
Development Support for Hardware
Oriented Software Applications using

Eclipse IDE.

Master Thesis
by

Tarlapally Sri Ram Phani Kumar

October 30, 2006

Submitted in partial fulfillment of the requirements for the degree
Master of Science in Information and Media Technology

supervised by
Prof. Dr. Ralf Möller (TUHH)
Prof. Dr. Ulrich Killat (TUHH)

Dipl.-Inf. Daniel Barisic (Infineon Technologies AG)

Hamburg University of Technology
Software Systems Group (STS)

Declaration

I Tarlapally Sri Ram Phani Kumar (Matr. No. 26679), student of Master
of Science in Information and Media Technologies at Hamburg University of
Technology, hereby declare that this work bas been prepared by myself, all
literal or content based quotations are clearly pointed out, and no other sources
or aids than the declared ones have been used.

(Tarlapally Sri Ram Phani Kumar)

iii

Acknowledgments

I take this opportunity to convey my sincere thanks to Prof. Dr. Ralf Möller,
Software Systems Group and Prof. Dr. Ulrich Killat, Communication Net-
works, Hamburg University of Technology for supervising my master thesis.

My sincere thanks to Dipl.-Inf. Daniel Barisic, Infineon Technologies AG,
München for supervising my master thesis, and for his guidance and help
during the course of work.

I would like to thank Dr. Guido Stromberg, Infineon Technologies AG, München
for for his invaluable suggestions and motivation.

My earnest gratitude to my family, for their love and encouragement. It is
only with their constant support and cooperation that I have been able to
successfully.

v

Contents

Abstract xi

1 Introduction 1
1.1 Motivation . 1
1.2 The Sindrion Concept . 2

1.2.1 UPnP . 2
1.2.2 Sindrion . 7

1.3 Eclipse IDE . 11
1.4 Scope of Thesis . 13

2 Analysis of Software Development Process 15
2.1 Phases of Software Development Process 19

2.1.1 Initialization . 19
2.1.2 Implementation . 20
2.1.3 Testing . 22
2.1.4 Deployment . 23

2.2 Desired Support during Development 23
2.3 Analysis of Existing Support . 28

2.3.1 Existing support for Implementation phase 28
2.3.2 Sindrion Transceiver Simulator 30
2.3.3 Flash Tool . 31

2.4 Summary . 32

3 Design Considerations 35
3.1 Mechanisms for Initialization Phase 35
3.2 Bridge the existing Gap . 37
3.3 Managing Data . 37
3.4 Communication between Components 38
3.5 Design Considerations . 39
3.6 Summary . 39

4 Eclipse Frameworks and Mechanisms 41
4.1 Plug-in Concept . 41
4.2 Dependencies vs. Extensions . 42

vii

4.3 Extension Points . 45
4.4 Start-up and Initialization . 48
4.5 Adapters and Adapter Factories 49
4.6 Summary . 52

5 Design 53
5.1 Design of Initialization phase 53

5.1.1 Identification of a Sindrion project 54
5.1.2 Managing Project Information 55
5.1.3 Design of project Workspace 56
5.1.4 Sindrion Project Creation support 58

5.2 Modelling the Sindrion project 60
5.2.1 Sindrion DataModel . 61
5.2.2 Synchronization with Eclipse workspace 63
5.2.3 Eventing Mechanism . 67
5.2.4 Accessing DataModel . 67
5.2.5 Visualization of DataModel 68

5.3 Set-up the Environment . 70
5.4 Sindrion Integrated Development Environment 74

5.4.1 Plug-in Dependencies . 75
5.4.2 Start-up of Plug-ins . 76

5.5 Summary . 77

6 Implementation 79
6.1 Sindrion Nature . 79
6.2 Project Creation Wizard . 80
6.3 DataModel . 82

6.3.1 Resource Change Listener 85
6.4 Adapter Factory . 86

6.4.1 Register the Adapter . 87
6.5 Sindrion Explorer . 88
6.6 Sindrion Adapter View . 90
6.7 Summary . 91

Conclusion and Recommendations 93

Bibliography 95

List of Figures

1.1 UPnP Layer Model . 4
1.2 Schematic Overview of the Sindrion System 8
1.3 Integration of Sindrion Enhanced Devices in UPnP 9
1.4 Interaction between User and Sindrion Transceiver via Sindrion

Software Components . 10
1.5 The Eclipse Workbench . 12

2.1 Use Case Diagram for Sindrion Software Development 18
2.2 Relevant Relations of Sindrion Sources 21
2.3 UPnP Description View . 29

4.1 Participants of a Plug-in Extension. The XML Editor Plug-in
extends the Workbench UI Plug-in via an ActionSet Extension
that adds Buttons to the Toolbar. 45

5.1 Sindrion Project . 57
5.2 Sindrion DataModel . 63
5.3 Role of Sindrion DataModel . 69
5.4 SiDE Plugin Components and Models 78

6.1 Project Creation Wizard Screen 81
6.2 Sindrion Explorer . 90

ix

Abstract

Sindrion project, a research project at Infineon Technologies AG, integrates
low-cost and low-power wireless embedded devices into a Universal Plug and
Play (UPnP) network. Integration of these devices is done by so called proxy
applications which are programs executed on an ordinary PC. For each em-
bedded device enhanced by a Sindrion Transceiver a specific set of Java appli-
cations are to be developed. The developer needs to deal with diverse issues in
the field of distributed components; hence a development support in the form
of an IDE is advised.

This thesis deals with concept, design and implementation of mechanisms that
provide development support for Sindrion Applications. To achieve this, the
development process of Sindrion Applications is analyzed from a developer’s
point of view, considering the interdependencies between hardware and soft-
ware components in the domain of distributed embedded devices. Specific
parts of this software development process are supported by already existing
tools viz. libraries, toolboxes and simulated environments. The thesis develops
mechanisms for information flow and data storage by which these independent
tools can be combined to form an IDE. Additionally, mechanisms that guide
the developer to set-up the environment and give a quick start by initializing
the application development process are designed. An initial version of the Sin-
drion Integrated Development Environment has been implemented based on
the Eclipse framework, which shows the capabilities and the feasibility of the
overall concept. The resulting Sindrion Integrated Development Environment
helps even inexperienced developers to create sophisticated Sindrion applica-
tions.

xi

Chapter 1

Introduction

1.1 Motivation
This Master Thesis is focused on providing means to support the development
process of applications for interoperable embedded devices in ubiquitous com-
puting environment, where a large number of small devices are spread in the
surrounding environment to monitor and provide information which benefits
the users.

Among various projects that are situated in the ubiquitous computing area,
this thesis deals with a project called Sindrion. The goal of the Sindrion project
is to allow the simple and unobtrusive integration of arbitrary embedded de-
vices in a ubiquitous computing environment. In order to realize this vision,
the main challenge of Sindrion lies in various aspects of embedded systems
design, and design of means to provide interoperability to the number of dis-
tributed embedded devices. To this end, interoperation of devices is based on
the standardized UPnP middleware that supports device discovery, description
and service-oriented control and eventing mechanisms on top of the common
TCP/IP internet protocol suite. The devices are networked wirelessly with
the help of so-called Sindrion transceivers, which comprise of low-power RF
transmitter and receiver modules and a microcontroller with limited resources
in terms of computing power and RAM. In order to compensate the computa-
tional limitations of the Sindrion transceiver, the expensive calculations nec-
essary for participation in UPnP are sourced out to so-called terminals in the
form of dedicated Java applications. These applications are directly provided
by the transceiver and are executed on terminals, which basically are PCs,
equipped with a special life cycle management software. As the desired UPnP
interaction differs for each embedded device, a corresponding set of UPnP de-
scriptions and Java applications have to be implemented. The development of
these applications includes implementing, testing and deploying these applica-
tions to the transceiver. In this process the developer first needs to develop

1

1.2 The Sindrion Concept

the UPnP descriptions. Corresponding Java applications that are in accord
with the UPnP descriptions are to be implemented. The developer as well
needs to some how tie up the Java applications developed with the descrip-
tions and keep them in sync. Once these applications are developed they are
to be tested before transferring them to the Sindrion Transceiver. During this
whole process the developer needs to keep track of the resources for particular
application as they may need to be changed or updated in case of errors, and
this makes this development process a complex task. In this Master Thesis an
Integrated Development Environment which assists the developer during the
complete development process and therefore ease the development of Sindrion
applications is designed.

1.2 The Sindrion Concept
The role of middleware in a distributed computing system is to eases the
task of designing, programming and managing distributed application by ab-
stracting the complexity and heterogeneity of the underlying distributed en-
vironment. This is achieved by providing a simple, consistent and distributed
software layer, or ‘platform’ that lies between the operating system and the
applications, which provides uniform, standard, high-level interfaces to the
application developers and integrators. Sindrion aims at implementing a sys-
tem that integrates smalls, embedded devices in high-level distributed system
like UPnP (middleware) network by using so-called proxy based applications.
These proxy applications act on behalf of devices in the UPnP network and
therefore relieve these devices from computational load necessary to interact
from in the network. Requests from the UPnP network to the devices will be
translated from the proxy into one or multiple messages using a simple, easily
parsable protocol. The decision to adopt UPnP as the dedicated middleware
to allow interoperation of embedded devices has a great impact on the Sin-
drion concept. Hence we first need to understand the underlying concepts and
features of UPnP (Universal Plug and Play) in order to understand the area
of operations of this Thesis.

1.2.1 UPnP

Universal Plug and Play (UPnP) [1] is a service-based middleware that pro-
vides almost self configuring peer-to-peer connectivity between networked de-
vices. It is based on the definition of standards for inter-device communication
which are completely independent of the physical network layer, the operat-
ing system and the programming language. UPnP uses existing standards
for communication and data exchange that are situated above the TCP/UDP
layer like HTTP and SOAP [2]. Furthermore, it supports Zero-configuration

2

Introduction

and automatic discovery. Hence dynamically joining the network, acquiring
an IP address, publishing its capabilities, and retrieving information about
the presence and capabilities of other devices, belong to the device’s abilities.
The devices functionality is provided as services. The so-called UPnP forum
established UPnP as an open standard, thus providing no drivers or APIs.
Nevertheless, implementations of UPnP APIs have been conducted by differ-
ent vendors, e.g. Intel [4] or Infineon.

The participants of a UPnP network are divided into two groups:

• UPnP Device: A UPnP device provides functionality to the UPnP net-
work. This functionality is encapsulated into the device’s services. The
device properties and its services are conveyed to the network and can
then be utilized by other UPnP participants. For more elaborate UPnP
devices, a hierarchical device structure can be implemented which allows
the arrangement of a number of subdevices. These subdevices encapsu-
late certain aspects of the device under a single root device. For instance,
a UPnP device of hi-fi system could consist of hi-fi system root device
and a CD player subdevice.

• UPnP Control Point (CP): A control point basically uses the functional-
ity provided by one or more UPnP devices. Furthermore it can discover
devices or services in the network.

The separation of devices and control points is only done on a logical basis.
From this follows that it is possible for a single physical device to embed either
UPnP devices, control points or a combination of both.

A unique operational sequence has been defined to allow the interaction
of distributed UPnP devices and control points. Let us now take a look at
this sequence in order to create better understanding of the features of UPnP
and the requirements that arise for devices which intend to participate in the
network.

Operational Sequence

As we can see in Figure 1.1, the main features comprised in UPnP are Ad-
dressing, Discovery, Description, Control, Eventing and Presentation.
These features are not isolated but organized in a layered structure, creating
dependencies between the features. For example Addressing is needed to
perform Discovery.

0. Addressing UPnP is based on IP, thus creating the need to assign an
IP address to each device in the network. A UPnP device retrieves its
IP address either via DHCP [6] or via Auto-IP [7].

3

1.2 The Sindrion Concept

3. Control 4. Eventing 5. Presentation

2. Description

1. Discovery

0. Addressing

Figure 1.1: UPnP Layer Model

1. Discovery UPnP allows devices to flexibly join and leave the network.
As there is no central management component in a UPnP network, the
devices need to announce their existence and their capabilities by them-
selves in the discovery phase.

During Discovery, a UPnP device informs the UPnP network about its
presence and the services it offer. Provision of this information can be
done actively, e.g. on start-up of a device, and as a response to look up
message of a UPnP control point:

• Advertisement of Properties Each UPnP device broadcasts its
properties to the UPnP network on start-up. For this purpose, a
certain multicast address has been specified. The messages which
are sent to this address are encoded in the XML based Simple Ser-
vice Discovery Protocol (SSDP) [5]. There are four different types
of advertisement messages which are sent according to the struc-
ture of the device viz. advertisement from the root devices to get
themselves identified by control points, announcement of the Uni-
versally Unique Identifier (UUID) for assigning message packets to
respective devices, announcement of device type and announcement
of service type.

Since SSDP is UDP based, each message is sent several times in
order to minimize the risk of message loss. A leasing concept has
been specified for advertisements, hence each advertisement is only
valid for a certain timespan and has to be renewed by a device in
order to verify its existence. When a UPnP device is about to leave
the network, it has to send this with a “bye-bye” message. There by
all control points in the network are informed that a device and its
services are no longer available.

• Search for Devices and Services Additionally, control points can
search actively for devices and services. Again these search messages
are sent via SSDP. A control point can search for all devices, and

4

Introduction

services or root devices or a certain device with a specific UUID or
service type or device type. Each UPnP device with matching cri-
teria answers to the request with the corresponding advertisement.

2. Description The basic idea of UPnP is to allow ad-hoc interaction even
between control points and devices which have been unaware of their
mutual existence by providing adequate description of its capabilities.
This description is given in XML files and contains information about
the device’s properties and functionalities. In order to save bandwidth,
only simple information about the device and its services are published
during the discovery phase. Additionally, the URLs of the XML descrip-
tion files are published. Every control point that is interested in the
announced device can use these URLs to download the corresponding
descriptions. For this purpose, each device incorporates a webserver by
which the files are made accessible.

A complete set of descriptions consists of one Device Description that
contains general and vendor specific information about the root device,
its subdevices and a list of contained services, and a separate Service
Description for each service, which describes the available actions and
the state variables available in the context of this service. Developers
need to formulate these UPnP description according to the required be-
havior of the device and adequate support from a development environ-
ment can assist them to perform these tasks without in-depth knowledge
of UPnP.

Device Description In addition to a number of vendor specific infor-
mation, the description contains four prominent entries.

• The device type is normally searched for by compatible control
points, e.g. a light switch would search for all light bulb devices.

• The device UUID unambiguously identifies the device in a UPnP
network, even if the device’s IP address changes. This enables con-
trol points to identify a device, even when its location in the network
changes or it repeatedly shuts down and restarts.

• The service list contains information about the services offered by a
device. Service type, service identifier and addresses of the service
descriptions as well as the corresponding URLs for eventing and
controlling are defined.

• In case of a hierarchical device structure, the device description
contains a device list composed of a number of subdevices. For each
subdevice a complete device description with the same structure as
the root device description is specified.

5

1.2 The Sindrion Concept

Service Description The service description contains a list of actions
and state variables that can be accessed by a control point. An action is
described by its name and a number of parameters. For each parameter a
name and its direction (in/out) is specified. The data type of a parameter
is only declared implicitly by the association of a specific state variable of
the service. A state variable comprises a name, a data type and whether
it is evented or not (see 4. Eventing).

With the device description and the corresponding service descriptions,
a UPnP device is unambiguously defined. Control points only depend on
these descriptions in order to determine if and how they can make use
of this device.

3. Control Up to now, a UPnP control point is able to find a device and
retrieve information about its capabilities. The next step is to utilize
the device by invoking the UPnP actions, specified during the descrip-
tion phase. The transmission format for such an action request is the
standardized Simple Object Access Protocol (SOAP) [2], which transmits
messages in XML format.

For each request, a TCP connection is created that is used to first send
the action request and then transmit its response. The response can
either indicate the correct execution of the action or contain an error
message. For this purpose, the UPnP specification defines a set of general
error messages which can be extended by the vendor with device specific
error messages.

4. Eventing In addition to the remote execution of tasks, another impor-
tant feature of UPnP is eventing of the state variables. In the Con-
trol phase a control point invokes actions on the device, whereas dur-
ing Eventing a device notifies the control point of changes of certain
state variables. UPnP uses the General Event Notification Architecture
(GENA) [14] for this purpose.

Within a UPnP service description, a state variable is marked with a
“sendEvents” attribute, which specifies if the state variable generally sup-
ports eventing. Furthermore, a control point that is interested in changes
of the state variable values needs to register itself as an observer of the
specific service. When a state variable change occurs, the device will
inform all registered control points.

5. Presentation The last feature that UPnP offers is the provision of a
“Presentation Page”. Each device can specify an HTML page which can
be retrieved by all control points. The link to this presentation page
is provided in the device description which is announced to the UPnP

6

Introduction

network. The page e.g. may comprise vendor specific information, infor-
mation about the device’s state and may even provide mechanisms for
controlling the device.

Evaluation

To summarize, UPnP allows devices to dynamically join a network to advertise
their presence and their capabilities. It also provides ways to access remote
functionalities and to be informed of remote state changes. Unfortunately, the
implementation of UPnP on a peer-to-peer basis without any centralized man-
agement components comes at the cost of higher processing demands for each
UPnP participant. As the exchange of messages is done via the XML-based
SOAP protocol, each UPnP participant must be able to interpret and flexibly
create XML messages. That is why current implementations of UPnP devices
require advanced computing capabilities. The Sindrion approach aims at en-
abling even small, battery powered, embedded devices to join UPnP networks.

1.2.2 Sindrion

The basis of the Sindrion system is to set up a wireless link between peripheral
devices and dedicated computing terminals. The objective of this connection
is to source out complex data processing from the peripherals to the termi-
nals. To this end, peripheral devices contain small smart transceivers1, the
so-called Sindrion Transceivers, which are attached to embedded sensors or
actuators. Typical peripheral devices are environmental sensors, small ac-
tuators like switches, or home appliances. They contain very limited or no
computing power, and the embedded sensors and actuators can be controlled
by simple proprietary analog or digital control lines. These are connected to
the input- and output ports (I/O ports) of the Sindrion Transceivers.

The terminal is equipped with an RF transceiver which is compatible with
that included in the Sindrion transceiver. UPnP and device specific protocol
processing are both done in the terminal, which features a virtually unlimited
amount of processing power and memory compared to the Sindrion transceiver.

Fig. 1.2 shows the fundamental structure establishing the communication
between the terminal and a previously unknown Sindrion transceiver. The
procedure is as follows:

1. Discovery: the two end devices find each other in the discovery phase.
To meet this end, the UPnP (see Fig. 1.2) discovery protocol is used .
[1]

1The term smart transceiver refers to an RF transceiver with an integrated micro con-
troller.

7

1.2 The Sindrion Concept

Figure 1.2: Schematic Overview of the Sindrion System

2. Code Download: if the terminal does not yet contain the control appli-
cation for the Sindrion transceiver, the application code is downloaded
by the terminal (see Fig. 1.2). Preferably, this code is written for a
middleware platform such as the Java Virtual Machine. This guaran-
tees platform independence and allows seamless integration into various
terminals. Furthermore, high-level programming languages facilitate ap-
plication development. The downloaded application runs at the terminal
and is fully equipped with UPnP functionalities. Thereby, the service ap-
plication connects via UPnP interfaces to the environment. Application-
specific communication is established through the service application.

3. Application-Specific Communication: for the following communi-
cation between the downloaded service application on the terminal and
its counterpart - the transceiver control unit - on the Sindrion transceiver
a proprietary protocol called Sindrion control protocol is used. This pro-
tocol is transceiver hardware specific and does not depend on the appli-
cation. It offers the capability to configure the transceiver and control
its hardware interfaces. The service application controls the transceiver
behavior according to the current application via this service protocol.

With the mechanisms described above, the peripheral devices are inte-
grated into the UPnP network. The topology that is created by the Sindrion
approach is visualized in Fig. 1.3, wherein the embedded devices (like e.g.
the Sindrion Transceiver in a refrigerator) can now participate in the UPnP
network because of the Sindrion enhancement.

8

Introduction

Figure 1.3: Integration of Sindrion Enhanced Devices in UPnP

In the previous sections we gained knowledge about UPnP and Sindrion.
By out-sourcing the complex data processing to dedicated terminals Sindrion
overcomes the lack of computational power of the embedded devices. The Sin-
drion applications on the terminals perform this complex data processing and
are of special interest as we aim at designing support for the development of
these applications. We will now take a closer look at these functional compo-
nents that are required to realize the Sindrion concept. The code downloaded
from the Sindrion Transceiver to a dedicated terminal included three major
packages (see Figure 1.4):

1. The Sindrion Proxy is the central component as it provided the con-
nected device specific functionality via semantic UPnP functionality to
the network. For example, when a temperature sensor is connected to the
analog line of the Sindrion Transceiver to measure the current tempera-
ture, the Sindrion Proxy interrogates the temperature sensor connected
to the Sindrion Transceiver via the Sindrion Control Protocol and re-
trieves the data coming in at the specified analog line. The user of this
temperature sensor need not know how to use the Sindrion Control Pro-
tocol, instead the Sindrion Proxy that implements a UPnP device offers
a UPnP action called “GetTemperature” which internally maps the func-
tionality provided by UPnP to Control Protocol commands. Thus, the

9

1.2 The Sindrion Concept

Figure 1.4: Interaction between User and Sindrion Transceiver via Sindrion
Software Components

user can use comfortable semantic UPnP action and this gets translated
into Sindrion specific commands by the Sindrion Proxy.

2. The Specific Control Point is a dedicated UPnP control point used to
control the Sindrion Proxy. Its main task is to provide a Graphical User
Interface (GUI) to simplify Sindrion Proxy usage. With the help of Spe-
cific Control Point the user of the temperature sensor instead of using
some generic UPnP control software, can use a dedicated GUI that is
stored along with the proxy on the transceiver. The manufacturer of
the temperature sensor device bundles a GUI with his device which is
outside the scope of the UPnP device but is important for the usability
of the device and serves as a means of branding.

3. The Sindrion Applet can be embedded into the presentation page of the
UPnP device which helps to use the functionality of the device without
using a dedicated software, as a browser is sufficient for this task. On the
other hand this applet has to combine the functionality of the Sindrion
Proxy and the Specific Control Point as it has to provide the Sindrion
Control Protocol based controller for the transceiver with a suitable GUI.
The programming model provided with Sindrion intrinsically supports
merging parts of the UPnP proxy and of the Specific Control Point to
create a standard applet without additional programming effort.

Although the general Sindrion concept does not specify a programming lan-
guage, Java is one reasonable possibility. Sindrion already comes withe a set
of Java-based libraries, e.g. UPnP stack, the Sindrion Programming Model 2,
or the named Control Protocol libraries. On the whole Sindrion transfers the

2The Sindrion Programming Model is a Java library containing interfaces and classes for
sophisticated Sindrion software development. [9]

10

Introduction

benefits of a Service-oriented architecture into the domain of embedded dis-
tributed computing.

The analysis of Sindrion Application development process done in Chap-
ter 2 helps us to ascertain the development support required. Next section
gives and overview of the Eclipse platform on which the development support
will be constructed.

1.3 Eclipse IDE
Eclipse, an open source community provides an extensible development plat-
form designed for building integrated development environments (IDEs), ap-
plication frameworks and arbitrary tools and software. The Eclipse Software
Development Kit (SDK), is a combination of the efforts of several Eclipse
projects, including Platform, Java Development Tools (JDT), and the Plug-in
Development Environment (PDE). [15] Eclipse Software Development Kit is
a Java integrated development environment and is used for building products
based on the Eclipse Platform. This vendor-independent platform consists of
a core and diverse plug-ins [16], where the core provides services for managing
the plug-ins and plug-ins provide the actual functionality. This is realized by
using Rich Client Platform (RCP) functionality based on the Open Services
Gateway Initiative (OSGi) [17] standard framework, which strongly binds the
core and the plug-ins to the Java programming language.

Eclipse represents a reliable, proven, scalable technology upon which ev-
eryone can contribute own parts enriching existing components or add all new
functionality. Moreover, many companies like IBM and Texas Instruments de-
velop commercial plug-in products for Eclipse platform. Therefore, Eclipse can
be called a de-facto standard in the domain of integrated development envi-
ronments that are broadly applied. The Eclipse platform written in Java also
comes with plug-ins particularly facilitating Java code development, which are
bundled in the so called Java Development Tooling (JDT).

The JDT contributes Java specific behavior to the generic platform, by
adding Java specific integrated tools like editors, a compiler and debugger and
a GUI. This way, a user is supported in every step of the Java code develop-
ment. As an example, Fig. 1.5 shows the Eclipse workbench displaying the
“Java Perspective”. In the center you can see the editor, in which the user
types the code. On the left side, the “Package Explorer” displays resources
like source files and libraries. On the right side, you can see the Java specific
“Outline view”, which displays logical units of the source file like fields and
methods, for a hierarchical overview. The JDT is much more powerful, it sup-

11

1.3 Eclipse IDE

Figure 1.5: The Eclipse Workbench

ports code completion3, an elaborate debugger and even the programmatical
usage of all these features. This means, the user can design plug-ins for devel-
oping Java-based code by extending existing functionalities. JDT is only an
example of the variety of built-in and extensible functionalities of the Eclipse
platform.

The Plug-in Development Environment (PDE) provided by Eclipse is a set
of tools designed to assist the Eclipse developer in developing, testing, debug-
ging, building, and deploying Eclipse plug-ins while working inside the Eclipse
workbench. Writing an Eclipse plug-in is straight forward, but not exactly
trivial. The task entails creating a manifest file, writing Java source code,
compiling the code into a library, testing it and packaging the plug-in into
a form that is suitable for deployment. This task can be quite intricate, de-
pending on the complexity of the plug-in and the developer’s Eclipse expertise.
PDE integrates itself in the workbench by providing platform contributions,
such as editors, wizards, views and a launcher, which users can easily access
from any perspective without interrupting their work flow. [13]

3If the user types in a class name, the “code assist” function shows e.g. available methods
in a list for code completion.

12

Introduction

Eclipse comes with powerful tools to develop Java software in particular
but is not restricted to this programming language. It additionally permits a
user to augment the platform as desired and it perfectly serves as a basis for the
development environment, which will be derived throughout this thesis. The
basic technologies and concepts used in this thesis have been introduced till
now and the next section gives a short outlook on the scope and the structure
of the thesis.

1.4 Scope of Thesis
This chapter gave an overview of the concepts used in the Sindrion project
which illustrate the context of this master thesis. The goal of this thesis is
build a basis for an environment which supports the development of Sindri-
on Applications. For this, a profound analysis of the current development
process without any support from development environment is done which
helps us to comprehend the difficulties that arise during the development of
Sindrion Applications. Analysis of existing autonomous tools which support
the development process, show that they do not bring in the desired benefit
to the user and require mechanisms that help to integrate these tools. Design
considerations formulated based on the analysis serve to define the problem.
Considering these specifications efforts are made to design the initialization
process that gives a quick start to the development process. Mechanisms are
devised using which the plug-ins are able to interact and therefore the basis for
Sindrion Integrated Development Environment is created. Finally, as a proof
of the derived concepts, a reference implementation of the previously designed
components is conducted.

13

1.4 Scope of Thesis

14

Chapter 2

Analysis of Software Development
Process

A profound analysis of the Sindrion Application development process is done
in this chapter. The common difficulties faced by the developer, during the
development process are categorized and outlined to point out the intrinsic
dependencies and restrictions. Also the necessity to constructing the develop-
ment environment is shown. This comprehensive analysis leads to implications
for the development support required, which will be stated at the end of the
chapter.

Sindrion Applications have some beneficial characteristics like program-
ming language independence, software re-use and distributed use of open in-
terfaces. There are also several issues to be dealt with, like the ones coining
from the field of embedded software as the developed code finally has to be
deployed to the target device.

Considering the support for Java software development has reached a high
level of maturity, e.g. implemented in IDEs like Eclipse’s JDT (see Section 1.3),
we focus mainly on the requirements specifically for Sindrion Software Devel-
opment. The degree of support needs to model the high expectations of typical
Java developers that are e.g. used to the comfortable JDT from Eclipse IDE.
The analysis aims at an ideal Sindrion design flow, although only a part of
these characteristics can be implemented in this work.

The development process of Sindrion Applications mainly deals with cre-
ation of the UPnP description files and compatible Java source code for the
applications. The main issues the developer has to deal with in the process of
creating these applications are mentioned below:

15

Project set-up

Since the Sindrion applications are written in Java programming language the
first step would be to create the Java project for the application and set-up
the base for further development.

UPnP Specifics

The basis for UPnP development is the UPnP description files which describe
the implemented device and its services. When modifying the functionality of
the device, these description files have to be modified as well. There are two
problems in this process: The developer needs detailed knowledge of XML lan-
guage and of the UPnP description files as the files must be created according
to dedicated specification conditions.

Editing Description Files

Implementing the actual functionality of the service or composition of services
the developer wants to provide is also an important step. In this process, a
description file (e.g. a WSDL1 XML file for web services or the device and ser-
vice description for UPnP (1.2.1)) of the service has to be modified according
to the developed code and vice versa. Editing these files by hand can lead to
errors that are typically expected to occur at runtime and shows misbehavior
(i.e. no runtime exception) thus being hard to test and to debug. For example,
a developer changes the name of a UPnP action in the UPnP service descrip-
tion file by hand. Now, the UPnP stack source code refers to a non-existing
action as no control mechanism exists and the developer will not be informed
about this problem. He will not notice the error until the code is executed.

The development of the control instance is tightly connected to the
former created functional service. It is best practice for the developer of the
service to deliver the control instance by providing a suitable GUI as well.

Software Partitioning

The development of Sindrion related software is supported by already existing
libraries that provide UPnP support, implement the control protocol or even
help building the Sindrion software components (Proxy, Specific Control Point,
applet), by offering a library based programming model. The programmer also

1The Web Services Description Language (WSDL) [3] is used to define the interface of a
Web service.

16

Analysis of Software Development Process

might rely on additional libraries, whose usage is critical in several steps of the
development process. The output of the project is more than one deliverable
namely proxy, Specific Control Point and standard applet which makes the
use of the libraries more complex than in the case of a typical Java project.
It must be made sure that all these output binaries are bundled with the
necessary libraries. Effort to reduce the size of these binaries also should be
taken into account as they are transferred through the network, so their size is
directly related to actual or virtual communication cost (time, latency, etc.).

Additional Communication

As embedded devices are integrated into the UPnP network, this ‘higher layer
side’ of the communication has to be ensured as well. For example, a Specific
Control Point must be able to find and communicate with the proxy it is de-
signed.

The steps performed can be grouped together to four major phases: Ini-
tialization, Implementation, Testing and Deployment. Fig. 2.1 describes the
use case diagram for Sindrion Development Process.

The functionality of the device (and its services) is provided by the Sindrion
Proxy and the Sindrion Applet. The developer has to make sure his code is
runnable on the target environment, i.e. the dedicated hardware platform of
the Sindrion Transceiver. The regulations concerning the service implementa-
tion and its control instance arise as the Sindrion Proxy implements the main
functionality of the SOA, the Specific Control Point provides a GUI and acts
as a control instance, and the Sindrion Applet combines the functions of the
aforementioned.

Modifying or setting up environmental characteristics can be thought of as
an initialization phase but there is also a possibility of dynamically changing
these characteristics. Implementing the functionality of services, customizing
a description file and providing a control instance can be grouped together in
the implementation phase.

The use case diagram allows us to group the phases, but does not contain
any information about the sequence of their appearance. Naturally, the ini-
tialization is the first step in the development flow. There however exists a
multitude of design flow models for remaining phases that are often aligned
with company policies or specific versioning and debug tracking tools. Thus,
the development environment envisaged here must assume the phases to be
independent and must be able to re-iterate the phases in arbitrary order.

17

Figure 2.1: Use Case Diagram for Sindrion Software Development

18

Analysis of Software Development Process

This analysis helped us to understand the tasks performed by the developer
during the development process of Sindrion applications without any support
from tools. Some of these tasks can be automated by designing mechanisms.
Apart from that the information required can be gathered from this analysis.In
further proceeding of this chapter we will take a look at the development pro-
cess for Sindrion Applications. Additionally the complicacy will be outlined
that justifies the whole approach of the development environment in compari-
son to creation ‘by hand’. The actions of these four phases then lead to relevant
requirements for the realization of the Integrated development environment.

2.1 Phases of Software Development Process
The difficulties that arise during the development process of Sindrion Applica-
tions are sorted here into phases. Each phase describes its role in the overall
development process and highlights the sequence of operations done during
that particular phase.

2.1.1 Initialization

The development process of Sindrion Applications starts with the initialization
phase as it serves as a basis for further development. An in-depth analysis of
this process helps us to clearly know the sequence of operations performed by
the developer and think of the support the development environment can offer.

Environment characteristics have to be set up as a first step as mentioned
before. Sindrion applications are written in Java Programming language (uses
UPnP or Web services as middleware). Each Sindrion Application is generally
a separate Java project (includes Sindrion Proxy, Specific Control Point and
Sindrion Applet). Setting up this project would be the first step of this phase.

The Sindrion Java project created should encapsulate all the information
and sources related to the particular application in development. Firstly, it
should reflect the information of the hardware platform it is developed for, e.g.
Board Version, Control Protocol used for communication and the firmware it
is designed for. All the information used during different steps of development
process can be collected from the user and can be attached to the project.
The project as well holds the Java source code files and UPnP description
files based on the middleware selected for the application and the hardware
platform. A good package structure allows the developer to identify the files
corresponding to different parts of the application. Hence these files are hier-
archically arranged in the project with respect to the corresponding Sindrion

19

2.1 Phases of Software Development Process

Proxy, Specific Control Point and Sindrion Applet.

Once the project is created, selecting a dedicated target platform could
implicate the usage of a corresponding library during development. In the
context of Sindrion development the middleware might be a UPnP stack or
Web services. These libraries have to be included into the system (i.e. attach
them as resources to the contributing plug-ins or add classpath in Java case)
and are necessary at compile time and runtime. This may as well influence
the implementation, as the programming language could be closely linked to
this middleware. In the Sindrion case the Java UPnP stack is used for instance.

After the initialization the development succeeds which is outlined in the
next section.

2.1.2 Implementation

As the implementation of Sindrion software is a complex process of interde-
pendent components relying on several sources, a range of relations between
the actual source code files and sources influencing them has to be considered.
Based on the analysis of these relations, the process of development can be
inspected with regard to the potential of automation. In the course of this
action, and underlying unified UPnP description model is presented and the
development steps for the Sindrion Proxy and the Specific Control Point are
outlined.

We start with the consideration of the aforementioned relations. Figure 2.2
visualizes these relations, which are explained below.

• UPnP Device Description refers to UPnP service description files
(1.2.1), which define services including their actions and state variables.
The actions are of interest for the developer since their implementation
provides the actual functionality of the UPnP device. The dependency
between device description and service description needs specific atten-
tion during creation or modification of these files. When the name of the
service description file is changed or when a new service description file
is created, the reference in the device description file has to be updated
or added respectively. Consequently, the development environment has
to keep track of UPnP service description files corresponding to a UPnP
device description file.

• Sindrion Proxy Sources are influenced by the functionality of the
Sindrion Transceiver and the UPnP description files. Regarding the first
issue, we have seen in Section 1.2.2 that the proxy, SCP and applet are
stored on the transceiver and are developed particularly for a specific

20

Analysis of Software Development Process

Figure 2.2: Relevant Relations of Sindrion Sources

Sindrion Transceiver. Therefore, the implementation of the binding be-
tween transceiver and proxy depends on the functionality of the control
protocol implemented in the transceiver’s firmware. If the transceiver’s
firmware changes with potential future firmware redesigns, the proxy im-
plementation might be adapted, too.

Secondly, the UPnP description files play an important role in Sindrion
Proxy development. When using a UPnP stack UPnP devices, services,
actions and state variables are addressed by their identifiers specified in
the corresponding description file. Therefore, the identifier in the source
code has to match the one in the description file, else the UPnP function-
ality cannot be correctly provided by the code. During the implemen-
tation phase the correct UPnP description files have to be available for
the corresponding proxy sources. Experience has shown that managing
the dependencies between UPnP description and proxy code is always
error-prone.

• Specific Control Point Sources are related to the Sindrion Proxy,
hence with the proxy source files. A Specific Control Point is designed
to control the functionality provided by typically one dedicated Sindrion
Proxy, via UPnP.

• Sindrion Applet Sources are related to the device description and

21

2.1 Phases of Software Development Process

the Sindrion Transceiver similar to the proxy sources. As the Sindrion
Applet does not rely on any other Sindrion component, the develop-
ment environment needs to keep track of the UPnP device description
and Sindrion Transceiver information as outlined for the Sindrion Proxy.
Furthermore the applet additionally has to provide a GUI.

As stated above, the Sindrion Programming Model supports the creation
of an applet from the SCP and proxy, so that control functionality of the proxy
as well as the GUI is to a significant extent identical to the functional require-
ments of the applet. In this case, the relationships mentioned previously are
only indirect. The applet rather depends directly on the SCP and proxy code.
This is indicated by the dashed arrows in Figure 2.2.

The implementation phase contains loops, as several steps may have to be
done repeatedly as corrections and adjustments of the code are an inevitable
part of an usual development procedure. The UPnP device description and its
service description files describe the functionality of the device, without giving
any implementation details or representing the basis for any UPnP stack. Code
from this stack is generated according to the description and is utilized for the
Sindrion Proxy and the Sindrion Applet implementation. If these description
files do not exist, they have to be created by the developer first. The creation
of the Sindrion software components is tightly connected to the modification
of the UPnP description files.

In next section we will consider the testing phase of Sindrion Applications.

2.1.3 Testing

All components must be executable within the IDE for testing and must be
able to interact. This is of the same significance as a standard IDE with inte-
grated debugger and compiler for pure Java development. Software testing is
an essential process in the development cycle that which helps the developer
to identify quality, completeness and correctness of the developed software, by
verifying if the results produced are in accord with his or her expectations. The
software should be able to execute and perform repeated operations yielding
same results with respect to identical triggering events.

In the case of Sindrion, execution of software can get critical as there are
further constraints caused by its embedded nature. Further, it has to provide
the UPnP functionality on one hand and should be able to communicate with
corresponding Sindrion Transceiver via Sindrion Control Protocol on the other
hand. Additionally, it is tedious for the developer to deploy the software every

22

Analysis of Software Development Process

time it needs to be tested. The ideal way of testing software that has to be
deployed to a target platform is to provide a simulation environment or at least
automate the deployment process and make it accessible during development.

Having verified the results from the simulated environment, it needs to be
physically deployed to the Sindrion Transceiver. This phase is addressed in
the next section.

2.1.4 Deployment

The final process of transferring the developed code to hardware transceiver
is called deployment. It is the final step of the development process since the
software deployed to the Sindrion Transceiver (hardware) cannot be altered
on the hardware. If the sources are still available, they can be modified utiliz-
ing the development environment and can be deployed to the transceiver again.

Deployment involves transferring all involved source files including UPnP
description files, to the hardware platform (Sindrion Transceiver). This step
includes more than transferring the data. All necessary sources are to be bun-
dled into archives (jar files) and stored on the Sindrion Transceiver’s memory.
For example, the sources of Sindrion Proxy, SCP and Sindrion Applet are bun-
dled into different jars. Additionally bundles can be created for classes shared
between the applications.

The next section gives a recapitulation of the analysis done and outlines
how the development environment can support the developer during different
phases of the development discussed in the previous sections.

2.2 Desired Support during Development
The development process of Sindrion applications has been analyzed in the
previous sections. The process is subdivided into four phases that are valid
for SOA compliant Sindrion with Web services or UPnP used as middleware,
without regard to the utilized development environment, programming lan-
guage dependent libraries or target platform specifications. This analysis is a
conceptual inspection of development process performed by a developer.

Now we discuss about the potential for automation and simplification in
each of the phase of development. Steps taken by the user during each phase
of development is summarized and then each of these steps is examined for
possible support:

23

2.2 Desired Support during Development

Initialization Phase

The first step of this phase would be to set up the Environmental charac-
teristics of the Development Environment. The mechanisms provided by the
development environment should be easily identified and accessible by a devel-
oper. For this developer could be assisted with shortcuts to these mechanisms
using special menus and tools on the menu bar and tool bar respectively with
descriptive tool tips revealing its functionality.

The developer starts the process first by creating a project that serves as
a container for UPnP description files and the source code files for the ap-
plication. From the analysis we have inferred that it also should hold the
information of the hardware, and from the user which is persistent and can be
easily accessed throughout the development process. A nice package structure
has to be created by the developer for partitioning the different elements of
the application. The project’s classpath as well has to be configured for access
to the libraries it depends on during compile and runtime. An appropriate
mechanism that performs these steps, viz. to configure the project and collect
the information is required.

An in-depth review of the essential support from the development envi-
ronment is done in the next chapter, as this phase might also perform some
operations which come into picture only after a review of the complete process.

Implementation phase

After creating the necessary basis for development during the initialization
phase the developer starts implementing the device i.e. writing the UPnP
description files and Java source code for the device. The UPnP description
files are written in XML. Although they are human readable, manually writing
or editing these files is rather uncomfortable and needs knowledge of XML and
UPnP concepts. A graphical representation of these files can be a significant
advancement. The Java source files give the implemented functionality of the
device. Analysis shows that there is strong dependency between the UPnP
description files and the Java source files.

Implementation of UPnP Description Files The UPnP descriptions
are split between at least one device description file and one or many service
description files. Service descriptions are referenced in the device description,
so a rather complex relation exists which should be supported by the develop-
ment environment. The UPnP device description and all related UPnP service
descriptions are to be unified into a single model. Because of the hierarchical
structure of the UPnP description files, the model is hierarchical, and can be

24

Analysis of Software Development Process

visualized in a tree data structure.

This unified tree model suits perfectly as basis for development, because the
developer does not need to modify several XML files by hand but has to only
work on the merged structured representation. The development environment
can take advantage of this unified model and provide a GUI to the developer,
thus enabling easy UPnP description modification. Using such a model, all
the UPnP elements like nested devices, services, state variables, actions and
arguments can be added, modified or removed by addressing the correct ele-
ment. For example, an action can be added to a service or an argument can be
removed from an action with simple GUI usage. Another significant advantage
will be the automated control of description editing, and thus the developer is
protected against writing invalid description files. For example, many identi-
fiers should be limited in length for optimal compatibility and the development
environment can automatically shorten too long names or respond with error
messages.

Using this approach, the developer neither needs to know anything about
XML in general, nor the UPnP device and service description files in partic-
ular. The development environment would take care of modifying the XML
description files and provides a higher level of abstraction. The developer can
concentrate on implementing the functionality he desires without being both-
ered by ‘configurational jobs’. This unified description model will benefit the
Sindrion software components too, which can be seen in the next sections.

The development environment should be smart enough to identify these
UPnP description files of the project as the UPnP description is split between
one device description and one more or service description files. This informa-
tion should be supplied to the graphical interface to build the unified model.
Creation and deletion of these files also has to be assisted by development
environment and it should also keep track of these files.

Sindrion Proxy and Applet Development Once the UPnP descrip-
tion files are created the developer has to implement the functionality of the
UPnP device. This involves implementing the functionality of the actions as
so-called action operators and requires read and write access to the UPnP state
variables. Since the access to these elements follows certain recurring coding
patterns as given by the UPnP library, the development environment should
be capable of providing code snippets and insert them into the source file(s) for
the Sindrion Proxy. Note that these snippets can also be used for the Sindrion
Applet since the Sindrion Programming Model unifies the code of proxy and
SCP and automatically generates the applet.

25

2.2 Desired Support during Development

For providing UPnP functionality, the utilized UPnP stack has to access
the UPnP description elements by the names in the XML code. Therefore the
development environment has to provide a mechanism to update this iden-
tifier in the source code if corresponding identifier in the description file is
altered and vice versa. This synchronization mechanism does not only react
to changes on the UPnP description elements, but also to creation or deletion
of these elements.

The benefit of support by the development environment increases even
more in the case of complex description files, because every description ele-
ment has its code representation that can be generated automatically. Note
that these code snippets still have to be ‘filled’ with the actual implementation
of the desired functionality by the developer, but the automated code template
generation means a great deal of development simplification and reduction of
implementation risk. In the following section the development of the third
major Sindrion software component, the Specific Control Point, is explained.

Specific Control Point Development The Specific Control Point is
a UPnP control point designed to provide a Graphical User Interface which
controls the respective Sindrion Proxy it is designed for. Hence, it is neces-
sary that the Specific Control Point utilizes the UPnP stack to support UPnP
control functionality but additionally provide GUI elements for control. The
development environment can provide GUI elements like buttons for trigger-
ing every action of the Sindrion Proxy. Here we can see the direct relation
between Sindrion Proxy and Specific Control Point that can be cared about
by the development environment.

We conclude that there is a strong dependency between the different com-
ponents viz. UPnP description files, Sindrion proxy, Specific Control Point
and Applet. Automatically keeping these sources in sync by the development
environment is a highly desirable. The development environment also can use
specific information that was collected during the Sindrion Proxy development
to simplify Sindrion Proxy access from the Specific Control Point. This sup-
port will lead to the development of reliable code.

Once the desired functionality is implemented, we discuss how the devel-
opment environment can assist the user in next development phase testing.

Testing phase

In Sindrion case, testing required interaction with the embedded Sindrion
Transceiver and makes it a challenging task. We have found out that the
ideal way of testing the software (deploy the version to the target platform

26

Analysis of Software Development Process

and making it accessible) is a tedious process and this process has to be re-
peated if some errors are shown up during this phase. A software component
is desired that emulates the hardware behavior on the development platform
in the testing phase to support debugging by the developer.

A software-simulated hardware environment which seamlessly integrates
into the development is highly desirable for efficiency reasons. This helps the
Sindrion components to be tested inside the development environment without
attaching the Sindrion Transceiver to the system. Additionally, such simula-
tion software can be equipped with debug information outputs that actively
support testing. Such a simulation environment that meets the discussed cri-
teria is readily available. It is implemented as a tool [9] for the software
development process and mimics the behavior of a Sindrion Transceiver.

This existing simulated hardware environment needs to be integrated into
the development environment. The environment needs to supply the necessary
information to the simulation tool by extracting it from the project information
of the corresponding application. Any additional information if required can
be gathered from the user during the process of its creations i.e. during the
initialization process. Analysis of this tool is done in Section 2.3.2 to find
out the possible support the tool requires to integrate it into the development
environment.

Deployment phase

The deployment phase (last phase of the development process) should cre-
ate final executable packages of the implemented and tested code, and finally
should transfer these packages to the hardware platform. The development
environment has to provide a way of transferring the data according to the
selected platform (its specific protocols and data representation). Analysis of
the deployment process gives us the different steps the user has to perform
during this phase.

First the sources have to be converted into a format processed by transceiver
and its platform. And the file system has to be adapted to be compatible with
the hardware platform keeping in mind the hierarchical package structure of
the class files. Since separate archive files are made out of the sources like
Sindrion proxy, Specific Control Point and Sindrion Applet, the development
environment has to categorize the files based on the respective components
and supply the information.

Since the output of the project is more than one deliverable namely proxy,
Specific Control Point and standard applet which makes the use of the libraries

27

2.3 Analysis of Existing Support

more complex than in the case of a typical Java project. It must be made sure
that required libraries are as well transferred to the transceiver. Reducing the
size of these binaries also should be taken into account as they are transferred
through the network, so their size is directly related to actual or virtual com-
munication cost (time, latency, etc.). Only the necessary libraries are to bundle
with each component. The development environment should also categorize
the libraries based on components that use them.

The Sindrion Transceiver is equipped with a flash memory device which
holds all the necessary data and code it needs for its functionality. This flash
memory holds the operating system, static files and dynamic files (application
specific). A Flash tool that can write this data to the memory of the Sindrion
Transceiver memory already exists. This tool has to be supplied with suffi-
cient configuration information to write the appropriate files. Study of this
tool is done in Section 2.3.3, to find possible solutions to integrate it into the
development environment.

In this section we discussed about the support developer needs from the
development environment during the development process of Sindrion Appli-
cations. Providing this kind of support not only helps in designing a Sindrion
Integrated Development Environment, but enable the development of reliable
Sindrion software components in the first place. In next section, a study of ex-
isting support for the development process is analyzed. This analysis helps us
providing enough information to integrate this support into the development
environment.

2.3 Analysis of Existing Support for Sindrion
Application Development

In this section analysis of existing support for the development process is per-
formed. This support is given by stand-alone tools and Eclipse Plug-ins, which
can be integrated into the development environment by providing them with
adequate support. By this analysis we can determine the configuration and set-
up information required by these tools. The development environment should
be designed to provide this information by gathering from the developer or by
extracting it from existing resources.

2.3.1 Existing support for Implementation phase

The support for Implementation phase [10] of the development process is al-
ready implemented as a separate Diploma Thesis at Infineon Technologies AG.
This support comprises three Eclipse Plug-ins viz. Core Plug-in, UPnP De-

28

Analysis of Software Development Process

scription XML Plug-in and UPnP Java Plug-in, which help the user to develop
Java based UPnP applications. Core Plug-in and UPnP Description XML
Plug-in can be jointly be used by the developer to edit and write new, UPnP
device and service description files by utilizing a comfortable GUI. The UPnP
Java plug-in can be used to automatically generate Java source code snippets
with correctly referenced identifiers from UPnP description, based on the Java
UPnP stack. This automatically generated code represents a big part of the
UPnP device implementation code, whereas the application-specific code that
has to be manually implemented by the developer is only a small part. Thus
the UPnP stack related run-time errors are reduced drastically by this ap-
proach as the interdependencies UPnP stack code andUPnP description XML
code are taken care of by this plug-in.

Plug-in usage

An UPnP device description file has to be selected from the GUI menu. Then
the UPnP description XML Plug-in parses the device description and the ser-
vice description files referenced in the selected device description file. A model
is built based on the description files which can be seen in the UPnP descrip-
tion view provided by the plug-in. Figure 2.3 show the UPnP description view
with the model. The model can be modified using a set of actions, defined for
each element of the model which can be triggered from the context menu of
that particular element. The actions allow us to add or remove UPnP element
viz. UPnP device, UPnP Argument, UPnP Action etc. Java source code is
concurrently generated in the Java source file (the path and name of the source
file is hard coded and needs to be a class of predefined package), as it listens
to the UPnP model events and modifies Java code according to these events.
Each model element has special properties which help in code generation and
can also be edited using the Properties view. Thus the Plug-ins can assist the
developer to write error free code during the implementation phase using the
GUI.

Figure 2.3: UPnP Description View

29

2.3 Analysis of Existing Support

The developer using this approach needs to select the description file man-
ually using the GUI and the Sindrion proxy and Specific Control Point file
location is hard coded in the plug-in. As the source code for the applica-
tions is written in Java programming language, the Object-Oriented language
approach persuades us to split the code according to the class and package
hierarchy. There is no support in the present approach to handle multiple
source files for filling with the code snippets. As we have discussed, there is a
strong dependency between the Sindrion Proxy and Specific Control Point as
they well share some classes to provide the desired functionality which arises
the scope to have some common files. Additionally during the code generation
the plug-in needs to access some libraries so the classpath should be updated
before generating the code.

The developer can be additionally supported by the development environ-
ment by supplying this plug-ins with the information regarding the UPnP
description files, Sindrion Proxy files, Specific Control Point files and common
files. The development environment as well can dynamically handle the cre-
ation or deletion of the UPnP description and Java source code files based on
the events. This analysis gives us a scope to integrate these plug-ins into the
development environment by providing them with required data.

In next section we analyze the transceiver simulator to find out possible
solutions for integration.

2.3.2 Sindrion Transceiver Simulator

During the design flow of a Sindrion System it is helpful to simulate the
Transceiver at different points. The simulation should mimic the functionality
of the Transceiver. The Sindrion system is split in several parts to parallelize
the design process. This simulator should allow each of these task groups to
be able to verify their development steps.

Sindrion Transceiver Simulator [9] has been implemented as a tool for
the software development process which can play (simulate) the role of the
transceiver. Its main purpose is to provide all the features of the transceiver
that are used by the applications, so that transceiver and STS can be ex-
changed and this change is transparent to the software components that are
developed. It behaves functionally equivalent to a real Sindrion transceiver,
but it does not simulate the real hardware since this would not be the degree
of abstraction the developers face. Its most prominent features are memory
access via a web server, UPnP basic device capabilities, and interaction via
the Sindrion Control Protocol. The Sindrion Transceiver Simulator as well
can be connected with a simulated peripheral device. This helps to simu-

30

Analysis of Software Development Process

late on changes at its input lines. The Sindrion Transceiver Simulator comes
with a GUI which shows the present status as well as the configuration in-
formation. It has already been outlined that Sindrion is a research project so
Sindrion transceiver hardware as well as the Sindrion concept is under constant
improvement and change. Hence Sindrion Transceiver Simulator allows easy
modification and maintenance corresponding to hardware changes. Sindrion
Transceiver Simulator is based on a plug-in approach to provide the flexibility
to the developer. It consists of a small static core which is extensible by an
arbitrary amount of plug-ins that are dynamically loaded into the STS’s JVM
on start up. These plug-ins are categorized into three logical groups:

• Components simulate mandatory parts of a transceiver.

• Interfaces simulate the transceiver’s hardware interfaces and its firmware.

• Functional Units simulate peripheral devices.

Combined with the static simulator Core these groups forms the STS archi-
tecture. Besides the simulation of the transceiver hardware, STS architecture
provide extended support (like logging, scripting and visualization of internal
STS state) for the developer from core and Functional Units.

The Sindrion Transceiver Simulator can be integrated into the develop-
ment environment by providing required configuration information like UUID
of Basic Device, UUID of Proxy Device, udp Retake, mode, and MAC Ad-
dress. Apart from the configuration details, information regarding the plug-ins
(Components, Interfaces and Functional Units) to be dynamically activated on
start-up should be also provided. This information can be gathered from the
user and stored in the Java project for particular application. The environ-
ment should also support an easy access to the Sindrion Transceiver Simulator
by providing a button or can be started up automatically when the developer
runs the application in debug mode.

2.3.3 Flash Tool

Deployment is the final step of the development process of Sindrion Applica-
tions. We have discussed the necessary steps to be performed in Section 2.2.
A detailed study of the Flash tool is done in this section, to accumulate the
information required by the tool and the possibility for this tool to be inte-
grated into the development environment.

The Sindrion Transceiver is equipped with a flash memory device which
holds all the necessary data and code it needs for its functionality. Contents of
this memory are the Sindrion Operating System as well as static and dynamic
files and global data. The application specific dynamic files are Sindrion Proxy,

31

2.4 Summary

Specific Control Point, Sindrion Applet and other files related to these compo-
nents. These files have to be changed and updated frequently by the developer
whenever he needs to define or change the functionality of the chip by writing
or modifying his service applications. The files that define the communication
via UPnP and the control protocol files are some of the static files that reside
on the flash memory. These files also might be changed within the Transceivers
lifetime. The developer does not deal with the Operating System unless an
update is released or in the case of bugs. So the development environment
does not deal with this part of memory.

The Flash Tool can be used to read, write or erase the files on the memory.
A mechanism which supports the developer by providing an interface to

• edit the connection port settings to connect with the transceiver

• edit the memory settings (memory of the transceiver)

• edit the configuration and global data

• provide the information regarding the files to be written

• trigger the read, write or erase methods of the tool

• connect to and disconnect from the Sindrion Transceiver

will help the user to easily deploy the developed code. This information
should also be stored in the project for further updates of the project to be
written. The environment should as well be bundled with the static files and
provide access for the developer to write these files. The Flash tool can thus
be integrated into the development environment by supplying it with required
information and providing an interface to access its functionalities.

The analysis of the existing support from Eclipse Plug-ins (Core Plug-in,
UPnP description XML Plug-in and UPnP Java Plug-in), Sindrion Transceiver
Simulator and Flash Tool for Implementation, Testing and Deployment phases
respectively, gives an overview on the amplitude of prospects for Integration,
to build a development environment that supports the developer throughout
the development process of Sindrion Applications.

2.4 Summary
In this chapter the overall development process without any support for Sin-
drion applications is described. This analysis of this development process gives
clear view of the tasks performed by the developer. Then the development pro-
cess is categorized into four phases viz. initialization, implementation, testing

32

Analysis of Software Development Process

and deployment which helps us have a clear idea of the sequence of operations
performed by the user. The difficulties that arise during the development pro-
cess of Sindrion Applications are sorted into four general phases a development
process. Each phase describes its role in the overall development process and
highlights the sequence of operations done during that particular phase. This
process is followed by the analysis of existing stand-alone tools that support
particular phases of development keeping in mind to integrate these compo-
nents into the development environment. Since these tools are not integrated,
this analysis helps us to gather the information and support required to inte-
grate them. No technical or eclipse related information is specified here. This
overall analysis of the development process and existing supports is used to
formulate the design considerations in next chapter.

33

2.4 Summary

34

Chapter 3

Design Considerations

The analysis done in the previous chapter helps us to understand, the overall
development process of Sindrion Applications. During the analysis we have
seen problems the developer might face and later discussed the possible ways
of assisting the developer during the process. The conclusions derived justify
the idea of designing an Integrated Development Environment for the devel-
opment of Sindrion Applications. This Integrated Development Environment
should facilitate the developer in each phase of the development process.

Sections 2.2 and 2.3 put forward the key issues to be addressed by the
development environment. These issues can be categorized into two types:

• the Initialization phase of Sindrion Applications is not supported by any
existing tool, so the development environment should devise mechanisms
to support the developer during this phase

• the Implementation phase, Testing phase and Deployment phase are sup-
ported by existing stand alone tools and Eclipse Plug-ins. These tools
and Plug-ins should be integrated into the development environment.

The goal of the development environment is formulated in this chapter by
refining these key issues which help us in designing an ideal Integrated Deve-
lopment Environment.

3.1 Designing mechanisms for support during
Initialization Phase

Section 2.1.1 and Section 2.2 gives an overview of the tasks performed by the
developer during the Initialization phase and possible ways to support the
developer respectively. Firstly, the environment has to be set-up i.e. design
means to give easy access to the developer for utilizing the facilities provided by

35

3.1 Mechanisms for Initialization Phase

the Integrated Development Environment. Providing the developer with spe-
cial menus and tools will help him to use these functionalities. Existing support
for the Implementation phase (Eclipse Plug-ins) also provide smart GUI’s that
help the developer during the Implementation phase for editing and writing
UPnP description files. The corresponding Java code for the UPnP descrip-
tion files is also automatically generated. The developer needs to know the
existence of this feature when he starts creating or editing UPnP description
files or Java source code. These GUI’s should get focused automatically when
the developer attempts to create a new or edit an existing UPnP description
file or corresponding Java source code.

The developer generally starts the development of Sindrion Applications by
creating a new UPnP description file or by editing an already existing one. The
UPnP description files and the Java source code files that belong to the Sindri-
on Application in development then needs to be grouped. Some information
regarding this particular Sindrion Application needs to be gathered from the
developer which is used for set-up or by the forth-coming phases. Writing this
information by the developer to a text file is an age old process (*.ini files for
many projects) which is error-prone and the developer needs to have a knowl-
edge of all the possible configuration settings. The developers can be assisted
by providing a mechanism that performs the task automatically - prompting
the developer only when they must make a decision. This helps the developer
to perform the task without being aware of the underlying mechanism. The
developer should perform the following tasks during the Initialization phase:

• gather information for the set-up and for forth-coming phases.

• store the gathered information.

• set-up the environment

• create new UPnP description files and Java source code files in the
workspace.

• group this information and the files related to the Sindrion Application.

The mechanism which guides the user throughout this process and performs
the required tasks automatically is desired. It would be an add-on, if this
mechanism as well creates the skeleton UPnP description files and Java source
code files. A nice package-structure should be designed for the Sindrion App-
lications, which also could be created in the workspace by this mechanism.

36

Design Considerations

3.2 Bridging the Gap between existing Tools and
Plug-ins

Section 2.3 gives an analysis on the existing support for the development pro-
cess. The usage of these tools becomes quite challenging, complicated and
laborious task for a developer with a minimum or limited knowledge of the
Sindrion or underlying technologies. Apart from the difficulties this thesis
aims at designing an Integrated Development Environment that supports the
user throughout the development process, from Initialization phase to Deploy-
ment Phase. These tools need to be put together and should be connected by
some means which forms a major part of the Integrated Development Envi-
ronment. To integrate these tools into the development environment, firstly
it should be capable of supplying these tools with necessary configuration set-
tings and required information to process their task. These tools as well use
some common information and configuration settings. The shows the presence
of common data that flows throughout the development process.

For example, the developer creates the UPnP description files and Java
source code during the Implementation phase. The testing process needs
knowledge of these files and the dependencies with other sources or libraries for
testing the developed application with existing tool. The deployment process
also needs this knowledge as they have to be written to the hardware platform
along with required libraries. The version compatibility of the hardware and
the software developed can be handled by the development environment as
well. The required libraries which are set during the Initialization, and are
added or updated during the Implementation also need to be transferred to
the hardware platform.

The information related to the hardware platform, libraries, e.t.c. is gath-
ered generally during the Initialization process but as we have seen, is used
during the Implementation, Testing and Deployment phase. A process that
handles this data during the life-cycle of the development process needs to be
designed. This helps to bridge the gap between the existing supports, there-by
bringing in these existing tools into the Integrated Development Environment.

3.3 Managing (Handling) Data and Related In-
formation

The development process of the Sindrion Applications is sorted into four phases
viz. Initialization, Implementation, Testing and Deployment. In this section
we mainly deal with the information flow during the process of development.

37

3.4 Communication between Components

Previous sections show that each of the above phases require some common
information and they mainly depend on the development done in the previous
section.

This shows us a need to have an underlying support plug-in which gathers
data from, development environment, developer and each of the development
phases. There is a possibility that this data changes during the process, so the
plug-in should provide mechanisms to modify the data and as well as update
itself with the data modified during the development process. For example,
the developer should be able to change the libraries or version number during
the development process. Apart from that the plug-in should also update itself
with the changes in the workspace resource that belong to the current appli-
cation. Developer while writing or editing UPnP description need to create
corresponding description files in the workspace. The Java source code devel-
oped may be divided into packages and class files based on the services and
actions of the device. So there is a need to keep track of the resource changes
by this plug-in.

Since this data is used throughout the development process different com-
ponents of the development environment try to access this data periodically
based on their needs. Hence, the modeling of this data is also a key issue as it
directly affects the performance of the Integrated Development Environment.

3.4 Communication between Components
In previous section we have discussed that the plug-in handling data should
keep track of the resource changes in the workspace. Apart from keeping a
track of the resource it also needs to communicate with other components of
the development environment when a resource is changed, created or deleted.
We have also discussed that the Java source code for Sindrion Applications
can be generated automatically using existing support. Since the UPnP de-
scriptions and the Java source code need to be kept synchronous the plug-ins
that perform the respective tasks also need to communicate to each other and
as well communicate with the underlying data plug-in to identify the resources
in the workspace.

The analysis done helps us to find the difficulties faced by the developer in
the development process, which in turn should be supported by the Integrated
Development Environment. In this chapter we mainly derived considerations
(3.5) to be taken care of while designing the plug-ins. These considerations
serve as a base to design a perfect Integrated Development Environment.

38

Design Considerations

3.5 Design Considerations
This section outlines the key issues which aid us during the design, to achieve
the goal of developing an ideal Integrated Development Environment.

• Set-up the Environment of IDE.

• Project Configuration and Creation.

• Acquisition and Storage of Project Information.

• Data Modeling.

• Data Access Mechanisms.

• Track Resource Changes.

• Communication and Integration of the Plug-ins.

3.6 Summary
The design process of a software system should be first started by understand-
ing the customer’s (Sindrion Application developer’s) needs. This is done gen-
erally by analyzing the requirements (functional and non-functional), which
in turn define the scope the project. Based on this analysis design objectives
(specifications or considerations) have to be formulated to satisfy the set of
attributes derived from the analysis. This defines the problem, which should
be solved, to satisfy the needs.

In Section 2.2 we discussed the desired support for the developer during the
overall development process and Section 2.3 gives the existing support for the
development process. In this chapter we have a big picture of the Integrated
Development Environment which assists the user throughout the development
process. This helps us to identify the gaps between existing tools and mecha-
nisms, and coin the specifications for the design process.

Firstly,a mechanism that assists the user to perform the tasks of the ini-
talization phase has to be designed. Then we identified the gaps between the
existing support which should be filled to realize the Integrated Development
Environment, and helps the user to develop the Sindrion Applications with
minimal knowledge of underlying technologies (Sindrion and UPnP). To per-
form the assigned task the plug-ins and tools that comprise the Integrated
Development Environment also need to share some information and pass on
the information to the forth-coming phases. Different implications during this

39

3.6 Summary

communication process are discussed. This chapter mainly formulates the de-
sign considerations (objectives or specifications) based on which the design of
the Integrated Development Environment is done in Chapter (5).

40

Chapter 4

Eclipse Frameworks and
Mechanisms

In Chapter 2 development process of Sindrion Applications was analyzed which
defined the scope of the current project, and the design considerations were
conceived based on this analysis. To realize the IDE which supports the de-
veloper by satisfy these considerations, it should utilize the underlying tech-
nologies and frameworks provided by Eclipse.

The short introduction of the Eclipse IDE in Section 1.3 pointed out that
it is an open source, extensible platform for tool integration and development.
This chapter gives details about the Eclipse platform, its concepts regard-
ing plug-ins, the interfaces for plug-in communication, and data exchange and
various aspects and functionalities of plug-in development which help us to de-
sign and bring in the IDE. Firstly, the plug-in concept is presented regarding
to flexibility and extensibility of the platform. Then crucial interface mech-
anisms, so-called extension points are displayed according to communication
and interaction of platform concepts.

4.1 Plug-in Concept
As mentioned before, the Eclipse platform is structured as a core runtime
engine and a set of additional features that are provided as plug-ins [8]. Plug-
ins add functions to the platform by contributing to pre-defined interfaces,
so-called extension points, which will be described in detail in Sec. 4.3. For
instance, the workbench user interface (UI) is provided by one such plug-in.
The Java functionalities in Eclipse IDE are not activated when the workbench
starts. Instead a platform runtime is activated which can dynamically discover
registered plug-ins and activate them as needed.

41

4.2 Dependencies vs. Extensions

When a developer wants to provide code that extends the platform, he does
this by defining system extensions in his plug-in. The platform offers a well-
defined set of extension points - ‘slots’ where you can hook into the platform
and contribute system behavior. So the plug-in created by a developer is no
different than basic plug-ins, like e.g. the workbench UI, from the platform’s
point of view. In Eclipse a plug-in is an object which can be configured into
the system at system deployment time and which provides any kind of service
within the Eclipse environment. This is the basic assumption for contribut-
ing own components to the platform, thus realizing a tailor-made solution of
a development environment. In addition to this the infrastructure supports
activation and operation of a set of collaborating plug-ins in order to enable
a seamless development environment integrating every required step. Within
a running Eclipse system, a plug-in is represented by an instance of a plug-in
runtime class, which must extend the abstract class “org.eclipse.core.runtime.-
Plugin” for generic plug-in management capabilities.

The deployment of such a plug-in is performed by copying all necessary
resources, including the plug-in runtime class and required libraries, into an
Eclipse plug-in folder. This plug-in can be activated by the Eclipse runtime
when needed, i.e. if some part of the plug-in is required to achieve some func-
tion, e.g. a button is pressed in order to perform a dedicated action. Activation
of a plug-in in this matter means instantiating and initializing its runtime class.
The plug-in runtime class has to do particular processing when the plug-in is
activated or deactivated, for example allocate or release resources. In that
case the activation and deactivation methods (start() and stop(), respectively)
inherited from the class “org.eclipse.core.runtime.Plugin” can be overridden.
If the designer of a plug-in does not need specific activation or deactivation
behavior because of the simplicity of plug-in, a default class automatically pro-
vided by Eclipse can be used.

Besides the plug-in management kernel, also referred to as Eclipse runtime
or Eclipse platform, special core plug-ins are available in every Eclipse environ-
ment and therefore they are activated in each instance of Eclipse. The more
interesting case of non-core plug-in activation will be pointed out now.

4.2 Dependencies vs. Extensions
There are the two kinds of relationships from one plug-in to another:

• Dependency This relationship is characterized by the two roles depen-
dent plug-in and prerequisite plug-in . A dependent plug-in utilizes
functions of the prerequisite plug-in.

42

Eclipse Frameworks and Mechanisms

• Extension The two roles which are important in this relationship are
host plug-in and extending plug-in . The functions of a host plug-in are
extended by the extending plug-in.

A deployed non-core plug-in may be activated in a running Eclipse envi-
ronment if it is directly or indirectly related to a core Eclipse plug-in by the
dependency or the extension relation. So if a deployed plug-in is not related
to a core plug-in via any relationship, it is not available in Eclipse scope of
accessible plug-ins. However, even a related plug-in could remain inactive if no
triggering event, e.g. a user action, occurs. This startup behavior is called lazy
instantiation and prevents unnecessary waste of resources and processing time
by plug-ins which are not actually needed. Next, these relations of (non-core)
plug-ins are looked at more closely in order to understand the structure of the
Eclipse platform including its plug-ins.

Dependency

The dependency of a plug-in to another is described in its manifest file, where
every prerequisite plug-in has to be listed. This dependency comes into effect
in two ways:

1. At compile time of the plug-in: Eclipse extends the class path of a de-
pendent plug-in with the sources of all its prerequisite plug-ins. This
is crucial for a plug-in developer as the dependent plug-in cannot be
compiled without the sources of all prerequisite plug-ins.

2. At runtime: Eclipse takes care for the availability of a prerequisite plug-
in to a dependent plug-in if the latter is activated. This means that the
prerequisite plug-in is activated if it has not been activated yet.

Extension

The operation of equipping a plug-in with any number of processing elements,
namely callback objects, is called extension. This operation is very general:
any plug-in, i.e. the host plug-in, may allow other plug-ins to extend it by
adding callback objects. The extending plug-in defines the extension and
causes a changed behavior of the host plug-in. Normally, this means that
processing elements are added to the host plug-in and are customized by the
extending plug-in. For example, the GUI is managed by a host plug-in and
an extending plug-in can contribute own buttons to the toolbar customizing
them with specialized actions (see Fig. 4.1).

43

4.2 Dependencies vs. Extensions

A single extension can add one or multiple callback objects to the plat-
form, which enable communication between the host and the extending plug-
in. These callback objects are plain Java objects, created and supervised by
the provider and are not automatically managed by Eclipse. Note that al-
though the concept of the callback object is general enough to allow extending
plug-ins to supply their own customized objects, in simpler cases callback
objects supplied by the host plug-in may be used by the extending plug-in as
well, even allowing a parameterization of these objects, what may be sufficient.

Furthermore, the extension concept itself does not dictate that the host
plug-in reveals every detail of its extension in its interface. For example, a
host plug-in may allow extending plug-ins that act as listeners to be informed
of special events. But since they are only listeners these extending plug-ins do
not have the possibility to change the behavior of the host plug-in, as it would
be in the former mentioned GUI example.

As a plug-in may be augmented with different kinds of extensions, each
extension must be specified by a unique set of configurational and behavioral
requirements. Thus, an extensible plug-in offers different types of ‘slots’ that
one or more extensions can plug into. These special slot types are called ex-
tension points, which will be outlined in the next section.

In Figure 4.1 the cooperation of the participants of an extension is shown.
Here, an XML Editor plug-in extends the extension of the Eclipse workbench
by toolbar button items. In this extension, the host plug-in is the Eclipse
workbench user interface, “org.eclipse.ui”, whose toolbar can be extended via
an extension point called “ActionSets”. The extending plug-in is the XML
Editor plug-in, “com.objfac.xml”. For presenting the toolbar buttons to the
user, the XML plug-in uses the “ActionSets” extension point to extend the
workbench UI plug-in by particular toolbar buttons, namely “New XML File”
and “New DTD File”. Note that the extending plug-in defines the extension,
which augments the workbench UI by multiple items. What we also see in
the figure as well are the classes of the extension’s callback objects. These
classes (“OpenXMLWizard” and “OpenDTDWizard”) represent actions, which
are executed when the corresponding button is pressed, i.e. a certain wizard is
opened in both cases.

So far we have learned that any kind of functionality can be contributed
to the runtime platform of Eclipse by plug-ins, which may be related by de-
pendency or extension. Especially the latter makes it necessary that interfaces
for communication and data exchange between plug-ins exist. In the following
section we will now take a closer look at the extension points.

44

Eclipse Frameworks and Mechanisms

Figure 4.1: Participants of a Plug-in Extension. The XML Editor Plug-in
extends the Workbench UI Plug-in via an ActionSet Extension that adds
Buttons to the Toolbar.

4.3 Extension Points
In this section the extension mechanism is presented, which enables a modified
behavior of a host plug-in according to the extension declared by an extending
plug-in. But first, the components will be illustrated by giving an example:

The Host Plug-in

A plug-in that acts in the host role defines the extension point and is extended.
In addition to providing some functionality by its own, this plug-in also co-
ordinates and controls all of "its" extensions, meaning extensions that extend
its extension point. Within the host plug-in’s Eclipse XML file, an extension
point is declared in a corresponding XML element. Here is an example of such
a declaration:

Listing 4.1: A plug-in XML File of an Eclipse Host Plug-in

45

4.3 Extension Points

1 <?xml version="1.0" encoding="UTF -8"?>
2 <?eclipse version="3.0"?>
3 <plugin >
4 <extension -point
5 id="HostExtensionExample"
6 name="Host␣Extension␣Example"
7 schema="schema/ExtensionExample.exsd"
8 />
9 </plugin >

Crucial information included in this file can be found in line 5 and 7 in
listing 4.1. In line 5, the ID of the extension point is specified. Internally, it
will be composed of the plug-in’s ID and the ID given here in order to generate
a fully-qualified unique ID within the Eclipse platform. This is important since
every extending plug-in has to use this ID, e.g. HostPlugin.HostExtension-
Example. In line 7, a schema file is referenced that defines the extension point.
Extending plug-ins have to use this extension point by specifying XML ele-
ments in their particular plug-in definition file (See Listing 4.2) according to
the schema file. The schema file defines the configuration syntax for extensions
to that extension point.

Next, the extending plug-in role is presented that has to be compatible
with the schema specification outlined before.

The Extending Plug-in

A plug-in that acts in the extending role defines the extension typically making
certain aspects of itself available to a host plug-in through the extension and in
addition causing the host plug-in to add certain processing elements, so-called
callback objects, to its environment. An extension is declared by using an
extension XML element in the extending plug-in’s manifest file corresponding
to the schema file defining the host plug-in’s extension point. Listing 4.1
contains an example of an extending plug-in XML file that extends the Host-
ExtensionExample extension point of listing 4.1 by specifying a name and
Java class (see lines 9 and 10).

Listing 4.2: A plug-in XML File of an Eclipse Extending Plug-in
1 <?xml version="1.0" encoding="UTF -8"?>
2 <?eclipse version="3.0"?>
3 <plugin >
4 <extension
5 id="ExtendingExtensionExample"
6 name="Extending␣Extension␣Example"
7 point="HostPlugin.HostExtensionExample">
8 <ExtensionElement
9 class="ExtendingPlugin.ExtendingExtension"

10 name="The␣new␣Extending␣Extension"

46

Eclipse Frameworks and Mechanisms

11 />
12 </extension >
13 </plugin >

Note that the fully-qualified name of the extension point is given in line 7.
The callback objects that are significant for plug-in interoperability, are shown
next.

The Callback Object

In the context of a particular extension, an object that acts in a callback role
is a plain Java object (not being part of an Eclipse plug-in) that is called by
the host plug-in when certain events specified in the corresponding extension
point contract are recognized by the host plug-in, e.g. the extending plug-in has
been detected. This callback object is used for inter-plug-in communication
and data exchange. The interface for callback objects is provided by the host
plug-in and is explained in the documentation of the extension point being
extended. The implementation of callback objects is typically a custom class
that is specific to the particular extension and is furnished by the provider of
the extending plug-in. Because the implementation of the callback object in
the extending plug-in references to the callback interface, which is typically
packaged with the host plug-in, an extending plug-in typically also depends
on the host plug-in.

As the whole extension mechanism is very flexible, it is up to the creator of
the extension point how callback objects are utilized. For example, the XML
attribute “class” references to an actual Java class that can be instantiated,
while the “name” attribute is used for description only. Due to this freedom,
the documentation of an extension point is relevant for the creator of an ex-
tending plug-in.

For example, the host plug-in from our example may define an interface,
e.g. ICallbackObject, for the callback object that makes sure a method called
execute() exists. Now this host plug-in could instantiate the class Extending-
Extension of the extending plug-in when needed, as it is specified in the ex-
tending plug-in XML file (see line 9 in listing 4.2) and call the execute method
of this class after instantiation. This way the extending plug-in contributes an
object according to the host plug-in’s interface, whereas the host plug-in has
full control over this object.

47

4.4 Start-up and Initialization

4.4 Start-up and Initialization
The principle of lazy plug-in activation is very important in a platform

with an open-ended set of plug-ins.

Managing the dependencies is a large part of building an Eclipse applica-
tion. An extension point is an available interconnection endpoint that other
plug-ins may use to provide added functionalities (extensions in Eclipse terms)
and this mechanism plays an important role in lazy activation. Plug-ins are
self-describing and explicitly list the other plug-ins or functions that must be
present for them to operate. The RuntimeŠs job is to resolve these depen-
dencies and knit the plug-ins together. ItŠs interesting to note that these
interdependencies are not there because of Eclipse, but because they are im-
plicit in the code and structure of the plug-ins. Eclipse allows you to make the
dependencies explicit and thus manage them effectively.

A Plug-in should not get activated or started when workbench starts, but
gets started only when the user needs it. This is as well to follow often sited
UI design rule, the screen belong to the user. Therefore a program should not
make changes on the screen that the user did not somehow initiate and this
makes users feel that they are in control of what is happening builds their con-
fidence in the UI and results in a much pleasanter user experience. This rule
is followed by the Eclipse UI, but the underlying principle has been applied
to a much broader scope. In Eclipse, one of the goals is to have the screen,
the CPU, and the memory footprint belong to the user; that is, the CPU
should not be doing things the user did not ask it to do, and memory should
not be bloated with functions that the user may never need. This principle
is enforced in the Eclipse Platform through lazy plug-in activation. Plug-ins
are activated only when their functionality has been explicitly invoked by the
user. In theory, this results in a relatively small start-up time and a memory
footprint that starts small and grows only as the user begins to invoke more
and more functionality. [19]

The behavior of each plug-in is in code, yet the dependencies and services
of a plug-in are declared in a special XML file named plugin.xml. Hence, each
plug-in can be viewed as having a declarative section and a code section.This
structure facilitates lazy-loading of plug-in code on an as-needed basis, thus re-
ducing both the startup time and the memory footprint of Eclipse. On startup,
the plug-in loader scans the plugin.xml file for each plug-in and builds a struc-
ture containing this information and so is the file always available, regardless of
whether a plug-in has started. This allows the platform to present a plug-inŠs
functionality to the user without going through the expense of loading and
activating the code segment. Thus, a plug-in can contribute menus, actions,

48

Eclipse Frameworks and Mechanisms

icons, editors, and so on, without ever being loaded. If the user tries to run an
action or open a UI element associated with that plug-in, only then will the
code for that plug-in be loaded. This structure takes up some memory, but
it allows the loader to find a required plug-in much more quickly and takes
up a lot less space than loading all the code from all the plug-ins all th time. [8]

To get down to specifics, a plug-in can be activated in three ways. [19]

• If a plug-in contributes an executable extension, another plug-in may run
it, causing the plug-in to be automatically loaded.

• If a plug-in exports one of its libraries (JAR files), another plug-in can
reference and instantiate its classes directly. Loading a class belonging
to a plug-in, cause it to be started automatically.

• Finally, a plug-in can be activated explicitly, using the API method
Platform.getPlugin(). This method returns a fully initialized plug-
in instance.

If the plug-in isnŠt meant for wider use and belongs only to the particular
IDE, it can use the org.eclipse.ui.startup extension point to activate your plug-
in as soon as the workbench starts up. The startup extension point allows you
to specify a class that implements the IStartup interface. If you omit the class
attribute from the extension, your Plugin subclass will be used and therefore
must implement IStartup. This class will be loaded in a background thread af-
ter the workbench starts, and its earlyStartup method will be run. As always,
however, your Plugin class will be loaded first, and its startup method will be
called before any other classes are loaded. The earlyStartup method essentially
lets you distinguish eager activation from normal plug-in activation. [20]

Note that even when this extension point is used, the user can always veto
the eager activation from the Workbench > Startup preference page. This
illustrates the general Eclipse principle that the user is always the final arbiter
when conflicting demands on the platform are made. This also means that you
canŠt rely on eager activation in a production environment. You will always
need a fall back strategy when the user decides that your plug-in isnŠt as
important as you thought it was. [20].

4.5 Adapters and Adapter Factories
The Eclipse Platform Runtime provides a mechanism for extending objects
dynamically. Adapter framework is used translating one type of object into a
corresponding object of another type. This allows for new types of objects to
be systematically translated into existing types of objects already known to

49

4.5 Adapters and Adapter Factories

Eclipse. When a user selects elements in one view or editor, other views can
request adapted objects from those selected objects implementing the “org.-
eclipse.core.runtime.IAdaptable” interface.

The objects must implement the IAdaptable interface to participate in the
adapter framework. The IAdaptable interface contains a single method for
translating one type of object into another:

getAdaptter(Class) - Returns an object that is an instance of the given
class and is associated with this object. Returns null, if no such object can
be provided.

Implementers of the IAdaptable interface attempt to provide an object
of the specified type. If they cannot translate themselves, then they call the
adapter manager to see if a factory exists for translating them into the specified
type.

Listing 4.3: Example getAdapter() method implementation.
1 public Object getAdapter(Class adapter) {
2 if(adapter.isInstance(resource))
3 return resource;
4 return Platform.getAdapterManager ()
5 .getAdapter(this , adapter);
6 }

Mechanisms desiring to translate an object passes the desired type, such as
IResource.class, into the getAdapter(...) method, and either obtains an
instance of IResource corresponding to the original object or null indicating
that such a translation is not possible.

Listing 4.4: Using adapters.
1 if (!(object instanceof IAdaptable))
2 return;
3 MyInterface myObject = ((IAdaptable)object)
4 .getAdapter(MyInterface.class);
5 if (myObject == null)
6 return;
7do stuff with myObject

Implementer of “org.eclipse.core.runtime.IAdapterFactory” interface trans-
lates the existing types into new types. For example and adapter factory can be
implemented to translates IResource into IMyItem. The getAdapterList()
method returns an array indicating the types to which this factory can trans-
late, while the getAdapter(...) method performs the translation.

50

Eclipse Frameworks and Mechanisms

Listing 4.5: Adapter factory.
1 public class MyAdapterFactory implements IAdapterFactory {
2 private static Class [] SUPPORTED_TYPES = new Class [] {

IMyItem.class };
3 public Class getAdapterList () {
4 return SUPPORTED_TYPES;
5 }
6 public Object getAdapter(Object object , Class key) {
7 if (IMyItem.class.equals(key)) {
8 MyManager mgr = MyManager.getManager ();
9 IMyItem item = mgr.existingFavoriteFor(object);

10 if (item == null)
11 item = mgr.newFavoriteFor(

object);
12 return item;
13 }
14 return null;
15 }
16 }

Adapter factories must be registered with the adapter manager before they
are used. Typically, a plug-in registers adapters with adapter managers when
it starts up and unregisters them when it shuts down. The following code
registers the adapter with IResource.class as the argument indicating that the
adapter factory can translate from this type to others.

Listing 4.6: Registering adapters
1 myAdapterFactory = new MyAdapterFactory ();
2 IAdapterManager mgr = Platform.getAdapterManager ();
3 mgr.registerAdapters(myAdapterFactory , IResource.class);

The plug-in’s stop() method must be modified to unregister the adapter

Listing 4.7: Unregistering adapters
1 Platform.getAdapterManager ()
2 .unregisterAdapters(myAdapterFactory);
3 myAdapterFactory = null;

Alternatively, the adapter factories can be registered declaratively using the
“org.eclipse.core.runtime.adapters” extension point. Factories registered with
this extension point will not be able to provide adapters until their correspond-
ing plug-in has been activated. The adapters extension point allows plug-ins
to declaratively register adapter factories. This information is used to by the
runtime XML expression language to determine existence of adapters without
causing plug-ins to be loaded. Registration of adapter factories via extension

51

4.6 Summary

point eliminates the need to manually register adapter factories when a plug-in
starts up.

The example in Listing 4.8 declares that this plug-in will provide an adapter
factory that will adapt objects of type IFile to objects of type MyFile.

Listing 4.8: The “org.eclipse.core.runtime.adapters” extension declaration.
1 <extension point="org.eclipse.core.runtime.adapters">
2 <factory
3 class="com.xyz.MyFileAdapterFactory"
4 adaptableType="org.eclipse.core.resources.IFile">
5 <adapter type="com.xyz.MyFile"/>
6 </factory >
7 </extension >

Adapter factories registered using this extension point can be queried us-
ing the method IAdapterManager.hasAdapter, or retrieved using one of the
getAdapter methods on IAdapterFactory. An adapter factory registered with
this extension point does not need to be registered at runtime using IAdapter-
Factory.registerAdapters.

4.6 Summary
In this chapter, the possibilities of extending the Eclipse platform by plugins
have been outlined. These plug-ins can communicate and exchange data using
dedicated interfaces, the so-called extension points. The approach of extension
is a quite general concept in Eclipse and to comprehend its full generality it is
helpful to summarize the types of relationships that may occur between plug-in
objects, extension points, and callback objects. A plug-in may act both as a
host plug-in containing multiple extension points, and as an extending plug-in.
Then an overview of the eclipse mechanisms and extendable frameworks which
we are interested in for design process are discussed emphasizing their benefits.

52

Chapter 5

Design

All design activities interact. A good software design process recognizes
these interactions between the design activities and allows the design to change;
sometimes radically, as various design steps reveal the need. [11]

This chapter deals with the design of development support for Sindrion
applications based on the design considerations formulated in the Section 3.5.
Firstly, we design the Initialization phase of the development and derive mech-
anisms which would help the developer to accomplish the tasks of this phase
with minimum effort. With this support for the Initialization phase, each of
the development phases has an individual support from the development envi-
ronment or from a stand-alone tool. Next step of the design process is to unite
these plug-ins to form the basis an ideal Integrated Development Environment.
For this purpose, first the modeling of Sindrion project has to be done based
on the analysis of the common data between the phases, done in Chapter 2.
Depending on the usage of this common data by the components of the IDE
the access mechanisms have to be derived. The communication between the
components of the IDE is also a key issue, which can be designed only after
figuring out the data that needs to be shared between the plug-ins and deriving
the access mechanisms for the datamodel. Once the data is gathered the mech-
anisms to make the data persistent between the sessions have to be formulated.

Apart from the considerations outlined in Section 3.5 the problems that
arise during the course of design are as well handled, to realize an Integrated
Development Environment that supports the user throughout the development
process of Sindrion Applications.

5.1 Design of Initialization phase
This phase mainly has to deal with the support for the developer and support
required for forth coming phases of the development process. During the ini-

53

5.1 Design of Initialization phase

tialization phase the first task of the developer would be to create a project. A
Sindrion project should encapsulate the UPnP description files and Java source
code for a particular Sindrion Application. The UPnP description files are the
device and service description files that describe the device and services offered
by the device. The Java source code corresponds to the Sindrion Proxy, SCP
and Sindrion Applet. The Eclipse plug-ins are generally designed for a partic-
ular set of projects, for example the JDT can support only the Java projects
but not the C projects. As the development process of Sindrion Applications
include mainly XML descriptions and Java code, the project will be basically
a Java project with additional Sindrion specific information (XML data does
not need any compilation and Java code needs to be compiled). Hence, the
projects need to be configured so that they can be distinguished from pure
Java projects and can be identified by respective plug-ins. The developers also
need to associate the libraries that support the development of these applica-
tions.

Firstly, we design mechanisms to identify the project and then mechanisms
that configure the project with Sindrion and Java specific information. As
we have discussed, the project contains XML files and Java source files that
correspond to three different components of a Sindrion application. So we also
need to focus on the organization of these files in the project.

5.1.1 Identification of a Sindrion project

This section aims at providing mechanisms, which allow the plug-ins providing
Java and Sindrion specific functionality to identify the Sindrion projects. A
Java project contains source code and related files for building a Java program.
It has an associated Java builder that can incrementally compile Java source
files as they are changed. A Java project also maintains a model of its contents.
This model includes information about the type hierarchy, references and dec-
larations of Java elements. This information is constantly updated as the user
changes the Java source code. The Java builder builds Java programs using a
compiler that implements the Java Language Specification. The Java builder
can build programs incrementally as individual Java files are saved. Problems
detected by the compiler are classified as either warnings or errors. [12] The
Sindrion project will be a wrapper for a basic Java project as it envelopes the
Sindrion project related information along with the Java project. The Java
projects in the workspace are identified using Java Project Nature.

54

Design

Nature

Project natures act as tags on a project to indicate that a certain tool is used
to operate on that project. They can also be used to distinguish projects that a
particular plug-in is interested in, from the rest of the projects in the workspace.

The “org.eclipse.jdt.core.javanature” is added to the project description1

of the projects in the workspace to be identified as Java projects. The Plug-
in projects in the workspace are identified by “org.eclipse.pde.PluginNature”.
When a nature is added to a project for the first time, the nature’s configure
method is called. When the nature is removed from the project, the deconfig-
ure method is called. The natures lifecycle methods configure and deconfigure
can be used to associate or disassociate additional attributes, such as builders,
with the project. For example, the “org.eclipse.jdt.core.javanature” adds the
Java builder to the Java projects in the workspace and and “org.eclipse.pde.-
PluginNature” adds the Manifest and Schema builders to the plug-in projects.

The Sindrion projects in the workspace need to be associated with a Sindri-
on specific nature tag, to get identified by the plug-ins interested in Sindrion
Projects. Hence, the ‘sindrionNature’ is be defined and associated with the
Sindrion projects in the workspace, to manage their association with Sindrion
specific plug-ins. The configuration mechanism, as well can be used to asso-
ciate Sindrion project builders that may come-up during the design process.

Since the Sindrion project envelopes a basic Java project and Sindrion
specific project details, ‘sindrionNature’ should have the “org.eclipse.jdt.core.-
javanature” as a ‘requires-nature’2 constraint.

5.1.2 Managing Project Information

The Sindrion Applications are developed specifically for a specific end device,
and also depend on the platform version of the Sindrion Transceiver they
are developed for (as the Sindrion research project is currently in develop-
ment phase hardware and the operating system of the transceiver may vary
to enhance the behavior). This information is utilized by different phases of
development process, for example the libraries associated with project will
depend on the version, the transceiver simulator should behave according to
the transceiver platform the applications are designed for and the deployment
process needs to transfer these applications to specific area of the transceiver’s
memory. Since this data is used by different phases of the development process

1Project description contains the meta-data required to define a project.
2The ‘requires-nature’ constraint specifies a dependency on another nature. When a

nature is added to a project, all required natures must also be added.

55

5.1 Design of Initialization phase

it should be attached to the project rather than the plug-in. This information
also needs to be cross session persistent.

Information is gathered from the user while creating the Sindrion project
and can be stored in a text file in a project. But the development environment
cannot react when this data is changed without its knowledge (modification of
these files outside the development environment is possible). Upon a change
of this information the development environment should suggest if this change
is compatible or could lead to errors. This can be done by associating this
information to the project using persistent properties. Eclipse provides this
persistent property mechanism to associate information with resources in the
workspace, to which they belong. This information can be modified or seen by
using so called preference pages. A Sindrion preference page is created which
displays this information and provides ways to modify them without leading
to errors.

5.1.3 Design of project Workspace

The mechanisms designed in the previous sections help the Sindrion projects
to be identified by other plug-ins that provide support for development, and
associate required information with the project. The Sindrion project designed
will be a container for the code developed, that provides the functionality of
Sindrion Proxy, Specific Control Point and Sindrion Applet. Java package is a
mechanism for organizing Java classes into name spaces. Packages are typically
used to organize classes belonging to the same category or providing similar
functionality. Hence the Sindrion workspace needs to be designed that will
help the user to distinguish and separate the code that contributes Sindrion
components. This can be achieved by designing a nice package structure that
will classify the workspace with respect to the Sindrion components.

Each project should have a main ‘sindrion’ package which holds the re-
sources belonging to a Sindrion Application. This package can be subclassified
into three packages that correspond to the three components, but analysis
has shown the presence of some Java source files that provide functionality
to proxy, SCP and applet as it is generated from the other two components.
Hence the main package is classified in four subpackages namely ‘proxy’, ‘scp’,
‘transceiver’ and ‘common’. The resources that contribute the functionality
of the proxy are Java source files, the XML description files and files that
contribute the presentation page. The XML files are assigned with proxy as
the proxy code is generated based on the XML description files and the SCP
code is generated to provide the GUI to control the proxy. Therefore, the
‘proxy’ package is further subdivided into ‘docroot’ and ‘xml’ packages. The

56

Design

docroot package contains the files that contribute the presentation page for
the proxy and the xml package contains UPnP description files (UPnP device
description and one or more UPnP device description files). The scp package
contains the Java source files that contribute the functionality of the proxy.
We know that the Sindrion Transceiver also acts as a webserver. The Sindrion
Applet is generally embedded in the presentation page of the transceiver and
thus can be accessed by other control points in the UPnP network. The files
that provide this functionality viz. presentation page and applet classes are
put in the ‘transceiver package’. The ‘common’ package holds the Java source
files that are common for the three components and hence can be associated
with three components. This partitioning of the workspace gives a clear image
of the resources that form a Sindrion Application. The Sindrion project with
the designed package structure can be as shown in Figure 5.1.

Figure 5.1: Sindrion Project

The phases of the development process that follow the initialization phase,
also need the information regarding the location of these files viz. implementa-
tion phase needs create, edit or delete UPnP description files and Java source
code files, testing phase also requires the location of the UPnP description
files and Java source code developed during the Implementation phase, and

57

5.1 Design of Initialization phase

the deployment phases has to bundle these resources with necessary libraries
and transfer them to the transceiver. This package structure also serves the
above mentioned purpose and more about this topic is discussed in Section 5.2.

In this section the design of the Initialization phase has been done. Each
Sindrion project is now with a Sindrion nature which helps the plug-ins in-
terested in Sindrion projects to identify them. For example, the plug-ins that
support the user can check using this nature, if the particular project is a
Sindrion project. The project as well is attached with the information gath-
ered from the user during the initialization phase using the persistent property
mechanism. This information is used during the development process to check
the compatibility and provide support for particular platform version (of the
transceiver). The designed package structure helps the user to identify the
resources belonging to different Sindrion components within a project.

In next section we deal with design of a mechanism called wizard that helps
the developer in creating the Sindrion project. Apart form creating the project
the development environment can as well assist the developer by providing the
skeleton package structure with basic data viz. UPnP description files, Java
source code files, presentation pages for proxy and transceiver e.t.c.

5.1.4 Sindrion Project Creation support

The developer needs to perform the tasks designed above in a step by step
process. First create a project, add Java and ‘sindrionNature’ to the project,
add the library path to the classpath of the project, and then create the pack-
age structure and resource files. A mechanism that assists the developer to
do these operations correctly is required. Eclipse wizards can provide special
assistance for the developer for this purpose. Wizards automate repetitive
and complex tasks through a user dialog. In Eclipse, wizards can create, im-
port and export resources (files, folders and projects). The Eclipse platform
contains many wizards ans as well makes it easy to write new “customized”
wizards. A well designed wizard can considerably simplify developer tasks and
increase the productivity.

A wizard is basically a series of screens or dialogue boxes that users pass
through till the task is completed. The user generally needs to enter informa-
tion, either by making selections or filling in the fields. Each of these fields is
filled in with default values when the screen pops up, to assist the user. Af-
ter entering the required data, user navigates through the screens and finally
finishes the wizard which completes the task. Generally, the wizard should
not be broken down into too many screens. This annoys the developer if they
start feeling that the process is too long. On each screen the wizard should

58

Design

provide the purpose of the particular screen. The user as well should be pro-
vided with cancel option on every screen to exit the process without any effect.

The workbench defines extension points for wizards that create new re-
sources, import resources or export resources. The “org.eclipse.ui.new-
Wizards” extension point provides mechanism to add a wizard to the File
> New menu. Since, the Sindrion Project Creation Wizard also creates a new
project it has to extend this extension point. We have discussed that, every
Sindrion project encapsulates a normal Java project along with Sindrion spe-
cific data. Eclipse provides a wizard to create new Java project. One way to
design the Sindrion wizard could be extending the Java project creation wiz-
ard. Eclipse generally separates classes into two categories: public API and
“for internal use only”. The classes that contribute this wizard come into the
category “for internal use only” and are internal to the plug-in that provides
these mechanisms. These classes should not be referenced outside the plug-in,
as may they may change drastically between different version of Eclipse. We
will not extend these classes but create a new wizard.

The Sindrion project creation wizard extends the “org.eclipse.ui.new-
Wizards” extension point and firstly it creates a Sindrion + Java project. The
developer first needs to enter the name of the Sindrion project, the wizard will
create. This wizard automatically scans the projects in the workbench and fills
the field with text “SindrionProject + an integer” (so that the project with a
same name does not exist in workspace). Then the user can change UUID,
source package name and platform version, which are already having a default
value provided by wizard. This wizard as well responds to changes and user
actions. The data entered by the developer on the wizard page can have a
number of errors by wrong choices or entering invalid values. The developer
is informed of this error by giving a message, and when the developer corrects
the error message the error message needs to be cleared.

The navigation buttons on a wizard page are managed using the JFace
wizard support. Wizards with more than one page have Back, Next, Finish
and Cancel buttons on each page. The Next is enabled for all but the last
page and Back for all pages but the first. These buttons are controlled by
implementing methods to check if the developer has selected/entered all the
required information on the current page (to enable/disable Next button) or
when the wizard can be completed (to enable/disable Finish button). Once
the contents on the first page of the Sindrion wizard page are filled the Next
and the Finish buttons are enabled. The developer can press Finish to com-
plete the wizard or press the Next to go to second page of the wizard where he
can configure the Java build settings and select the UPnP description files if
already available. The wizard on finish creates the Sindrion project with name

59

5.2 Modelling the Sindrion project

specified.

On completion (after pressing the Finish button) of the wizard, it as well
creates the predefined package structure for the Sindrion applications which
enables the Sindrion application to identify the location of Sindrion files. This
package structure is designed in a way so that all the Sindrion plug-ins can
access the DataModel created by parsing the workspace. This datamodel is
explained in detail in Section 5.2.

This section described the design of the Sindrion project creation wizard,
its functionalities viz. project creation, handling user data, creating package
structures, prompt to switch the perspective. Next section deals with design
of Sindrion project workspace and its role in the Sindrion Application devel-
opment, design, creation and lifecycle during an eclipse session.

5.2 Modelling the Sindrion project
The analysis of the development process done in Chapter 2 shows that the
phases of the development process depend on the contributions from the pre-
vious phases of development. They access this data and some times need to
modify or provide with new information. For example, the platform version is
set during the initialization phases and is used by other phases of the develop-
ment process. So is with the components implemented during the implemen-
tation process and the testing and deployment process need to find these files
in the workspace. This shows the flow of common data between the phases of
development process. Since there is no current support from the development
process to maintain this data or pass it to forthcoming phases, the developer
needs to perform these actions manually. If a plug-in wants to find a proxy
file it cannot do this without identifying this file. Apart from this developer
also needs to the track the dependencies between the resources that belong
to the different components of the development process, as we have seen the
proxy Java source code is generated based on the UPnP description files and
SCP Java source files in turn depend on the proxy source code. This shows
the common data in the development environment which needs to be modeled.

Eclipse environment provided a Java model but does not suffice the needs in
the context of Sindrion development environment, as a proxy Java class is not
equal to a SCP Java class and this not reflected in the Java model. This shows
the need to have an own project model which reflects the dependencies between
different resources of a Sindrion project, and thus help to track the intrinsic
dependencies. One solution for this would be to design access mechanism using
static references to the resources with predefined naming conventions. This is

60

Design

not a flexible solution, as Sindrion is a research project and with a change in the
project structure the access mechanisms needs to be redesigned for each of the
phase. Hence we now design a datamodel independent of the project structure.

A good datamodel is foundational to allow users to access the right data
quickly and easily.

Eclipse SDK comes with some predefined models viz. Workspace Model,
Java Model, e.t.c. Workspace Model displays a resource based model as shown
in the Resource Navigator. Java Model is the set of classes that model the
objects associated with creating, editing, and building a Java program. The
classes that belong to the Java model implement Java specific behavior of re-
sources and further decompose Java resources into model elements. JDT as
well defines the classes that model the elements that compose a Java program.
The JDT uses an in-memory object model to represent the structure of a Java
program derived from the project’s class path. The Java model is hierarchical.
Manipulating Java elements is similar to manipulating resource objects. The
Java elements are actually the handles to some underlying model objects.
Java elements comprise of elements that represent the root Java element, cor-
responding to the workspace (the parent of all projects with the Java nature),
element representing Java project in workspace (child of Java model) and, fur-
ther elements representing Java packages and program contents. Generally
when a Java project is created from a simple project, JavaCore will check if
the project is configured with Java nature. The Java nature is added when a
“New Java Project” is created which helps the JDT plug-in to identify it as a
Java project.

Plug-ins can configure the projects with Java behavior in addition to their
own behavior by adding Java project nature and their own custom natures or
behavior. Sindrion project is configured with Java nature in addition to the
Sindrion project nature, for the plug-ins to recognize the Sindrion projects and
perform corresponding actions. For example, the plug-in that builds the Sin-
drion model needs to filter the Sindrion projects from the workspace. In next
sections we design the Sindrion datamodel, and discuss how other plug-ins can
access, visualize the datamodel.

5.2.1 Sindrion DataModel

The Sindrion model designed should hold the common data in the development
environment. This includes the resources that correspond to the Sindrion com-
ponents (proxy, SCP and applet). The elements of the model should represent
these components and their resources. Hence the model elements can be cate-
gorized into three types. Therefore it is a set of classes that model the objects

61

5.2 Modelling the Sindrion project

associated to Sindrion applications. This model also should maintain a hi-
erarchical in-memory object model to represent the structure of a Sindrion
Application. Firstly, the Sindrion model should have a root node that repre-
sents the root of the workspace. This node is the parent of all the Sindrion
Java projects in the workspace (all projects with Sindrion and Java natures).
Then each of the Sindrion project is represented with a ‘SidrionProject’ ele-
ment. These projects can be identified in the workspace using the ‘Sindrion
Nature’ associated with the projects. The contents of these projects viz. Sin-
drion Proxy, Specific Control Point, e.t.c are of importance for the plug-ins
that work with Sindrion Applications. So these contents also have to be as
well automatically identified by the mechanism and modeled.The contents of
the UPnP description files and Java source files are not modeled by the Sin-
drion datamodel as UPnP XML plug-in and UPnP Java plug-in model these
resources and assist the developer in creating the xml description and auto-
matically generate the Java code. These are the only plug-ins interested in
contents of the xml and Java resources.

Sindrion Proxy resources include mainly the XML UPnP description files
(one Device description and one or more Service Description files) and Proxy
files. The proxy files can be categorized into two types viz. Sindrion Files and
Web files. Sindrion files comprise Java source code files for Sindrion Proxy
and other common files for Sindrion Proxy and Specific Control Point. The
Web files comprise of presentation page and associated files as each proxy has
a presentation page and other files associated with it. Sindrion Proxy has li-
braries different from other parts of the application. As the Sindrion Proxy is
transferred over the network the libraries are packed individually for each part
of application. These library paths are also to be attached to the proxy node.
Each Sindrion Proxy also has a UUID (Universally Unique Identifier) which
also has to be attached to the proxy node.

Specific Control Point resources include Sindrion files and classpath entries
for SCP libraries. Sindrion files include Java source code files for Specific Con-
trol Point and common files for both proxy and SCP.

The third category is the Sindrion web files, which contains Web Files (pre-
sentation page and associated files for Sindrion Transceiver) and Applet. The
Applet node includes Java source code files which represent the Sindrion Ap-
plet code. Each applet also has a node for the classpath entries for the libraries
specific to Sindrion Applet. The datamodel of the project will be as shown in
the Figure 5.2.

This datamodel helps to categorize the resources of a Sindrion project and
therefore track the dependencies between the resources. The plug-ins can get

62

Design

Figure 5.2: Sindrion DataModel

hold of the project and then each of the resources. For example, when a proxy
file is opened in an editor the UPnP description view which listens to the editor
input can check if this Java source file is a proxy file. If it is proxy file it can
access the UPnP description files and generate its model which helps to create
or edit description files. In next section we discuss the mechanisms that build
this model.

5.2.2 Synchronization with Eclipse workspace

The Sindrion DataModel designed contains elements that represent a Sindri-
on project and its resources in the workspace. The Sindrion projects in the
workspace can be identified with the nature, but to identify the resource we
need to derive some mechanism.

The resources in the workspace can be identified by marking them with
the persistent properties. Each resource can be tagged with a cross session
persistent properties, which reflects its role in Sindrion project. Marking these
resources is also good way when the Sindrion wizard creates the project in the

63

5.2 Modelling the Sindrion project

workspace. But when the developer wants to add a resource to an existing
Sindrion project, this resource has to be manually tagged with this persistent
property based on the type of the file. IDE can provide some actions for this
purpose, but still it is error prone.

One more way is to divide the resources in a project into packages that rep-
resent the parts of the application respectively. Design of the Sindrion project
workspace done in Section 5.1.3 serves this purpose. The Sindrion projects
should adhere to a Package Structure which allows these packages to be rec-
ognized as corresponding elements of the application. The Sindrion project
creation wizard creates this package structure along with skeleton resources.
This helps the developers a lot as they just have to modify the existing skele-
ton resources and then add necessary additional Java source files or UPnP
description files.

The elements of the DataModel hold a reference to the respective resource
in the workspace. This helps in the design the access mechanisms discussed
in forthcoming section. Now a mapping between the elements in the data-
model and the Sindrion project has to be done. The proxy node in the model
represents the package proxy. The UUID of the proxy is given by the wizard
when creating the project using wizard. The Proxy Files child has two chil-
dren Sindrion Files and Web Files. The Sindrion files are the Java source code
files in proxy package and common package of the project. The proxy main
class should be named as ‘ProxyImpl.java’ to differentiate from other source
code classes. The Web Files represent the docroot package and it contents are
added here viz. the presentation page of proxy and its resources. The UPnP
description contains the description files from xml package. The UPnP device
description file should be named as ‘device_description.xml’ and UPnP ser-
vice description files should be named as ‘service_description*.xml’, as there
can be more than one service description files, to differentiate between the
resources. The ClassPath entries contain paths to all libraries the proxy uses.

The Specific Control Point elements represent the Specific Control Point
package, which contains Sindrion Files element and ClassPath entries. The
Source Files contains elements representing the Java source code files for proxy.
The SCP main class should be named as ‘SCPImpl.java’. The ClassPath
entries contain the library paths on which the SCP depends on.

The Sindrion Web Files package represents the resources that reside on the
transceiver viz. presentation page of the transceiver and applet. These files
can be access as each transceiver also acts as a webserver. The Web Files child
contains the file representing the presentation page and the Applet element
contains the source files for Applet component. The Java source code file for
proxy should be named as ‘Applet.java’. The packages and resource files have

64

Design

to follow these naming conventions strictly, for these resources to get identified
and modeled.

Building Sindrion DataModel

Sindrion datamodel should gathers the required data from the workspace and
build its own model to support the Sindrion plug-ins. A mechanism that builds
this model from the workspace model or Java model is devised. Firstly, the
workspace handle is obtained from the ‘ResourcePlugin’. The IJavaModel that
represents the root Java element, corresponding to the workspace is obtained
from JavaCore using the workspace handle. Sindrion model uses the single-
ton design pattern, to restrict instantiation of the class to one ‘object’. This
is used generally to coordinate the actions across the system. This root Java
element that represents the workspace has all projects with Java nature, as
children (IJavaProject). Then each of these Java projects is checked to see
it the project is configured with ‘sindrionNature’. For each of the Sindrion
project in the workspace a ‘SindrionProject’ node is added to the workspace
node, and this project is parsed to add the elements corresponding to the re-
sources in the project. This mechanism is called in the start method of the
Initialization plug-in.

In this section we have designed the Sindrion DataModel and mechanism
that builds the Sindrion model on start-up of the Initialization plug-in. This
helps other plug-ins to access the Sindrion resources in the workspace auto-
matically.

Workspace Listener

The developer might create, delete or edit resources in the workspace during
the development process. Sindrion DataModel should react to these changes
in the workspace and update itself. The developer might delete the exist-
ing UPnP service and device descriptions and copy some existing description
files into workspace. The Sindrion DataModel should update accordingly by
deleting or adding its elements that represent these resources. The Eclipse
system generates resource change events indicating, for example, the files and
folders that have been added, modified, and removed during the course of op-
eration. Interested objects can subscribe to these events and take actions to
keep themselves synchronized with Eclipse. [8]

Eclipse uses the ‘org.eclipse.core.resources.IResourceChageListener’ inter-
face to notify registered listeners when a resource has changed. The Sindri-
on DataModel can use these notification to synchronize itself with Eclipse,
by registering ‘SindrionWorkspaceListener’ (implements IResourceChangeLis-
tener) for resource change events on start-up of the plug-in. In addition, Sin-
drionWorkspaceListener should as well deregister on plug-in shutdown so that

65

5.2 Modelling the Sindrion project

the listener is no longer notified of resource change events.

Eclipse provides several ‘IResourceChangeEvent’ constants that can be
used in combination to specify when an interested object should be notified
of resource changes like: POST_CHANGE, PRE_CLOSE, PRE_DELETE,
e.t.c. It also specifies several methods to query its state:

getDelta() Returns a resource delta, rooted at the workspace, describ-
ing the set of changes that happened to resources in the workspace.

getType() Returns the type of event being reported.

getResource() Returns the resource in question.

Each individual change is encoded as an instance of a resource delta that is
represented by the IResourceDelta interface. Eclipse provides several different
constants that can be used in combination to identify the resource deltas han-
dled by the system like: CHANGED, OPEN, DESCRIPTION, REMOVED,
REPLACED, TYPE, e.t.c. The ‘IResourceDelta’ also defined methods to find
the kind of resource delta, project-relative path of the resource delta, or a
handle for the affected resource.

SindrionWorkspaceListener deletes the corresponding Sindrion projects from
the model on PRE_DELETE, and PRE_CLOSE events. On a POST_CHANGE
event,the resource delta is requested and handled to the ‘IResourceDeltaVisi-
tor’. The visit() method is called for each resource change in the resource
delta. The visitor uses a return value to indicate whether deltas for child re-
sources should be visited. The delta has a REPLACED flag if the resource
is renamed; hence the reference to the IResource is updated in the Sindrion
element. When delta has ADDED or REMOVED flag the corresponding Sin-
drion element is added to or removed from the model. When the delta has
OPEN flag, the particular Sindrion project is added to model and is parsed
for its contents to be added. These listeners and visitors help the Sindrion
DataModel to be synchronous with Eclipse.

In this section we had designed mechanisms to synchronize the DataModel
with Eclipse. The model is built on start-up and listens to workspace events
and updates itself. The plug-ins can thus depend on the model to access the
Sindrion projects and resources in the workspace which gets automatically
synchronized with Eclipse. Next section designs how Sindrion model commu-
nicates the changes in its model to other interested plug-ins.

66

Design

5.2.3 Eventing Mechanism

The plug-ins that depend on the Sindrion DataModel, need to be notified of
the changes on the model. The Sindrion DataModel extends the ‘Default-
TreeModel’ class, which provides the default tree implementation methods
along with the eventing mechanism. The model can fire events when a tree
node is inserted, removed,and changed. Interested objects should implement
the ‘TreeModelListener’ to be notified of the events on the Sindrion Data-
Model. For example, the UPnP XML plug-in gets notified of the changes in
the Sindrion DataModel, if it is accessing the resources of the Sindrion project
that got changed. The Sindrion Model View also needs to get notified of the
changes in the model to update the view with new elements or remove the
deleted elements.

In this section we designed the Sindrion DataModel that acts as a basis
for the Integrated Development Environment, by gathering the information
from each phase of the development process, and user and passing in on to
the forthcoming phases. Mechanisms that provide easy access to the plug-ins
interested in Sindrion data are designed. Two views, one that displays the Sin-
drion DataModel and the second one for testing purpose are as well designed.
Functionalities that keep the DataModel in sync with the workspace are also
designed. In next section we give an overview of the complete Sindrion In-
tegrated Development Environment and solve the issues that come up when
looking at a big picture of the development environment.

5.2.4 Accessing DataModel

Plug-ins that provide services for the developer during the development of
Sindrion applications need to access the Sindrion model, for example the Java
UPnP plug-in needs to know the corresponding UPnP description files of the
application to generate the Java application specific source code snippets. The
UPnP XML plug-in as well need to get hold of the UPnP service description
files corresponding to a UPnP device description while adding services to the
UPnP devices.

Eclipse provides adapter framework (Section 4.5) which supply generic fa-
cilities for mapping objects of one type to objects of another type. This mecha-
nism is used throughout the Eclipse Platform to associate behavior with objects
across plug-in boundaries. The Sindrion elements implement the IAdaptable
interface to participate in the adapter framework. The IAdaptable inter-
face contains a single getAdapter(class) method for translating one type of
object into another. Initialization plug-in on start-up, registers the ‘Sindrion-
AdapterFactory’ that translates the objects of ‘IResource.class’ and ‘IJavaEle-

67

5.2 Modelling the Sindrion project

ment.class’ to Sindrion elements. When the adapter factory gets a request to
translate the objects of the ‘IResource.class’ and ‘IJavaElement.class’ it parses
the Sindrion datamodel to check if it can supply an adapter from the Sindrion
model. The elements in the Sindrion model can also be adapted to the objects
of type ‘IResource.class’ and ‘IJavaElement.class’.

Each Sindrion model element representing a resource in workspace when
created, holds a reference to the ‘IResource’ of the workspace elements. The
adapter factory uses this reference to translate the elements from one type to
other. For example, when a resource is opened in a editor the UPnP Core plug-
in tries to find a Sindrion adapter for the resource currently open in the editor.
If the input has a Sindrion adapter it automatically can query the Sindrion
model for the Sindrion project to which the resource belongs to. The UPnP
XML plug-in and the UPnP Java plug-in get reference to the description and
Java source code files, from the Sindrion project. The developer just needs
to open a resource and the IDE checks if this resource belongs to a Sindrion
project. If the resource belongs to a Sindrion project, the UPnP description
view is automatically populated with the UPnP description files to assist in
developing the application. The developer can use this UPnP description view
to develop this particular Sindrion application.

The Sindrion elements as well are translated into existing types viz. IRe-
source.class’ or ‘IJavaElement.class’. This can be done by calling the getAdapter(class)
on the element inherited from IAdaptable. Thus the Sindrion elements can be
dynamically from and to the exiting types, which makes the access mechanism
really useful in the development environment. Since the model has mechanism
to synchronize with Eclipse the plug-ins can directly access datamodel.

Hence the Sindrion datamodel provides mechanism for other plug-ins to
access its model using the adapter framework from eclipse, which facilitates
the plug-ins to automatically get holds of the required Sindrion resources,
keeping this job transparent to the user. With any changes in the Sindrion
project structure the mechanism that builds the model only should be changed,
thus keeping the workspace transparent to other plug-ins. Figure 5.3 shows the
role of datamodel. Next section describes a view provided by the development
environment for the Sindrion DataModel.

5.2.5 Visualization of DataModel

Eclipse plug-ins add a new Eclipse view or enhance and existing Eclipse view
as a way to provide information to the user. It typically used to navigate a
hierarchy of information, open an editor, or display properties for the active
editor. The development environment is added with two new views ‘Sindrion

68

Design

Figure 5.3: Role of Sindrion DataModel

Explorer’ and ‘Sindrion Adapter View’ which are designed in the following
subsections.

Sindrion Explorer

The Sindrion Explorer allows to take a look at the Sindrion projects in the
workspace. It shows the logical structure of the Sindrion projects as they
modeled in the Sindrion DataModel. In a way the content of the view is the
Sindrion DataModel. Apart from visualizing the datamodel the view can also
be used to change the properties associated with the elements. For example,
the proxy node of each Sindrion Application has a UUID 3 associated with it.
This is gathered from the user while creating the Sindrion project. Views can
also have context menus populated by actions targeted at the view or selected
objects within the view. The actions in these context menus for DataModel
View can perform tasks like opening the resource associated with the particular
Sindrion model element selected, deploying the Proxy/SCP code to the Sindri-
on Transceiver, or start the Proxy/SCP application for testing purpose. This
explorer is an added value to the environment but still the user needs to access
the projects Java related properties through the Package Explorer.

Sindrion Adapter View

The Sindrion adapter view is designed for testing the Sindrion DataModel. The
DataModel parses the Java Model and builds its own model by identifying the
Sindrion projects in the workspace. During the development of the IDE the
developer might create new resources in the workspace and delete some exist-

3Universally Unique Identifier

69

5.3 Set-up the Environment

ing resources. This view allows the developer to test if a resource is a Sindrion
element or not. This view requests a selection service from the Workbench
Window 4. The returned selection service is added with a selection listener
with partID for Package Explorer (“org.eclipse.jdt.ui.PackageExplorer”), which
is notified when selection changes in Package Explorer. The selected object in
the Package Explorer is checked if it can be adapted to the Sindrion Element
and the result is displayed in the view. This helps the developer to see if the
selected object is a Sindrion Element and what does it represent.

This section described the two new views added to the development en-
vironment which assist the user in viewing, testing, and performing actions
on the Sindrion DataModel. The Sindrion DataModel view and the Sindrion
Adapter View should be added to the shortcut Window > Show View, which
makes them easily accessible to the developer.

5.3 Set-up the Environment
During the development process the developer needs to have a knowledge of
the mechanisms provided by this Integrated Development Environment. Even
if the developer has an idea of these, figuring out how to access these mecha-
nisms is also significant issue. The development environment can make these
mechanisms easily accessible to the developer by providing shortcutss .

In addition to the views and editors that make up the bulk of the dis-
play area, Eclipse also includes a large number of menus (Top-level menus and
context menus) and toolbar buttons that represent the various commands or
actions available in the system. [8] Eclipse as well gives some limited control
to customize the items that appear on the toolbar and main menu bar. The
commands are a part of the command groups known as action sets that can be
enabled and disabled using filters. A top-level menu is great way to promote
a new product that has been installed in Eclipse IDE, providing a good way
for a potential customer to become accustomed to new functionality. On the
other hand menu bar would be cluttered and Eclipse would become unusable if
every plug-in defines a top-level menu. One of the options is to tie the top-level
menu or action set to a particular perspective so that the menu and actions
are only visible when the particular perspective is active.

The various views and editors visible within the Eclipse workbench used
to work with various resources are known as a perspective. Hence the perspec-

4A workbench window is a top level window in a workbench. Visually, a workbench
window has a menubar, a toolbar, a status bar, and a main area for displaying a single page
consisting of a collection of views and editors.

70

Design

tives are a way to group Eclipse views and actions for particular task such as
coding or debugging. The action sets can be enabled or disabled for a particu-
lar perspective. Eclipse enhancements that involve multiple plug-ins generally
provide their own perspectives, by enhancing existing perspectives or by pro-
viding entirely new ones. Eclipse enhancements that provide one or two new
Eclipse views typically enhance existing perspectives.

Eclipse IDE provides a variety of perspectives which are used while per-
forming different tasks viz. coding, testing, debugging or developing plug-ins.
An existing perspective can be extended by adding new views, placeholders5,
shortcuts, and action sets. The views as well can be combined into a single
tabbed area or can be added to the fast view bar to save some space in the
perspective.

Resource perspective is the initial perspective shown in the work-
bench window. The primary view within the Resource perspective is the
Navigator view. The Navigator view presents a hierarchical view of the re-
sources (projects, folders and files) loaded in the workbench. The Navigator
view has its own toolbar and view menu that provide various viewing and
filtering options.The Resource perspective also shows up the Outline view.
The Outline view shows an outline of the structural elements of the selected
editor. The contents vary depending on the type of editor in use. For example,
when editing a Java class, the Outline view displays the classes , fields, and
methods in the Java class being edited. The Outline view includes a number
of options to control the elements displayed withing the outline (using filters).

Java perspective has the Package Explorer within as the primary
view and the Hierarchy view tabbed to it. The Package Explorer shows the
hierarchy of Java files and resources within the Java projects loaded into the
current workbench, providing a very Java-centric view of resources rather than
a file-centric view. Rather than showing Java packages as nested folders as in
the Navigator view, the Package Explorer shows each package as a sepa-
rate element in a flattened hierarchy. Any JAR file that is reference within a
project can also be browsed using this view. The Java perspective also shows
up the Outline view.

Java Browsing perspective includes as series of linked views. The
first view shows a list of loaded projects. Selecting a project shows its con-
tained packages within the Packages view; selecting a package shows its types
in the Types view; and selecting a type shows its members in the Members view.

5A placeholder can be added to the perspective for a particular view so that when the
user opens this view, it appears in the correct place

71

5.3 Set-up the Environment

Java Type Hierarchy perspective has the Type Hierarchy view
as the primary view. The Type Hierarchy view shows the superclasses and
subclasses of a given type. The view also has options for showing just the
super-type hierarchy (both superclasses and implemented interfaces) or sub-
type hierarchy (subclasses and interface implementers) of a type.

Debug perspective is used to debug programs and easily find and
correct run-time errors in Java code. One can step through individual state-
ments within the code, set breakpoints, and inspect the values associated with
individual variables.

The development process of Sindrion Applications mainly includes develop-
ment of XML (UPnP device and service description files) and Java code (Proxy,
SCP and Applet). With existing support for the Implementation phase the
developer can edit or write new UPnP device or service description files by
using a comfortable GUI (UPnP description view [10]). This support also
can automatically generate Java source code snippets from correctly identified
UPnP description, based on Java UPnP stack. But these code snippets (gen-
erated automatically) still have to be ‘filled’ with the actual implementation
of the desired functionality, by the developer. The perspective provided by the
development environment should be convenient for the development of Java
code.

While the Resource perspective provides a nice, general way to look at the
resources in a system, it is not the ideal perspective to use for general Java
development. The Java perspective and Java Browsing perspective included
in Eclipse are optimized for the development of Java code. The Java Browsing
perspective has four views viz. Projects, Packages, Types and Members above
the editor. These views show only the content related to Java projects and
Java classes. The Projects view displays only a list of the Java projects in the
workbench. When expanded the project shows only the source folder and the
referenced libraries, the project related files (.classpath, .project) other than
these are not reflected in the view. When selected a project in the Projects
view the Packages view only shows a list of packages contained in the project.
Selecting a package shows its types in the Types view and selecting type shows
its members in the Members view. The Sindrion project as well contains the
XML files and HTML files viz. the UPnP description files and presentation
pages for Sindrion Proxy and Sindrion Transceiver. The developer needs a
view that can display all the contents of the projects. For example, the de-
veloper may need to open the presentation pages to edit the content. Hence
extending the Java Browsing will not be a correct solution.

The Java perspective as discussed above has a Package Explorer view

72

Design

tabbed with Hierarchy view on the left side of the editor and Outline view
on the right side of the editor. The package explorer displays all the projects
loaded in the workbench, as well allows to browse the project display all files
and packages irrespective of their types (XML, Html, .project, .classpath e.t.c).
The display of the content can be refined using the filters provided by the view.
The content in the Outline view is based on the type of the editor in use. New
editors can as well define their own outline page. The editors provided by
Eclipse (default, XML and HTML editors) has Outline pages predefined that
show the structural elements of the selected editor.

Hence, extending the Java perspective would be ideal and optimal solution
for the development process of Sindrion Applications. New views, placehold-
ers for the views, shortcuts and action sets related to the Sindrion Application
development will be added during the design of the Integrated Development
Environment, which in turn will ease the process of development. Conse-
quently, opening this perspective gives easy access to the developer to the
mechanisms provided by the Integrated Development Environment. Further,
the Debug perspective provided by Eclipse can be enhanced for Testing phase
of the development process by integrating Sindrion Transceiver Simulator into
the Java debugger (provided by Eclipse) and thus easily find and correct run-
time errors in Java code.

The project creation wizard as well prompts the user to switch to Sindrion
perspective once the project is created, by specifying the Sindrion perspective
as the final Perspective in the extension point. This helps the developer, by
making available the mechanisms provided by the development environment
which the developer can use in the process of Sindrion application develop-
ment. The Sindrion Project Creation Wizard should be added to the File >
New menu of the Sindrion perspective which makes it easily accessible to the
developer. The views provided by the environment viz. Sindrion Explorer,
Sindrion Adapter View and UPnP Description View also are added to the
Window -> Show View which helps the developer to access these views easily.

This section mainly lays a base for the set-up of the environment by en-
hancing an existing perspective (Java perspective) which provides shortcuts
for, views and menus for the mechanisms provided by the Integrated Deve-
lopment Environment. The necessary view are also opened along with the
perspective to ease the development of applications.

73

5.4 Sindrion Integrated Development Environment

5.4 Sindrion Integrated Development Environ-
ment

Sindrion Integrated Development Environment aims at supporting the devel-
oper during the complete development process of Sindrion Applications. We
have already discussed in Section 2.3 regarding the existing support for devel-
opment process of Sindrion Applications. The Core Plug-in, UPnP Description
XML Plug-in and UPnP Java Plug-in, help the user during the Implementa-
tion phase to develop Java based UPnP applications. The Sindrion Transceiver
Simulator mimics the functionality of the Sindrion Transceiver and provides
all the features of the transceiver that are used by the applications, so that
transceiver and STS can be exchanged and this change is transparent to the
software components that are developed. This tool can be used to debug the
applications during the Testing phase, inside the development environment.
The existing Flash Tool can be used for deployment by supplying the required
information to transfer the components to transceiver’s memory. The sup-
port designed in this chapter assists the developer during the unsupported
Initialization phase, to set-up the environment and create Sindrion projects.
It also brings in a mechanism (DataModel) to bridge the gaps between the
existing support by providing a data flow channel that gathers and pass the
information between these phases of development process. This DataModel as
well acts as means of communication between the plug-ins. The integration of
this supports mechanisms builds an ideal development environment for Sindri-
on Applications. The integration and its consequences are discussed in next
section.

Sindrion software components are realization of Service-oriented architec-
ture 6 (SOA) and provide their functionalities as services. The implementation
of the Sindrion services uses Universal Plug and Play (UPnP) as the middle-
ware for discovery advertisement and communication. The components are
implemented in Java as it would allow us to run them on any platform that
has a Java virtual machine and a network connection available to connect the
components.

Service-oriented architectures also come with many benefits like program-
ming language independent and software reuse. Sindrion project also plans
to extend its support by using ‘Web service’ instead of UPnP or ‘C’ instead
of Java to implement the components. This increases the scope of the Inte-
grated Development Environment four-fold. Hence the Sindrion Integrated
Development Environment should be designed in a way so that new plug-ins
that contribute additional functionalities and mechanisms can be added to

6A SOA is a concept that homogenizes distributed heterogeneous environments by declar-
ing arbitrary functional units as services.

74

Design

the development environment. In next section we describe the plug-ins which
collectively form the Sindrion Integrated Development Environment.

5.4.1 Plug-in Dependencies

The Sindrion Integrated Development Environment is a set of plug-ins that
provides functionalities to assist the developer from Initialization to Deploy-
ment phase. In this section we will have an overview of the plug-ins that
supply the assistance to the developer. Figure 5.4 shows the big picture of
the plug-in components including their models that form Sindrion Integrated
Development Environment.

The development environment has the SOA plug-in as the central plug-in,
and has a SOA specific model of the workspace. It provides and extension
point for the plug-ins that can extend this SOA model. The SOA model is
extended by UPnP XML and WebServices XML plug-in. The UPnP XML
plug-in provides an extension point for implementation specific plug-ins. The
Sindrion Java Init plug-in designed as a part of this thesis extends the UPnP
XML plug-in. A plug-in that implements the Sindrion components in other
programming languages like C or C++ can also extend this extension point.
In software development, reuse of code is desirable as it minimizes the devel-
opment effort and simplifies maintenance. Hence, the plug-ins are developed
to facilitate the reuse of the code for further support like support for devel-
opment of Sindrion application that use Web services as middle ware C as a
programming language.

Presently we have the support for Sindrion applications which use which
UPnP as middleware and Java as programming language. Hence we proceed
the discussion on this part of the IDE. UPnP XML plug-in has a programming
language independent model for the UPnP projects in the workspace and SOA
plug-in model as well gets updated. Based on the type of the project the Sin-
drion Java Init plug-in or Sindrion C plug-in is activated. The Sindrion Java
Init plug-in depends on the Workspace and JDT to scan the Sindrion projects
available and build its own datamodel. The UPnP Java plug-in has a model
which is independent of Sindrion specific details. This plug-in directly depends
on the SOA plug-in to builds its model based on SOA model. Sindrion Java
plug-in has a direct dependency on UPnP Java plug-in and builds two mod-
els one for Sindrion Proxy and one for Specific Control Point. This plug-in
also depends on Sindrion Java Init plug-in to get the Sindrion project details.
The Test/Debug plug-in used for testing the Sindrion applications retrieves
the project from Sindrion Java Init plug-in and used JDT for testing the ap-
plications. Deployment plug-in fetches the ready to deploy Sindrion project
and related information from Sindrion Java Init plug-in and deploys the ap-

75

5.4 Sindrion Integrated Development Environment

plication to the Sindrion Transceiver.

The plug-ins designed support extensions that provide enhancements to
the existing features in a controlled yet loosely coupled and flexible way. By
deriving these dependencies and extensions the plug-ins in the development
environment follow the Eclipse rule of lazy activataion. One issue to handle
is the start-up of these plug-ins in an Eclipse way which is designed in next
section.

5.4.2 Start-up of Plug-ins

The principle of lazy plug-in activation is very important in Eclipse platform.
Plug-ins are activated only when their functionality has been explicitly in-
voked by the user, which in turn results in a relatively small start-up time
and a memory footprint. So the designed components as well should follow
the eclipse principle for start-up. Hence, designing the start-up of the IDE
components is also a challenging and critical issue. For example, the developer
doest not utilize the support for Testing and Deployment phases while imple-
menting the Sindrion Applications which need not be started until explicitly
invoked by the user. We have discussed the various possibilities of activating
a plug-in in section 4.4. The extension point mechanism plays an important
role in lazy activation. The SOA plug-in first gets started when the developer
starts the SOA view or activates the Sindrion perspective which in turn opens
the SOA view. Based on the type of the project, the SOA plug-ins searches
the available extensions and activates the UPnP XML or Web services XML
plug-in. The UPnP XML in turn searches for the extensions and activates
Sindrion Java Init plug-in or Sindrion C Init plug-in. The UPnP Java plug-in
listens to the changes on SOA model to update itself and thus has a direct
dependency on SOA plug-in. The UPnP Java plug-in also has direct depen-
dency on the UPnP Java plug-in. The Test/Debug and Deployment plug-ins
depend on the Sindrion Java Init plug-in and gets activated when either or
these plug-ins are started by the user. The dependency relation mentioned in
the above cases, loads a class of the prerequisite plug-in which causes the it to
be started automatically. These relations help the plug-in that contribute to
the Sindrion Integrated Development Environment to follow the lazy plug-in
activation principle of Eclipse platform.

In this section we first discussed about integration of the contributing
plug-ins to form the Sindrion Integrated Development Environment. Then
an overview of the complete system components is given, by explaining the
functionalities of individual plug-ins and the role they play. The start-up is-
sue of the plug-ins that rises due to the lazy activation principle is solved by

76

Design

defining the relationships between the plug-ins so that they get activated only
when their functionality is explicitly invoked.

5.5 Summary
In this Chapter the development environment is done based on the considera-
tions made in Chapter 3. The design process addresses the problems faced by
the developer and mechanisms to realize an IDE. The support designed for the
initialization phase using the Eclipse wizard helps to set-up and configure the
initial project with Sindrion nature and create the resources, which helps the
user to do perform the tasks of implementation phase with minimum effort.
This wizard as well prompts the user to switch to a perspective which exposes
the funtionalities and support provided by the environment for development
of Sindrion applications. Modelling of the Sindrion project serves the purpose,
by forming the common data channel between the plug-ins thus integrating
them into the development environment. Access mechanism for model are
designed which provide an abstraction layer upon the Eclipse workspace. Inte-
grating plug-ins developed for supporting the individual phases of development
forms the Sindrion Integrated Development Environment. The start-up issue
of these plug-ins was considered to comply with the lazy activation principle
of Eclipse. The relationship between these plug-ins is defined so that they get
activated only when their functionality is explicitly invoked. In next Chapter
implementation of the concepts derived here is described.

77

5.5 Summary

Figure 5.4: SiDE Plugin Components and Models

78

Chapter 6

Implementation

This chapter gives the implementation details of the plug-in which support
initialization and integration of the Sindrion Application development environ-
ment. This proves the concepts derived in this Thesis, and shows that Sindrion
Integrated Development Environment eases the development of Sindrion soft-
ware. This implementation is realized using the Eclipse Software Development
Kit (SDK) Version 3.1.2 in connection with Java Standard Edition Develop-
ment Kit (JDK) version 1.5.0_06. In the following sections, functionalities of
the Initialization plug-in are presented.

6.1 Sindrion Nature
Sindrion Nature is used by the plug-ins to identify the Sindrion projects in
the workspace. A new “org.eclipse.core.resources.natures” extension is cre-
ated in the Initialization plug-in manifest. Then the name and the local
identifier are assigned. Natures also have behavior to configure and decon-
figure a project. For example, the nature can add a builder to the project’s
build spec. The ‘sindrionNature’ is associated with a runtime class “com.-
infineon.sindrion.sde.natures.SindrionNature” which implements “org.eclipse.-
core.resources.IProjectNature”. When the Sindrion nature is added to a project,
this class is instantiated and the setProject() method is called followed by con-
figure(); the deconfigure() is called when the nature is removed. Nature can
also be used to associate builders with Sindrion projects. These two methods
are be used to add or remove a builder from the buildspec of the project.

We have discussed that each Sindrion project is an encapsulated Java
project with Sindrion specific details. Hence we have to express the depen-
dency of Sindrion Nature on Java Nature. This can be done by adding the
Java nature with a require-nature tag to the declaration. The Sindrion nature
declaration can be seen in Listing 6.1.

79

6.2 Project Creation Wizard

Listing 6.1: The ‘sindrinNature’ declaration.
1 <extension
2 id="sindrionNature"
3 name="Sindrion␣Nature"
4 point="org.eclipse.core.resources.natures">
5 <requires -nature id="org.eclipse.jdt.core.javanature"/>
6 <runtime >
7 <run class="com.infineon.sindrion.sde.natures.

SindrionNature"/>
8 </runtime >
9 </extension >

6.2 Project Creation Wizard
With the help of this wizard the developer can create a Sindrion project by
passing through a series of screens and entering the required information.
This wizard on successful completion creates a new Sindrion project in the
workspace and hence an extension of the “org.eclipse.ui.newWizards” is cre-
ated. The ‘SindrionWizard’ implements the ‘INewWizard’ interface which al-
lows to obtain pages to be displayed and notify the wizard of the user inter-
action. This wizard contains a ‘SindrionMainPage’ which extends the ‘Wiz-
ardPage’ class to present a page of information to the user, and validate the
information entered by the user on that page. The project attribute of the
wizard should be set to true to show up in the File > New > Project menu.
The plug-in manifest entry for the wizard can be seen in Listing 6.2

Listing 6.2: The plug-in manifest entry for Sindrion wizard.
1 <extension
2 id="com.infineon.sindrion.sde.init.wizards"
3 name="SindrionWizards"
4 point="org.eclipse.ui.newWizards">
5 <category
6 id="com.infineon.sindrion.sde.init.wizards.

SindrionWizards"
7 name="Sindrion␣Wizards"/>
8 <wizard
9 category="com.infineon.sindrion.sde.init.wizards.

SindrionWizards"
10 class="com.infineon.sindrion.sde.init.wizards.

SindrionWizard"
11 descriptionImage="icons/sindrion -logo.gif"
12 icon="icons/sindrion -logo.gif"
13 id="com.infineon.sindrion.sde.init.wizards.

SindrionWizard"

80

Implementation

14 name="Sindrion␣Project"
15 project="true"/>
16 </extension >

When the user launches using File > New > Project > Sindrion Project,
a wizard screen as shown in Figure 6.1 is opened. It contains a text field for the
project name. The wizard automatically searches the projects in workspace
and suggests a name for the user. The SindrionMainPage also implements the
Listener interface to handle the user events on the fields. The project name
field is added a listener which disables the finish button on the page if the field
is empty or if a project with the same name already exists in the workspace.
Once the user enters the project name that satisfy the requirements, the finish
button gets activated and the user can press this button to finish the wizard.

Figure 6.1: Project Creation Wizard Screen

On pressing the finish button the page calls the performFinish() method
of the wizard dialog. This method creates and configures the new Sindrion
project. First a project is created in the workspace and added with Sindrion
and Java natures.

81

6.3 DataModel

1 private void createSindrionProject(String projectName ,
IProgressMonitor monitor){

2 IWorkspace workspace = ResourcesPlugin.getWorkspace ();
3 IProject proj = workspace.getRoot ().getProject(projectName);
4 try {
5 if (!proj.exists ())proj.create(monitor);
6 proj.open(monitor);
7 IProjectDescription desc = proj.getDescription ();
8 desc.setNatureIds(new String [] {
9 JavaCore.NATURE_ID ,SindrionDEInitPlugin.getDefault ().

getBundle ().getSymbolicName ()+ ".sindrionNature" });
10 proj.setDescription(desc ,monitor);
11 IJavaProject javaProj = JavaCore.create(proj);
12
13 } catch (CoreException e) {
14 e.printStackTrace ();
15 } catch (FileNotFoundException e) {
16 e.printStackTrace ();
17 } catch (IOException e) {
18 e.printStackTrace ();
19 }
20 }

Once the project is created and the Java nature and Sindrion nature are as-
signed to the project. The wizard creates the package structure in the project.
It creates the packages for Sindrion Proxy, Specific Control Point, transceiver,
docroot and e.t.c, according to package structure designed in Section 5.2.1.
Then the skeleton UPnP description files and Java source code files are as well
created. This helps the user to right away start the application development.

This wizard will be extended to support the user, by providing extra sup-
port for configuring and requesting additional project related data to meet the
complete design requirements.

6.3 DataModel
This section describes the implementation of DataModel, the central compo-
nent of Sindrion Integrated Development Environment. It gathers the Sindrion
project data from workspace and acts as a data channel between the plug-ins
that contribute the support for Sindrion Application development. First the
implementation details of this hierarchical tree model are given and then in
the next sections the mechanism that update and provide access to the model
are described.

Sindrion model uses the singleton design pattern to restrict instantiation

82

Implementation

of the class to one ‘object’, which helps to co-ordinate the actions across the
system. This is done by providing a method which checks if model already
exists, if not creates a new model.

1 private SindrionModel () {
2 super(new SindrionModelRootElement(null));
3 }
4

5 public static synchronized SindrionModel getModel () {
6 if (model == null) {
7 model = new SindrionModel ();
8 IWorkspace workspace = ResourcesPlugin.getWorkspace ();
9 IJavaModel javaModel = JavaCore.

10 create(workspace.getRoot ());
11 ((SindrionModelElement) model.root).addChild(new

SindrionModelRootElement(javaModel.getResource ()));
12 }
13 return model;
14 }

The getModel() method first checks if an instance of the model already exists.
If not, the root of the IJavaModel is obtained from JavaCore using IWorkspace.
The model extends DefaultTreeModel which provide the basic functionality of
a tree model and brings along the eventing mechanism to the model, using
which the model can fire an event when an element is inserted, removed or
changed. The ISindrionElement the interface for Sindrion elements extends
IAdaptable to participate in the Adapter Framework and TreeNode to partici-
pate in the TreeModel. Elements of the model implement the ISindrionElement
interface. Each element of the Sindrion model that represents a resource in
the workspace holds a reference to the respective resource. This is used by the
access mechanisms provided by the datamodel. The SindrionModelElement
abstract class provides generic and common behavior to the elements of the
model by providing variable declarations and methods viz. maintains a array
list of children, provides methods to add or remove child for particular element
and provide get and set methods for the resource associated with the element.

Elements of the datamodel viz. Proxy, SCP, SindrionWebFiles e.t.c extend
this abstract class use this behavior provided and add more specific methods
on the element, like the SinidrionProject element can only have children only of
type Proxy, SCP or SindrionWebFiles. Each element is restricted to have only
children that are permitted according to the model designed in Section 5.2.1
which can be seen in Figure 5.2.

Now that we have implemented the datamodel, this model need to be built
based on the workspace resources. The Initialization plug-in gets activated

83

6.3 DataModel

when the user explicitly invokes the functionality of the plug-in. In the start()
method of the plug-in, the method that parses the workspace for Sindrion
projects and builds the model is invoked.

Listing 6.3: The Initialization plug-in class.
1 public class SindrionDEInitPlugin extends AbstractUIPlugin {
2

3 private static SindrionDEInitPlugin plugin;
4 private SindrionAdapterFactory sindrionAdapterFactory;
5 private SindrionWorkspaceListener swl;
6 ...
7 public synchronized void start(BundleContext context) throws

Exception {
8 super.start(context);
9 BuildSindrionModel.parseForSindrionProjects ();

10 addListener ();
11 ...
12 }
13

14 public void stop(BundleContext context) throws Exception {
15 ...
16 removeListener ();
17 plugin = null;
18 }
19 public SindrionDEInitPlugin () {
20 plugin = this;
21 }
22

23 private void addListener () {
24 if (swl == null) {
25 IWorkspace workspace = ResourcesPlugin.getWorkspace ();
26 swl = new SindrionWorkspaceListener ();
27 workspace.addResourceChangeListener(swl ,

IResourceChangeEvent.PRE_DELETE |
IResourceChangeEvent.POST_CHANGE);

28 System.out.println("Workspace␣Listener␣Added");
29 }
30 }
31

32 private void removeListener () {
33 if (swl != null) {
34 IWorkspace workspace = ResourcesPlugin.getWorkspace ();
35 workspace.removeResourceChangeListener(swl);
36 System.out.println("Workspace␣Listener␣Disposed");
37 }
38 swl = null;
39 }
40 ...
41 }

84

Implementation

Listing 6.3 shows that the SindrionDEInitPlugin class that extends the Ab-
stractUIPlugin on start-up supplies the super class with bundle context and
calls BuildSindrionModel.parseForSindrionProjects() static method. This method
first gets hold of Java model and identifies the Sindrion projects from the model
with the help of Sindrion nature.

Listing 6.4: The parseForSindrionProjects() method.
1 public synchronized static void parseForSindrionProjects () {
2 IWorkspace workspace = ResourcesPlugin.getWorkspace ();
3 IJavaModel javaModel = JavaCore.create(workspace.getRoot ());
4 try{
5 IJavaProject [] javaProjects = javaModel.getJavaProjects ();
6 for (IJavaProject j:javaProjects){
7 if(j.getProject ().hasNature(SindrionDEInitPlugin.

getDefault ().getBundle ().getSymbolicName ()+ ".
sindrionNature")){

8 createSindrionProject(j);
9 }

10 }
11 }
12 catch (JavaModelException e){
13 e.printStackTrace ();
14 }catch (CoreException e) {
15 e.printStackTrace ();
16 }
17 }

Then the model is added with the elements that represent the Sindrion projects
and its elements in the workspace, by parsing the projects and identifying the
elements based on the defined package structure and naming conventions de-
fined in Section 5.2.1. This builds the datamodel which represents the Sindrion
Projects in workspace.

6.3.1 Resource Change Listener

The model should also be kept synchronous with Eclipse. This task is accom-
plished by implementing SindrionWorkspaceListener which implements IRe-
sourceChangeListener. This listener is registered to the workspace, which no-
tifies the model of the changes in the workspace which can be seen in Listing 6.3
lines 23-30. Based on the events this listener adapts the model to keep in sync
with Eclipse, like deleting the Sindrion Project when a project is closed or
deleted and adding it when a project is opened or created. The changes to
the elements of the project are handled by the SindrionResourceDeltaVisitor
which implements IResourceDeltaVisitor, whose visit() method is called for
each change in the resource delta. The stop() method of the plug-in class i

85

6.4 Adapter Factory

modified to call the removeListener() so that the listener is no longer notified
of the resource changes once the plug-in has been shutdown (Listing 6.3 lines
32-39).

6.4 Adapter Factory
The plug-ins that support the development of Sindrion applications might need
to translate existing types into new types of objects viz. Sindrion elements.
The Adapter factory (Section 4.5) can used to to accomplish this task. The
Sindrion Initialization plug-in provides a SindrionAdapterFactory which imple-
ments the “org.eclipse.core.runtime.IAdapterFactory” interface. The getAdapter(...)
method of the factory can translate IResource and IJavaElement objects into
ISindrionElement objects. The getAdapterList() returns an array indicating
the types to which the factory can translate, in this case it returns ISindri-
onElement.class. If an adapter of type ISindrionElement.class is requested the
adapter factory parses through the complete tree and checks if it can provide
an adapter. Listing 6.5 shows the implementation of the Sindrion adapter
factory.

Listing 6.5: Sindrion Adapter Factory class.
1 public class SindrionAdapterFactory implements IAdapterFactory{
2

3 private static Class [] SUPPORTED_TYPES =
4 new Class [] { ISindrionElement.class };
5

6 public Class [] getAdapterList (){
7 return SUPPORTED_TYPES;
8 }
9

10 public Object getAdapter(Object object , Class key){
11 if (ISindrionElement.class.equals(key)){
12 ISindrionElement root = SindrionModel.
13 getModel ().getRoot ();
14 try{
15 Object adapter = findAdapter ((ISindrionElement) root ,
16 object);
17 if (adapter != null)
18 return adapter;
19 }catch (RuntimeException e) {
20 e.printStackTrace ();
21 }
22 }
23 return null;
24 }
25

26 private Object findAdapter(ISindrionElement ele , Object
object) {

86

Implementation

27 if (((SindrionModelElement) ele).isAdapterFor(object))
28 return ele;
29 else{
30 ArrayList <ISindrionElement > children = ele.getChildren ();
31 for (ISindrionElement c : children) {
32 Object o = findAdapter(c, object);
33 if (o != null)
34 return o;
35 }
36 }
37 return null;
38 }
39 }

6.4.1 Register the Adapter

The adapter factory is registered declaratively by initialization plug-in us-
ing the “org.eclipse.core.runtime.adapters” extension point. This information
is used to by the runtime XML expression language to determine existence
of sindrion adapters without causing plug-ins to be loaded. Registration of
adapter factories via extension point eliminates the need to manually register
adapter factories when a plug-in starts up.

The Listing 6.6 declares that our plug-in will provide an adapter factory
that will adapt objects of type IResource.class to objects of type ISindrionEle-
ment.class.

Listing 6.6: Registering the adapters.
1 <extension point="org.eclipse.core.runtime.adapters">
2 <factory
3 class="com.infineon.sindrion.sde.datamodel.

SindrionAdapterFactory"
4 adaptableType="org.eclipse.core.resources.IResource">
5 <adapter type="com.infineon.sindrion.sde.datamodel.

ISindrionElement"/>
6 </factory >
7 </extension >

For example, the Core plug-ins checks if the resource presently opened
in the editor has a ISindrionElement.class adapter by querying the Sindrion
adapter factory. If it finds an adapter then the UPnP description files that
belong to the Sindrion Project are parsed and the UPnP Description view
shows the contents on these description files. Thus without users knowledge the
plug-in can get access to the Sindrion data using Eclipse adapter framework.

87

6.5 Sindrion Explorer

6.5 Sindrion Explorer
The Sindrion Explorer shows the hierarchy of the Sindrion elements in the
workbench. It provides a Sindrion specific view of the resources, derived from
the Sindrion DataModel. Each project shows the logical structure of the re-
sources in its source folders tagged with Sindrion specific properties. Views
must implement org.eclipse.ui.IViewPart interface or can extend the “org.-
eclipse.ui.ViewPart”, and thus are the subclasses of “org.eclipse.ui.WorkbenchPart”,
inheriting much of the behavior needed to implement the IViewPart interface.
In spirit of lazy initialization, the IWorkbenchPage holds on to instance of
org.eclipse.ui.IViewReference rather than the view itself so that views can be
enumerated and referenced without actually loading the plug-in defining the
view. Firstly, an extension is added to the org.eclipse.ui.views extension point,
to which a new category ‘SindrionDEInit’ is added. The new view is de-
fined with identifier ‘com.infineon.sindrion.sde.init.views.SindrionModelView’
which comes into the above category. The ‘com.infineon.sindrion.sde.init.-
views.SindrionModelView’ class which will contain code to define the view’s
behavior is assigned to the view declaration. Listing 6.7 shows the view dec-
laration after performing the above steps.

Listing 6.7: Declaration of Sindrion views.
1 <extension
2 point="org.eclipse.ui.views">
3 <category
4 name="Sindrion␣Initialization"
5 id="SindrionDEInit">
6 </category >
7 <view
8 category="SindrionDEInit"
9 class="com.infineon.sindrion.sde.init.views.

SindrionExplorer"
10 icon="icons/sindrion -logo.gif"
11 id="com.infineon.sindrion.sde.init.views.

SindrionExplorer"
12 name="Sindrion␣Explorer"/>
13 <view
14 name="Sindrion␣Adapter"
15 icon="icons/sindrion -logo.gif"
16 category="SindrionDEInit"
17 class="com.infineon.sindrion.sde.init.views.

SindrionAdapterView"
18 id="com.infineon.sindrion.sde.init.views.

SindrionAdapterView"/>
19 </extension >

88

Implementation

The Sindrion Explorer class extends the ViewPart abstract class. The cre-
atePartControl() creates the controls comprising the view. Then a tree viewer
created using the given SWT style bits is added to view. The viewer should be
provided with input, contentprovider, label provider, sorter and filters. The
Sindrion DataModel is designed to as well serve as an input model for this
viewer, and holds the Sindrion model objects. The ISindrionElement helps to
abstract the differences between different types of Sindrion objects. A content
provider links the objects created into the view. The ‘SindrionModelView-
ContentProvider’ is responsible for extracting objects from the input, the Sin-
drion model, and handles them to the table viewer for displaying. This content
provider is as well made responsible for updating the viewer of the changes in
model, by implementing the ‘TreeModelListener’. The ‘SindrionModelView-
LabelProvider’ extends the ‘LabelProvider’ which takes the objects returned
by the content provider and extracts the value to be displayed. A view action
can appear as a menu item in a view’s context menu, as toolbar button on
the right side of the view’s title bar, and as a menu item in a view’s pull-
down menu. The actions can be added to the view programatically, which can
perform operations on the model objects like creating, deleting or modifying
the information of the Sindrion objects. The createPartControl() is shown in
Listing 6.8, adds the tree viewer to the view and this viewer is in turn set with
content provider and label provider.

Listing 6.8: createPartControl() of SindrionModelView class.
1 public void createPartControl(Composite parent) {
2 try {
3 viewer = new TreeViewer(parent ,
4 SWT.MULTI | SWT.H_SCROLL | SWT.V_SCROLL);
5 drillDownAdapter = new DrillDownAdapter(viewer);
6 viewer.setContentProvider(

SindrionModelViewContentProvider.getProvider ());
7 viewer.setLabelProvider(new

SindrionModelViewLabelProvider ());
8 viewer.setSorter(new NameSorter ());
9 viewer.setInput(SindrionModel.getModel ());

10 SindrionModelViewContentProvider.getProvider ().
inputChanged(viewer ,null ,SindrionModel.getModel ());

11 } catch (Throwable e) {
12 e.printStackTrace ();
13 }
14 }

Figure 6.2 shows the Sindrion Model View which displays the datamodel
of the Initialization plug-in.

89

6.6 Sindrion Adapter View

Figure 6.2: Sindrion Explorer

6.6 Sindrion Adapter View
Sindrion Integrated Development Environment also provides the Sindrion Adapter
View which helps the developer for testing if a particular resource selected in
the Package Explorer is a Sindrion element or not. The user may need to check
this when he adds a new resource to and existing Sindrion project or wants to
check if a particular project is a Sindrion resource or not.

The Sindrion Adapter View adds a selection listener to the workbench
selection service for Package Explorer view, which notifies the view when the
selection is changed in the Package Explorer. When the view is closed it
removes the listener, since it no longer need to be notified of the selection.

Listing 6.9: Methods that add and remove the selection listener.
1 private void addListener (){
2 if(sl==null){
3 selservice= getSite ().getWorkbenchWindow ().

getSelectionService ();
4 sl = new PackageViewSelectionListener(this.viewer);
5 selservice.addSelectionListener(JavaUI.ID_PACKAGES ,sl);

90

Implementation

6 System.out.println("Package␣View␣Selection␣Listener␣Added")
;

7 }
8 }
9

10 private void removeListener (){
11 if(sl!=null){
12 selservice.removeSelectionListener(JavaUI.ID_PACKAGES ,sl);
13 System.out.println("Package␣View␣Selection␣Listener␣

Disposed");
14 }
15 sl=null;
16 }

The selectionChanged() method of the listener gets notified of the selection.
The method requests the Sindrion adapter for this object and updates the view.
The code which performs this operation can be seen in Listing 6.10.

Listing 6.10: selectionChanged() method of listener.
1 public void selectionChanged(IWorkbenchPart part , ISelection

selection) {
2 try {
3 Object selectedObject = ((IStructuredSelection)selection).

getFirstElement ();
4 String className = "";
5 if(selectedObject !=null){
6 if(((IAdaptable)selectedObject).getAdapter(

ISindrionElement.class) != null)
7 className = ((IAdaptable)selectedObject).getAdapter(

ISindrionElement.class).getClass ().getName ();
8 ((SindrionExplorer.ViewContentProvider)(viewer.

getContentProvider ())).updateElement (((IAdaptable)
selectedObject).getAdapter(ISindrionElement.class));

9 }
10 viewer.refresh ();
11

12 } catch (Throwable e) {
13 e.printStackTrace ();
14 }
15 }

6.7 Summary
This chapter gives the implementation details of the Initialization plug-in de-
signed for the development of Sindrion Applications. This implementation
proves the concepts designed to be functional. The Initialization process can

91

6.7 Summary

be done conveniently and efficiently with the support from the development
environment. The integration of the existing Implementation plug-in into the
development environment using the support from DataModel also proves the
concept of Sindrion Integrated Development Environment.

Firstly, the implementation details of the Sindrion nature used to iden-
tify the projects is given. The project creation wizard which configures and
creates a Sindrion project in workspace along with required packages and skele-
ton resources is described. Then a detailed insight of the DataModel, how it
is created, and listens to the workspace events to keep in sync with eclipse
are given. The chapter proceeds with the implementation details of Adapter
factory and how it can be used to convert objects from IResource.class and
IJavaElement.class to ISindrionElement.class, which in turn is used as a mecha-
nism to access the elements of DataModel. The internal mechanism of Sindrion
Explorer and Sindrion Adapter view are given, which are used for visualization
and testing purpose of the DataModel.

92

Conclusion and Recommendations

The goal of this master thesis was to design and implement the support for
development process of Sindrion applications. With the implementation of the
support for Initialization phase and a Sindrion DataModel this task has been
addressed conceptually, and laid basis for the realization of Sindrion Integra-
ted Development Environment.

In order to derive the general development steps and requirements for the
development environment, a profound analysis has been conducted. The anal-
ysis indicated great potential for automation and moreover vindicates the
creation of a sophisticated development environment for developing Sindri-
on applications. The conceptual design of an idealized design flow has been
conducted as a result from the preceding requirements analysis. The main
problems that needed to be solved were support for Initialization phase, track
the dependencies between the Sindrion resources and support for the inte-
gration of development support. As a second step, existing stand-alone tools
which support dedicated parts of the Sindrion software development process
have been reviewed. Due to advantages concerning flexibility and extensibility,
the Eclipse platform has turned out to be a suitable basis for the development
environment. As the phases of development process share common data, mech-
anisms are to be generated to integrate them to form an IDE.

Firstly, the support for the initialization phase was designed, which pro-
vides an Eclipse wizard. The Sindrion project creation wizard helps the user
to create and set-up the project with minimum effort. Next step was to inte-
grate the stand alone tools that support the individual phases of development
process. The Sindrion datamodel acts as a common data channel between
the phases of development process thus serving the purpose of a basis for Inte-
grated Development Environment. Mechanisms to access this data model were
derived, that allow the plug-ins to share the common information. The issues
that came up after the integration of the plug-ins viz. dependencies between
the plug-ins and start-up, and initialization were also solved. In a concluding
step, the concepts and existing technologies were brought together and the
overall idea was refined up to an implementation state. Thus, the approach
was not only proven to be valid and functional, moreover a concrete imple-

93

6.7 Summary

mentation example demonstrates the final system in action. Considering the
Sindrion project to be a research project with continuous evolution changes to
the developed tool set are very likely, hence the data model anticipates this re-
quirement and includes abstraction layers that allow transparent modification
of the workspace or programming language. The Sindrion Integrated Devel-
opment Environment is based on a plug-in structure providing the ability to
adapt to new middleware and programming languages.

Implementation of the most important components of Sindrion Integrated
Development Environment specifically directed towards Java-based UPnP ap-
plication development has proven flexibility and suitability of the concept. The
results of the analysis enable further work to be done as the implementation
part of this thesis focuses support for initialization phase and integration of
the support for individual phases. The remaining parts that include the de-
velopment of integrated debugging environment and mechanisms that deliver
the applications are currently being implemented following the guidelines de-
veloped in this thesis.

94

Bibliography

[1] UPnP Forum. “UPnP Device Architecture 1.0, ver 1.0.1”.
http://www.upnp.org/download/UPnPDA10_20000613.htm, May 2003.

[2] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman,
Noah Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte and
Dave Winer, editors. “Simple Object Access Protocol (SOAP) 1.1”.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508, May 2000.

[3] Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva
Weerawarana. “Web Services Description Language (WSDL) 1.1”.
http://www.w3.org/TR/wsdl.html, March 2001.

[4] Intel Corporation. “Intel Software for UPnP Technology - Technology
Overview”.
http://www.intel.com/cd/ids/developer/asmo-
na/eng/downloads/upnp/overview/index.htm, 2003.

[5] Yaron Y. Goland, Ting Cai, Paul Leach, Ye Gu, Shivaun Albright. “Simple
Service Discovery Protocol/1.0 Operating without an Arbiter”.
http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt,
October 1997.

[6] R. Droms. “Dynamic Host Configuration Protocol”. RFC 2131, March
1997.

[7] Stuart Cheshire. “Dynamic Configuration of IPv4 link-local addresses”.
IETF draft, November 2000.

[8] Eric Clayberg & Dan Rubel. Building Commercial-Quality Plug-ins, Ad-
dison Wesly, Boston, USA, 2005.

[9] Daniel Barisic. Conceptual Design and Realization of a Development
Framework for Smart UPnP Transceivers , University of Dortmund, 2005.

[10] Stefan Budde. Design and Implementation of a Development Environment
for Smart UPnP Transceivers , University of Dortmund, 2006.

95

http://www.upnp.org/download/UPnPDA10_20000613.htm
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/wsdl.html
http://www.intel.com/cd/ids/developer/asmo-na/eng/downloads/upnp/overview/index.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/downloads/upnp/overview/index.htm
http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt

BIBLIOGRAPHY

[11] Jack W. Reeves. “Article: What is Software Design? ”,
http://www.developerdotstar.com/mag/articles/reeves_design.html,
23 February 2005.

[12] “Eclipse help system”.
http://help.eclipse.org/help32/index.jsp
.

[13] “PDE Does Plug-ins”.
http://www.eclipse.org/articles/Article-PDE-does-plugins/PDE-
intro.html.

[14] J. Cohen, S. Aggarwal, Y. Y. Goland. “General Event Notification Archi-
tecture Base: Client to Arbiter”.
http://www.upnp.org/download/draft-cohen-gena-client-01.txt,
September 2000.

[15] “Eclipse Platform Technical Overview”.
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-
platform-whitepaper.html.

[16] “Eclipse Plug-in Architecture”.
http://www.eclipse.org/articles/Article-Plug-in-
architecture/plugin_architecture.html.

[17] The OSGi Alliance. “OSGi Service Platform, Release 3”. IOS Press, 2003.

[18] Robert Harris, Rob Warner. “The Definitive Guide to SWT and JFACE”.
Apress, 2004.

[19] “When does a plug-in get started?”
http://wiki.eclipse.org/index.php/FAQ_When_does_a_plug-
in_get_started%3F.

[20] “Can I activate my plug-in when the workbench starts”.
http://wiki.eclipse.org/index.php/FAQ_Can_I_activate_my_plug-
in_when_the_workbench_starts%3F.

96

http://www.developerdotstar.com/mag/articles/reeves_design.html
http://help.eclipse.org/help32/index.jsp
http://www.eclipse.org/articles/Article-PDE-does-plugins/PDE-intro.html
http://www.eclipse.org/articles/Article-PDE-does-plugins/PDE-intro.html
http://www.upnp.org/download/draft-cohen-gena-client-01.txt
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://wiki.eclipse.org/index.php/FAQ_When_does_a_plug-in_get_started%3F
http://wiki.eclipse.org/index.php/FAQ_When_does_a_plug-in_get_started%3F
http://wiki.eclipse.org/index.php/FAQ_Can_I_activate_my_plug-in_when_the_workbench_starts%3F
http://wiki.eclipse.org/index.php/FAQ_Can_I_activate_my_plug-in_when_the_workbench_starts%3F

	Abstract
	Introduction
	Motivation
	The Sindrion Concept
	UPnP
	Sindrion

	Eclipse IDE
	Scope of Thesis

	Analysis of Software Development Process
	Phases of Software Development Process
	Initialization
	Implementation
	Testing
	Deployment

	Desired Support during Development
	Analysis of Existing Support
	Existing support for Implementation phase
	Sindrion Transceiver Simulator
	Flash Tool

	Summary

	Design Considerations
	Mechanisms for Initialization Phase
	Bridge the existing Gap
	Managing Data
	Communication between Components
	Design Considerations
	Summary

	Eclipse Frameworks and Mechanisms
	Plug-in Concept
	Dependencies vs. Extensions
	Extension Points
	Start-up and Initialization
	Adapters and Adapter Factories
	Summary

	Design
	Design of Initialization phase
	Identification of a Sindrion project
	Managing Project Information
	Design of project Workspace
	Sindrion Project Creation support

	Modelling the Sindrion project
	Sindrion DataModel
	Synchronization with Eclipse workspace
	Eventing Mechanism
	Accessing DataModel
	Visualization of DataModel

	Set-up the Environment
	Sindrion Integrated Development Environment
	Plug-in Dependencies
	Start-up of Plug-ins

	Summary

	Implementation
	Sindrion Nature
	Project Creation Wizard
	DataModel
	Resource Change Listener

	Adapter Factory
	Register the Adapter

	Sindrion Explorer
	Sindrion Adapter View
	Summary

	Conclusion and Recommendations
	Bibliography

