
Enriching EMF models
with behavioral specifications

submitted by
Elena Tibrea

supervised by
Prof. Dr. Ralf Moeller

Msc. Miguel Garcia

Hamburg University of Science and Technology
Software Systems Institute (STS)

Declaration

I declare that:

this work has been prepared by myself,

all literal or content based quotations are clearly pointed out,

and no other sources or aids than the declared ones have been used.

Hamburg, 06.07.2006

Elena Tibrea

For time invested into discussions, for providing books, e-books, for pointing out

interesting links, I need to thank my supervisor, who’s attitude towards work can be

best described as professional.

Thank you, Miguel Garcia!

Contents

1 Introduction 7

2 Background on EMF 8

2.1 EMF Core . 8

2.2 EMF.Edit . 11

2.3 EMF.Codegen . 13

3 Behavior achieved through rule engines 15

3.1 Drools engine functionality . 16

3.1.1 Domain specific language . 18

3.2 Example EMF model working with Drools 19

3.2.1 Problem statement . 19

3.2.2 Rules defined . 20

3.2.3 How does EMF tackle the rules defined? 21

4 Behavior achieved through statemachines 24

4.1 Define models statecharts generation 24

4.1.1 Switch based approach . 24

4.1.2 State pattern approach . 25

4.1.3 Object oriented approach based on a predefined statecharts

metamodel . 25

4.2 Case study on reactive models . 27

4.2.1 Switch based approach . 27

4.2.2 State pattern approach . 29

4.2.3 Object oriented approach based on a predefined statecharts

metamodel . 29

4.3 State pattern generation based on a compact model 31

4.3.1 Case study.Problem.Solution 33

5 Conclusions 39

3

CONTENTS 4

A Actions and commands for multi-rooted resources in EMF 40

A.1 Problem statement . 40

A.2 Solution suggested . 40

A.3 Problematic approach . 44

B Decision table for a state machine definition 45

C Statecharts editor based on GMF 47

C.1 Constraints . 48

C.2 Validation . 48

C.3 Custom images . 49

List of Figures

2.1 A model visualized with Omondo . 10

2.2 Command pattern used in EMF.Edit 12

2.3 Observer pattern . 13

2.4 From left to right:Ecore,GenModel,Generate Model action,Generated

code structure . 13

2.5 Code generation overview . 14

3.1 Drools authoring . 16

3.2 AST objects which form a rule . 17

3.3 Drools runtime . 18

3.4 Working Memory view, Agenda view, Audit view 18

3.5 Rule authoring with DSL . 19

3.6 Add a book to existing folder rule . 20

3.7 Create folder rule . 21

4.1 State charts metamodel(SMM) . 26

4.2 Microwaveoven statemachine . 27

4.3 Model definition for switch based approach 28

4.4 Reactive object based on SMM . 29

4.5 Omondo view of the OO model . 30

4.6 EMF.CodeGen structure . 32

4.7 Carousel door statemachine . 33

4.8 Statemachine modeling with the help of state pattern 34

4.9 Package structure after code generation 37

4.10 What should be taken out in order to enhance the generation 38

4.11 Class diagram used for SP generation 38

A.1 The problem encountered . 41

A.2 The desired result . 41

A.3 Modifications required in the plugin descriptor 42

A.4 XCommand, XActionBarContributor,XAction classes 43

5

LIST OF FIGURES 6

B.1 Decision table for a state machine . 45

B.2 Template rule with parameters defined in the excel worksheet 46

C.1 Statecharts editor- simple state, initial, final state 47

C.2 Statecharts editor- composite states with inner states 47

C.3 Defined link constraints . 48

C.4 Audit constraints as validation rules 48

Chapter 1

Introduction

This report contains a series of tryouts, which involve dynamic aspects of models as

represented by Eclipse Modeling Framework (EMF).

EMF follows a model driven approach targeting software development.Transformations

taken during a classical MDA(Model Driven Architecture) process are addressed by

EMF:

• an ECore metamodel is first transformed to another model (known as Gen-

Model), which includes additional information about the structure and organi-

zation of future code to be generated. In this case Ecore represents the Platform

Independent Model(PIM), while Platform Specific Model is represented by Gen-

Model.

• the second step to be taken is from PSM to the actual code

Automatic transformation chain support that EMF provides, increases developers

productivity and lowers code maintenance.

Behavioral aspects are equally interesting for any model, our purpose here being

to emphasize behavior of EMF models.

Chapter 2 aims to give the reader, a basic introduction to EMF, by drawing user’s

attention to some of the features EMF.Edit, EMF.Codegen and EMF Core

provide.

Chapter 3 shows a way to externalize behavior by using rule engines.

Chapter 4 of this report investigates several issues around behavioral state ma-

chines, which represent a way to capture dynamic capabilities of a system.

7

Chapter 2

Background on EMF

Summary. The user will find out about EMF’s generator facility,

EMF Core features and patterns used inside the most dynamic part of

EMF: EMF.Edit. Many valuable issues around Eclipse Modeling Frame-

work are left out(e.g EMF resources, persistence). The purpose of the

chapter is not to be a survey of existing literature, but to draw user’s at-

tention to some specific points(e.g patterns used in EMF.Edit).

Eclipse Modeling Framework[2](EMF) provides a set of cooperating classes that

make up a reusable design, targeted not only to represent abstract views of the soft-

ware(called models), but also to generate code.

EMF consists of three main parts:

EMF Core comprises model description complying ECore, model persistence, change

notification and reflective API.

EMF.Edit supports the creation of EMF model editors, by including content and

label provider classes and command framework.

EMF.Codegen provides the infrastructure for generating all the needed artifacts

for an EMF model editor.

A more detailed description of the above mentioned parts follows.

2.1 EMF Core

In the context of Model Driven Engineering, Object Management Group(OMG) has

defined Meta Object Facility(MOF) which standardizes meta model definitions in

object oriented world. EMF models are described by a meta-model named ECore

which follows the specifications of EMOF1 (Essential MOF).

There are at least three ways to define Ecore models:
1page 31 in Meta-Object Facility Specifications at http://www.omg.org/docs/ptc/03-10-04.pdf

8

CHAPTER 2. BACKGROUND ON EMF 9

• Java interfaces with annotations

@Model annotations help us to enrich the initial model definition, by allow-

ing attributes which can specify default values, containment feature(useful for

serialization) or object type when a list is returned.

Listing 2.1: Example Java interface with annotations

/∗∗
∗ @model
∗/

public interface Book {
/∗∗
∗ @model
∗/

St r ing g e tT i t l e () ;
/∗∗
∗ @model d e f a u l t =”100”
∗/

int getPages () ;
/∗∗
∗ @model
∗/

BookCategory getCategory () ;
/∗∗
∗ @model oppo s i t e=”books ”
∗/

Writer getAuthor () ;
}

• XML Schema

Some of the mapping rules between EMF world and XML Schema are: a simple

type maps on EDataType, an attribute is the corespondent of EAttribute, while

a complex type maps always to a class.

Listing 2.2: ’Book’ defined as a complex type

<xsd : complexType name=”Book”>
<xsd : sequence>

<xsd : element name=” t i t l e ” type=”xsd : s t r i n g ”/>
<xsd : element name=”pages ” type=”xsd : i n t ”/>
<xsd : element name=” category ” type=” l i b : BookCategory”/>
<xsd : element name=”author ” type=”xsd : anyURI”

ecore : r e f e r e n c e=” l i b : Writer ” ecore : oppos i t e=”books”/>
</xsd : sequence>

</xsd : complexType>

• UML, by using a modeling tool(e.g Omondo, Rational Rose)

The most common and concise is to use an UML tool and define the model visually,

gaining a plus of expressiveness, but if one of the goals is to customize the persistence

CHAPTER 2. BACKGROUND ON EMF 10

Figure 2.1: A model visualized with Omondo

mechanisms, describing the model using XML Schema will help reach the target. The

available paths to be taken when defining a model, are not really equivalent (e.g in

XML schema, we can not define bidirectional references), but there are means to

correct the generated model(at a later point, by using ecore editor).

EMF’s reflective API allows access at run time to the any defined model. EObject,

the parent of any EMF object, defines reflective methods.

Listing 2.3: EObject reflective methods

public interface EObject extends No t i f i e r
{

// Returns the meta c l a s s .
EClass eClas s () ;

// Returns the con ta in ing ob j e c t , or n u l l .
EObject eContainer () ;

// Returns the va lue o f the g iven f e a t u r e o f t h i s o b j e c t .
Object eGet (EStructura lFeature f e a tu r e) ;

// Se t s the va lue o f the g iven f e a t u r e o f the o b j e c t to the new va lue .
void eSet (EStructura lFeature f ea ture , Object newValue) ;

// Returns whether the f e a t u r e o f the o b j e c t i s cons idered to be s e t .
// u s e f u l l f o r s e r i a l i z a t i o n purposes
boolean e I s S e t (EStructura lFeature f e a tu r e) ;
. . . .

}

Reflective methods can be noticed when generating the model code, but this is

CHAPTER 2. BACKGROUND ON EMF 11

not the only use of the EMF reflection API. Instances of non generated classes can

also be altered or queried by means of reflection.

Listing 2.4: Reflective eGet(...)generated method
public Object eGet (int f eatureID , boolean r e s o l v e , boolean coreType) {

switch (f eature ID) {
case LibraryPackage .WRITER NAME:

return getName () ;
case LibraryPackage .WRITER BOOKS:

return getBooks () ;
}
return super . eGet (featureID , r e so l v e , coreType) ;

}

As mentioned previously notification responsibilities are borne by every EObject,

which is a notifier in the first place, by implementing the Notifier interface.Due to

this intrinsic property of EMF objects, registered observers can be notified of changes.

Listing 2.5: Register observers through eAdapters() method
Book b=LibraryFactory . eINSTANCE. createBook () ;
Adapter bObserver = . . .
b . eAdapters () . add (bObserver) ;

Usually, EMF observers are assigned to objects by adapter factories and not using

the eAdapter() method.At notification time, notifyChanged() method of the registered

adapter is called to deal with recent changes.

2.2 EMF.Edit

For a better interaction with the user and for highlighting some of the above mentioned

capabilities, a model editor is desirable. EMF.Edit comes into play, by bridging the

EMF’s model and the editor. JFace viewers used by the editor require content provider

and label provider objects for being able to manage and display model objects.

The advantage of using content providers resides in releasing the model objects

of the responsibility to specify how can an objects be viewed. It also prevents the

editor from finding on its own, an algorithm to bring the data into JFace viewers.

GUI components and model objects talk to each other by making use of objects which

implement ITreeContentProvider interface.

Listing 2.6: ITreeContentProvider interface
public interface ITreeItemContentProvider extends
IStructuredItemContentProvider
{

public Co l l e c t i on getChi ldren (Object ob j e c t) ;
public boolean hasChi ldren (Object ob j e c t) ;
public Object getParent (Object ob j e c t) ;

}

CHAPTER 2. BACKGROUND ON EMF 12

Figure 2.2: Command pattern used in EMF.Edit

EMF.Edit encompasses a set of commands, the user can use for various purposes

like: adding new children to an EObject, remove an object form a model, set an

attribute’s value, etc.

The Command pattern is used here, to encapsulate requests as objects and sup-

port undoable operations. For those interested to recognize the participants of the

pattern as described by GoF[1]2, Command and ConcreteCommand roles can be eas-

ily inferred, while the Invoker’s role is played by an Action class and the Receiver is

always an EObject.

Creating, managing, maintaining the command stack (useful for undoing com-

mands) are the responsibilities of the EditingDomain, part of the editor.

Implementation of change notification is a common ground for both EMF core and

EMF.Edit framework. This can be best acknowledged by inspecting the generated

model code and the generated code for edit.

An EObject is the subject, the observable (see fig.2.3), also called in EMF notifier

(because EObject extends the Notifier interface), while the observer is called Adapter

because besides it’s observer role, it has assigned other responsibilities as well.

Not such an easy thing in EMF.Edit is to understand that the generated Item-

Providers are multi functional.They act as factories for commands, they are observers

for the model objects and they are said to be also, adapters for model objects. In

the sense GoF[1]3 describes the Adapter pattern, the participants :Target, Adapter,

Adaptee are difficult to be identified. Making the logical assumption the EObjects are

the adaptees and the ItemProviders are the adapters, at a closer code inspection one

won’t be able to find neither aggregation, nor inheritance used to link the Adapter

and the Adaptee.
2p.233 in GoF
3p.139 in GoF

CHAPTER 2. BACKGROUND ON EMF 13

Figure 2.3: Observer pattern

For an example using actions and commands, please refer to appendix A

2.3 EMF.Codegen

EMF’s code generation facility is able to generate all the needed resources for a

complete editor to be built.At the editor level, we manipulate model objects, the

model and the editor are two of the three different code generation levels, that EMF

provides us with. The glue between the model and the editor, is responsible for

content and label providers, as well as for adapting the model objects for various

editing tasks. EMF.Edit governs this middle code generation level.

For generating the model code one should follow the series of actions below:

For generating edit and editor code levels, one should choose Generate edit followed

Figure 2.4: From left to right:Ecore,GenModel,Generate Model action,Generated
code structure

by Generate editor from GenModel context menu.

The following picture serves as an overview of the code generation process.¡The

input of the generator is GenModel. Although, Ecore model supplies the content, for

CHAPTER 2. BACKGROUND ON EMF 14

what is supposed to be finally generated, the information encapsulated in ECore lacks

additional specification like: name of packages to be generated, reflective methods are

to be generated or not, external templates to be used, etc.

Figure 2.5: Code generation overview

Having only the model, but not the ’patterns’(templates) to be used and filled in,

the generator can not accomplish its tasks.

Java Emitter Templates(JET) helps us to define Java Server Pages(JSP) like tem-

plates.Users familiar with JSP expressions, scriptlets, object passing as input param-

eters will find the same functionality of the prior mentioned elements, in JET too.

Listing 2.7: JET template fragment

<%i f (! i s Implementat ion)
{%>
<%=genFeature . getListItemType()%>

get<%=genFeature . getAccessorName()%>(int index) ;
<%} else {%>

public <%=genFeature . getListItemType()%>
get<%=genFeature . getAccessorName()%>(int index)

{
return (<%=genFeature . getListItemType ()%>)

<%=genFeature . getGetAccessor ()% >(). get (index) ;
}

<%}%>

As can be seen in the picture 2.5, the generation process having as a source a JET

template, is a two step process: translation followed by compilation(JET templates

are transformed in java source files and than compiled) and generation (the bytecode

is used to generate all the necessary files for the model, edit and editor).

Chapter 3

Behavior achieved through
rule engines

Summary. A brief introduction to the context which requires rule

engines existence, will precede a section explaining the basic functionality

of JBoss Rules.The last section of this chapter is dedicated to an example,

showing how an EMF model and Drolls work together, emphasizing some

of JBoss Rules (Drools) features like domain specific language (DSL).

Static models could not exist in isolation, in order to be useful, to meet demands

and users expectations within an application context. Large amounts of data are

difficult to be dealt with, by the business layer of any application, when decision

making factors are involved to produce the desired outcome. Sometimes, the inner

logic of an application might not be overwhelmingly complex, but the frequency of

needed changes is high.

By formulating statements of truth and specifying the actions to be taken, as

rules, parts of the business logic layer can be externalized and further processed by

rule engines. We can infer from here, that rule engines are nothing but software

modules, responsible for processing priori specified rules.

Working with EMF models or just POJO based models(Plain Old Java Objects)

makes no difference for the rule engines. The objects the rule engine is working with,

have to obey though some rules(e.g Drools works with JavaBeans objects).

Independent of the rule engine used (e.g Jess, Drools, ILog Business Studio,Versata),

there are some advantages of using inference engines, like:

Separation of concerns and centralization of data is clearly a positive issue when

the logic changes often, otherwise it may seem like breaking one of the basic

principles of object orientation: encapsulation.

Declarative programming readable by domain experts, is another important fea-

15

CHAPTER 3. BEHAVIOR ACHIEVED THROUGH RULE ENGINES 16

ture of rule engines. By using a declarative style in specifying the rules, we

describe what we want, but not a way to accomplish the task, like in procedural

programming.

3.1 Drools engine functionality

There are many rules engines available on the market, some of them targeting Java

platform, like: Jess Rule Engine1 or JBoss Rules2 (Drools 3.0), but there are also

rule engines for .NET like,inrule3.

We will take a brief look at Drools engine, with the remark that rules engine

functionality does not differ so much in concepts or structure.

Before rules can be executed, they have to be created, parsed and built (the sum

of code generation and compilation). The afore mentioned process bears the name

of rule authoring. The environment in which rules are executed and objects (called

facts) asserted is called working memory, the essential component of Drools runtime.

Figure 3.1: Drools authoring

1http://www.jessrules.com/
2http://www.jboss.com/products/rules
3http://www.inrule.com/

CHAPTER 3. BEHAVIOR ACHIEVED THROUGH RULE ENGINES 17

A brief description of the most important components involved, follows:

• A rule file can be delivered in xml or drl format. For editing a rule in drl

format the user has the benefit of an integrated editor support. An illustrative

example for a rule in drl format is:

Listing 3.1: Rule example

ru l e ” He l lo World”
when

m : Message (s t a tu s == Message .HELLO, message : message)
then

System . out . p r i n t l n (message) ;
m. setMessage (”Goodbye c ru e l world”) ;
m. s e tS ta tu s (Message .GOODBYE) ;
modify (m) ;

end

The part between when and then keywords, is known as LHS (Left Hand Side)

or the condition part and the fragment following then is known as RHS (Right

Hand Side) or the action part of a rule.

• The parser has as input the rule file and as output the AST objects describing

the rule.For the rule above we have the following objects(red in the photo):

Figure 3.2: AST objects which form a rule

• PackageBuilder uses the AST objects in order to produce a self contained

object, the Package which consists of one or more rules. A Package Builder

can take over parsing responsibilities, without being compulsory to do so, while

code generation and compilation are mandatory steps for building the Package.

• The RuleBase is the runtime component which aggregates one or more Pack-

ages.

• The WorkingMemory is the most important class for the rule engine at run-

time. It holds references to asserted facts (objects), it takes care to ’move’

matched rules on the Agenda and finally, rules execution it is also, the respon-

sibility of the same class.

CHAPTER 3. BEHAVIOR ACHIEVED THROUGH RULE ENGINES 18

Figure 3.3: Drools runtime

JBoss Rules helps us at debug time with three useful views: working memory

view, agenda view and audit view (not dependent on debug mode)

Figure 3.4: Working Memory view, Agenda view, Audit view

• An event package provides a notification mechanism for rule engines related

events (e.g object assertion, object retraction).

• Truth maintenance is related to logical assertion of facts. When logically

assert an object, the retraction takes place automatically, when the condition

used for assertion is no longer valid. A regular fact assertion does not fall into

the scope of truth maintenance component.

3.1.1 Domain specific language

An interesting feature offered by Drools for rule authoring are DSL (Domain Specific

Language) files. DSL is in fact located at the intersection of problem domain and

solution domain (related to domain model objects and the role played by those in

rules world). Both non- technical and rule engine specialists can contribute to rule

authoring, as DSL allows a natural like language expression.

Let’s see how a rule having a DSL in background, is defined(fig. 3.5):

The attention should be directed first, to the line including the text: expander

Sample.dsl , because this tells the drl file, where to find all the expressions used in

LHS and RHS of the rule.

The emphasized expression, part of the rule’s action is defined in Sample.dsl like:

[then]Add book into the folder corresponding to the category=f.getBooks().add(b);

Three points are to be noticed:

CHAPTER 3. BEHAVIOR ACHIEVED THROUGH RULE ENGINES 19

Figure 3.5: Rule authoring with DSL

• Then defines the scope of the expression

• Problem domain part of the expression is: Add book into the folder corresponding

to the category

• Solution domain part of the expression is: f.getBooks().add(b)

As can be easily noticed the parts of a DSL expression are separated by ’=’ character.

Although not difficult to create by using a text editor, the user has the support

of an integrated DSL editor, and also auto complete on DRL side.

3.2 Example EMF model working with Drools

3.2.1 Problem statement

A library holds books which can be reorganized into folders, based on various criteria.

Currently, a book has only a title and a category description. The books will be

reorganized based on their category(e.g a folder for French literature, a folder for

astronomy), but if we enrich book attributes, the categorization criteria could become

more complex. Reorganizing books based on publisher, category description and year,

might require that a folder can include other folders, which is not possible given the

defined model, but otherwise would not impose further problems.

Listing 3.2: Emfatic view of the library model

package myLib ;

class Library {
va l Folder [∗] f o l d e r s ;
va l Book [∗] books ;

}

CHAPTER 3. BEHAVIOR ACHIEVED THROUGH RULE ENGINES 20

class Folder {
a t t r S t r ing name ;
va l Book [∗] books ;

}

class Book {
a t t r S t r ing t i t l e ;
a t t r S t r ing categoryDescr ;

}

We assume the classification criterion will change often. As an effect of the change

frequency, we will keep the organizational issues out of EMF, by assigning the task

to a rule engine. What we have to do, is to take care that a rule engine knows all the

objects to operate with, as well as the rules to be used in order to classify correctly

the available books.

3.2.2 Rules defined

Two rules have been defined for classification purposes.

1. Add a book to an existing folder

When trying to classify a book, the existing folder names are inspected. If at

least one matches the category of the book than the book is added to that folder.

After a book has been categorized, we will retract the book from the working

Figure 3.6: Add a book to existing folder rule

CHAPTER 3. BEHAVIOR ACHIEVED THROUGH RULE ENGINES 21

memory, as there are no more rules needed to process a categorized book.

2. Create folder

The category, the book is in, is not present in the model, so the new folder

(corresponding to the category description) is going to be created and the book

added to it. The action part of this rule uses both ’modify’ and ’assert’ clauses.

After a folder has been created, we need to inform the working memory about it,

as there might be other books (in the future), suitable for inclusion in the new

folder. This rule is only responsible for creating a new folder and asserting it.

The current book will be categorized with the help of the first introduced rule.

To signalize that we want the processing to continue, we inform the working

memory by using ’modify’.

Figure 3.7: Create folder rule

3.2.3 How does EMF tackle the rules defined?

Going into the EMF code side, what we have to do is:

• When a model is loaded, add all the folders and all the books to the working

memory. ’All the books’ which are children of the library only, or in other words

:only the books which haven’t been classified yet(embed code at editor level)

• Add the library into the working memory when the library is created using the

wizard (embed code at editor level)

• When a book is added or deleted this should be marked in the working memory

by asserting or retracting the corresponding facts (at edit level)

CHAPTER 3. BEHAVIOR ACHIEVED THROUGH RULE ENGINES 22

• When a book’s related data is modified this should be also signalized to Drools

(at edit level)

• Fire all rules when the user chooses reorganize (at editor level)

As we can deduce, we need a common access point for the working memory, as the

code needing access to it resides in both, the edit and editor plugin. A new wrapper

class (on org.drools.WorkingMemory) working as a singleton is defined as a part of

the edit plugin, so that the editor can gain access to it too.

As an example, we will reproduce here two important code snippets.

Assertion, retraction of objects from the working memory are embedded into over-

written commands:

Listing 3.3: BookItemProvider.java-override SetCommand

protected Command createSetCommand (EditingDomain domain , EObject
owner , EStructura lFeature f ea ture , Object value , int index)
{

try {
D r o o l s I n i t i a l i z a t o r d In i t=D r o o l s I n i t i a l i z a t o r . g e t In s tance () ;
d In i t . modifyBook ((Book) owner) ;

} catch (Exception e)
{

// TODO Auto−generated catch b l o c k
e . pr intStackTrace () ;

}
return super . createSetCommand (domain , owner , f ea ture , va lue) ;

}

The above SetCommand updates a book object already resilient in the working

memory.

In the beginning, when the model is loaded the assertion of facts, looks like:

Listing 3.4: Assertion of facts

D r o o l s I n i t i a l i z a t o r d In i t=D r o o l s I n i t i a l i z a t o r . g e t In s tance () ;
d In i t . cleanWorkingMemory () ;
d In i t . a s s e r tL i b r a ry (l i b) ;
for (I t e r a t o r i t=l i b . getBooks () . i t e r a t o r () ; i t . hasNext () ;)
{

d In i t . assertBook ((Book) i t . next ()) ;
}
for (I t e r a t o r i t=l i b . g e tFo lde r s () . i t e r a t o r () ; i t . hasNext () ;)
{

d In i t . a s s e r tFo l d e r ((Folder) i t . next ()) ;
}

Another way to represent rules, besides drl and dsl files, is to have them embedded

in spreadsheet format, as decision tables. The need for having this feature raised as

many companies have their data in excel files.Decision tables are not useful only in a

CHAPTER 3. BEHAVIOR ACHIEVED THROUGH RULE ENGINES 23

’business’ context, but also when we can define a certain template of a rule, which is

supposed to take its data from the same spreadsheet document.

For an example, using Drools decision tables, please refer to appendix B.

Chapter 4

Behavior achieved through
statemachines

Summary. By reading this chapter the reader will find out about three

different paths taken, to define models and generate code for statecharts

implementation: switch based approach, state pattern and object oriented

approach based on a predefined statecharts metamodel.

4.1 Define models statecharts generation

Given that we want to generate code for statecharts implementation, having in mind

the structure of the desired generated code, is a must.

For code generation,we will rely on EMF.Codegen capabilities, our focus being to

achieve a declarative representation of the reactive behavior of a system (a represen-

tation at the model level).

4.1.1 Switch based approach

The first step towards defining state machines, involves the specification of a model

which follows a classical, procedural approach. The model for representing behavior

in this case, is self-contained. States are specified as part of an enumeration and

the events are methods of the reactive object. Transitions between states are taken

with the help of switch statements. Functional aspects can be defined directly at

meta-model level, due to GenModel annotations in Ecore.

A model defined this way has the advantage of being simple and compact, and

the drawback of being hardcoded. Topology changes within the same state machine

or definition of a new state machine for another context class reveal maintenance

problems for such an approach.

24

CHAPTER 4. BEHAVIOR ACHIEVED THROUGH STATEMACHINES 25

4.1.2 State pattern approach

An improvement of the switch approach would be the use of State design pattern. Its

intent is to: ”allow an object to alter its behavior when its internal state changes.

The object will appear to change its class”[1]. The problem statement, for the state

pattern, maps to our first approach: ”A monolithic object’s behavior is a function of

its state, and it must change its behavior at run-time depending on that state. Or, an

application is characterized by large and numerous case statements that vector flow

of control based on the state of the application”[1].

The model is more flexible because new state classes can be easily added to the

model (in accordance with open-close principle of software development), but there

is a coupling between particular state classes for implementing the transitions.

4.1.3 Object oriented approach based on a predefined state-
charts metamodel

Another object oriented path to take, allows customization of the state machine at

run-time. It brings the advantage of separation of concerns, in the sense that a static

entity becomes reactive, only after a state machine has been attached to it. This

object oriented approach enables reuse of statechart metamodel (SMM), as well as

the generated code. Having a SMM, forms a basis for defining a graphical editor

for statecharts. Object oriented style of defining reactive systems pays off as well,

in respect to amount of code generated for slightly bigger systems, comprising more

than 3-4 classes.

Note: If we accept the notion of reactive entity as an atomic behavioral unit, then

attaching a state machine to an object does not make sense. ’A static entity,

become reactive, only after a state machine has been attached to it ’ wants to

suggest that a reactive object aggregates a state machine, for which a meta-

model was defined previously.

We are dealing now with objects, and their structural relationship is depicted in the

diagram(figure 4.1) ma ti The statechart model we have defined lacks completeness,

but due to EMF model driven features, further enrichments at meta-model level would

not be problematic, as we just use (by referencing) and not embed the SMM into the

context object meta-model definition; plus we rely on EMF code generation facility.

How does a state machine work?

Note: this fragment contains implementation details as well

We will study a behavioral state machine, not a protocol state machine, in the sense

UML2 specification makes this distinction.The focus will not be on specifying the

CHAPTER 4. BEHAVIOR ACHIEVED THROUGH STATEMACHINES 26

Figure 4.1: State charts metamodel(SMM)

right sequence of events an object responds to (event protocol), but instead on the

behavioral aspect: specification of states and transitions, on-entry actions, on-exit

actions, etc.

The functionally will be described with focus on what has already been defined.

A reactive entity has a current state to be in. The current state is updated based

on state machine ’internals’. A state can be a simple state (has no sub-states), a

composite state (has nested states) and pseudo-states (like final state, initial state,

history states).

Note: The distinction between different pseudo states makes no sense by having them

as separate classes in the model (at least not for the initial and final states). This

was useful for achieving fast, a functional goal, when developing the statechart

graphical editor.

The current state of a reactive object is updated based on transitions taken. A

transition is described by the construct: event [guard]/action.

When an event, which triggers a transition, is fired, the condition hosted in the

guard is first checked, and if it evaluates to false, the action specified as part of the

transition is not performed, and the current state won’t be changed.

An event is raised when its state attribute is set to ACTIVE. An event is active

for the duration of one step. A step would mean a change in the current state of the

context object, in case that the guard of the transition taken allows it, otherwise if

the guard is false the event will be again set to IDLE.

CHAPTER 4. BEHAVIOR ACHIEVED THROUGH STATEMACHINES 27

Given 2 simple states A (A is the current state) and B,plus a transition described

by E[G]/act, the response of the system when the event E is raised, is:

• the guard is checked (further steps are taken if the result is true)

• the exit actions from state A are performed

• action ’act ’ and the entry actions in state B are performed

• the current state of the context object is set B

More elements connected to state machines should be added: history states for

representing the most recent active configuration of a composite state (with history

support), regions as parts of composite state, null transitions (not being triggered by

events), timeout events (raised after a certain amount of time, a state was entered).

No further distinction between different types of events: synchronous or asynchronous

are going to be made.

4.2 Case study on reactive models

For the ease of reference the statechart of a microwaveoven is reproduced below:

Figure 4.2: Microwaveoven statemachine

4.2.1 Switch based approach

For the switch modeling approach the ecore metamodel, as visualized in Omondo,

looks like depicted in figure 4.3.

Methods named onEntryXYZ are just for grouping in a single function, the other

method calls, specified in the state diagram.

CHAPTER 4. BEHAVIOR ACHIEVED THROUGH STATEMACHINES 28

Figure 4.3: Model definition for switch based approach

Listing 4.1: onEntry method for Cooking state

public void onEntry Cooking ()
{

turnOnLight () ;
energizePowerTube () ;
setTimerForOneMinute () ;

}

The code for events are defined as part of the meta-model making use of annota-

tions:

Listing 4.2: GenModel annotations

. . .
@GenModel (body=”switch (cu r r en tS ta t e . getValue ())
{
case MicrowaveStates .READY TO COOK:
{

t h i s . onEntry DoorOpen () ;
cu r r en tS t a t e = MicrowaveStates .DOOR OPEN LITERAL;
break ;

}

case MicrowaveStates .COOKING INTERRUPTED:
{

onEntry ReadyToCook () ;
cu r r en tS t a t e = MicrowaveStates .READY TO COOK LITERAL;
break ;

}
}”)
op void doorClosed () ;
. . .

CHAPTER 4. BEHAVIOR ACHIEVED THROUGH STATEMACHINES 29

4.2.2 State pattern approach

Although not a burden to define, an ecore model following state pattern[1], requires

knowledge of the mentioned design pattern. The user can be relieved from having the

knowledge by redefining the model in a more compact and comprehensive manner,

and leave all the details for generation in accordance with the afore mention pattern,

to the code generation engine. The benefits of having a new, compact model defined,

as the input of the state pattern generation process, will be emphasized in section 4.3.

4.2.3 Object oriented approach based on a predefined state-
charts metamodel

Statecharts metamodel(fig. 4.1) has to be linked to the definition of the context class

(the microwave class), by making use of the import clause.

Actually, the ’object oriented features’ are conveyed by the SMM in this case. The

statecharts.ecore file resides inside a deployed plugin. The currentState a microwave

finds itself in, is referenced in the context class, this being part of the stMachine, as

can be seen in figure 4.4.

Figure 4.4: Reactive object based on SMM

Omondo does not help us too much in visualizing the meta-model this time (fig.

4.5)

Note: Making use of priori defined meta-models can also be noticed when defining

the ecore of OCL. A Constraint (class member of OCL ecore) is defined as a

specialization of NamedElement(class member of ecore’s metamodel)

CHAPTER 4. BEHAVIOR ACHIEVED THROUGH STATEMACHINES 30

Figure 4.5: Omondo view of the OO model

Not only objects and attributes have been specified in the SMM, but also some

additional methods like constraint checking or executing actions of a certain type.

The method responsible for guard evaluation is defined as part of Transition class,

as follows:

Listing 4.3: onEntry method for Cooking state

@GenModel (body=” Query query=QueryFactory . eINSTANCE. createQuery (
getGuard () . getGdExpresion () , ctxtObj . eClas s ()) ;

r e turn query . check (ctxtObj) ; ”)
op boolean (EObject ctxtObj) ;

The guard expression is a String, representing an OCL expression. For OCL ex-

pression evaluation we rely on EMFT-OCL1 (for this case the package org.eclipse.emf.ocl

was needed)

Execution of actions rely on method invocation, therefore the processing of actions

is defined by GenModel body as:

Listing 4.4: Actions execution making use of reflection

@GenModel (body=”EList a c t i on s=ge t In t e rna lAc t i on s () ;
t ry {
f o r (I t e r a t o r <Action> i t=ac t i on s . i t e r a t o r () ; i t . hasNext () ;)
{

Action cAction=i t . next () ;
i f (cAction . getAcType () . e qua l s (actType))
{

Class c=c t x tOb j . g e tC l a s s () ;
Method met= c . getMethod (cAction . getMethodToCall () , n u l l) ;
met . invoke (c tx tObj , n u l l) ;

}
1http://www.eclipse.org/emft/projects/ocl/

CHAPTER 4. BEHAVIOR ACHIEVED THROUGH STATEMACHINES 31

}
} catch (Exception ex) {} ”)

op void executeActionsOfType (EObject ctxtObj , ActionType actType) ;

ctxtObj will be in this case the microwaveoven, which has all the functional meth-

ods defined.

Validation issues related with the statechart metamodel were not defined in the

context of the EMF model, but they were approached, when the graphical editor for

statecharts was partially developed. The help of EMF Validation framework2 was

essential here.

Regarding transactional aspects, the need for transactions pops up when we deal

with actions. On-entry and on-exit are supposed to be atomic units of behavior, but

do-activities are not (do-activities are possible to be interrupted by events). The

process followed for the execution of one step, should also be performed in terms of

’all or nothing’ principle (e.g. if on entry action for the new state throws exceptions

the effects of on-exit actions performed in the context of the current state should be

reversed). EMF-Technology provides transactional support3 which can be used to

fulfill the above mentioned goal.

4.3 State pattern generation based on a compact
model

Ultimately, the users of Eclipse Modeling Framework beneficiate of full Model Driven

Architectural features, due to code generation facility included in EMF. EMF code

generator is template based. The Java Emitter Template engine, part of

org.eclipse.emf.codegen plug-in is responsible for generating all the necessary files, in a

two step process (following pipes and filters architecture): translation and generation.

As a result of translation, a java source file corresponding to each JET template is

created. The compiled ’translated’ java file from the previous step is the input for

the generation step. The result of the generation can be ’any kind of text content’

as Dave Steinberg, one of the architects of EMF declares. In practice, that can be

easily noticed after running the generation process for one of EMF’s main artefacts:

model, edit or editor. The result of applying code generation consists, not only in

java source files, but also xml files (e.g the deployment descriptor) and text files (e.g

plugin.properties), in other words, it generates everything needed to create full fledged

plug-ins. An interesting point which should draw our attention, due to its recent

dynamic, is EMF’s generator extensibility. The changes are made available starting

with 2.2.0RC2 stable build, dated at 2 May 2006. Achievement of extensibility can be
2EMFT Validation Framework http://www.eclipse.org/emft/projects/validation/
3EMFT Transaction component http://www.eclipse.org/emft/projects/transaction/

CHAPTER 4. BEHAVIOR ACHIEVED THROUGH STATEMACHINES 32

summarized by: making use of extension point architecture and relieving the generator

model from the actual generation responsibilities.

GenModel is actually a decorator of the Ecore model. The ecore model is the

correspondent of platform independent model (PIM) in MDA terminology, while the

generator model is the platform specific model (PSM).

The GenModel contains additional information needed for the generation as: the

structure of the plug-ins(e.g which directories are going to be created for holding gen-

erated artifacts, which external templates are going to be used, reflective methods are

to be generated or not, etc.). Each Gen-object hold a reference to the corresponding

E -object (e.g GenPackage to EPackage) plus additional code information regarding

code generation (e.g is AdapterFactory going to be generated for the model?).

Before EMF’s 2.2.0RC2 release, GenModel objects were responsible for generating

their own code, which obviously led to the undesirable feature of having the generation

facility tightly coupled with the GenModel. An effect of the afore mentioned ’feature’

is the impossibility of generating code for another Ecore model.

The problem was solved by introducing a Generator class, responsible for code

generation. In fact, what the Generator class does is to delegate generation to the

attached generator adapters. In this manner the generator model is decoupled from

the actual generation burden.

Figure 4.6: EMF.CodeGen structure

The structure of the packages in a recent release has two new packages:

org.eclipse.emf.codegen.ecore.generator containing the generator and abstract adapter

CHAPTER 4. BEHAVIOR ACHIEVED THROUGH STATEMACHINES 33

classes used in

org.eclipse.emf.codegen.ecore.genmodel.generator, where the specific adapters for each

Gen-object reside.

EMF generator is said to be extensible because the plug-in declares an extension-

point for generator adapters.

Listing 4.5: Extension point declaration

<extens ion−point id=”generatorAdapters ”
name=”% UI GeneratorAdapter s extens ionpo int ”
schema=”schema/ generatorAdapters . exsd” />

This plug-in plays the role of a host plug-in and acts as a coordinator and controller

for other extensions.

Listing 4.6: Extension point declaration

<extens i on po int=”org . e c l i p s e . emf . codegen . e co re . generatorAdapters”>
<adapterFactory c l a s s=”org . e c l i p s e . emf . codegen . e co re . genmodel . generator . GenModelGeneratorAdapterFactory”/>
<adapter

modelPackage=”http ://www. e c l i p s e . org /emf/2002/GenModel”
modelClass=”GenClass”
c l a s s=”org . e c l i p s e . emf . codegen . eco re . genmodel . generator . s tatemodel . GenClassGeneratorAdapter1”/>

</extens ion>

In order to emphasize the problems encountered and the proposed solution, we

will follow an example showing a state machine for a carousel door.

4.3.1 Case study.Problem.Solution

An ecore model, following state pattern was defined for a carousel door state machine.

Figure 4.7: Carousel door statemachine

Applying code generation facility at model level, we have a package structure as

in figure 4.9:

CHAPTER 4. BEHAVIOR ACHIEVED THROUGH STATEMACHINES 34

Figure 4.8: Statemachine modeling with the help of state pattern

EMF generates for each entity class in the model, two elements: an interface

(residing in states package) and an implementation class (residing in states.impl).

Given that all the states inherit from an abstract class, the generation of an interface

for each particular state is not justified, so as an effect, that will be removed when

the actual state pattern generation is to be performed.

State Open will react to click and timeout events, according to the model defined,

but the generated code fails (by not-generating) in embedding click and timeout meth-

ods in the implementation class. Obviously, methods body declared with @GenModel

annotation will not have the desired effect in this case.

Specifications of events handled as well as methods body will be further tackled

using annotations.

After removing the interface generation for all particular states and canceling the

generation for the adapter factory (which would reside in states.util package), the

structure of the plugin should look like in figure 4.10

Apparently an ’inoffensive’ modification triggers changes in StatesFactory.java and

StatesFactoryImpl.java for each particular state creation: e.g

Listing 4.7: Three example transformations

Open createOpen () ;
// shou ld be transformed to
State createOpen () ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

public Open createOpen () {
OpenImpl open=new OpenImpl () ;
return open ;

}
// shou ld be transformed to
public State createOpen () {

CHAPTER 4. BEHAVIOR ACHIEVED THROUGH STATEMACHINES 35

OpenImpl open=new OpenImpl () ;
return open ;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

public class OpenImpl extends StateImpl implements Open
// shou ld be transformed to
public class OpenImpl extends StateImpl

For dealing with those kind of changes a new template for FactoryClass.javajet

has to be defined. In order to cope with the changes in StatesPackageImpl.java, a

new PackageClass.javajet will to be defined.

Given that for particular states only the implementation class is generated (the

interface for State class has to be defined because is needed in the creational methods

of the factory), a new template Class.javajet will be pluged into the generator.

We already mentioned that defining the ecore model in accordance with the dia-

gram above, has two inconveniences, namely: the user has to know about the state

pattern and the generated code is not well structured, lacking method bodies which

cannot be defined as part of the ecore model.

A more convenient manner to specify the model would be to encapsulate all the

states the context object can be in, as well as the events triggering transition among

these states, in a single entity.

Listing 4.8: The new model defined

i n t e r f a c e CDoor
{

a t t r i n t Open=1;
a t t r i n t Opening=2;
a t t r i n t Closed=3;
a t t r i n t C los ing=4;
a t t r i n t Stayopen=5;

@GenModel(Open=”in t c=3; i n t m=45;” ,
Opening=””,
Closed=””,
Clos ing=””,
Stayopen=””)

op vo id c l i c k () ;

@GenModel(Opening=””,
Clos ing=””)

op vo id complete () ;

@GenModel(Open=””)
op vo id t imeout () ;

}

CHAPTER 4. BEHAVIOR ACHIEVED THROUGH STATEMACHINES 36

All the states are defined as attributes. The events are defined as methods. If a

transition triggered by a certain event is valid from a particular state, the method

body can be specified in a @GenModel annotation having as a key the name of the

state(e.g ’complete’ can be taken only if the current state of the state machine is one

of :’Opening’ or ’Closing’ states)

We just mentioned that states are defined as attributes. Actually, the only impor-

tant issues for the generation is the name of the attribute (or in the case of operations

only the operation’s name), not the type nor the initial value (missing or not). For

this reason, model validation issues would also be a plus, assuring the integrity of the

defined model.

Another way of defining the ecore model would be to have all the states defined

as a part of an enumeration and make use of custom annotations to specify valid

transitions.

Having the model defined as described above, the information will be extracted

from the model and the gen-model for the actual generation constructed (the classes

used for modeling can be inspected below). The path taken is problematic because it

alters the initial generated model, making further generations (of model, edit, editor)

inconsistent if the model is not brought to the initial state. This approach has the

advantage of keeping changes in JET files minimal.

As we mentioned in the extensibility strategy for the generator, what we still have

to do is to add the needed generator adapters.

CHAPTER 4. BEHAVIOR ACHIEVED THROUGH STATEMACHINES 37

Figure 4.9: Package structure after code generation

CHAPTER 4. BEHAVIOR ACHIEVED THROUGH STATEMACHINES 38

Figure 4.10: What should be taken out in order to enhance the generation

Figure 4.11: Class diagram used for SP generation

Chapter 5

Conclusions

Eclipse Modeling Framework’s model driven features ease the path of translating a

defined model into the corresponding code. Relying on EMF’s code generation facility,

we focused on conducting inquiries into behavioral aspects gravitating around EMF

models.

Attaching behavior, by making it external to EMF’s generated code, can be

achieved when using rule engines[9]. In this case, the responsibility on EMF side

is brought down to making facts known to the rule engine.

State machines are a standardized way to capture behavior, therefore defining

models for generating statecharts specific code and relying further on EMF.Codegen

for generating code is an interesting issue, approached in [3] for plain java models.

Formal representation of behavior as statecharts can be used to generate user

interfaces[6] or to define device simulators in Flash MX[7]

The same meta-model used to describe statecharts was used for defining a graph-

ical editor for statemachines and for specifying reactive entities. But unifying the

both in order to offer the user the facility of visualizing a reactive object at execution

time, could be planned as future work.

OpenArchitectureWare[8] presents a solution for generation of state machines fol-

lowing a switch approach and using POJO objects, while a state pattern generation

out of a simpler model (requiring no knowledge of the mentioned pattern) has been

performed here.

39

Appendix A

Actions and commands for
multi-rooted resources in
EMF

A.1 Problem statement

The default editor generated from an EMF model allows having only one root object.

Unless the model is very simple and one type aggregates all the others, multi-rooted

support at editor level becomes necessary.

Example:

When defining a statechart, one defines states. It makes sense to define the states in

the context of a state machine. In this case, a statemachine is the natural top level

container for states. But, a package may contain several state machines.

A fast way to circumvent the problem is to define a top level object, a container,

for all the model entities that we would like to define. The only problem is that

from a conceptual perspective, the artificial container might not make sense from

a domain modeling perspective (what does it mean ”TopLevelObject” when talking

about LoyaltyAccounts, Services, ProgramPartners, and so on)

A.2 Solution suggested

The lack of support for multi rooted resources can be dealt with at the editor level,

by providing us with the necessary pop up menu item New child at the resource level.

We need the same menu item as the one in the context of a model element.

This observation guides us in tackling the problem. We now know the place where

to include our extension: the editor. The EMF and EMF.Edit generated code need

not be changed.

40

APPENDIX A. ACTIONS AND COMMANDS FOR MULTI-ROOTED RESOURCES IN EMF41

Figure A.1: The problem encountered

Figure A.2: The desired result

In order to contribute menu items to a popup menu, a class, derived from Edit-

ingDomainActionBarContributor, was automatically generated in the editor.

The editor plugin knows about the contributor class because of the extension point

defined in the plugin’s descriptor. The method named generateCreateChildActions is

a good starting point.

Listing A.1: The method to start with

protected Co l l e c t i on generateCreateChi ldAct ions (Co l l e c t i o n de s c r i p t o r s ,
I S e l e c t i o n s e l e c t i o n)

{
Co l l e c t i on a c t i on s = new ArrayList () ;
i f (d e s c r i p t o r s != null)
{

for (I t e r a t o r i = d e s c r i p t o r s . i t e r a t o r () ; i . hasNext () ;)
{

a c t i on s . add (new CreateChi ldAct ion (act iveEdi torPart , s e l e c t i o n , i . next ())) ;
}

APPENDIX A. ACTIONS AND COMMANDS FOR MULTI-ROOTED RESOURCES IN EMF42

Figure A.3: Modifications required in the plugin descriptor

}
return a c t i on s ;

}

The collection returned by this method will contain one CreateChildAction corre-

sponding to each descriptor generated for the current selection by the item provider

This is the actual hint for the solution: define another action bar contributor class

by extending the existing class (e.g de.tuhh.sts.RandL.presentation.RandLActionBarContributor)

and override the above mentioned method making sure that CreateChildAction are

being added when the selected item is the resource.

Listing A.2: Redifined method in the contributor class

protected Co l l e c t i on generateCreateChi ldAct ions (Co l l e c t i o n de s c r i p t o r s ,
I S e l e c t i o n s e l e c t i o n)

{
Co l l e c t i on a c t i on s = new ArrayList (

super . generateCreateChi ldAct ions (d e s c r i p t o r s , s e l e c t i o n)) ;
i f ((s e l e c t i o n instanceof I S t r u c tu r edS e l e c t i on) &&

((I S t r u c tu r edS e l e c t i o n) s e l e c t i o n) . s i z e ()==1)
{
Object ob j e c t= ((I S t r u c tu r edS e l e c t i o n) s e l e c t i o n) . getFi r s tElement () ;
i f (ob j e c t instanceof Resource)
{

a c t i on s . add ((Resource) ob j e c t) ;
}

}
return a c t i on s ;

}

public Action generateResourceAct ion (Resource r e s ou r c e)
{

return new LoyaltyProgramAction (act iveEdi torPart ,
new St ru c tu r edSe l e c t i on (r e s ou r c e)) ;

}

As can be seen from the redefined method, a new action was added to the col-

lection. The action is of type LoyaltyProgramAction and was defined to inherit from

APPENDIX A. ACTIONS AND COMMANDS FOR MULTI-ROOTED RESOURCES IN EMF43

StaticSelectionCommandAction. The StaticSelectionCommandAction object (in our

case the: LoyaltyProgramAction) delegates all the required behavior to a Command

object.

The method createActionCommand of RandLAddCommand class, is responsible

for creating the command:

Listing A.3: Redifined method in the contributor class

public class RandLAddCommand extends AddCommand
implements CommandActionDelegate

{
. . .
public Command createActionCommand (EditingDomain inputEditingDomain ,

Co l l e c t i on c o l l e c t i o n)
{

return new RandLAddCommand(inputEditingDomain ,
((Resource) c o l l e c t i o n . toArray () [0]) . getContents () ,
RandLFactory . eINSTANCE. createLoyaltyProgram ()) ;

}
. . .
}

So far, in order to add a new child on the resource root, three classes have to be

declared: the action contributor, the action class, and the command class. We also

Figure A.4: XCommand, XActionBarContributor,XAction classes

have to make the plugin descriptor aware of the existence of a new action contrib-

utor, by modifying the attribute’s value contributorClass, to point to the redefined

contributor.

APPENDIX A. ACTIONS AND COMMANDS FOR MULTI-ROOTED RESOURCES IN EMF44

A.3 Problematic approach

The solution given, which conforms to EMF extension capabilities, is problematic

when one wants to have a multi-rooted resource consisting of different types. The

number of actions defined will increase with each different type of new child that we

want to add to the resource root. Only one action (CreateStateMachineAction.java)

is needed for adding multiple state machines to a resource.

An action is needed for each new type of child desired, as can be inferred from the

above picture.

One way to circumvent the need to customize that many artifacts (one action

class for each new child item at the resource level) would be to generate the code

automatically from genmodel. The user should be given the option to choose, before

generation takes place, the model entities that may appear as roots.

It should be possible to add as a root on a resource, each item being displayed in

the drop-down list by the model wizard. Normally, only a limited number of model

members are supposed to be added as roots (e.g it makes sense to have CustomerAc-

count only in a Customer context).

To conclude, as a tooling support for multi rooted editors, it makes sense for all

these actions to be automatically generated based on user specifications in an extended

genmodel model.

Appendix B

Decision table for a state
machine definition

A decision table defining the transitions for the microwave state machine are defined

inside an excel worksheet. LHS of a the rule template is specified in the CONDITION,

Figure B.1: Decision table for a state machine

while the ACTION contains the RHS part of the rule. Each row in the table results

in a rule.This can be made visible to the user by printing out the results of the

45

APPENDIX B. DECISION TABLE FOR A STATE MACHINE DEFINITION 46

Figure B.2: Template rule with parameters defined in the excel worksheet

SpreadSheetCompiler.The first rule, generated from the ninth row of the decision

table, by filling in the parameters with the data taken from the xls file, look like:

Listing B.1: Rule ’instance’ generated form the rule template

#From row number : 9
r u l e ” r1 ”
s a l i e n c e 65527
when

source : State (name == ”ReadyToCook”) ;
ctxtObj : ContextObject (cu r r en tS ta t e == source , t a r g e t : cu r r en tS ta t e)
t a r g e t : State (name == ”DoorOpen”)
ev : Event (event == 1)

then
takeAct ion (ctxtObj , t a r g e t) ;
modify (ctxtObj) ;
r e t r a c t (ev) ;

end

State,ContextObject,Event are objects from the defined domain model. The re-

sponsibilities of the test class are:

• Read the rules from the decision table with the help of the SpreadsheetCom-

piler

Listing B.2: Use the appropriate compiler to load data from *.xls files

. . .
InputStream s r c= new Fi leInputStream (” s t a t e s . x l s ”) ;
SpreadsheetCompiler ssCmp=new SpreadsheetCompiler () ;
S t r i n g s t r=ssCmp . compi le (src , InputType .XLS) ;
. . .

• Assert the states and the events into the working memory and fire the rules

Note: Only one event is present into the working memory at a time, the rule being

responsible to retract the event from the memory in its action part

Appendix C

Statecharts editor based on
GMF

Graphical Modeling Framework provides the infrastructure for defining graphical ed-

itors based on GEF(Graphical Editing Framework) targeting EMF models(Eclipse

Modeling Framework).

Using GMF, a graphical editor for statecharts, which could be used to depict

visual execution of statemachines, was defined.

Figure C.1: Statecharts editor- simple state, initial, final state

Figure C.2: Statecharts editor- composite states with inner states

47

APPENDIX C. STATECHARTS EDITOR BASED ON GMF 48

C.1 Constraints

Two constraints were specified: one does not allow a transition to have as a source

an instance of the final state, and the other one does not allow a transition to have

as a target an instance of the initial state. Both constraints are attached to the link,

one as a constraint on the source and the other as a constraint on the target of the

link, as can be seen below.

Figure C.3: Defined link constraints

C.2 Validation

As validation rules for the model, two audit rules were added to the audit container.

The first rule takes care that a model won’t be validated unless it has one and only

one initial state. The second rule, validates a model only if there are no multiple

states having the same name.

Figure C.4: Audit constraints as validation rules

APPENDIX C. STATECHARTS EDITOR BASED ON GMF 49

C.3 Custom images

Composite figures are not yet smoothly supported by GMF. One has the option

of adding Custom figures to the Figure gallery of the .gmfgraph file. Although a

custom figure allows children (right click Add child) there is no mechanism yet to

combine those figures into the resulting graphical component. As pointed out here

http://dev.eclipse.org/newslists/news.eclipse.technology.gmf/msg01365.html one way

of defining composite figures is too handcode them.

Taking the example of a FinalState figure for statecharts (a simple circle containing

another concentric filled circle inside) the code written is:

Listing C.1: FinalState figure

pub l i c c l a s s F ina lS ta t eF igure extends E l l i p s e
{

pu b l i c f i n a l s t a t i c i n t i n t e r v =200;
p u b l i c F ina lS ta t eF i gure ()
{

t h i s . se tForegroundColor (org . e c l i p s e . draw2d . ColorConstants . red) ;
}

pub l i c void pa intF igure (Graphics g)
{

super . pa in tF igure (g) ;
g . setBackgroundColor (org . e c l i p s e . draw2d . ColorConstants . red) ;
g . f i l l O v a l (bounds . x+in t e rv , bounds . y+in te rv ,

bounds . width−2∗ i n t e rv , bounds . he i gh t −2∗ i n t e r v) ;
}

}

After having the class defined as above, the qualified name should be filled in the

Properties view of the Custom figure(gmfgraph editor).

Bibliography

[1] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides RDesign Patterns:

Elements of Reusable Object-Oriented Software 2001.

[2] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, Timothy J.

Grose Eclipse Modeling Framework 2004.

[3] Iftikhar Azim Niaz Automatic Code Generation From UML Class and Statechart

Diagrams 2005.

[4] Jos Warmer, Anneke Kleppe The Object Constraint Language. Getting your mod-

els ready for MDA 2003.

[5] avid Harel and Hillel Kugler The Rhapsody Semantics of Statecharts (or, On The

Executable Core of the UML) 2003.

[6] Ian Horrocks Constructing the User Interface with Statecharts 1999.

[7] Jonathan Kaye, David Castillo Flash MX for Interactive Simulation 2002.

[8] Markus Voelter, Bernd Kolb, Sven Efftinge, and Arno Haase From Front End

ToCode 2006.

[9] JBoss Rules http://labs.jboss.com/portal/jbossrules/docs.

50

