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1 Introduction 

1.1 Motivation 
Integrating object-oriented applications into relational database is no longer state of the art. Since 

its first emergence, many object relational persistence tools have been developed. The SQL 

impedance mismatch between object oriented concept and relational database concept such as 

association, inheritance, polymorphism, composition, and collections has been undoubtedly dealt 

with. However, these persistence tools are restricted only to class-to-table mapping, mainly based 

on attributes and associations. The power of Object Constraint Language (OCL) which enables us 

to write constraint or complex rules over an object model has yet to be utilized. At the moment, 

most business rules are still placed in the application program. Placing the business rules in the 

application programs has several disadvantages [ 5]: 

1. Duplication of effort. If six different programs deal with various updates to a single table, 

each of them must include code that enforces the rules relating to the corresponding table. 

2. Lack of consistency. If several programs written by different programmers handle updates 

to a table, they will probably enforce the rules somewhat differently. 

3. Maintenance problems. If the business rules change, the programmers must identify 

every program that enforces the rules, locate the code, and modify it correctly. 

4. Complexity. There are often many rules to remember.  

 

By utilizing OCL we could shift the burden of specifying business rules from application layer to 

database layer. With this approach all the business rules is centralized in the database layer, thus 

minimizing the programming time and ensuring all applications working on the same database 

adhering to the same rules. There have been some existing approaches in specifying OCL 

invariants as constraints in database systems, either in Relational Database Management System 

(RDBMS) or Object Relational Database Management System (ORDBMS) [ 2] [ 3] [ 7] [13] 

[12]. In [12], OCL constraints are mapped to SQL constraints by exploiting the query facilities in 

ORDBMS. One of the advantages of this approach is the simplicity in collecting related records. 

Unfortunately, ORDBMS is not widely used and implemented. On the other hand, RDMBS is 

widely used and seems indispensable, but query facilities in it are too verbose especially when 

specifying relationship between tables.  
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1.2 Objective 
In this project, we propose an approach to specifying OCL invariants as constraints in database 

systems by combining object oriented query language with the use of view and trigger. This 

approach is driven by the final release of JSR-220 Enterprise Java Beans 3.0. Along with the final 

release of EJB 3.0, Java Community Press introduces Java Persistence Query Language, an 

extension of Enterprise Query Language specified in EJB 2.x. [14]. The Java Persistence query 

language, also known as EJB3QL, can be compiled to a target language, such as SQL of a 

database.  

 

Translating OCL to EJB3QL will result in the simplicity of query language, and compiling 

EJB3QL to SQL afterwards allows us to use the widely deployed RDMBS. 

 

1.3 Structure of the Work 
 
In next chapter we discuss about defining constraint in database and introduce OCL and how to 

define an invariant in OCL. Chapter 3 discusses approaches taken to define the constraints in 

relational database from OCL followed by our new approach and the implementation. Chapter 4 

introduces xQL, our new Metamodel along with its specification and well-formedness rules. 

Chapter 5 presents the transformation pattern and procedure from OCL to xQL. Chapter 6 

introduces SQL Generator in OcotopusEE along with its configuration in Eclipse. Chapter 7 gives 

conclusions and future works. 
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2 Constraint Languages 

By definition, a constraint is a restriction on one or more values of (part of) an object-oriented 

model or system [15]. In this chapter we explore the constraint used in modeling language and 

constraint in database.  

2.1 Defining Constraint in OCL 
Merely utilizing a UML diagram is in general not refined enough to specify all the significant 

aspects of a model. The information presented by such a model has a possibility to be incomplete 

and imprecise. For instance, in the UML model shown in Figure 2.1, it is reasonable for every 

loyalty program of Royal and Loyal requires that every customer who enters a loyalty program be 

of legal age, which is equal or greater than 18. This can be written as an invariant: 

 

context Customer 
 inv ofAge: self.age >= 18 

 

 
Figure 2.1 Royal and Loyal Model 
 

The rules stated above cannot be expressed in UML. Thus, there is a need to describe additional 

constraints about the objects in the model. Object Constraint Language (OCL) is developed to 

fulfill this necessity. OCL is a formal language used to describe expressions on UML models. 

These expressions typically specify invariant conditions that must hold for the system being 

modeled or queries over objects described in a model [11]. Characteristics of OCL as taken from 

various sources:  

• OCL is a declarative language. In a declarative language, an expression simply states 

what should be done, but now how [15].  
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• OCL is a pure specification language; therefore, an OCL expression is guaranteed to be 

without side effects. When an OCL expression is evaluated, it simply returns a value. It 

cannot change anything in the model [11]. 

• OCL is not a programming language; therefore, it is not possible to write program logic 

or flow control in OCL. You cannot invoke processes or activate non-query operations 

within OCL. Because OCL is a modeling language in the first place, OCL expressions are 

not by definition directly executable [11]. 

• OCL is a typed language so that each OCL expression has a type. To be well formed, an 

OCL expression must conform to the type conformance rules of the language. For 

example, you cannot compare an Integer with a String. Each Classifier defined within a 

UML model represents a distinct OCL type. In addition, OCL includes a set of 

supplementary predefined types. As a specification language, all implementation issues 

are out of scope and cannot be expressed in OCL [11]. 

2.1.1 Types of Constraints 
There are four types of constraints in OCL: 

• Invariant 

An invariant is a constraint that should be true for an object during its complete lifetime 

[15]. Invariants often represent rules that should hold for the real-life objects after which 

the software objects are modeled. 

• Precondition and Postcondition 

Preconditions and postconditions are constraints that specify the applicability and effect 

of an operation without stating an algorithm or implementation. Precondition specifies 

the conditions that must hold before the operation executes. Postcondition specifies the 

conditions that must hold after the operation executes. Precondition and postcondition 

consist of an OCL expression of type Boolean.  

• Guard 

A guard is a constraint that guards the transition, from one state to another state.  OCL 

expression acting as value of a guard is of type Boolean. The condition of guard should 

be true during the transition. 

2.2 Defining Constraints in Database 
To preserve the consistency and correctness of its stored data, relational database typically 

imposes one or more integrity constraints. These constraints restrict the data values that can be 

inserted into the database or created by a database update.  
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RDBMS provides four main types of static constraints [ 1] [ 5]: 
1. Assertions 

Assertions are the most general form of integrity constraint in SQL. Assertions are 

intended to specify a constraint over multi tables. 

2. Table constraints 

Table constraints are less general than assertions. It is used to restrict the rows in one 

particular table only.  Table constraints are attached to a particular table by including 

them into the CREATE TABLE statement defining that table. 

3. Column constraints 

Column constraints are specified as part of a column definition when a table is created. 

Conceptually, they restrict the legal values that may appear in the column. Column 

constraints appear in column definition within the CREATE TABLE statement. 

4. Domain Constraints 

Domains are a specialized form of column constraints. They provide a limited capability 

to define new data types within a database. In effect, a domain is one of the predefined 

database data types plus some additional constraints, which are specified as part of the 

domain definition. The columns “inherit” the constraints of the domain. 

 

Among those four types, assertion appears to be the most general constraint since it is not 

specified inside table or column structure in database. In theory, assertions could cause a very 

large amount of database processing overhead as they are checked for each statement that might 

modify the database. In practice, database will analyze the assertion and determine which tables 

and columns it involves. With assertion we are able to shift the complex constraint or business 

rule from application layer to database layer. Unfortunately, assertion is not supported by any 

commercial RDBMS.  

 

Another technique to implement the complex rule in database layer is by utilizing trigger. The 

concept of a trigger is relatively straightforward. For any event that causes a change in the 

contents of a table, a user can specify an associated action that the database should carry out. The 

three events that can trigger an action are attempts to INSERT, DELETE, or UPDATE rows of 

the table. For example, below is a trigger enforcing every customer to have at least one valid card 

and raising an application error when an attempted update fails: 

 

 

 



Chapter 2 Constraint Languages 
 

6

Note: For database schema, please refer to Appendix D 

CREATE OR REPLACE TRIGGER "CUSTOMER_valid"  
AFTER 
insert or update or delete on "CUSTOMER" 
DECLARE  
    D NUMBER; 
BEGIN  
    select count  into D from invariant_Custom_Valid; (*)
    IF (D > 0) THEN  
        RAISE_APPLICATION_ERROR(-20000, 'constraint 
violate ')d ;  
    END IF;  
END;  

 

With view invariant_Custom_Valid as follows: 

create or replace force view 
"invariant_Custom_Valid" as  
select 
  customer0_.id as col_0_0_  
 from 
  Customer customer0_  
 where 
  (select count(f_cards2_.id)  
   From Customer customer1_  
   inner join CustomerCard f_cards2_  
     on customer1_.id=f_cards2_.f_owner_id  
   where 
    f_cards2_.f_valid<>1 
  )<1; 

 

2.3 Comparison of Constraint Language 
Constraints can be categorized based on various criteria. To classify the constraints related to 

OCL and integrity constraints in database, the following criteria are used: 

• Time [ 1] [ 5] [ 3]: In the simple form, constraints in database are checked every time an 

attempt is made to change the database contents. This activity is categorized as immediate 

constraint. Besides this, SQL:99 specification introduces an additional capability for 

deferred constraint checking. In deferred constraint, checking will be deferred until the 

end of a transaction. 

• Activity: Constraints can also be categorized as active and passive. Whereas active 

constraints maintain consistency by executing actions, passive constraints only prevent 

data manipulation operations which violate the consistency.  
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• Location: Constraints can be placed in the application layer or in database layer. Both 

methods have pro and contra. In this project we will exploit the integrity constraints 

provided by relational database, thus we will focus on constraints located in database 

layer. 

• System view [ 2]: Constraints can be defined in various views of the system, as the static, 

dynamic and functional view. In a static view, a constraint usually is an invariant, i.e. a 

condition that should be true for an object during its complete lifetime [15]. In a dynamic 

view, constraints are used mainly to express the condition under which a transition from 

one state into another is allowed. In OCL we acknowledge this type of constraint as 

guards. In functional view, the output values and the induced state transformation of an 

operation are described with respect to the input values. In OCL, this is done by pre- and 

postconditions. 

• Policy on constraint violations [ 2]: There are various actions can be taken when a 

constraint is not fulfilled: the implementation can be considered as faulty, the recent 

modification can be made undone, or actions can be taken to automatically correct the 

state. 

 

Based on the criteria above, we can see that there is a common intersection between the constraint 

mechanisms of OCL and RDBMS. From all the four types of constraint defined in OCL, the most 

relevant type to relational database is invariant. Constraint in relational database is typically a 

static constraint. In the matter of active and passive constraints, RDMBS serves both: active 

constraints through TRIGGER statement and passive constraints through table constraints, 

column constraints, domain constraints and assertion. However, as OCL is a declarative language, 

we cannot invoke processes or activate non-query operations within OCL. So the similarity 

between OCL and RDBMS in this case is passive constraint. Based on the checking time, 

constraint in OCL as well as in RDMBS serves both immediate and deferred checking. How often 

and when to check a constraint depends on how serious the error could be. In policy on constraint 

violation, OCL as declarative language can only states the condition that has to be fulfilled 

without specifying any consecutive action, while RDBMS offers a way to rollback or re-establish 

a correct state.  
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3 Design and Implementation 

3.1 Discussion of different approaches 
Some approaches have been proposed for specifying OCL invariants as constraints in database 

systems, either in Relational Database Management System (RDBMS) or Object Relational 

Database Management System (ORDBMS). These approaches however have some advantages 

and also limitations. 

 

In [12] OCL constraints are mapped to SQL constraints by exploiting the query facilities in 

ORDBMS. One of the advantages of this approach is the database can make use of the 

relationships between data to easily collect related records. In traditional RDBMS, collecting 

information from two tables requires a “JOIN”. For example, given that we have two tables: 

Customer and CustomerCard as shown below: 

 

CREATE TABLE  "CUSTOMER"  
   ( "ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_NAME" VARCHAR2(255 CHAR),  
 "F_TITLE" VARCHAR2(255 CHAR),  
 "F_ISMALE" NUMBER(1,0) NOT NULL ENABLE,  
 "F_GENDER" NUMBER(10,0), 
 "F_AGE" NUMBER(5,0),  
  PRIMARY KEY ("ID") ENABLE 
   ) 
   
CREATE TABLE  "CUSTOMERCARD"  
   ( "ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_VALID" NUMBER(1,0) NOT NULL ENABLE,  
 "F_COLOR" NUMBER(10,0),  
 "F_MYLEVEL_ID" NUMBER(19,0),  
 "F_OWNER_ID" NUMBER(19,0),  
 "F_MEMBERSHIP_ID" NUMBER(19,0),  
  PRIMARY KEY ("ID") ENABLE,  
   ) 
 
In traditional RDBMS selecting all the rows in CUSTOMER which has valid CUSTOMERCARD, 

we have to join the CUSTOMER table and CUSTOMERCARD table. 

SELECT *  
FROM CUSTOMER C, CUSTOMERCARD CC 
WHERE CUSTOMERCARD.F_OWNER_ID = CUSTOMER.ID 
AND CC.F_VALID = 1 
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The same query in ORDBMS is much simpler: 

SELECT *  
FROM CUSTOMER  
WHERE CUSTOMER.CUSTOMERCARD.F_VALID = 1 
 
Although some of the ideas of object relational database have largely been adopted by SQL:99 

specification, such as allowing user defined datatypes, it excludes the simplicity of query shown 

above. 

 

Some other approaches are based on traditional RDBMS [ 2] [ 3] [ 7] [13]. In [13], OCL invariant 

is mapped into stored procedures. The transformation of the constraint can be done by calling this 

procedure. With this approach, complex loop expression, such as iterate - which doesn't have a 

direct counterpart in declarative SQL syntax - is easy to map. However, this approach depends 

extremely on programming languages rather than SQL declarative syntax. Furthermore, there is 

little consistency between DBMSs vendors on stored procedure syntax. 

 

Second approach is implementation of OCL to SQL declarative syntax with assertions [2]. 

However, up to now, assertion is not supported by any DBMS vendors. Another way to 

implement integrity constraints in database is with the use of views and triggers [ 3] [ 7].  A view 

is created for each single OCL invariant, and for each data manipulation in corresponding tables, 

trigger is fired to evaluate generated views. Constraint is violated if view returns any tuples. This 

approach offers some advantages: view is supported by all DBMS vendors, and it also allows 

evaluating a complex condition involving arbitrary number of tables. This ability fulfills the vital 

part of integrity constraint. Other fact that should also taken into consideration is mapping from 

OCL invariant to declarative SQL code is simpler than the generation of procedural DBMS code 

in [13]. 

3.2 Object Oriented Query Language with View Approach 
After studying previous approaches and driven by the final release of JSR-220 Enterprise Java 

Beans 3.0, we propose an approach to specify OCL invariants as constraints in database systems 

by combining object oriented query language with the use of view and trigger. 

 

Along with the final release of EJB 3.0, Java Community Press introduces Java Persistence Query 

Language, an extension of Enterprise Query Language specified in EJB 2.x. It adds further 

operations, including bulk update and delete, JOIN operations, GROUP BY, HAVING, 

projection, and subqueries; and supports the use of dynamic queries and the use of named 
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parameters [14]. The Java Persistence query language, also known as EJB3QL, can be compiled 

to a target language, such as SQL of a database. 

 

Joining Associations. By utilizing the enhanced power of EJB3QL, we are able to simplify the 

process of specifying OCL invariant as the integrity constraint in database systems and keep 

using relational databases. The first step in specifying OCL invariant as the integrity constraint is 

the mapping of OCL invariant to EJB3QL. This mapping process is much simpler compared to 

mapping the OCL invariant directly to SQL, since both OCL and EJB3QL are still in the object-

oriented “world”. For example, given that we have the following OCL Invariant: 

 

 
Figure 3.1 Joining Associations 

 
context LoyaltyProgram 
inv minServices: partners.deliveredServices->size() >= 1 

 
In our Royal and Loyal example, it would be reasonable to require that a loyalty program offers at 

least one service to its customers. In order to specify the condition, from the context 

LoyaltyProgram we have to navigate through its program partners to the services they deliver. In 

database these objects will be mapped to tables as shown in the following SQL schema: 

 

(Note that the SQL schema shown below only represents the relationship between tables and 

disregards other information. The full SQL schema of Royal and Loyal example can be found in 

Appendix D). 

 
CREATE TABLE  "LOYALTYPROGRAM"  
   ( "ID" NUMBER(19,0) NOT NULL ENABLE,  
 ……… 
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 PRIMARY KEY ("ID") ENABLE 
   ) 
 
CREATE TABLE  "PROGRAMPARTNER"  
   ( "ID" NUMBER(19,0) NOT NULL ENABLE,  
 ……… 
 PRIMARY KEY ("ID") ENABLE 
   ) 
 
CREATE TABLE  "LOYALTYPROGRAM_PROGRAMPARTNER"  
   ( "F_PROGRAMS_ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_PARTNERS_ID" NUMBER(19,0) NOT NULL ENABLE,  
  PRIMARY KEY ("F_PROGRAMS_ID", "F_PARTNERS_ID") ENABLE,  
  CONSTRAINT "FK403144A5830FFA37" FOREIGN KEY ("F_PROGRAMS_ID") 
   REFERENCES  "LOYALTYPROGRAM" ("ID") ENABLE,  
  CONSTRAINT "FK403144A5C19CF8C1" FOREIGN KEY ("F_PARTNERS_ID") 
   REFERENCES  "PROGRAMPARTNER" ("ID") ENABLE 
   ) 
 
CREATE TABLE  "SERVICE"  
   ( "ID" NUMBER(19,0) NOT NULL ENABLE,  
 ……… 
 "F_PARTNER_ID" NUMBER(19,0),  
  PRIMARY KEY ("ID") ENABLE,  
  CONSTRAINT "FKD97C5E951D4B56" FOREIGN KEY ("F_PARTNER_ID") 
  REFERENCES  "PROGRAMPARTNER" ("ID") ENABLE 
   ) 
 

Since LOYALTYPROGRAM have many-to-many association with PROGRAMPARTNER, the Join Table 

LOYALTYPROGRAM_PROGRAMPARTNER is required. The relationship between LOYALTYPROGRAM and 

LOYALTYPROGRAM_PROGRAMPARTNER is represented as the foreign key F_PROGRAMS_ID in 

LOYALTYPROGRAM_PROGRAMPARTNER. The relationship between LOYALTYPROGRAM_ 

PROGRAMPARTNER and PROGRAMPARTNER is represented as the foreign key F_PARTNERS_ID in 

LOYALTYPROGRAM_PROGRAMPARTNER. The relationship between PROGRAMPARTNER and SERVICE is 

represented as the foreign key F_PARTNER_ID in SERVICE. 

 

To encompass the entire objects, in SQL we have to combine them using join as shown in FROM 

clause below: 

from  LoyaltyProgram loyaltypro1_  
 Loyaljoin tyProgram_ProgramPartner f_partners2_  
 join ProgramPartner programpar3_ 
 join Service f_delivere4_ 
      where loyaltypro1_.id=f_partners2_.f_programs_id  
      f_partners2_.f_partners_id=programpar3_.id  
  programpar3_.id=f_delivere4_.f_partner_id 
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In traditional SQL above to combine tables, besides join, we also have to describe the join 

condition of combined tables, either in the FROM clause or in the WHERE clause. To retrieve 

the service delivered by a loyalty program we have to match ID of LoyaltyProgram to 

f_programs_id of LoyaltyProgram_ ProgramPartner, f_partner_id of 

LoyaltyProgram_ProgramPartner to ID of ProgramPartner and ID of 

ProgramPartner to f_partner_id of Service. Moreover, to connect 

LoyaltyProgram to ProgramPartner we have to go through the Join Table 

LoyaltyProgram_ProgramPartner which is not visible from the OCL Invariant.  

 
Let us compare with the following EJB3QL for the same OCL invariant: 

from tyProgram loyaltyprogram   Loyal
 join loyaltyprogram.f_partners i_ProgramPartner  
 join i_ProgramPartner.f_deliveredServices service   

 

EJBQL introduces path expression, an identification variable followed by the navigation operator 

(.) and a state-field or association-field [14]. Utilizing path expression, we not need to specify join 

condition explicitly. With path expression, EJBQL has enough information in the mapping 

document to then deduce the table join expression. This helps make mapping navigation in OCL 

invariant easier and in the same time make queries less verbose and more readable.  

 

For example, In the FROM clause to map the navigation from LoyaltyProgram to 

ProgramPartner, we declare loyaltyprogram.f_partners i_ProgramPartner. The 

identification variable i_ProgramPartner evaluates to any ProgramPartner value directly 

reachable from LoyaltyProgram. The association-field f_partners is a collection of 

instances of the abstract schema type ProgramPartner and the identification variable 

i_ProgramPartner refers to an element of this collection. The type of i_ProgramPartner is 

the abstract schema type of ProgramPartner. The same explanation also applies to declaration 
i_ProgramPartner.f_deliveredServices service.  

 

As we can infer from two query languages described above, translating OCL invariant to 

EJB3QL is simpler and hence it will produce less error-prone. Another advantage is time-saving 

in programming because using EJB3QL we need not care the Join Table, of which we should care 

if we navigate through many-to-many objects such as LoyaltyProgram and ProgramPartner.  
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Polymorphic Queries. By default, all queries in EJB3QL are polymorphic. That is, the FROM 

clause of a query designates not only instances of the specific entity class(es) to which it 

explicitly refers, but subclasses as well [14]. For example in our Royal and Loyal model, 

selecting Transaction will not only return instances of Transaction but also instances of Burning 

and Earning. 

 

                            
Figure 3.2 Polymorphic Queries 
 

However, queries against the subclasses might be not as trivial as query against superclass. We 

might define a rule which states that a customer cannot obtain more than 50 points of bonus point 

as follows: 

 
context Burning 
 inv maxbonus: self.points < 50 

 

In traditional SQL, we would expect that we have BURNING table and simply make a restriction in 

the WHERE clause that points should be less than 50. Unfortunately, following the table per 

class hierarchy approach [10], we do not have BURNING table. Instead, we only have TRANSACTION 

table with type discriminator column to represent subclasses (See Figure 3.2). Fortunately, 

disregarding which approach is taken on mapping class inheritance, we can swiftly write a query 

in EJB3QL as follows: 

select burning.id  
from Burning burning   
where not burning.f_points < 50 

 
And still abide by our goal; we compiled the EJB3QL to our traditional SQL as follows: 

select 
  burning0_.id as col_0_0_  
 from 
  Transaction burning0_  
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 where 
  burning0_.DTYPE='Burning'  
  and burning0_.f_points >= 50 

 

Creating View. The translated SQL Query is used as the <SELECT statement> in constructing a 

view. We can create a view using a CREATE VIEW command as follows: 

CREATE VIEW <view name> [(<column list>)] AS <SELECT statement> 

 

Following above rule, a created view for example on Burning subclass is as follows: 

create view maxbonus as  
select 
  burning0_.id as col_0_0_  
 from 
  Transaction burning0_  
 where 
  burning0_.DTYPE='Burning'  
  and burning0_.f_points >= 50 

3.3 Implementation 
To implement our approach, the domain model of OCL invariant should be mapped to relational 

databases beforehand. For this prerequisite we choose OctopusEE, an extended version of 

Octopus which implements MDA-driven generation of EJB3 persistence artifacts. Octopus itself 

is an MDA tools which is able to transform UML model along with its OCL expressions into Java 

code. Octopus also able to statically check OCL expressions. It checks the syntax, as well as the 

expression types, and the correct use of model elements like association roles and attributes [ 8]. 

 

OctopusEE uses Hibernate as its ORM tool. Hibernate provides libraries of classes which are able 

to map EJB3QL to SQL automatically. One of the advantages of using Hibernate libraries is it 

supports multiple SQL dialect, such as:  Oracle 8i, 9i, 10g, DB2 7.1, 7.2, 8.1, Microsoft SQL 

Server 2000, Sybase 12.5 (JConnect 5.5), MySQL 3.23, 4.0, 4.1, 5.0, PostgreSQL 7.1.2, 7.2, 7.3, 

7.4, 8.0, 8.1, TimesTen 5.1, HypersonicSQL 1.61, 1.7.0, 1.7.2, 1.7.3, 1.8, and SAP DB 7.31. The 

mapping of UML model to a relational database in OctopusEE is addressed in [ 6].  

                                                      
 
1 Database Supported by Hibernate Team [http://hibernate.org/260.html] 
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3.3.1 Processing Steps 
The processing step of translating OCL invariants into SQL is depicted in the diagram below: 

 

 

OCL Object 

Figure 3.3 The processing step of translating OCL invariants into SQL 
 
First, the parsed OCL expression is taken as input for xQL. xQL plays as an intermediate layer 

between OCL to SQL. Abstract syntax of OCL expression is transformed to xQL model 

following the transformation pattern described in Chapter 5.  After the abstract syntax of xQL is 

well-built, it is serialized to HQL String, which is later become the input for Hibernate Parser. In 

Hibernate, SQL String will be generated from EJB3QL String. The more detail explanation is as 

follows: 

 

OCL Object to xQL Object. Following the pipe and filter architectural pattern, 

transformation of OCL expression to xQL Metamodel is done through several sequential 

processing steps.  In the first step, we restructure the OCL expression from inline structure to 

expression structure in xQL model. Inline structure is a way of structuring an expression object 

into a sequence based on which object appear first in the expression. Expression structure is a 

way of structuring an object expression into an operand-operator structure where the base object 

is the operation expression object and the other object is considered as the operand and used as 

the argument for this operation expression object. To see the difference, please compare the AST 

in inline structure and AST in expression structure for OCL invariant below: 

 

xQL Object 

EJB3QL String 

SQL String 

Hibernate Parser 

1 

2 

3 

1 
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context Customer  
  inv: cards->select( valid = true )->size() > 1 
 

 
Figure 3.4 Expression Structure 
 

 
Figure 3.5 Inline Structure 
 
 
The second step is mapping the restructured OCL invariant from previous step into xQL 

Metamodel. The transformation recipe from OCL to xQL can be found in Chapter 5, while the 

specification of xQL can be found in Chapter 4. 
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The transformation in first step as well as in the second step is done by visiting the abstract syntax 

tree of OCL invariants. These steps are connected by the data flow through the system; the output 

data of a step is the input to the subsequent step. The restructuring of OCL expression to xQL 

model is sequentially done by two visitors: NavigationVisitor class and OperationVisitor 

class. First, OCL Expression as the data source is the input for first transforming layer, 

NavigationVisitor Class. The output of this class as well as the OCL Expression is an input for 

the second layer, OperationVisitor Class. At the end of the second layer, the initial xQL object 

is achieved. In initial xQL object, we have all the necessary nodes and operations but not in the 

query structure but only focusing in the condition part. In the last layer, xQL2Visitor Class will 

transform the initial xQL object into a complete xQL model in query structure. The hierarchy of 

visitor classes involved in the transformation is depicted in Figure 3.6. 

<<interface>> 
IxQLVisitor 

DefaultVisitor 

 
Figure 3.6 Hierarchy of xQLVisitor classes 
 

To get a detail insight on how xQL Metamodel is generated out of OCL Expression, first we 

should take a peek at ASTxQLViewer.openViewOn method. 

NavigationVisitor 
 

OperationVisitor 
 

xQL2Visitor 
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Code 1 openViewOn method in ASTxQLViewer Class 
public void openViewOn(IOclExpression elem) { 
    if ( (elem != null) && elem instanceof OclExpression) { 
      AstWalker w = new AstWalker(); 
      XQLCollections collections = new XQLCollections(); 
      NavigationVisitor nv = new NavigationVisitor(collections); 
      w.walk(elem,nv); 
      OperationVisitor ov = new OperationVisitor(collections); 
      w.walk(elem,ov); 
       
      xQLWalker wx = new xQLWalker(); 
 
      //show xql2 
      xQL2Visitor xql2w = new xQL2Visitor(); 
      IxQLQuery xql = (IxQLQuery) wx.walk(collections.getQuery(). 
   getCondition(),xql2w); 
       
      XmlxQLVisitor xml = new XmlxQLVisitor(); 
      Element tree = (Element) wx.walk(xql,xml); 
      Element root = new Element("root"); 
         
      root.addContent(tree); 
      viewer.setInput( root); 
      viewer.refresh(); 
      viewer.expandAll(); 
      XQLtoString sml = new XQLtoString(); 
      String str = wx.walk(xql,sml).toString(); 
       
      HqlTest.accept(str); 
      } 
 

 
Figure 3.7 Attributes of XQLCollections Class 
 
In openViewOn method, an instance of AstWalker and XQLCollections are created. 

XQLCollections class (see Figure 3.7) has 3 HashMap objects (classifier_map, 

structuralFeature_map, and navigation_cpparticipant_map) and xQLQuery 

object as its attribute. These maps are used for storing CPParticipants and 

xQLStructuralFeature objects as a result of AstWalker walking through the 

OCLExpression carrying NavigationVisitor. The value of these maps will be retrieved when 

processing OCL Expression in NavigationVisitor and later in OperationVisitor class. 

xQLQuery 

OpAsCondition 

CPParticipant 

Argument 

xQLOperation 

classifier_map 
xQLStructuralFeature 

navigation_cpparticipant_map 

structuralFeature_map 
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Collections : xQLCollections 

Figure 3.8 The processing steps of constructing XQLQuery Model – Step 1 
 
In the first step of constructing xQL model, NavigationVisitor takes OCLExpression 

as its input. Here, we only implement some methods which produce CPParticipant and 

xQLStructuralFeature. CPParticipant and xQLStructuralFeature are owned 

by xQLQuery. These objects are stored in HashMap so that they could easily be retrieved in 

next process (OperationVisitor). This first step is depicted in Figure 3.8. 

 

The second step is walking through the OCLExpression with OperationVisitor class. 

Here, OpAsCondition, xQLOperation and Argument object is created. Argument object 

might contain some literal objects. In the process of creating these objects, we often access the 

HashMap to retrieve CPParticipant or xQLStructuralFeature object. This process is 

depicted in Figure 3.9. In this step the initial xQL object is ready. 

 

The last step is mapping the operation initial xQL object according to transformation pattern 

described in Chapter 5 to well-formed xQL object in a query structure. In this step, xQL2Visitor 

walks through the initial xQL object and transforms all the visited OCL operation to xQL 

operation.  

NavigationVisitor 

OCL Expression 

xQLQuery 

CPParticipant 

xQLStructuralFeature 

xQLQuery

CPParticipant xQLStructuralFeature 

classifier map

navigation_cpparticipant_map 

structuralFeature map
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Collections : xQLCollections 

Figure 3.9 The processing steps of constructing XQLQuery Model – Step 2 
 
For example given that we have the following OCL invariant: 

context LoyaltyProgram  
  inv: self.Membership.account->one( number < 10000 ) 

 

OperationVisitor 

OCL Expression 

OpAsCondition 

xQLOperation 

Argument 

xQLQuery

OpAsCondition

CPParticipant

Argument 

xQLOperation

xQLStructuralFeature 

classifier map

navigation_cpparticipant_map 

structuralFeature map
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The abstract syntax tree of OCL above is:  

 
 

And the abstract syntax tree of xQL for above OCL invariant is: 

 
 

 xQL Object to EJB3QL String. After the xQL object is well-formed, we serialize the 

object to EJB3QL String. xQLWalker class walks through the xQL object by carrying 

xQLtoString class. xQLtoString will visit each object in abstract syntax of xQL and 

generate their corresponding EJB3QL String. For example for above example the generated 

EJB3QL string is as follows: 

2 

select loyaltyprogram.id  
from LoyaltyProgram loyaltyprogram   
where not  
(select COUNT(service.id)   
 from LoyaltyProgram loyaltyprogram  
 join loyaltyprogram.f_partners i_ProgramPartner  
 join i_ProgramPartner.f_deliveredServices service  )= 0 
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As we can see from above example, <xQLQuery> object will be serialized as a SELECT 

statement. SELECT statement is composed of SELECT clause, FROM clause and optional 

WHERE clause.  

 

SELECT clause. Each xQLQuery has QueryResult attribute and sometimes aggregate 

function (marked with AGG:[] in the AST of xQL above) is also appeared. QueryResult 

attribute will be serialized as SELECT clause, and when aggregate function appears, the 

QueryResult will be aggregated according to which aggregate function is used. The serialized 

xQL can only have one object to be selected.  

 

FROM clause. The <CPParticipants> node will be serialized as FROM clause. 

CPParticipants node can have arbitrary number of CPParticipant. Each CPParticipant 

consists of a classifier, a name and except the first CPParticipant, a joinField. Name will 

be serialized as an identification variable while both classifier and joinField will compose a 

path expression. A path expression is an identification variable followed by the navigation 

operator (.) and a state-field or association-field [14].  If a CPParticipant has no joinField, 

the classifier is serialized as an abstract schema type.  

 

WHERE clause. The <OpAsCondition> node will be serialized as WHERE clause. The 

WHERE clause of a query consists of a conditional expression used to select objects or values 

that satisfy the expression. The WHERE clause restricts the result of a select statement [14].  The 

root xQLOperation always an instance of boolean expression. An xQLQuery could be exists in 

OpAsCondition and will be serialized as a subquery.  

 

The constructed EJB3QL string is following the Java Persistence Query Language specification 

defined in [14]. 

 

 EJB3QL String to SQL String. After we have the EJB3QL string in hand, the final step 

is to create a SQL view construct out of it. SQL string is generated from EJB3QL by utilizing 

Hibernate library called QueryTranslator as shown in Code 2.  

3 
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Code 2  generateSQL method in SQLGenerator.java 

public static String generateSQL(final SessionFactory sf,  
        final String query) { 
Session session = null; 

 SessionFactoryImpl sfimpl = (SessionFactoryImpl) sf; 
 HQLQueryPlan plan = new HQLQueryPlan(query, false, Collections. 
  EMPTY_MAP, sfimpl); 
 StringBuffer str = new StringBuffer(256); 
 String sql = null; 
 QueryTranslator[] translators = plan.getTranslators(); 
 for (int i = 0; i < translators.length; i++) { 
  QueryTranslator translator = translators[i]; 
  Iterator sqls = translator.collectSqlStrings().iterator(); 
  while (sqls.hasNext()) { 
   sql = (String) sqls.next(); 
  } 
 } 
 return formatForScreen(sql); 
} 
 

The generated SQL from generateSQL method will be used as a <SELECT statement> in 

constructing a view. A create view script is the final result of our OCL invariant to SQL 

translation.  

3.4 Problem and Limitation 
In this project we have shown that it is possible to specify OCL invariants as constraints in 

database systems by combining object oriented query language with the use of view and trigger. 

Our goal to translate the OCL invariants to EJB3QL has been achieved with some limitations. 

Differences in operation behavior of OCL and EJB3QL cause some operation in OCL cannot be 

translated into EJB3QL, such as iterate. The complete list of unmapped operation can be found in 

Appendix A. Another limitation comes from our dependency on class-to-table mapping technique 

taken by OctopusEE. Two main limitations in this case are: 

• To navigate through classes which are linked with association class, the navigation class 

should be explicitly mentioned in the navigation paths. For example: 

 
context LoyaltyProgram 
   inv: self.participants->size() < 10000 
 
Should be written like this: 
 
context altyProgram  Loy
  inv: self.Membership.participants->size() < 10000 
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• @Transient datatype is not mapped into a column in database, so we cannot translate the 
OCL invariant involving this attribute. For example: 

 
context Customer  
 inv ofAge: age >= 18 

 
 

3.5 Summary 
Some approaches have been proposed for specifying OCL invariants as constraints in database 

systems, either in Relational Database Management System (RDBMS) or Object Relational 

Database Management System (ORDBMS). These approaches however have some advantages 

and also limitations. In [12], OCL constraints are mapped to SQL constraints by exploiting the 

query facilities in ORDBMS. One of the advantages of this approach is the database can make 

use of the relationships between data to easily collect related records. Unfortunately ORDBMS is 

not widely used. Some other approaches are based on traditional RDBMS [ 2] [ 3] [ 7] [13]. Here, 

OCL invariant is mapped into stored procedures [13], assertions [2] or views and triggers [ 3] [ 

7].  

 

In this project, we propose an approach to specify OCL invariants as constraints in database 

systems by combining object oriented query language with the use of view and trigger. Along 

with the final release of EJB 3.0, Java Community Press introduces Java Persistence Query 

Language. The Java Persistence query language, also known as EJB3QL, can be compiled to a 

target language, such as SQL of a database. With this approach we could gain some advantages: 

• Joining Associations. By utilizing the enhanced power of EJB3QL, we are able to 

simplify the process of specifying OCL invariant as the integrity constraint in database 

systems and keep using relational databases. EJBQL introduces path expression, an 

identification variable followed by the navigation operator (.) and a state-field or 

association-field [14]. Utilizing path expression, we not need to specify join condition 

explicitly. With path expression, EJBQL has enough information in the mapping 

document to then deduce the table join expression. This helps make mapping navigation 

in OCL invariant easier and in the same time make queries less verbose and more 

readable.  

• Polymorphic Queries. By default, all queries in EJB3QL are polymorphic. That is, the 

FROM clause of a query designates not only instances of the specific entity class(es) to 

which it explicitly refers, but subclasses as well [14]. We might define a rule which 

involves subclasses that, following the table per class hierarchy approach [10], are not 
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mapped into a table. With polymorphic queries, no matter what approach is taken in 

mapping class inheritance, we can swiftly write a query in EJB3QL. 

  

The processing step of translating OCL invariants into SQL is depicted in the diagram below: 

 

 

OCL Object 

Figure 3.10 The processing step of translating OCL invariants into SQL 
 
First, the parsed OCL expression is taken as input for xQL. xQL plays as an intermediate layer 

between OCL to SQL. Abstract syntax of OCL expression is transformed to xQL model 

following the transformation pattern described in Chapter 5.  After the abstract syntax of xQL is 

well-built, it is serialized to HQL String, which is later become the input for Hibernate Parser. In 

Hibernate, SQL String will be generated from EJB3QL String. 

 

We have shown that it is possible to specify OCL invariants as constraints in database systems by 

combining object oriented query language with the use of view and trigger. Our goal to translate 

the OCL invariants to EJB3QL has been achieved with some limitations. Differences in operation 

behavior of OCL and EJB3QL cause some operation in OCL cannot be translated into EJB3QL, 

such as iterate. The complete list of unmapped operation can be found in Appendix A. Another 

limitation comes from our dependency on class-to-table mapping technique taken by OctopusEE. 

Two main limitations in this case are (1) To navigate through classes which are linked with 

association class, the navigation class should be explicitly mentioned in the navigation paths, and 

(2) we cannot translate OCL invariant which involves @Transient datatype, since it is not 

mapped into a column in database. 

xQL Object 

EJB3QL String 

SQL String 

Hibernate Parser 

1 

2 

3 
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4 xQL Specification 

This chapter introduces xQL, an intermediate level of OCL invariant - SQL translation. The 

description is divided into several sections. The first section gives description of xQL. The second 

section describes the model of xQL. The third section describes all the operation used in xQL, 

and the last section defines the well-formedness rules of xQL.  

4.1 What is xQL? 
xQL is an intermediate step of translating OCL invariant to SQL. It is developed to ease the 

transformation step. xQL is mainly composed of OCL expression and HQL expression. While 

xQL borrows some of HQL operations to make expressions, the data types is mainly taken from 

OCL data types. At the end, to complete the translation steps, we will serialize the abstract syntax 

of xQL to HQL String.  

 

OCL invariant basically built based on navigation and boolean expression. Navigation involves 

one or more objects. In xQL, wee see the OCL invariant from database perspective where 

invariant is a way to query a database with the condition specified, which should not return any 

result otherwise the constraint is broken. Object participating in navigation is seen as the join 

between tables in the FROM clause and boolean expression is seen as condition appear in the 

WHERE clause. 

  

4.2 Data Types and Values 
In xQL, a number of basic types are predefined. The most basic value in xQL is a value of one of 

the basic types. The basic types defined in the xQL are Integer, Real, String, and Boolean. The 

basic types of xQL, with corresponding examples of their values, are shown in the following 

table. 

 
Table 4.1 Basic xQL Types 

Types Values 
Boolean True, false 
String “This is a string” 
Integer 1, 2, 3, … 
Real 0.5, 0.75, 1.25, … 
 

 



Chapter 4 xQL Specification 27

Real  
The standard type Real represents the mathematical concept of real. Note that Integer is a 

subclass of Real, so for each parameter of type Real, you can use an integer as the actual 

parameter. 

  
Integer 
The standard type Integer represents the mathematical concept of integer. 

  
String  
The standard type String represents strings, which can be either ASCII or Unicode.  

 

Boolean  

The standard type Boolean represents the common true/false values.  

 

4.2.1 Types from the UML Model 
Each xQL expression is the translation from OCL expression which is written in the context of a 

UML model, a number of classifiers, their features and associations, and their generalizations. 

OCL expressions can refer to Classifiers (types, classes, interfaces, associations classes) and all 

attributes, association-ends, methods, and operations without side-effects that are defined on it 

can be used. xQL wraps types from UML Model with CPParticipant and xQLStructuralFeature. 

For the purpose of this project, we will refer only to attributes, association-ends, and association 

class. 

 

Attributes  
For example, an invariant in OCL stating the age of a Customer is always greater than zero is 

written as follows: 

context Customer 
inv: self.age > 0 
 
The value of the subexpression self.age is the value of the age attribute on the particular instance 

of Customer identified by self. The type of this subexpression is the type of the attribute age, 

which is the standard type Integer. Using attributes and operations defined on the basic value 

types, we can express calculations etc. over the class model.  

 

In xQL, attribute age is wrapped in StructuralFeature as shown in the following picture: 
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Figure 4.1 Attribute in xQL 
 

After the xQL is serialized into HQL, age becomes one of the columns in table Customer: 

  

select customer.id  
from Customer customer   
where not customer.f_age > 0 
 

AssociationEnds, Association Class and Navigation 
In OCL, starting from a specific object, we can navigate an association on the class diagram to 

refer to other objects and their properties. To do so, we navigate the association by using the 

opposite association-end. If the multiplicity of the association-end has a maximum of one then the 

navigation results in object. If the multiplicity of the association-end is more than one, then the 

navigation results in collection of object. Other means of navigation is using association class. 

We can navigate from the association class itself to the objects that participate in the association.  
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Figure 4.2 CPParticipant and xQLQuery 
 

In xQL, each object participating in navigation is mapped into a CPParticipant. So, for every 

classifier appears in the navigation, call it the context, association end, or association class, a 

CPParticipant is instantiated. The instantiated CPParticipants is exist as entities of an xQLQuery, 

as shown in the class diagram above. Later when we serialize the AST of xQL, these 

CPParticipant will be the join between tables. The result of an xQLQuery is always a collection 

although it might consists of only one element. 

 

For example, an OCL invariant which involves association end with multiplicity not greater than 

one: 

 

context Membership 
inv: self.account.points > 5 
 

In xQL expression self.account will instantiate CPParticipant membership and CPParticipant 

loyaltyaccount, each corresponding to its Classifier, Membership and LoyaltyAccount. points 

as an attribute of LoyaltyAccount will be treated as the QueryResult of xQLQuery with type 

Integer. The AST of created xQL corresponding to the example above is as follows: 
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Figure 4.3 Example of navigation involving association end with multiplicity less than 1 
 
Although the result of this navigation is an object, xQL treats all its entities as a join between 

tables, so the result is always a collection. 

4.2.2 Collections 
Collections in xQL can be produced in two ways: as a result of xQLQuery or define literally by 

the user. The type Collection is predefined in OCL. The element of the collection take the type of 

basic types which is either a String, Integer, Real or Boolean. 

 

Collection Literals  
Collection can be specified by a literal in xQL. Users can specify each element in the collection 

by using curly brackets to surround the elements of the collection. The elements in the collection 

are written within, separated by commas.  

 
collection {1, 2, 5, 88} 
 

Another way to define collection literals is to specify the interval of the element in the collection 

which is called collection range. Collection range consists of two expressions of type Integer, 

separated by ‘..’. 

 
sequence{1..10} 
 

in the model, a collection literals is be hold in a List and a collection range will be hold in a 

HashMap. 

4.3 xQL Metamodel 
xQL starts with xQLQuery, the class which hold the main part of the model: CPParticipant object 

and OpAsCondition. When we later serialize the xQL AST to HQL, CPParticipant represent the 

SELECT clause and FROM clause while OpAsCondition represent the WHERE clause. In this 

section we will describe the xQL Metamodel in two parts, first we discuss the entire object which 

built the SELECT clause and FROM clause and the second we will discuss the objects which 

involves in building the condition in the WHERE clause. 
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Figure 4.4 CPParticipant and OpAsCondition of xQL Metamodel 

4.3.1 Join and Navigation 
To handle the navigation in OCL invariant, xQLQuery and CPParticipant is made. xQL always 

starts with xQLQuery which forms the query object. Navigation in OCL is mapped to 

CPParticipant.  

 

 
Figure 4.5 CPParticipant in xQL 
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xQLQuery 

xQLQuery corresponds to query as a whole. ResultType defines the type of the query result. The 

result of xQLQuery always in the form of collection, except when AggregateFunction appears. 

QueryResult defines the SELECT clause. Not like ordinary query, xQL only select one column of 

the table. 

 

AggregateFunction 

AggregateFunction is used when we want to have a single aggregate value over a QueryResult. 

xQL provides two aggregate functions: SUM and COUNT. While SUM computes the sum of an 

expression over all rows in the query result; COUNT returns the number of element in the 

collection. When AggregateFunction is used in xQLQuery, the query will return one single value 

in the type of Integer. AggregateFunction is used whenever we found a size() and sum() operation 

in OCL invariant. 

 

CPParticipant 

Every time an association end appears in navigation, a CPParticipant is instantiated corresponds 

to its Classifier and the association end is stored in xQLStructuralFeature. CPParticipant is also 

instantiated for the context of the OCL invariant and association class. From database point of 

view, CPParticipant represent the table in the database. In serialization of xQL, CPParticipant will 

appear in the FROM clause, where each of them will be joined by JOIN expression. 

 
xQLStructuralFeature 

Besides holding the association end as already mentioned before, xQLStructuralFeature also 

holds the information on attribute. Attributes associates with CPParticipant as its ownerEntity. 

xQLStructuralFeature wraps the information from UML in referredStructuralFeature. 

4.3.2 Condition 
The condition part which lies in the WHERE clause is represented in OpAsCondition as shown in 

the class diagram below. 
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Figure 4.6 OpAsCondition in xQL 
 

OpAsCondition 

OpAsCondition is the wrapper of xQLOperation and Argument. If OpAsCondition associates 

with xQLQuery, it is considered as the root operation. The root operation must be a boolean 

expression, hence its referredOperation should be an instance of ComparisonOperation or 

LogicalOperation. 

 

Argument 

OpAsCondition can has arbitrary number of argument depends on xQLOperation. Argument 

could be a collection or one of the basic types, such as String, Integer, Real and Boolean. 

ArgumentType must conform to the argument type specified by xQLOperation. 

 

xQLOperation 

xQLOperation defines the operation of the condition. It consists of 4 important subclasses: 

StringOperation, LogicalOperation, ComparisonOperation, and ArithmeticOperation. Each of the 

subclasses will be described in the following section. 
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Figure 4.7 xQLOperation and its subclasses 
 

4.4 Operation in xQL 
Operation in xQL can be considered similar to operation in HQL. The operation is contained in 

the referredOperation. OpAsCondition acts as a wrap of operation and its arguments. 

OpAsCondition may contain a list of argument expressions if the operation is defined to have 

parameters. In this case, the number and types of the arguments must match the parameters. 

 
Arithmetic operators perform mathematical operations on two expressions of any data types in 

the numeric datatype category. We use the term ‘Numeric’ to represent Integer and Real. 

 
Table 4.2 Arithmetic Operation 

Data Type Operation Meaning Argument 1 Argument 2 Return 
+ Addition Numeric Numeric 
- Subtraction Numeric Numeric 
* Multiplication Numeric Numeric 
/ Division Numeric Numeric 

Numeric 
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Table 4.3 Comparison Operation 
Data Type Operation Meaning Argument 1 Argument 2 Return 

= Equal to Numeric/ 
Boolean/ String 

Numeric/ 
Boolean/ String 

> Greater than Numeric Numeric 
< Less than Numeric Numeric 
>= Greater than or 

equal to 
Numeric Numeric 

<= Less than or 
equal to 

Numeric Numeric 

<> Not equal to Numeric/ 
Boolean/ String 

Numeric/ 
Boolean/ String 

boolean 

 
 
Table 4.4 Unary Operation 

Data Type Operation Meaning Argument 1 Return 
+ Numeric value is negative Numeric Numeric 
 
 
Table 4.5 String Operation 

Data Type Operation Meaning Argument 1 Argument 2 Argument 3 Return 
Concat (||) Appends two 

or more 
literal 
expressions, 
attributes 
values 
together into 
one string 

String String - String 

Lower Converts a 
string to all 
lowercase 
characters 

String - - String 

Upper Converts a 
string to all 
lowercase 
characters 

String - - String 

Substring Extracts a 
portion of 
string 

String Integer Integer String 
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Table 4.6 Logical Operation 
Data Type Operation Meaning Argument 1 Argument 2 Argument 3 Return 

IN TRUE if the 
operand is 
equal to one 
of the 
element in 
the list 

String/ 
Numeric 

Collection - 

BETWEEN TRUE is the 
operand is 
within a 
range 

Numeric Numeric Numeric 

AND TRUE if 
both Boolean 
expression 
are TRUE 

Boolean Boolean - 

OR TRUE if 
either 
Boolean 
expression 
are TRUE 

Boolean Boolean - 

NOT Reverses the 
value of any 
other 
Boolean 
operator 

Boolean - - 

Boolean 
 

 

4.5 Well-formedness rules of xQL 
 
xQLQuery 
 

[1] Every xQLQuery must have one condition and at least one entity. 
 context QLQuery  x
 inv: self.condition->notEmpty() 
  inv: self.entities.size()>0 

 

[2] If aggregate’s name equal to SUM, the type of QueryResult must be a numeric. 
 context xQLQuery 
 inv: self.aggregate->notEmpty() and self.aggregate.name = ‘SUM’ 

implies self.QueryResult.refferedStructuralFeature.type = 
StdlibPrimitiveType::Integer 

 
 inv: self.aggregate->notEmpty() and self.aggregate.name = ‘SUM’ 

implies self.QueryResult.refferedStructuralFeature.type = 
StdlibPrimitiveType::Real 
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[3] QueryResult is either a type of xQLStructuralFeature or type of CPParticipant. 
 context xQLQuery 
 inv: self.QueryResult.oclIsTypeOf(xQLStructuralFeature) or 

self.QueryResult.oclIsTypeOf(CPParticipant) 
 
[4] If QueryResult if a type of CPParticipant then ReturnType is a Numeric. 
 context QLQuery  x
 inv: self.QueryResult.oclIsTypeOf(CPParticipant) implies 

self.ReturnType = xQLDataType::Numeric 
 
CPParticipant 
 
[1] entityVariable of CPParticipants associate with the same owner must be unique. 
 context xQLQuery 
  inv: self.entities.isUnique(entityVariable) 
 
[2] Except the first and last entities, all entities must have a joinField. 
 context xQLQuery 
  inv: - 
 
[3] The refferedStructuralFeature of joinField of the corresponding CPParticipant must be the 

type of AssociationEndImpl. 
 context CPParticipant 
  inv: self.joinField.oclIsTypeOf(AssociationEndImpl) 
 
[4] If the classifier is an instance of AssociationClassImpl then the corresponding 

CPParticipant does not have a joinField. 
 context CPParticipant 
  inv:  self.oclIsTypeOf(AssociationClassImpl) implies 

self.joinField->isEmpty() 
 
[5] The refferedStructuralFeature of involvesAttributes of the corresponding CPParticipant 

must be the type of AttributeImpl. 
 context CPParticipant 
  inv:  self.involvesAttributes.oclIsTypeOf(AttributeImpl) 
 
OpAsCondition 

 [1] If the owner of the current OpAsCondition is an instance of xQLQuery, the 

referredOperation must be an instance of LogicalOperation or ComparisonOperation. 
 context OpAsCondition 
  inv:  self.owner.oclIsTypeOf(xQLQuery) implies 

self.refferedOperation.oclIsTypeOf(LogicalOperation) or 
self.refferedOperation.oclIsTypeOf(ComparisonOperation) 

 
 [2] The argType of each argument of OpAsCondition must adhere to the argument type 

specified by xQLOperation. 
 context OpAsCondition 
  inv:  - 
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Argument 

[1] if arg is an instance of CPParticipant then argType equals to ENTITY_VAR 
 context Argument 
  inv:  self.arg.oclIsTypeOf(CPParticipant) implies self.argType = 

ArgumentType::ENTITY_VAR 
 

[2] if arg is an instance of OpAsCondition then argType equals to SUB_COND 
 context Argument 
  inv:  self.arg.oclIsTypeOf(OpAsCondition) implies self.argType = 

ArgumentType::SUB_COND 
  

[3] if arg is an instance of IxQLStructuralFeature then argType equals to 

STRUCTURAL_FEATURE 
 context Argument 
  inv:  self.arg.oclIsTypeOf(xQLStructuralFeature) implies 

self.argType = ArgumentType::STRUCTURAL_FEATURE 
 

[4] if arg is an instance of Boolean then argType equals to L_BOOL 
 context Argument 
  inv:  self.arg.oclIsTypeOf(Boolean) implies self.argType = 

ArgumentType::L_BOOL 
 

[5] if arg is an instance of Integer then argType equals to L_INT 
 context Argument 
  inv:  self.arg.oclIsTypeOf(Integer) implies self.argType = 

ArgumentType::L_INT 
 

[6] if arg is an instance of Double then argType equals to L_DOUBLE 
 context Argument 
  inv:  self.arg.oclIsTypeOf(Double) implies self.argType = 

ArgumentType::L_DOUBLE 
 

[7] if arg is an instance of String then argType equals to L_STR 
 context Argument 
  inv:  self.arg.oclIsTypeOf(String) implies self.argType = 

ArgumentType::L_STR 
 

[8] if arg is an instance of Integer then argType equals to L_INT 
 context Argument 
  inv:  self.arg.oclIsTypeOf(Integer) implies self.argType = 

ArgumentType::L_INT 
 

[9] if arg is an instance of HashMap then argType equals to COLL_RANGE 
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 context Argument 
  inv:  self.arg.oclIsTypeOf(HashMap) implies self.argType = 

ArgumentType::COLL_RANGE 
 
 [10] If arg is an instance of List then argType equals to COLL_ITEM 
 context Argument 
  inv:  self.arg.oclIsTypeOf(List) implies self.argType = 

ArgumentType::COLL_ITEM 
 
Arithmetic Operation 

[1] The number of argument is two. 
 context OpAsCondition 
  inv:  self.refferedOperation.oclIsTypeOf(ArithmeticOperation) 

implies self.arguments->size() = 2 
 

[2] Arguments must be a type of Integer or Real 
 context OpAsCondition 
  inv:  self.refferedOperation.oclIsTypeOf(ArithmeticOperation) 

implies self.arguments.dataType=xQLDataType::Integer or 
self.arguments.dataType=xQLDataType::Real 

 

Comparison Operation 

[1] The number of argument is two. 
 context OpAsCondition 
  inv:  self.refferedOperation.oclIsTypeOf(ComparisonOperation) 

implies self.arguments->size() = 2 
 

[2] Argument of greater, greater than, less, less than is either Integer or Real. 
 context OpAsCondition 
  inv:  self.refferedOperation.name=’ge’ implies 

self.arguments.dataType = xQLDataType::Real or 
self.arguments.dataType=xQLDataType::Integer 

 
 context OpAsCondition 
  inv:  self.refferedOperation.name=’gt’ implies 

self.arguments.dataType = xQLDataType::Real or 
self.arguments.dataType=xQLDataType::Integer 

 
 context OpAsCondition 
  inv:  self.refferedOperation.name=’le’ implies 

self.arguments.dataType = xQLDataType::Real or 
self.arguments.dataType=xQLDataType::Integer 

 
 context OpAsCondition 
  inv:  self.refferedOperation.name=’lt’ implies 

self.arguments.dataType = xQLDataType::Real or 
self.arguments.dataType=xQLDataType::Integer 
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[3] If comparison operation is equal or not equal, the argument type could be a String, Boolean 

or Numeric, buth both argument must be on the same type. 
 context OpAsCondition 
  inv:  self.refferedOperation.name=’eq’ implies 

self.arguments.dataType = xQLDataType::Real or 
self.arguments.dataType=xQLDataType::Integer or 
self.arguments.dataType = xQLDataType::String or 
self.arguments.dataType=xQLDataType::Boolean 

  
 context OpAsCondition 
  inv:  self.refferedOperation.name=’ne’ implies 

self.arguments.dataType = xQLDataType::Real or 
self.arguments.dataType=xQLDataType::Integer or 
self.arguments.dataType = xQLDataType::String or 
self.arguments.dataType=xQLDataType::Boolean 

 
 context OpAsCondition 
  inv:  self.refferedOperation.name=’eq’ implies self.arguments-

>first().dataType = self.arguments->last().dataType 
 
 context OpAsCondition 
  inv:  self.refferedOperation.name=’ne’ implies self.arguments-

>first().dataType = self.arguments->last().dataType 
 

String Operation 

[1] If String Operation equals to concat, the number of argument is two and must be a type of 

String. 
 context OpAsCondition 
  inv:  self.refferedOperation.name=’concat’ implies 

self.arguments->size() = 2 
 
  inv:  self.refferedOperation.name=’concat’ implies 

self.arguments.dataType = xQLDataType::String 
 

[2] If String Operation equals to lower or upper, the number of argument is one and must be a 

type of String 
 context OpAsCondition 
  inv:  self.refferedOperation.name=’lower’ implies 

self.arguments->size() = 1 
 
  inv:  self.refferedOperation.name=’lower’ implies 

self.arguments.dataType = xQLDataType::String 
 
  inv:  self.refferedOperation.name=’upper’ implies 

self.arguments->size() = 1 
 
  inv:  self.refferedOperation.name=’upper’ implies 

self.arguments.dataType = xQLDataType::String 
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[3] If String Operation equals to substring, the number of argument is three. The first argument 

must be the type of String, the second and third argument must be the type of Integer. 
 context OpAsCondition 
  inv:  self.refferedOperation.name=’substring’ implies 

self.arguments->size() = 3 
 
  inv:  self.refferedOperation.name=’substring’ implies 

self.arguments->first().dataType = xQLDataType::String 
 
  inv:  self.refferedOperation.name=’substring’ implies 

self.arguments->at(2).dataType = xQLDataType::Integer 
 
  inv:  self.refferedOperation.name=’substring’ implies 

self.arguments->last().dataType = xQLDataType::Integer 
 

Logical Operation 

[1] If the Logical Operation equals to IN, the number of arguments is two and the first 

argument must be in the same type in the type of collection’s element. 
 context OpAsCondition 
  inv:  self.refferedOperation.name=’in’  implies self.arguments-

>size() = 2 
   
  inv:  self.refferedOperation.name=’in’  implies self.arguments-

>first().dataType = self.arguments->last().dataType 
 
  inv:  self.refferedOperation.name=’in’  implies self.arguments-

>last().isCollection = true 
 

[2] If the Logical Operation equals to BETWEEN, the number of argument is three and must 

be in the type of Integer. 
 context OpAsCondition 
  inv:  self.refferedOperation.name=’in’  implies self.arguments-

>size() = 3 
 
  inv:  self.refferedOperation.name=’in’  implies 

self.arguments.oclIsTypeOf(Integer) 
 
 [3] If the Logical Operation equals to AND or OR, the number of arguments is two and must 

be in the type of Boolean. 
 context OpAsCondition 
  inv:  self.refferedOperation.name=’and’  implies self.arguments-

>size() = 2 
 
  inv:  self.refferedOperation.name=’or’  implies self.arguments-

>size() = 2 
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[4] If the Logical Operation equals to NOT, the number of arguments is one and must be in the 

type of Boolean 
 context OpAsCondition 
  inv:  self.refferedOperation.name=’not’  implies self.arguments-

>size() = 1 
 
  inv:  self.refferedOperation.name=’not’ implies 

self.arguments.oclIsTypeOf(Integer) 
 

4.6 Summary 
 
xQL is an intermediate step of translating OCL invariant to SQL. It is developed to ease the 

transformation step. xQL is mainly composed of OCL expression and HQL expression. While 

xQL borrows some of HQL operations to make expressions, the data types is mainly taken from 

OCL data types. At the end, to complete the translation steps, we will serialize the abstract syntax 

of xQL to HQL String. From database point of view xQL is composed of a SELECT clause, 

FROM clause and WHERE clause. Path and navigation of OCL is translated into SELECT 

clause and WHERE clause in xQL, whereas the Boolean expression is taken as WHERE clause. 

Some operation involved in the WHERE clause is also discussed in this chapter along with their 

well-formedness rules. 
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5 Transformation Recipes: Patterns and 
Procedures 

5.1 The Negation of Boolean Expression 
Invariant in OCL Expression is a Boolean expression that should be true for an object during its 

complete lifetime. In Database system, integrity is checked by querying the database with false 

condition. Integrity is assured when there query returns no result. For example, take this simple 

OCL invariant: 

 
context Customer 
 inv: self.cards->size() < 5 
 
OCL invariant above states that the current customer can have in maximum 4 cards. In database 

point of view, this invariant seen as ‘there is not exist a customer that have 5 or more cards’ and 

is  written as follows: 

 
select * from customer as self 
where not 

(select count(*) from customer self, customercard cc 
where self.id = cc.f_owner_id) 

 < 5  
; 
 
Considering this,  to assure the constraint is not broken, we have to select from the database with 

the negated condition and to hold the integrity, the selection should never return any result. 

Hence, in database constraint, to put the boolean expression as the condition in WHERE clause, 

we should always negate it first : 

 
not self.cards->size() < 5 
 
Another crux point is the OCL invariant is taken as the WHERE clause in database. 
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5.2 Operators 
Boolean expression can be produced by an operator which return a boolean value. For example, 

in OCL invariant above boolean operator lesser than (‘<’) returns a boolean value. Based on this, 

we can divide operators in two main group: operator which return a boolean value, and operator 

which return other than boolean value. Operator which return a non-boolean value won’t be 

considered as the candidate for negated operator. 

 

Problem in determining which expression should be negated may occur when invariant contains 

more than one operator. However, this problem could easily solved if we see the OCL Expression 

in a operator hierarchical way. Here the OCL Expression is drawn based on the operator, from the 

most outer operator to the most inner operator. 

 

In above example, we actually have 2 operators, size() and lesser than (‘>’).  In the hierarchical 

AST this invariant is drawn as follows: 

 

 
 
With lesser than (<lt>) as the outer operator (marked with 1) and size() (<size>) as the inner 

operator (marked with 2). It is clear that the negated operator is lesser than since it is the root 

operator. In short, in mapping of OCL invariant to database constraint, root operator should 

always be negated. 

 

In the AST above, OCL invariants is considered as group of operator and operand. Each operator 

has one or more operand, and each operand could be another operator (which also consist of 

operands) and navigation. Operand could also consists navigation with no further applied 

operator. As in example above, <lt> as the outer operator has 2 operands, call them A and B. A is 

another operand, size() and B is the operand 5. Operator size() has 1 operand which is cards. 

 

5.3 Mapping Procedures 
Mapping is divided into two main groups, first is the translation of navigation, and the second is 

translation of operation: 
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a.  Navigation 

Navigation is translated to SELECT clause and FROM clause.  

Collection type of OCL are divided into set and bag, however in database, data are always in 

the form of tuples. 

b.  Operation 

Simple operation such as arithmetic or boolean operation are easy to map since their direct 

counterpart is available in xQL. However, mapping of operation for collection type is quite 

challenging, since some of  the operations do not have a direct counter part in xQL. To 

overcome this problem, we need to transform the operation to another equivalent OCL 

operation. For example isUnique operation is first transformed  to its equivalent expression 

using forAll(expr) operation before being translated into xQL.  

 
Complete list of mapping patterns can be found in the following section.  

5.4 Mapping Patterns 

5.4.1 Navigation 
Operands in OCL could be divided into 3 main types: Classifier, StructuralFeature and Literal. A 

Classifier is equivalent to a Class, StructuralFeature is equivalent to an Attribute, and Literal 

could take the type of String, Numeric, Boolean or a Collection. Since literal is transformed also 

as literal, what left is the transformation of Classifier and StructuralFeature. 

 

In xQL, Classifier, Association End, and Association Class are mapped to CPParticipant. 

However, unlike OCL, CPParticipant is the occurrence of the Classifier, so there could be a 

possibility that we have more than one instance of CPParticipant correspond to the same 

Classifier, as shown in the following example: 

 

context LoyaltyProgram  
  inv lp_2: levels->includesAll( Membership.currentLevel ) 
 
Above invariant states that the service level of each membership must be a service level known to 

the loyalty program for which the invariant holds. For this invariant, following CPParticipants are 

instantiated: 

• loyaltyprogram: instantiated from the context LoyaltyProgram, so it is referring to 

LoyaltyProgram Classifier. 

 



Chapter 5 Transformation Recipes: Patterns and Procedures 46

• i_Membership: instantiated from the association class Membership, so it is referring to 

Membership Classifier. 

• servicelevel_11857510: instantiated from the association end levels, which its Classifier 

is ServiceLevel.  

• servicelevel: instantiated from the association end currentLevel, which its Classifier is 

also ServiceLevel. 

 
The AST from above example is depicted in Figure 5.1. 
 

 
Figure 5.1 AST of OCL Invariant lp_2: levels->includesAll(Membership.currentLevel) 
 
Attributes from OCL is mapped to xQLStructuralFeature. xQLStructuralFeature holds the 

information about the attribute’s name and the owner. 

5.4.2 Operation 
Based on the type of expression, OCL Operation can be divided into 2 main groups, operation on 

basic types and operation on collection type. Besides these two main categories, there also exists 

user-defined operation. The last mentioned type of operation is out of this project scope. 

5.4.2.1 Operation on Basic types 
Operation on primitive data type is divided into several sections based on the input type: Boolean 

type, Numeric type and String type. 

 
Table 5.1 Standard operations for Boolean type 

OCL xQL Result Type 
a or b a or b 
a and b a and b 
a xor b (a or not b) and (not a or b) 
not a not a 
a = b a = b 
a <> b a <> b 
a implies b not a or b 

boolean 
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For operation on Boolean type, the direct counterpart can be found almost for all operation except 

exclusive or and implies. However, the translation is still possible by using the equivalent 

operation. 

 

Table 5.2 Standard operations for Numeric type 
OCL xQL Result Type 

a = b a = b 
a <> b a <> b 
a < b a < b 
a > b a > b 
a <= b a <= b 
a >= b a >= b 

boolean 

a + b a + b 
a – b a – b 
a * b a * b 
a / b a / b 

numeric 

 
Table 5.3  Standard operations for String type 

OCL xQL Result Type 
string.concat(string) string1 || string2 
string.toLower() lower(string) 
string.toUpper() upper(string) 
string.substring(int,int) substring(string, int,int) 

String 

 

5.4.2.2 Operations on Collection Types 
OCL defines many operations on collection types. These operations are specifically meant to 

enable a flexible and powerful way of projecting new collections from existing ones. The 

different constructs are described in the following sections. 

 

Standard Operations 

To look at the concise version of the mapping please refer to Table 5.4.  
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Table 5.4 Standard operations on all collection types 
OCL xQL Result Type 

collection->count(object) integer 
collection ->excludes(object) 

collection ->excludesAll(collection) 

collection ->includes(object) 

collection ->includes All(collection) 

select [count(object)] 
from … 
where 
object | collection [not] in 
collection 

collection ->isEmpty() count(*) from … =  0 
collection ->notEmpty() count(*) from ..  <> 0 

boolean 

collection ->size() count(*) 

collection ->sum() sum(collection) integer 

 
The count, excludes, excludesAll, includes,  includesAll operation 

The count, excludes, excludesAll, includes, and includesAll operation actually has the same basic 

operation; they check whether the object or collection in the body parameter exists or not exists in 

the collection. All of these operations return a boolean value except count operation which return 

the number of occurrences of the object in the collection. In xQL the verification of whether a 

certain object exists in the corresponding collection is solved with IN operation. IN returns true if 

the object exists in the corresponding collection, and false coversely. IN operation can also be 

used to write certain types of subqueries.  

 

We have the same basic recipe for count, excludes, excludesAll, includes,  includesAll operation. 

The collection appeared in left side of the arrow is mapped as an xQLQuery and become the 

second argument of IN operation. The body of those operations is mapped as another xQLQuery 

and become the outer query where IN is used in the WHERE clause. First argument of IN 

operation is QueryResult of the outer xQLQuery. For excludes and excludesAll we use NOT IN 

operation, and for COUNT operation, we use the aggregate function COUNT in the Query Result 

of the outer xQLQuery. 

 

For example, given that we have the following invariant which specifies that the actual service 

level of a membership must be one of the service levels of the program so which the membership 

belongs: 

  

context Membership 
inv: programs.levels ->includes(currentLevel) 
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For the body of includes, an xQLQuery is instantiated with membership and 

servicelevel_33199009 as its CPParticipants. For the first argument of IN operation, the 

QueryResult, servicelevel_33199009, is used and for the second argument another xQLQuery is 

instantiated with membership, loyaltyprogram, and servicelevel as its CPParticipants. 

 
Figure 5.2 AST of IN operation 
 

And the serialization of the xQL model above into HQL String after we negate the root operation 

is as follows: 

 

select servicelevel_13596360.id  
from Membership membership  
 join membership.f_currentLevel servicelevel_13596360  
where not servicelevel_13596360  

in  
(select servicelevel.id 
from Membership membership 

join membership.f_programs loyaltyprogram 
join loyaltyprogram.f_levels servicelevel) 

 

The isEmpty and notEmpty Operation 

The isEmpty operation returns true if the collection contains no elements, and notEmpty operation 

returns true if the collection contains at least one element. So actually these two operations are the 

reverse operation of each other. To map this operation we have to query the database count the 

result with aggregate function. For isEmpty the result should be 0 and for notEmpty the result 

should be not equal to 0. 

 

For example, given that we have the following OCL invariant which states a loyalty program 

does not deliver any Service to its customer. 

 

context LoyaltyProgram 
inv: partners.deliveredServices->isEmpty() 
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For this invariant, first we instantiate an xQLQuery object which has loyaltyprogram, 

i_ProgrampPartner and service as its CPParticipant. This CPParticipant is taken from the context 

LoyaltyProgram, association end partners and association end deliveredServices. The last 

CPParticipant is taken as the QueryResult follows with the application of aggregate function 

COUNT on it.  The next step is comparing the xQLQuery with Literal Integer 0. For isEmpty we 

compare the xQLQuery with equal (‘=’) operator, and for notEmpty we compare the xQLQuery 

with not equal (‘<>’) operator. The result of this comparison is a boolean value. 

 
Figure 5.3 Example for isEmpty and notEmpty operation 
 

The size Operation 

The size operation returns the number of elements in the collection. In xQL, size is mapped by 

adding the aggregate function COUNT in the QueryResult.  

 

For example given that we have the following OCL invariant which states that the current 

customer can have in maximum 4 cards: 

 

context Customer 
 inv: self.cards->size() < 5 
 
size operation is mapped by the aggregate function COUNT in the inner xQLQuery as shown in 
the figure below: 
 

 
Figure 5.4 Example for size Operation 
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And the serialization of the xQL model above into HQL String after we negate the root operation 

is as follows: 

 

select customer.id  
from Customer customer   
where not  
 (select COUNT(customercard.id)   
  from Customer customer  
  join customer.f_cards customercard  )< 5 
 

The sum Operation 

The sum operation returns the addition of all elements in the collection. The elements must be of 

a type supporting addition (such as Real or Integer). In xQL, sum is mapped by adding the 

aggregate function SUM in the QueryResult.  

 
Loop Operations or Iterators 

A number of standard OCL operations enable you to loop over the elements in a collection. These 

operations take each element in the collection and evaluate an expression on it. Loop operations 

are also called iterators or iterator operations. Every loop operation has an OCL expression as 

parameter. This is called the body, or body parameter, of the operation. The following sections 

explain each of the loop operations in more detail.  Table 5.5 shows an overview of the loop 

operations defined on the collection types. 

 

Table 5.5 Loop Operations or Iterators (IteratorExp) 
OCL HQL Return Type 

collection->collect(element) navigation 
collection->collectNested(element) navigation collection 

collection->any(boolean expr) element 
collection->reject(boolean expr) 
collection->select(boolean expr) 

select *  
from table   
where [not] boolean exp collection 

Collection->forAll(boolean expr) (select count(*) from table) = 
(select count(*) from table where 
boolean expr) 

collection->isUnique(element) use forAll 
collection->one(boolean exp) (select count(*)  

from table 
 where boolean exp) = 1 

boolean 

Collection->exists(boolean expr) (select count(*) from table where 
boolean expr) > 1 

boolean 
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The collect and collectNested Operation 

The collect operation iterates over the collection, computes a value for each element of the 

collection, and gathers the evaluated values into a new collection. We consider collect as a part of 

navigation, since collect is mostly used to navigate from the source object to destination object. 

Collect can also be written using dot notation (‘.’). 

 

OCL differentiates iteration over a set and iteration over a bag with collect and collectNested. 

However, in xQL we consider collect and collectNested as the same operation.  In xQL we see it 

as list of CPParticipants, and later when it is serialized; it will be the join between tables. 

 
The any, select, and reject Operation 

The basic idea behind these three operations is they enables us to specify a selection from the 

original collection based that fulfill the condition stated in the parameter. In xQL, the condition 

stated in the body parameter will be mapped as OpAsCondition. The operand and operator of 

OpAsCondition depend on the boolean expression in the body parameter. In order to return an 

element or a collection, we have to make the outer xQLQuery and put the OpAsCondition as its 

condition. 

 

While any and select return a selection from the original collection which fulfills the condition, 

reject return all elements from the collection for which the expression evaluates to false. The 

difference is reflected by the use of not operation. This pattern is the basic translation of other 

iterator exp such as forAll, exists and one. 

 

Again, taking Royal and Loyal model as an example, the following expression from the context 

of LoyaltyProgram results in a loyalty account randomly picked from the set of accounts in the 

program that have a number lower than 10,000:  

 

self.Membership.account->any( number < 10000 ) 
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Figure 5.5 Example for any Operation 
 

The exists Operation 

Exists operation is used to specify whether there is at least one object in a collection for which a 

certain condition holds. Using the basic translation for iterator expression described in the 

previous operation, in exists Operation; we add an aggregate function count. Next step is 

instantiating an OpAsCondition which will hold the xQLQuery, literal integer 0 and greater than 

as the comparison operation. Exists returns true if the number of result is greater than zero, 

otherwise returns false. 

 

To specify whether there is at least one service with the name = ‘basic’ in the corresponding 

LoyaltyProgram, we define the following OCL invariant: 

 

context LoyaltyProgram  
  inv lp_3: self.levels->exists(name = 'basic') 
 

 
Figure 5.6 Example of exists Operation 
 
The forAll Operation 

We often want to specify that a certain condition must hold for all elements of a collection. The 

forAll operation on collections can be used for this purpose. The result of the forAll operation is a 

boolean value. It is true if the expression is true for all elements of the collection. If the 
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expression is false for one or more elements in the collection, then forAll results in false. Using 

the operations we have in xQL, the equivalent operation for forAll operation is to compare the 

number of results of xQLQuery with and without the condition. If the number of results is the 

same, it means that the condition is valid for all the elements in the collection. 

 
Again, using the basic translation for iterator expression, we will instantiate two xQLQuery, one 

xQLQuery with OpAsCondition and the other without OpAsCondition. Next step is adding the 

aggregate function count to both of xQLQuery. Last step is comparing the result of both 

xQLQuery with equal comparison operator. 

 

Given that we want to specify that the participant of the corresponding program is open only for 

male: 

context LoyaltyProgram  
  inv : self.Membership.participants->forAll(isMale = true) 
 
For above example, we have the OpAsCondition with equal as its xQLOperation and two 

aggregated xQLQuery, one with the condition isMale = true and the other without the 

condition. 

 
Figure 5.7 Example of forAll Operation 
 
The isUnique Operation 
Quite often in a collection of elements, we want a certain aspect of the elements to be unique for 

each element in the collection. For instance, in a collection of employees of a company, the 

employee number must be unique. To state this fact, we can use the isUnique operation. The 

parameter of this operation is usually a feature of the type of the elements in the collection. The 

result is either true or false. The operation will loop over all elements and compare the values by 
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calculating the parameter expression for all elements. If none of the values is equal to another, the 

result is true; otherwise, the result is false. 

 

To resolve the translation of isUnique we will firstly translate it to its equivalent operation using 

nested forAll [15 ]. The latter translation is following the pattern of forAll. 

 
The one Operation 
The one operation gives a boolean result stating whether there is exactly one element in the 

collection for which a condition holds. The body parameter of this operation, stating the 

condition, is a boolean expression. If there is exactly one such element, then the result is true; 

otherwise, the result is false.  

 

Following the basic pattern of iterator expression, we take the resulting xQLQuery and add an 

aggregate function count in the QueryResult. Next, we instantiate an OpAsCondition with equal 

operator as its xQLOperation, taking xQLQuery as its first argument and Literal Integer 1 as the 

second argument. 

 

Taking the number attribute of the LoyaltyAccount class in the R&L system as an example, the 

following invariant states that there may be only one loyalty account that has a number lower than 

10,000: 

 
context LoyaltyProgram  
  inv: self.Membership.account->one( number < 10000 ) 
 
 

 
Figure 5.8 Example of one Operation 
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5.4.2.3 Outer Query 
The translation often results not in xQLQuery, hence for this type of result an outer query must be 

made. For example the translation of one operation as mentioned above. Translating merely the 

one operation will result in OpAsCondition, since after the xQLQuery with the condition has 

been made we have to aggregate the result and check whether the value is equal to one. If one is 

the root operation, we have to create an extra outer query to hold the OpAsCondition, so the final 

result is as shown in the following picture: 

 
Figure 5.9 Translation of one Operation with outer query 
 

5.5 Summary 
Translation of OCL to xQL could be divided into two major parts: translation of the navigation 

and translation of operation. The navigation will be mapped into CPParticipant and 

xQLStructuralFeature. The OCL operation will be mapped into xQL operation. Apart from the 

translation recipe we have to deal also with the creation of view where in order to hold the 

integrity constraint we have to query the database with the negated condition. The integrity is 

ensure where the query return no result. 
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6 Introduction to SQL Generator in OctopusEE  

To run OctopusEE in Eclipse, please refer to OctopusEE Configuration in Appendix C. However 

an extra setup is required to generate SQL from OCL invariant in OctopusEE.  

6.1 Configuration of build path 
To run SQL Generator in OctopusEE, the following jar files is required in your build path. To 

prevent compatibility mismatch, the version of each jar files is provided as well. 

• hibernate3.jar (version: 3.2.0.cr3) 

• hibernate-annotations.jar (version: 3.2.0.CR1) 

• hibernate-entitymanager.jar (version: 3.1beta4) 

• ejb3-persistance.jar 

• hibernate-tools.jar 

 

In this project we use Oracle Database 10g Express Edition with following JDBC driver: 

• classes12.jar (Oracle JDBC Driver version - 10.1.0.4.0) 

 

6.2 Generated Files 
In addition to java generated code in folder src, SQL Generator in OctopusEE creates additional 

folder named hql. In this folder, HQL files - the translation result of OCL invariant - are 

placed. Each hql file in hql folder correspond to ocl file in expressions folder: 

Customer.hql is an HQL script corresponds to OCL invariant in Customer.ocl, 

CustomerCard.hql is an HQL script corresponds to OCL invariant in 

CustomerCard.ocl, and so on. 

 
Figure 6.1 additional hql folder 
 
SQL Generator in OctopusEE also output a new “SQLGenerator.java” in “utilities” 

package, which is used for generating SQL script out of HQL files. The dialect of generated SQL 
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script depends on the JDBC driver specified in hibernate configuration file. The translation of 

HQL to SQL will be written in one single file, viewscript.sql, and placed in the root path. 

 
Figure 6.2 Location of viewscript.sql 

6.3 Testing 
To test the SQL script, a database corresponds to the project should exist beforehand. To generate 

the database schema, please refer to section 6.4.1 in Appendix C. The first step to test the SQL 

script is by uploading the script to Oracle. 

 
 Figure 6.3 Upload Script in Oracle 
 
After the script is run and compiled we can see the created views as depicted in the following 

picture: 
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 Figure 6.4 Created View from SQL Script 
 
The new created views are then used by triggers which evaluate the constraints after each critical 

data manipulation operation. When any constraint violation is found, the trigger should rollback 

the current transaction and sends an appropriate error message to the invoking application. 

 
To gain a better understanding of this concept, we will take one example of OCL invariant which 

states that every customer must have at least one valid card: 

context Customer  
  inv Custom_Valid: cards->select( valid = true )->size() > 1 

 

For above invariant we have following SQL script: 

create or replace force view 
"invariant_Custom_Valid" as  
select 
  customer0_.id as col_0_0_  
 from 
  Customer customer0_  
 where 
  (select count(f_cards2_.id)  
   From Customer customer1_  
   inner join CustomerCard f_cards2_  
     on customer1_.id=f_cards2_.f_owner_id  
   where 
    f_cards2_.f_valid<>1 
  )<=1; 

 

Next, we evaluate the given constraint by creating the following trigger which will evaluate every 

time a manipulation occurred in table Customer: 
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CREATE OR REPLACE TRIGGER "CUSTOMER_valid"  
AFTER 
insert or update or delete on "CUSTOMER" 
DECLARE  
    D NUMBER; 
BEGIN  
    select count(*) into D from invariant_Custom_Valid; 
    IF (D > 0) THEN  
        RAISE_APPLICATION_ERROR(-20000, 'constraint 
violate ')d ;  
    END IF;  
END;  

 

If data, which will violate the constraint, is entered into database, an error message will be raised 

and the transaction will be rolled back. 

 
 
For the conciseness of the report, the given example of OCL invariant above only involves one 

table in evaluating a business rule. However, a more complex integrity view could use more than 

one table of the database to evaluate a business rule. As a result, the constraint evaluation must be 

done after manipulation of all of these tables. 

 

6.4 Summary 
In this chapter, we introduce SQL Generator in OctopusEE and how to configure it in Eclipse as 

well as how to upload the generated SQL script in RDBMS, in our case Oracle. 
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7 Summary and Outlook 

7.1 Summary 
In this project, we have reported our approach to translate OCL invariants as constraints in 

database systems by combining object oriented query language with the use of view and trigger. 

Along with the final release of EJB 3.0, Java Community Press introduces Java Persistence Query 

Language. The Java Persistence query language, also known as EJB3QL, can be compiled to a 

target language, such as SQL of a database.  

 

By utilizing the enhanced power of EJB3QL, we are able to simplify the process of specifying 

OCL invariant as the integrity constraint in database systems and keep using relational databases. 

With this approach we could gain some advantages: 

• Joining Associations. EJBQL introduces path expression, an identification variable 

followed by the navigation operator (.) and a state-field or association-field [14]. 

Utilizing path expression, we not need to specify join condition explicitly. With path 

expression, EJBQL has enough information in the mapping document to then deduce the 

table join expression. This helps make mapping navigation in OCL invariant easier and in 

the same time make queries less verbose and more readable.  

• Polymorphic Queries. By default, all queries in EJB3QL are polymorphic. That is, the 

FROM clause of a query designates not only instances of the specific entity class(es) to 

which it explicitly refers, but subclasses as well [14]. We might define a rule which 

involves subclasses that, following the table per class hierarchy approach [10], are not 

mapped into a table. With polymorphic queries, no matter what approach is taken in 

mapping class inheritance, we can swiftly write a query in EJB3QL. 

 

The use of view and trigger offers some advantages: view is supported by all DBMS vendors, and 

it also allows evaluating a complex condition involving arbitrary number of tables. This ability 

substitutes the task of assertion and fulfills the vital part of integrity constraint.  

 

We have shown that it is possible to specify OCL invariants as constraints in database systems by 

combining object oriented query language with the use of view and trigger. Our goal to translate 

the OCL invariants to EJB3QL has been achieved with some limitations. Differences in operation 

behavior of OCL and EJB3QL cause some operation in OCL cannot be translated into EJB3QL, 
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such as iterate. However, this seems not to be a serious problem, since in practical OCL 

specification the iterate operator is rarely used [ 2], and all OCL constructs derived from iterate 

(like forAll and select) can be mapped properly. The complete list of unmapped operation can be 

found in Appendix A. Another limitation comes from our dependency on class-to-table mapping 

technique taken by OctopusEE. Two main limitations in this case are (1) To navigate through 

classes which are linked with association class, the navigation class should be explicitly 

mentioned in the navigation paths, and (2) we cannot translate OCL invariant which involves 

@Transient datatype, since it is not mapped into a column in database. 

 

7.2 Further Work 
In this project, we only exploit the use of OCL invariant to define integrity constraint in relational 

database. Further works can be done in completing the constraint by using precondition and 

postcondition and guard. Moreover, the generation of SQL construct can be extended from 

creating a view construct to automatically create a trigger for each involved tables in the view 

construct.  

 

In the area of EJB3QL, a further work can be done in developing a complete Metamodel of 

EJB3QL. In our xQL model, we only use the subset of EJB3QL, thus although we are able to 

serialized a well-formed EJB3QL out of xQL model, the result is limited. For example, 

translating OCL invariant to EJB3QL syntax, we need a single QueryResult in the SELECT 

clause, thus in our xQL model, the association between SELECT clause and QueryResult is 

one-to-one. In the EJB3QL specification, a SELECT clause can consists of arbitrary 

QueryResult including arbitrary aggregate function. 
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Appendix A: Unmapped Operation 

Some operations are not mapped into xQL syntax, for several reasons: 

• Counterpart of corresponding OCL operation is not available in declarative EJB3QL, 

such as  iterate(…) operation. 

• Some OCL operations are not used in invariant. For example:  append() and prepend() is 

used to add an element to a sequence as the last or first element, respectively. This kind 

of operation is not used to check integrity constraint in SQL and need not to be translated. 

• Some OCL operations are applicable only to Set or Bag. In EJB3QL we do not have such 

collection. So these types of operations not need to be translated. 

 
List of unmapped operation is shown in table below: 
 

Operation Description 

append( object ) Add an element to a sequence as the last element 

asBag() Applying asBag on a sequence or asSet on an ordered 
set means that the ordering is lost. 

asOrderedSet() Applying asOrderedSet on a set or bag means that the 
elements are placed randomly in some order in the 
result. 

asSequence() Applying asSequence on a set or bag means that the 
elements are placed randomly in some order in the 
result. 

at(index) The at operation results in the element at the given 
position. 

excluding( object ) The excluding operation results in a new collection 
with an element removed from the original collection. 

first() The first operations result in the first elements of the 
collection. 

flatten() The flatten operation changes a collection of 
collections into a collection of single objects. 

including( object ) The including operation results in a new collection 
with one element added to the original collection. 

indexOf(object) The indexOf operation results in an integer value that 
indicates the position of the element in the collection. 
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Operation Description 

insertAt( index, object ) The insertAt operation results in a sequence or ordered 
set that has an extra element inserted at the given 
position. 

last() The last operations result in the last elements of the 
collection. 

prepend( object ) The prepend operations add an element to a sequence 
as the first element. 

subSequence(lower, upper)  The subSequence operation may be applied to 
sequences only, and results in a sequence that contains 
the elements from the lower index to the upper index, 
inclusive, in the original order. 

symmetricDifference( coll ) The symmetricDifference operation results in a set 
containing all elements in the set on which the 
operation is called, or in the parameter set, but not in 
both. 

subOrderedSet(lower, upper) The subOrderedSet operation may be applied to 
ordered sets only. Its result is equal to the 
subSequence operation, although it results in an 
ordered set instead of a sequence. 

iterate(…) Iterates over all elements in the source collection 

let Defines local variable to represent the value of the 
sub-expression 

a.max(b) Arithmetic operation 

a.min(b) Arithmetic operation 
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Appendix B: Configuration of OctopusEE2 

7.3 Requirements 

EJB3 runs on Java 1.5 VM or above, thus the installation of Java 1.5 is an essential requirement. 

Besides this, an Entity Manager needs to be set for providing the EJB3 persistence environment 

(also referred to as “persistence engine” or “ORM engine”). We recommend using “Hibernate 

Entity Manager” which is founded on “Hibernate Core” and “Hibernate Annotation”. 

7.4 Setup in Eclipse  

7.4.1  Configuration in Property page  

In the “Properties” page of your “octopus project”, make sure that the “JDK Compiler 

compliance level” is set to “5.0” 

 

In order to let OctopusEE generate EJB3 artifacts, you need to turn the option for EJB3 

generation on. This switch can be found under “Properties” “octopus code 

generation” ”JSR220” 

 

 
 
 

7.4.2 Configuration of build path: 

The following .jar files are needed in the build path of your “octopus project”: 
                                                      
 
2 Taken from Generation of EJB3 Artifacts in a Modeling Platform, master thesis by Xinhua Gu.  
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• hibernate-entitymanager.jar from root directory of Hibernate Entity Manager package. 

• ejb3-persistence.jar (the core library for EJB3 persistence ) and  

• hibernate-annotation.jar to be found in the lib directory of the Hibernate Entity Manager 

installation 

• hibernate3.jar from root directory of Hibernate Core package. Add the whole lib 

directory in build path. We also need hibernate-tool.jar from Hibernate Tool package for 

generation of DDL file. In order to get hibernate-tool.jar working, some additional jars 

are required, you can take these information from “chapter 4 Ant tools” of the Hibernate 

Tool document.  

 

7.5 Generated files 

The original Octopus distribution will generate an “utilities” package in addition to the package 

defined in the .uml file. OctopusEE will output a new “DDLGenerator.java” in “utilities” 

package. This file is used for generating the database schema by means of DDL. It can be 

configured to let the DDL be executed directly by the DBMS during code generation.  

 

A log4j configuration file “log4j.properties” is created under “src” directory. From default 

configuration, log information will be displayed in console.  

 

Furthermore, OctopusEE will generate two more packages. One is “META-INF” and the other is 

“test”. The “META-INF” folder contains the XML configuration files for the project. They are 

“hibernate.cfg.xml” which is used for DDL generation and “persistence.xml” which contains the 

ORM mapping information to be used by the Entity Manager at runtime. In the “test” package, a 

simple JUnit file is created.  
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Appendix C: The Royal and Loyal Model 
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Appendix D: Database Schema or Royal and Loyal 

CREATE TABLE  "CUSTOMER"  
   ( "ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_NAME" VARCHAR2(255 CHAR),  
 "F_TITLE" VARCHAR2(255 CHAR),  
 "F_ISMALE" NUMBER(1,0) NOT NULL ENABLE,  
 "F_GENDER" NUMBER(10,0),  
  PRIMARY KEY ("ID") ENABLE 
   ) 
/ 
CREATE TABLE  "SERVICELEVEL"  
   ( "ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_NAME" VARCHAR2(255 CHAR),  
 "I_INDEX1" NUMBER(10,0) NOT NULL ENABLE,  
  PRIMARY KEY ("ID") ENABLE 
   ) 
/ 
CREATE TABLE  "MEMBERSHIP"  
   ( "ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_MEMBERSHIPATTR" NUMBER(10,0) NOT NULL ENABLE,  
 "I_INDEX1" NUMBER(10,0) NOT NULL ENABLE,  
 "F_CURRENTLEVEL_ID" NUMBER(19,0),  
 "F_PARTICIPANTS_ID" NUMBER(19,0),  
 "F_PROGRAMS_ID" NUMBER(19,0),  
  PRIMARY KEY ("ID") ENABLE,  
  CONSTRAINT "FK26EF63F6830FFA37" FOREIGN KEY ("F_PROGRAMS_ID") 
   REFERENCES  "LOYALTYPROGRAM" ("ID") ENABLE,  
  CONSTRAINT "FK26EF63F68D72F9A6" FOREIGN KEY ("F_PARTICIPANTS_ID") 
   REFERENCES  "CUSTOMER" ("ID") ENABLE,  
  CONSTRAINT "FK26EF63F67145822C" FOREIGN KEY ("F_CURRENTLEVEL_ID") 
   REFERENCES  "SERVICELEVEL" ("ID") ENABLE 
   ) 
/ 
CREATE TABLE  "CUSTOMERCARD"  
   ( "ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_VALID" NUMBER(1,0) NOT NULL ENABLE,  
 "F_COLOR" NUMBER(10,0),  
 "F_MYLEVEL_ID" NUMBER(19,0),  
 "F_OWNER_ID" NUMBER(19,0),  
 "F_MEMBERSHIP_ID" NUMBER(19,0),  
  PRIMARY KEY ("ID") ENABLE,  
  CONSTRAINT "FK3F6DA42E115A15A8" FOREIGN KEY ("F_MEMBERSHIP_ID") 
   REFERENCES  "MEMBERSHIP" ("ID") ENABLE,  
  CONSTRAINT "FK3F6DA42E403A3B45" FOREIGN KEY ("F_OWNER_ID") 
   REFERENCES  "CUSTOMER" ("ID") ENABLE,  
  CONSTRAINT "FK3F6DA42E7F425EB1" FOREIGN KEY ("F_MYLEVEL_ID") 
   REFERENCES  "SERVICELEVEL" ("ID") ENABLE 
   ) 
/ 
CREATE TABLE  "IC1"  
   ( "ID" NUMBER(10,0) NOT NULL ENABLE,  
 "SEQUENCE" NUMBER(10,0) NOT NULL ENABLE,  
 "OWNER_ID" NUMBER(19,0),  
 "ITEM_ID" NUMBER(19,0),  
  PRIMARY KEY ("ID") ENABLE,  
  CONSTRAINT "FK11A5793132C" FOREIGN KEY ("ITEM_ID") 
   REFERENCES  "CUSTOMER" ("ID") ENABLE,  
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  CONSTRAINT "FK11A57F82E29FD" FOREIGN KEY ("OWNER_ID") 
   REFERENCES  "SERVICELEVEL" ("ID") ENABLE 
   ) 
/ 
CREATE TABLE  "IC2"  
   ( "ID" NUMBER(10,0) NOT NULL ENABLE,  
 "OWNER_ID" NUMBER(19,0),  
  PRIMARY KEY ("ID") ENABLE,  
  CONSTRAINT "FK11A58F82E29FD" FOREIGN KEY ("OWNER_ID") 
   REFERENCES  "SERVICELEVEL" ("ID") ENABLE 
   ) 
/ 
CREATE TABLE  "IC3"  
   ( "ID" NUMBER(10,0) NOT NULL ENABLE,  
 "ITEM" VARCHAR2(255 CHAR),  
 "OWNER_ID" NUMBER(10,0),  
  PRIMARY KEY ("ID") ENABLE,  
  CONSTRAINT "FK11A59A7363EB8" FOREIGN KEY ("OWNER_ID") 
   REFERENCES  "IC2" ("ID") ENABLE 
   ) 
/ 
CREATE TABLE  "LOYALTYACCOUNT"  
   ( "ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_POINTS" NUMBER(10,0) NOT NULL ENABLE,  
 "F_NUMBER" NUMBER(10,0) NOT NULL ENABLE,  
 "F_TOTALPOINTSEARNED" NUMBER(10,0) NOT NULL ENABLE,  
 "F_MEMBERSHIP_ID" NUMBER(19,0),  
  PRIMARY KEY ("ID") ENABLE,  
  CONSTRAINT "FKFABEEF27115A15A8" FOREIGN KEY ("F_MEMBERSHIP_ID") 
   REFERENCES  "MEMBERSHIP" ("ID") ENABLE 
   ) 
/ 
CREATE TABLE  "LOYALTYPROGRAM"  
   ( "ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_NAME" VARCHAR2(255 CHAR),  
  PRIMARY KEY ("ID") ENABLE 
   ) 
/ 
CREATE TABLE  "PROGRAMPARTNER"  
   ( "ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_NUMBEROFCUSTOMERS" NUMBER(10,0) NOT NULL ENABLE,  
 "F_NAME" VARCHAR2(255 CHAR),  
  PRIMARY KEY ("ID") ENABLE 
   ) 
/ 
CREATE TABLE  "LOYALTYPROGRAM_PROGRAMPARTNER"  
   ( "F_PROGRAMS_ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_PARTNERS_ID" NUMBER(19,0) NOT NULL ENABLE,  
  PRIMARY KEY ("F_PROGRAMS_ID", "F_PARTNERS_ID") ENABLE,  
  CONSTRAINT "FK403144A5830FFA37" FOREIGN KEY ("F_PROGRAMS_ID") 
   REFERENCES  "LOYALTYPROGRAM" ("ID") ENABLE,  
  CONSTRAINT "FK403144A5C19CF8C1" FOREIGN KEY ("F_PARTNERS_ID") 
   REFERENCES  "PROGRAMPARTNER" ("ID") ENABLE 
   ) 
/ 
CREATE TABLE  "LOYALTYPROGRAM_SERVICELEVEL"  
   ( "F_PROGRAM_ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_LEVELS_ID" NUMBER(19,0) NOT NULL ENABLE,  
  CONSTRAINT "FKF1EA2510B73CDDD4" FOREIGN KEY ("F_PROGRAM_ID") 
   REFERENCES  "LOYALTYPROGRAM" ("ID") ENABLE,  
  CONSTRAINT "FKF1EA25102CC2B128" FOREIGN KEY ("F_LEVELS_ID") 
   REFERENCES  "SERVICELEVEL" ("ID") ENABLE 
   ) 
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/ 
CREATE TABLE  "SERVICE"  
   ( "ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_CONDITION" NUMBER(1,0) NOT NULL ENABLE,  
 "F_POINTSEARNED" NUMBER(10,0) NOT NULL ENABLE,  
 "F_POINTSBURNED" NUMBER(10,0) NOT NULL ENABLE,  
 "F_DESCRIPTION" VARCHAR2(255 CHAR),  
 "F_SERVICENR" NUMBER(10,0) NOT NULL ENABLE,  
 "F_LEVEL_ID" NUMBER(19,0),  
 "F_PARTNER_ID" NUMBER(19,0),  
 "F_LOYALTYACCOUNT_ID" NUMBER(19,0),  
  PRIMARY KEY ("ID") ENABLE,  
  CONSTRAINT "FKD97C5E95439318E8" FOREIGN KEY   
 ("F_LOYALTYACCOUNT_ID") 
   REFERENCES  "LOYALTYACCOUNT" ("ID") ENABLE,  
  CONSTRAINT "FKD97C5E9570A6C745" FOREIGN KEY ("F_LEVEL_ID") 
   REFERENCES  "SERVICELEVEL" ("ID") ENABLE,  
  CONSTRAINT "FKD97C5E951D4B56" FOREIGN KEY ("F_PARTNER_ID") 
   REFERENCES  "PROGRAMPARTNER" ("ID") ENABLE 
   ) 
/ 
CREATE TABLE  "TRANSACTION"  
   ( "DTYPE" VARCHAR2(31 CHAR) NOT NULL ENABLE,  
 "ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_POINTS" NUMBER(10,0) NOT NULL ENABLE,  
 "F_AMOUNT" FLOAT(126) NOT NULL ENABLE,  
 "F_NAME" VARCHAR2(255 CHAR),  
 "F_GENERATEDBY_ID" NUMBER(19,0),  
 "F_CARD_ID" NUMBER(19,0),  
 "F_ACCOUNT_ID" NUMBER(19,0),  
  PRIMARY KEY ("ID") ENABLE,  
  CONSTRAINT "FKE30A7ABE164A6F1B" FOREIGN KEY ("F_GENERATEDBY_ID") 
   REFERENCES  "SERVICE" ("ID") ENABLE,  
  CONSTRAINT "FKE30A7ABE51ADD134" FOREIGN KEY ("F_ACCOUNT_ID") 
   REFERENCES  "LOYALTYACCOUNT" ("ID") ENABLE,  
  CONSTRAINT "FKE30A7ABE77234BE6" FOREIGN KEY ("F_CARD_ID") 
   REFERENCES  "CUSTOMERCARD" ("ID") ENABLE 
   ) 
/ 
CREATE TABLE  "TRANSACTIONREPORT"  
   ( "ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_CARD_ID" NUMBER(19,0),  
  PRIMARY KEY ("ID") ENABLE,  
  CONSTRAINT "FK8058359277234BE6" FOREIGN KEY ("F_CARD_ID") 
   REFERENCES  "CUSTOMERCARD" ("ID") ENABLE 
   ) 
/ 
CREATE TABLE  "TRANSACTIONREPORTLINE"  
   ( "ID" NUMBER(19,0) NOT NULL ENABLE,  
 "F_TRANSACTION_ID" NUMBER(19,0),  
 "F_REPORT_ID" NUMBER(19,0),  
  PRIMARY KEY ("ID") ENABLE,  
  CONSTRAINT "FK876340A6AE3BD70C" FOREIGN KEY ("F_TRANSACTION_ID") 
   REFERENCES  "TRANSACTION" ("ID") ENABLE,  
  CONSTRAINT "FK876340A667F4B778" FOREIGN KEY ("F_REPORT_ID") 
   REFERENCES  "TRANSACTIONREPORT" ("ID") ENABLE 
   ) 
/ 
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