

Generation of Mapping Code for Conceptual Content
Management based on Model Matching

(Includes post submission fixes of spelling and punctuation.)

Master Thesis Report

Submitted in partial fulfillment of the requirement for the award of the Degree of

Master of Science in Information and Communication Systems

Submitted by:

Venkata Ravi Kishore Chayanam

Matriculation Number 23421

Hamburg, Germany

07 August 2006

Under the Esteemed Guidance of
Prof. Dr. Joachim W. Schmidt (STS)
Prof. Dr. Friedrich Mayer- Lindenberg (TI6)
Dr. Hans-Werner Sehring (STS)

Department Softwaresysteme
Hamburg University of Science and Technology

 II

Abstract

Database schemata evolve continuously in real-world applications. Schema transformation

modules facilitate the communication between incompatible systems with different Asset

models. Because of the openness and dynamics properties of database schemata in Conceptual

Content Management Systems, schema transformation modules have to be generated

dynamically based on schemata changes. To do so, a Schema transformation module

generator will be developed. Within the planned generator, model mappers are used to match

outdated and revised database schemata using name based matching(similar to schema

matching technique) and to compute the mappings between them. The Strategy pattern is

followed to design an interface for a family of model mapping algorithms. One

implementation for a model mapper algorithm is provided. The Adapter pattern is used to

convert the interface of an outdated class to the interface of a revised class according to the

chosen model mapping algorithm. Transformation code is generated for classes using Java

meta model and after target code is generated in Java, the instances of schema transformation

module symbol table are filled.

Keywords: Database schemata, schema transformation module, Conceptual Content

Management System, Strategy pattern, Schema matching, model mapping, Adapter pattern,

schema transformation module symbol table, Java meta model.

 III

Declaration

I declare that:

This Master thesis work has been prepared by myself, all literal or content based quotations

are clearly pointed out, and no other sources or aids than the declared ones have been used.

Hamburg, 07 August 2006
Venkata Ravi Kishore Chayanam

 IV

ACKNOWLEDGEMENTS

I take this opportunity to thank all those magnanimous persons who rendered their full

services to my Master thesis project work.

It is with lots of happiness I express gratitude to my supervisor Dr. Hans-Werner Sehring, for

timely and kind help, guidance and valuable suggestions whenever I used to digress away

from the aim of the project work, giving me innovative ideas during the design and

implementation phases of the thesis work. Also provided me with the most essential materials

required for the completion of this report. This inspiration up to the last moment had made

things possible in a nice manner.

I would like to thank Prof. Dr. Joachim W. Schmidt, Head of the Department of

SoftwareSysteme and the staff members of the Department especially M.Sc Sebastian

Bossung for the kind cooperation and valuable suggestions he gave me while revising the

report, with out which it would not have been possible for me to get a good and challenging

research topic for the Master thesis.

Special acknowledgements to Prof. Dr. Friedrich Mayer- Lindenberg, Head of the Department

of Computer Technology for supervising the Master thesis as a second examiner.

The blessings of the God Almighty has been a continuous source of strength and confidence

through out the thesis work, so I take it as a special privilege to sincerely express my gratitude

to the God for everything and also to my family members.

 V

Contents

1. INTRODUCTION...1

1.1 CONCEPTUAL CONTENT MANAGEMENT APPROACH ..1
1.2 TYPICAL CONCEPTUAL CONTENT MANAGEMENT SYSTEM MODULES...2

1.2.1 Client Modules:...2
1.2.2 Server Modules: ..2
1.2.3 Schema Transformation Modules:..3
1.2.4 Mediation Modules:...3
1.2.5 Distribution Modules:..3

1.3 FUNCTIONALITY OF SCHEMA TRANSFORMATION MODULE ...3
1.4 SYSTEM EVOLUTION ..4
1.5 ORGANIZATION OF THIS THESIS..5

2 THE PROBLEM WITH EVOLVING MODELS ...6

2.1 PROBLEM DESCRIPTION ...6
2.1.1 Model evolution...6
2.1.2 Model personalization ...7
2.1.3 Overview of CCM Module API and Asset object API..7
2.1.4 Members of an Asset..8

2.2 THE PROPOSED SOLUTION ..9

3 CONCEPTUAL CONTENT MANAGEMENT SYSTEMS..11

3.1 INTRODUCTION ..11
3.2 ASSET MODEL ...11
3.3 ASSET SYSTEMS IMPLEMENTATION – ASSET MODEL COMPILER ..12
3.4 FRONTEND OF THE ASSET MODEL COMPILER..13

3.4.1 ADL Grammar ..13
3.4.2 Asset Definition Language...14
3.4.4 Intermediate Asset Model ..16

3.5 BACKEND OF THE ASSET MODEL COMPILER ...17
3.6 TYPICAL SYSTEM ARCHITECTURE OF CONCEPTUAL CONTENT MANAGEMENT SYSTEMS18

3.6.1 Components, Modules, Systems..18
3.6.2 Module Kinds – Separation of Concerns ..18
3.6.3 Recombinability and Reusability of Modules ..19

4 DESIGN AND IMPLEMENTATION OF A CODE GENERATOR FOR MODEL MAPPING20

4.1 GENERATOR OPTIONS ..20
4.1.1 Inner Generator ..20
4.1.2 Inner Compiler..20

4.2 GENERATOR CONFIGURATION CUSTOMIZATION ..21
4.3 WORKING WITH OUTDATED AND REVISED ASSET MODELS ...21

 VI

4.4 MODEL MAPPING STRATEGY / ASSET MODEL MATCHING ...22
4.4.1 New Members..23
4.4.2 Unused Members...24
4.4.3 Changed Members...25
4.4.4 Unchanged Members...26

4.5 MODEL MAPPING STRATEGY ...28
4.5.1 Matching Model Mapper ...28
4.5.2 Other Model Mappers..28

4.6 ADAPTERS FOR ALL ASSET CLASSES ...28
4.7 TARGET CODE GENERATION OF ASSET OBJECTS USING JAVA CODE GENERATION TOOLKIT28

5. DESIGN AND IMPLEMENTATION OF GENERATED CODE FOR ADAPTERS.............................29

5.1 CCM MODULE API AND ASSET OBJECT API ..29
5.2 ADAPTERS...31
5.3 FACTORIES ..34
5.4 ITERATORS ..35
5.5 QUERY OBJECTS ..35
5.6 VISITORS...36
5.7 INVENTING INITIAL VALUES...37
5.8 CONTENT HANDLES ...37
5.9 MODULE CLASS ...37
5.10 TARGET CODE GENERATION OF COMPLETE MODULE USING JAVA CODE GENERATION TOOLKIT..............38

6. EVALUATION..39

6.1 TEST CASES...39
6.1.1 GKNS as a test application ..39
6.1.2 Another sample test application ...39

6.2 RESULTS ...39
6.2.1 Results for GKNS as a test application...39
6.2.2 Results for sample test application...39

7. SUMMARY AND FUTURE WORK..46

7.1 SUMMARY ...46
7.2 USEFULNESS OF THE SCHEMA TRANSFORMATION MODULE GENERATOR ...47
7.3 FUTURE WORK ..47

REFERENCES..48

APPENDIX ...51

GLOSSARY ..51

 VII

LIST OF FIGURES

FIGURE 1 COMPONENTS IMPLEMENTING A FAT CLIENT SCENARIO ..6
FIGURE 2 ASSET AS A CONTENT-CONCEPT PAIR ...11
FIGURE 3 EXAMPLE CODE OF AN OUTDATED ASSET MODEL DEFINITION ...15
FIGURE 4 META MODEL OF THE INTERMEDIATE ASSET MODEL ..17
FIGURE 5 ABSTRACTION LEVELS OF A CONCEPTUAL CONTENT MANAGEMENT SYSTEM18
FIGURE 6 ASSET MANAGEMENT SYSTEM: TYPICAL CCMS MODULE KINDS AND ARCHITECTURAL OVERVIEW ...19
FIGURE 7 DESIGN OF MODEL MAPPER FOLLOWING THE STRATEGY PATTERN ...22
FIGURE 8 CHANGE OF ATTRIBUTES IN AN ASSET MODEL ...23
FIGURE 9 EXAMPLE CODE OF A REVISED ASSET MODEL DEFINITION...26
FIGURE 10 CLASS DIAGRAM OF INTERFACES FOR ILLUSTRATION OF ASSET OBJECT LIFE CYCLE.29
FIGURE 11 STATE DIAGRAM FOR ILLUSTRATION OF ASSET OBJECT LIFE CYCLE ..30
FIGURE 12 DESIGN FOR GENERATION OF TRANSFORMATION CODE FOLLOWING THE ADAPTER PATTERN32
FIGURE 13 GENERATED JAVA CODE FOR ARTISTADAPTER...42
FIGURE 14 GENERATED JAVA CODE FOR ARTISTITERATORADAPTER ...42
FIGURE 15 GENERATED JAVA CODE FOR ARTISTQUERYADAPTER..44
FIGURE 16 GENERATED JAVA CODE FOR EQUESTRIANSTATUEFACTORYADAPTER ..44

 1

1. Introduction

1.1 Conceptual Content Management Approach

Users can work collaboratively on information systems which are based on a common

conceptual content model. In many applications users need to have a personal, subjective

view of the world. Such applications require openness of the model so that users can change it

according to their needs. The system must then react to these changes dynamically without

intervention of a developer. Information systems usually do not address the issue of having

users who do not have to agree on a common conceptual content model in order to work

collaboratively. According to Cassirer [1, 2] and others, entity modelling processes, in order

to be successful have to meet the following goals:

� Openness: Users can express their personal view of the application domain by openly

changing the conceptual model underlying the system.

� Dynamics: Users can create instances of their views in the system based on their

personal model with out the involvement of a developer.

Conceptual Content Management achieves openness and dynamics with the three main

contributions given below:

1. Asset Definition Language: Content is represented by multimedia documents. The concept

consists of “characteristic” properties of the entities, its “relationships” with other entities, and

“constraints” on these characteristics and relationships. Based on the observation that neither

content nor concept can exist in isolation, conceptual content management is based on the

joint representation of pairs of content and concept. Each pair is called an “Asset”.

2. Asset model Compiler: A typical Conceptual Content Management System (CCMS)

instance is generated by an Asset model Compiler which is designed as a framework. The

framework follows the typical structure of compilers consisting of frontend and backend

components, where generators form the backend. Several generators are developed and each

generator creates a small part of the CCMS.

 2

3. System Architecture: The Conceptual Content Management System architecture consists of

modules, components and systems. The Compiler framework generates modules. Each

module is a self-contained unit. Sets of modules all of which use the same model are

combined to form components. These modules achieve a certain task. Components are

combined to form systems. Distinct components are necessary as the same system often uses

multiple models.

More detailed and specific information related to openness, dynamics, Asset definition

language, model Compiler and system architecture can be found in [3].

1.2 Typical Conceptual Content Management System Modules

Modules of a Typical Conceptual Content Management System allow us to keep

configuration flexible. Modules are self contained units and they are smallest building block

of a CCMS. There are different types of modules for a typical CCMS as given below:

� Client Modules

� Server Modules

� Schema Transformation Modules

� Mediation Modules

� Distribution Modules

The five kinds of modules of a Conceptual Content Management System listed above are

described in the following subsections:

1.2.1 Client Modules:

Client modules map all calls they receive onto some third party system. They do not use any

further modules. The most common use is to store Asset instances in a database.

1.2.2 Server Modules:

Server modules are complementary to client modules. They use modules on the layer below

them. A server module can be used for a web application interface.

 3

1.2.3 Schema Transformation Modules:

The two interfaces for these modules conform to different schemata. The generators for these

modules either are provided with information on how to map these schemata or they use

schema matching techniques.

1.2.4 Mediation Modules:

Mediator is used to provide a homogenous access to different information sources.

1.2.5 Distribution Modules:

Distribution modules offer remote communication between components.

Asset models evolve continuously in real world applications. As described above, schema

transformation modules facilitate the communication between incompatible systems with

different Asset models. We generate a schema transformation module and it uses schema

matching technique to compute the differences between two Asset models. A schema

transformation module is developed to achieve Asset model personalization and model

evolution.

More specific and detailed information about CCMS modules can be found in [3].

1.3 Functionality of Schema Transformation module

Public Asset model is an Asset model which is made publicly available to the general users

and private Asset model is an Asset model for which access is allowed to specific users and

private Asset model is a result of personalization. Asset class definitions are enclosed in the

keyword model which is defined in the Asset definition language. Schema transformation

module has the following functionalities:

� A schema transformation module generator transforms the public Asset model

up/down to the private Asset model.

� A schema transformation module also provides rights control access to private Asset

model.

 4

Other important functionalities of Schema transformation modules can be found in [3].

1.4 System Evolution

CCMSs evolve over time following the dynamics property. They can evolve due to model

evolution, model personalization, application domain combinations or software evolution.

Model evolution allows users to redefine their Asset models. Model personalization allows

users to personalize a publicly available model. New Asset classes can be derived by

combining specialized application domain models.

To dynamically adapt Conceptual Content Management Systems to changing models they are

recompiled at runtime. The demand for dynamics leads to system evolution and the specific

information related to dynamics of a system can be found in [4].

The evolution of Conceptual Content Management Systems has two aspects:

� the software needs to be modified, and

� existing Asset instances need to be maintained.

Typical issues with respect to these two aspects of evolution are:

� Changes performed on behalf of individual users should not have any impact on

others. Therefore, dynamic support for system evolution must not prevent continuous

operation of the software system.

� On the one hand, Assets as representations of domain entities cannot automatically be

converted in general. On the other hand, manual instance conversion is not feasible for

typical amounts of Asset instances.

� If a user personalizes Assets for his own needs, he still will be interested in changes

applied to the original. Through awareness [3] measures he can be informed about

such changes. To be able to review the changes, access to both the former and the

current versions are needed. That is, revisions of Assets and their schemata need to be

maintained.

A detailed description about CCM System Evolution can be found in [6].

 5

1.5 Organization of this Thesis

The remainder of this thesis report is organized as follows.

In Chapter 2, the problem that is being solved by the development of the schema

transformation module generator is described.

Chapter 3 deals with explaining several significant concepts of Conceptual Content

Management Systems and the evolution steps - model evolution and model personalization.

In Chapter 4, the reader will be introduced to the design and implementation of generated

code for various imperative adapters.

In Chapter 5, the design and implementation aspects of schema transformation module

generator are discussed.

Chapter 6 deals with the evaluation of the developed transformation module generator and the

test cases will be developed and they will be executed against the developed module

generator.

In Chapter 7, a summary of the work done and future work that can be done are discussed.

 6

2 The Problem with Evolving Models

2.1 Problem Description

The dynamics property of CCMSs necessitates that the systems have to evolve continuously

during their life cycle. The several reasons existing for evolution of systems are discussed in

detail in the section 2.1.1 Model Evolution and section 2.1.2 Model Personalization. Most

evolution steps are handled by adding modules through application of the mediator

architecture [7].

2.1.1 Model evolution

Models evolve during their lifetime and the dynamics property of CCMSs will help address

this evolution. Users can redefine their Asset model because of the openness property of the

model. In order to explain the model evolution step, the above figure 1 is considered. If the

model M1 is an outdated model and model M2 is updated version, queries are wrapped

through the transformation module, which will remove those parts of a query that apply to the

model changes only, and will translate back the results.

Figure 1 Components implementing a fat client scenario [8]

 7

When querying for Assets, mediation module will concurrently retrieve from newer

component of M2 and the older one for M1. Query results are merged, since the Assets have

already been transformed to M2. New Assets are always created in the component for M2 and

no Asset is retrieved twice.

Specific details about model evolution explained above can be obtained from [8]

2.1.2 Model personalization

Model personalization allows the adaptation of data and its representation. Personalization of

characteristics and relationships of an Asset class in an Asset model is supported by the

Schema transformation module.

2.1.3 Overview of CCM Module API and Asset object API

Asset models change over time rendering the current Asset classes outdated. For each Asset

class A, API Generator creates CCM Module API which has the following interfaces:

� Interfaces for the states/roles of an Asset object

� An iterator interface for collections of Asset objects

� A factory interface to create Asset objects

� An interface for query classes

� A visitor interface to distinguish between subtypes

� A visitor interface for Asset object states

All of the above mentioned interfaces except visitor interfaces will change whenever the

Asset class definition changes. The current implementation needs to be adapted to suit the

modified Asset class definition.

Asset roles are reflected in interfaces of Assets objects, i.e. the Asset object API. There are

five such interfaces in the Asset object API for an Asset class A, namely

� AbstractA

� A

� AbstractMutableA

� MutableA

 8

� NewA

for the possible states/roles of Asset objects.

More Specific description about the CCM Module API and Asset object API introduced

above is given in the section 5.1 and any further information can be found in [9].

2.1.4 Members of an Asset

Each Asset class in an Asset model can change over time. Members of an Asset class are

Content handles, Characteristics, Relationships and Constraints. When an Asset class changes

we can end up with the following types of members in the modified Asset class:

� New members

� Unused members

� Unchanged members

� Changed members

New members: These are the members that do not exist in the outdated Asset class and are

added to the revised Asset class. Default initial values should be assigned to these members

when they are used for the first time.

Unused members: These are the members that exist in the outdated Asset class and do not

exist in the revised Asset class. References to these members must be removed when

transformation is done. All constraints to these members should also be removed.

Unchanged members: These are the members that exist in both the outdated Asset class and

the revised Asset class. All references to these members must be delegated to the outdated

Asset class.

Changed members: These are the members whose properties changed when the Asset class is

modified. All references to these members should address the changes made to the members.

 9

2.2 The Proposed solution

A Schema transformation module generator has to compute the differences between outdated

and revised Asset models. This process is known as model matching or Schema matching

[10]. Schema matching is the process of identification of correspondences, or mappings

between schema objects. Any combination of content, characteristics and relationships of an

Asset class can change over time.

Manual schema matching has its limitations:

� It is generally impossible for a human to validate and modify Asset schemata.

� Manual schema matching is generally time consuming and may be unfeasible

especially with large schema definitions.

An automated model mapper needs to be developed which computes these differences

between an outdated Asset class and the current Asset class and hence obtain the mappings

between them. There are several possible implementations of model mappers – matching

model mapper, and any other automated model mapping algorithms.

Matching model mapper is the mapper which computes the differences between two Asset

classes in two models by comparing them by name. Matching model mapper computes new

members, unchanged members, changed members and unused members between an outdated

Asset class and the current Asset class.

Schema transformation module generator generates the following classes for each changed

Asset class in a model:

Adapter – Adapter is generated using Object Adapter [11, 12] Design pattern. Adapter

implements the interfaces for the states/roles of an Asset object. This class implements the

interfaces A, MutableA, and NewA for an Asset class A. This adapter also contains an

implementation of the outdated Asset class as a delegate. Delegate method calls are made for

all unchanged members of an Asset class, since these members are unchanged. Initial values

are assigned for new members of the Asset class. This is the class where initial values for

content objects and characteristics need to be assigned. These values need to be assigned for

all the members that are added to an Asset class, because these did not exist in the outdated

Asset class. These values to be assigned depend on the definition of the Asset model.

 10

Factory – This class provides an implementation for the factory interface to create Asset

objects. This class implements the interfaces AFactory for an Asset class A. This adapter also

contains an implementation of the outdated factory implementation as a delegate. Delegate

method calls are made for all unchanged members of an Asset class, since these members are

unchanged.

Query – This adapter class is generated using the Object Adapter [11, 12] Design pattern. This

adapter also contains an implementation of the outdated query class as a delegate. Delegate

method calls are made for all unchanged members of an Asset class, since these members are

unchanged. Constraints to unused members are removed. Constraints to new members are

added.

IteratorAdapter – This adapter is generated using Object Adapter Design pattern. An iterator

adapter implements the iterator interface for collections of Asset objects. This class

implements the interface AIterator for an Asset class A. The outdated iterator implementation

is included in the adapter as delegate. Delegate method calls are made for all unchanged

members of an Asset class.

 11

3 Conceptual Content Management Systems

3.1 Introduction

In Conceptual Content Management Systems (CCMSs), entities are modelled by content-

concept pairs called Assets. Peirce [13] and others identified different perspectives that entity

descriptions have to satisfy for modelling these types of entities. The three different

perspectives are given below:

� the inherent characteristics of an entity

� Relationships between entities

� the systematics behind the above two perspectives

3.2 Asset Model

Assets represent intimately allied content-concept pairs which represent and signify

application entities. The content and concept of an Asset are defined below:

� The content aspect of an Asset may contain an image of the entity.

� The concept aspect describes the entity by its characteristics and by relationships to

other entities.

The representation of an Asset as a Content-Concept pair is shown in figure 2. Referring to

the figure 2, Content aspect of an Asset represents a media view of the entity while the

concept aspect represents its allied Concept view. A more detailed description about Asset

modelling can be found in [3].

������

����

�	��
�

����

���	���

�����

�	�������

������

Figure 2 Asset as a Content-Concept pair [3]

 12

3.3 Asset Systems Implementation – Asset Model Compiler

For Asset systems implementation in Conceptual Content management a two-step approach

is adopted: The first step is driven by an Asset model Compiler, the second is based on a

module configurator. The model Compiler translates ADL definitions into a set of modules of

different kinds which form the basis for implementing that model. The configurator creates

the modular structure of the executable target system for Asset modeling and management.

This way, the goal of an open dynamic Asset system is achieved without paying the

performance penalty for runtime interpretation, which – as experience from other projects

show – could be prohibitively high.

The Asset model Compiler is designed as a framework. Java code generation toolkit [3] is a

domain independent meta-programming [14] infrastructure. For generating the target code in

a Schema transformation module generator Java code generation toolkit is used. A typical

CCMS is created by instantiating the model Compiler framework, using an appropriate set of

generators.

The definitions of API Symbol Table and Symbol Table are detailed in the following

paragraphs:

API Symbol Table: Usually, the first generator run is API Generator, which produces Java

interfaces (APISymbolTable) for the unique interface all modules have to fulfill.

Symbol Table: Data interdependencies are passed between generators using data structures

called symbol tables. Each generator may read any number of symbol tables and produces

exactly one symbol table.

The compiler itself controls the order in which generators are run and the data flow between

the generators. Each generator produces a symbol table and data is passed between generators

using this symbol table.

The basic structure follows the classical Compiler [15] architecture consisting of a frontend

and a backend which communicate by exchanging some intermediate model.

 13

3.4 Frontend of the Asset Model Compiler

The frontend of the model Compiler includes parsing and checking the Asset definitions.

ADL Grammar and Intermediate Asset model are two significant contributions in the

Frontend of the model Compiler.

3.4.1 ADL Grammar

Asset language syntax is described by the ADL grammar i.e. Asset definition language, Asset

query and manipulation language. It is written for the ANTLR Parser Generator [16] which is

used for the Asset model Compiler.

ANTLR, ANother Tool for Language Recognition, is a parser generator that accepts

grammatical language descriptions such as Asset language definitions in the context of

CCMS, and generates programs that recognize sentences in those languages. As part of a

translator, one can augment his grammars with simple operators and actions to tell ANTLR

how to build Abstract Syntax Trees(ASTs) and how to generate output. ANTLR knows how

to generate recognizers in Java, C++, C#, and so on. ANTLR uses top-down parsing (or LL

parsing).

ANTLR knows how to build recognizers that apply grammatical structure to three different

kinds of input: (i) character streams, (ii) token streams, and (iii) two-dimensional trees

structures. Naturally, these correspond to lexers, parsers, and tree parsers.

The lexical analyzer or lexer scans the input character stream and breaks up it into a stream of

tokens and then the parser applies grammatical structure (syntax) to the token stream. Tree

parsers are very much helpful in navigation through the nodes in parse trees.

The grammar of the Asset definition language i.e. ADL grammar is defined using some

variant of EBNF, Extended Backus Naur Form [17].

A more detailed and specific introduction about ANTLR parser generator can be found in

[16].

 14

3.4.2 Asset Definition Language

Asset definition language is the language, which is used to define Asset classes. An example

code for an outdated Asset model definition written in Asset definition language is shown in

figure 3. This Asset model definition was outdated due to Model evolution.

Definition of an Asset class is organized in the model Statue using the keyword model. Asset

class SomeEquestrianStatue is defined by the keyword class which has a content part image

of type java.awt.Image and a concept part which has characteristic attributes sex and title of

type java.lang.String and paintedAt characteristic attribute is of type java.util.Date. Two

relationship attributes artist and requestBy are defined in the concept part of the Asset class

SomeEquestrianStatue. Relationship attributes artist and requestBy have one-one relationship

with another classes Artist, Ruler respectively.

An Asset class EquestrianStatue is the subclass of SomeEquestrianStatue, it extends the base

class SomeEquestrainStatue under the keyword refines. The sub class EquestrianStatue

inherits the content part, characteristic and relationship attributes from the concept part of the

base class SomeEquestrianStatue. The sub class EquestrianStatue defines two characteristic

attributes placeOfCreation of type java.lang.String and registrationNo of type int.

Two reference classes are also defined in the above Asset definition of model Statue, they are

class Artist and class Ruler. Class Artist defines two characteristic attributes name and

nationality of type java.lang.String in the concept part. Class Ruler contains concept part

which defines a characteristic name of type java.lang.String.

 15

model Statue

class SomeEquestrianStatue {
content
 image: java.awt.Image
concept
 characteristic sex: java.lang.String
 characteristic paintedAt: java.util.Date
 characteristic title: java.lang.String
 relationship artist: Artist
 relationship requestBy: Ruler
 relationship depicted: Person := self.requestBy

}

class EquestrianStatue refines SomeEquestrianStatue {
concept
 characteristic placeOfCreation : java.lang.String
 characteristic registrationNo: int
 }

class Artist{
 concept
 characteristic name : java.lang.String
 characteristic nationality : java.lang.String
}

class Ruler{
 concept
 characteristic name : java.lang.String
}

class Person{
 concept
 characteristic name : java.lang.String
}

Figure 3 Example code of an outdated Asset model definition

3.4.3 Asset Query and Manipulation Language

In addition to the Asset definition Language, there is also the Asset query and manipulation

language. The language offers means to query on Asset instances using the lookfor command,

creates new instances using the create command. The Asset instances can be modified by

using the modify command, it is also possible to delete the existing Asset instances using the

delete command. Each of these query and manipulation commands is available in several

constraints in order to deal with single instance or set of instances at a time. In a complex task

like the one shown below, the commands are combined.

 16

modify
 lookfor Artist {name = “Picasso”} {nationality := “Spain”}

More details can be found in [18].

3.4.4 Intermediate Asset Model

Intermediate Asset Model: The parser in the frontend produces an internal representation of

the Asset model to be translated in the form of an intermediate Asset model. Figure 4

illustrates the meta model of the intermediate Asset model. This intermediate Asset model is

passed to the generators. The intermediate model contains the following:

� AssetClass: an Asset (name, superclass, members)

� Content handle: an object managing media data

� Characteristic: a characteristic attributes

� Relationship: a relationship attribute

� Constraint: a constraint which poses value restrictions on characteristic and

relationship Attributes.

� Content handles, Characteristics, relationships, and constraints are called Members of

an Asset class.

The terms introduced above related to intermediate model are detailed in the following

paragraphs:

AssetClass has a content handle named as name of type String type String, Characteristic and

Relationship are subclasses of Attribute.

Characteristic – Characteristic is of type java.lang.Class and every Characteristic can be

assigned an initial value which is of type ObjectExpression.

Relationship: Relationship has a targetType – AssetClass and every relationship can have an

initial binding of type AssetExpression.

Constraint:

1. Constraint term: Constraint rules can be set up on Characteristics and relationships using

seven types of operators.

 17

Possible comparators in constraint expressions test for equality (“=”), lesser (“<”), greater

(“>”), different (“#”), or similar (“~”) values or bindings.

2. Compound Constraint: Compound constraint is created by combining two constraints and

AND, OR connectors.

Figure 4 Meta model of the Intermediate Asset model [3]

A detailed description of the section 3.3.1- Asset model Compiler and section 3.4- Frontend

of the model Compiler can be found in [3].

3.5 Backend of the Asset Model Compiler

There are generators for the various types of modules in the backend of the model Compiler:

client modules, transformation modules, mediation modules, distribution modules, and server

modules. The two main contributions in the backend of the model Compiler are CCM Module

API, Asset Object API and Module Generators which are discussed in the section 5.1.

 18

3.6 Typical System Architecture of Conceptual Content Management Systems

3.6.1 Components, Modules, Systems

A CCM system consists of a set of components reflecting one model each. These components

are broken down into modules. The model Compiler creates modules, which are the basis of a

domain –specific software architecture suitable for dynamic system generation [19]. The

functionality of a component is defined by a component configuration. Figure 5 illustrates

different abstraction levels of a Conceptual Content Management System. The

implementation of these different abstraction levels will be provided as shown in figure 5.

Software-Technical Unit Implementation through
Systems Components, Cooperation

Components Module, Service Interfaces
Modules Assets, Standard operations
Assets Objects, Methods
Objects Data, Standard functions

Figure 5 Abstraction levels of a Conceptual Content Management System [3]

A CCM system consists of Components. Each component can contain several modules. Each

module operates on several Assets.

3.6.2 Module Kinds – Separation of Concerns

In order to cope with the current purposes, five kinds of modules have been identified (as

already introduced in section 1.2) in a typical CCM System are given below:

� Client Modules

� Server Modules

� Distribution Modules

� Mediation Modules

� Transformation Modules

Asset Management System with typical CCMS Module kinds- Server module, mediation

module, distribution module, transformation module and a client module and the architectural

overview is illustrated in figure 6.

 19

Figure 6 Asset Management System: Typical CCMS Module Kinds and Architectural Overview [20]

3.6.3 Recombinability and Reusability of Modules

The architecture of Conceptual Content Management supports the dynamic combination of

instances of the various module kinds. These modules share some similarities with

components [21, 22] (combinability, statelessness...), but in contrast to these they are

generated for a concrete software system. Modules constitute the minimal compilation units

of the generated software which the compiler can add or replace. The architecture enables

reuse on several levels. In addition, any further description related to different levels of reuse

in software can be found in [23]. A detailed description about combinability of modules can

be found in [24].

 20

4 Design and Implementation of a Code Generator for Model

Mapping

4.1 Generator Options

All generators create code from Asset definition from one and only one Asset model.

Transformation module generator, by definition, needs to work with the Asset definition from

two Asset models.

A generator can be adapted to work with the Asset definition from two Asset models. This

can be achieved in a couple of ways. They are described below:

4.1.1 Inner Generator

An inner generator is implemented inside a generator, the main generator (or the outer

generator) works with the Asset definition from one Asset model and the inner generator

works with the Asset definition from the second Asset model.

4.1.2 Inner Compiler

A compiler runs a generator which works with the Asset definition from one Asset model. An

inner compiler is executed as a new process launched from the main compiler runtime. This

inner compiler works with the Asset definition from the second Asset model and generates the

APISymbolTable using the APIGenerator and it has a second generator to communicate the

APISymbolTable to the main compiler.

The symbol table generated by the inner compiler is communicated back to the main compiler

by using RMI in the form of a marshalling text file containing mappings for all the methods.

The size of the marshalling text file to be communicated is very big as the SymbolTable class

contains many methods, thus we have to provide all the mappings present in SymbolTable to

marshalling text file.

The complexity of this approach lies in the file size and the innumerable mappings which

have to be provided for all the methods present in SymbolTable class so that they can be

converted into marshalling text file.

 21

Inner Generator approach does not have this file communication issue as the entire involved

between two processes. With Inner Generator approach, the entire configuration for the

generator is available in a single file. With Inner Compiler approach, the configuration for the

generator is spread out across two files, which is more difficult to maintain. So, Inner

Generator is the choice of implementation for this thesis.

4.2 Generator Configuration Customization

A configuration file is used to configure the compiler framework. This file is used to specify

the scanner, parser used by the compiler. This file also lists the generators in the compiler.

This file also lists all the configuration parameters for each generator like output directory

where the output of each generator is stored.

The configuration file for the compiler is modified to accept more parameters which are

necessitated by using an inner generator. If an inner compiler were used, the configuration file

would need less parameters.

The inner generator option necessitates that we capture more parameters like the location of

the outdated Asset definition file.

4.3 Working with outdated and revised Asset models

A Compiler is run using the main method in Compiler class. An Intermediate Model is

generated from the revised Asset model definition as part of this Compiler run. The

intermediate model for the outdated Asset model definition needs to be generated when

running the schema transformation module generator. To accomplish this, an extra input

configuration parameter is used to specify the path to the outdated Asset model definition.

Another input configuration parameter is used to specify the directory of the dictionary of the

outdated Asset model definition.

The path to the outdated Asset model definition is set as the source for an ADLScanner to read

the Asset definitions and statements from. The scanner is used for generating a token stream

for an ADLParser. The ADLParser then parses the outdated Asset model definition and

generates the Intermediate Model for the outdated Asset model definition.

 22

4.4 Model Mapping Strategy / Asset Model Matching

There are various methods to compare and contrast two Asset models. The model matching

algorithm which is used to match two Asset models in this thesis work is called Matching

Model Mapper.

A program needs to be designed using which the mapping algorithm can be changed as

required or as desired. The program also needs to be flexible enough to accept newer

algorithms as they are developed. The program also should allow the algorithms to be

modified as required. These algorithms are interchangeable and any one of them can be

chosen at any given time.

A behavioral Design pattern, the Strategy [11, 12] pattern is used to design and develop a

model mapper Context in which all the mapping methods are encapsulated. The mapping

method to be used by the Transformation Module is captured as a configuration parameter.

Figure 7 illustrates the UML [25] class diagram for the Design of Model Mapper following

the Strategy pattern.

Figure 7 Design of Model Mapper following the Strategy pattern

 23

The figure 8 shown below gives a clear idea about how Attributes can evolve from an

outdated to a revised Asset models. Model matching does not consider the cases when a

characteristic changes to relationship and when a relationship changes to a characteristic in an

Asset model. All the other possible changes to Attributes are considered while Asset model

matching is done in the Model mapping Strategy of a code generator.

conversion to

from

Characteristic Relationship

no Attribute New characteristic new relationship

Characteristic another type Asset set value instead

Relationship projecting Assets on
characteristics

change class references of Assets

Figure 8 Change of Attributes in an Asset model [3]

4.4.1 New Members

New members are defined as the members, both characteristics and relationships, which are

found in the revised Asset model and which are not found in the outdated Asset model. A

characteristic found only in the revised Asset model is a new member. A relationship found

only in the revised Asset model is a new member.

To compute the new characteristics in a revised intermediate model, all the Asset classes in

outdated and revised models are collected in getNewMembers method. Each Asset class that

exists in outdated and revised model is compared for characteristics by name. If a

characteristic is found in an revised Asset class whose name does not match the name any of

the characteristics in the outdated Asset class, then this characteristic is added to a hash table

data structure whose key is the name of the Asset class.

To compute the new relationships in a revised intermediate model, all the Asset classes in

outdated and revised models are collected in getNewMembers method. Each Asset class that

exists in outdated and revised model is compared for relationships by name.

 24

If a relationship is found in an revised Asset class whose name does not match the name any

of - the relationships in the outdated Asset class, then this relationship is added to a hash table

data structure whose key is the name of the Asset class.

An example of a model written in Asset definition language is listed in figure 9. This is the

updated version of the outdated model listed in figure 3.

New members in the revised Asset model in figure 9 when compared to the outdated Asset

model in figure 3 are the following: The characteristic shortTitle in the Asset class

EquestrianStatue and characteristic placeOfBirth in the Asset class Artist

4.4.2 Unused Members

Unused members are defined as the members, both characteristics and relationships, which

are found in the outdated Asset model and which are not found in the revised Asset model. A

characteristic in the outdated Asset model found missing from the revised Asset model is an

unused member. A relationship in the outdated Asset model found missing from the revised

Asset model is an unused member.

To compute the unused characteristics in a revised intermediate model, all the Asset classes in

outdated and revised models are collected in getUnusedMembers method. Each Asset class

that exists in outdated and revised model is compared for characteristics by name. If a

characteristic is found in an outdated Asset class whose name does not match the name any of

the characteristics in the revised Asset class, then this characteristic is added to a hash table

data structure whose key is the name of the Asset class.

To compute the unused relationships in a revised intermediate mode, all the Asset classes in

outdated and revised models are collected in getUnusedMembers method. Each Asset class

that exists in outdated and revised model is compared for relationships by name. If a

relationship is found in an outdated Asset class whose name does not match the name any of

the relationships in the revised Asset class, then this relationship is added to a hash table data

structure whose key is the name of the Asset class.

Unused members in the revised Asset model in figure 9 when compared to the outdated Asset

model in figure 3 are the following: The characteristic nationality in the Asset class Artist

 25

4.4.3 Changed Members

Unused members are defined as the members, both characteristics and relationships, which

are found in the outdated Asset model and which are not found in the revised Asset model. A

change in a characteristic’s type makes a characteristic a changed member. A change in a

relationship’s cardinality makes a relationship a changed member.

To compute the changed characteristics in a revised intermediate model, all the Asset classes

in outdated and revised models are collected in getChangedMembers method. Each Asset

class that exists in outdated and revised model is compared for characteristics by name. If a

characteristic is found not to be a new member, the type of characteristic in revised class is

compared to the type of characteristic in the outdated class. If the type does not match, then

this characteristic is added to a hash table data structure whose key is the name of the Asset

class.

To compute the changed relationships in a revised intermediate model, all the Asset classes in

outdated and revised models are collected in getChangedMembers method. Each Asset class

that exists in outdated and revised model is compared for relationships by name. If a

relationship is found not to be a new member, the cardinality of relationship in revised class is

compared to the cardinality of relationship in the outdated class and the type of relationship in

revised class is compared to the type of relationship in the outdated class. If the cardinality or

type does not match, then this relationship is added to a hash table data structure whose key is

the name of the Asset class.

Changed members in the revised Asset model in figure 9 when compared to the outdated

Asset model in figure 3 are the following:

The characteristic paintedAt in the Asset class SomeEquestrianStatue because the

characteristic type changed from java.util.Date to java.util.Calendar

The characteristic registrationNo in the Asset class EquestrianStatue because the

characteristic type changed from int to long

 26

model Statue1
class SomeEquestrianStatue {
content
 image: java.awt.Image
concept
 characteristic sex: java.lang.String
 characteristic paintedAt: java.util.Calendar
 characteristic title: java.lang.String
 relationship artist: Artist*
 relationship requestBy: Ruler*
 relationship depicted: Person := self.requestBy
 }

class EquestrianStatue refines SomeEquestrianStatue {
concept
 characteristic placeOfCreation : java.lang.String
 characteristic registrationNo: long
characteristic shortTitle : java.lang.String
}
class Artist{
 concept
 characteristic name : java.lang.String
 characteristic placeOfBirth : java.lang.String
}

class Ruler{
 concept
 characteristic name : java.lang.String
}
class Person{
 concept
 characteristic name : java.lang.String
}

Figure 9 Example Code of a revised Asset model definition

4.4.4 Unchanged Members

Unchanged members are defined as the members, both characteristics and relationships,

which do not differ from outdated Asset model and to revised Asset model. A characteristic

which exists in both the outdated and revised Asset models and whose type did not change is

an unchanged member. A relationship which exists in both the outdated and revised Asset

models and whose cardinality did not change is an unchanged member.

 27

To compute the unchanged characteristics in a revised intermediate model, all the Asset

classes in outdated and revised models are collected in getUnchangedMembers method. Each

Asset class that exists in outdated and revised model is compared for characteristics by name.

If a characteristic is found not to be a new member, the type of characteristic in revised class

is compared to the type of characteristic in the outdated class. If the type matches, then this

characteristic is added to a hash table data structure whose key is the name of the Asset class.

To compute the unchanged relationships in a revised intermediate model, all the Asset classes

in outdated and revised models are collected in getUnchangedMembers method. Each Asset

class that exists in outdated and revised model is compared for relationships by name.

Unchanged members in the revised Asset model in figure 9 when compared to the outdated

Asset model in figure 3 are the following:

� The characteristic sex in the Asset class SomeEquestrianStatue

� The characteristic title in the Asset class SomeEquestrianStatue

� The relationship artist in the Asset class SomeEquestrianStatue

� The relationship requestBy in the Asset class SomeEquestrianStatue

� The relationship depicted in the Asset class SomeEquestrianStatue

� The characteristic placeOfCreation in the Asset class EquestrianStatue

� The characteristic registrationNo in the Asset class EquestrianStatue

� The characteristic name in the Asset class Artist

� The characteristic name in the Asset class Ruler

� The characteristic name in the Asset class Person

If a relationship is found not to be a new member, the cardinality of relationship in revised

class is compared to the cardinality of relationship in the outdated class and the type of

relationship in revised class is compared to the type of relationship in the outdated class. If the

cardinality and type matches, then this relationship is added to a hash table data structure

whose key is the name of the Asset class.

 28

4.5 Model Mapping Strategy

4.5.1 Matching Model Mapper

Strategy [11, 12] design pattern is followed to implement model mappers. One of the

supported algorithms is Matching Model Mapper. Matching model mapper matches two

intermediate models and computes the new, changed, unchanged and unused members.

Collections of all the Asset classes in the revised and outdated intermediate models are

created. Characteristics and Relationships of each Asset class in these collections are then

examined to determine if they are new, unused, changed or unchanged members. The member

name and the Asset class it belongs to are added to a hash table data structure. Matching

Model Mapper returns these hash table data structures as the output of the mapping methods

to compute the new, changed, unchanged and unused members.

4.5.2 Other Model Mappers

Any new implementation of a model mapper can be added easily as facilitated by the Strategy

design pattern. All model mappers need to provide implementation for four mapping methods

to compute the new, changed, unchanged and unused members.

4.6 Adapters for all Asset classes

Assets need to be converted from outdated to revised Asset model. This is achieved by

following the Adapter [11, 12] design pattern. Adapters are generated for states/roles

interface, query interface, and factory interface of the each Asset class so that they can be

used with the data from outdated Asset model.

4.7 Target Code Generation of Asset objects using Java Code Generation

Toolkit

Java code generation toolkit is used to generate all the adapters mentioned in 4.6. The

adapters are generated as Java classes and they are created in the same output folder used by

the API generator to generate the interfaces for the updated Asset model. The package name

for these adapters is the same as the package name for the updated Asset model.

 29

5. Design and Implementation of Generated Code for Adapters

5.1 CCM Module API and Asset Object API

There is one API generator which defines the Java interfaces, which has to be implemented by

every module. CCM Module API and Asset object API are already introduced in Chapter 2,

Section 2.1.3. The class diagram of different interfaces for representing the Asset life cycle is

shown in figure 10.

The getX () method in AbstractA interface is used to retrieve the current value of a

characteristic attribute defined in the concept part of an Asset model. The setX () method in

the interface AbstractMutableA is used to set the value for a characteristic attribute defined in

the concept part of an Asset model. accept () methods are defined for Asset classes which are

derived from another Asset class.

Figure 10 Class Diagram of Interfaces for illustration of Asset object life cycle. [3]

 30

State Diagram for the Asset Instance Life Cycle is illustrated in figure 11.

Figure 11 State Diagram for illustration of Asset object life cycle [6]

The state of an Asset object is changed by the following life cycle methods given below.

� lock ()

� commit ()

� abort ()

� delete ()

� store ()

If an Asset object is in locked state, it fulfils the interface MutableA which extends

AbstractMutableA and the generic interface MutableAsset. It defines methods to change state:

� commit () method is used to make changes persistent, then the Asset object is in

persistent state,

� abort () method is used to discard changes; then the Asset object is in a persistent

state, and

� delete () method is used to transfer the Asset object to volatile state.

In Java:

public interface MutableA extends AbstractMutableA, MutableB

{

 A abort () ;

 A commit () ;

 NewA delete () ;

} // interface MutableA

 31

A newly created Asset object is in volatile state, indicated by the interfaces NewA, Subtype of

AbstractMutableA and NewAsset (or NewB). This interface defines one method store () to

transfer an Asset object to persistent state.

 In Java:

public interface NewA extends AbstractMutableA, NewB

{

 A store () ;

} // interface NewA

As long as it is in volatile state the Asset object is not persistent. Instead, it resides in the main

memory only.

A detailed description about CCM Module API, Asset object API and Asset instance life
cycle can be found in [1, 4].

5.2 Adapters

Asset class definitions change as Asset models evolve over time. The interface of an Asset

class needs to be converted to match the interface of the changed Asset class. An instance of

the Adapter [11, 12] design pattern can be used to convert the interface of an outdated Asset

class to the interface of the corresponding revised Asset class.

Adapters can be of two types:

1. A new class is derived from the original class and methods are added to make the new

class conform to the original class. This is called a class adapter [12].

2. The original class is included inside the new class and methods are created to adapt to

the changes in the class. This is called an object adapter [12].

Figure 12 illustrates the Design for Generation of Transformation code following the Adapter

pattern. An Asset class Artist which is introduced in the section 3.4.2 is used in this figure.

 32

Figure 12 Design for Generation of Transformation code following the Adapter pattern

The generated adapter for an Asset class A implements the MutableA, NewA and A interfaces

generated by the API generator. Setter and getter methods are implemented for each content

type in an updated Asset class. These methods are delegated to the corresponding methods in

 33

the outdated Asset interface. The set method sets the content value only when the Asset object

is mutable.

Set and get methods are implemented for each characteristic in an updated Asset class. If the

characteristic is a new member, a logical initial value is assigned to the characteristic in the

set method. If the characteristic is a changed member, the set method is delegated to the

corresponding method in the outdated Asset interface and the input parameter is type cast to

the outdated characteristic’s type. If the characteristic is an unchanged member, the set

method is delegated to the corresponding method in the outdated Asset interface with the

unchanged member as the input parameter. The set method sets the value of the characteristic

only when the Asset object is mutable.

If the characteristic is a new member, a logical initial value is returned in the get method. If

the characteristic is a changed member, the get method is delegated to the corresponding

method in the outdated Asset interface and the output is type cast to the updated

characteristic’s type when returning the value. If the characteristic is an unchanged member,

the get method is delegated to the corresponding method in the outdated Asset interface.

Set and get methods are implemented for each one to one relationship in an updated Asset

class. If the relationship is a new member, a logical initial value is assigned to the relationship

in the set method. If the relationship is a changed member, the set method is delegated to the

corresponding method in the outdated Asset interface and the input parameter is type cast to

the outdated relationship’s type. If the relationship is an unchanged member, the set method is

delegated to the corresponding method in the outdated Asset interface with the unchanged

member as the input parameter. The set method sets the value of the relationship only when

the Asset object is mutable.

If the relationship is a new member, a logical initial value is returned in the get method. If the

relationship is a changed member, the get method is delegated to the corresponding method in

the outdated Asset interface and the output is type cast to the updated relationship’s type when

returning the value. If the relationship is an unchanged member, the get method is delegated

to the corresponding method in the outdated Asset interface.

 34

Has, add and remove methods are implemented for each one to many relationship in an

updated Asset class. If the relationship is a new member, the has method is not delegated to

the outdated Asset class. If the relationship is an unchanged or changed member, the has

method is delegated to the corresponding method in the outdated Asset interface and the input

parameter is type cast where required.

If the relationship is a new member, a logical initial value is assigned to the relationship in the

add method. If the relationship is a new member, the add method is not delegated to the

outdated Asset class. If the relationship is an unchanged or changed member, the add method

is delegated to the corresponding method in the outdated Asset interface and the input

parameter is type cast where required. The add method adds a relationship only when the

Asset object is mutable.

If the relationship is a new member, a logical initial value is assigned to the relationship in the

remove method. If the relationship is a new member, the remove method is not delegated to

the outdated Asset class. If the relationship is an unchanged or changed member, the remove

method is delegated to the corresponding method in the outdated Asset interface and the input

parameter is type cast where required. The remove method removes a relationship only when

the Asset object is mutable.

The implementation for all the other methods that need to be implemented for this class is

provided by delegating to the outdated Asset class.

5.3 Factories

Object Adapter Design pattern is followed for designing an adapter for Factory class. Adapted

Factory classes are generated to initialize any new members are added to an Asset class in the

revised Asset model definition when compared to the outdated Asset model definition.

A factory adapter is generated for all Asset classes which has at least one subclass. The

implementation for all the required methods that need to be implemented for this class is

provided by delegating to the outdated Asset class. A create method is generated for each sub

Asset class of the current Asset class.

 35

5.4 Iterators

Object Adapter Design pattern is followed for designing an adapted Iterator class. Adapted

Iterator classes for sets of objects are generated to return Adapter objects instead of the plain

objects supplied by an underlying Iterator.

An iterator adapter is generated for all Asset classes. The implementation for all the required

methods that need to be implemented for this class is provided by delegating to the outdated

Asset class. The methods hasNext, next, remove, nextAsset, getLength, nextA are generated

for each Asset class A and the implementation for these methods is provided by delegating to

the outdated Asset class. A couple of constructors are also implemented in this adapter.

5.5 Query Objects

Object Adapter Design pattern is followed for designing an adapted Query class. Adapted

Query classes are generated to remove constraints to any unused members found in the

revised Asset model definition when compared to the outdated Asset model definition.

A query adapter is generated for all Asset classes. Seven methods – Equal, NotEqual,

LessThan, LessOrEqual, GreaterThan, GreaterOrEqual, and Similar - are implemented for

each characteristic in an updated Asset class. An overloaded method for each of these seven

methods is also implemented by the adapter. If the characteristic is a new member, the method

is not delegated to the outdated Asset class. If the characteristic is a changed member, the

method is delegated to the corresponding method in the outdated Asset interface and the input

parameter is type cast to the outdated characteristic’s type. If the characteristic is an

unchanged member, the method is delegated to the corresponding method in the outdated

Asset interface with the unchanged member as the input parameter.

Seven methods – Equal, NotEqual, LessThan, LessOrEqual, GreaterThan, GreaterOrEqual,

and Similar - are implemented for each relationship in an updated Asset class. An overloaded

method for each of these seven methods is also implemented by the adapter. If the

relationship is a new member, the method is not delegated to the outdated Asset class. If the

relationship is a changed member, the method is delegated to the corresponding method in the

outdated Asset interface and the input parameter is type cast to the outdated relationship’s

type. If the relationship is an unchanged member, the method is delegated to the

 36

corresponding method in the outdated Asset interface with the unchanged member as the

input parameter.

A constraint on newly introduced attributes is checked against the default value for the

corresponding attribute. If the default value matches the constraint, then the usual logical rules

can be applied. An empty result set is returned for un-satisfiable query constraints.

5.6 Visitors

The implementation of Visitors is done following the procedure explained below:

� The interface AbstractA generated for an Asset class A in the Asset model defines an

accept method which has to be implemented in all the subclasses of Asset class A.

� For Asset classes with no explicit base classes in the Asset model, a visit method is

added to the generic interface de.tuhh.sts.model.AssetVisitor and the accept method is

defined accordingly.

Referring to the outdated and revised Asset model definitions illustrated in figure 3 and figure

9 respectively we have the following Asset Classes:

SomeEquestrianStatue, EquestrianStatue, FemaleEquestrianStatue, MaleEquestrianStatue,

Artist, Ruler and Person.

Therefore, the interface AbstractSomeEquestrianStatue generated for an Asset class

SomeEquestrianStatue in the Asset model Statue defines an accept method which has to be

implemented in the subclass of SomeEquestrainStatue i.e., Asset class EquestrianStatue.

Similarly the interface EquestrianStatue generated for an Asset class EquestrianStatue in the

Asset model Statue defines and accept method which has to be implemented in the subclasses

of EquestrianStatue i.e., Asset classes FemaleEquestrianStatue and MaleEquestrianStatue.

Finally, for Asset classes Artist, Ruler and Person which do not have any explicit base classes

in the Asset model Statue, a visit method is added to the generic interface

de.tuhh.sts.Statue.AssetVisitor and the accept method is defined accordingly.

 37

5.7 Inventing Initial Values

When a new member is added to an Asset class in the revised Asset model definition, the

member needs to be initialized with a relevant value. If initial values are not supplied, there

are three possible choices to choose from as follows:

� Produce an error

� Use zero for integers, null for objects and false for Boolean variables.

� Use arbitrary values for characteristics and arbitrary bindings for relationships.

The generated adapters use zero to initialize new members whose type is primitive integer,

null to initialize new members whose type is java.lang.Object, and false to initialize new

members whose type is Boolean. A null value is set as the binding for new relationships in the

generated adapters. The cases mentioned just now are just few specific cases for which new

members can be of type primitive integer or java.lang.Object or Boolean and there can be

many other cases conceptually, depending on the type of the each member of an Asset class

that can be present in the Asset model definition.

5.8 Content handles

Implementation for Content handles is provided to handle media data in the content part of an

Asset model definition.

Set and get methods are implemented for each content in an updated Asset class. The set

method is delegated to the corresponding method in the outdated Asset interface with the

unchanged member as the input parameter. The set method sets the value of the content only

when the Asset object is mutable. The get method is delegated to the corresponding method in

the outdated Asset interface.

5.9 Module class

Module class is created by a Component according to its configuration. A module has to

provide a default constructor for its creation. A new module instance is initialized by a call to

init (Component, String, Map). Init method is used to get hold of parameters that are required

 38

in the start method. During its lifetime, the module class should be activated and deactivated

by calls to start () and stop () methods. A module instance should allocate and free resources

accordingly.

5.10 Target Code Generation of Complete module using Java Code Generation

toolkit

Target code for complete module i.e., Asset classes are generated using Java Code Generation

toolkit according to the definitions in the revised API symbol table. To reflect the actual Java

code instances of a symbol table for the schema transformation module have to be filled.

The Java Code Generation Toolkit enables convenient code production by programs. It offers

classes comparable to those found in the package java.lang.reflect of the standard Java

libraries [26]. In contrast to those the toolkit allows to manipulate and create classes.

The symbol table generated for the schema transformation module is a data structure which

stores all the information regarding the schema matching results of the outdated and revised

Asset models generated by the model mapper and the outdated and revised intermediate

models, and the symbol table also stores all the generated Adapters which are generated by

the transformation module.

Therefore, all other modules of Conceptual Content Management System can obtain any

necessary information related to schema matching results generated by the model mapper and

also about the Adapters generated by the schema transformation module from the schema

transformation module symbol table.

 39

6. Evaluation

6.1 Test Cases

6.1.1 GKNS as a test application

Geschichte der Kunstgeschichte im Nationalsozialismus (GKNS) [27] web application is

developed using Conceptual Content Management. The usage of this application when the

Asset model for this application evolves is a use case for transformation module generator.

When the Asset model used for GKNS is redefined, transformation module is used to generate

the required adapters which convert the Asset classes from outdated model to Asset classes of

the updated model.

6.1.2 Another sample test application

Figure 8 lists all the possible ways in which an attribute can evolve in an Asset model. An

updated Asset model is defined for an outdated Asset model which will have all the

possibilites listed in figure 9. The updated Asset model is listed in figure 9 and the outdated

Asset model is listed in figure 3.

Transformation module generator is run on these two models and the generated adapters are

verified manually for accuracy of results.

6.2 Results

6.2.1 Results for GKNS as a test application

The results of the generated Adapters for the use case GKNS web application are not listed in

the report due to space restrictions.

6.2.2 Results for sample test application

The list of generated adapters for the sample test application mentioned in Section 6.1.2 is

ArtistAdapter: The characteristic placeOfBirth is a new member and the characteristic name

in the Asset class Artist is an unchanged member. Selected parts of the generated adapter code

are listed in figure 13 – the code for an unchanged attribute and for a new attribute is listed

 40

here. Set and get methods are verified for placeOfBirth and name characteristics in this

adapter. It is also verified that placeOfBirth has a default initial value. The generated code is

verified for the implementation details explained in Section 5.2.

// generated by the generator

(de.tuhh.sts.cocoma.compiler.generators.ex.TransformationModuleGenerator)

// (C) 2005-2006 STS

package de.tuhh.sts.statue1;

public class ArtistAdapter extends java.lang.Object implements

 de.tuhh.sts.statue1.Artist, de.tuhh.sts.statue1.MutableArtist,

 de.tuhh.sts.statue1.NewArtist {

 private de.tuhh.sts.statue.AbstractArtist delegate;

 …

 public void setName(java.lang.String name) {

 final java.lang.String namefinal = name;

 java.lang.Object e = delegate

 .accept(new de.tuhh.sts.cocoma.generic.LifeCycleVisitor() {

 public java.lang.Object visit(de.tuhh.sts.statue1.Artist a)

 {

 return new java.lang.IllegalStateException(

 "Delegate is not mutable!");

 }

 public java.lang.Object visit(

 de.tuhh.sts.statue1.MutableArtist m) {

 m.setName(namefinal);

 return null;

 }

 public java.lang.Object visit(

 de.tuhh.sts.statue1.NewArtist n) {

 n.setName(namefinal);

 return null;

 }

 41

 private void setName(de.tuhh.sts.statue.AbstractArtist a)

 {

 ((de.tuhh.sts.statue.AbstractMutableArtist) a)

 .setName(namefinal);

 }

 public java.lang.Object visit(

 de.tuhh.sts.cocoma.generic.Asset a) {

 return null;

 }

 public java.lang.Object visit(

 de.tuhh.sts.cocoma.generic.NewAsset n) {

 return null;

 }

 public java.lang.Object visit(

 de.tuhh.sts.cocoma.generic.MutableAsset

m) {

 return null;

 }

 });

 if (e != null)

 throw new java.lang.IllegalStateException(

 "Delegate is not mutable!");

 }

 public java.lang.String getName() {

 return delegate.getName();

 }

 public void setPlaceOfBirth(java.lang.String placeOfBirth) {

 }

 42

public java.lang.String getPlaceOfBirth() {

 return "";

 }

 …

}

Figure 13 Generated Java code for ArtistAdapter

ArtistIteratorAdapter: The characteristic placeOfBirth is a new member and the characteristic

name in the Asset class Artist is an unchanged member. Selected parts of the generated

iterator adapter code are listed in figure 14. The generated code is verified for the

implementation details explained in Section 5.4.

// generated by the generator

(de.tuhh.sts.cocoma.compiler.generators.ex.TransformationModuleGenerator)

// (C) 2005-2006 STS

package de.tuhh.sts.statue1;

public class ArtistIteratorAdapter extends java.lang.Object implements

 de.tuhh.sts.statue1.ArtistIterator {

 private de.tuhh.sts.statue.ArtistIterator iter;

 …

 public de.tuhh.sts.cocoma.generic.AbstractAsset nextAsset() {

 return new de.tuhh.sts.statue1.ArtistAdapter();

 }

 public int getLength() {

 return iter.getLength();

 }

 public de.tuhh.sts.statue1.AbstractArtist nextArtist() {

 return new de.tuhh.sts.statue1.ArtistAdapter();

 }

}

Figure 14 Generated Java code for ArtistIteratorAdapter

 43

ArtistQueryAdapter: The characteristic placeOfBirth is a new member and the characteristic

name in the Asset class Artist is an unchanged member. Selected parts of the generated query

adapter code are listed in figure 15 – the code for an unchanged attribute is listed here. The

generated code is verified for the presence and correct implementation of Equal, NotEqual,

LessThan, LessOrEqual, GreaterThan, GreaterOrEqual, and Similar methods for all

characteristics and relationships as explained in Section 5.5.

// generated by the generator

(de.tuhh.sts.cocoma.compiler.generators.ex.TransformationModuleGenerator)

// (C) 2005-2006 STS

package de.tuhh.sts.statue1;

public class ArtistQueryAdapter extends java.lang.Object {

 private de.tuhh.sts.statue.ArtistQuery delegate;

 private boolean isFalsification;

 …

 public void constrainNameEqual(java.lang.String name) {

 if (!this.equals(name))

 isFalsification = true;

 }

 public void constrainNameEqual(java.lang.String name, byte connector) {

 boolean match = this.equals(name);

 if (match && (connector == 2))

 isFalsification = false;

 else if (!(match && (connector == 1)))

 isFalsification = true;

 }

 …

 public de.tuhh.sts.statue1.ArtistIterator execute() {

 if (isFalsification == true)

 return (de.tuhh.sts.statue1.ArtistIterator) delegate.execute();

 44

 else

 return (de.tuhh.sts.statue1.ArtistIterator) delegate.execute();

 }

}

Figure 15 Generated Java code for ArtistQueryAdapter

EquestrianStatueAdapter

EquestrianStatueFactoryAdapter: Factory adapters are generated for Asset classes with sub

classes. Selected parts of the generated factory adapter code are listed in figure 16. The

generated code is verified for the implementation details explained in Section 5.3.

// generated by the generator

(de.tuhh.sts.cocoma.compiler.generators.ex.TransformationModuleGenerator)

// (C) 2005-2006 STS

package de.tuhh.sts.statue1;

public class EquestrianStatueFactoryAdapter extends java.lang.Object implements

 de.tuhh.sts.statue1.EquestrianStatueFactory {

 public de.tuhh.sts.statue1.NewMaleEquestrianStatue createMaleEquestrianStatue() {

 return new de.tuhh.sts.statue1.MaleEquestrianStatueAdapter();

 }

 public de.tuhh.sts.statue1.NewFemaleEquestrianStatue

createFemaleEquestrianStatue() {

 return new de.tuhh.sts.statue1.FemaleEquestrianStatueAdapter();

 }

}

Figure 16 Generated Java code for EquestrianStatueFactoryAdapter

� EquestrianStatueIteratorAdapter

� EquestrianStatueQueryAdapter

� FemaleEquestrianStatueAdapter

� FemaleEquestrianStatueIteratorAdapter

� FemaleEquestrianStatueQueryAdapter

 45

� MaleEquestrianStatueAdapter

� MaleEquestrianStatueIteratorAdapter

� MaleEquestrianStatueQueryAdapter

� PersonAdapter

� PersonIteratorAdapter

� PersonQueryAdapter

� RulerAdapter

� RulerIteratorAdapter

� RulerQueryAdapter

� SomeEquestrianStatueAdapter

� SomeEquestrianStatueFactoryAdapter

� SomeEquestrianStatueIteratorAdapter

� SomeEquestrianStatueQueryAdapter

All of these adapters listed above are verified for compilation errors and then accuracy of the

generated methods and their implementation.

 46

7. Summary and Future Work

7.1 Summary

The dynamics property of CCMSs necessitates that the systems have to evolve continuously

during their life cycle. Models evolve during their lifetime and the dynamics property of

CCMSs will help address this evolution. Users can redefine their Asset model because of the

openness property of the model. Model Personalization allows the adaptation of data and its

representation. Personalization feature of only data is considered in this thesis work.

Schema transformation modules facilitate the communication between incompatible systems

with different Asset models. The Schema transformation module generator computes the

differences between outdated and revised Asset models using Asset model matching.

The source code for the outdated and revised Asset models is written in Asset definition

language. Asset model matching is done to compute the model changes between outdated and

revised Asset models. The model mapper is designed following the Strategy pattern. The

model mapper computes the differences by matching classes and members by name. A

matching model mapper is implemented in the model mapper. Other implementations of

model mapping can be added to this model mapper.

Interfaces of classes need to be adapted to address the changes in an Asset model. The Object

Adapter pattern is followed to design the required Adapters. Adapters are generated to adapt

an outdated Asset model to the revised Asset model.

Java code generation toolkit is used to generate query objects, factories and iterators for all

the Asset classes in a model. When a new member is added to an Asset class, the member

needs to be initialized with a relevant value. For this purpose, initial values are invented for

new members.

Target code is generated in Java, for the full module according to the definitions in the target

symbol table and transformation symbol table instances are filled.

 47

7.2 Usefulness of the Schema Transformation Module Generator

Schema transformation module generator developed in this thesis work has the following

uses:

� Schema transformation module is used for dynamic model evolution and model

personalization. When models evolve, the existing Assets should be adapted to work

with the revised Asset model.

� Schema transformation module is used for transforming an outdated Asset model to a

revised Asset model.

� Schema transformation module is used to provide rights control access to a private

Asset model.

7.3 Future Work

In future developments, Asset model matching can be done by implementing any of the

matching algorithms i.e., explicit model mapper or interactive model mapper or any other new

matching algorithm. The advantage of the model mapper that is designed using the Strategy

pattern lies in the fact that it is designed in such a way as to support any number of matching

algorithms that might be developed in the future for computing the Asset model matching.

Referring to the figure 8, Asset model matching can be extended in future, to other cases i.e.,

when a characteristic changes to relationship and also when a relationship changes to a

characteristic in an Asset model.

 48

References

[1] Ernst Cassirer. Die Sprache, Das mythische Denken, Ph¨anomenologie der Erkenntnis,

volume 11-13 Philosophie der symbolischen Formen of Gesammelte Werke. Felix Meiner

Verlag GmbH, Hamburger Ausgabe edition, 2001-2002.

[2] Donald Verene, editor. Ernst Cassirer: Symbol, Myth, and Culture. Essays and Lectures

of Ernst Cassirer 1935-1945. Yale University Press, 1979.

[3] Hans-Werner Sehring.: Konzeptorientierte Inhaltsverwalting:Modell, Systemarchitektur

und Prototypen. Doctoral thesis, Technische Universität Hamburg-Harburg, 2004.

[4] Giorgio De Michelis, Eric Dubois, Matthias Jarke, Florian Matthes, John Mylopoulos,

Joachim W. Schmidt, Carson Woo, and Eric Yu. A Three-Faceted View of Information

Systems. Communications of the ACM, 41(12):64–70, 1998.

[5] P. Dourish and V. Bellotti. Awareness and Coordination in Shared Workspaces. In

Proceedings of ACM CSCW 92 Conference on Computer-Supported Work, pages 107–114,

1992.

[6] Hans-Werner Sehring and Joachim W.Schmidt: Beyond Databases: An Asset Language

for Conceptual Content Management. In: András Benczúr, János Demetrovics, and Georg

Gottlob (editors), Proceedings of the 8th East European Conference on Advances in

Databases and Information Systems, ADBIS 2004, Budapest, Hungary, September 22-25,

volume 3255 of Lecture Notes in Computer Science, pp. 99-112. Springer-Verlag, 2004.

[7] Wiederhold G.: Mediators in the Architecture of Future Information Systems. IEEE

Computer, 25:38–49, 1992.

[8] Sebastian Bossung, Hans-Werner Sehring, and Joachim W. Schmidt. Conceptual Content

Management for Enterprise Web Services. In Jacky Akoka, Stephen W. Liddle, Il-Yeol

Songand Michela Bertolottoand Isabelle Comyn-Wattiau, Willem-Jan vanden Heuvel,

Manuel Kolp, Juan Trujillo, Christian Kop, and Heinrich C. Mayr, editors, Perspectives in

Conceptual Modeling: ER 2005 Workshops CAOIS, BP-UML, CoMoGIS, eCOMO, and QoIS,

 49

volume 3770 / 2005 of Lecture Notes in Computer Science, pages 343 – 353. Springer-Verlag,

2005.

[9] Hans-Werner Sehring: COCoMaS Module API: http://www.sts.tu-

harburg.de/~hw.sehring/cocoma/projs/api/Module_API.pdf , 2004.

[10] Matteo M., Nikos R., Peter M.B., Danilo M.: Schema Integration Based on Uncertain

Semantic Mappings. Conceptual Modelling – ER 2005. In proceedings of 24th International

conference on Conceptual Modelling, pages 31-46, Klagenfurt, Austria, October 24-28, 2005.

[11] Erich Gamma, Richard Helm, Ralph Johnson, John Vilsides: Design Patterns: Elements

of Reusable Object-Oriented Software, Addison-Wesley Professional, 1995.

[12] James W. Cooper: Java Design Patterns, A Tutorial, Addison-Wesley Professional, 2000.

[13] C.S. Peirce. Collected Papers of Charles Sanders Peirce. Harvard University Press,

Cambridge, 1931.

[14] Yannis Smaragdakis, Shan Shan Huang, and David Zook. Program Generators and the

Tools to Make Them. In PEPM ’04: Proceedings of the 2004 ACM SIGPLAN Symposium on

Partial Evaluation and Semantics-based Program Manipulation, pages 92–100. ACM Press,

2004.

[15]. Alfred V.Aho, Ravi Sethi, Jeffrey D.Ullman: Compilers: principles, techniques, and

tools, Addison-Wesley Publishing Company, 1986

[16] Terence Parr, http://www.cs.usfca.edu/~parrt/course/652/lectures/antlr.html , 2006

[17] Marcus A., Ivan P.: A Relation Between Context-Free Grammars and Meta Object

Facility Metamodels, 2003

 [18] Martin Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer

Science. Springer-Verlag New York, Inc., 1996.

 50

[19] Sharon Andrews White and C. Lemus. Architecture Reuse Through a Domain Specific

Language Generator. In Proceedings of the Eighth Workshop on Institutionalizing Software

Reuse, 1997.

[20] Joachim W. Schmidt and Hans-Werner Sehring: Conceptual Content Modelling and

Management. In: Manfred Broy and Alexandre V. Zamulin (editors), Perspectives of System

informatics, volume 2890 of Lecture notes in Computer Science, pp. 469-493. Springer-

Verlag,2003.

[21] U. Aßmann. Invasive Software Composition. Springer-Verlag, 2003.

[22] C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-

Wesley, 1998.

[23] Ted J. Biggerstaff. A Perspective of Generative Reuse. Ann. Software Eng., 5:169–226,

1998.

[24] Sebastian Bossung, Hans-Werner Sehring, Michael Skusa, and Joachim W. Schmidt:

Conceptual Content Management for Software Engineering Processes. Advances in Databases

and Information Systems. In proceedings of 9th East European Conference, ADBIS 2005,

pages 309-323, Tallinn, Estonia, September 12-15, 2005.

[25] Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling User Guide,

Addison-Wesley, 1999.

[26] Java 2 5.0 API, http://java.sun.com/j2se/1.5.0/docs/api/index.html , 2006.

[27] Geschichte der Kunstgeschichte im Nationalsozialismus, http://www.welib.de/gkns/

 51

Appendix

Glossary

Adapter Pattern. Used to convert the interface of a class into another interface clients

expect. Adapter lets classes work together that could not otherwise because of incompatible

interfaces.

ANTLR Another Tool for Language Recognition. It is a language tool that provides a

framework for constructing recognizers, compilers, and translators from grammatical

descriptions containing Java, C#, C++, or Python actions.

AST Abstract Syntax Tree. A syntax tree in which each node represents an operator and the

children of the node represent the operands and it is a useful starting point for thinking about

the translation of an input string.

Compiler. Is a program that reads a program written in one language – the source language

and translates it into an equivalent program in another language – the target language.

Design Pattern. Design patterns constitute a set of rules describing how to accomplish certain

tasks in the realm of software development.

EBNF Extended Backus Naur Form. It is an extension of the basic Backus–Naur form (BNF)

metasyntax notation. The most commonly used variants of EBNF are currently defined by

standards, most notably ISO-14977.

Factory Method Pattern. Used to provide an interface for creating families of related or

dependent objects without specifying their concrete classes.

Intermediate code. It is an explicit intermediate representation of the source program

generated by some compilers after syntax and semantic analysis in the front end of the

compiler.

Iterator Pattern. Used to provide a way to access the elements of an aggregate object

sequentially without exposing its underlying representation.

 52

Lexer (Lexical analyzer). The stream of characters making up the source program is read

from left-to-right and grouped into tokens that are sequences of characters having a collective

meaning.

Metaprogramming. Metaprogramming is the writing of programs that write or manipulate

other programs (or themselves) as their data or that do part of the work that is otherwise done

at compile time during runtime. In many cases, this allows programmers to get more done in

the same amount of time as they would take to write all the code manually.

Parser (Syntax analyzer). It involves grouping the tokens of the source program into

grammatical phrases that are used by the compiler to synthesize output.

Strategy Pattern. Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from clients that use it.

Symbol table. It is a data structure containing the record of each identifier, with fields for the

attributes of the identifier. The data structure allows us to find the record for each identifier

quickly and to store or retrieve data from that record quickly.

Top-down Parser (LL Parser). The top-down construction of a parse tree is done by starting

with the root, labeled with the starting nonterminal, and repeatedly performing the following

two steps:

1. At node n, labeled with nonterminal A, select one of the productions for A and construct

children at n for the symbols on the right side of the production.

2. Find the next node at which a subtree is to be constructed.

Tree parser. It is used for navigation through nodes in parse trees.

Visitor Pattern. Represent an operation to be performed on the elements of an object

structure. Visitor lets you define a new operation without changing the classes of the elements

on which it operates.

