative-film transparency-film) film)

(equivalent bw-negative-film (and bw-film negative-film))

(equivalent bw-transparency-film (and bw-film transparency-film))

(equivalent color-negative-film (and color-film negative-film))

(equivalent color-transparency-film (and color-film transparency-film))

(implies bw-film (all produces-color grayscale-color))

(implies color-film (some produces-color color))

 79

Appendix C

package jracer ;

impor t java. io .* ;
import java.net .* ;
import java.u t i l .* ;

/** This c lass implements a racer c l ient wi th a pla in in terface. I t a l lows to es tablish a
connect ion with the RACER server , and send to i t p la in s tr ing messages.
* /

publ ic c lass RacerServer {

 /** The socket that enables communicat ion with the racer server . * /
 pr ivate Socket racerSocket ;

 /** The input s tream from the RACER server socket . * /
 pr ivate InputStream racerInputStream;

 /** The output s tream to the RACER server socket . * /
 pr ivate Pr in tStream racerOutputStream;

 /** The IP locat ion where the racer server is located. */
 pr ivate Str ing racerServerIP;

 /** The por t used by the racer server . * /
 pr ivate in t racerServerPor t ;

 /** This is the s tr ing for le t t ing know the racer server the process has ended. * /
 pr ivate s ta t ic f inal Str ing SERVER_END_STRING = ":eof";

/** This method bui lds a new racer c l ient . * /

publ ic RacerServer(Str ing ip , in t por t) {
 racerServerIP=ip;
 racerServerPort=port ;
}

/** This method tr ies to es tabl ish a connection with the racer server . I f there is any
problem, an IOExcept ion is thrown. * /

publ ic void openConnect ion() throws IOExcept ion {
 racerSocket = new Socket(racerServerIP,racerServerPor t) ;
 racerInputStream = racerSocket .getInputStream();
 OutputStream out = racerSocket .getOutputStream() ;
 racerOutputStream = new Pr in tStream(out , t rue) ;
}

 80

/** This method checks if a connect ion is a lready opened. * /

publ ic boolean isOpened() {
 i f ((racerOutputStream != nul l) && (racerSocket != nul l)) re turn t rue;
 e lse return fa lse;
}

publ ic void closeConnect ion() throws IOExcept ion {
 i f ((racerOutputStream == nul l) && (racerSocket == nul l))
 System.out.pr in t ln("No opened connect ion or connect ion is a lready closed.") ;
 e lse {
 i f (racerOutputStream!=nul l) {
 racerOutputStream.pr in t(SERVER_END_STRING);
 racerOutputStream.f lush() ;
 racerInputStream.close() ;
 racerOutputStream.close() ;
 racerOutputStream=null ;
 }
 i f (racerSocket!=nul l) {
 racerSocket .c lose() ;
 racerSocket=nul l ;
 }
 / /System.out .pr int ln("Connection is c losed.") ;
 }
}

/** This method reads a s tr ing from the racer socket connect ion. * /

pr ivate s ta t ic Str ing readFromSocket(InputStream in) throws IOExcept ion {
 ByteArrayOutputStream baos = new ByteArrayOutputStream() ;
 in t c=in .read() ;
 baos.write(c) ;
 while (c!=10) {
 c=in.read() ;
 i f (c!=10) {
 baos.wri te(c) ;
 }

 }
 re turn baos. toStr ing() ;

}

/** This method sends a command to the RACER server and returns a s tr ing with the
answer. I f the racer
 server returns an " :ok" message, the answer is the nul l Str ing; i f the racer server
re turns an
 " :answer" message, the returned value is the Str ing corresponding to the answer;
and f inal ly, i f the
 racer server re turns an " :er ror" message, a RacerExcept ion is thrown. * /

publ ic Str ing send(Str ing command) throws RacerException, IOExcept ion {
 racerOutputStream.pr in t ln(command);

 81

 Str ing resul t=readFromSocket(racerInputStream);
 re turn parseResul t(command,resul t) ;
}

publ ic Str ing sendRacerQuery(Str ing query) {
 Str ing resul t = "Error" ;
 t ry {
 i f (! isOpened()) openConnect ion() ;
 resul t = send(query) ;
 }
 ca tch(Exception e) {
 e .pr in tStackTrace() ;
 }
 re turn resul t ;
}

publ ic Str ing getRacerOutput(Str ing query) {
 Str ing rOutput = "" ;

 t ry {
 i f (! isOpened()) openConnect ion() ;
 rOutput = send(query) ;
 rOutput = rOutput . replace("(" ,"") ;
 rOutput = rOutput . replace(")" ,"") ;
 }
 ca tch(Exception e) {
 e .pr in tStackTrace() ;
 }
 re turn rOutput ;
}

 82

Notes:

 83

