

Translation of OCL Invariants into SQL:99 Integrity
Constraints

Master Thesis

Submitted by:

Veronica N. Tedjasukmana
veronica.tedjasukmana@tu-harburg.de
Information and Media Technologies

Matriculation Number: 29039

Supervised by:

Prof. Dr. Ralf MÖLLER
STS - TUHH

Prof. Dr. Helmut WEBERPALS

Institut für Rechnertechnologie – TUHH

M.Sc. Miguel GARCIA
STS - TUHH

Hamburg, Germany
31 August 2006

Declaration

I declare that:
this work has been prepared by myself,
all literally or content-related quotations from other sources are clearly pointed out,
and no other sources or aids than the ones that are declared are used.

Hamburg, 31 August 2006

Veronica N. Tedjasukmana

 i

Table of Contents

Declaration __ i

Table of Contents ___ ii

1 Introduction __ 1

1.1 Motivation ___ 1
1.2 Objective __ 2
1.3 Structure of the Work __ 2

2 Constraint Languages __ 3

2.1 Defining Constraint in OCL ___ 3
2.1.1 Types of Constraints __ 4

2.2 Defining Constraints in Database ___ 4
2.3 Comparison of Constraint Language___ 6

3 Design and Implementation ___ 8

3.1 Discussion of different approaches __ 8
3.2 Object Oriented Query Language with View Approach __________________________ 9
3.3 Implementation __ 14

3.3.1 Processing Steps __ 15
3.4 Problem and Limitation__ 23
3.5 Summary ___ 24

4 xQL Specification___ 26

4.1 What is xQL?__ 26
4.2 Data Types and Values __ 26

4.2.1 Types from the UML Model ___ 27
4.2.2 Collections___ 30

4.3 xQL Metamodel ___ 30
4.3.1 Join and Navigation__ 31
4.3.2 Condition __ 32

4.4 Operation in xQL___ 34
4.5 Well-formedness rules of xQL __ 36
4.6 Summary ___ 42

5 Transformation Recipes: Patterns and Procedures _____________________________ 43

5.1 The Negation of Boolean Expression _______________________________________ 43
5.2 Operators ___ 44
5.3 Mapping Procedures __ 44
5.4 Mapping Patterns___ 45

5.4.1 Navigation ___ 45
5.4.2 Operation __ 46

 ii

5.4.2.1 Operation on Basic types _____________________________________ 46
5.4.2.2 Operations on Collection Types ________________________________ 47
5.4.2.3 Outer Query ___ 56

5.5 Summary ___ 56

6 Introduction to SQL Generator in OctopusEE_________________________________ 57

6.1 Configuration of build path ___ 57
6.2 Generated Files __ 57
6.3 Testing __ 58
6.4 Summary ___ 60

7 Summary and Outlook __ 61

7.1 Summary ___ 61
7.2 Further Work __ 62

Appendix A: Unmapped Operation ___ 63

Appendix B: Configuration of OctopusEE _______________________________________ 65

Appendix C: The Royal and Loyal Model __ 67

Appendix D: Database Schema or Royal and Loyal ________________________________ 68

References ___ 71

 iii

Chapter 1 Introduction

1

1 Introduction

1.1 Motivation
Integrating object-oriented applications into relational database is no longer state of the art. Since

its first emergence, many object relational persistence tools have been developed. The SQL

impedance mismatch between object oriented concept and relational database concept such as

association, inheritance, polymorphism, composition, and collections has been undoubtedly dealt

with. However, these persistence tools are restricted only to class-to-table mapping, mainly based

on attributes and associations. The power of Object Constraint Language (OCL) which enables us

to write constraint or complex rules over an object model has yet to be utilized. At the moment,

most business rules are still placed in the application program. Placing the business rules in the

application programs has several disadvantages [5]:

1. Duplication of effort. If six different programs deal with various updates to a single table,

each of them must include code that enforces the rules relating to the corresponding table.

2. Lack of consistency. If several programs written by different programmers handle updates

to a table, they will probably enforce the rules somewhat differently.

3. Maintenance problems. If the business rules change, the programmers must identify

every program that enforces the rules, locate the code, and modify it correctly.

4. Complexity. There are often many rules to remember.

By utilizing OCL we could shift the burden of specifying business rules from application layer to

database layer. With this approach all the business rules is centralized in the database layer, thus

minimizing the programming time and ensuring all applications working on the same database

adhering to the same rules. There have been some existing approaches in specifying OCL

invariants as constraints in database systems, either in Relational Database Management System

(RDBMS) or Object Relational Database Management System (ORDBMS) [2] [3] [7] [13]

[12]. In [12], OCL constraints are mapped to SQL constraints by exploiting the query facilities in

ORDBMS. One of the advantages of this approach is the simplicity in collecting related records.

Unfortunately, ORDBMS is not widely used and implemented. On the other hand, RDMBS is

widely used and seems indispensable, but query facilities in it are too verbose especially when

specifying relationship between tables.

Chapter 1 Introduction

2

1.2 Objective
In this project, we propose an approach to specifying OCL invariants as constraints in database

systems by combining object oriented query language with the use of view and trigger. This

approach is driven by the final release of JSR-220 Enterprise Java Beans 3.0. Along with the final

release of EJB 3.0, Java Community Press introduces Java Persistence Query Language, an

extension of Enterprise Query Language specified in EJB 2.x. [14]. The Java Persistence query

language, also known as EJB3QL, can be compiled to a target language, such as SQL of a

database.

Translating OCL to EJB3QL will result in the simplicity of query language, and compiling

EJB3QL to SQL afterwards allows us to use the widely deployed RDMBS.

1.3 Structure of the Work

In next chapter we discuss about defining constraint in database and introduce OCL and how to

define an invariant in OCL. Chapter 3 discusses approaches taken to define the constraints in

relational database from OCL followed by our new approach and the implementation. Chapter 4

introduces xQL, our new Metamodel along with its specification and well-formedness rules.

Chapter 5 presents the transformation pattern and procedure from OCL to xQL. Chapter 6

introduces SQL Generator in OcotopusEE along with its configuration in Eclipse. Chapter 7 gives

conclusions and future works.

Chapter 2 Constraint Languages

3

2 Constraint Languages

By definition, a constraint is a restriction on one or more values of (part of) an object-oriented

model or system [15]. In this chapter we explore the constraint used in modeling language and

constraint in database.

2.1 Defining Constraint in OCL
Merely utilizing a UML diagram is in general not refined enough to specify all the significant

aspects of a model. The information presented by such a model has a possibility to be incomplete

and imprecise. For instance, in the UML model shown in Figure 2.1, it is reasonable for every

loyalty program of Royal and Loyal requires that every customer who enters a loyalty program be

of legal age, which is equal or greater than 18. This can be written as an invariant:

context Customer
 inv ofAge: self.age >= 18

Figure 2.1 Royal and Loyal Model

The rules stated above cannot be expressed in UML. Thus, there is a need to describe additional

constraints about the objects in the model. Object Constraint Language (OCL) is developed to

fulfill this necessity. OCL is a formal language used to describe expressions on UML models.

These expressions typically specify invariant conditions that must hold for the system being

modeled or queries over objects described in a model [11]. Characteristics of OCL as taken from

various sources:

• OCL is a declarative language. In a declarative language, an expression simply states

what should be done, but now how [15].

Chapter 2 Constraint Languages

4

• OCL is a pure specification language; therefore, an OCL expression is guaranteed to be

without side effects. When an OCL expression is evaluated, it simply returns a value. It

cannot change anything in the model [11].

• OCL is not a programming language; therefore, it is not possible to write program logic

or flow control in OCL. You cannot invoke processes or activate non-query operations

within OCL. Because OCL is a modeling language in the first place, OCL expressions are

not by definition directly executable [11].

• OCL is a typed language so that each OCL expression has a type. To be well formed, an

OCL expression must conform to the type conformance rules of the language. For

example, you cannot compare an Integer with a String. Each Classifier defined within a

UML model represents a distinct OCL type. In addition, OCL includes a set of

supplementary predefined types. As a specification language, all implementation issues

are out of scope and cannot be expressed in OCL [11].

2.1.1 Types of Constraints
There are four types of constraints in OCL:

• Invariant

An invariant is a constraint that should be true for an object during its complete lifetime

[15]. Invariants often represent rules that should hold for the real-life objects after which

the software objects are modeled.

• Precondition and Postcondition

Preconditions and postconditions are constraints that specify the applicability and effect

of an operation without stating an algorithm or implementation. Precondition specifies

the conditions that must hold before the operation executes. Postcondition specifies the

conditions that must hold after the operation executes. Precondition and postcondition

consist of an OCL expression of type Boolean.

• Guard

A guard is a constraint that guards the transition, from one state to another state. OCL

expression acting as value of a guard is of type Boolean. The condition of guard should

be true during the transition.

2.2 Defining Constraints in Database
To preserve the consistency and correctness of its stored data, relational database typically

imposes one or more integrity constraints. These constraints restrict the data values that can be

inserted into the database or created by a database update.

Chapter 2 Constraint Languages

5

RDBMS provides four main types of static constraints [1] [5]:
1. Assertions

Assertions are the most general form of integrity constraint in SQL. Assertions are

intended to specify a constraint over multi tables.

2. Table constraints

Table constraints are less general than assertions. It is used to restrict the rows in one

particular table only. Table constraints are attached to a particular table by including

them into the CREATE TABLE statement defining that table.

3. Column constraints

Column constraints are specified as part of a column definition when a table is created.

Conceptually, they restrict the legal values that may appear in the column. Column

constraints appear in column definition within the CREATE TABLE statement.

4. Domain Constraints

Domains are a specialized form of column constraints. They provide a limited capability

to define new data types within a database. In effect, a domain is one of the predefined

database data types plus some additional constraints, which are specified as part of the

domain definition. The columns “inherit” the constraints of the domain.

Among those four types, assertion appears to be the most general constraint since it is not

specified inside table or column structure in database. In theory, assertions could cause a very

large amount of database processing overhead as they are checked for each statement that might

modify the database. In practice, database will analyze the assertion and determine which tables

and columns it involves. With assertion we are able to shift the complex constraint or business

rule from application layer to database layer. Unfortunately, assertion is not supported by any

commercial RDBMS.

Another technique to implement the complex rule in database layer is by utilizing trigger. The

concept of a trigger is relatively straightforward. For any event that causes a change in the

contents of a table, a user can specify an associated action that the database should carry out. The

three events that can trigger an action are attempts to INSERT, DELETE, or UPDATE rows of

the table. For example, below is a trigger enforcing every customer to have at least one valid card

and raising an application error when an attempted update fails:

Chapter 2 Constraint Languages

6

Note: For database schema, please refer to Appendix D

CREATE OR REPLACE TRIGGER "CUSTOMER_valid"
AFTER
insert or update or delete on "CUSTOMER"
DECLARE
 D NUMBER;
BEGIN
 select count into D from invariant_Custom_Valid; (*)
 IF (D > 0) THEN
 RAISE_APPLICATION_ERROR(-20000, 'constraint
violate ')d ;
 END IF;
END;

With view invariant_Custom_Valid as follows:

create or replace force view
"invariant_Custom_Valid" as
select
 customer0_.id as col_0_0_
 from
 Customer customer0_
 where
 (select count(f_cards2_.id)
 From Customer customer1_
 inner join CustomerCard f_cards2_
 on customer1_.id=f_cards2_.f_owner_id
 where
 f_cards2_.f_valid<>1
)<1;

2.3 Comparison of Constraint Language
Constraints can be categorized based on various criteria. To classify the constraints related to

OCL and integrity constraints in database, the following criteria are used:

• Time [1] [5] [3]: In the simple form, constraints in database are checked every time an

attempt is made to change the database contents. This activity is categorized as immediate

constraint. Besides this, SQL:99 specification introduces an additional capability for

deferred constraint checking. In deferred constraint, checking will be deferred until the

end of a transaction.

• Activity: Constraints can also be categorized as active and passive. Whereas active

constraints maintain consistency by executing actions, passive constraints only prevent

data manipulation operations which violate the consistency.

Chapter 2 Constraint Languages

7

• Location: Constraints can be placed in the application layer or in database layer. Both

methods have pro and contra. In this project we will exploit the integrity constraints

provided by relational database, thus we will focus on constraints located in database

layer.

• System view [2]: Constraints can be defined in various views of the system, as the static,

dynamic and functional view. In a static view, a constraint usually is an invariant, i.e. a

condition that should be true for an object during its complete lifetime [15]. In a dynamic

view, constraints are used mainly to express the condition under which a transition from

one state into another is allowed. In OCL we acknowledge this type of constraint as

guards. In functional view, the output values and the induced state transformation of an

operation are described with respect to the input values. In OCL, this is done by pre- and

postconditions.

• Policy on constraint violations [2]: There are various actions can be taken when a

constraint is not fulfilled: the implementation can be considered as faulty, the recent

modification can be made undone, or actions can be taken to automatically correct the

state.

Based on the criteria above, we can see that there is a common intersection between the constraint

mechanisms of OCL and RDBMS. From all the four types of constraint defined in OCL, the most

relevant type to relational database is invariant. Constraint in relational database is typically a

static constraint. In the matter of active and passive constraints, RDMBS serves both: active

constraints through TRIGGER statement and passive constraints through table constraints,

column constraints, domain constraints and assertion. However, as OCL is a declarative language,

we cannot invoke processes or activate non-query operations within OCL. So the similarity

between OCL and RDBMS in this case is passive constraint. Based on the checking time,

constraint in OCL as well as in RDMBS serves both immediate and deferred checking. How often

and when to check a constraint depends on how serious the error could be. In policy on constraint

violation, OCL as declarative language can only states the condition that has to be fulfilled

without specifying any consecutive action, while RDBMS offers a way to rollback or re-establish

a correct state.

Chapter 3 Design and Implementation 8

3 Design and Implementation

3.1 Discussion of different approaches
Some approaches have been proposed for specifying OCL invariants as constraints in database

systems, either in Relational Database Management System (RDBMS) or Object Relational

Database Management System (ORDBMS). These approaches however have some advantages

and also limitations.

In [12] OCL constraints are mapped to SQL constraints by exploiting the query facilities in

ORDBMS. One of the advantages of this approach is the database can make use of the

relationships between data to easily collect related records. In traditional RDBMS, collecting

information from two tables requires a “JOIN”. For example, given that we have two tables:

Customer and CustomerCard as shown below:

CREATE TABLE "CUSTOMER"
 ("ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_NAME" VARCHAR2(255 CHAR),
 "F_TITLE" VARCHAR2(255 CHAR),
 "F_ISMALE" NUMBER(1,0) NOT NULL ENABLE,
 "F_GENDER" NUMBER(10,0),
 "F_AGE" NUMBER(5,0),
 PRIMARY KEY ("ID") ENABLE
)

CREATE TABLE "CUSTOMERCARD"
 ("ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_VALID" NUMBER(1,0) NOT NULL ENABLE,
 "F_COLOR" NUMBER(10,0),
 "F_MYLEVEL_ID" NUMBER(19,0),
 "F_OWNER_ID" NUMBER(19,0),
 "F_MEMBERSHIP_ID" NUMBER(19,0),
 PRIMARY KEY ("ID") ENABLE,
)

In traditional RDBMS selecting all the rows in CUSTOMER which has valid CUSTOMERCARD,

we have to join the CUSTOMER table and CUSTOMERCARD table.

SELECT *
FROM CUSTOMER C, CUSTOMERCARD CC
WHERE CUSTOMERCARD.F_OWNER_ID = CUSTOMER.ID
AND CC.F_VALID = 1

Chapter 3 Design and Implementation 9

The same query in ORDBMS is much simpler:

SELECT *
FROM CUSTOMER
WHERE CUSTOMER.CUSTOMERCARD.F_VALID = 1

Although some of the ideas of object relational database have largely been adopted by SQL:99

specification, such as allowing user defined datatypes, it excludes the simplicity of query shown

above.

Some other approaches are based on traditional RDBMS [2] [3] [7] [13]. In [13], OCL invariant

is mapped into stored procedures. The transformation of the constraint can be done by calling this

procedure. With this approach, complex loop expression, such as iterate - which doesn't have a

direct counterpart in declarative SQL syntax - is easy to map. However, this approach depends

extremely on programming languages rather than SQL declarative syntax. Furthermore, there is

little consistency between DBMSs vendors on stored procedure syntax.

Second approach is implementation of OCL to SQL declarative syntax with assertions [2].

However, up to now, assertion is not supported by any DBMS vendors. Another way to

implement integrity constraints in database is with the use of views and triggers [3] [7]. A view

is created for each single OCL invariant, and for each data manipulation in corresponding tables,

trigger is fired to evaluate generated views. Constraint is violated if view returns any tuples. This

approach offers some advantages: view is supported by all DBMS vendors, and it also allows

evaluating a complex condition involving arbitrary number of tables. This ability fulfills the vital

part of integrity constraint. Other fact that should also taken into consideration is mapping from

OCL invariant to declarative SQL code is simpler than the generation of procedural DBMS code

in [13].

3.2 Object Oriented Query Language with View Approach
After studying previous approaches and driven by the final release of JSR-220 Enterprise Java

Beans 3.0, we propose an approach to specify OCL invariants as constraints in database systems

by combining object oriented query language with the use of view and trigger.

Along with the final release of EJB 3.0, Java Community Press introduces Java Persistence Query

Language, an extension of Enterprise Query Language specified in EJB 2.x. It adds further

operations, including bulk update and delete, JOIN operations, GROUP BY, HAVING,

projection, and subqueries; and supports the use of dynamic queries and the use of named

Chapter 3 Design and Implementation 10

parameters [14]. The Java Persistence query language, also known as EJB3QL, can be compiled

to a target language, such as SQL of a database.

Joining Associations. By utilizing the enhanced power of EJB3QL, we are able to simplify the

process of specifying OCL invariant as the integrity constraint in database systems and keep

using relational databases. The first step in specifying OCL invariant as the integrity constraint is

the mapping of OCL invariant to EJB3QL. This mapping process is much simpler compared to

mapping the OCL invariant directly to SQL, since both OCL and EJB3QL are still in the object-

oriented “world”. For example, given that we have the following OCL Invariant:

Figure 3.1 Joining Associations

context LoyaltyProgram
inv minServices: partners.deliveredServices->size() >= 1

In our Royal and Loyal example, it would be reasonable to require that a loyalty program offers at

least one service to its customers. In order to specify the condition, from the context

LoyaltyProgram we have to navigate through its program partners to the services they deliver. In

database these objects will be mapped to tables as shown in the following SQL schema:

(Note that the SQL schema shown below only represents the relationship between tables and

disregards other information. The full SQL schema of Royal and Loyal example can be found in

Appendix D).

CREATE TABLE "LOYALTYPROGRAM"
 ("ID" NUMBER(19,0) NOT NULL ENABLE,
 ………

Chapter 3 Design and Implementation 11

 PRIMARY KEY ("ID") ENABLE
)

CREATE TABLE "PROGRAMPARTNER"
 ("ID" NUMBER(19,0) NOT NULL ENABLE,
 ………
 PRIMARY KEY ("ID") ENABLE
)

CREATE TABLE "LOYALTYPROGRAM_PROGRAMPARTNER"
 ("F_PROGRAMS_ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_PARTNERS_ID" NUMBER(19,0) NOT NULL ENABLE,
 PRIMARY KEY ("F_PROGRAMS_ID", "F_PARTNERS_ID") ENABLE,
 CONSTRAINT "FK403144A5830FFA37" FOREIGN KEY ("F_PROGRAMS_ID")
 REFERENCES "LOYALTYPROGRAM" ("ID") ENABLE,
 CONSTRAINT "FK403144A5C19CF8C1" FOREIGN KEY ("F_PARTNERS_ID")
 REFERENCES "PROGRAMPARTNER" ("ID") ENABLE
)

CREATE TABLE "SERVICE"
 ("ID" NUMBER(19,0) NOT NULL ENABLE,
 ………
 "F_PARTNER_ID" NUMBER(19,0),
 PRIMARY KEY ("ID") ENABLE,
 CONSTRAINT "FKD97C5E951D4B56" FOREIGN KEY ("F_PARTNER_ID")
 REFERENCES "PROGRAMPARTNER" ("ID") ENABLE
)

Since LOYALTYPROGRAM have many-to-many association with PROGRAMPARTNER, the Join Table

LOYALTYPROGRAM_PROGRAMPARTNER is required. The relationship between LOYALTYPROGRAM and

LOYALTYPROGRAM_PROGRAMPARTNER is represented as the foreign key F_PROGRAMS_ID in

LOYALTYPROGRAM_PROGRAMPARTNER. The relationship between LOYALTYPROGRAM_

PROGRAMPARTNER and PROGRAMPARTNER is represented as the foreign key F_PARTNERS_ID in

LOYALTYPROGRAM_PROGRAMPARTNER. The relationship between PROGRAMPARTNER and SERVICE is

represented as the foreign key F_PARTNER_ID in SERVICE.

To encompass the entire objects, in SQL we have to combine them using join as shown in FROM

clause below:

from LoyaltyProgram loyaltypro1_
 Loyaljoin tyProgram_ProgramPartner f_partners2_
 join ProgramPartner programpar3_
 join Service f_delivere4_
 where loyaltypro1_.id=f_partners2_.f_programs_id
 f_partners2_.f_partners_id=programpar3_.id
 programpar3_.id=f_delivere4_.f_partner_id

Chapter 3 Design and Implementation 12

In traditional SQL above to combine tables, besides join, we also have to describe the join

condition of combined tables, either in the FROM clause or in the WHERE clause. To retrieve

the service delivered by a loyalty program we have to match ID of LoyaltyProgram to

f_programs_id of LoyaltyProgram_ ProgramPartner, f_partner_id of

LoyaltyProgram_ProgramPartner to ID of ProgramPartner and ID of

ProgramPartner to f_partner_id of Service. Moreover, to connect

LoyaltyProgram to ProgramPartner we have to go through the Join Table

LoyaltyProgram_ProgramPartner which is not visible from the OCL Invariant.

Let us compare with the following EJB3QL for the same OCL invariant:

from tyProgram loyaltyprogram Loyal
 join loyaltyprogram.f_partners i_ProgramPartner
 join i_ProgramPartner.f_deliveredServices service

EJBQL introduces path expression, an identification variable followed by the navigation operator

(.) and a state-field or association-field [14]. Utilizing path expression, we not need to specify join

condition explicitly. With path expression, EJBQL has enough information in the mapping

document to then deduce the table join expression. This helps make mapping navigation in OCL

invariant easier and in the same time make queries less verbose and more readable.

For example, In the FROM clause to map the navigation from LoyaltyProgram to

ProgramPartner, we declare loyaltyprogram.f_partners i_ProgramPartner. The

identification variable i_ProgramPartner evaluates to any ProgramPartner value directly

reachable from LoyaltyProgram. The association-field f_partners is a collection of

instances of the abstract schema type ProgramPartner and the identification variable

i_ProgramPartner refers to an element of this collection. The type of i_ProgramPartner is

the abstract schema type of ProgramPartner. The same explanation also applies to declaration
i_ProgramPartner.f_deliveredServices service.

As we can infer from two query languages described above, translating OCL invariant to

EJB3QL is simpler and hence it will produce less error-prone. Another advantage is time-saving

in programming because using EJB3QL we need not care the Join Table, of which we should care

if we navigate through many-to-many objects such as LoyaltyProgram and ProgramPartner.

Chapter 3 Design and Implementation 13

Polymorphic Queries. By default, all queries in EJB3QL are polymorphic. That is, the FROM

clause of a query designates not only instances of the specific entity class(es) to which it

explicitly refers, but subclasses as well [14]. For example in our Royal and Loyal model,

selecting Transaction will not only return instances of Transaction but also instances of Burning

and Earning.

Figure 3.2 Polymorphic Queries

However, queries against the subclasses might be not as trivial as query against superclass. We

might define a rule which states that a customer cannot obtain more than 50 points of bonus point

as follows:

context Burning
 inv maxbonus: self.points < 50

In traditional SQL, we would expect that we have BURNING table and simply make a restriction in

the WHERE clause that points should be less than 50. Unfortunately, following the table per

class hierarchy approach [10], we do not have BURNING table. Instead, we only have TRANSACTION

table with type discriminator column to represent subclasses (See Figure 3.2). Fortunately,

disregarding which approach is taken on mapping class inheritance, we can swiftly write a query

in EJB3QL as follows:

select burning.id
from Burning burning
where not burning.f_points < 50

And still abide by our goal; we compiled the EJB3QL to our traditional SQL as follows:

select
 burning0_.id as col_0_0_
 from
 Transaction burning0_

Chapter 3 Design and Implementation 14

 where
 burning0_.DTYPE='Burning'
 and burning0_.f_points >= 50

Creating View. The translated SQL Query is used as the <SELECT statement> in constructing a

view. We can create a view using a CREATE VIEW command as follows:

CREATE VIEW <view name> [(<column list>)] AS <SELECT statement>

Following above rule, a created view for example on Burning subclass is as follows:

create view maxbonus as
select
 burning0_.id as col_0_0_
 from
 Transaction burning0_
 where
 burning0_.DTYPE='Burning'
 and burning0_.f_points >= 50

3.3 Implementation
To implement our approach, the domain model of OCL invariant should be mapped to relational

databases beforehand. For this prerequisite we choose OctopusEE, an extended version of

Octopus which implements MDA-driven generation of EJB3 persistence artifacts. Octopus itself

is an MDA tools which is able to transform UML model along with its OCL expressions into Java

code. Octopus also able to statically check OCL expressions. It checks the syntax, as well as the

expression types, and the correct use of model elements like association roles and attributes [8].

OctopusEE uses Hibernate as its ORM tool. Hibernate provides libraries of classes which are able

to map EJB3QL to SQL automatically. One of the advantages of using Hibernate libraries is it

supports multiple SQL dialect, such as: Oracle 8i, 9i, 10g, DB2 7.1, 7.2, 8.1, Microsoft SQL

Server 2000, Sybase 12.5 (JConnect 5.5), MySQL 3.23, 4.0, 4.1, 5.0, PostgreSQL 7.1.2, 7.2, 7.3,

7.4, 8.0, 8.1, TimesTen 5.1, HypersonicSQL 1.61, 1.7.0, 1.7.2, 1.7.3, 1.8, and SAP DB 7.31. The

mapping of UML model to a relational database in OctopusEE is addressed in [6].

1 Database Supported by Hibernate Team [http://hibernate.org/260.html]

Chapter 3 Design and Implementation 15

3.3.1 Processing Steps
The processing step of translating OCL invariants into SQL is depicted in the diagram below:

OCL Object

Figure 3.3 The processing step of translating OCL invariants into SQL

First, the parsed OCL expression is taken as input for xQL. xQL plays as an intermediate layer

between OCL to SQL. Abstract syntax of OCL expression is transformed to xQL model

following the transformation pattern described in Chapter 5. After the abstract syntax of xQL is

well-built, it is serialized to HQL String, which is later become the input for Hibernate Parser. In

Hibernate, SQL String will be generated from EJB3QL String. The more detail explanation is as

follows:

OCL Object to xQL Object. Following the pipe and filter architectural pattern,

transformation of OCL expression to xQL Metamodel is done through several sequential

processing steps. In the first step, we restructure the OCL expression from inline structure to

expression structure in xQL model. Inline structure is a way of structuring an expression object

into a sequence based on which object appear first in the expression. Expression structure is a

way of structuring an object expression into an operand-operator structure where the base object

is the operation expression object and the other object is considered as the operand and used as

the argument for this operation expression object. To see the difference, please compare the AST

in inline structure and AST in expression structure for OCL invariant below:

xQL Object

EJB3QL String

SQL String

Hibernate Parser

1

2

3

1

Chapter 3 Design and Implementation 16

context Customer
 inv: cards->select(valid = true)->size() > 1

Figure 3.4 Expression Structure

Figure 3.5 Inline Structure

The second step is mapping the restructured OCL invariant from previous step into xQL

Metamodel. The transformation recipe from OCL to xQL can be found in Chapter 5, while the

specification of xQL can be found in Chapter 4.

Chapter 3 Design and Implementation 17

The transformation in first step as well as in the second step is done by visiting the abstract syntax

tree of OCL invariants. These steps are connected by the data flow through the system; the output

data of a step is the input to the subsequent step. The restructuring of OCL expression to xQL

model is sequentially done by two visitors: NavigationVisitor class and OperationVisitor

class. First, OCL Expression as the data source is the input for first transforming layer,

NavigationVisitor Class. The output of this class as well as the OCL Expression is an input for

the second layer, OperationVisitor Class. At the end of the second layer, the initial xQL object

is achieved. In initial xQL object, we have all the necessary nodes and operations but not in the

query structure but only focusing in the condition part. In the last layer, xQL2Visitor Class will

transform the initial xQL object into a complete xQL model in query structure. The hierarchy of

visitor classes involved in the transformation is depicted in Figure 3.6.

<<interface>>
IxQLVisitor

DefaultVisitor

Figure 3.6 Hierarchy of xQLVisitor classes

To get a detail insight on how xQL Metamodel is generated out of OCL Expression, first we

should take a peek at ASTxQLViewer.openViewOn method.

NavigationVisitor

OperationVisitor

xQL2Visitor

Chapter 3 Design and Implementation 18

Code 1 openViewOn method in ASTxQLViewer Class
public void openViewOn(IOclExpression elem) {
 if ((elem != null) && elem instanceof OclExpression) {
 AstWalker w = new AstWalker();
 XQLCollections collections = new XQLCollections();
 NavigationVisitor nv = new NavigationVisitor(collections);
 w.walk(elem,nv);
 OperationVisitor ov = new OperationVisitor(collections);
 w.walk(elem,ov);

 xQLWalker wx = new xQLWalker();

 //show xql2
 xQL2Visitor xql2w = new xQL2Visitor();
 IxQLQuery xql = (IxQLQuery) wx.walk(collections.getQuery().
 getCondition(),xql2w);

 XmlxQLVisitor xml = new XmlxQLVisitor();
 Element tree = (Element) wx.walk(xql,xml);
 Element root = new Element("root");

 root.addContent(tree);
 viewer.setInput(root);
 viewer.refresh();
 viewer.expandAll();
 XQLtoString sml = new XQLtoString();
 String str = wx.walk(xql,sml).toString();

 HqlTest.accept(str);
 }

Figure 3.7 Attributes of XQLCollections Class

In openViewOn method, an instance of AstWalker and XQLCollections are created.

XQLCollections class (see Figure 3.7) has 3 HashMap objects (classifier_map,

structuralFeature_map, and navigation_cpparticipant_map) and xQLQuery

object as its attribute. These maps are used for storing CPParticipants and

xQLStructuralFeature objects as a result of AstWalker walking through the

OCLExpression carrying NavigationVisitor. The value of these maps will be retrieved when

processing OCL Expression in NavigationVisitor and later in OperationVisitor class.

xQLQuery

OpAsCondition

CPParticipant

Argument

xQLOperation

classifier_map
xQLStructuralFeature

navigation_cpparticipant_map

structuralFeature_map

Chapter 3 Design and Implementation 19

Collections : xQLCollections

Figure 3.8 The processing steps of constructing XQLQuery Model – Step 1

In the first step of constructing xQL model, NavigationVisitor takes OCLExpression

as its input. Here, we only implement some methods which produce CPParticipant and

xQLStructuralFeature. CPParticipant and xQLStructuralFeature are owned

by xQLQuery. These objects are stored in HashMap so that they could easily be retrieved in

next process (OperationVisitor). This first step is depicted in Figure 3.8.

The second step is walking through the OCLExpression with OperationVisitor class.

Here, OpAsCondition, xQLOperation and Argument object is created. Argument object

might contain some literal objects. In the process of creating these objects, we often access the

HashMap to retrieve CPParticipant or xQLStructuralFeature object. This process is

depicted in Figure 3.9. In this step the initial xQL object is ready.

The last step is mapping the operation initial xQL object according to transformation pattern

described in Chapter 5 to well-formed xQL object in a query structure. In this step, xQL2Visitor

walks through the initial xQL object and transforms all the visited OCL operation to xQL

operation.

NavigationVisitor

OCL Expression

xQLQuery

CPParticipant

xQLStructuralFeature

xQLQuery

CPParticipant xQLStructuralFeature

classifier map

navigation_cpparticipant_map

structuralFeature map

Chapter 3 Design and Implementation 20

Collections : xQLCollections

Figure 3.9 The processing steps of constructing XQLQuery Model – Step 2

For example given that we have the following OCL invariant:

context LoyaltyProgram
 inv: self.Membership.account->one(number < 10000)

OperationVisitor

OCL Expression

OpAsCondition

xQLOperation

Argument

xQLQuery

OpAsCondition

CPParticipant

Argument

xQLOperation

xQLStructuralFeature

classifier map

navigation_cpparticipant_map

structuralFeature map

Chapter 3 Design and Implementation 21

The abstract syntax tree of OCL above is:

And the abstract syntax tree of xQL for above OCL invariant is:

 xQL Object to EJB3QL String. After the xQL object is well-formed, we serialize the

object to EJB3QL String. xQLWalker class walks through the xQL object by carrying

xQLtoString class. xQLtoString will visit each object in abstract syntax of xQL and

generate their corresponding EJB3QL String. For example for above example the generated

EJB3QL string is as follows:

2

select loyaltyprogram.id
from LoyaltyProgram loyaltyprogram
where not
(select COUNT(service.id)
 from LoyaltyProgram loyaltyprogram
 join loyaltyprogram.f_partners i_ProgramPartner
 join i_ProgramPartner.f_deliveredServices service)= 0

Chapter 3 Design and Implementation 22

As we can see from above example, <xQLQuery> object will be serialized as a SELECT

statement. SELECT statement is composed of SELECT clause, FROM clause and optional

WHERE clause.

SELECT clause. Each xQLQuery has QueryResult attribute and sometimes aggregate

function (marked with AGG:[] in the AST of xQL above) is also appeared. QueryResult

attribute will be serialized as SELECT clause, and when aggregate function appears, the

QueryResult will be aggregated according to which aggregate function is used. The serialized

xQL can only have one object to be selected.

FROM clause. The <CPParticipants> node will be serialized as FROM clause.

CPParticipants node can have arbitrary number of CPParticipant. Each CPParticipant

consists of a classifier, a name and except the first CPParticipant, a joinField. Name will

be serialized as an identification variable while both classifier and joinField will compose a

path expression. A path expression is an identification variable followed by the navigation

operator (.) and a state-field or association-field [14]. If a CPParticipant has no joinField,

the classifier is serialized as an abstract schema type.

WHERE clause. The <OpAsCondition> node will be serialized as WHERE clause. The

WHERE clause of a query consists of a conditional expression used to select objects or values

that satisfy the expression. The WHERE clause restricts the result of a select statement [14]. The

root xQLOperation always an instance of boolean expression. An xQLQuery could be exists in

OpAsCondition and will be serialized as a subquery.

The constructed EJB3QL string is following the Java Persistence Query Language specification

defined in [14].

 EJB3QL String to SQL String. After we have the EJB3QL string in hand, the final step

is to create a SQL view construct out of it. SQL string is generated from EJB3QL by utilizing

Hibernate library called QueryTranslator as shown in Code 2.

3

Chapter 3 Design and Implementation 23

Code 2 generateSQL method in SQLGenerator.java

public static String generateSQL(final SessionFactory sf,
 final String query) {
Session session = null;

 SessionFactoryImpl sfimpl = (SessionFactoryImpl) sf;
 HQLQueryPlan plan = new HQLQueryPlan(query, false, Collections.
 EMPTY_MAP, sfimpl);
 StringBuffer str = new StringBuffer(256);
 String sql = null;
 QueryTranslator[] translators = plan.getTranslators();
 for (int i = 0; i < translators.length; i++) {
 QueryTranslator translator = translators[i];
 Iterator sqls = translator.collectSqlStrings().iterator();
 while (sqls.hasNext()) {
 sql = (String) sqls.next();
 }
 }
 return formatForScreen(sql);
}

The generated SQL from generateSQL method will be used as a <SELECT statement> in

constructing a view. A create view script is the final result of our OCL invariant to SQL

translation.

3.4 Problem and Limitation
In this project we have shown that it is possible to specify OCL invariants as constraints in

database systems by combining object oriented query language with the use of view and trigger.

Our goal to translate the OCL invariants to EJB3QL has been achieved with some limitations.

Differences in operation behavior of OCL and EJB3QL cause some operation in OCL cannot be

translated into EJB3QL, such as iterate. The complete list of unmapped operation can be found in

Appendix A. Another limitation comes from our dependency on class-to-table mapping technique

taken by OctopusEE. Two main limitations in this case are:

• To navigate through classes which are linked with association class, the navigation class

should be explicitly mentioned in the navigation paths. For example:

context LoyaltyProgram
 inv: self.participants->size() < 10000

Should be written like this:

context altyProgram Loy
 inv: self.Membership.participants->size() < 10000

Chapter 3 Design and Implementation 24

• @Transient datatype is not mapped into a column in database, so we cannot translate the
OCL invariant involving this attribute. For example:

context Customer
 inv ofAge: age >= 18

3.5 Summary
Some approaches have been proposed for specifying OCL invariants as constraints in database

systems, either in Relational Database Management System (RDBMS) or Object Relational

Database Management System (ORDBMS). These approaches however have some advantages

and also limitations. In [12], OCL constraints are mapped to SQL constraints by exploiting the

query facilities in ORDBMS. One of the advantages of this approach is the database can make

use of the relationships between data to easily collect related records. Unfortunately ORDBMS is

not widely used. Some other approaches are based on traditional RDBMS [2] [3] [7] [13]. Here,

OCL invariant is mapped into stored procedures [13], assertions [2] or views and triggers [3] [

7].

In this project, we propose an approach to specify OCL invariants as constraints in database

systems by combining object oriented query language with the use of view and trigger. Along

with the final release of EJB 3.0, Java Community Press introduces Java Persistence Query

Language. The Java Persistence query language, also known as EJB3QL, can be compiled to a

target language, such as SQL of a database. With this approach we could gain some advantages:

• Joining Associations. By utilizing the enhanced power of EJB3QL, we are able to

simplify the process of specifying OCL invariant as the integrity constraint in database

systems and keep using relational databases. EJBQL introduces path expression, an

identification variable followed by the navigation operator (.) and a state-field or

association-field [14]. Utilizing path expression, we not need to specify join condition

explicitly. With path expression, EJBQL has enough information in the mapping

document to then deduce the table join expression. This helps make mapping navigation

in OCL invariant easier and in the same time make queries less verbose and more

readable.

• Polymorphic Queries. By default, all queries in EJB3QL are polymorphic. That is, the

FROM clause of a query designates not only instances of the specific entity class(es) to

which it explicitly refers, but subclasses as well [14]. We might define a rule which

involves subclasses that, following the table per class hierarchy approach [10], are not

Chapter 3 Design and Implementation 25

mapped into a table. With polymorphic queries, no matter what approach is taken in

mapping class inheritance, we can swiftly write a query in EJB3QL.

The processing step of translating OCL invariants into SQL is depicted in the diagram below:

OCL Object

Figure 3.10 The processing step of translating OCL invariants into SQL

First, the parsed OCL expression is taken as input for xQL. xQL plays as an intermediate layer

between OCL to SQL. Abstract syntax of OCL expression is transformed to xQL model

following the transformation pattern described in Chapter 5. After the abstract syntax of xQL is

well-built, it is serialized to HQL String, which is later become the input for Hibernate Parser. In

Hibernate, SQL String will be generated from EJB3QL String.

We have shown that it is possible to specify OCL invariants as constraints in database systems by

combining object oriented query language with the use of view and trigger. Our goal to translate

the OCL invariants to EJB3QL has been achieved with some limitations. Differences in operation

behavior of OCL and EJB3QL cause some operation in OCL cannot be translated into EJB3QL,

such as iterate. The complete list of unmapped operation can be found in Appendix A. Another

limitation comes from our dependency on class-to-table mapping technique taken by OctopusEE.

Two main limitations in this case are (1) To navigate through classes which are linked with

association class, the navigation class should be explicitly mentioned in the navigation paths, and

(2) we cannot translate OCL invariant which involves @Transient datatype, since it is not

mapped into a column in database.

xQL Object

EJB3QL String

SQL String

Hibernate Parser

1

2

3

Chapter 4 xQL Specification 26

4 xQL Specification

This chapter introduces xQL, an intermediate level of OCL invariant - SQL translation. The

description is divided into several sections. The first section gives description of xQL. The second

section describes the model of xQL. The third section describes all the operation used in xQL,

and the last section defines the well-formedness rules of xQL.

4.1 What is xQL?
xQL is an intermediate step of translating OCL invariant to SQL. It is developed to ease the

transformation step. xQL is mainly composed of OCL expression and HQL expression. While

xQL borrows some of HQL operations to make expressions, the data types is mainly taken from

OCL data types. At the end, to complete the translation steps, we will serialize the abstract syntax

of xQL to HQL String.

OCL invariant basically built based on navigation and boolean expression. Navigation involves

one or more objects. In xQL, wee see the OCL invariant from database perspective where

invariant is a way to query a database with the condition specified, which should not return any

result otherwise the constraint is broken. Object participating in navigation is seen as the join

between tables in the FROM clause and boolean expression is seen as condition appear in the

WHERE clause.

4.2 Data Types and Values
In xQL, a number of basic types are predefined. The most basic value in xQL is a value of one of

the basic types. The basic types defined in the xQL are Integer, Real, String, and Boolean. The

basic types of xQL, with corresponding examples of their values, are shown in the following

table.

Table 4.1 Basic xQL Types

Types Values
Boolean True, false
String “This is a string”
Integer 1, 2, 3, …
Real 0.5, 0.75, 1.25, …

Chapter 4 xQL Specification 27

Real
The standard type Real represents the mathematical concept of real. Note that Integer is a

subclass of Real, so for each parameter of type Real, you can use an integer as the actual

parameter.

Integer
The standard type Integer represents the mathematical concept of integer.

String
The standard type String represents strings, which can be either ASCII or Unicode.

Boolean

The standard type Boolean represents the common true/false values.

4.2.1 Types from the UML Model
Each xQL expression is the translation from OCL expression which is written in the context of a

UML model, a number of classifiers, their features and associations, and their generalizations.

OCL expressions can refer to Classifiers (types, classes, interfaces, associations classes) and all

attributes, association-ends, methods, and operations without side-effects that are defined on it

can be used. xQL wraps types from UML Model with CPParticipant and xQLStructuralFeature.

For the purpose of this project, we will refer only to attributes, association-ends, and association

class.

Attributes
For example, an invariant in OCL stating the age of a Customer is always greater than zero is

written as follows:

context Customer
inv: self.age > 0

The value of the subexpression self.age is the value of the age attribute on the particular instance

of Customer identified by self. The type of this subexpression is the type of the attribute age,

which is the standard type Integer. Using attributes and operations defined on the basic value

types, we can express calculations etc. over the class model.

In xQL, attribute age is wrapped in StructuralFeature as shown in the following picture:

Chapter 4 xQL Specification 28

Figure 4.1 Attribute in xQL

After the xQL is serialized into HQL, age becomes one of the columns in table Customer:

select customer.id
from Customer customer
where not customer.f_age > 0

AssociationEnds, Association Class and Navigation
In OCL, starting from a specific object, we can navigate an association on the class diagram to

refer to other objects and their properties. To do so, we navigate the association by using the

opposite association-end. If the multiplicity of the association-end has a maximum of one then the

navigation results in object. If the multiplicity of the association-end is more than one, then the

navigation results in collection of object. Other means of navigation is using association class.

We can navigate from the association class itself to the objects that participate in the association.

Chapter 4 xQL Specification 29

Figure 4.2 CPParticipant and xQLQuery

In xQL, each object participating in navigation is mapped into a CPParticipant. So, for every

classifier appears in the navigation, call it the context, association end, or association class, a

CPParticipant is instantiated. The instantiated CPParticipants is exist as entities of an xQLQuery,

as shown in the class diagram above. Later when we serialize the AST of xQL, these

CPParticipant will be the join between tables. The result of an xQLQuery is always a collection

although it might consists of only one element.

For example, an OCL invariant which involves association end with multiplicity not greater than

one:

context Membership
inv: self.account.points > 5

In xQL expression self.account will instantiate CPParticipant membership and CPParticipant

loyaltyaccount, each corresponding to its Classifier, Membership and LoyaltyAccount. points

as an attribute of LoyaltyAccount will be treated as the QueryResult of xQLQuery with type

Integer. The AST of created xQL corresponding to the example above is as follows:

Chapter 4 xQL Specification 30

Figure 4.3 Example of navigation involving association end with multiplicity less than 1

Although the result of this navigation is an object, xQL treats all its entities as a join between

tables, so the result is always a collection.

4.2.2 Collections
Collections in xQL can be produced in two ways: as a result of xQLQuery or define literally by

the user. The type Collection is predefined in OCL. The element of the collection take the type of

basic types which is either a String, Integer, Real or Boolean.

Collection Literals
Collection can be specified by a literal in xQL. Users can specify each element in the collection

by using curly brackets to surround the elements of the collection. The elements in the collection

are written within, separated by commas.

collection {1, 2, 5, 88}

Another way to define collection literals is to specify the interval of the element in the collection

which is called collection range. Collection range consists of two expressions of type Integer,

separated by ‘..’.

sequence{1..10}

in the model, a collection literals is be hold in a List and a collection range will be hold in a

HashMap.

4.3 xQL Metamodel
xQL starts with xQLQuery, the class which hold the main part of the model: CPParticipant object

and OpAsCondition. When we later serialize the xQL AST to HQL, CPParticipant represent the

SELECT clause and FROM clause while OpAsCondition represent the WHERE clause. In this

section we will describe the xQL Metamodel in two parts, first we discuss the entire object which

built the SELECT clause and FROM clause and the second we will discuss the objects which

involves in building the condition in the WHERE clause.

Chapter 4 xQL Specification 31

Figure 4.4 CPParticipant and OpAsCondition of xQL Metamodel

4.3.1 Join and Navigation
To handle the navigation in OCL invariant, xQLQuery and CPParticipant is made. xQL always

starts with xQLQuery which forms the query object. Navigation in OCL is mapped to

CPParticipant.

Figure 4.5 CPParticipant in xQL

Chapter 4 xQL Specification 32

xQLQuery

xQLQuery corresponds to query as a whole. ResultType defines the type of the query result. The

result of xQLQuery always in the form of collection, except when AggregateFunction appears.

QueryResult defines the SELECT clause. Not like ordinary query, xQL only select one column of

the table.

AggregateFunction

AggregateFunction is used when we want to have a single aggregate value over a QueryResult.

xQL provides two aggregate functions: SUM and COUNT. While SUM computes the sum of an

expression over all rows in the query result; COUNT returns the number of element in the

collection. When AggregateFunction is used in xQLQuery, the query will return one single value

in the type of Integer. AggregateFunction is used whenever we found a size() and sum() operation

in OCL invariant.

CPParticipant

Every time an association end appears in navigation, a CPParticipant is instantiated corresponds

to its Classifier and the association end is stored in xQLStructuralFeature. CPParticipant is also

instantiated for the context of the OCL invariant and association class. From database point of

view, CPParticipant represent the table in the database. In serialization of xQL, CPParticipant will

appear in the FROM clause, where each of them will be joined by JOIN expression.

xQLStructuralFeature

Besides holding the association end as already mentioned before, xQLStructuralFeature also

holds the information on attribute. Attributes associates with CPParticipant as its ownerEntity.

xQLStructuralFeature wraps the information from UML in referredStructuralFeature.

4.3.2 Condition
The condition part which lies in the WHERE clause is represented in OpAsCondition as shown in

the class diagram below.

Chapter 4 xQL Specification 33

Figure 4.6 OpAsCondition in xQL

OpAsCondition

OpAsCondition is the wrapper of xQLOperation and Argument. If OpAsCondition associates

with xQLQuery, it is considered as the root operation. The root operation must be a boolean

expression, hence its referredOperation should be an instance of ComparisonOperation or

LogicalOperation.

Argument

OpAsCondition can has arbitrary number of argument depends on xQLOperation. Argument

could be a collection or one of the basic types, such as String, Integer, Real and Boolean.

ArgumentType must conform to the argument type specified by xQLOperation.

xQLOperation

xQLOperation defines the operation of the condition. It consists of 4 important subclasses:

StringOperation, LogicalOperation, ComparisonOperation, and ArithmeticOperation. Each of the

subclasses will be described in the following section.

Chapter 4 xQL Specification 34

Figure 4.7 xQLOperation and its subclasses

4.4 Operation in xQL
Operation in xQL can be considered similar to operation in HQL. The operation is contained in

the referredOperation. OpAsCondition acts as a wrap of operation and its arguments.

OpAsCondition may contain a list of argument expressions if the operation is defined to have

parameters. In this case, the number and types of the arguments must match the parameters.

Arithmetic operators perform mathematical operations on two expressions of any data types in

the numeric datatype category. We use the term ‘Numeric’ to represent Integer and Real.

Table 4.2 Arithmetic Operation

Data Type Operation Meaning Argument 1 Argument 2 Return
+ Addition Numeric Numeric
- Subtraction Numeric Numeric
* Multiplication Numeric Numeric
/ Division Numeric Numeric

Numeric

Chapter 4 xQL Specification 35

Table 4.3 Comparison Operation
Data Type Operation Meaning Argument 1 Argument 2 Return

= Equal to Numeric/
Boolean/ String

Numeric/
Boolean/ String

> Greater than Numeric Numeric
< Less than Numeric Numeric
>= Greater than or

equal to
Numeric Numeric

<= Less than or
equal to

Numeric Numeric

<> Not equal to Numeric/
Boolean/ String

Numeric/
Boolean/ String

boolean

Table 4.4 Unary Operation

Data Type Operation Meaning Argument 1 Return
+ Numeric value is negative Numeric Numeric

Table 4.5 String Operation

Data Type Operation Meaning Argument 1 Argument 2 Argument 3 Return
Concat (||) Appends two

or more
literal
expressions,
attributes
values
together into
one string

String String - String

Lower Converts a
string to all
lowercase
characters

String - - String

Upper Converts a
string to all
lowercase
characters

String - - String

Substring Extracts a
portion of
string

String Integer Integer String

Chapter 4 xQL Specification 36

Table 4.6 Logical Operation
Data Type Operation Meaning Argument 1 Argument 2 Argument 3 Return

IN TRUE if the
operand is
equal to one
of the
element in
the list

String/
Numeric

Collection -

BETWEEN TRUE is the
operand is
within a
range

Numeric Numeric Numeric

AND TRUE if
both Boolean
expression
are TRUE

Boolean Boolean -

OR TRUE if
either
Boolean
expression
are TRUE

Boolean Boolean -

NOT Reverses the
value of any
other
Boolean
operator

Boolean - -

Boolean

4.5 Well-formedness rules of xQL

xQLQuery

[1] Every xQLQuery must have one condition and at least one entity.
 context QLQuery x
 inv: self.condition->notEmpty()
 inv: self.entities.size()>0

[2] If aggregate’s name equal to SUM, the type of QueryResult must be a numeric.
 context xQLQuery
 inv: self.aggregate->notEmpty() and self.aggregate.name = ‘SUM’

implies self.QueryResult.refferedStructuralFeature.type =
StdlibPrimitiveType::Integer

 inv: self.aggregate->notEmpty() and self.aggregate.name = ‘SUM’

implies self.QueryResult.refferedStructuralFeature.type =
StdlibPrimitiveType::Real

Chapter 4 xQL Specification 37

[3] QueryResult is either a type of xQLStructuralFeature or type of CPParticipant.
 context xQLQuery
 inv: self.QueryResult.oclIsTypeOf(xQLStructuralFeature) or

self.QueryResult.oclIsTypeOf(CPParticipant)

[4] If QueryResult if a type of CPParticipant then ReturnType is a Numeric.
 context QLQuery x
 inv: self.QueryResult.oclIsTypeOf(CPParticipant) implies

self.ReturnType = xQLDataType::Numeric

CPParticipant

[1] entityVariable of CPParticipants associate with the same owner must be unique.
 context xQLQuery
 inv: self.entities.isUnique(entityVariable)

[2] Except the first and last entities, all entities must have a joinField.
 context xQLQuery
 inv: -

[3] The refferedStructuralFeature of joinField of the corresponding CPParticipant must be the

type of AssociationEndImpl.
 context CPParticipant
 inv: self.joinField.oclIsTypeOf(AssociationEndImpl)

[4] If the classifier is an instance of AssociationClassImpl then the corresponding

CPParticipant does not have a joinField.
 context CPParticipant
 inv: self.oclIsTypeOf(AssociationClassImpl) implies

self.joinField->isEmpty()

[5] The refferedStructuralFeature of involvesAttributes of the corresponding CPParticipant

must be the type of AttributeImpl.
 context CPParticipant
 inv: self.involvesAttributes.oclIsTypeOf(AttributeImpl)

OpAsCondition

 [1] If the owner of the current OpAsCondition is an instance of xQLQuery, the

referredOperation must be an instance of LogicalOperation or ComparisonOperation.
 context OpAsCondition
 inv: self.owner.oclIsTypeOf(xQLQuery) implies

self.refferedOperation.oclIsTypeOf(LogicalOperation) or
self.refferedOperation.oclIsTypeOf(ComparisonOperation)

 [2] The argType of each argument of OpAsCondition must adhere to the argument type

specified by xQLOperation.
 context OpAsCondition
 inv: -

Chapter 4 xQL Specification 38

Argument

[1] if arg is an instance of CPParticipant then argType equals to ENTITY_VAR
 context Argument
 inv: self.arg.oclIsTypeOf(CPParticipant) implies self.argType =

ArgumentType::ENTITY_VAR

[2] if arg is an instance of OpAsCondition then argType equals to SUB_COND
 context Argument
 inv: self.arg.oclIsTypeOf(OpAsCondition) implies self.argType =

ArgumentType::SUB_COND

[3] if arg is an instance of IxQLStructuralFeature then argType equals to

STRUCTURAL_FEATURE
 context Argument
 inv: self.arg.oclIsTypeOf(xQLStructuralFeature) implies

self.argType = ArgumentType::STRUCTURAL_FEATURE

[4] if arg is an instance of Boolean then argType equals to L_BOOL
 context Argument
 inv: self.arg.oclIsTypeOf(Boolean) implies self.argType =

ArgumentType::L_BOOL

[5] if arg is an instance of Integer then argType equals to L_INT
 context Argument
 inv: self.arg.oclIsTypeOf(Integer) implies self.argType =

ArgumentType::L_INT

[6] if arg is an instance of Double then argType equals to L_DOUBLE
 context Argument
 inv: self.arg.oclIsTypeOf(Double) implies self.argType =

ArgumentType::L_DOUBLE

[7] if arg is an instance of String then argType equals to L_STR
 context Argument
 inv: self.arg.oclIsTypeOf(String) implies self.argType =

ArgumentType::L_STR

[8] if arg is an instance of Integer then argType equals to L_INT
 context Argument
 inv: self.arg.oclIsTypeOf(Integer) implies self.argType =

ArgumentType::L_INT

[9] if arg is an instance of HashMap then argType equals to COLL_RANGE

Chapter 4 xQL Specification 39

 context Argument
 inv: self.arg.oclIsTypeOf(HashMap) implies self.argType =

ArgumentType::COLL_RANGE

 [10] If arg is an instance of List then argType equals to COLL_ITEM
 context Argument
 inv: self.arg.oclIsTypeOf(List) implies self.argType =

ArgumentType::COLL_ITEM

Arithmetic Operation

[1] The number of argument is two.
 context OpAsCondition
 inv: self.refferedOperation.oclIsTypeOf(ArithmeticOperation)

implies self.arguments->size() = 2

[2] Arguments must be a type of Integer or Real
 context OpAsCondition
 inv: self.refferedOperation.oclIsTypeOf(ArithmeticOperation)

implies self.arguments.dataType=xQLDataType::Integer or
self.arguments.dataType=xQLDataType::Real

Comparison Operation

[1] The number of argument is two.
 context OpAsCondition
 inv: self.refferedOperation.oclIsTypeOf(ComparisonOperation)

implies self.arguments->size() = 2

[2] Argument of greater, greater than, less, less than is either Integer or Real.
 context OpAsCondition
 inv: self.refferedOperation.name=’ge’ implies

self.arguments.dataType = xQLDataType::Real or
self.arguments.dataType=xQLDataType::Integer

 context OpAsCondition
 inv: self.refferedOperation.name=’gt’ implies

self.arguments.dataType = xQLDataType::Real or
self.arguments.dataType=xQLDataType::Integer

 context OpAsCondition
 inv: self.refferedOperation.name=’le’ implies

self.arguments.dataType = xQLDataType::Real or
self.arguments.dataType=xQLDataType::Integer

 context OpAsCondition
 inv: self.refferedOperation.name=’lt’ implies

self.arguments.dataType = xQLDataType::Real or
self.arguments.dataType=xQLDataType::Integer

Chapter 4 xQL Specification 40

[3] If comparison operation is equal or not equal, the argument type could be a String, Boolean

or Numeric, buth both argument must be on the same type.
 context OpAsCondition
 inv: self.refferedOperation.name=’eq’ implies

self.arguments.dataType = xQLDataType::Real or
self.arguments.dataType=xQLDataType::Integer or
self.arguments.dataType = xQLDataType::String or
self.arguments.dataType=xQLDataType::Boolean

 context OpAsCondition
 inv: self.refferedOperation.name=’ne’ implies

self.arguments.dataType = xQLDataType::Real or
self.arguments.dataType=xQLDataType::Integer or
self.arguments.dataType = xQLDataType::String or
self.arguments.dataType=xQLDataType::Boolean

 context OpAsCondition
 inv: self.refferedOperation.name=’eq’ implies self.arguments-

>first().dataType = self.arguments->last().dataType

 context OpAsCondition
 inv: self.refferedOperation.name=’ne’ implies self.arguments-

>first().dataType = self.arguments->last().dataType

String Operation

[1] If String Operation equals to concat, the number of argument is two and must be a type of

String.
 context OpAsCondition
 inv: self.refferedOperation.name=’concat’ implies

self.arguments->size() = 2

 inv: self.refferedOperation.name=’concat’ implies

self.arguments.dataType = xQLDataType::String

[2] If String Operation equals to lower or upper, the number of argument is one and must be a

type of String
 context OpAsCondition
 inv: self.refferedOperation.name=’lower’ implies

self.arguments->size() = 1

 inv: self.refferedOperation.name=’lower’ implies

self.arguments.dataType = xQLDataType::String

 inv: self.refferedOperation.name=’upper’ implies

self.arguments->size() = 1

 inv: self.refferedOperation.name=’upper’ implies

self.arguments.dataType = xQLDataType::String

Chapter 4 xQL Specification 41

[3] If String Operation equals to substring, the number of argument is three. The first argument

must be the type of String, the second and third argument must be the type of Integer.
 context OpAsCondition
 inv: self.refferedOperation.name=’substring’ implies

self.arguments->size() = 3

 inv: self.refferedOperation.name=’substring’ implies

self.arguments->first().dataType = xQLDataType::String

 inv: self.refferedOperation.name=’substring’ implies

self.arguments->at(2).dataType = xQLDataType::Integer

 inv: self.refferedOperation.name=’substring’ implies

self.arguments->last().dataType = xQLDataType::Integer

Logical Operation

[1] If the Logical Operation equals to IN, the number of arguments is two and the first

argument must be in the same type in the type of collection’s element.
 context OpAsCondition
 inv: self.refferedOperation.name=’in’ implies self.arguments-

>size() = 2

 inv: self.refferedOperation.name=’in’ implies self.arguments-

>first().dataType = self.arguments->last().dataType

 inv: self.refferedOperation.name=’in’ implies self.arguments-

>last().isCollection = true

[2] If the Logical Operation equals to BETWEEN, the number of argument is three and must

be in the type of Integer.
 context OpAsCondition
 inv: self.refferedOperation.name=’in’ implies self.arguments-

>size() = 3

 inv: self.refferedOperation.name=’in’ implies

self.arguments.oclIsTypeOf(Integer)

 [3] If the Logical Operation equals to AND or OR, the number of arguments is two and must

be in the type of Boolean.
 context OpAsCondition
 inv: self.refferedOperation.name=’and’ implies self.arguments-

>size() = 2

 inv: self.refferedOperation.name=’or’ implies self.arguments-

>size() = 2

Chapter 4 xQL Specification 42

[4] If the Logical Operation equals to NOT, the number of arguments is one and must be in the

type of Boolean
 context OpAsCondition
 inv: self.refferedOperation.name=’not’ implies self.arguments-

>size() = 1

 inv: self.refferedOperation.name=’not’ implies

self.arguments.oclIsTypeOf(Integer)

4.6 Summary

xQL is an intermediate step of translating OCL invariant to SQL. It is developed to ease the

transformation step. xQL is mainly composed of OCL expression and HQL expression. While

xQL borrows some of HQL operations to make expressions, the data types is mainly taken from

OCL data types. At the end, to complete the translation steps, we will serialize the abstract syntax

of xQL to HQL String. From database point of view xQL is composed of a SELECT clause,

FROM clause and WHERE clause. Path and navigation of OCL is translated into SELECT

clause and WHERE clause in xQL, whereas the Boolean expression is taken as WHERE clause.

Some operation involved in the WHERE clause is also discussed in this chapter along with their

well-formedness rules.

Chapter 5 Transformation Recipes: Patterns and Procedures 43

5 Transformation Recipes: Patterns and
Procedures

5.1 The Negation of Boolean Expression
Invariant in OCL Expression is a Boolean expression that should be true for an object during its

complete lifetime. In Database system, integrity is checked by querying the database with false

condition. Integrity is assured when there query returns no result. For example, take this simple

OCL invariant:

context Customer
 inv: self.cards->size() < 5

OCL invariant above states that the current customer can have in maximum 4 cards. In database

point of view, this invariant seen as ‘there is not exist a customer that have 5 or more cards’ and

is written as follows:

select * from customer as self
where not

(select count(*) from customer self, customercard cc
where self.id = cc.f_owner_id)

 < 5
;

Considering this, to assure the constraint is not broken, we have to select from the database with

the negated condition and to hold the integrity, the selection should never return any result.

Hence, in database constraint, to put the boolean expression as the condition in WHERE clause,

we should always negate it first :

not self.cards->size() < 5

Another crux point is the OCL invariant is taken as the WHERE clause in database.

Chapter 5 Transformation Recipes: Patterns and Procedures 44

5.2 Operators
Boolean expression can be produced by an operator which return a boolean value. For example,

in OCL invariant above boolean operator lesser than (‘<’) returns a boolean value. Based on this,

we can divide operators in two main group: operator which return a boolean value, and operator

which return other than boolean value. Operator which return a non-boolean value won’t be

considered as the candidate for negated operator.

Problem in determining which expression should be negated may occur when invariant contains

more than one operator. However, this problem could easily solved if we see the OCL Expression

in a operator hierarchical way. Here the OCL Expression is drawn based on the operator, from the

most outer operator to the most inner operator.

In above example, we actually have 2 operators, size() and lesser than (‘>’). In the hierarchical

AST this invariant is drawn as follows:

With lesser than (<lt>) as the outer operator (marked with 1) and size() (<size>) as the inner

operator (marked with 2). It is clear that the negated operator is lesser than since it is the root

operator. In short, in mapping of OCL invariant to database constraint, root operator should

always be negated.

In the AST above, OCL invariants is considered as group of operator and operand. Each operator

has one or more operand, and each operand could be another operator (which also consist of

operands) and navigation. Operand could also consists navigation with no further applied

operator. As in example above, <lt> as the outer operator has 2 operands, call them A and B. A is

another operand, size() and B is the operand 5. Operator size() has 1 operand which is cards.

5.3 Mapping Procedures
Mapping is divided into two main groups, first is the translation of navigation, and the second is

translation of operation:

Chapter 5 Transformation Recipes: Patterns and Procedures 45

a. Navigation

Navigation is translated to SELECT clause and FROM clause.

Collection type of OCL are divided into set and bag, however in database, data are always in

the form of tuples.

b. Operation

Simple operation such as arithmetic or boolean operation are easy to map since their direct

counterpart is available in xQL. However, mapping of operation for collection type is quite

challenging, since some of the operations do not have a direct counter part in xQL. To

overcome this problem, we need to transform the operation to another equivalent OCL

operation. For example isUnique operation is first transformed to its equivalent expression

using forAll(expr) operation before being translated into xQL.

Complete list of mapping patterns can be found in the following section.

5.4 Mapping Patterns

5.4.1 Navigation
Operands in OCL could be divided into 3 main types: Classifier, StructuralFeature and Literal. A

Classifier is equivalent to a Class, StructuralFeature is equivalent to an Attribute, and Literal

could take the type of String, Numeric, Boolean or a Collection. Since literal is transformed also

as literal, what left is the transformation of Classifier and StructuralFeature.

In xQL, Classifier, Association End, and Association Class are mapped to CPParticipant.

However, unlike OCL, CPParticipant is the occurrence of the Classifier, so there could be a

possibility that we have more than one instance of CPParticipant correspond to the same

Classifier, as shown in the following example:

context LoyaltyProgram
 inv lp_2: levels->includesAll(Membership.currentLevel)

Above invariant states that the service level of each membership must be a service level known to

the loyalty program for which the invariant holds. For this invariant, following CPParticipants are

instantiated:

• loyaltyprogram: instantiated from the context LoyaltyProgram, so it is referring to

LoyaltyProgram Classifier.

Chapter 5 Transformation Recipes: Patterns and Procedures 46

• i_Membership: instantiated from the association class Membership, so it is referring to

Membership Classifier.

• servicelevel_11857510: instantiated from the association end levels, which its Classifier

is ServiceLevel.

• servicelevel: instantiated from the association end currentLevel, which its Classifier is

also ServiceLevel.

The AST from above example is depicted in Figure 5.1.

Figure 5.1 AST of OCL Invariant lp_2: levels->includesAll(Membership.currentLevel)

Attributes from OCL is mapped to xQLStructuralFeature. xQLStructuralFeature holds the

information about the attribute’s name and the owner.

5.4.2 Operation
Based on the type of expression, OCL Operation can be divided into 2 main groups, operation on

basic types and operation on collection type. Besides these two main categories, there also exists

user-defined operation. The last mentioned type of operation is out of this project scope.

5.4.2.1 Operation on Basic types
Operation on primitive data type is divided into several sections based on the input type: Boolean

type, Numeric type and String type.

Table 5.1 Standard operations for Boolean type

OCL xQL Result Type
a or b a or b
a and b a and b
a xor b (a or not b) and (not a or b)
not a not a
a = b a = b
a <> b a <> b
a implies b not a or b

boolean

Chapter 5 Transformation Recipes: Patterns and Procedures 47

For operation on Boolean type, the direct counterpart can be found almost for all operation except

exclusive or and implies. However, the translation is still possible by using the equivalent

operation.

Table 5.2 Standard operations for Numeric type
OCL xQL Result Type

a = b a = b
a <> b a <> b
a < b a < b
a > b a > b
a <= b a <= b
a >= b a >= b

boolean

a + b a + b
a – b a – b
a * b a * b
a / b a / b

numeric

Table 5.3 Standard operations for String type

OCL xQL Result Type
string.concat(string) string1 || string2
string.toLower() lower(string)
string.toUpper() upper(string)
string.substring(int,int) substring(string, int,int)

String

5.4.2.2 Operations on Collection Types
OCL defines many operations on collection types. These operations are specifically meant to

enable a flexible and powerful way of projecting new collections from existing ones. The

different constructs are described in the following sections.

Standard Operations

To look at the concise version of the mapping please refer to Table 5.4.

Chapter 5 Transformation Recipes: Patterns and Procedures 48

Table 5.4 Standard operations on all collection types
OCL xQL Result Type

collection->count(object) integer
collection ->excludes(object)

collection ->excludesAll(collection)

collection ->includes(object)

collection ->includes All(collection)

select [count(object)]
from …
where
object | collection [not] in
collection

collection ->isEmpty() count(*) from … = 0
collection ->notEmpty() count(*) from .. <> 0

boolean

collection ->size() count(*)

collection ->sum() sum(collection) integer

The count, excludes, excludesAll, includes, includesAll operation

The count, excludes, excludesAll, includes, and includesAll operation actually has the same basic

operation; they check whether the object or collection in the body parameter exists or not exists in

the collection. All of these operations return a boolean value except count operation which return

the number of occurrences of the object in the collection. In xQL the verification of whether a

certain object exists in the corresponding collection is solved with IN operation. IN returns true if

the object exists in the corresponding collection, and false coversely. IN operation can also be

used to write certain types of subqueries.

We have the same basic recipe for count, excludes, excludesAll, includes, includesAll operation.

The collection appeared in left side of the arrow is mapped as an xQLQuery and become the

second argument of IN operation. The body of those operations is mapped as another xQLQuery

and become the outer query where IN is used in the WHERE clause. First argument of IN

operation is QueryResult of the outer xQLQuery. For excludes and excludesAll we use NOT IN

operation, and for COUNT operation, we use the aggregate function COUNT in the Query Result

of the outer xQLQuery.

For example, given that we have the following invariant which specifies that the actual service

level of a membership must be one of the service levels of the program so which the membership

belongs:

context Membership
inv: programs.levels ->includes(currentLevel)

Chapter 5 Transformation Recipes: Patterns and Procedures 49

For the body of includes, an xQLQuery is instantiated with membership and

servicelevel_33199009 as its CPParticipants. For the first argument of IN operation, the

QueryResult, servicelevel_33199009, is used and for the second argument another xQLQuery is

instantiated with membership, loyaltyprogram, and servicelevel as its CPParticipants.

Figure 5.2 AST of IN operation

And the serialization of the xQL model above into HQL String after we negate the root operation

is as follows:

select servicelevel_13596360.id
from Membership membership
 join membership.f_currentLevel servicelevel_13596360
where not servicelevel_13596360

in
(select servicelevel.id
from Membership membership

join membership.f_programs loyaltyprogram
join loyaltyprogram.f_levels servicelevel)

The isEmpty and notEmpty Operation

The isEmpty operation returns true if the collection contains no elements, and notEmpty operation

returns true if the collection contains at least one element. So actually these two operations are the

reverse operation of each other. To map this operation we have to query the database count the

result with aggregate function. For isEmpty the result should be 0 and for notEmpty the result

should be not equal to 0.

For example, given that we have the following OCL invariant which states a loyalty program

does not deliver any Service to its customer.

context LoyaltyProgram
inv: partners.deliveredServices->isEmpty()

Chapter 5 Transformation Recipes: Patterns and Procedures 50

For this invariant, first we instantiate an xQLQuery object which has loyaltyprogram,

i_ProgrampPartner and service as its CPParticipant. This CPParticipant is taken from the context

LoyaltyProgram, association end partners and association end deliveredServices. The last

CPParticipant is taken as the QueryResult follows with the application of aggregate function

COUNT on it. The next step is comparing the xQLQuery with Literal Integer 0. For isEmpty we

compare the xQLQuery with equal (‘=’) operator, and for notEmpty we compare the xQLQuery

with not equal (‘<>’) operator. The result of this comparison is a boolean value.

Figure 5.3 Example for isEmpty and notEmpty operation

The size Operation

The size operation returns the number of elements in the collection. In xQL, size is mapped by

adding the aggregate function COUNT in the QueryResult.

For example given that we have the following OCL invariant which states that the current

customer can have in maximum 4 cards:

context Customer
 inv: self.cards->size() < 5

size operation is mapped by the aggregate function COUNT in the inner xQLQuery as shown in
the figure below:

Figure 5.4 Example for size Operation

Chapter 5 Transformation Recipes: Patterns and Procedures 51

And the serialization of the xQL model above into HQL String after we negate the root operation

is as follows:

select customer.id
from Customer customer
where not
 (select COUNT(customercard.id)
 from Customer customer
 join customer.f_cards customercard)< 5

The sum Operation

The sum operation returns the addition of all elements in the collection. The elements must be of

a type supporting addition (such as Real or Integer). In xQL, sum is mapped by adding the

aggregate function SUM in the QueryResult.

Loop Operations or Iterators

A number of standard OCL operations enable you to loop over the elements in a collection. These

operations take each element in the collection and evaluate an expression on it. Loop operations

are also called iterators or iterator operations. Every loop operation has an OCL expression as

parameter. This is called the body, or body parameter, of the operation. The following sections

explain each of the loop operations in more detail. Table 5.5 shows an overview of the loop

operations defined on the collection types.

Table 5.5 Loop Operations or Iterators (IteratorExp)
OCL HQL Return Type

collection->collect(element) navigation
collection->collectNested(element) navigation collection

collection->any(boolean expr) element
collection->reject(boolean expr)
collection->select(boolean expr)

select *
from table
where [not] boolean exp collection

Collection->forAll(boolean expr) (select count(*) from table) =
(select count(*) from table where
boolean expr)

collection->isUnique(element) use forAll
collection->one(boolean exp) (select count(*)

from table
 where boolean exp) = 1

boolean

Collection->exists(boolean expr) (select count(*) from table where
boolean expr) > 1

boolean

Chapter 5 Transformation Recipes: Patterns and Procedures 52

The collect and collectNested Operation

The collect operation iterates over the collection, computes a value for each element of the

collection, and gathers the evaluated values into a new collection. We consider collect as a part of

navigation, since collect is mostly used to navigate from the source object to destination object.

Collect can also be written using dot notation (‘.’).

OCL differentiates iteration over a set and iteration over a bag with collect and collectNested.

However, in xQL we consider collect and collectNested as the same operation. In xQL we see it

as list of CPParticipants, and later when it is serialized; it will be the join between tables.

The any, select, and reject Operation

The basic idea behind these three operations is they enables us to specify a selection from the

original collection based that fulfill the condition stated in the parameter. In xQL, the condition

stated in the body parameter will be mapped as OpAsCondition. The operand and operator of

OpAsCondition depend on the boolean expression in the body parameter. In order to return an

element or a collection, we have to make the outer xQLQuery and put the OpAsCondition as its

condition.

While any and select return a selection from the original collection which fulfills the condition,

reject return all elements from the collection for which the expression evaluates to false. The

difference is reflected by the use of not operation. This pattern is the basic translation of other

iterator exp such as forAll, exists and one.

Again, taking Royal and Loyal model as an example, the following expression from the context

of LoyaltyProgram results in a loyalty account randomly picked from the set of accounts in the

program that have a number lower than 10,000:

self.Membership.account->any(number < 10000)

Chapter 5 Transformation Recipes: Patterns and Procedures 53

Figure 5.5 Example for any Operation

The exists Operation

Exists operation is used to specify whether there is at least one object in a collection for which a

certain condition holds. Using the basic translation for iterator expression described in the

previous operation, in exists Operation; we add an aggregate function count. Next step is

instantiating an OpAsCondition which will hold the xQLQuery, literal integer 0 and greater than

as the comparison operation. Exists returns true if the number of result is greater than zero,

otherwise returns false.

To specify whether there is at least one service with the name = ‘basic’ in the corresponding

LoyaltyProgram, we define the following OCL invariant:

context LoyaltyProgram
 inv lp_3: self.levels->exists(name = 'basic')

Figure 5.6 Example of exists Operation

The forAll Operation

We often want to specify that a certain condition must hold for all elements of a collection. The

forAll operation on collections can be used for this purpose. The result of the forAll operation is a

boolean value. It is true if the expression is true for all elements of the collection. If the

Chapter 5 Transformation Recipes: Patterns and Procedures 54

expression is false for one or more elements in the collection, then forAll results in false. Using

the operations we have in xQL, the equivalent operation for forAll operation is to compare the

number of results of xQLQuery with and without the condition. If the number of results is the

same, it means that the condition is valid for all the elements in the collection.

Again, using the basic translation for iterator expression, we will instantiate two xQLQuery, one

xQLQuery with OpAsCondition and the other without OpAsCondition. Next step is adding the

aggregate function count to both of xQLQuery. Last step is comparing the result of both

xQLQuery with equal comparison operator.

Given that we want to specify that the participant of the corresponding program is open only for

male:

context LoyaltyProgram
 inv : self.Membership.participants->forAll(isMale = true)

For above example, we have the OpAsCondition with equal as its xQLOperation and two

aggregated xQLQuery, one with the condition isMale = true and the other without the

condition.

Figure 5.7 Example of forAll Operation

The isUnique Operation
Quite often in a collection of elements, we want a certain aspect of the elements to be unique for

each element in the collection. For instance, in a collection of employees of a company, the

employee number must be unique. To state this fact, we can use the isUnique operation. The

parameter of this operation is usually a feature of the type of the elements in the collection. The

result is either true or false. The operation will loop over all elements and compare the values by

Chapter 5 Transformation Recipes: Patterns and Procedures 55

calculating the parameter expression for all elements. If none of the values is equal to another, the

result is true; otherwise, the result is false.

To resolve the translation of isUnique we will firstly translate it to its equivalent operation using

nested forAll [15]. The latter translation is following the pattern of forAll.

The one Operation
The one operation gives a boolean result stating whether there is exactly one element in the

collection for which a condition holds. The body parameter of this operation, stating the

condition, is a boolean expression. If there is exactly one such element, then the result is true;

otherwise, the result is false.

Following the basic pattern of iterator expression, we take the resulting xQLQuery and add an

aggregate function count in the QueryResult. Next, we instantiate an OpAsCondition with equal

operator as its xQLOperation, taking xQLQuery as its first argument and Literal Integer 1 as the

second argument.

Taking the number attribute of the LoyaltyAccount class in the R&L system as an example, the

following invariant states that there may be only one loyalty account that has a number lower than

10,000:

context LoyaltyProgram
 inv: self.Membership.account->one(number < 10000)

Figure 5.8 Example of one Operation

Chapter 5 Transformation Recipes: Patterns and Procedures 56

5.4.2.3 Outer Query
The translation often results not in xQLQuery, hence for this type of result an outer query must be

made. For example the translation of one operation as mentioned above. Translating merely the

one operation will result in OpAsCondition, since after the xQLQuery with the condition has

been made we have to aggregate the result and check whether the value is equal to one. If one is

the root operation, we have to create an extra outer query to hold the OpAsCondition, so the final

result is as shown in the following picture:

Figure 5.9 Translation of one Operation with outer query

5.5 Summary
Translation of OCL to xQL could be divided into two major parts: translation of the navigation

and translation of operation. The navigation will be mapped into CPParticipant and

xQLStructuralFeature. The OCL operation will be mapped into xQL operation. Apart from the

translation recipe we have to deal also with the creation of view where in order to hold the

integrity constraint we have to query the database with the negated condition. The integrity is

ensure where the query return no result.

Chapter 6 Introduction to SQL Generator in OctopusEE 57

6 Introduction to SQL Generator in OctopusEE

To run OctopusEE in Eclipse, please refer to OctopusEE Configuration in Appendix C. However

an extra setup is required to generate SQL from OCL invariant in OctopusEE.

6.1 Configuration of build path
To run SQL Generator in OctopusEE, the following jar files is required in your build path. To

prevent compatibility mismatch, the version of each jar files is provided as well.

• hibernate3.jar (version: 3.2.0.cr3)

• hibernate-annotations.jar (version: 3.2.0.CR1)

• hibernate-entitymanager.jar (version: 3.1beta4)

• ejb3-persistance.jar

• hibernate-tools.jar

In this project we use Oracle Database 10g Express Edition with following JDBC driver:

• classes12.jar (Oracle JDBC Driver version - 10.1.0.4.0)

6.2 Generated Files
In addition to java generated code in folder src, SQL Generator in OctopusEE creates additional

folder named hql. In this folder, HQL files - the translation result of OCL invariant - are

placed. Each hql file in hql folder correspond to ocl file in expressions folder:

Customer.hql is an HQL script corresponds to OCL invariant in Customer.ocl,

CustomerCard.hql is an HQL script corresponds to OCL invariant in

CustomerCard.ocl, and so on.

Figure 6.1 additional hql folder

SQL Generator in OctopusEE also output a new “SQLGenerator.java” in “utilities”

package, which is used for generating SQL script out of HQL files. The dialect of generated SQL

Chapter 6 Introduction to SQL Generator in OctopusEE 58

script depends on the JDBC driver specified in hibernate configuration file. The translation of

HQL to SQL will be written in one single file, viewscript.sql, and placed in the root path.

Figure 6.2 Location of viewscript.sql

6.3 Testing
To test the SQL script, a database corresponds to the project should exist beforehand. To generate

the database schema, please refer to section 6.4.1 in Appendix C. The first step to test the SQL

script is by uploading the script to Oracle.

 Figure 6.3 Upload Script in Oracle

After the script is run and compiled we can see the created views as depicted in the following

picture:

Chapter 6 Introduction to SQL Generator in OctopusEE 59

 Figure 6.4 Created View from SQL Script

The new created views are then used by triggers which evaluate the constraints after each critical

data manipulation operation. When any constraint violation is found, the trigger should rollback

the current transaction and sends an appropriate error message to the invoking application.

To gain a better understanding of this concept, we will take one example of OCL invariant which

states that every customer must have at least one valid card:

context Customer
 inv Custom_Valid: cards->select(valid = true)->size() > 1

For above invariant we have following SQL script:

create or replace force view
"invariant_Custom_Valid" as
select
 customer0_.id as col_0_0_
 from
 Customer customer0_
 where
 (select count(f_cards2_.id)
 From Customer customer1_
 inner join CustomerCard f_cards2_
 on customer1_.id=f_cards2_.f_owner_id
 where
 f_cards2_.f_valid<>1
)<=1;

Next, we evaluate the given constraint by creating the following trigger which will evaluate every

time a manipulation occurred in table Customer:

Chapter 6 Introduction to SQL Generator in OctopusEE 60

CREATE OR REPLACE TRIGGER "CUSTOMER_valid"
AFTER
insert or update or delete on "CUSTOMER"
DECLARE
 D NUMBER;
BEGIN
 select count(*) into D from invariant_Custom_Valid;
 IF (D > 0) THEN
 RAISE_APPLICATION_ERROR(-20000, 'constraint
violate ')d ;
 END IF;
END;

If data, which will violate the constraint, is entered into database, an error message will be raised

and the transaction will be rolled back.

For the conciseness of the report, the given example of OCL invariant above only involves one

table in evaluating a business rule. However, a more complex integrity view could use more than

one table of the database to evaluate a business rule. As a result, the constraint evaluation must be

done after manipulation of all of these tables.

6.4 Summary
In this chapter, we introduce SQL Generator in OctopusEE and how to configure it in Eclipse as

well as how to upload the generated SQL script in RDBMS, in our case Oracle.

Chapter 7 Summary and Outlook 61

7 Summary and Outlook

7.1 Summary
In this project, we have reported our approach to translate OCL invariants as constraints in

database systems by combining object oriented query language with the use of view and trigger.

Along with the final release of EJB 3.0, Java Community Press introduces Java Persistence Query

Language. The Java Persistence query language, also known as EJB3QL, can be compiled to a

target language, such as SQL of a database.

By utilizing the enhanced power of EJB3QL, we are able to simplify the process of specifying

OCL invariant as the integrity constraint in database systems and keep using relational databases.

With this approach we could gain some advantages:

• Joining Associations. EJBQL introduces path expression, an identification variable

followed by the navigation operator (.) and a state-field or association-field [14].

Utilizing path expression, we not need to specify join condition explicitly. With path

expression, EJBQL has enough information in the mapping document to then deduce the

table join expression. This helps make mapping navigation in OCL invariant easier and in

the same time make queries less verbose and more readable.

• Polymorphic Queries. By default, all queries in EJB3QL are polymorphic. That is, the

FROM clause of a query designates not only instances of the specific entity class(es) to

which it explicitly refers, but subclasses as well [14]. We might define a rule which

involves subclasses that, following the table per class hierarchy approach [10], are not

mapped into a table. With polymorphic queries, no matter what approach is taken in

mapping class inheritance, we can swiftly write a query in EJB3QL.

The use of view and trigger offers some advantages: view is supported by all DBMS vendors, and

it also allows evaluating a complex condition involving arbitrary number of tables. This ability

substitutes the task of assertion and fulfills the vital part of integrity constraint.

We have shown that it is possible to specify OCL invariants as constraints in database systems by

combining object oriented query language with the use of view and trigger. Our goal to translate

the OCL invariants to EJB3QL has been achieved with some limitations. Differences in operation

behavior of OCL and EJB3QL cause some operation in OCL cannot be translated into EJB3QL,

Chapter 7 Summary and Outlook 62

such as iterate. However, this seems not to be a serious problem, since in practical OCL

specification the iterate operator is rarely used [2], and all OCL constructs derived from iterate

(like forAll and select) can be mapped properly. The complete list of unmapped operation can be

found in Appendix A. Another limitation comes from our dependency on class-to-table mapping

technique taken by OctopusEE. Two main limitations in this case are (1) To navigate through

classes which are linked with association class, the navigation class should be explicitly

mentioned in the navigation paths, and (2) we cannot translate OCL invariant which involves

@Transient datatype, since it is not mapped into a column in database.

7.2 Further Work
In this project, we only exploit the use of OCL invariant to define integrity constraint in relational

database. Further works can be done in completing the constraint by using precondition and

postcondition and guard. Moreover, the generation of SQL construct can be extended from

creating a view construct to automatically create a trigger for each involved tables in the view

construct.

In the area of EJB3QL, a further work can be done in developing a complete Metamodel of

EJB3QL. In our xQL model, we only use the subset of EJB3QL, thus although we are able to

serialized a well-formed EJB3QL out of xQL model, the result is limited. For example,

translating OCL invariant to EJB3QL syntax, we need a single QueryResult in the SELECT

clause, thus in our xQL model, the association between SELECT clause and QueryResult is

one-to-one. In the EJB3QL specification, a SELECT clause can consists of arbitrary

QueryResult including arbitrary aggregate function.

Appendix 63

Appendix A: Unmapped Operation

Some operations are not mapped into xQL syntax, for several reasons:

• Counterpart of corresponding OCL operation is not available in declarative EJB3QL,

such as iterate(…) operation.

• Some OCL operations are not used in invariant. For example: append() and prepend() is

used to add an element to a sequence as the last or first element, respectively. This kind

of operation is not used to check integrity constraint in SQL and need not to be translated.

• Some OCL operations are applicable only to Set or Bag. In EJB3QL we do not have such

collection. So these types of operations not need to be translated.

List of unmapped operation is shown in table below:

Operation Description

append(object) Add an element to a sequence as the last element

asBag() Applying asBag on a sequence or asSet on an ordered
set means that the ordering is lost.

asOrderedSet() Applying asOrderedSet on a set or bag means that the
elements are placed randomly in some order in the
result.

asSequence() Applying asSequence on a set or bag means that the
elements are placed randomly in some order in the
result.

at(index) The at operation results in the element at the given
position.

excluding(object) The excluding operation results in a new collection
with an element removed from the original collection.

first() The first operations result in the first elements of the
collection.

flatten() The flatten operation changes a collection of
collections into a collection of single objects.

including(object) The including operation results in a new collection
with one element added to the original collection.

indexOf(object) The indexOf operation results in an integer value that
indicates the position of the element in the collection.

Appendix 64

Operation Description

insertAt(index, object) The insertAt operation results in a sequence or ordered
set that has an extra element inserted at the given
position.

last() The last operations result in the last elements of the
collection.

prepend(object) The prepend operations add an element to a sequence
as the first element.

subSequence(lower, upper) The subSequence operation may be applied to
sequences only, and results in a sequence that contains
the elements from the lower index to the upper index,
inclusive, in the original order.

symmetricDifference(coll) The symmetricDifference operation results in a set
containing all elements in the set on which the
operation is called, or in the parameter set, but not in
both.

subOrderedSet(lower, upper) The subOrderedSet operation may be applied to
ordered sets only. Its result is equal to the
subSequence operation, although it results in an
ordered set instead of a sequence.

iterate(…) Iterates over all elements in the source collection

let Defines local variable to represent the value of the
sub-expression

a.max(b) Arithmetic operation

a.min(b) Arithmetic operation

Appendix 65

Appendix B: Configuration of OctopusEE2

7.3 Requirements

EJB3 runs on Java 1.5 VM or above, thus the installation of Java 1.5 is an essential requirement.

Besides this, an Entity Manager needs to be set for providing the EJB3 persistence environment

(also referred to as “persistence engine” or “ORM engine”). We recommend using “Hibernate

Entity Manager” which is founded on “Hibernate Core” and “Hibernate Annotation”.

7.4 Setup in Eclipse

7.4.1 Configuration in Property page

In the “Properties” page of your “octopus project”, make sure that the “JDK Compiler

compliance level” is set to “5.0”

In order to let OctopusEE generate EJB3 artifacts, you need to turn the option for EJB3

generation on. This switch can be found under “Properties” “octopus code

generation” ”JSR220”

7.4.2 Configuration of build path:

The following .jar files are needed in the build path of your “octopus project”:

2 Taken from Generation of EJB3 Artifacts in a Modeling Platform, master thesis by Xinhua Gu.

Appendix 66

• hibernate-entitymanager.jar from root directory of Hibernate Entity Manager package.

• ejb3-persistence.jar (the core library for EJB3 persistence) and

• hibernate-annotation.jar to be found in the lib directory of the Hibernate Entity Manager

installation

• hibernate3.jar from root directory of Hibernate Core package. Add the whole lib

directory in build path. We also need hibernate-tool.jar from Hibernate Tool package for

generation of DDL file. In order to get hibernate-tool.jar working, some additional jars

are required, you can take these information from “chapter 4 Ant tools” of the Hibernate

Tool document.

7.5 Generated files

The original Octopus distribution will generate an “utilities” package in addition to the package

defined in the .uml file. OctopusEE will output a new “DDLGenerator.java” in “utilities”

package. This file is used for generating the database schema by means of DDL. It can be

configured to let the DDL be executed directly by the DBMS during code generation.

A log4j configuration file “log4j.properties” is created under “src” directory. From default

configuration, log information will be displayed in console.

Furthermore, OctopusEE will generate two more packages. One is “META-INF” and the other is

“test”. The “META-INF” folder contains the XML configuration files for the project. They are

“hibernate.cfg.xml” which is used for DDL generation and “persistence.xml” which contains the

ORM mapping information to be used by the Entity Manager at runtime. In the “test” package, a

simple JUnit file is created.

Appendix 67

Appendix C: The Royal and Loyal Model

Appendix 68

Appendix D: Database Schema or Royal and Loyal

CREATE TABLE "CUSTOMER"
 ("ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_NAME" VARCHAR2(255 CHAR),
 "F_TITLE" VARCHAR2(255 CHAR),
 "F_ISMALE" NUMBER(1,0) NOT NULL ENABLE,
 "F_GENDER" NUMBER(10,0),
 PRIMARY KEY ("ID") ENABLE
)
/
CREATE TABLE "SERVICELEVEL"
 ("ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_NAME" VARCHAR2(255 CHAR),
 "I_INDEX1" NUMBER(10,0) NOT NULL ENABLE,
 PRIMARY KEY ("ID") ENABLE
)
/
CREATE TABLE "MEMBERSHIP"
 ("ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_MEMBERSHIPATTR" NUMBER(10,0) NOT NULL ENABLE,
 "I_INDEX1" NUMBER(10,0) NOT NULL ENABLE,
 "F_CURRENTLEVEL_ID" NUMBER(19,0),
 "F_PARTICIPANTS_ID" NUMBER(19,0),
 "F_PROGRAMS_ID" NUMBER(19,0),
 PRIMARY KEY ("ID") ENABLE,
 CONSTRAINT "FK26EF63F6830FFA37" FOREIGN KEY ("F_PROGRAMS_ID")
 REFERENCES "LOYALTYPROGRAM" ("ID") ENABLE,
 CONSTRAINT "FK26EF63F68D72F9A6" FOREIGN KEY ("F_PARTICIPANTS_ID")
 REFERENCES "CUSTOMER" ("ID") ENABLE,
 CONSTRAINT "FK26EF63F67145822C" FOREIGN KEY ("F_CURRENTLEVEL_ID")
 REFERENCES "SERVICELEVEL" ("ID") ENABLE
)
/
CREATE TABLE "CUSTOMERCARD"
 ("ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_VALID" NUMBER(1,0) NOT NULL ENABLE,
 "F_COLOR" NUMBER(10,0),
 "F_MYLEVEL_ID" NUMBER(19,0),
 "F_OWNER_ID" NUMBER(19,0),
 "F_MEMBERSHIP_ID" NUMBER(19,0),
 PRIMARY KEY ("ID") ENABLE,
 CONSTRAINT "FK3F6DA42E115A15A8" FOREIGN KEY ("F_MEMBERSHIP_ID")
 REFERENCES "MEMBERSHIP" ("ID") ENABLE,
 CONSTRAINT "FK3F6DA42E403A3B45" FOREIGN KEY ("F_OWNER_ID")
 REFERENCES "CUSTOMER" ("ID") ENABLE,
 CONSTRAINT "FK3F6DA42E7F425EB1" FOREIGN KEY ("F_MYLEVEL_ID")
 REFERENCES "SERVICELEVEL" ("ID") ENABLE
)
/
CREATE TABLE "IC1"
 ("ID" NUMBER(10,0) NOT NULL ENABLE,
 "SEQUENCE" NUMBER(10,0) NOT NULL ENABLE,
 "OWNER_ID" NUMBER(19,0),
 "ITEM_ID" NUMBER(19,0),
 PRIMARY KEY ("ID") ENABLE,
 CONSTRAINT "FK11A5793132C" FOREIGN KEY ("ITEM_ID")
 REFERENCES "CUSTOMER" ("ID") ENABLE,

Appendix 69

 CONSTRAINT "FK11A57F82E29FD" FOREIGN KEY ("OWNER_ID")
 REFERENCES "SERVICELEVEL" ("ID") ENABLE
)
/
CREATE TABLE "IC2"
 ("ID" NUMBER(10,0) NOT NULL ENABLE,
 "OWNER_ID" NUMBER(19,0),
 PRIMARY KEY ("ID") ENABLE,
 CONSTRAINT "FK11A58F82E29FD" FOREIGN KEY ("OWNER_ID")
 REFERENCES "SERVICELEVEL" ("ID") ENABLE
)
/
CREATE TABLE "IC3"
 ("ID" NUMBER(10,0) NOT NULL ENABLE,
 "ITEM" VARCHAR2(255 CHAR),
 "OWNER_ID" NUMBER(10,0),
 PRIMARY KEY ("ID") ENABLE,
 CONSTRAINT "FK11A59A7363EB8" FOREIGN KEY ("OWNER_ID")
 REFERENCES "IC2" ("ID") ENABLE
)
/
CREATE TABLE "LOYALTYACCOUNT"
 ("ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_POINTS" NUMBER(10,0) NOT NULL ENABLE,
 "F_NUMBER" NUMBER(10,0) NOT NULL ENABLE,
 "F_TOTALPOINTSEARNED" NUMBER(10,0) NOT NULL ENABLE,
 "F_MEMBERSHIP_ID" NUMBER(19,0),
 PRIMARY KEY ("ID") ENABLE,
 CONSTRAINT "FKFABEEF27115A15A8" FOREIGN KEY ("F_MEMBERSHIP_ID")
 REFERENCES "MEMBERSHIP" ("ID") ENABLE
)
/
CREATE TABLE "LOYALTYPROGRAM"
 ("ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_NAME" VARCHAR2(255 CHAR),
 PRIMARY KEY ("ID") ENABLE
)
/
CREATE TABLE "PROGRAMPARTNER"
 ("ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_NUMBEROFCUSTOMERS" NUMBER(10,0) NOT NULL ENABLE,
 "F_NAME" VARCHAR2(255 CHAR),
 PRIMARY KEY ("ID") ENABLE
)
/
CREATE TABLE "LOYALTYPROGRAM_PROGRAMPARTNER"
 ("F_PROGRAMS_ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_PARTNERS_ID" NUMBER(19,0) NOT NULL ENABLE,
 PRIMARY KEY ("F_PROGRAMS_ID", "F_PARTNERS_ID") ENABLE,
 CONSTRAINT "FK403144A5830FFA37" FOREIGN KEY ("F_PROGRAMS_ID")
 REFERENCES "LOYALTYPROGRAM" ("ID") ENABLE,
 CONSTRAINT "FK403144A5C19CF8C1" FOREIGN KEY ("F_PARTNERS_ID")
 REFERENCES "PROGRAMPARTNER" ("ID") ENABLE
)
/
CREATE TABLE "LOYALTYPROGRAM_SERVICELEVEL"
 ("F_PROGRAM_ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_LEVELS_ID" NUMBER(19,0) NOT NULL ENABLE,
 CONSTRAINT "FKF1EA2510B73CDDD4" FOREIGN KEY ("F_PROGRAM_ID")
 REFERENCES "LOYALTYPROGRAM" ("ID") ENABLE,
 CONSTRAINT "FKF1EA25102CC2B128" FOREIGN KEY ("F_LEVELS_ID")
 REFERENCES "SERVICELEVEL" ("ID") ENABLE
)

Appendix 70

/
CREATE TABLE "SERVICE"
 ("ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_CONDITION" NUMBER(1,0) NOT NULL ENABLE,
 "F_POINTSEARNED" NUMBER(10,0) NOT NULL ENABLE,
 "F_POINTSBURNED" NUMBER(10,0) NOT NULL ENABLE,
 "F_DESCRIPTION" VARCHAR2(255 CHAR),
 "F_SERVICENR" NUMBER(10,0) NOT NULL ENABLE,
 "F_LEVEL_ID" NUMBER(19,0),
 "F_PARTNER_ID" NUMBER(19,0),
 "F_LOYALTYACCOUNT_ID" NUMBER(19,0),
 PRIMARY KEY ("ID") ENABLE,
 CONSTRAINT "FKD97C5E95439318E8" FOREIGN KEY
 ("F_LOYALTYACCOUNT_ID")
 REFERENCES "LOYALTYACCOUNT" ("ID") ENABLE,
 CONSTRAINT "FKD97C5E9570A6C745" FOREIGN KEY ("F_LEVEL_ID")
 REFERENCES "SERVICELEVEL" ("ID") ENABLE,
 CONSTRAINT "FKD97C5E951D4B56" FOREIGN KEY ("F_PARTNER_ID")
 REFERENCES "PROGRAMPARTNER" ("ID") ENABLE
)
/
CREATE TABLE "TRANSACTION"
 ("DTYPE" VARCHAR2(31 CHAR) NOT NULL ENABLE,
 "ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_POINTS" NUMBER(10,0) NOT NULL ENABLE,
 "F_AMOUNT" FLOAT(126) NOT NULL ENABLE,
 "F_NAME" VARCHAR2(255 CHAR),
 "F_GENERATEDBY_ID" NUMBER(19,0),
 "F_CARD_ID" NUMBER(19,0),
 "F_ACCOUNT_ID" NUMBER(19,0),
 PRIMARY KEY ("ID") ENABLE,
 CONSTRAINT "FKE30A7ABE164A6F1B" FOREIGN KEY ("F_GENERATEDBY_ID")
 REFERENCES "SERVICE" ("ID") ENABLE,
 CONSTRAINT "FKE30A7ABE51ADD134" FOREIGN KEY ("F_ACCOUNT_ID")
 REFERENCES "LOYALTYACCOUNT" ("ID") ENABLE,
 CONSTRAINT "FKE30A7ABE77234BE6" FOREIGN KEY ("F_CARD_ID")
 REFERENCES "CUSTOMERCARD" ("ID") ENABLE
)
/
CREATE TABLE "TRANSACTIONREPORT"
 ("ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_CARD_ID" NUMBER(19,0),
 PRIMARY KEY ("ID") ENABLE,
 CONSTRAINT "FK8058359277234BE6" FOREIGN KEY ("F_CARD_ID")
 REFERENCES "CUSTOMERCARD" ("ID") ENABLE
)
/
CREATE TABLE "TRANSACTIONREPORTLINE"
 ("ID" NUMBER(19,0) NOT NULL ENABLE,
 "F_TRANSACTION_ID" NUMBER(19,0),
 "F_REPORT_ID" NUMBER(19,0),
 PRIMARY KEY ("ID") ENABLE,
 CONSTRAINT "FK876340A6AE3BD70C" FOREIGN KEY ("F_TRANSACTION_ID")
 REFERENCES "TRANSACTION" ("ID") ENABLE,
 CONSTRAINT "FK876340A667F4B778" FOREIGN KEY ("F_REPORT_ID")
 REFERENCES "TRANSACTIONREPORT" ("ID") ENABLE
)
/

References 71

References

[1] Behrend, Andreas, Rainer Manthey and Birgit Pieper. An Amateur's Introduction to
Integrity Constraints and Integrity Checking in SQL, University of Bonn: 2001.

[2] Demuth, Birgit and Heinrich Hussmann. Using OCL/UML Constraints for Relational

Database Design. Dresden University of Technology: 1999.

[3] Demuth, Birgit, Heinrich Hussmann, and Sten Loecher. OCL as a Specification Language

for Business Rules in Database Applications. Dresden University of Technology: 2001.

[4] Donahoo, Michael J. and Gregory D. Speegle. SQL Practical Guide for Developers.

Morgan Kaufmann: 2005.

[5] Groff, James R. and Paul N. Weinberg. SQL: The Complete Reference. Osborne/McGraw-

Hill, 2003.

[6] Gu, Xinhua. Generation of EJB3 Artifacts in a Modeling Platform. Hamburg University of

Technology, Master Thesis, 2006.

[7] Heidenreich, Florian. SQL-Codegenerierung in der metamodellbasierten Architektur des

Dresden OCL Toolkit. Technische Universität Dresden, Grosser Beleg, 2005.

[8] Klasse Objecten – Octopus: OCL Tool for Precise Uml specifications

[http://www.klasse.nl/octopus/index.html]

[9] Kline, Kevin and Daniel Kline. SQL in a Nutshell. O'Reilly & Associates, Inc: 2001.

[10] King, Gavin and Christian Bauer. Hibernate in Action. Manning Publications Co, 2005.

[11] Object Management Group. Object Constraint Language OMG Available Specification

Version 2.0, 2006.

[12] Ritter, Norbert and Hans-Peter Steiert. Enforcing Modeling Guidelines in an ORDBMS-

based UML Repository, International Resource Management Association Conference 2000,
2000.

[13] Schmidt, A. Untersuchungen zur Abbildung von OCL-Ausdrucken auf SQL. Dresden

University of Technology, Diploma Thesis, 1998.

[14] Sun Microsystems. JSR 220: Enterprise JavaBeans Version 3.0, 2006.

[15] Warmer, Jos and Anneke Kleppe. Object Constraint Language, The: Getting Your Models

Ready for MDA Second Edition. Addison Wesley, 2003.

	Declaration
	Table of Contents
	Introduction
	Motivation
	Objective
	Structure of the Work

	Constraint Languages
	Defining Constraint in OCL
	Types of Constraints

	Defining Constraints in Database
	Comparison of Constraint Language

	Design and Implementation
	Discussion of different approaches
	Object Oriented Query Language with View Approach
	Implementation
	Processing Steps

	Problem and Limitation
	Summary

	xQL Specification
	What is xQL?
	Data Types and Values
	Types from the UML Model
	Collections

	xQL Metamodel
	Join and Navigation
	Condition

	Operation in xQL
	Well-formedness rules of xQL
	Summary

	Transformation Recipes: Patterns and Procedures
	The Negation of Boolean Expression
	Operators
	Mapping Procedures
	Mapping Patterns
	Navigation
	Operation
	Operation on Basic types
	Operations on Collection Types
	Outer Query

	Summary

	Introduction to SQL Generator in OctopusEE
	Configuration of build path
	Generated Files
	Testing
	Summary

	Summary and Outlook
	Summary
	Further Work

	Appendix A: Unmapped Operation
	Appendix B: Configuration of OctopusEE
	Requirements
	Setup in Eclipse
	Configuration in Property page
	Configuration of build path:

	Generated files

	Appendix C: The Royal and Loyal Model
	Appendix D: Database Schema or Royal and Loyal
	References

