
Generation of Web Service
Descriptions and Web Service

Module Implementation for
Concept-oriented Content

Management Systems

submitted for the thesis defense
to attain the Bachelor Degree of

Information Technologies
by

Patrick Un

supervised by
Prof. Dr. Joachim W. Schmidt

Dr. Hans-Werner Sehring

Hamburg University of Science and Technology
Software Systems Institute (STS)

Abstract

Nowadays web services belong to the promising technologies that facilitate the com-
munication and interaction between heterogeneous computing platforms. When it
comes to providing a communication facility for a concept-oriented content manage-
ment system with another system on a different computing platform, there is a need
to define a communication interface and a set of communication protocols that are
used by both systems in order to initiate the communication. A web services endpoint
communication interface utilizes the standardized SOAP protocol and XML messages
to exchange information between web services participants. Web services have many
advantages such as the adoption of a standardized communication protocol, an open
standard of message encoding, and ensuring low-coupling between the service provider
and the service consumer. Consequently, there is the motivation of providing a web
services module to the concept-oriented content management systems. This work
surveys web services provision for concept-oriented content management systems as
well as describes some of the design and implementation issues during the realization
of the web services module.

ii

Declaration

I declare that:
this work has been prepared by myself,
all literal or content based quotations are clearly pointed out,
and no other sources or aids than the declared ones have been used.

Hamburg, submitted on: 14th, November 2006
Patrick Wai Un

Acknowledgement
I would like to thank Prof. Joachim W. Schmidt of STS for supervising this thesis.
I would like also to thank Dr. Hans-Werner Sehring and Sebastian Bossung for pro-
viding helpful guidance and experienced advices for my thesis. In chapter two, some
of the illustrations are reproduced from the doctoral thesis work of Dr. Hans-Werner
Sehring, used with his kind permission. Credits of the illustrations are attributed to
Dr. Hans-Werner Sehring who will retain all the rights on the illustrations

dedicated to my parents, for their endless love.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Communication beyond Content Management Systems 2
1.1.2 Rationale for Web Services Adoption 2

1.2 Server Module Design Objectives . 4
1.2.1 General Web Services Provision 4
1.2.2 Server Modules as Web Services Endpoints 4

1.3 Structure of the Thesis . 5

2 Concept-oriented Content Management 7
2.1 Concept-oriented Content Management Systems — CCMSs 7

2.1.1 Assets — the Building Blocks of CCMSs 8
2.1.2 Definition of Assets . 9
2.1.3 Manipulation of Asset Instances 10
2.1.4 Querying Asset Instances . 11

2.2 The CCMS Compiler Framework . 13
2.2.1 Overview of the Asset Language Compiler 13
2.2.2 Compiler Frontend . 13
2.2.3 Compiler Backend . 13
2.2.4 Dynamic System Creation . 14

2.3 CCMS Component Architecture . 15
2.3.1 Overview of the CCMS Component Architecture 15
2.3.2 Component Implementation of CCMSs 15
2.3.3 Modularization . 16
2.3.4 Configurability of Modules . 16
2.3.5 Epilogue on Web Services Server Module 18

3 Web Services 21
3.1 Fundamentals of Web Services . 21

3.1.1 Defining Web Services . 21
3.1.2 Benefits of Web Services . 28
3.1.3 Development and Challenges 28
3.1.4 Web Services Protocol . 33

3.2 Web Services Server Module Endpoint Requirements 36
3.2.1 Generation of Web Services Description 37
3.2.2 Functional Requirements of a Server Module 38
3.2.3 Functional Requirements of Web Technologies 38
3.2.4 Non-functional Requirements 40

3.3 Web Services Technologies Survey . 41
3.3.1 Java based Web Services Technologies 41

CONTENTS vi

4 WSDL Generator and Web Services Modules Design 43
4.1 Web Services Interface Description — WSDL 43

4.1.1 Mapping the Module Interface to WSDL 46
4.1.2 Modeling Generic Asset Types with XML Schema 47
4.1.3 Generation of XML Schema Definitions 54

4.2 WSDL Generator . 55
4.2.1 Design Overview . 55
4.2.2 Generator Software Architecture 57
4.2.3 Internal Design . 57

4.3 Web Services Endpoint Design . 59
4.3.1 Architectural Overview . 59
4.3.2 The AXIS Framework . 61
4.3.3 Web Services Endpoint Design Approaches 64
4.3.4 HTTP Server and Embedded Web Container 67

5 Implementation of the WSDL Generator and Web Services Module 71
5.1 WSDL Generator . 71

5.1.1 Generator Classes . 71
5.1.2 Methods Implementations . 73
5.1.3 Configuration of the WSDL Generator 73

5.2 AXIS Framework Integration . 75
5.2.1 Setup and Configuration . 75
5.2.2 Generation of Service Implementations from WSDL 78
5.2.3 Service Deployment in J2EE Servlet Container 78

5.3 Server Module . 78
5.3.1 Server Module Configuration 78
5.3.2 Configuration of Embedded Servlet Container — Jetty 79
5.3.3 Module Initialization and Modification 79

6 Summary and Outlook 83
6.1 Conclusion and Assessments . 83
6.2 Outlook . 84

A XML Schema of Generic Types 89

B XML Schema Generator Configurations 94

C WSDL Generator Configuration 96

D WSDL Document of Server Module 98

E Code Excerpt 105

F Class Diagrams 109

List of Figures

1.1 CCMS module types . 3

2.1 Asset entity modeling in concept-content pair 8
2.2 States of asset lifecycle and state transitions 14
2.3 Components configuration of the CCMS component architecture . . . 18
2.4 Component implementation with modules 19
2.5 Generic object and module interface of asset modules 19

3.1 Service oriented architecture triangle 23
3.2 SOA triangle with service bus . 24
3.3 Structural parts of a WSDL document 25
3.4 The abstract SOA stack overview . 27
3.5 The SOA stack implementing the web services architecture 31
3.6 Structure of a SOAP message . 34
3.7 Use case analysis . 37
3.8 JSE web service deployment using servlet delegation 39
3.9 Web services endpoint deployed with a stateless EJB component . . . 40

4.1 Asset type inheritance . 55
4.2 Class diagram of the WSDL generator and the symbol table 56
4.3 Generators dependency among one another 58
4.4 Class diagram of the strategy pattern 58
4.5 Class diagram of WSDLAttribute and WSDLElement 59
4.6 Class diagram of WSDLElement with WSDLAttribute 60
4.7 System architecture of AXIS . 62
4.8 AXIS JWS deployment . 63
4.9 Server module design approach 1: proprietary HTTP and SOAP com-

ponent . 64
4.10 UML deployment diagram of approach 1 65
4.11 Server module design approach 2: externalization of communication

component . 66
4.12 UML deployment diagram of approach 2 67
4.13 Server module design approach 3: parallel component in local context 68
4.14 UML deployment diagram of approach 3 68
4.15 Server module design approach 4: embedded servlet container 69
4.16 UML deployment diagram of approach 4 69

F.1 ALD2WSDLGenerator and ALD2WSDLGeneratorSymbolTable 110
F.2 WSDL generator classes Part1 . 111
F.3 WSDL generator classes Part2 . 112

List of Tables

2.1 Types of modules of CCMSs . 17

3.1 Top level elements of a WSDL document 26
3.2 Web services benefits . 29
3.3 Mapping of generic module elements to WSDL elements 38

4.1 Asset methods exposed in the web service interface definition 45
4.2 WSDL generator Java packages listing 61

5.1 Summary of classes of the WSDL generator 74

LIST OF TABLES ix

Chapter 1

Introduction

Modern computing platforms are diversely constructed and heterogeneously struc-
tured. The need for communication between these platforms for the purpose of
exchanging information has always been the focus of computing research efforts.
Web services are the cornerstone of recent distributed system design representing
distributed systems with advanced design and sophisticated implementation. Web
services are based on open standards such as XML and SOAP. Web services in-
teract with other distributed applications, usually within the web-tier to exchange
information in a stateless and loosely coupled manner.

Some of the advantages of the web services approach are:

1. adopting widely used open standard protocols,

2. interoperating between heterogeneous platforms,

3. loose coupling of systems,

4. integrating available legacy systems.

Ever since the inception of modern computing as an engineering discipline, com-
puter scientists and engineers have been working on similar approaches to handle
cross-platform interoperable communication, with cases of moderate success occasion-
ally. Some of the emerged technologies which are mainly deployed in the enterprise
environments are RMI mechanism of the Java enterprise platform or the CORBA
broker architecture of the Object Management Group. These server side enterprise
technologies have been deployed in many legacy enterprise systems; occasionally still
used by the developer communities when it comes to integrating legacy systems or
tightly coupled systems.

Although such forms of communication patterns have been successfully deployed in
many enterprise environments, there is a need for system to exchange information in a
more decoupled way. System designers have come up with web services which feature
more lightweight communication components that are designed with interoperability
in mind and are not solely bound to one specific computing platform.

1.1 Motivation

The need for concept-oriented content management systems – CCMSs [Seh04, SS03]
to perform remote operations on other similar systems over the network has led to
the development of components that can handle network communication over time.
In order to perform operations over the network on remote content management
systems, a server module can be installed as a network communication entry point to
the underlying content management subsystem whose operations are exposed via the

2 Introduction

interface of the server module to remote client systems. This motivation of service
provision is described in section 1.1.1. Section 1.1.2 explains the rationale for adopting
the web services approach in constructing the server module network interface.

1.1.1 Communication beyond Content Management Systems

Concept-oriented content management systems [Seh04] must exchange information
within its component software structure via local messages being passed among com-
ponents or via local method invocations. Moreover, the systems must also interact
and handle communication with remote instances of components that reside in a dif-
ferent secluded runtime context; that means one content management system will
need to exchange information on a broad basis with another content management
system. Consequently, concept-oriented content management systems have to device
the afore mentioned server module as a network service component to handle the
communication beyond the local context.

A CCMS underlies a component software architecture in order to facilitate soft-
ware reuse on the component level. Instances of the CCMS software components are
called modules. These modules have a common interface called the module inter-
face which has a fixed number of identical interface methods. These methods can be
invoked by another module in order to perform operations on the module. Module
communication takes the form of method invocation in standardized unified module
interface in order to guarantee the best interoperability and configuration flexibility
between different modules. The main idea here is to allow the modules to interact
with each other solely using a general and unified interface protocol that will remain
identical across all types of modules of the systems. There are these following types
of modules:

1. client module

2. transformation module

3. distribution module

4. mediation module

5. server module

These types of modules of a CCMS are illustrated in figure 1.1.
The approach of component modularization holds the advantage of flexibility in

the combination of various modules in order to fulfill a certain functional requirement.
By assuming a certain configuration of the desired modules; snapping and stacking
the modules together regarding to a specific configuration, a hierarchy of module
layers can be realized which cooperate vertically to solve certain types of problems.
The layer software architecture [BMR+96] of a CCMS featuring configurable mod-
ules contributes essentially to the versatility of concept-oriented content management
systems.

1.1.2 Rationale for Web Services Adoption

When it comes to the remote communication between two secluded content man-
agement systems over the network and exchanging information between interacting
modules, decisions have still to be made for instance on what software component
is required to perform network communication; which type of module is required to
create instances of messages encapsulating the operations with corresponding param-
eters in order to tranmit them to the remote component. Furthermore, the module
interface definition of a CCMS states that the unified interface protocol definition
must be preserved on behalf of the coherence of the entire system. Therefore it would

1.1 Motivation 3
CHAPTER 2. BACKGROUND 18

server module

assets
data adapted assets

base assetslocal asset proxies
remote assets

unified view
view 1 view 2

external assets
internal assets

mediation module

distribution module
transformation module

client module

Figure 2.4: Module Kinds [Seh03]

server modules offer the services of a conceptual content management system fol-
lowing a standard protocol for use by third party systems.

Client modules are bottom-layer modules, the other modules are on top of them
and delegate calls to client modules. Thus, the architecture of a component is a
typical layered architecture.

The types of components and their typical configuration within a component is
shown in figure 2.4.

As was already mentioned all components are symmetric and implement the same
interface, called Module.

2.2.5 Conceptual Content Management System Generation Sce-
nario

It was said in section 1.2.7 that some components of conceptual content management
systems are transformational components used to generate application specific code.
Before discussing the principles of the application generator framework within con-
ceptual content management systems I will give an overview of the whole generation
scenario, which is depicted in figure 2.5.

To generate a conceptual content management system for some assets a user writes
asset definitions in the asset definition language. Then this asset schema is processed
by the compiler framework, which is, actually, the application generator. The output
of the application generator are files in a high-level programming language, namely
Java, representing components and modules conforming to the above described archi-
tectural principles.

If a user wants to create, modify or delete asset instances, he can either use asset
query and manipulation language (AML) or use a client code making calls to the
interface of the generated modules.

Once a user wants to change asset schemata, the whole procedure is repeated.

2.2.6 Compiler Framework

The Compiler Framework is nothing else but a stand-alone application generator as
defined in section 1.2.5.

The compilation scenario follows the compilation process in Model Driven Archi-
tectures (MDA). The asset compiler creates a platform independent model from a
domain model. The platform independent model is then translated into a running
software system [SS04].

A compiler consists of frontend and backend. The frontend lexes and parses asset
definitions resulting in an intermediate model. The backend contains API and Module

[Seh04]

Figure 1.1: CCMS module types

be wrong if a server module would assume the usage of a proprietary communication
protocol that is incongruent with the module interface protocol definition of other
modules. In order to mantain and safeguard the unity of the modules interface, there
are clear design requirements for a server module:

1. a server module must be compliant with the module interface protocol definition
akin to other types of modules of a CCMS,

2. it must provide a standardized unified interface for remote operation invoca-
tions,

3. it must adopt standard network protocols and open technologies.

4. it must preserve the characterisitics of a layer software system, i.e. clear sepa-
ration of the abstractions of system functionalities into specific software layers.

5. it must contribute to interoperability with heterogeneous systems by loosening
the coupleness with other remote components over the network.

The main reason for the adoption of web services for the realization of the server
module consists in the simplicity of the web services communication pattern and the
interoperability with heterogeneous systems using a common web services interface.

The CRUD1 operations which perform manipulations on a set of content artifacts
of CCMS can be invoked by an equivalent module of another CCMS over the network
using web services operation calls. The server module of the local CCMS proxies
these operation calls on behalf of the web services clients and delegates them to the
underlying CCMS base system. The remote operation calls and the corresponding
arguments are mapped to simple inbound web services SOAP2 messages and eventu-
ally delivered to the server module using a network transport protocol. The server
module receives these inbound SOAP messages and relays them to an underlying,
pre-configured client module of the CCMS which performs the requested operations
for the web services client. Consequently, the return values or exceptions in case of an
operation failure are mapped to outbound SOAP response messages or fault messages
respectively.

The stateless nature of this message exchange pattern slimlines the communica-
tion system design and simplifies its implementation. SOAP messages utilize standard
XML schema types to carry type information. Moreover, SOAP message contents are
transmitted as XML-based structured information over the network. By adopting

1CRUD – denotes create, retrieve, update and delete operations that are common to both content
management systems or database systems

2SOAP – simple object access protocol

4 Introduction

and utilizing standard web protocols such as the HTTP protocol as the transport
medium, a significant step has been taken to ensure interoperability with heteroge-
neous computing platforms. Consequently, a web services interface is chosen for the
server module in order to fulfill the afore mentioned design requirements.

1.2 Server Module Design Objectives

As mentioned previously, the web services server module exposes the CRUD oper-
ations of a CCMS as web services operations, therefore it can extend the reach of
these operations beyond the playpen of a CCMS. In the following section, a brief
introduction to web services provision is given.

1.2.1 General Web Services Provision

The development of a web service can be summarized in basically two approaches:

• top-down approach,

• botton-up approach

The first approach begins with a web service interface description, in the form
of the standardized web services description language – WSDL which describes the
functionalities of the service endpoint. The development process continues with the
implementation of the operations that are described in the service contract. The
second approach reverses the process order of the first one, by implementing the
operations of the service endpoint to fulfill the functional requirements of the service.
The web services interface description expressed in a WSDL document is derived
from the operations of the service endpoint interface. It is obtained by extracting
those operations to be exported as web services operations and mapping them to the
respective parts of a WSDL document. The WSDL document is then generated for
both consumption by web services clients and for publishing to web services registries
for archival storage purpose.

There is one main advantage to adopt the first approach than the second one:
web services implementation can depend on an existing instance of WSDL document
which makes the the development process more intuitive than starting the develop-
ment process in the reverse order. Moreover, changes in the web services interface
description can be reflected in the web services implementations as soon as possible
since many development environments can generate code for stubs and skeletons for
the web services endpoint implementations. These codes must only be filled in with
the actual implementation details by a web services developer. Consequently the top-
down development approach is adopted for developing the web services server module.
By developing a generator for producing WSDL documents for CCMSs, a uniform de-
scription of the web services operations of the server module can be produced for the
top-down development process.

1.2.2 Server Modules as Web Services Endpoints

The implementation of the web services endpoint can be generated afterwards by
using another generator to produce the module implementation code. The task of
the server module is to accept request messages from remote CCMSs acting as web
services clients. These messages can be redirected to a pre-configured base module
of the local CCMS on top of which the server module runs. It is required that the
server module is capable of handling the parameters and return type mapping for both
inbound and outbound SOAP messages. Furthermore, it must handle the request and
response messages of a transport protocol layer such as the HTTP protocol.

1.3 Structure of the Thesis 5

1.3 Structure of the Thesis

This section describes the structure of the current bachelor thesis. It surveys the
content of the thesis by providing brief description on the overall structure within
each chapter.

Chapter 1 of this written thesis conveys the motivation behind the endeavor of
providing a web service server module for a concept-oriented content management
system – CCMS.

Chapter 2 elaborates on the fundamentals of concept-oriented content manage-
ment systems. A detailed analysis begins with a survey of the underlying principles
of CCMSs. An overview of the system architecture of a CCMS is provided for compre-
hension. A discussion of the core concept of a CCMS – asset is given in section 2.1.1,
the definition of asset using asset language is outlined in section 2.1.2. While sec-
tion 2.1.3 and section 2.1.4 discuss the CRUD operations on asset instances; there is
a survey of the asset language compiler used to translate asset model definitions into
configurable asset runtime systems in section 2.2. The runtime content management
system underlies a component software architecture. This is described in section 2.3.
An architectural overview is given in section 2.3.1. The implementation of the CCMS
component software architecture is described in section 2.3.2. The asset language
compiler produces generated artifacts and implementations of configurable software
components called modules. While the module concept is further discussed in sec-
tion 2.3.3, the configuration of these modules with regard to module implementation
issues is described in several aspects starting from section 2.3.4 of this chapter.

Chapter 3 outlines the fundamentals of web services and its implementation on
the Java platform. A fundamental description of modern web services is given in
section 3.1.1. It is followed by an enumeration of the benefits of web services in
section 3.1.2. The next section addresses the workflow of web services development
and introduces some of the popular web services frameworks. Development challenges
of web services are described in section 3.1.3. Fundamental concepts of the web
services protocol is given in section 3.1.4. A detailed analysis of both functional and
non-functional requirements for the web services server module is given in section 3.2
which begins with the discussion on WSDL generation in section 3.2.1. It is eventually
followed by detailed discussions on the requirements in section 3.2.2, section 3.2.3 and
section 3.2.4. Finally, brief discussions on issues of web services implementation on
the Java Enterprise platform round up the elaboration on web services development
in section 3.3 of this chapter.

Chapter 4 discusses the design issues of a WSDL document generator for the server
module. In section 4.1 the design issues concerning XML schema design and methods
mapping in the WSDL document are explained. This is followed by an elaboration on
the design of the WSDL generator in section 4.2, giving an architectural overview of
the WSDL generator. Section 4.3 describes the design issues of the web services server
module. Several design approaches are shown with dicussions on the advantages and
disadvantages of each design approach respectively.

Chapter 5 elaborates on the implementation of the design blueprints of the pre-
vious chapter. The software implementation for the WSDL generator is outlined in
section 5.1. Section 5.2 surveys the integration of the Apache AXIS framework with
the web services server module that implements a web services endpoint. Implemen-
tation of the server module is further discussed in section 5.3 which reveals important
configuration details for the server module.

Chapter 6 summarizes this bachelor thesis. It sums up the design and imple-
mentation efforts by providing assessments to the degree of requirement fulfillment
in section 6.1. An outlook in section 6.2 provides some suggestions and proposals
on possible future developments of the CCMS web services server module regarding
security, performance, and transaction processing support issues.

6 Introduction

Chapter 2

Concept-oriented Content
Management

Modern computing systems store and manipulate data that mimic and model entities
of the real world. The notion of concept-oriented content management or CCM is the
representation of these entities in pairwise concatenation of content and a conceptual
model. This dichotomy of representation of real world entities is the fundamental
principle of concept-oriented content management. The reason of using a conceptual
model for content description is due to the need to structure content, for the purpose
of managing and presenting it according to different presentation requirements.

The requirements of a concept-oriented content management system demand dy-
namics and openness to be the underlying characteristics of the system. Dynamics of
concept-oriented content management systems guarantees a strong coherence between
a concept-oriented content model and the modeled entities. Changes in the modeled
entities are reflected dynamically in the conceptual model without other technolog-
ical constraints. Moreover, the definition of concepts and classification of contents
can be viewed, updated and modified at any given point of time, see [Seh04]. The
openness characteristic of concept-oriented content management systems ensures that
conceptual models are open and adaptable to changes. The definition of concepts and
the classification of contents should be a non-finalizable process according to [Cas01].
It means that the set of available concepts for modeling can be extended [Seh04].
In order to achieve the goals of dynamics and openness, concept-oriented content
management systems must consist of:

• a conceptual modeling language for domain modeling,

• a model compiler which translates domain models to concept-oriented content
management system components,

• a layer software architecture [BMR+96] that plugs into each other seamlessly
through a predefined standardized interface to achieve interoperability between
components of different types and to support system evolution.

In the following sections, different aspects of a concept-oriented content manage-
ment system will be outlined and described.

2.1 Concept-oriented Content Management Systems
— CCMSs

A concept-oriented content management system is a type of content management
system that deals with assets. The management of the lifecycle of assets, for instance,

8 Concept-oriented Content Management
CHAPTER 2. BACKGROUND 14

Media
view

Model
view

[Content

Asset

Concept]|

Entity

Figure 2.1: Assets represent entities by [content — concept] - pairs [Seh03]

Another group of artists, while studiying the works of Leonardo da Vinci is used
to calling this painting “Jokonda” and wants to work with this name of the painting.

The possible solution to this. The second group of art historians pesonalizes the
instance of class Picture called “Mona Lisa” and change the value of characteristic
called title for “Jokonda”:

jokonda = modify monalisa {
title := "Jokonda"

}

2.2 Conceptual Content Management Systems

2.2.1 Assets

As was said in section 1.2.7 assets are “. . . ontological descriptions used to classify
content”. This means that assets serve two roles:

• give conceptual description of domain entities - concept part;

• incorporate content part of domain entities - content part.

Thus assets represent intimately allied content-concept pairs which represent and
signify application entities [SS03] see figure 2.1.

Assets can inherit from each other thus forming ontological hierarchies which are
called asset models.

M.L. Brodie [Bro84] defines tools associated with data models as “languages for
defining, manipulating, querying, and supporting the evolution of databases”. These
languages are Data Definition Language (DDL), Data Manipulation Language (DML),
and Query Language (QL). The same approached is used for asset models.

The following languages are defined to manage asset models:

Asset Definition Language (ADL) used to define asset schema;

Asset Manipulation and Query Language (AML) used to manage asset instances.

[Seh04]

Figure 2.1: Asset entity modeling in concept-content pair

the creation, retrieval, storage, modification and destruction of instances of assets,
is managed by the runtime concept-oriented content management system. In the
following section, the term asset which represents the central notion of a CCMS is
explained.

2.1.1 Assets — the Building Blocks of CCMSs

According to [Seh04]:

Assets are ontological descriptions used to classify content.

The concept of an asset is twofold. The asset representation is divided into two main
parts. A concept-oriented modeling of an entity contains:

• a concept view which is also known as the model view,

• a content view which is otherwise known as the media view.

The cognition of epistemology1 by Ernst Cassirer is treated in his main works [Cas55],
it states that the observation and description of domain entities should correspond to
the concrete content of that knowledge representation. Cassirer claims that the repre-
sentation of domain knowledge should be a dichotomy between the abstract concept
for describing the domain entity and the concrete content which represents a tangible
state of that domain entity.

For the purpose of the concept-oriented content management, a CCMS harnesses
this philosophy for its concept of an asset based model to mimic real world entities.
The concept an asset of a CCMS describes and models a domain entity by:

• using a concept view for providing conceptual description of domain entities,

• using a content view for the integration and incorporation of tangible state
information of the domain entities.

Cassirer proceeds with his observations in symbolic representations which have
found their way into the application domain of concept-oriented content management
systems. Consequently, symbolic representation of entities has become the central
unit of measure – asset which is described by a concept-content-pair in a CCMS.

1epistemology – the theory of knowledge

2.1 Concept-oriented Content Management Systems — CCMSs 9

Figure 2.1 depicts the concept of an asset entity which is described by the concept-
content-pair. In the figure, the content view on the left hand side is alternatively
known as the media view; whereas the conceptual view on the right hand side is also
known as the model view of the asset model.

The expressiveness of asset modeling is based on the power of an asset language.
The definition of asset is supported using this asset language of a CCMS. The defini-
tion relevant part of the asset language is called the asset definition language which
is described in section 2.1.2 of this chapter.

2.1.2 Definition of Assets

In a CCMS assets are defined using the Asset Definition Language – ADL.
It represents an asset definition using a schema that closely mimics the concept of
a definition of a class in a conventional object-oriented programming language. It
consists of both a schema-oriented language and an abstraction mechanism with the
central concept of modeling called an asset class. For the concept-oriented modeling
of assets, a class definition consists of the following syntactical constituents:

1. characteristics which describe different aspects of a model using an attribute-
like syntax,

2. relationships which are used to maintain relational references to other asset
classes,

3. constraints which model a set of rules corresponding to an asset class.

An asset class definition is introduced by the class keyword which is followed by
the name of the asset class. An example of an asset class definition called Picture
is given in code 2.1.1. The tangible aspects of the asset description is given by the
characteristic keyword which represents the attributes with corresponding type
information of the model. Relationships (either one-to-one, one-to-many or many-to-
many) are captured with the relationship keyword. Inside the class definition, the
characteristic keyword and relationship keyword are followed by a name of the
characteristic or a name of the relationship reference respectively, then with a colon
delimiting the type information afterwards. On the other hand, domain specific con-
straints, predicates and conditions are modeled using the constraint keyword which
is followed by corresponding expressions denoting constraints or predicates. These
modeling labels are used inside the class definition grouped by the concept keyword.
The representation of content information is specified with the corresponding type
information of the content using the content keyword. The content keyword is
optional in a class definition.

A set of relevant asset classes can be grouped together to form a model using the
model keyword of the asset language. A model consists of all relevant asset classes
that are common to a specific modeling domain; together these relevant asset classes
constitute the taxonomic description of their specific domain model.

class Picture {

content contents : Image

concept characteristic title : String

characteristic painter : String

characteristic creationDate : java.util.Date

characteristic placeOfCreation : String

}

Code 2.1.1: Defining an asset class Picture

10 Concept-oriented Content Management

The type system of an asset resembles the type systems of many modern program-
ming languages, i.e. the asset type system supports the concept of a type extension
or inheritance. Type inheritance is specified using the refines keyword of the asset
language. Code 2.1.2 illustrates the usage of this keyword for the definition of the
model ArtHistroy which consists of the afore mentioned Picture class together with
a new asset class Etching refining the Picture class.

model ArtHistory

class Picture {

content contents : Image

concept characteristic title : String

characteristic painter : String

characteristic creationDate : java.util.Date

characteristic placeOfCreation : String

}

class Etching refines Picture {

concept characteristic nameOfPlate : String

characteristic etchingTechnique : String

characteristic dimension : String

characteristic knownPrints : String

}

Code 2.1.2: Defining two asset classes Picture and Etching using the extends
keyword to model inheritance

For the purpose of effective reuse, asset definitions can be fragmented into useful
document snippets which can be imported using the import keyword into the current
asset model.

2.1.3 Manipulation of Asset Instances

Instances of assets can be created, manipulated and destroyed by the Asset Manip-
ulation Language – AML. In the asset language, AML is the part of the language
which lends the CRUD2 operations to the entire asset language. The asset manipu-
lation language emplores the following keywords for performing CRUD operations on
instances of assets:

1. let

2. create

3. lookfor

4. modify

5. delete

Further details of the AML can be found in chapter 4 of [Seh04]. In the following
description, the afore mentioned AML keywords (apart from lookfor which will be
described in detail in section 2.1.4) are described briefly with examples:

1. the let keyword is used in general assignment of asset instances or in the con-
struction of new asset instances in combination with the create keyword. As-
suming the class definition given in code example 2.1.2, an instance of asset

2CRUD – create, retrieve, update and delete

2.1 Concept-oriented Content Management Systems — CCMSs 11

Picture is instantiated with the create keyword and eventually assigned to
the instance variable p of type Picture using the let keyword. This is illus-
trated in code example 2.1.3.

let p: Picture = create Picture {

title := "Knabe floht seinen Hund"

painter := "Gerard ter Borch"

}

Code 2.1.3: Creation of an instance of the asset Picture using the keyword let

2. the create keyword is used for the creation of new instances of assets. An
example using this keyword is provided in code example 2.1.4.

3. the delete keyword is used for the reclaiming of instances of assets. Since
assets are not really deleted; it states that the instances of assets which will be
destroyed are only marked deleted by the system so that it is removed from the
conceptual view. A CCMS registers the deletion and schedules for the reuse of
the instance if necessary by management of the lifecycle of the asset instance.
An example of using this keyword is shown in code 2.1.5. Here the newly created
instance p of a Picture asset is deleted.

Moreover, asset destruction can be performed iteratively on a set of asset in-
stances that are either specified beforehand or retrieved dynamically using the
lookfor operation. The operation is performed with a list semantics. In ex-
ample code 2.1.6, the lookfor operation gets a list of results by using a search
criteria specifying a painter name. The destruction of the asset instances re-
quires that the delete operation applies the destruction iteratively on every
element in the search result set. Should there be any instance of the Picture
asset found which matches the search criteria, those instances in the result set
will be deleted.

4. the modify keyword is used for the modification of asset instances such as
assigning values to the characteristic fields, creating a new relationship with
another instance of asset, etc. An example of using this keyword is shown
in code 2.1.7. In this example, the newly created instance q is modified by
assigning values to the characteristic fields of the asset instance, making the
asset instance complete in itself according to the class definition.

2.1.4 Querying Asset Instances

The Asset Query Language – AQL can be used for issuing a query to search for
asset instances in a CCMS using a specific search criteria as argument. The AQL can
also be used in connection with specific query constraints to find instances of assets
which are consequently provided as arguments to another CRUD operation to perform
more complex operations on an asset instance. In terms of the asset language, the
keyword lookfor is used for the asset retrieval operation. Code example 2.1.8 shows
how the lookfor operation works. The example shows at first the creation of three
instances of the Picture asset and one instance of the Etching asset.

The first query of code example 2.1.8 illustrates the retrieval of asset instances
matching the search criteria of a specific painter name, this query leads to a result
set containing two instances of the Picture asset of that specific painter. In the
second query, the result set contains only one instance of the Etching asset. The let
keyword is used to assign the result sets to the variables resultSetA and resultSetB
respectively.

12 Concept-oriented Content Management

let q: Picture := create Picture {

title := "Madame de Pompadour"

painter := "Francois Boucher"

}

Code 2.1.4: Creation of an instance q of the asset Picture

delete p

Code 2.1.5: Deletion of an instance p of the asset Picture using the keyword delete

delete lookfor Picture { painter = "Eugene Delacroix" }

Code 2.1.6: Deletion of asset instances in a list context

modify q {

title := "Die Nachtwache"

painter := "Rembrandt van Rjin"

creationDate : = 1642

placeOfCreation := "Amsterdam"

}

Code 2.1.7: Modification of the instance q of the asset Picture using the keyword
modify

let r: Picture := create Picture { title := "Marie-Louise O’Murphy"

painter := "Francois Boucher" }

let s: Picture := create Picture { title := "Madame de Pompadour"

painter := "Francois Boucher" }

let t: Picture := create Picture { title := "The anatomy lesson of

Dr. Nicolaes Tulp"

painter := "Rembrandt van Rjin" }

let u: Etching := create Etching { title := "Carceri d’invenzione"

painter := "Giovanni Battista Piranesi"

creationDate := "1745"

placeOfCreation := "Rome"

nameOfPlate := "X59B31K"

etchingTechnique := "copper-acid"

dimension := "50x80"

knownPrints := "plate VI" }

let resultSetA : Asset* := lookfor Picture {

painter = "Francois Boucher"

}

let resultSetB : Asset* := lookfor Etching {

painter = "Giovanni Battista Piranesi"

}

Code 2.1.8: Querying asset instances using the lookfor operation

2.2 The CCMS Compiler Framework 13

2.2 The CCMS Compiler Framework

In the previous section, the asset language is introduced with examples illustrating its
usage. In order to harness the power of the asset language, an asset language compiler3

is required to produce useful software artifacts from an initial domain model. This
asset language compiler is described in the following sections.

2.2.1 Overview of the Asset Language Compiler

The asset language is in principle a domain-specific schema language which is used
to model the domain entities of interest. It is used as input for the asset language
compiler of a CCMS. The asset language compiler can be divided structurally into
two main parts:

• a compiler frontend

• a compiler backend

The functionalities of a CCMS lend themselves from the entire generated set of mod-
ules which are produced by the corresponding generators of the asset language com-
piler and the combination of these modules to runtime software components.

2.2.2 Compiler Frontend

The main task of the compiler frontend is to translate a user-defined domain-specific
model into an intermediate model of internal representations which can be utilized as
input by different backend generators. The compiler frontend consists of a parser and
syntactic analyzer for scanning and checking asset model definitions. The compiler
frontend translates a domain specific asset model into an intermediate model that has
the appropriate form in which the backend generators can utilize as input. The model
compiler itself and the internal representation are implemented using the Java pro-
gramming language. For every asset definition of the input model, the model compiler
creates a corresponding class in the intermediate model representation. The charac-
teristics will be translated into a corresponding type of the implementation language
which must possess this type. Relationships are translated into the corresponding
referenced target-type which is either defined in the present input model or imported
from some superior models. It is possible for the characteristic and the relationship
fields of an asset class definition to possess initial values, for instance, a characteristic
field can be initialized with a default value or a relationship can be created with an
initial default reference binding to another asset class. These initial definitions will
be translated into the corresponding object expressions or asset expressions in the
model representation, consult chapter 5 of [Seh04] for more details.

2.2.3 Compiler Backend

The compiler backend consists of a number of module generators which are respon-
sible for translating the intermediate model into specific CCMS modules that can
be combined flexibly to form runtime components. The modules underlies a unified
module interface which will be described in section 2.3.4 (see [Seh04] also). Because
the model compiler utilizes the Java programming language as the target implemen-
tation language, the generated modules will possess the module interfaces defined as
Java interfaces. These interfaces have their origins in the interfaces of the asset class
definitions which are stored within the intermediate model. For the purpose of han-
dling assets and the management of asset lifecycle in a CCMS, a set of access methods

3The asset language compiler is also called model compiler

14 Concept-oriented Content Management104 Automatische Erzeugung von konzeptorientierten Inhaltsverwaltungssystemen

store

delete

lock
commit
abort

publish

personalizevolatile

remotepersistentlocked

Abbildung 5.3 Zustandsdiagramm der Übergänge zwischen den Lebenslagen

Man erkennt an der Beschreibung der Schnittstellen, dass Objekte mit Methoden erzeugt
werden, welche die Funktionalität der Operationen modify, delete, personalize und
publish aus Abschnitt 4.1 bieten. Für letztere wird aber nicht die Gruppe angegeben, deren
Asset personalisiert werden soll, da diese bereits durch die Remote-Instanz bestimmt ist. Bei
der Publikation wird die Empfängergruppe durch den Parameter g der Methode publish
angegeben, dessen Typ im Klassendiagramm in Abbildung 5.2 als Group angegeben ist. In
den generierten Schnittstellen wird hier der Assettyp von Gruppen aus der Organisationsver-
waltung eingesetzt.

Die anderen Operationen, create und lookfor, finden keine Entsprechung in Instanz-
methoden. Sie werden durch Objektfabriken bzw. Anfrageobjekte (s.u.) implementiert.

Für alle Fälle, in denen Mengen von Assets oder Objekten auftreten, werden Iterato-
ren [GHJV94] erzeugt. Für jede Klasse A entsteht eine Iteratorklasse AIterator, die eine
Methode

AbstractA nextA () ;
aufweist. Da jeder Iterator die Schnittstelle java.util.Iterator aus der Standard-
Klassenbibliothek von Java erweitert, sind für ihn auch Methoden hasNext, next und
remove definiert.

Die Erzeugung von Assets kann je nach Modul unterschiedlich sein. Z.B. können Objekte
zur Darstellung von Assets direkt in einer Datenbank erzeugt werden, oder diese Aufgabe
wird an ein anderes Modul delegiert. Um von der Implementierung der Erzeugung zu abstra-
hieren, wird das Entwurfsmuster ”Fabrikmethode“ [GHJV94] umgesetzt. Zur Erzeugung
einer Instanz von A wird die Methode createA der Fabrik ÂFactory verwendet, wenn
Â eine Superklasse von A ist. Für die Wurzelklassen, die keine Superklasse haben, wird die
entsprechende Methode in der Schnittstelle AssetFactory definiert.

Alle für Assets erzeugten Schnittstellen weisen eine Methode accept auf (s. Abbil-
dung 5.2), durch die ein Besucher zur Unterscheidung der Lebenslagen (eine Implemen-
tierung der Schnittstelle LifeCycleVisitor) benutzt werden kann, der eine Fallunterschei-
dung aufgrund des Zustandes im Lebenszyklus macht. Ein solcher hat je eine visit-Methode
für jeden der im Zustandsdiagramm 5.3 gezeigten Zustände, also jeweils mit einem Parameter
vom Typ Persistent, Locked, Volatile und Remote. Durch die Verwendung eines Be-
suchers wird der Zustand vom Typ eines Objektes entkoppelt, so dass z.B. alle Schnittstellen
für die Lebenslagen durch die selbe Klasse implementiert werden können.

Wenn ein Typ A Subtypen hat, wird für sie ein Besucher AVisitor erzeugt, der zwi-
schen den Subtypen unterscheidet. Dieser hat je eine visit-Methode für jeden Subtyp.
Die Schnittstelle AbstractA wird mit einer accept-Methode für diesen Besucher ausge-
stattet (siehe Abbildung 5.2).

Zur Suche nach Assets mit gewissen Eigenschaften gibt es Anfrageobjekte. Für eine
Klasse A wird eine Schnittstelle AQuery wie die in Abbildung 5.4 gezeigte erzeugt. Diese
hat für jede Charakteristik c und jede Beziehung r von A Methoden constrainC. . . und
constrainR. . . , mit denen jeweils ein Teilterm zur Einschränkung des Suchergebnisses

[Seh04]

Figure 2.2: States of asset lifecycle and state transitions

for the possible state-changes of the asset instances are also generated from the in-
formation found in the intermediate model by the generators. These afore mentioned
generation tasks are performed by the API generator of the model compiler.

The API generator generates the following interfaces:

1. lifecycle interfaces representing the asset instances in different states of the asset
lifecycle. Figure 2.2 illustrates the possible lifecycle states of an asset instance
together with the state transitions,

2. iterator interfaces for the set of generated objects corresponding to the generated
interfaces,

3. construction interfaces for the fabrication and instantiation of instances of the
generated types of assets,

4. visitor interfaces for the state transitions of asset lifecycles,

5. visitor interfaces for the traversal of the subtypes object structure of assets,

6. query interfaces for query objects,

7. introspective interfaces for the identification of type information using reflection.

Further details and explanations of the generated interfaces can be found in chapter 5
of [Seh04].

On the other hand, different types of concrete modules and module implementa-
tions are generated by the corresponding module generators of the model compiler.
The set of module generators can be configured during runtime of the compiler using
an XML-based configuration file. Every generator in the compiler backend is able
to exchange information with other backend generators via symbol tables. A symbol
table contains the object representation of the internal data as output of a generator;
moreover, it also provides methods which can be invoked by other generators at run-
time to retrieve information from the symbol table. After the creation of the afore
mentioned interfaces, a specific backend generator takes the information of the inter-
mediate model into account to proceed with the generation of the implementation
code for those generated interfaces and the generation of the implementation code for
the specific module itself which is composed of a set of Java implementation classes.

2.2.4 Dynamic System Creation

Several module generators can be chained occasionally to form a series of actively
working backend components in order to fulfill a specific generation task. In this
case, one generator consumes symbol table output from another preceding generator;
it utilizes the symbol information in the entries of the symbol table of the other
generator, together with the intermediate model produced by the frontend compiler

2.3 CCMS Component Architecture 15

as input, to produce its own symbol table output. This processing workflow resembles
the pipe and filter software architecture [SG96] in structural terms.

The main task of the API generator in the backend compiler is to generate a set
of common interfaces for all the modules of a CCMS component. These are exported
as output in an API symbol table. Further implementations of these interfaces can be
generated based on the information in the API symbol table by a specific generator.

All the generated modules can be combined during system runtime using a spe-
cific module setup configuration that is prescribed by an XML-based configuration
file. Dynamically, modules can be re-generated in case the model is changed. The
separation of the runtime system configuration from the details of implementation of
the individual modules lends to CCMSs a great degree of flexibility and configurabil-
ity since changes in the asset models can be reflected at the level of system generation
instead of at the level of the runtime system configuration and deployment.

2.3 CCMS Component Architecture

As described in the previous section, the module generators perform the task of gener-
ating task-specific modules and module implementations for a CCMS. An underlying
component architecture of the system provides the foundation for the runtime system
environment to these modules. The following sections will survey this component
architecture of CCMSs.

2.3.1 Overview of the CCMS Component Architecture

The concept-oriented content management system underlies a component software
architecture, see [SG96], and [Gri98]. Every component of the runtime system rep-
resents a corresponding asset which models a domain entity in a specific context.
Regarding to the interpretation in [Seh04], components are responsible to represent:

• a set of assets from different domains which are grouped by a model; in such
case the model is generally mapped to one component,

• a set of assets describing the same domain model but which are viewed in
different context.

2.3.2 Component Implementation of CCMSs

During the generation of the runtime components by the backend generators, one do-
main model is exactly translated to one asset model which can include other modules
from other application structures. This is shown in figure 2.3 with rectangular shapes
representing the CCMS components. The lines connecting the different components
in the figure represent the possible structural organization of the components among
themselves. In the figure, the cooperation between the components is denoted with
dotted lines connecting the cooperating components. It is obvious in the figure that
flexibility in component configuration can be achieved in the vertical layers. This is
depicted conceptually in the figure using a schematic structure vertically along the
Organization axis. If one takes an example of this configuration by observing a layer
structure that is formed by organizing the uppermost layer of components together
with the components in the second layer from the top. The principle behind this
organization can be viewed as a personalization relationship between the upper and
the middle layers. This relationship holds in the vertical orientation when reading
figure 2.3; it is observed for instance that:

K1
personalizes←−−−−−−−− K11 and K1

personalizes←−−−−−−−− K12

K2
personalizes←−−−−−−−− K21

(2.1)

16 Concept-oriented Content Management

The personalization basically denotes a variation of the component on the component
that is being personalized, for details see [Seh04]. In the horizontal orientation along
the Application axis, the figure illustrates the cooperation of the components among
themselves. It can be observed in the bottommost layer in the figure that:

K0
cooperates with←−−−−−−−−−− K1

cooperates with−−−−−−−−−−→ K2
(2.2)

In CCMS terms, each asset model is mapped to one runtime CCMS component which
is implemented by CCMS modules. The advantages of the component architecture
are:

1. support of asset reuse by component reuse,

2. functionality reuse by module code reuse,

3. high level of abstraction,

4. configurability of the runtime system,

5. manageability of the lifecycle of components, and

6. separation of implementation concerns.

2.3.3 Modularization

The modules of concept-oriented content management systems are classified according
to their respective functionality. There are mainly five types of modules:

1. server module,

2. client module,

3. mediation module,

4. transformation module, and

5. distribution module.

Each module as listed above is conceived for one particular functionality inside a
component. The modularized design of the system enhances overall system flexibility
and configurability. Table 2.1 explains the functionality of the five types of modules.

2.3.4 Configurability of Modules

The interrelationships between the different asset models are mapped to the cooper-
ation among CCMS components. The cooperation among the components is realized
as the communication between different CCMS modules. The configuration of the
CCMS component architecture is shown in figure 2.3.

There are mainly two types of relationships between components in terms of con-
figuration:

• cooperation which is a concept in the abstraction towards the application struc-
ture. In figure 2.3, the cooperation relationship is shown using dotted connection
lines. In figure 2.4 which itself is a refinement of figure 2.3 in terms of adding
an extension of details in the implementation orientation along the thereafter
named axis as shown in figure 2.4, the modules which implement a specific com-
ponent is shown in groups connected to the implemented component using lines
heading parallel to the implementation axis orientation. It shows that either
a component can be implemented by exactly one module or by several of them.

2.3 CCMS Component Architecture 17

Module type Functionality

server module provides an interface to map between external and internal
asset representations, and provides services to third party
modules which communicate with the server module using
a standardized protocol

client module serves as an interface to map between the data (persistent)
layer and the asset implementation system layer; it is re-
sponsible for the component persistency, i.e. managing ac-
cess to databases, and managing the assets content and
data

mediation module provides a unified view for a group of base modules which
have their own views themselves; it serves to glue a set of
modules together which can be accessed by other modules
using the unified view provided by the mediation module

transformation module serves to adapt asset languages that conform to different
asset schema definitions; it facilitates the communication
between modules with different asset model definitions

distribution module provides local proxy access to remote instances of assets

Table 2.1: Types of modules of CCMSs

Communication between modules is illustrated in the figure using lines in zig-
zag fashion. The communication spanning modules in the component level is
defined by the cooperation between these modules. It is worth mentioning that
the lattice structure of figure 2.4 shows the two distinct planes of the lattice: the
front plane which denotes the components structure and the rear plane which
depicts the modules structure. The cooperation among the components, for
instance, (shown in the front plane) between component C0 and C1 or between
C1 and C2 maps actually to communication between the modules (shown in
the rear plane) which implement their respective components.

• personalization which abstracts individualization towards the organizational
structure which can be divided structurally into different layers of components
in the front plane of the lattice structure shown in figure 2.4. In this figure
the personalization in the component plane is shown by the vertical connection
lines between components distributed parallel to the organization axis orienta-
tion. In a multi-tier software architecture, such as the configuration of compo-
nents shown obviously in the figure, the modules of a component are connected
through two interfaces with other modules which belong to the above or under-
neath tiers of the configuration. These two interfaces, the module interface and
the object interface (described in section 2.3.4 and 2.3.4) represent the main
design goal of CCMS modules in order to provide a homogeneous interface of
operations for the modules.

Different components are interchangeable in terms of the runtime configuration be-
cause the modules which implement the component must implement a pair of generic
unified interfaces, through which all the communication between modules will take
place in a CCMS. These interfaces are:

• the module interface

• the object interface

18 Concept-oriented Content Management
CHAPTER 2. BACKGROUND 16

O
rg
an
iz
at
io
n

Application

K1

K1

K11 K12

K1K0 K2

K1

K11 K12

K2

K21

K0

Organization CooperationComponentki

Figure 2.2: Component Configuration [Seh03]

2.2.3 Module-Component Architecture of Conceptual Content
Management Systems

As was stated before conceptual content management systems are open and dynamic
adaptive computer systems. This is possible due to some architectural features of
conceptual content management systems.

The architecture of the conceptual content management systems is a component
architecture. The combination of such components represents the combination of
coexisting domains (sub models). Thus, in contrast to Neighbours approach (e.g.
in [Nei92] or DRACO-approach [Nei89, Nei01, dPLSdF94]) of using “one software
component for each object or operation in the domain”, here one component for each
domain is created.

A component represents assets which describe a domain in a definite context. This
means that we will need more than one component to represent [Seh03]:

• assets from different domains (several assets from one domain, i.e., one model,
goes to the same component);

• assets describing the same domain but from different points of view (in different
contexts).

Therefore we have two types of relationships between components: cooperation
(communication along usage structure) and personalization (individualization along
organization structure). The context organization of users, usually represented as
project groups, brings to the corresponding organization structure of the components
[Seh03] (see figure 2.2).

The components in their turn consist of modules. In fact “modules”, as they are
called in conceptual content management systems, are real components in the sense as
discussed in section 1.2.4. The term “module” is used for convenience purpose. More
over they are symmetric components (see section 1.2.4), thus can be dynamically
replaced. This architectural property makes for system dynamics (see section 2.2.7).

One can say that there are two kinds of components in conceptual content man-
agement systems that provide two different forms of reuse [Seh03]:

[Seh04]

Figure 2.3: Components configuration of the CCMS component architecture

The Module Interface

Each module must implement this interface which underlies the component it imple-
ments. The functionalities of a module derive from the concrete implementation of
the module interface. This interface consists of mainly the CRUD operations such
as create, lookfor, modify and delete. These operations take assets as arguments
and return assets or the implementation of asset-relevant interfaces as return types.
Consequently, the concrete implementation of the module interface lends the actual
behaviors and functionalities to the modules of a component. In figure 2.5, three
components of a CCMS are shown in a schematic depiction featuring individual mod-
ules inside each component respectively. The module interface of a module is shown
using an inteface notation.

The Object Interface

In figure 2.5, the object interface is shown schematically using an interface notation
on the left hand side of each module. The set of interfaces that are generated by the
API generator is called the object interfaces of a module. The design of object inter-
face promotes the property of separation of concern of the component architecture.
It abstracts away the functionality concern from the structural concern of the sys-
tem. The set of object interfaces generated includes the interfaces which are already
mentioned in section 2.2.3. These interfaces must be implemented by every module
which provides task-specific implementations for the operations of these interfaces,
such that other modules can perform these operations on the target module.

2.3.5 Epilogue on Web Services Server Module

The web services server module must be compliant with the definitions of the two
mentioned generic interfaces. Basically, the server module will provide web services
functionality to a CCMS by introducing a web services layer on top of the CCMS
subsystem. It is configured in such a manner that it must cooperate with a client
module during runtime. In terms of web services provision, the operations of the
server module are well-defined because the main task of the server module consists
of the mapping of web services requests into CRUD operations on instances of assets

2.3 CCMS Component Architecture 19

CHAPTER 2. BACKGROUND 17

m1a m1bm11 m12

m1a m1b

m21

or
ga
ni
za
tio
n

application

m1a m1b

m11 m12

m1 m0 m1

m1

c1

c11 c12

c0 c1

m2a

m2

c2c1

m11 m12

c11 c12 c21

m0 m1

c0

m2a

m2

c2c1

implemen-
tation

Organization

Cooperation

Componentki

Communication

Implementation

Modulemi

Figure 2.3: Components Implementation through Modules [Seh03]

• components (called “components”) contribute to assets reuse and

• components (called “modules”) make for functionality reuse.

These two kinds of reuse are an example of separation of concerns approach ac-
cording to [TO01, TOHS99, Mar02b] and others.

An example of relationships among modules and components is shown on figure 2.3.

2.2.4 Modules

There are several types of modules to realize several functionalities. Each component
can be built of any number of such modules, and be dynamically rebuild when needed.

The short description of the types of modules and their functionality is as follows:

client modules used to access standard components managing the asset’ content
and data; the only modules that can store persistent information;

transformation modules used to adjust schemata, thus allowing modules gener-
ated from different ADL schema revisions communicate;

distribution modules allow the incorporation of modules residing on different net-
worked computers;

mediation modules to glue the modules of a conceptual content management sys-
tem together by delegating calls to other modules and combining their responses
in different ways;

[Seh04]

Figure 2.4: Component implementation with modules

unified asset module interfaces

module interface
object interface

communication
via unified interface

ComponentModule A

ComponentModule B ComponentModule C

Figure 2.5: Generic object and module interface of asset modules

20 Concept-oriented Content Management

in a CCMS. In terms of operation semantics, the CRUD operations are perceived
by the web services server module as proxiable operations performed on behalf of
either another CCMS or another system which is acting as a web service client.
CRUD operations are delegated to the client module on top of which the server
module resides and runs; results of the CRUD operations or fault messages in case
of exceptions are relayed back to the client systems by the server module which is
acting as an operational deputy on behalf of the web services clients. To achieve an
appropriate degree of simplicity of design, the server module should follow a message
exchange pattern which is basically of a stateless and idempotent nature.

Chapter 3

Web Services

Web services operations represent a set of operations on asset instances over the net-
work which the web services server module aspires to provide. In this chapter, the
fundamental concepts of web services will be explained; together with an analysis of
both the functional and non-functional requirements for the server module, a con-
ceptual and theoretical basis will be provided for further design and implementation
efforts.

3.1 Fundamentals of Web Services

In the following sections, the fundamentals of web services will be discussed in terms
of the definition of a web service, the benefits of using web services, the development
challenges of web services and the technological aspects of the web services protocol
– SOAP.

3.1.1 Defining Web Services

The W3C1 organization who establishes the standards for web services has defined
them as follows [Con02]:

Web services provide a standard means of interoperating between dif-
ferent software applications, running on a variety of platforms and/or
frameworks. Web services are characterized by their great interoperability
and extensibility, as well as their machine-processable descriptions thanks
to the use of XML. They can be combined in a loosely coupled way in
order to achieve complex operations. Programs providing simple services
can interact with each other in order to deliver sophisticated added-value
services.

There is also a previously used definition of web services proposed by the W3C:

A Web service is a software application identified by a URI, whose in-
terface and bindings are capable of being identified, described and discov-
ered by XML artifacts and supports direct interactions with other software
applications using XML based messages via Internet-based protocols.

According to IBM [dev06] web services are:

Web services is a technology that allows applications to communicate
with each other in a platform- and programming language-independent

1W3C – the World Wide Web Consortium

22 Web Services

manner. A Web service is a software interface that describes a collection
of operations that can be accessed over the network through standardized
XML messaging. It uses protocols based on the XML language to describe
an operation to execute or data to exchange with another Web service.
A group of Web services interacting together in this manner defines a
particular Web service application in a Service-Oriented Architecture –
SOA.

Web services uses XML that can describe any and all data in a truly
platform-independent manner for exchange across systems, thus moving
towards loosely-coupled applications. Furthermore, Web services can func-
tion on a more abstract level that can reevaluate, modify or handle data
types dynamically on demand. So, on a technical level, Web services can
handle data much easier and allow software to communicate more freely.

On a higher conceptual level, we can look at web services as units of
work, each handling a specific functional task. One step above this, the
tasks can be combined into business-oriented tasks to handle particular
business operational tasks, and this in turn allows non-technical people to
think of applications that can handle business issues together in a workflow
of Web services applications. Thus, once the Web services are designed and
built by technical people, business process architects can aggregate them
into solving business level problems. Furthermore, the dynamic platform
means that the engine can work together with the transmission or parts
from other car manufacturers.

As an evolution of the web, web services are built on the knowledge gained from the
ubiquitous distributed computing environments and technologies such as CORBA2

and RMI3 to enable cross platform communication and interoperability. Web services
provide a standardized way for applications to expose their functionalities over the web
and communication with other applications on heterogeneous computing platforms
over a network, regardless of the implemention of the applications or the programming
languages with which these applications are realized.

Service Oriented Architecture

The term service oriented architecture is used to indicate an architectural style that
promotes software reusability by implementing web services as reusable services. Be-
sides reusability it is concerned also with loose coupling and dynamic binding between
services.

Conventional object-oriented architectures promotes the reusability of software by
reusing classes. This approach has a fine grained nature and is suitable on a soft-
ware development scope which is largely project specific. Later, component-oriented
software architectures have emerged to elevate the scope of software reusability to a
higher level by abstracting software components [SG96], [Gri98] as reusable entities
which consist of a set of related common interfaces, their implementation classes,
resources and configuration information.

Nowadays, the computing environments which are found in enterprises have evolved
into quite complex structures due to the use of various software and hardware plat-
forms which must communicate with each other in distributed manner. The service
oriented architecture addresses these issues by using a service as a reusable entity.
These services have typically a coarser grained nature than conventional software
components. Services focus on the functionalities provided by their interfaces which

2CORBA/IIOP – Common Object Request Broker Architecture Internet InterORB Protocol
3RMI – Java remote procedure call

3.1 Fundamentals of Web Services 23

Service
consumer

Discovery
utility

Service
provider

bind find

publish

Figure 3.1: Service oriented architecture triangle

are well-defined and through which service client can communicate with the services
using standardized protocols.

A service oriented architecture has three main structural constituents:

1. Service provider implements business logic of the service and exposes these
services through its interfaces.

2. Service consumer discovers service from registry and accesses the web services
by invoking the methods in the interfaces of the service provider. (Service
consumer can be services themselves)

3. Service registry stores the published service descriptions by the service provider
and enables service consumers to look up services.

This structure is sometimes called the SOA triangle which denotes the web services
architecture as an overview, see figure 3.1.

The middleware infrastructure that is needed to enable the service provider to
publish service for provision; and to enable client to access the services is referred in
the literature as the service bus (see figure 3.2), the concept of a service bus is treated
in detail in works by [MW06] and [Nl04].

Describing Web Services

The web services standards include:

• WSDL4 – a description language used to define the interfaces provided by a
web service, in a way that is independent of the platform on which the web
service is deployed,

• UDDI5 – a provision for a registry to store the service definitions.

A WSDL document describes a web service in terms of the functionalities that
the web service provides and the data types that each operation requires as input
parameters or output return value.

It abstracts away from the concrete implementation of the web service at the
protocol level. The web service is defined in abstract terms and then mapped to one

4Web Services Description Language [Con01]
5Universal Description Discovery and Integration [ftAoSISO06a], [ftAoSISO02]

24 Web Services

Service
consumers

Discovery
utility

Service
provider

service bus

request service

publish

bind find,
select

Figure 3.2: SOA triangle with service bus

or more specific protocol by using concrete protocol bindings. A binding specifies the
way in which the abstract input and output messages of the web service are mapped
onto a protocol. Generally used binding protocols are SOAP (see section 3.1.4). A
WSDL document also contains a set of address url at which the service is deployed
and can be accessed. The structure of a WSDL document is depicted in figure 3.3 on
page 25. In its serialized form, the structure of a WSDL document is shown in the
WSDL document code example 3.1.1 on page 25.

The top-level elements of a WSDL document are given in table 3.1.
An overview of the interface definition of a web service can generally be obtained

from the information of a WSDL document. However, WSDL documents are mostly
generated and consumed by software tools rather than produced from scratch. Web
services clients depend on the WSDL document for critical information in order to
consume the web services. For this reason, there are many tools that can help gen-
erate the client side proxy code from the WSDL document automatically. Many
programming languages are now served by the different language bindings so that
clients which are programmed with different language can access the web services by
just retrieving the WSDL document of interest and utilizing the web service proxy
code to invoke the web services.

On the server side in terms of web services implementation, there are also a wide
range of tools that will start the development process by starting from the WSDL
document. Server side code stubs can be generated on the fly and implementation code
skeletons are also provided; these code artifacts can be easily filled in and programmed
to implement the web services in an efficient manner.

Discovery of Web Services

The WSDL document produced by a web services provider can be published to a web
services registry. There are two major registry standards:

• the UDDI registry6,

6version 2.0 is the current standard, an upcoming version 3.0 is in the working pro-
cess [ftAoSISO02]

3.1 Fundamentals of Web Services 25

<wsdl:definitions>

<!-- Import definitions from external sources -->

<wsdl:import/>

<!-- Definitions of types used only in this WSDL file -->

<wsdl:types/>

<!-- Definitions of messages for this web service -->

<wsdl:message .../>

<!-- Definitions of the interfaces and operations -->

<wsdl:portType .../>

<!-- Concrete bindings of interfaces and operations to protocols -->

<wsdl:binding/>

<!-- Defines the service and supplies the protocol address -->

<wsdl:service/>

</wsdl:definitions>

Code 3.1.1: The logical structure of a WSDL document

messages

types

operation

operation

operation

concrete operation binding

ports

WSDL document

abstract description

concrete description

portTypes

bindings

services

Figure 3.3: Structural parts of a WSDL document

26 Web Services

WSDL element name Usage description

import enables web services that are defined in other WSDL documents
or document fragments to be imported into the current WSDL
document as required; therefore promotes document reuse. This
approach is mainly used in managing large and extensive interfaces
in order to allow different web services to share the same data
types or to separate the definition of a web service and its protocol
bindings.

types defines the type system which is used in the web service mes-
sages exchange between the service and its client. Currently the
W3C standard [Con01] advocates the use of its XML schema type
system which is an XML schema language to define data types,
see [Con04b].

message describes the data that is exchanged between the web service and
its clients in terms of the data types defined within the types el-
ement. Each message is an abstract representation of the request
and response message defined that corresponds to a concrete pro-
tocol message such as SOAP.

portType defines an abstraction for the web service endpoint interface. The
functionalities of the web service are represented as abstract op-
erations of the interface.

binding defines the way in which the operations defined in the portType ele-
ment and the messages defined in the message element are mapped
to their concrete representation when a specific concrete protocol
is bound as transport mechanism. If the common SOAP protocol
is used, WSDL has extensions that allow the description of the
header, body and the fault parts of a SOAP message.

service contains the port element which contains the address url at which
a concrete binding of the portType on which the web service is
deployed. A web service client can use this piece of information
to invoke the operations of a web service. It is possible to have
more than one port within the WSDL document. The service
element serves to group related ports together that will represent
a web service in its entity.

Table 3.1: Top level elements of a WSDL document

• the ebXML registry7.

The UDDI registry is intended primarily for the publication of metadata relating
to web services. It allows the service provider to advertise service information that
includes the location of a WSDL document and other related documentation. A
registry can also contain classification information than can assist the web service
clients in looking up services regarding a specific interest or category. See [Nl04] for
further information on web services registries; see [AM02] and [GDS04] for a detailed
treatment on the UDDI registry.

The ebXML registry standard was created by OASIS and is aimed at the E-
commerce market. It is currently primarily deployed in enterprise environments. The
repository allows storage of web services description documents as well as business

7ebXML – electronic business using extensible markup language, sometimes referred to as ebXML
repository

3.1 Fundamentals of Web Services 27

 components

 quality of service

 description

 messaging

 transport

discovery
+

negotia-
tion

reliable
messaging

security transactions

interface + bindings policy

XML binary + non XML

transport infrastructure

atomic protocols

service composition

choreography orchestration

Figure 3.4: The abstract SOA stack overview

documents and other data of a business scenario; in this sense it is a different approach
to management of storage of web services definitions than the UDDI registry which is
mainly focused on a web services centric middleware provision. See [Wal02], [GD02]
and [KWW01] for further treatment on this topic.

Frameworks for Web Services

Web services technology is a basis for implementing service oriented architecture, and
the service bus as mentioned in section 3.1.1 is the centerpiece of the architecture
implementation. The high level architectural overview of the service bus is illustrated
in figure 3.4.

The figure depicts an abstract architectural overview of the service bus as a stack
of functionalities of the service oriented architecture [Erl04, MW06].

The bottom layer presents its capabilities to cope with various transport protocols
to communicate between a service and a requester. The messaging layer on top of
the transport layer enables the bus to deal with messages.

The next layer of the bus facilitates and deals with the description of services
in terms of functionalities supported, quality of service of these functionalities and
the supporting binding mechanisms. The actual quality of the services of the bus
is enforced by the appropriate parameterization via web services policies residing in
the underneath layer. The quality of service layer copes with security aspects such
as message integrity and, confidentiality and non-repudiation; moreover transport
reliability of messages and transaction management support is also settled in this
layer.

The top layer represents the various kinds of virtual components that web services
have at their disposal. This layer encapsulates components that facilitates atomic
services which are not composite services as compared to their composite partners
juxtaposed next to them in figure 3.4. The Composite services are the constituent
parts of the framework that supports the choreographies of web services by the service

28 Web Services

bus. The coordination of participants among each other is controlled by agreement
protocol.

The vertical layer provides features for the discovery of services and the negotiation
for agreement on a mode of service interaction between requester and the service
provider.

3.1.2 Benefits of Web Services

As mentioned briefly in section 1.1.2, web services have characteristics that are ad-
vantageous in terms of simplicity, efficiency, and operability, which have motivated
and led to the development of a server module and the corresponding interface for the
CCM system. The reason for the popularity and widespread adoption of web services
underlies the following benefits:

Application development has been complicated by the requirement that a par-
ticular application support a specific type of client or even several types of them
simultaneously; web services due to their interoperability with other web services,
simplify this facet of the application development process.

3.1.3 Development and Challenges

The challenges faced by web service developers are numerous. Web services are the
evolution of a long line of web technologies, they are far from mature. At the present
stage, web services technologies are undergoing rapid evolution. Despite of the variety
of development tools and implementation platforms, the challenges consist of contin-
uous evolving technologies and standards. Consequently, developers are required to
adapt to new technologies vigilantly.

Factors that will influence the development of web services in long term are:

Evolving Technologies and Tools

Many web services based solutions are still in their infancy. Web services rely on a col-
lection of technologies, standards and specifications, though more new standards are
currently being defined to enrich the potential of the web services platform. Enterprise
computing systems often utilize web services as a means to distribute information, and
many more systems use web services to conduct business process that requires trans-
action capability. Since transaction is crucial to enterprise business processes, the
corresponding web services standard has just been proposed, not long before there
was no universally accepted standards for conduction transactions in web services
terms.

An additional challenge in the development of web services is the coordination
of multiple services for processing business logic. Often a seemingly single business
process is implemented as a series of stages in a real workflow, and each stage of
the workflow might be implemented as a separate service. Consequently, all the
services must coordinate with each other during the various processing steps. The
corresponding standards are currently under reviews.

Security

Ensuring security is important for web services as for any web applications. The fact
that nowadays applications on the web open up the business processes and data of an
enterprise to distributed clients, has made security even a crucial factor in the design
and development of web services.

When information assets are exposed in less-protected environment such as in web
services, it becomes crucial to maintain security measures to preserve integrity of the

3.1 Fundamentals of Web Services 29

Characteristics Benefits

interoperability permits different services on distributed systems to run
on a variety of software platforms and architectures. The
development in this arena is due to the consolidation of
cross platform systems which have functionalities added
over time, the management of them which are probably
implemented with different languages and running on het-
erogeneous platforms poses issues of integration. In order
to be interoperable, web services can be emplored to inter-
face between these systems and architectures.

wide acceptance of web
technologies

due to the ubiquitousness of the web and web technologies,
web services that utilize these technologies and infrastruc-
ture can leverage the advantages of this medium. On the
other side, web services clients are also well served due to
the wide availability of web based clients.

integration many existing enterprise information systems have an enor-
mous data volumn at their storage disposal; the cost to re-
place legacy system is probably prohibitive and thus not an
option. Web services promotes integration of these legacy
systems by interfacing them with a layer of loosely coupled
middleware protocol, allowing system application develop-
ment to commoditize exisiting information assets for reuse.
Consequently consistently standard ways can be provided
by using web services to access middle-tier or even data-tier
services to integrate them with other applications.

open standards Web services are extensively based on standardized pro-
tocols and open standards. There is a large set of tools,
production technologies available to make web services de-
velopment more efficient.

dynamic heteroge-
neous client support

one main goals of web services is to improve interoperabil-
ity, exposing existing applications as web services enhances
their reach to different clients. This is platform indepen-
dent in terms of the implementation language with which
the client is programmed or the architecture on which the
client is running.

efficiency and produc-
tivity

application development such as web services prototyping
is supported by the availability of many useful tools for web
services. Thus productivity of web services development is
enhanced on magnitudes that have not been reached in con-
ventional sense since the development for other distributed
computing environment have relied on a set of not-always-
compatible technologies or diversed types of middleware
software which are incompatible. One prominent exam-
ple is CORBA which uses proprietary interface protocols
for remote communication, integration with other backend
systems have occassionally evolved into maintenance night-
mare.

Table 3.2: Web services benefits

30 Web Services

sensitive information from being tempered with by unauthorized clients while still
providing easy web services access to other assets by web services clients.

One of the difficulties in handling distributed systems is providing an integrated
security model that has to be compatible with existing mechanisms. In cases where
web services clients have to access secure sensitive information, the security model
has to ensure high security while remaining as unobtrusive and as transparent as
possible. The key issues of security of web services are concerned with authentication,
authorization, and ensuring confidentiality. Web services standards of security are
crucial and therefore a highly prioritized area for the service oriented architecture.
There are now many evolving working standards in progress such as WS-Security
which ensures message level security of web services, see [ftAoSISOwssw06, dev04].

Scalability and Reliability

Developing web services often means handling large-scale distributed applications
which require reliability of service and scalability for future growth.

Reliability of the web services represents how well the services can maintain their
services regarding to service quality. Often reliability is measured by the number of
failures occuring in a given period of time. For web services to be reliable, the infras-
tructure on which the web services are deployed, mostly on web application platforms
using underlying HTTP, SOAP protocol nowadays, must be reliable. Sometimes re-
liability is however difficult to achieve because of the relatively unreliable nature of
these infrastructure platforms; for instance, the HTTP protocol as transport provides
only a best effort delivery and does not guarantee packet correctness or retransmis-
sions. Web services are considered reliable if they can cope with the issues of these
platforms and handle changes using configurations dynamically.

There are efforts in progress in the fields of web services reliability adopted by
standard organizations.

Web services which scale effectively can handle a large number of client interac-
tions. The web services infrastructure must efficiently manage system resources and
services. One of the possible bottleneck is the effectiveness of handling of XML pars-
ing, deserialization and serialization by the underlying web services platform. Since
these processes are computing intensive if there is a large number of client connec-
tions to handle because the XML format itself is rather verbose that can increase
payload size of network packets prohibitively if the size of message is getting large,
the web services platform must be design with this issue in mind to avoid significant
performance drawbacks.

To achieve reliability and scalability, web services must be flexibly deployed on
server platforms that can scale to anticipated client volumes; moreover they must be
design to be easily configurable. Some working solutions to achieve scalability in the
middleware layer have been successfully deployed in many web applications such as
the use of a clustering hardware environment. It is helpful to handle scalability of the
systems without requiring the applications to be redesigned or reordered.

Web Services Frameworks

As mentioned in section 3.1.1 about the abstract service oriented architecture stack
(SOA stack), there are numerous efforts which have been undertaken to realize the
stack, the figure 3.5 on page 3.5 illustrates the implementing standards which have
been adopted overtime by the standard organizations.

Transport Service

The above diagram provides an overview of the SOA stack implemention relating to
the current and emerging technologies of the web services platform. Web services

3.1 Fundamentals of Web Services 31

 components

 quality of service

 description

 messaging

 transport

UDDI
+

metadata
exchange

WS-Reliable
Messaging

WS-Security WS-AT
WS-BA

WSDL WS-Policy

SOAP + WS-Addressing CORBA, JMS

HTTP, SMTP, RMI, TCP/IP

WS-Orchestration

composite

BPEL WS-
Coordination

Figure 3.5: The SOA stack implementing the web services architecture

are inherently transport neutral; the fact that a variety of standard protocols are
supported to transport web services messages proves that the flexibility of the services
architecture. These protocols are illustrated in the transport layer of the diagram
above.

Messaging Services

The messaging services component of the framework contains the most fundamen-
tal web services specifications and technologies, including XML, SOAP and WS-
Addressing. Collectively, these specifications form the basis of interoperable mes-
saging between web services. WS-Addressing provides an interoperable way of iden-
tifying message senders and receivers that are associated with message exchange. It
decouples address information from the specific transport protocol used by providing
a mechanism to embed target, source address information directly within the web
service message. The specification defines XML elements to identify web services
endpoints to secure peer communication in the exchanged messages. WS-Addressing
defines two interoperable constructs: endpoint references and message information
headers which can be processed indenpendently by the addressing framework. De-
tailed specifications can be obtained in [Con05, Nl04].

Service Description and Discovery

Above of the messaging services layer lies the service description layer. Besides the
web services description language WSDL which is mentioned in section 3.1.1, the WS-
Policy specification also finds its way in this layer. WS-Policy framework offers a flex-
ible way to associate policy expressions with web services. The specification [Con06d]
defines a common framework for services to annotate interface definitions to describe
their service assurance qualities. This is realized in the framework as requirements
which are machine-readable expressions containing assertions of the services. The WS-

32 Web Services

Policy framework allows the use of algorithms to determine what concrete policies are
applicable to allow requester and provider to interact. Other higher-level function-
alities provided by the framework at the upper layers such as security, transactional
supports and reliable messaging rely on the WS-Policy framework extensively.

Service discovery is a realm that is concerned with lookups of metadata about the
web services. This task is handled by UDDI registries which is mentioned previously.

Quality of Service

Standards and specifications in this layer are related to the quality associated with
interaction with web services. They specify the requirements and issues regarding
overall reliability of web services, for instance the security in the interaction, reliability
in the message delivery and support for transactions based on agreement and 2-phase
transaction protocols.

WS-Security is the basic building block for secure web services. Modern web ser-
vices on distributed middleware rely on transport-level support for security. Minimum
secure communication channel is supported at this level by HTTPS and basic client
authentication. WS-Security utilizes existing security infrastructure of models such
as a PKI8 of digital certificates or authentication framework like Kerberos. The spec-
ification [ftAoSISO04] defines concretely the way to use existing security models in
an interoperable way for web services. Moreover, further research in the trust model
has led to the development of WS-Trust [ftAoSISO06b] which defines an extensible
model for setting up and verifying trust relationships.

WS-ReliableMessaging of IBM [dev05e, dev05f] defines a protocol that ensures
reliable delivery of messages with specified assurance of message exchange. It specifies
these assurances in terms of delivery pattern:

• in-order delivery,

• at least once delivery,

• at most once delivery

The above assurances can be combined to allow bridging different message oriented
middleware infrastructures into a single, logical end-to-end reliable messaging model.

The support of transactional functionalities are mainly handles in the web services
domain by three standard specifications:

• WS-Coordination,

• WS-Atomic Transaction and

• WS-BusinessActivity

WS-Coordination [dev05d] is a mechanism for initiating and agreeing on the out-
come of multipart, multimessage web services tasks. It consists of three key elements:

• coordination context is associated with exchanges during the interaction of web
services. It contains the addressing endpoint reference of a coordination service
and information that identifies the task being coordinated,

• coordinator service provides a service to start and terminate a coordinated task;
it allows participants to register the task and produces the coordination context
within every exchanged messages between the service participants,

• coordination interface is used by the participants to get the outcome of the task
being coordinated.

8PKI – a public key infrastructure

3.1 Fundamentals of Web Services 33

WS-AtomicTransaction [dev05b] and WS-BusinessActivity [dev05c] are two par-
ticular protocols that extend the WS-Coordination protocol to define specific ways to
reach overall outcome agreement.

WS-AtomicTransaction defines a specific set of protocols that plug into WS-
Coordination to implement the traditional two-phase atomic ACID transaction pro-
tocols. Transaction protocols for business transactions have to deal with long-lived
activities. These differ from atomic transactions in that such activities can take much
longer to complete. In this respect, mechanisms are introduced for fault and compen-
sation handling to reverse the effects of tasks that were completed previously within
a business activity, such as compensation or reconciliation.

WS-BusinessActivity defines a specific set of protocols that plug into the WS-
Coordination model to provide long-running, compensation-based transaction proto-
cols.

Service Composition and Components

The uppermost layer of the diagram depicts the composition framework for web ser-
vices. Business Process Execution Language for Web services BPEL4WS [dev05a]
provides a language to specify business processes and process states and how they
relate to web services.

The BPEL4WS specification explains how a business process uses web services to
achieve its goal, including specifying web services that a business process provides.
Business processes specified in BPEL are fully executable and are portable between
BPEL-conformant tools and environments. A BPEL business process interoperates
with other partner web services, whether these web services are realized based on
BPEL or not. Consequently, BPEL supports the specification of business protocols
between partners and views on complex internal business processes.

BPEL supports the specification of a broad spectrum of business processes, from
fully executable, complex business processes over more simple business protocols and
constraints of web services. It provides a long-running transaction model that allows
increasing consistency and reliability of web services applications. Correlation mech-
anisms are supported that allow identifying statefull instances of business processes
based on business properties. Partners and Web services can be dynamically bound
based on service references.

3.1.4 Web Services Protocol

The service bus of the service oriented architecture mentioned previously underlies
a message transport mechanism. A web services protocol represents a significant
underpinning of web services runtime infrastructure. It is concerned with the ex-
change of structured types information between web services participants. There is
one mainstream web services protocol implementation in use nowadays — SOAP.

SOAP

SOAP9 is the standard common messaging protocol used by web services. It is the de
facto standard for the web services stack in general. SOAP’s primary application is in
the domain of B2B and enterprise application integration; being a truly effective web
services protocol, SOAP is designed platform-independently, be flexible, and based
on standard, ubiquitous technologies. Unlike earlier enterprise technologies, such as
CORBA, SOAP enjoys widespread use in web services since its inception, and has
been endorsed by most enterprise software vendors and major standards organizations
such as W3C, WS-I, OASIS.

9SOAP – Simple Object Access Protocol

34 Web Services

SOAP envelope

SOAP header

SOAP body

HEADER ELEMENT

BODY ELEMENT

BODY ELEMENT

Figure 3.6: Structure of a SOAP message

The SOAP protocol is concerned with the encapsulation of web services messages,
encoding them as XML data and defining the rules for transmitting and receiving
that data.It is a network application protocol.

SOAP provides four main capabilities:

• a standardized message structure based on the XML Infoset,

• a processing model that describes how a service should process the messages,

• a mechanism to bind SOAP messages to different network transport protocols,

• a way to attach non-XML encoded information to SOAP messages

A SOAP XML document instance is called a SOAP message which is usually
carried as the payload of some other network protocol. The most common way to
exchange SOAP messages is via HTTP. SOAP messages are exchanged between
applications on a network and are usually not meant for human consumption. HTTP
is just a convenient way of sending and receiving SOAP messages. Other transport
layer protocols, e.g. SMTP, FTP and JMS can also be used.

A SOAP message is the basic unit of communication between SOAP nodes. It
consists of a SOAP envelope that contains zero or more SOAP headers. The figure 3.6
shows the structure of a SOAP message. The SOAP headers are targeted at any SOAP
receiver that might be on a SOAP message path. The SOAP envelope also contains
a SOAP body that contains the message payload or business information. A SOAP
body might contain, for instance, a service request and input data for the service
to process. While processing a SOAP message, a SOAP node might generate a fault
condition. If this happens, a SOAP node returns a SOAP message containing a SOAP
fault.

A SOAP node is an implementation of the processing rules described within the
SOAP specification [Con03c, Con03b, Con03a] that can transmit, receive, process, or

3.1 Fundamentals of Web Services 35

relay a SOAP message. Although the SOAP node implements the SOAP processing
model, it can also access any services that underlying network protocols might provide.
It does this through a SOAP binding that specifies the rules for carrying a SOAP
message on top of some other underlying network protocol.

SOAP nodes can send and receive SOAP messages. If a SOAP node transmits
a message, it is called a SOAP sender; if it receives a message, it is called a SOAP
receiver. Some SOAP nodes might both receive and transmit messages. In this case,
they are called SOAP intermediaries. The SOAP sender that first builds the SOAP
message is called the initial SOAP sender. The final destination of the message is
called the ultimate SOAP receiver. This SOAP node is responsible for processing the
payload of the message that is contained in the SOAP body.

The following XML instance document snippets are excerpts from SOAP messages
representing a SOAP request and the corresponding SOAP response:

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<ns0:getClass

xmlns:ns0="urn:de.tuhh.sts.cocoma.generic"

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<argument0 xsi:type="xsd:string">hello world</argument0>

</ns0:getClass>

</soapenv:Body>

</soapenv:Envelope>

Code 3.1.2: Logical structure of a SOAP request message (excerpt)

The request is processed by the intended SOAP receiver node which generates the
following response:

SOAP specifies the overall structure of a message, together with rules for wrapping
SOAP messages using the underlying transport protocol such as HTTP. There are
two slightly different ways to construct a SOAP message depending on whether the
message has any attachments. The SOAP version 1.1 specification requires that a
message be constructed as shown in the structure illustration above. The outermost
layer of the message is a protocol-specific wrapper, the nature of which is defined
in the specification with HTTP as the concrete transport binding protocol. Inside
this wrapper is the SOAP message itself, basically an XML instance document that
conforms to the SOAP XML schema definition. It consists of an envelope, a header
part, a body part, and optional additional content.

The SOAP envelope is a top-level XML element that serves as a container for the
rest of the message. The SOAP header is optional, and if present, must be the first
element in the envelope. It is intended to be used to carry information that can be
used in the processing or routing of the message payload, such as a digital signature
to secure the integrity of payload data or authentication information to validate the
identity of the message sender.

The SOAP body is the only mandatory part of the envelope and contains the
actual payload intended for the ultimate recipient of the message. It must either
follow the SOAP header or, if the header is omitted, be the first element in the
envelope. Following the body element, it is possible to include additional content, the
interpretation of which, like the payload itself, is entirely dependent on the sending
and receiving node.

Everything within the SOAP envelope must be encoded in XML. For the purpose

36 Web Services

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<ns1:getClassResponse

xmlns:ns1="urn:de.tuhh.sts.cocoma.generic"

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<getClassReturn href="#id0"/>

</ns1:getClassResponse>

<multiRef

xmlns:ns2="urn:de.tuhh.sts.cocoma.generic"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

id="id0" soapenc:root="0"

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xsi:type="ns2:AssetClass">

<id href="#id1"/>

<type xsi:nil="true" xsi:type="ns2:AssetClass"/>

<name xsi:type="xsd:string">Asset</name>

<superclass xsi:nil="true" xsi:type="ns2:AssetClass"/>

</multiRef>

<multiRef

xmlns:ns3="urn:de.tuhh.sts.cocoma.generic"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

id="id1" soapenc:root="0"

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xsi:type="ns3:ID">

<componentName xsi:type="xsd:string">

componentname=generic

</componentName>

<moduleName xsi:type="xsd:string">module=CocomaSModule</moduleName>

<internalID xsi:type="xsd:string">

uuid=c9c5a175-60fb-426e-a2df-c2b97b95dcec_bye_bye

</internalID>

</multiRef>

</soapenv:Body>

</soapenv:Envelope>

Code 3.1.3: Logical structure of a SOAP response message (excerpt)

of the serialization of binary data, it is not always practical to have this data encoded
using XML. Consequently, an additional specification called SOAP Messages with
Attachments [Con00] has been adopted for the specific purpose of handling SOAP
messages with attachments. It has become the de facto standard for packaging SOAP
messages that require non-XML encoding of the content.

3.2 Web Services Server Module Endpoint Require-
ments

A web services endpoint is a software implementation that is capable of performing
handling of web service requests and responses. In terms of the component architec-
ture of concept-oriented content management systems, such a software implementa-
tion is mapped to a server module. The server module is a component software that

3.2 Web Services Server Module Endpoint Requirements 37

WS client

lookfor
modify

create

delete

server module

<<include>><<include>>
<<include>>

<<include>>
client module

<<uses>>

WS SOAP component
HTTP server

process
requests

<<uses>>

<<uses>>

Figure 3.7: Use case analysis

adheres to the module interface definition of a CCMS and contains methods defined
in the module interface that are common to all other types of modules.

The asset languages of CCMSs as described in the sections 2.1.2, 2.1.3 and 2.1.4
are responsible for the creation, retrieval, manipulation, and destruction of the assets.
Exporting these CRUD operations to the web services endpoint is the main task of
the web services server module. A use-case diagram illustrating the requirements are
depicted in figure 3.7 on page 3.7.

3.2.1 Generation of Web Services Description

The structure of a WSDL document has been described in section 3.1.1. In order
to translate the common asset methods of the generic module interface into web
services methods for the service endpoint, these methods must be mapped to the
logical structural elements of a WSDL document.

One of the main development approaches of a web services endpoint is to select
whether to start from scratch code or from a WSDL document. These development
issues are already described in section 1.2.1.

It is worthwhile mentioning that by adopting the top-down development approach,
i.e. starting with a WSDL document provides the benefits:

• WSDL document centralizes update of the web services development workflow
by allowing, in case of module interface changes, these changes to be modified
in one document.

• Implementation codes of the web service endpoint which correspond to the up-
dates can be generated dynamically on the fly.

• It provides a better overview of the whole interface and the methods which are
exported as web service methods.

38 Web Services

For these reasons, the development of the server module for CCMSs has adopted
the top-down development approach. The WSDL document of the web services is
generated by a WSDL generator which can be plugged into and run in the CCMS
compiler backend.

In a nutshell, the mapping of module methods to WSDL element artifacts takes
these guidelines which are summarized in table 3.3.

Module interface elements translate to WSDL elements

generic asset types XML Schema simpleType or complexType
which are utilized by other WSDL elements
as type references

concrete asset types XML Schema complexType
module method name a pair of request and response WSDL mes-

sage elements with the method name as
the naming prefix

module method signature name of method is preserved and maps to
name attribute of a WSDL operation ele-
ment

module method parameters generally map to WSDL part elements
within a WSDL request message element

module method return type name generally maps to WSDL part element
with a WSDL response message element

module method concrete signature maps to name attribute of the WSDL oper-
ation elements within the binding element.

Table 3.3: Mapping of generic module elements to WSDL elements

3.2.2 Functional Requirements of a Server Module

The functional requirements of a server module are:

1. The WSDL document that describes the web services of the server module must
be generated using a generator.

2. The server module must be able to listen on a network port and accept requests.

3. The server module must be able to handle web services request messages and
produce response messages that are SOAP conformed.

4. Serialization of the exchanged messages in XML should be a built-in feature of
the server module.

5. The server module must comply with the module interface definition of a CCMS
module.

6. The request messages of the web services tier must be mapped to method calls
of the module interface. The method calls are delegated to pre-configured base
modules of CCMSs.

3.2.3 Functional Requirements of Web Technologies

Since web services endpoint is deployed in connection with many of the fundamental
web technologies nowadays, there are several issues concerning the choice of these
technologies that are relevant to the provision of web services.

3.2 Web Services Server Module Endpoint Requirements 39

J2EE application server

network
connector

J2EE servlet container

JSE

<<implementationClass>>

JAX−RPC
web service implementation

web service client
<<component>>

servlet
SOAP/HTTP

<<use>>

Figure 3.8: JSE web service deployment using servlet delegation

The Java enterprise platform provides corresponding technologies that support
web services implementation and deployment [Mah04]. There are mainly two types
of web services endpoints [SBMS04] on this platform:

• base on binding the Java servlet technologies, JSE10 deployment,

• base on binding a EJB11 as the endpoint implementation.

Both type of these endpoints have found widespread use in the arena of Java web
services implementation.

In the first type of endpoint, a definition of the endpoint interface and an im-
plementation class are provided. The endpoint interface contains definitions of web
service operations in form of Java methods. The implementation class contains code
which implements these endpoint methods. In terms of the runtime environment to
support a JSE, JSEs are generally deployed into a web servlet container, and have
access to the same resources and context information that a servlet has. When a
JSE is deployed, a JAX-RPC servlet provides the hosting environment for the im-
plementation class and is responsible for responding to HTTP-based SOAP requests,
parsing the SOAP messages, and invoking the corresponding methods of the JSE
implementation class. When the JSE returns a value from the method invocation,
the JAX-RPC servlet creates a SOAP message to hold the return value or a SOAP
fault if an exception occurs in any operation. It then sends that SOAP message back
to the requesting client via an HTTP reply message. The structural setup is briefly
illustrated in figure 3.8.

Because a JSE is embedded in a servlet which itself resides inside a servlet con-
tainer or other servlet-standard conformed web container, it can access the same
resource that the servlet can. The difference turns out that either the resource resides
locally or remotely, the latter cannot be accessed effectively unless a remote object
reference is present or can be obtained. For the purpose of obtaining remote object
references, a proxying, naming and lookup mechanism, such as JNDI12 for naming
can be used. Servlet context and session information can theoretically be accessed
also. In addition, one advantage of this simple binding model inside the servlet allows
access to actual SOAP message including the method parameters or the header part
of the message. JSE web service endpoints are straightforward to implement based

10JSE – JAX-RPC Service Endpoint
11EJB – Enterprise JavaBean
12JNDI – Java Naming and Directory Interface

40 Web Services

J2EE application server

network
connector

J2EE EJB container

EJB Service Endpoint

<<implementationClass>>

service endpoint
implementation

web service client
<<component>>

EJB

stateless
session Bean

<<use>>
delegates

SOAP/HTTP

Figure 3.9: Web services endpoint deployed with a stateless EJB component

on the servlet model. Moreover, the servlet programming model is widespread which
makes the deployment of the JSE web services endpoint in standard servlet container
efficient.

In the EJB type of service endpoint, a stateless session bean is made accessible as
a web service by deploying the bean with a remote and a local interface. An endpoint
interface which extends the java.rmi.Remote interface is defined. An EJB endpoint
can be a specific new stateless session bean developed to serve a web service endpoint,
or an exisiting stateless session bean can be re-deployed as an endpoint. The JAX-
RPC specification [jcp06, Mic06] explains the steps to turn such a stateless session
into a web service endpoint.

A SOAP client uses a WSDL document associated with the EJB endpoint to send
a SOAP message to the application server that hosts the EJB endpoint. The following
figure 3.9 depicts a stateless EJB endpoint processing SOAP messages.

In terms of the EJB runtime environment, an EJB can access resources, other
EJBs, and web services using JNDI. In addition, an EJB can interact with its
container via callback methods and the bean SessionContext interface. Generally,
transaction and security is managed by the container.

With regard to the possible implementation of the service endpoint mentioned,
the web-tier poses these requirements on the web technologies used to transport and
host the web service:

1. A stateless protocol such as HTTP should be used.

2. Because of the simplicity and statelessness of servlets, it suggests that a JSE
should be implemented with servlet technology.

3. Since the server module must be able to serve client requests and produce re-
sponses itself, it must process the functionality of an HTTP server.

4. The implementation of the endpoint should process SOAP messages seamlessly.

5. For coherent reason with CCMSs, the JSE should adhere to the JAX-RPC
specifications when it comes to the details of the endpoint implementations.

3.2.4 Non-functional Requirements

Regarding to the nature and characteristics of the Java programming language, in
which the modules and components of concept-oriented content management sys-

3.3 Web Services Technologies Survey 41

tems are implemented. The web services layer is consequently implemented in the
same language or has adopted web services frameworks which are based on the Java
programming language. Some of the following non-functional requirements are con-
ceivable:

1. Depending on the configuration of the runtime CCMS module configuration,
the processing time of request and the creation of response should meet certain
time-limits requirements to guarantee an acceptable response rate of the system.

2. Threading support of handling multiple client requests without blocking the
server module.

3. The performance of the integrated web services frameworks should be fine-tuned
to scale to increasing request load.

3.3 Web Services Technologies Survey

In the development of web services, there are mainly two concurring platforms sup-
porting the entire need and development workflows of web services. They are the
.NET and the J2EE web services.

The .NET platform is designed for close compatibility with the Windows operating
system, and it takes full advantage of native Windows features. On the other hand,
the J2EE platform takes advantage of the Java virtual machine’s portability layer to
provide the same features and functionality across all operating systems on which it
runs.

Because of key differences, interoperability between the .NET platform and the
J2EE platform is limited and since the J2EE platform web services are selected for
the server module implementation. The evaluation of web services relevant software
technologies will solely concentrate on the J2EE platform.

3.3.1 Java based Web Services Technologies

The Java APIs for XML fall into two broad categories: those that deal explicitly with
the processing of XML documents and those that deal with the procedures used to
interchange XML-based documents. There are three document-oriented Java XML
APIs:

• Java API for XML Processing (JAXP)

• Java Architecture for XML Binding (JAXB)

• SOAP with Attachments API for Java (SAAJ)

There are two APIs that deal with the procedures used to interchange XML-based
documents for Java web services:

• Java API for XML-based RPC (JAX-RPC)

• Java API for XML Registries (JAXR)

JAXP is invaluable for processing XML documents. It is a powerful and exten-
sible API based on the concept of using external plug-in modules. JAXP supports
SAX and DOM with full XML namespace processing and parsing. All XML parsers
verify that an XML document is well formed and syntactic correctness. Some XML
parsers are known as validating parsers. Validating parsers, in addition to verifying
the structure of an XML document, also validate the contents of a well-formed XML

42 Web Services

document against the appropriate DTD or XML schema. Xerces of the Apache Soft-
ware Foundation, is a widely used example of an XML validating parser that supports
both the SAX and DOM APIs.

JAXB is another piece of XML schema oriented processing software by which
Java applications can process XML documents which conform to an XML schema
document. It is a Java technology that enables developers to easily generate Java
classes by creating objects in the form of JavaBeans from an XML schema. Developers
can use JAXB to create a representation of an XML schema in terms of Java code.
It provides an easy and convenient way to incorporate XML data and XML-related
processing functionality into Java applications without deep knowledge about the
intricacies and mechanics of XML.

SAAJ is a different API than JAXP or JAXB. Rather than being an API related
to processing XML documents, SAAJ is a SOAP-related API. It provides a stan-
dard means by which Java applications can send XML documents by using SOAP.
SAAJ is obviously targeted at web services related applications in which a low-level
manipulataion of the SOAP message within the program logic is desired.

The above mentioned APIs are all more or less XML document oriented, in terms
of web services development, not only a more sophisticated software framework for
handling XML documents is important; but also the functionalities of message cre-
ation, delivery, serialization and deserialization are critical. In this respect, JAX-RPC
is a web services oriented API emphasizing on the procedural side of web services de-
velopment rather than solely on the document-related side. JAX-RPC [Mic06] is
an RPC invocation mechanism in a nutshell. It enables Java applications to invoke
XML-based RPC operations conforming with the SOAP 1.2 specification. It enables
Java software to participate within a web services application. In terms of program-
ming, either as web services provider, i.e. server side web services endpoints, or as
applications, i.e. client side web services client applications, invoking Java or non-
Java-based13 web services.

JAXR is a uniform and standardized Java API for accessing and querying different
kinds of XML registries with UDDI and the OASIS proposed ebXML registries. It
provides Java applications with a unified information model that describes the content
and meta-data included within XML registries. Java developers can develop registry
client software with JAXR to query, publish or update UDDI registries. The JAXR
API is now an integral parts of the J2EE version 1.4 platform.

There is a useful bundle of Java web services development software packaged by
Sun Microsystem under the name Java Web Services Developer Pack (Java WSDP).
Java WSDP is a free integrated toolkit to help Java developers create any type
of XML-related software with the latest Java APIs. It can be downloaded from
java.sun.com. Web services related software developed with Java WSDP is assured
to conform to WS-I14 basic profile 1.0. In addition to offering JAXP, JAXB, SAAJ,
JAX-RPC, and JAXR, The Java WSDP development package also includes features,
such as JavaServer Faces (JSF) and access to all of the J2EE security features (in-
cluding authentication and encryption).

13examples are document literal web services which are not RPC operations in conventional sense
14WS-I – web services interoperability organization

Chapter 4

WSDL Generator and Web
Services Modules Design

This chapter describes the design of the WSDL generator and the web services server
module. A description of the mapping strategies for modeling the module interface
in WSDL is given in section 4.1. The WSDL generator design issues are discussed
in section 4.2. The design issues of the server module as a web services endpoint
are explained with several possible architectural design approaches in section 4.3. An
emphasis is given to the juxtaposition of the different design approaches to each other
with discussions on the pros and cons regarding the specific design, in order to find
an advantageous disign approach.

4.1 Web Services Interface Description — WSDL

One of the main functional requirements of the server module is the provision of the
asset CRUD operations as web services operations. The module interface defined in
the Java interface Module of the de.tuhh.sts.cocoma.generic package contains the
methods for the CRUD operations to be exported as web services operations. The
definition of this Java interface is given in code example 4.1.1.

The first group of methods of the interface definiton consists of the module life-
cycle methods; they are responsible for the initialization (implemented by the init
method), activation (implemented by the start method) and deactivation (imple-
mented by the stop method) of the server module. The other groups of interface
methods are characterized by the manipulative operations on asset instances. Each
group of these methods consists of at least one instance of an overloaded method to
the corresponding method declaration. The difference among the overloaded methods
is obvious with regard to the method signatures. The purpose of having overloaded
methods consists in the fact that different method parameters, which are assets, are
allowed as method arguments for the invocation of these overloaded methods.

Regarding to the functional requirements of the web services endpoint, the task of
the server module is to provide web service enabled access to these interface methods
for the manipulation of asset instances of a CCM subsystem. In a nutshell, there
are four groups of these interface methods which must be translated into web ser-
vices operations. These are methods for the creation, retrieval, modification and
destruction of asset instances as mentioned in section 3.2 of chapter 3. According
to the JAX-RPC web services specification, a Java interface containing the exported
methods must extend the java.rmi.Remote interface and these methods must throw
an java.rmi.RemoteException to denote an exceptional event in case of a failure.
These interface methods are listed in table 4.1.

44 WSDL Generator and Web Services Modules Design

public abstract interface de.tuhh.sts.cocoma.generic.Module {

// module lifecycle methods

public void init(Component component,

java.lang.String name,

java.util.Map parameters)

public void start()

public void stop()

public void addInstancesLifeCycleListener(LifeCycleListener listener)

public void removeInstancesLifeCycleListener(LifeCycleListener listener)

public AssetClass getClass(java.lang.String name)

// module asset creation mothods

public Asset create(AssetClass assetClass,

AbstractAsset prototype)

public AssetIterator create(AssetClass c,

AssetIterator ps)

public Asset create(AssetClass assetClass,

Module.MemberInitialization[] initialization)

// module asset deletion methods

public NewAsset delete(Asset asset)

public AssetIterator delete(AssetIterator assets)

// module asset query methods

public AssetIterator lookfor(AssetClass assetClass,

AbstractAsset prototype)

public AssetIterator lookfor(AssetClass assetClass,

AssetIterator prototypes)

public AssetIterator lookfor(AssetClass assetClass,

Module.QueryConstraint[] constraints)

public AssetIterator lookfor(AssetClass assetClass,

java.lang.String retrievalExpression)

public Asset lookfor(ID assetID)

public AssetIterator lookfor(java.lang.String retrievalExpression)

// module asset modification methods

public Asset modify(Asset asset,

AbstractAsset prototype)

public AssetIterator modify(AssetIterator assets,

AbstractAsset prototype)

public AssetIterator modify(AssetIterator assets,

Module.MemberInitialization[] initialization)

public Asset modify(Asset asset,

Module.MemberInitialization[] initialization)

}

Code 4.1.1: Definition of the Module Java interface

4.1 Web Services Interface Description — WSDL 45

M
et

h
o
d

gr
ou

p
M

et
h
o
d

si
ga

tu
re

s
A

ss
et

cr
ea

ti
on

pu
bl

ic
A

ss
et

cr
ea

te
(A

ss
et

C
la

ss
ac

ls
,
A

bs
tr

ac
tA

ss
et

ab
st

as
st

)
th

ro
w

s
R

em
ot

eE
xc

ep
ti

on

pu
bl

ic
A

ss
et

It
er

at
or

cr
ea

te
(A

ss
et

C
la

ss
ac

ls
,
A

ss
et

It
er

at
or

as
st

it
er

)
th

ro
w

s
R

em
ot

eE
xc

ep
ti

on

pu
bl

ic
A

ss
et

cr
ea

te
(A

ss
et

C
la

ss
ac

ls
,
M

em
be

rI
ni

ti
al

iz
at

io
n[

]
m

m
bi

ni
t)

th
ro

w
s

R
em

ot
eE

xc
ep

ti
on

A
ss

et
de

le
ti

on
pu

bl
ic

N
ew

A
ss

et
d
el

et
e(

A
ss

et
as

st
)
th

ro
w

s
R

em
ot

eE
xc

ep
ti

on

pu
bl

ic
A

ss
et

It
er

at
or

d
el

et
e(

A
ss

et
It

er
at

or
as

st
it

er
)
th

ro
w

s
R

em
ot

eE
xc

ep
ti

on

A
ss

et
m

od
ifi

ca
ti

on
pu

bl
ic

A
ss

et
m

o
d
if
y
((

A
ss

et
as

st
,
A

bs
tr

ac
tA

ss
et

ab
st

as
st

)
th

ro
w

s
R

em
ot

eE
xc

ep
ti

on

pu
bl

ic
A

ss
et

It
er

at
or

m
o
d
if
y
(A

ss
et

It
er

at
or

as
st

it
er

,
A

bs
tr

ac
tA

ss
et

ab
st

as
st

)
th

ro
w

s
R

em
ot

eE
xc

ep
ti

on

pu
bl

ic
A

ss
et

It
er

at
or

m
o
d
if
y
(A

ss
et

It
er

at
or

as
st

it
er

,
M

em
be

rI
ni

ti
al

iz
at

io
n[

]
m

m
bi

ni
t)

th
ro

w
s

R
em

ot
eE

xc
ep

ti
on

pu
bl

ic
A

ss
et

m
o
d
if
y
(A

ss
et

as
st

,
M

em
be

rI
ni

ti
al

iz
at

io
n[

]
m

m
bi

ni
t)

th
ro

w
s

R
em

ot
eE

xc
ep

ti
on

A
ss

et
qu

er
y

A
ss

et
It

er
at

or
lo

ok
fo

r(
A

ss
et

C
la

ss
ac

ls
,
A

bs
tr

ac
tA

ss
et

ab
st

as
st

)
th

ro
w

s
R

em
ot

eE
xc

ep
ti

on

pu
bl

ic
A

ss
et

It
er

at
or

lo
ok

fo
r(

A
ss

et
C

la
ss

ac
ls

,
A

ss
et

It
er

at
or

as
st

it
er

)
th

ro
w

s
R

em
ot

eE
xc

ep
ti

on

pu
bl

ic
A

ss
et

It
er

at
or

lo
ok

fo
r(

A
ss

et
C

la
ss

ac
ls

,
Q

ue
ry

C
on

st
ra

in
t[

]
qr

yc
on

st
)
th

ro
w

s
R

em
ot

eE
xc

ep
ti

on

pu
bl

ic
A

ss
et

It
er

at
or

lo
ok

fo
r(

A
ss

et
C

la
ss

ac
ls

,
ja

va
.la

ng
.S

tr
in

g
st

r)
th

ro
w

s
R

em
ot

eE
xc

ep
ti

on

pu
bl

ic
A

ss
et

lo
ok

fo
r(

ID
id

)
th

ro
w

s
R

em
ot

eE
xc

ep
ti

on

pu
bl

ic
A

ss
et

It
er

at
or

lo
ok

fo
r(

ja
va

.la
ng

.S
tr

in
g

st
r)

th
ro

w
s

R
em

ot
eE

xc
ep

ti
on

T
ab

le
4.

1:
A

ss
et

m
et

ho
ds

ex
po

se
d

in
th

e
w

eb
se

rv
ic

e
in

te
rf

ac
e

de
fin

it
io

n

46 WSDL Generator and Web Services Modules Design

4.1.1 Mapping the Module Interface to WSDL

In section 3.2.1 of chapter 3, an overview for translating the module interface meth-
ods to WSDL elements and artifacts is summarized in table 3.3. These generalized
mapping rules are now applied to the design mapping process.

In order to map the module interface methods correctly, the order of the transla-
tion of the method elements to the corresponding constituents of a WSDL document
is important and should be observed:

1. map the necessary generic types of the de.tuhh.sts.cocoma.generic package
to the corresponding XML Schema types1,

2. map the concrete asset type structure of the asset classes in a asset domain
model definition to the corresponding XML Schema types,

3. extract the parameter list of each method and map each argument of the method
to a wsdl:part element within a wsdl:message element; inside the wsdl:part
element, the argument name is mapped to the name attribute and the argu-
ment type is mapped to the corresponding XML schema type using the type
attribute, a snippet of the mapped parts is shown in code 4.1.2,

4. extract the parameter list of each method, arguments are translated to wsdl:part
elements; arguments are grouped inside the corresponding request wsdl:message
element, an excerpt of code is shown in code example 4.1.3,

5. extract the return type of each interface method and map the return type to a
wsdl:part element within a response wsdl:message element; map the return
type name to the name attribute and the return type to the corresponding
XML schema type, code excerpt is shown in code example 4.1.4,

6. in each method group, the overloaded methods are treated differently in the
mapping process. Since there is no way to identify a method without the knowl-
edge of the method signature. The mapping of the method name alone does
not suffice the information need. Therefore overloaded methods are mapped in
the wsdl:operation elements of the wsdl:portType element by differentiating
between the wsdl:input and wsdl:output elements. A code excerpt is shown
in code example 4.1.5,

7. concrete binding of each method is mapped to the corresponding wsdl:operation
element inside the wsdl:binding element. The request and response messages
that belong to the mapped method are bound to a concrete protocol binding and
given in the wsdl:input and wsdl:output elements of the WSDL document.
A code excerpt is shown in code example 4.1.6.

<wsdl:message name="lookforRequest">

<wsdl:part name="argument0" type="impl:AssetClass"/>

<wsdl:part name="argument1" type="impl:AbstractAsset"/>

</wsdl:message>

Code 4.1.2: Mapping of interface method arguments

Overloaded methods can be identified using the above mentioned mapping strategy
without the need to alter the names of the overloaded interface methods themselves.
This approach is not the only mapping possibility, the other way to map overloaded
interface methods is to provide unique naming to each overloaded interface method.

1details on XML Schema mapping see section 4.1.2

4.1 Web Services Interface Description — WSDL 47

<wsdl:message name="lookforRequest_1">

<wsdl:part name="argument0" type="impl:ID"/>

</wsdl:message>

Code 4.1.3: Mapping of argument within request message

The actual design should prefer the first approach than the latter one because there is
the need to preserve the module interface definition. If the unique naming approach
is adopted, the naming of the overloaded methods cannot be used uniquely without
naming each method differently; however, this approach is contradictory to the initial
requirements for the interface translation.

4.1.2 Modeling Generic Asset Types with XML Schema

The initial mapping process begins with the mapping of generic types of the interface
hierarchy to XML Schema. The complete schema document is shown in appendix A
on page 89.

The process of modeling the asset types is essentially a twofold task:

• generic modeling - construct XML schema types to model the interface hierarchy
contained in the generic package,

• asset modeling - translate the class definitions of concrete asset models into the
corresponding XML schema language types.

Generic Modeling

The first modeling task begins with the conversion of the interface hierarchy types
of the de.tuhh.sts.cocoma.generic package. The modeling strategy of the the
generic types is to translate each generic type into a corresponding complexType of
the XML schema language. While simple generic types can be translated directly to
straightforward XML schema types, other composite generic types which are made up
of other generic types must be treated differently. The important issue is that these
composite types contain references to one or more of other simple or composite generic
types. In order to model the composite types correctly, their references to other
generic types are mapped to multiple XML schema elements with the corresponding
generic type defined using the type attribute of the specific element.

During the design phase, it has been discovered that the generic types themselves
are rather invariant in terms of their resemblance to their corresponding XML schema
language types. This fact is important to notice in the design process. For this reason,
all the interface types in the generic interface hierarchy have been modeled in the
XML schema language once. The resulting XML schema document is extracted and
modularized for reuse. The fact that this XML schema modeling is referenced in the
WSDL document which describes the module interface in the server module proves
that the modeling fulfills the requirements of schema document reuse.

Another point worth mentioning is the decision to model all the generic interfaces
together with their sub-interfaces in the generic package as concrete XML schema
types during the design phase. The subtle difference between interface and class in the
Java language has produced discrepancy and semantics mismatch if this programming
language concepts are mapped directly into the XML schema language. The reason is
that interface types such as Asset, AssetClass, etc. represents abstract type contracts
which cannot be instantiated. While only classes representing concrete types can be
instantiated, once these concrete types has implemented the interface types. Speaking
of modeling concept, concrete class types represent subtypes of their implemented
interfaces respectively. Although it is possible to define abstract complexTypes as a

48 WSDL Generator and Web Services Modules Design

<wsdl:message name="lookforResponse_1">

<wsdl:part name="lookforReturn" type="impl:Asset"/>

</wsdl:message>

Code 4.1.4: Mapping of method return type

modeling concept using the XML schema language [Con04b], in terms of modeling, the
concept and semantics of this specific XML schema language construct is nevertheless
different from the programming language concept of an abstract type because the
abstract simpleType or abstract complexType cannot be instantiated in an XML
instance document. Such abstract definitions of XML schema types serve the sole
purpose of ensuring the modeling completeness of the language. Since the generic
interface types must be used in the parameter list and the return types of the module
interface methods, mapping them directly with their programming language interface
semantics into their abstract counterpart in the domain of XML schema modeling will
render the types in the web services interface definition not instantiatable; therefore
it is not an appropriate modeling approch. The design solution for this semantics
mismatch turns out that it can open up the type system confinement by bridging the
two antipodes – to model interface types as complexTypes with the XML schema
language. Taking this measure further, concrete asset types can be used to substitute
for the generic interface types with a concept called substitutionGroup [Con04b] of
the XML schema language.

While the strategy concerning type conversion is mentioned above, the design
must also deal with public methods of the interface types. In terms of the adequacy
of a model, the methods contained in an interface type, such as those methods of the
generic interfaces, must be extracted. The reason for this is that every object, for
instance, one that represents a parameter or a return type of a web service method
implementation, must be instantiated retrospectively by the object-oriented language
runtime environment. According to the JAX-RPC specification [Mic06], this means
that the complete set of accessor methods2 of a class that implements a specific generic
interface must be modeled as accessor methods of a full-fledged JavaBean object for
the web services. Therefore those properties of the generic interface definitions which
represent the properties of a JavaBean implementation class must be extracted by
selecting the accessor methods declarations in the generic interface definitions. The
JavaBean properties must be modeled as XML schema simpleType or complexType
within the XML schema model.

Asset Modeling

The second type of modeling is concerned with the conversion from asset model def-
initions to concrete XML schema types. It is a fundamental task in the mapping
process because the constituents of the asset model – the concrete asset classes must
be translated from the asset model to an XML schema information model without
loosing information of the domain.

In code example 4.1.7, an asset model called EquestrianModel is defined which
contains only one asset class Equestrian.

This asset class contains a content and concept pair as described in section 2.1.2
of chapter 2. In a nutshell, an asset class can be translated into a complexType
in the XML schema information model, for instance, the class Equestrian becomes
the complexType element containing the name attribute with the value Equestrian.
The subelements are mapped directly from the characteristic fields of the concept
part of the class. If the type of the fields is of an elementary nature and has a

2accessor methods are also known as getter and setter methods

4.1 Web Services Interface Description — WSDL 49

<wsdl:portType name="CocomaGenericSModulePortType">

<wsdl:operation name="getClass" parameterOrder="argument0">

<wsdl:input name="getClassRequest" message="impl:getClassRequest"/>

<wsdl:output name="getClassResponse" message="impl:getClassResponse"/>

</wsdl:operation>

<wsdl:operation name="create" parameterOrder="argument0 argument1">

<wsdl:input name="createRequest_1" message="impl:createRequest_1"/>

<wsdl:output name="createResponse_1" message="impl:createResponse_1"/>

</wsdl:operation>

<wsdl:operation name="create" parameterOrder="argument0 argument1">

<wsdl:input name="createRequest_2" message="impl:createRequest_2"/>

<wsdl:output name="createResponse_2" message="impl:createResponse_2"/>

</wsdl:operation>

<wsdl:operation name="create" parameterOrder="argument0 argument1">

<wsdl:input name="createRequest_3" message="impl:createRequest_3"/>

<wsdl:output name="createResponse_3" message="impl:createResponse_3"/>

</wsdl:operation>

</wsdl:portType>

Code 4.1.5: Mapping of overloaded methods

<wsdl:binding name="binding" type="tns:serverporttype">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>

<wsdl:operation name="create">

<soap:operation soapAction="default" style="rpc"/>

<wsdl:input name="createRequest_1">

<soap:body use="encoded"/>

</wsdl:input>

<wsdl:output name="createResponse_1">

<soap:body use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="create">

<soap:operation soapAction="default" style="rpc"/>

<wsdl:input name="createRequest_2">

<soap:body use="encoded"/>

</wsdl:input>

<wsdl:output name="createResponse_2">

<soap:body use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="create">

<soap:operation soapAction="default" style="rpc"/>

<wsdl:input name="createRequest_3">

<soap:body use="encoded"/>

</wsdl:input>

<wsdl:output name="createResponse_3">

<soap:body use="encoded"/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

Code 4.1.6: Mapping of interface method in the binding element

50 WSDL Generator and Web Services Modules Design

model EquestrianModel

class Equestrian {

content reproduction : String

concept

characteristic yearOfCreation : java.util.Calendar

characteristic medium : String

characteristic location : String

characteristic background : String

characteristic portrayal : String

characteristic numberOfSubject : java.lang.Integer

characteristic numberOfDimensions : java.lang.Integer

relationship painter : Artist

relationship epoch : Epoch

}

Code 4.1.7: Asset model definition of class Equestrian

counterpart in the XML schema language information model, that specific type is
mapped directly to the corresponding XML schema type, for instance, the asset
characteristic yearOfCreation has the java.util.Calendar type; it can be mapped
to the xsd:datetime schema type. Another characteristic portrayal has the type
String which can be mapped to the xsd:string schema type. Moreover, the type
java.lang.Integer of the characteristic numberOfSubject and numberOfDimensions
can be mapped to the xsd:integer schema type. A special case of mapping is char-
acterized in the mapping of relationship within an asset class definition. Generally,
a relationship is mapped to an element in the XML schema document which has the
type attribute xsd:ID. The reason for this strategy is explained by the fact that asset
instances can be queried using their asset identifiers – IDs. A relationship referencing
another asset instance within an asset class definition is simply a reference to another
asset intance which is addressable using the ID of this asset instance. The complete
converted XML schema document which reflects the Equestrian asset class definition
is given in the code example 4.1.8.

In a further survey of the mapping possibilities, an asset class definition can be
extended in the sense that one asset class extends from another asset class using the
refines keyword in an asset inheritance definition. The snippet of code in 4.1.9 shows
a model definition called gkns illustrating an inheritance relationship between these
asset classes.

The model gkns shown in code 4.1.9 has three asset classes: the Fund class is a
base class or super class; while the other asset classes: Dokument and Korrespondenz
are inherited from the Fund class using the refines keyword. This asset model is
converted to the corresponding XML schema information model which is shown in
code 4.1.10 by using the general rules described previously. The difference to the
previous asset model example is characterized by the translation of the inheritance
relationship within an asset model into the type derivation mechanism of the XML
schema information model [Con04a]. The mechanism used to denote a type derivation
is the extesion keyword which is followed by the base attribute containing the name
of the base type to be derived from.

Substituting Elements

The XML schema language provides a mechanism, called substitution groups, using
the substitutionGroup keyword to allow some elements to be substituted by another
elements within an XML schema instance document. More specifically, elements can
be assigned to a special group of elements that are able to substitute for a particular

4.1 Web Services Interface Description — WSDL 51

<?xml version="1.0" encoding="utf-8"?>

<xs:schema targetNamespace="urn:de.tuhh.sts.cocoma.generic"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:cocoma="urn:de.tuhh.sts.cocoma.generic"

xmlns:xdt="http://www.w3.org/2003/05/xpath-datatypes"

xmlns:tns="urn:de.tuhh.sts.cocoma.generic">

<xs:element name="ArtistList" type="tns:ArtistList"/>

<xs:element name="EpochList" type="tns:EpochList"/>

<xs:element name="Equestrian" type="tns:Equestrian"/>

<xs:element name="Artist" type="tns:Artist"/>

<xs:element name="Epoch" type="tns:Epoch"/>

<xs:element name="EquestrianList" type="tns:EquestrianList"/>

<xs:complexType name="ArtistList">

<xs:sequence>

<xs:element ref="tns:Artist" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="EpochList">

<xs:sequence>

<xs:element ref="tns:Epoch" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Equestrian">

<xs:complexContent>

<xs:extension base="cocoma:Asset">

<xs:sequence>

<xs:element name="numberOfDimensions" type="xs:integer"/>

<xs:element name="location" type="xs:string"/>

<xs:element name="yearOfCreation" type="xs:dateTime"/>

<!-- other characteristic-elements are masked out for brevity -->

<xs:element name="painterRef" type="xs:ID" minOccurs="0"/>

<xs:element name="epochRef" type="xs:ID" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="Artist">

<xs:complexContent>

<xs:extension base="cocoma:Asset">

<xs:sequence></xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="Epoch">

<xs:complexContent>

<xs:extension base="cocoma:Asset">

<xs:sequence></xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="EquestrianList">

<xs:sequence>

<xs:element ref="tns:Equestrian" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Code 4.1.8: XML schema representing the Equestrian class

52 WSDL Generator and Web Services Modules Design

model gkns

class Fund {

content

contentIds : String

concept

characteristic titel : String

characteristic datum : java.util.Calendar

characteristic bemerkung : String

characteristic erfassungsdatum : java.util.Calendar

characteristic aenderungsdatum : java.util.Calendar

characteristic typ : String

relationship standort : Referenz

relationship erfasser : User

relationship verschlagwortung : Schlagwort*

relationship kommentare : Kommentar*

relationship masks : Mask*

}

class Dokument refines Fund {

concept

characteristic inhalt : String

characteristic entstehungsort : String

characteristic umfang : String

characteristic sperrvermerkJuristisch : java.util.Calendar

characteristic sperrvermerkFachlich : java.util.Calendar

}

class Korrespondenz refines Dokument {

concept

characteristic absender : String

characteristic absenderInstitution : String

characteristic adressat : String

characteristic adressatInstitution : String

characteristic betreff : String

}

Code 4.1.9: Multiple asset class definitions with inheritance

element which is called the head element. Substituting elements in a substitution
group must have the same type as the type of the head element or they must have a
type that is derived from the type of the head element. In the mapped XML schema
document, according to these mentioned premises about the substituting element
type in a substitution group, the mapping design must outline the following type and
type derivation rules if the mapping involves the conversion of a class inheritance
relationship of an asset model to the corresponding XML schema model, an excerpt
of the schema document is given in code 4.1.11.

As it is shown in the schema document excerpt, the Fund class is mapped to a
schema element called Fund with type Fund which is defined as a complexType in the
schema document. The Fund element can substitute the generic head element – Asset
which is the head of the substitution group. The masked out part of the definitions of
the complexTypes in the example is basically identical to the complexType definitions
in the previous schema document as shown in code 4.1.10.

It is worth to point out that the type Fund must be a derived type of the type
Asset in order to allow the substitution group mechanism to function properly. This
premise also applies true to the type Dokument, which is a derived type from Fund;

4.1 Web Services Interface Description — WSDL 53

<?xml version="1.0" encoding="utf-8"?>

<xs:schema targetNamespace="urn:de.tuhh.sts.cocoma.generic"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tns="urn:de.tuhh.sts.cocoma.generic"

xmlns:cocoma="urn:de.tuhh.sts.cocoma.generic">

<xs:element name="Fund" type="tns:Fund" substitutionGroup="cocoma:Asset"/>

<xs:element name="FundList" type="tns:FundList"/>

<xs:element name="Dokument" type="tns:Dokument"/>

<xs:element name="Korrespondenz" type="tns:Korrespondenz"/>

<xs:complexType name="Fund">

<xs:complexContent>

<xs:extension base="cocoma:Asset">

<xs:sequence>

<xs:element name="typ" type="xs:string"/>

<xs:element name="datum" type="xs:dateTime"/>

<xs:element name="titel" type="xs:string"/>

<!-- other characteristic-elements are masked out for brevity -->

<xs:element name="erfasserRef" type="xs:ID" minOccurs="0"/>

<xs:element name="verschlagwortungRef" type="xs:ID" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="FundList">

<xs:sequence>

<xs:element ref="tns:Fund" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Dokument">

<xs:complexContent>

<xs:extension base="tns:Fund">

<xs:sequence>

<xs:element name="entstehungsort" type="xs:string"/>

<xs:element name="sperrvermerkFachlich" type="xs:dateTime"/>

<xs:element name="sperrvermerkJuristisch" type="xs:dateTime"/>

<xs:element name="inhalt" type="xs:string"/>

<xs:element name="umfang" type="xs:string"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="Korrespondenz">

<xs:complexContent>

<xs:extension base="tns:Dokument">

<xs:sequence>

<xs:element name="adressatInstitution" type="xs:string"/>

<xs:element name="absenderInstitution" type="xs:string"/>

<xs:element name="betreff" type="xs:string"/>

<xs:element name="adressat" type="xs:string"/>

<xs:element name="absender" type="xs:string"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:schema>

Code 4.1.10: XML schema modeling the inheritance relationship

54 WSDL Generator and Web Services Modules Design

<?xml version="1.0" encoding="utf-8"?>

<xs:schema targetNamespace="urn:de.tuhh.sts.cocoma.generic"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tns="urn:de.tuhh.sts.cocoma.generic"

xmlns:cocoma="urn:de.tuhh.sts.cocoma.generic">

<xs:element name="Fund" type="tns:Fund" substitutionGroup="cocoma:Asset"/>

<xs:element name="FundList" type="tns:FundList"/>

<xs:element name="Dokument" type="tns:Dokument"

substitutionGroup="tns:Fund"/>

<xs:element name="Korrespondenz" type="tns:Korrespondenz"

substitutionGroup="tns:Dokument"/>

<complexType name="Fund">

<!--

... complexType definitions are masked out ...

-->

</complexType>

</xs:schema>

Code 4.1.11: XML schema excerpt with substitution group

and type Korrespondenz which is a derived type from type Dokument. This simple
inheritance hierarchy is shown in figure 4.1.

The main reason to use the substitution group mechanism is to preserve the ho-
mogeneity of the module interface while ensuring a certain degree of flexibility in the
design of the web services interaction layer. Since interface methods takes generic
parameters; together with the return types that are also generic interface types, an
object-oriented language such as Java can take any subtypes of the interface types as
long as they represent classes implementing the generic arguments or return types.
However, the type derivation mechanism is not exactly the same in a modeling lan-
guage such as the XML schema language. This discrepancy in the language semantics
has been mentionen previously. Thusly in terms of type coherence, a design that is
adequate for the web services interface methods must take these mapping issues into
account. This is where the substitution group mechanism comes in – by making
concrete asset types as subtypes of generic base types such as the example shown
previously, the total number of methods remains the same without having to provide
a new method for every known concrete asset subtype method arguments because
otherwise a new method must be provided for every concrete subtype.

Subtypes can be passed as arguments to the methods as long as they can sub-
stitute the head element, as the example in figure 4.1 shows, the head element for
Korrespondenz is Dokument; the head element for Dokument is Fund. The base type
Fund can substitute the generic base type Asset. This design approach bridges the
discrepancy gap without violating the semantical rules of asset language modeling.

4.1.3 Generation of XML Schema Definitions

The responsibility of producing an XML schema document for the web services end-
point remains a major issue in the design. The task takes a generative approach by
using an XML schema generator of the compiler backend [Bos04, Bos03, BSHS06].

The XML schema generator is compliant to the backend generator interface spec-
ification. It can be configured to generate XML schema document from a model of
asset definition language as shown in code example 4.1.7 and 4.1.9. The XML schema
generator is capable of generating both flavor of XML schemas: schema documents
with or without using the substitution group mechanism. Configuration examples
of running the XML schema generator in both modes are given in appendix B on
page 94 and 95.

4.2 WSDL Generator 55

Asset

Fund

Dokument

Korrespondenz

substitutes

substitutes

substitutes

substitutionGroup Head
<<generic package>>

substitutionGroup Head
<<gkns model>>

Figure 4.1: Asset type inheritance

4.2 WSDL Generator

For the purpose of web services development and deployment, a WSDL document
must be produced. By adopting a generative approach, generating the WSDL doc-
ument that describes the module interface has led to the development of a WSDL
generator software component that can be integrated into the CCMS compiler back-
end in order to produce the required WSDL document.

4.2.1 Design Overview

The WSDL generator must be designed according to the generator API specification.
It is run inside the compiler backend. By taking advantage of the generator API
symbol table and the intermediate model, different generators can communicate with
each other. This communication pattern over the passing of information using the
intermediate model is common in compiler design.

The API symbol table has no concern to the WSDL generator since it will not use
the information within the table to generate the constituent of the WSDL document.
However, it is worth mentioning that the intermediate model which is created by
the compiler parser represents an internal object model of the asset model. This
information can be accessed by the WSDL generator in the symbol table of another
collaborating generator, for instance, the XML schema generator.

An overview of the subsystems of the WSDL generator is given in figure 4.2 which
shows the generator and the symbol table classes within a package.

Framework architecture has been thoroughly discussed in the work of [SG96]. The
overall design of an asset model compiler of a concept-oriented content management
system is characterized by the usage of the framework architecture to facilitate high
level control of the generators by the compiler framework.

A generator must be a subclass of the generic Generator class in the package
de.tuhh.sts.cocoma.compiler.generators. The generic Generator class has four
callback methods which must be implemented by a subclass, they are shown as method
signatures with code excerpts.

56 WSDL Generator and Web Services Modules Design

de.tuhh.sts.cocoma,compiler.generators.ws.wsdl

ALD2WSDLGenerator
-symbolTable : ALD2WSDLGeneratorSymbolTable
+ALD2WSDLGenerator()
+generate()
+getRequestedParameters()
+getRequestedSymbolTables()
+getProducedSymbolTable() : SymbolTableDescription
+addProgressListener(ProgressListener)

de.tuhh.sts.cocoma.compiler.generators.ws.wsdl

ALD2WSDLGeneratorSymbolTable

+ALD2WSDLGeneratorSymbolTable()

Generator

Figure 4.2: Class diagram of the WSDL generator and the symbol table

1. the getProducedSymbolTable method (shown in code 4.2.1) returns to the
framework a copy of the symbol table that the generator has produced.

2. the getRequestedSymbolTable method (shown in code 4.2.2) requests a list of
necessary symbol tables from the compiler framework. Upon invocation of this
method, the compiler framework returns a list of symbol tables that are pro-
duced by other collaborating generators. The content of this list must be spec-
ified in an XML configuration file for the generator.

3. the getRequestedParameters method (shown in code 4.2.3) requests a list of
rumtime parameters from the compiler framework. The list of requested pa-
rameters can be specified by the generator configuration file.

4. the main task of the generate method (shown in code 4.2.4) is to perform the
actual generation chores which depend entirely on the concrete implementation
of this method.

The WSDL generator must produce an internal object representation of the compiler-
internal symbol information that it has produced. This object representation is writ-
ten to the WSDL generator symbol table. The symbol table which is produced by
the WSDL generator can be requested by other generators of the compiler framework
in case that it is required to communicate the intermediate model of the WSDL gen-
erator with others. Figure 4.3 shows the dependencies of the generators among each
other within the CCMS compiler framework using a UML diagram. In section 4.2.2
and 4.2.3 of this chapter, several issues concerning the software design of the WSDL
generator will be discussed.

4.2 WSDL Generator 57

public SymbolTableDescription getProducedSymbolTable(IntermediateModel arg0);

Code 4.2.1: Callback method getProducedSymbolTable

4.2.2 Generator Software Architecture

Since the framework has dictated the overall requirements for the callback methods
implementation of the Generator subclass, the design of the classes of the WSDL
generator will revolve around this concept of black box programming towards the
compiler framework.

One important task is to define a model to specify the structure of the ele-
ments of the WSDL document that is compliant with the WSDL standard specifica-
tion [Con01]. This requirement is observed in the design by employing a metamodel
which will specify the rules for converting the definitions of the module interface
methods to an internal XML representation within the WSDL generator. Because
this metamodel is not defined in any symbol table of the collaborating generators,
the decision is to realize the metamodel using an XML instance document to store all
the necessary relevant information about the methods of the module interface. This
XML instance document will be mapped into an internal XML memory representation
every time the generator is invoked by the compiler framework.

Another point worth mentioning concerns the versioning of the produced WSDL
document itself. The W3C has released two WSDL specifications: version 1.1 [Con01]
and recently a candidate recommendation version 2.0 [Con06a, Con06b, Con06c]. Be-
cause the latter specification has not yet been adopted as a standard recommendation,
the web services software support is still limited at this point. The AXIS framework
has introduced partial support for the version 2.0.

However, at present, the WSDL generator will be designed for the generation of
WSDL document that is compliant with the widely deployed and adopted WSDL
version 1.1 specification. On the other hand, in terms of a flexible design, the WSDL
generator must still be conceived with the potential to expand its functionalities for
generating version 2.0 as soon as the recommendation will be released on the standard
track by W3C. The placeholder for this expandability in software architecture consists
in the usage of the strategy pattern [GHJV94]. A class diagram of the strategy pattern
is shown in figure 4.4.

4.2.3 Internal Design

Internally, the WSDL generator must maintain several important data structures.
They are responsible for the maintenance of the structure of the WSDL document
inside main memory. These data structures are:

• WSDLElement

• WSDLAttribute

The former is the Java in-memory representation of an XML element node and
the latter represents an attribute information item of the XML infoset in the WSDL
document. With the help of these elements, an arbitrarily complex structures of XML
elements can be built to represent the WSDL document. A class diagram for this two
important classes is given in figure 4.5 and figure 4.6.

The symbol table of the WSDL generator resembles any generator which is used
to communicate the internal object representations with other generators. For such
purpose, the content of the symbol table of the WSDL generator features among other
things, the object representation of the XML structure of the WSDL document which
is built as a hierarchical tree structure using the above mentioned elements.

58 WSDL Generator and Web Services Modules Design

public Collection<SymbolTableDescription>

getRequestedSymbolTables(IntermediateModel arg0);

Code 4.2.2: Callback method getRequestedSymbolTable

public Collection<ParameterDescription<? extends Object>>

getRequestedParameters(IntermediateModel arg0);

Code 4.2.3: Callback method getRequestedParameters

public SymbolTable generate(IntermediateModel arg0, SymbolTable[] arg1,

Map<String, ? extends Object> arg2)

throws GeneratorException;

Code 4.2.4: Callback method generate
110 Automatische Erzeugung von konzeptorientierten Inhaltsverwaltungssystemen

Compiler Generator 1 Generator 2

parse model

read generator config.

: IntermediateModel

start generators

request symbol table

generate code

request symbol table

generate codest1 : SymbolTable

st2 : SymbolTable

assemble component

Abbildung 5.8 Abhängigkeiten der Generatoren voneinander durch Symboltabellen

toren tauschen für ihre Arbeit Daten aus. Wenn z.B. der im Abschnitt 5.3.2 erwähnte Gene-
rator für das API dieses aus dem Datenmodell erzeugt, wählt er u.a. Java-konforme Namen
für die Schnittstellen, die Assets darstellen. Diese Namen werden von den anderen Generato-
ren für die von ihnen erzeugten Java-Klassen benutzt. Die gewählten Namen müssen daher
vom Schnittstellengenerator im Backend hinterlegt werden. Der Datenaustausch zwischen den
Generatoren entspricht dem Attributieren eines Syntaxbaums und dem Aufbau der verschie-
denen Tabellen zur Ressourcenzuweisung von Compilern für Programmiersprachen. Damit
können z.B., wie im JDBC-Beispiel aus Abschnitt 5.2.2, zusammen mit der Java-Klasse auch
die Tabellen- und Spaltennamen für eine relationale Datenbank bestimmt werden.

Durch den Datenaustausch bestehen Abhängigkeiten zwischen den Generatoren. Z.B. muss
der Schnittstellengenerator vor allen anderen seine Arbeit tun. Die Steuerung der Ablaufrei-
henfolge der Generatoren ist eine weitere Aufgabe des Backends.

Um diese wahrnehmen zu können, muss jeder Generator die von ihm benötigten Vorleis-
tungen benennen. So wird z.B. jeder Generator für eine spezielle Modulart die Erstellung
der Modulschnittstelle verlangen. Die Angabe der Vorleistungen geschieht, indem jeder Ge-
nerator Symboltabellen benennt, die er für seine Arbeit benötigt. Im Gegensatz zu Compilern
für Programmiersprachen gibt es im Modellcompiler für konzeptorientierte Inhaltsverwal-
tungssysteme mehrere unabhängige Symboltabellen, nämlich eine pro Generator. Jeder Ge-
nerator liefert selbst eine Symboltabelle. Die Abhängigkeiten über Symboltabellen sind im
Aktivitätsdiagramm in Abbildung 5.8 illustriert. Es umfasst drei swimlanes: eine für den
Modellcompiler an sich und je eine für zwei Generatoren. Nach dem Einlesen der Assetdefini-
tionen und dem Erzeugen des Zwischenmodells im Frontend werden die Generatoren gemäß
der Konfiguration des Backends erzeugt und gestartet. Jeder Generator meldet zuerst den
Bedarf an Symboltabellen an. Im Beispiel benötigt Generator 2 die Symboltabelle st1 (iden-
tifiziert durch einen Namen, den diese trägt). Da diese Symboltabelle anfangs nicht existiert,
muss Generator 2 auf ihre Erzeugung warten. Generator 1, der keine Symboltabellen voraus-

[Seh04]

Figure 4.3: Generators dependency among one another

Context

ContextInterface()

Algorithm

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyC

AlgorithmInterface()
[GHJV94]

Figure 4.4: Class diagram of the strategy pattern

4.3 Web Services Endpoint Design 59

WSDLAttribute
- enclosingPartner : WSLDElement

+WSDLAttribute()
+WSDLAttribute(WSDLMappedAttributePartner)
+accept()
+getContext()
+getName() : String
+getQualifiedName() : QName
+getEnclosingElement() : WSDLElement
+setEnclosingElement(WSDLElement)
+setContext()

WSDLElement

+WSDLElement()
enclosing-
Partner

1*

Figure 4.5: Class diagram of WSDLAttribute and WSDLElement

Beside the symbol table issue, the WSDL generator has the following Java package
partition:

The de.tuhh.sts.cocoma.compiler.generators.ws.wsdl package contains the
actual generator class and the generator symbol table.

The de.tuhh.sts.cocoma.compiler.generators.ws.wsdl.components package
harbors the classes such as WSDLElement and WSDLAttribute which are contituent
parts of the internal XML structure representation. It also contains the serialization
classes to process the XML data structure for writing a WSDL document.

The de.tuhh.sts.cocoma.compiler.generators.ws.wsdl.configurator pack-
age contains the classes that implement the strategy pattern to control the generation
of the proper version of WSDL document. At the same time, a singleton class called
ConfigurationContext is responsible for global access to configuration information
and parameters by the WSDL generator.

The configurator.mappingrules sub-package contains the processing classes
that are responsible for the loading and reading of the mapping rules and metarules
from XML configuration files containing the mapping information on the conversion
of methods signatures and meta-information to the appropriate WSDL element struc-
ture.

The de.tuhh.sts.cocoma.compiler.generators.ws.wsdl.logging package con-
tains a singleton class WSDLGeneratorLogger which is responsible for processing log-
ging information for the WSDL generator.

4.3 Web Services Endpoint Design

An overview of the requirements regarding the server module are mentioned in sec-
tion 3.2.2 of chapter 2. Furthermore, other requirements concerning the realization
of the web-tier that are posed by the selected web technologies are elaborated in sec-
tion 3.2.3 of the same chapter. Designing the web services endpoint means in principle
to integrate the web-tier technologies with the asset model based CCMSs.

4.3.1 Architectural Overview

Web services calls are accepted by the communication interface of the server module of
the service endpoint. Basically regarding the deployment possibilities of web services
on the Java enterprise platform, the two service endpoint realizations: JSE and EJB
endpoint (described in section 3.2.3) have prescribed the architecture of the service
endpoint that is appropriate. The communication via web services on the server side
with web services clients can use the following Java server side technologies:

• JAX-RPC servlet enabled web services endpoint,

60 WSDL Generator and Web Services Modules Design

WSDLElement
-elementName : QName
-name : String
-parent : WSDLElement
-children : ArrayList<WSDLElement>
-attributes : ArrayList<WSDLAttribute>
-isRootElement : boolean
-hasNSPrefix : boolean
-hasAttributes : boolean
-hasParent : boolean
-hasChildren : boolean
+WSDLElement()
+WSDLElement(QName)
+getQualifiedName() : QName
+getName() : String
+accept()
+addAttribute(WSDLAttribute)
+addChild(WSDLElement)
+setElementName()

WSDLAttribute

+WSDLAttribute(QName)

Figure 4.6: Class diagram of WSDLElement with WSDLAttribute

• stateless EJB component based web services endpoint

The design of the server side endpoint has favored the JSE3 [MTSM03] approach
for the following reasons:

• the statelessness of servlet technology is homogeneous with the web services call
and processing pattern which in terms of the realization of the service endpoint
is frequently carried by a stateless network transport protocol such as HTTP.

• it involves a development approach with relatively low maintenance based on
generation of many software components with appropriate development tools
and deployment frameworks like the Apache AXIS framework.

• the servlet approach provides container management of the entire servlet life-
cycle.

• server side implementations can take advantage of the lifecycle management
interface of the servlet context ServletEndpointContext to gain direct access
to the control of the lifecycle methods such as init() and destroy() of the
servlet container. Sophisticated control is thusly possible at the container level.

• good overview of configuration of the endpoint deployment since XML deploy-
ment configuration file is supported.

There are also some noteworthy disadvantages:

• no integrated transaction support,

• security is not built into the JSE processing model natively and must be imple-
mented with extra cost,

• scalability of the endpoint in the face of a surging load might pose problem to
the performance of the servlet based service endpoint.

3JAX-RPC compliant servlet web services endpoint

4.3 Web Services Endpoint Design 61

(
de.tuhh.sts.cocoma.compiler.generators.ws.wsdl

de.tuhh.sts.cocoma.compiler.generators.ws.wsdl.components

Package names de.tuhh.sts.cocoma.compiler.generators.ws.wsdl.configurator

de.tuhh.sts.cocoma.compiler.generators.ws.wsdl.configurator.mappingrules

de.tuhh.sts.cocoma.compiler.generators.ws.wsdl.logging

Table 4.2: WSDL generator Java packages listing

4.3.2 The AXIS Framework

After the choice for a servlet based service endpoint has been made, the design of the
endpoint begins with a survey of the Apache AXIS framework. The AXIS framework
is used as a distributed SOAP framework for handling web services SOAP messages.

The Apache Software Foundation [Fou06] has produced this widely used open
source web services framework which implements the SOAP protocol [Con03c] which
is described in section 3.1.4. The development of web services with AXIS benefits from
its abstraction of the web services development model, thereby hiding the low-level
details of SOAP messages handling behind a manageable software framework.

AXIS is essentially a SOAP engine, a framework for constructing SOAP proces-
sor endpoints. The AXIS framework is implemented both in the Java and C++
programming language.

The software bundle of the AXIS framework consists of:

• a stand-alone web server,

• a servlet which is able to be integrated into a servlet engine,

• classes which extensively support the web services description language – WSDL,

• software tools which generate Java classes from WSDL or vice versa,

• a monitoring tool for viewing delivered SOAP messages transported by TCP/IP
datagram packets between the participants.

On the server side, the AXIS servlet is configured to deploy web services as a
web application inside a servlet container. The JAX-RPC specificiation mentioned
in section 3.3.1 is implemented and supported by the AXIS framework. The JAX-
RPC model tries to make web services calls as similar to RPC calls as possible. The
programming model is based on mapping a WSDL concept to the corresponding
Java concept. In JAX-RPC, the thing that corresponds to a portType of a WSDL
document is a service endpoint interface (SEI). The methods on the SEI correspond to
the WSDL operations, with messages and ports being subsumed into the arguments
of the SEI methods.

AXIS supports the JAX-RPC type mapping conventions which define a standard-
ized set of mappings from XML schema types to Java types, for generating Java
classes from a WSDL document. It also defines the reverse mapping, from Java types
back to XML schema types. The AXIS framework defines serialization for every Java
type that can be mapped from an XML schema type. The JAX-RPC type mapping
conventions also include a definition for mapping JavaBean objects to XML schema
types which is also supported. In the toolset of the AXIS framework, these tasks can
be accomplished by the helper classes – WSDL2Java and Java2WSDL.

62 WSDL Generator and Web Services Modules Design

AXIS runtime

contains

SOAP/ HTTP

AXIS servlet

AXIS engine
MessageContext

Request
Response

SOAP handler

web service endpoint
implementation classes

J2EE
application
server

connector

servlet container

incoming/
outgoing
messages

Figure 4.7: System architecture of AXIS

Applications can gain access to servlet context information by using the ServletLife-
CycleInterface of the JAX-RPC specification via the defined API methods. This
assumes that the JAX-RPC implementation is based on a servlet web application
running inside a servlet container.

In terms of SOAP messages handling, the JAX-RPC specification provides the
ability to install handlers into the SOAP message path, on both the service requestor
and the service provider sides. Handlers are modularized pieces of program code which
allow a program to perform operations on a SOAP message before it reaches its end
destination of delivery. Handlers perform computations based on the values embed-
ded in the headers of SOAP messages; they provide features such as message logging,
encryption, or digital signatures creation. Different handlers can be configured to-
gether in the AXIS framework to form a chain of handlers for message transformation
and the processing of SOAP messages along the message delivery path by using an
XML based configuration file.

On the web services client side, there are three different client-side representations
of a port4:

• stub objects generated by software tools from a WSDL document,

• a dynamic proxy-based calling interface,

• a dynamic call interface which resembles the DII interface5.

An overview of the server side architecture of the Apache AXIS framework is
shown in figure 4.7.

4in JAX-RPC terms, a port is a client’s view of the web service endpoint
5DII – the CORBA Dynamic Invocation Interface

4.3 Web Services Endpoint Design 63

service
implementation

AXIS servlet

handler chain

SOAP handler

message
handler

JWS processor

deployment
JWS file

Figure 4.8: AXIS JWS deployment

The server software of the Apache AXIS framework itself contains a servlet imple-
mentation which can be run in any standard compliant servlet container. The design
of the AXIS server takes advantage of the pipeline architecture [SG96] and the filter
pipe messaging architecture [SG96, HWB04] in terms of the chained processing of
both SOAP request and response messages by installing message processing nodes
called message handlers along the message delivery path. The order of message han-
dlers of the message chain can be configured using a framework wide configuration
file called deploy.wsdd. A SOAP message which is processed by the AXIS server is
represented by a wrapper object called a MessageContext. The MessageContext
consists of contextual information about the server process, the request message and
the response message. There are specific default message handlers responsible for
processing the request and response messages. They are shown in figure 4.7 by name.
The SOAP message transport component depicted is responsible for creating, send-
ing and receiving SOAP messages over a specific concrete transport protocol binding
such as HTTP. The SOAP service component depicted is responsible for creating,
sending and receiving the MessageContext and mapping it to internal Java object
representations.

The Apache AXIS servlet is the core component of the AXIS framework which
processes SOAP request and response messages. The behavior of the AXIS servlet is
configured by an XML configuration file called web.xml. The AXIS servlet reads the
configuration file during initialization.

The AXIS framework provides a very simple service deployment scheme called
JWS [Ton06] for implementing a web service by exposing concrete JavaBean classes
to web services auto deployment classes called JWS classes and consequently renaming
the classes with a JWS extension. Assuming that the AXIS servlet is installed and
configured to handle JWS files, the AXIS engine automatically processes the JWS
file when client SOAP request messages arrive. The figure 4.8 shows the concept of
the JWS processing mechanism of AXIS.

The AXIS JWS scheme for implementing web services has a number of limitations.
The most important one is that the mapping process from Java entities to parts of
a WSDL document or vice versa is not configurable. The ability to configure the
mapping of Java type entities such as interfaces or JavaBeans to XML schema entities
for SOAP messages can be critical. If the use of complex Java structure is required
which demands a customized mapping of the type entities, the AXIS JWS mechanism
for auto web services deployment is not appropriate. Consequently, JWS web services
cannot make use of Java packages.

64 WSDL Generator and Web Services Modules Design

asset component

web
service
client

SOAP
handler

+
HTTP engine
(proprietary)

server module port

Figure 4.9: Server module design approach 1: proprietary HTTP and SOAP com-
ponent

4.3.3 Web Services Endpoint Design Approaches

One of the most crucial requirements for the server module states that it must have a
networking interface to listen on a specific port for HTTP requests which encapsulate
the SOAP request messages. The abstract design of the server module takes into
account several different approaches. In architectural terms of the server module,
there are several design approaches which are summarized as follows:

1. the server module must implement the HTTP server engine and SOAP handler
from scratch. For the serialization and deserialization of SOAP messages, a cus-
tomized serializer must be developed. This architecture is illustrated schemat-
ically in figure 4.9; in figure 4.10 the corresponding UML deployment diagram
is shown.

2. the server module externalizes the HTTP server engine and SOAP handler to a
foreign component which is designed mainly for the purpose of handling requests
and forwarding responses from the server module. This approach is illustrated
in figure 4.11 with the corresponding UML deployment diagram shown in fig-
ure 4.12.

3. the server module coexists with the HTTP server engine and SOAP handler in
parallel within a CCMS at runtime. They represents two components which are
bound to a JSE servlet. The servlet serves the processing of the HTTP request
and response messages on the server side. The server module resides together
with the SOAP implementations within the same servlet context within a servlet
container. This approach is depicted in figure 4.13 with its corresponding UML
deployment diagram shown in figure 4.14.

4. the server module embeds a lightweight standard compliant servlet container
within the server module itself. The server module executes within the servlet
context of the embedded servlet container. This approach is illustrated in fig-
ure 4.15 with the corresponding UML deployment diagram in figure 4.16.

In the following discussion, the advantages and disadvantages of these different
design approaches will be explained and the different approaches are juxtaposed with
each other in order to select an appropriate design solution.

4.3 Web Services Endpoint Design 65

ServerComponent

WebServiceModule

<<executable>>
<<library>>

SOAP handler

<<executable>>
<<library>>

HTTP engine

network connection endpointproprietary SOAP message
handling, proprietary
serialization between XML
schema types and Java
objects

proprietary network
 component

ClientModule

web service client

Module communication using
the module interface

SOAP/HTTP

Figure 4.10: UML deployment diagram of approach 1

The first approach has the advantage of being adaptive to requirement changes
and therefore it can have a higher degree of flexibility in terms of a customized de-
sign for a specific problem-solution scenario. The main disadvantage is obviously the
higher cost of development. Moreover, the estimated increase in software complex-
ity as far as a customized design and costly implementation is concerned could be
prohibitive. A relatively low degree of software reuse can be guaranteed since many
customized components could not be fitting into a different design; indirectly reducing
the possibility of code reuse. The other side of the coin, the fact that writing a lot
of customized serialization code and HTTP networking code from scratch means to
re-invent the wheel most of the time. It is therefore not an effective form of practice
in software development.

The second approach takes the advantage of an externalized communication unit
and SOAP handling component; favoring a low-coupling design [Lar98] by distributing
the processing responsibilities according to logical partitioning of tasks for the respec-
tive components. Although this approach does not suffer from the developing-from-
scatch meander, the externalization of the communication unit and SOAP handling
component beyond the server module means that it is also necessary to introduce
a communication interface between the server module and the communication and
SOAP handler components, this is shown schematically in figure 4.11. Moreover, it is
necessary to define an interface protocol and implement the operations of this protocol
in order to enable the two different components to interface with the server module.
The main disadvantage of this design approach therefore consists in the complexity
of the interface protocol and the unnecessary addition of heterogeneity regarding the
introduction of the different interface protocol which is incongruent with the native
asset based protocol of the module interface. Furthermore, as it is obvious in fig-
ure 4.11, the communication of an asset component with the J2EE application server
must cross system boundary. It assumes that the asset component runs in a local
instance of Java virtual machine from its own perspective and the application server
instance runs on a remote instance of Java virtual machine6. In order to obtain a

6the abbreviation – VM shown in the figure stands for a Java virtual machine instance

66 WSDL Generator and Web Services Modules Design

asset component J2EE servlet
container

web
service
client

server module

client module

mediation
module

 proprietary
 interface protocol

system
boundary

asset component VM remote VM

JAX-RPC
web service

endpoint

Figure 4.11: Server module design approach 2: externalization of communication
component

remote object reference, there is a need for a ternary naming and lookup service such
as JNDI7 which manages the remote object references on behalf of the local instance
of Java virtual machine. Yet the asset module must be accreted with another set of
protocol definitions and rules which would probably over-engineer the server module
interface.

The third approach resembles to a great extend the second one except that the
two involved components are residing inside a servlet container instead of running
on a remote Java virtual machine instance. This design takes the advantage of the
directness and convenience of local object references within the same servlet runtime
context. There is no need for a remote object reference naming and lookup service such
as JNDI because all references are local at runtime of the server module. The server
module can access object references belonging to the communication components and
vice versa. On the other side, there is still the need for an interface protocol which
characterizes the second design approach, probably bringing in extra complexity. The
developer cannot waive the necessity of providing a well-defined set of protocol rules
in order to facilitate the communication between the internal components. There
are several similar technology solutions which were proposed in the past as widely
adopted solutions on the Java enterprise platform. These server-side technologies
such as the Java RMI mechanism of the J2EE platform [SM06] or the CORBA IIOP
protocol [omg98] have emerged for many years.

Besides the previously mentioned server-side technologies, another possible inter-
face protocol could even be using yet another web services interface for bridging the
two components across sides of the interface. Althrough these solutions are widely
adopted in server-side software development, they do not provide a simpler imple-
mentation of the interface protocol within the container. In worse case, they could
end up in an over-engineered turmoil. Moreover, there is still the risk of introducing
even more heterogeneity without alleviating complexity. The idea of providing a web
services interface solution for this interface definition problem is even more far-fetched

7JNDI – the Java Naming and Directory Interface

4.3 Web Services Endpoint Design 67

J2EE servlet container

<<library>>

JAX−RPC servlet
web service endpoint

implementation

AssetComponent

ClientModule

WebServiceModule

web service client
Module communication
using the module interface

Java RMI, CORBA/IIOP,
JMS or web service
interface

communication interface

SOAP/HTTP

Figure 4.12: UML deployment diagram of approach 2

because the rationale for introducing that web services interface within the web con-
tainer is not well proved in this context. It resembles the metaphor of cutting a loaf
of bread with a saw – using the wrong tool for a task.

Finally the last approach takes advantage of an embedded servlet container. This
is a promising design approach because it does not suffer from the disadvantages of the
previous ones. It is characterized by the servlet container being embedded within the
server module. The server module has full control of the servlet container, including
starting and stopping of the HTTP server which is an integral part of the embedded
container. Moreover, the memory footprint of such an embedded container is smaller
comparing to the other full-blown containers such as Apache Tomcat.

4.3.4 HTTP Server and Embedded Web Container

As mentioned in section 4.3.3, the embedded container approach is favored for its
ability to handle SOAP messages and provide the network functionality of an HTTP
server at the same time. Therefore the server module can utilize these functionalities
as if they were provided by the server module itself.

The server module is responsible for initializing the embedded container and start-
ing the runtime container instance and the HTTP server in order to bootstrap the
web services endpoint. By using the init() method of the module interface, the
bootstrapping is performed by a CCMS when the mentioned method is invoked .
Therefore this method must be implemented in a way that allows the bootstrapping
of the embedded container from within the server module. Since the CCMS takes
control of the creation and initialization of the server module by invoking the init()
method and eventually the start() method, it is convenient to inline the bootstrap-
ping code for the servlet container within the initialization method. After the module
initialization is performed, the start() method is invoked by the CCMS to start the
network interface of the container on a specific network port to listen for incoming
HTTP requests.

68 WSDL Generator and Web Services Modules Design

J2EE servlet container + HTTP server

web
service
client

 proprietary
 interface protocol

asset component VM

JSE

JAX-RPC
web service

implementation

asset component

server module

client module

mediation
module

Figure 4.13: Server module design approach 3: parallel component in local context

J2EE servlet container

AssetComponent

ClientModule

WebServiceModule
<<library>>

JAX−RPC servlet
web service endpoint

implementation

web service client

Module communication
using the module interface

SOAP/HTTP

Figure 4.14: UML deployment diagram of approach 3

4.3 Web Services Endpoint Design 69

server module
JAX-RPC
web service
endpoint

client module

service
implementations

web
service
client

asset modules in the same local VM
context as servlet container

asset component
embedded J2EE servlet container

HTTP
server

SOAP
engine

Figure 4.15: Server module design approach 4: embedded servlet container

ServerComponent

WebServiceModule

 embedded J2EE servlet container

<<library>>

JAX−RPC servlet
web service endpoint implementation

ClientModule

web service client

Module communication using
unified module interface

SOAP/HTTP

Figure 4.16: UML deployment diagram of approach 4

70 WSDL Generator and Web Services Modules Design

Chapter 5

Implementation of the WSDL
Generator and Web Services
Module

In this chapter some implemenation issues concerning the WSDL generator and the
web services server module are discussed in several aspects. The implemenation of
the WSDL generator is described in section 5.1; it is followed by descriptions of the
server module implemenation and integration of the AXIS framework in section 5.2.
Section 5.3 elaborates on some of the issues concerning the deployment and configu-
ration of the web services endpoint. A descriptive account on the selected embedded
servlet container – Jetty is provided in section 5.3.2.

5.1 WSDL Generator

The WSDL generator is the main piece of generator software that is implemented to
fit into the backend compiler for generating a standard compliant WSDL document
that describes the module interface of the web services server module. As such the
classes implemented for the generator deserve to be mentioned. In section 5.1.1, a brief
description of the implemented generator classes is given. In the following section, the
exposition on the WSDL generator continues with the method implementations of the
generator classes. In section 5.1.3, a brief description of the runtime configuration of
the WSDL generator is provided, with a configuration example included in appendix C
on page 96 of the current thesis.

5.1.1 Generator Classes

The main class of the WSDL generator is called ALD2WSDLGenerator. This class
utilitzes the class representing the generator symbol table within the same package.
The symbol table class is called ALD2WSDLGeneratorSymbolTable. These two classes
together with the symbol table description class are shown in the UML class diagram
in figure F.1 in appendix F.

In the UML class diagram, the main generator class contains all the defined meth-
ods with scope visibility and return type information shown in the illustration. The
symbol table class and the ALD2WSDLGeneratorSymbolTableDescription class are
depicted in an aggregation relationship to the main generator class.

For the purpose of XML serialization from the internal memory structure to an
instance of WSDL document, a class called WSDLSerializer is provided to collaborate
with the main generator class. This class contains the method generateWSDL which

72 Implementation of the WSDL Generator and Web Services Module

is capable of traversing the internal WSDL structure in memory using an iterator like
interface, producing a serialization for each WSDLElement node1 it encounters.

The task of traversing the WSDL structure is abstracted away by using the it-
erator pattern to proceed with the traversal of the internal WSDL data structures
mentioned from the top-most level to the bottom-most level that represents an in-
stance of a WSDL document. In a recursive manner, all the WSDLElements in every
level of the internal WSDL structure in memory are visited by the iterator interface,
the method generateWSDL of the WSDLSerializer class utilizes the private method
traverseSubElement in the class to actually visit the internal data structure. Another
class called WSDLAttribute is used to represent attributes of the WSDL document.
For consuming the XML attributes in the data structure in order to output them as
well during the traversal, the private method traverseAttribute of the class is invoked
iteratively to get the attributes together with their corresponding values serialized.

A sophisticated standardized SAX-like2 XML streaming API called StaX is in-
troduced by Sun Microsystem which is used for the serialization of XML to the file
system. The precedent SAX interface which is bundled with the Java platform stan-
dard edition is not used because SAX is a serial access XML parser solely without the
functionality of producing XML documents on a file system using an internal XML
data structure. For the purpose of actually writing XML, traditionally, the DOM
API that is already available and also implemented on the Java platform standard
edition is used. But the DOM API has an infamous reputation of being problematic
in terms of performance. Since a larger internal WSDL data structure can impede
overall system performance if the whole XML structure must be parsed or written in a
large chunk, there is no advantage in using the DOM API. Therefore the newer StaX3

API is used. It has been introduced by Sun Microsystem for some time already and
is implemented by the some third-party vendors such as BEA Systems. Sun has pro-
vided a reference implementation of the StaX API which is available through the Java
Community Process und the title JSR 173. The greatest advantage compared to the
SAX API is its ability to produce a serialization of the internal XML data structure
in memory; a streaming XML writer is also provided in the reference implementation
in order to write the instance of XML document to a file system.

With the StaX API implementation, the internal WSDL data structure can be
written to a WSDL file by traversing the data structure iteratively, applying the write
methods iteratively to the elements of the data structure. There is a large collection
of write methods available at the developer’s proposal, naming according to their
functionalities respective, for instance, writeElement is used to write an XML element
and writeAttribute is used for writing an attribute. It is worth mentioning that as far
as serialization of the XML elements is concerned, the methods are conceived and used
in pairs, that means there is always a writeStartElement method which corresponds
to a writeEndElement method. Care should be taken to use the methods always
pairwise; otherwise, the written XML instance document will not be well-formed.

Centralized management of configuration parameter and context information is
the responsibility of a class which is called ConfigurationContext. It consists of
data structures which store important configuration parameters and values which are
read in default from configuration files on the file system. The class is implemented
as a singleton [GHJV94] instance because it must be accessed uniquely in a global
scope. The initConfigurationParameters method of this class is responsible for the
management of a parameter map data structure which is returned by the compiler
framework upon invocation of the getRequestedParameter method of the main gen-
erator class. The main generator class then calls the initConfigurationParameters
method and provides the parameter map of configuration parameters and values as

1WSDLElement is the internal representation of an WSDL element node
2SAX – the Simple API for XML
3StaX – Streaming API for XML

5.1 WSDL Generator 73

a method argument; thereby initializing the WSDL generator internal configuration
data structure.

The structure of the internal memory representation of a WSDL document is built
by using the objects of the classes in the package configurator.mappingrules. These
classes are listed in table 5.1 which also summarizes a selection of some other classes
according to the package to which they belong.

5.1.2 Methods Implementations

The main generator class consists of the important generate method which must be
implemented by all generators that are subclasses of the generic Generator class. By
and large the generate method is the callback method that will be invoked by the
compiler framework according to the schedule it has calculated for a specific generator
if other backend generators must also be invoked in a row.

In order to separate different concerns on the generation task and refactor the
program code in a manner that will allow better future evolutionary maintenance.
The generate method of the main generator class is not stuffed with all possible
operation code for generating the WSDL document. Instead the generate method of
the class breaks down the tasks in certain processes which are comprehensive enough
for mapping to a set of method implementations in the development process.

Software design patterns have been used in many parts of the WSDL generator,
among others the abstract interface pattern, the proxy pattern, singleton pattern,
visitor pattern and the strategy pattern. There is a general conception which states
that design pattern can enhance software quality provided they are used effectively
and appropriately. The design patterns mentioned represent a set of condensed and
experienced software design knowledge. Therefore the advantages of using design
patterns are:

• capturing software engineering experience,

• enabling comprehensive descriptions of design using UML notations,

• allowing communication of design knowledge on an abstract level,

• allowing the reuse of software design knowledge without re-inventing the wheel,

• providing a set of design vocabulary that can be mentioned conveniently.

5.1.3 Configuration of the WSDL Generator

The WSDL generator is conceived to output WSDL documents. The XML schema
types which are referenced by the WSDL documents are provided by the underlying
XML schema type system. The WSDL generator therefore utilizes an XML schema
generator [Bos04, Bos03] for obtaining an instance of XML schema document which
contains all the necessary XML schema types. The generated XML schema docu-
ment is included by the generated WSDL document eventually. It is referenced by
the WSDL document using an import element within a wsdl:types element within
the WSDL document. The import directive enables the reuse of XML schema type
information contained within a specific XML schema document.

Consequently, it is necessary to run the XML schema generator before the WSDL
generator by using an XML configuration file to denote that execution sequence. This
XML configuration file is basically an extended configuration file that resembles the
configuration file for the standalone XML schema generator. An example configura-
tion file is shown in appendix C on page 96. An instance of the generated WSDL
document is available for reference purpose in appendix D on page 98.

74 Implementation of the WSDL Generator and Web Services Module

Classes Brief description

de.tuhh.sts.cocoma.compiler.generators.ws.wsdl

ALD2WSDLGenerator main generator class
ALD2WSDLGeneratorSymbolTable generator symbol table class

de.tuhh.sts.cocoma.compiler.generators.ws.wsdl.components

WSDLStructuralArtifact abstract interface representing a structural element
WSDLSimpleAttribute super class of WSDLAttribute
WSDLAttribute in-memory representation of an attribute
WSDLElement in-memory representation of an WSDL element
WSDLNamespace representation of namespace information
WSDLMappedAttributePartner enum class denoting possible attribute pair
WSDLSerializer serializer of the in-memory XML data structure
WSDLStructuralArtifactVisitable abstract visitor interface for traversal
WSDLStructuralArtifactVisitor visitor for the general traversal
WSDLStreamingSerializationVisitor specific visitor for streaming serialization traversal

de.tuhh.sts.cocoma.compiler.generators.ws.wsdl.configurator

ConfigurationContext centralized configuration singleton [GHJV94] class
WSDLVersionHandler abstract algorithm interface for WSDL version
WSDLVersionHandlerImpl implementation class of the interface handler
WSDLStructureAssemblyAlgorithms abstract strategy pattern [GHJV94] algorithm inter-

face
WSDLStructureAssemblyStrategy abstract class implementing the algorithm interface
WSDLStructureAssemblyContext abstract strategy pattern [GHJV94] context inter-

face
WSDLStructureAssemblyManager concrete singleton class implementing the strategy

pattern context interface [GHJV94] for assembling
the WSDL data structure internally

WSDLVersion1Strategy concrete class with the build method to assemble ver-
sion 1.1 WSDL structure by extending the abstract
class implementing the algorithm interface

WSDLVersion2Strategy concrete placeholder class for version 2.0 enabling
future expandibility

de.tuhh.sts.cocoma.compiler.generators.ws.wsdl.mappingrules

WSDLConfigurationMappingRulesManager singleton class managing method mapping process
WSDLConfiguration in-memory representation of mapping rule data

structure
WSDLMethodMapping class collaborating closely with manager class
MappingRule in-memory representation of an mapping rule entry

de.tuhh.sts.cocoma.compiler.generators.ws.wsdl.logging

WSDLGeneratorLogger singleton class centralizing logging facility for the
WSDL generator

Table 5.1: Summary of classes of the WSDL generator

5.2 AXIS Framework Integration 75

5.2 AXIS Framework Integration

The choice a design approach for the web services server module as described in
section 4.3.3 has favored the embedded servlet container approach. The Apache AXIS
framework has been described exhaustively in section 4.3.2 and in many other related
books. For the reason of developing the web services sophisticatedly for deployment;
regarding to the versatility and configurability of the AXIS framework, it is used as
the appropriate SOAP framework to provide an integration solution with CCMSs to
implement a web services JSE.

5.2.1 Setup and Configuration

JAX-RPC Web Services Implementation Models

The JAX-RPC specification defines two approaches for implementing web services:
a simple model of Java servlet endpoint using the Java RMI programming model
or an EJB model. These differences in endpoint design has been elaborated previ-
ously already. The following description will concentrate on the implementation of
a servlet based web services endpoint. When using a Java servlet, the web services
implementations are run together with the servlet within a servlet container. The web
services utilize a deployment descriptor file called web.xml to configure the details of
web services deployment. This includes the configuration of associated specific SOAP
message handlers components as well as the type mapping information for the various
Java-to-XML serialization within the AXIS framework.

In general, the deployment model for J2EE based web services involves taking the
following steps:

• deploy the implementation components – the web services implementations
must have a standard component entry in a web application archive. This
can be a <servlet> entry in the web.xml deployment descriptor file as shown
in code 5.2.1.

<?xml version="1.0" encoding="UTF-8"?>

<web-app>

<servlet>

<servlet-name>AxisServlet</servlet-name>

<display-name>Axis Servlet</display-name>

<servlet-class>

org.apache.axis.transport.http.AxisServlet

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>AxisServlet</servlet-name>

<url-pattern>/servlet/AxisServlet</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>AxisServlet</servlet-name>

<url-pattern>/services/*</url-pattern>

</servlet-mapping>

</web-app>

Code 5.2.1: Web service deployment descriptor file web.xml

• create a web service deployment descriptor – it takes the form of an XML con-
figuration file called webservices.xml which is often included in the web archive
of a web application. An excerpt of this configuration file is given in code exam-
ple 5.2.2. It shows all the deployed web services within a specific web application

76 Implementation of the WSDL Generator and Web Services Module

archive as a list; by linking each deployed web service to a particular component
and specifying the corresponding WSDL file for this web service together with
the Java-to-XML mapping files. The webservices.xml deployment descriptor file
augments the chief deployment descriptor file web.xml. It enumerates the web
services in the endpoint and references the servlet components which are asso-
ciated with the web services. The webservices.xml file is placed in the WEB-INF
directory of a web application archive alongside with the web.xml deployment
descriptor file. It is worth mentioning that the newer versions of AXIS have
adopted the same XML configuration file approach but with a centralized file
called server-config.wsdd using similiar configuration directives and contents.

<?xml version="1.0" encoding="UTF-8"?>

<webservices xmlns="urn:de.tuhh.sts.cocoma.generic"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

version="1.1">

<webservice-description>

<webservice-description-name>

CocomaGenericSModuleService

</webservice-description-name>

<wsdl-file>WEB-INF/wsdl/cocoma_s_module_interface.wsdl</wsdl-file>

<jaxrpc-mapping-file>WEB-INF/cocoma-mapping.xml</jaxrpc-mapping-file>

<port-component>

<port-component-name>

CocomaGenericSModuleServicePort

</port-component-name>

<wsdl-port>CocomaGenericSModuleServicePort</wsdl-port>

<service-endpoint-interface>

de.tuhh.sts.cocoma.generic.CocomaGenericSModuleService

</service-endpoint-interface>

<service-impl-bean>

<servlet-link>CocomaGenericSModuleBindingImpl</servlet-link>

</service-impl-bean>

</port-component>

</webservice-description>

</webservices>

Code 5.2.2: Web service deployment descriptor webservices.xml

• generate a WSDL document descriptor for the web service – each web service
must be bundled with a WSDL descriptor within the web application archive;
the webservices.xml deployment descriptor references the WSDL file for each
web service. The task of the WSDL generator is to generate the required WSDL
document. The webservices.xml file requires a WSDL file for each web service
at deploy time because the J2EE specification does not assume that every Java
web services implementation would be capable of generating a WSDL descriptor
automatically at runtime. In some cases a specific WSDL document must be
produced manually.

• generate a JAX-RPC mapping file for each web service to deploy – each web
service must have a mapping file which specifies how various Java object enti-
ties in the implementation are to be mapped into XML entities, i.e. concrete
instances of the XML schema types in an XML schema. This includes mapping
Java packages to XML namespaces, Java methods to WSDL operations, Java
objects to XML schema types and method arguments to the correct WSDL
messages. The J2EE specification requires a mapping file at deployment time.
It is shown in code 5.2.3.

5.2 AXIS Framework Integration 77

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="http://xml.apache.org/axis/wsdd/"

xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<service name="CocomaGenericSModuleService" provider="java:RPC">

<!-- the implementing class for the service -->

<parameter name="wsdlTargetNamespace"

value="urn:de.tuhh.sts.cocoma.generic"/>

<parameter name="className"

value="CocomaGenericSModuleBindingImpl"/>

<parameter name="wsdlServiceElement"

value="CocomaGenericSModuleService"/>

<parameter name="wsdlPortType"

value="CocomaGenericSModulePortType"/>

<parameter name="wsdlServicePort"

value="CocomaGenericSModuleServicePort"/>

<parameter name="schemaUnqualified"

value="urn:de.tuhh.sts.cocoma.generic"/>

<!-- methods that are exposed as operations -->

<parameter name="allowedMethods" value="*"/>

<parameter name="schemaQualified"

value="urn:de.tuhh.sts.cocoma.generic.smodule"/>

<parameter name="typeMappingVersion" value="1.2"/>

<!-- a list of mapped types that are handled by AXIS -->

<typeMapping

deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

qname="ns30:Asset"

serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"

type="java:generic.cocoma.sts.tuhh.de.Asset"

xmlns:ns30="urn:de.tuhh.sts.cocoma.generic"/>

<!-- some types are similar and are consequently masked out -->

<typeMapping

deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

qname="ns1:Kommentar"

serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"

type="java:smodule.generic.cocoma.sts.tuhh.de.Kommentar"

xmlns:ns1="urn:de.tuhh.sts.cocoma.generic.smodule"/>

<typeMapping

deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

qname="ns35:Fund"

serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"

type="java:smodule.generic.cocoma.sts.tuhh.de.Fund"

xmlns:ns35="urn:de.tuhh.sts.cocoma.generic.smodule"/>

<!-- etc. -->

</service>

</deployment>

Code 5.2.3: Mapping descriptor cocoma-mapping.xml

78 Implementation of the WSDL Generator and Web Services Module

5.2.2 Generation of Service Implementations from WSDL

Upon obtaining the WSDL document using the WSDL generator, the AXIS frame-
work can be used to generate the necessary server-side implementation skeleton code,
type mapping code as well as the deployment and undeployment descriptors. This
can be achieved in two ways: by running the WSDL2Java class bundled with the
AXIS framework on the command line or by using an ant compile target which to
generate the required software artifacts. The command line argument for running the
WSDL2Java class is shown in code 5.2.4.

java org.apache.axis.wsdl.WSDL2Java -o generated --deployScope Request

--noWrapped --skeletonDeploy true --server-side --buildFile

--typeMappingVersion 1.1 -H wsdl/cocoma_s_module_interface.wsdl

Code 5.2.4: WSDL2Java class invocation arguments

The generation tool outputs the skeleton code of a JAX-RPC compliant service
implementation class. This class can be implemented by using delegation method
calls via the proxy class ProxyAgent to obtain a reference to the server module; then
invoking the corresponding methods of the server module interface respectively. The
chain of method calls will continue because the server module itself delegates these
calls further to invoke the corresponding module methods of a base module. The
convenient side effect of the generation process mentioned above is that it also gen-
erates the necessary XML-Java object serizalization code and the necessary serializer
implementations.

5.2.3 Service Deployment in J2EE Servlet Container

The AXIS framework uses an XML configuration file called server-config.wsdd to con-
figure the AXIS servlet for web services deployment. This configuration file specifies
the name of the service and the Java components which implement the web service.
It also includes necessary mapping information for the bidirectional Java-XML se-
rialization. The WSDL2Java generation tool mentioned previously can generate an
extra pair of configuration descriptors called deploy.wsdd and undeploy.wsdd which
are used by the AXIS framework to deploy and undeploy the web services from the
AXIS servlet dynamically.

The dynamic deployment or undeployment of web services in the AXIS servlet is
as shown in code 5.2.5. One deployment detail that is not included in the mentioned
AXIS wsdd descriptor files is the mapping of XML namespaces to Java package names;
however it can be handled using a separate namespace mapping configuration file.

5.3 Server Module

The server module must be implemented correctly so that its interface definitions are
compliant with the module interface definition of a CCMS module. This premise must
be observed strictly when embedding a servlet container inside the module. Therefore
the bootstrapping of the servlet container must be provided inside the initialization
method of the server module instead of adding an extra method for this purpose to
the module interface. The implementation issues of the server module are described
in the following sections.

5.3.1 Server Module Configuration

In order to start the CCMS modules, an XML configuration file is used to define the
hierarchy of modules that are initialized by the system. This file is named cc.xml

5.3 Server Module 79

java org.apache.axis.client.AdminClient

-lhttp://ws.cocoma.de:8080/axis/servlet/AxisServlet

WebContent/WEB-INF/deploy.wsdd

java org.apache.axis.client.AdminClient

-lhttp://ws.cocoma.de:8080/axis/servlet/AxisServlet

WebContent/WEB-INF/undeploy.wsdd

Code 5.2.5: Service deployment arguments

and is shown for an example configuration scenario in code example 5.3.1. In this
configuration file, there is the web services server module mapped to the corresponding
module implementation class given in the element server-module. It is configured to
delegate it web services operation calls to a base module4 which is given using the
element client-module.

The main task of the server module consists in the delegation of the request calls
to its base module and the forwarding of the base module responses to the JAX-RPC
web services implementation classes generated by the AXIS framework.

5.3.2 Configuration of Embedded Servlet Container — Jetty

The embedded Jetty servlet container must be configured and prepared for deploying
the AXIS servlet before the server module is initialized and started by a CCMS. The
server module class together with all its dependant classes and the AXIS generated
implementation classes such as the serialization classes and the serializers must be
compiled before the deployment. In case that a web application archive file is not used
to deploy the service, these mentioned Java classes must be placed inside the classes
folder which resides in the webapps/axis/WEB-INF/ web application directory of the
servlet container.

5.3.3 Module Initialization and Modification

Both the server module and the the base module will be initialized and started by
a CCMS at runtime. It invokes the init() method of the modules respectively.
Eventually, the system starts the lifecycle management for the modules by invoking
the start() method.

The Jetty embedded servlet container is started concurrently when a CCMS in-
vokes the start() method of the server module because the bootstrapping code is
inlined in the method implementation. The following code excerpt shows the neces-
sary modification of the start() method.

During implementation of the web service classes, it turns out that it is necessary
for the method implementations in the AXIS generated classes to have code which
requires access to object references local to the server module. Because the server-side
method implementation code must invoke the corresponding module methods of the
server module in order to delegate calls between the two classes. The solution is to find
a mechanism which does not violate the principle of class encapsulation of an object-
oriented design, for instance, to render the server module class completely public for
the server-side method implementations. On the other hand, the actual code of object
references should be decoupled from the detail of the object access mechanism instead.
Therefore the code should not be inserted directly into the method implementations
of both classes.

In order to enable the AXIS service implementation classes to communicate with
the server module implementation class by seemlessly and conveniently obtaining the

4A base module is also known as a client module

80 Implementation of the WSDL Generator and Web Services Module

<?xml version="1.0"?>

<cc:component name="component-driver"

xmlns:cc="http://sts.tuhh.de/cocoma/component-config.xsd">

<cc:server-module name="ws-server-module"

class="de.tuhh.sts.cocoma.generic.servermodule.impl.ServerModuleWSModImpl">

<cc:base-module ref="base"/>

</cc:server-module>

<cc:client-module name="base"

class="de.tuhh.sts.cocoma.generic.basemodule.impl.ClientModuleBaseModImpl">

</cc:client-module>

</cc:component>

Code 5.3.1: Component deployment descriptor cc.xml for the runtime configuration
of a CCMS

public class ServerModuleWSModImpl implements ServerModule {

//

// other methods are masked out for brevity

//

public void start() throws ModuleException {

Server server = new Server();

SocketListener listener = new SocketListener();

listener.setPort(8080);

server.addListener(listener);

// graceful shutdown

server.setStopAtShutdown(true);

server.setStopGracefully(true);

// definition of the web application archive directory

try {

server.addWebApplications("C:/cocoma/webapps");

} catch (IOException e) {

// IO exception

// throw a module exception to signal an exceptional event

throw new ModuleException(e);

}

try {

server.start();

} catch (Exception e) {

// throw a module exception

throw new ModuleException(e);

}

try {

server.join();

} catch (InterruptedException e) {

// throw a module exception

throw new ModuleException(e);

}

}

// code bootstrapping embedded Jetty

}

Code 5.3.2: Bootstrapping Jetty servlet container in the server module

5.3 Server Module 81

necessary object references at runtime, the proxy design pattern is used to provide
a solution to this issue. The code of obtaining local object references is refactored
into a singleton class named ProxyAgent, with the chosen name reflecting the usage
of the proxy design pattern. This class provides a seemless layer to manage object
references on behalf of its client classes. It relays the object references calls from the
AXIS service implementation classes to the server module and vice versa, so that the
server-side of the service endpoint can be connected to the server module in order
to allow the AXIS classes to invoke methods in the server module interface. The
singleton class can therefore be accessed by both the AXIS framework and a CCMS.
The implementation of this proxy class is shown in appendix E on page 105.

Within the ProxyAgent class the register() method is used by the server module
class ServerModuleWSModImpl to register itself as the server module in the proxy
class. The proxy class remembers the reference of the server module so that the AXIS
implementation classes can obtain a reference to the server module by accessing this
singleton instance in a CCMS at runtime. The call chain is eventually accomplished
by invoking the lookup() method using the module name as an argument. The
reference is lookuped and returned to the service implemenation classes so that the
interface methods of the server module can be invoked eventually.

It is important for the server module to register itself with the proxy class. This is
best done when a CCMS initializes the module by invoking its init() method. Code
excerpt 5.3.3 shows the modified init() method for registration.

public class ServerModuleWSModImpl implements ServerModule {

//

// other methods are masked out

//

public void init(Component arg0, String arg1, Map arg2)

throws ModuleException {

// init the name proxy and register the module and the component

ProxyAgent.getInstance().register("ws-server-module", this);

ProxyAgent.getInstance().registerComponent("parentcomponent", arg0);

}

// module registration

}

Code 5.3.3: Server module registers with the singleton proxy class

An extra advantage of using an embedded servlet container consists in the fact
that all object references are local to the current Java virtual machine instance; it
facilitates convenient message exchange between objects at runtime without having
to rely on a remote object access mechanism such as JNDI.

82 Implementation of the WSDL Generator and Web Services Module

Chapter 6

Summary and Outlook

As web services continue to evolve and gain momentum as an important technology
in the realm of application integration. Regarding the advantages of adopting web
services, it is advantageous for a CCMS to use this technology as an interface tech-
nology to communicate with heterogeneous systems, providing the asset management
capabilities via CRUD operations to a variety of other systems which are otherwise
not capable of interacting with a CCMS over the network.

6.1 Conclusion and Assessments

The analysis of the requirements for a server module that is deployed inside a servlet
container has shown that the web services provision of the asset system via a web
service server module is possible. While the development process of the web services
endpoint can begin either with a WSDL document that describes the module interface
to be exposed as web services operations or with the implementations of the module
server classes and generate the WSDL document afterwards, the actual design has
adopted the WSDL document approach. The WSDL document can be generated by
an WSDL generator which is run inside the CCMS compiler by collaborating with
the XML schema generator to produce the required WSDL document.

On the server-side the embedded servlet container Jetty has enabled the provision
of an HTTP server with a standard compliant servlet container that is embedded
within the server module. With the Apache AXIS framework, the web services end-
point can be built by generating the server-side skeleton classes which are directly
mapped from the constituent parts of a WSDL document by the AXIS framework.
Because the module interface method definitions are invariant, the generated skele-
ton classes can be replaced by a set of invariant implementation classes of the server
module interface. The server module implementation can collaborate with the AXIS
framework for fulfilling the communication needs, serialization to and from XML
schema types and Java objects and processing SOAP messages. To achieve a certain
degree of low-coupling of the two frameworks in terms of object references which must
be known to the runtime code of both the server module and the AXIS framework, a
proxy singleton class can be used to manage the references of remote objects. It is not
necessary to generate the server-side implementations since the same implementations
can be reused once they are readily implemented.

The client side can access the generated WSDL document to discover the web ser-
vices interface definition, therefore the generation of client-side code is unproblematic
because the WSDL document can be downloaded from the server module over the
network by accessing the corresponding URL of the AXIS servlet.

At present, since the development of the web services server module is in an initial
state, development endeavors in a similar direction like the web services server module

84 Summary and Outlook

for a CCMS have not been undertaken yet. However there are other development
efforts to provide a server module using other server-side J2EE technologies at STS.

6.2 Outlook

Since there is a lack of precedent works concerning the integration of CCMSs with a
Java web services framework such as AXIS, advances in both fields will be expected in
the near future. Overlooking the current development effort, it has revealed some more
advanced issues which require closer attention and research for future development.
These issues are:

• transaction support for the server module,

• caching of query results,

• security model and access control model.

Transaction Support

In case the server module has to handle concurrent client requests with operations
that implicate transaction processing, for instance, a client requests the server module
to modify an instance of asset by providing an id of an asset instance to a CCMS;
it then deletes this instance while another client wants to read from the same asset
instance concurrently by requesting the server to perform a lookfor operation on that
instance. Such classic transaction processing scenario is often the real day-to-day
operation scenario that a CCMS has to cope with.

While clients can communicate through the web services operations with the server
module and forget about the transaction processing concerns of the CRUD operations
involved, the web services server module should be able to deal with these transaction
operations on behalf of the web services clients anyway. This means that the server
module must know how to come to agreement terms on the transaction protocol used,
handling client coordinations, and issuing locks on critical resources appropriately.
Some organizations such as the W3C and OASIS have been working on web ser-
vices transaction standards. Several standard specifications for web services atomic
transaction and web services coordination have been released already. Since these
standards are still not yet very widely available as standard software or web services
frameworks in a stable state, over time the transaction processing functionalities will
remain a research focus of interest to be taken into account by programmers. The near
future will see more programmers working to provide more stable implementations
of web services frameworks which would integrate and support better web services
transaction operations.

In principle, it can be suggested that transaction support of the server module can
be built into the software using two different approaches:

1. build a CRUD operations command interpreter to support transaction process-
ing of more complex CRUD operations or operation sequences,

2. build a transaction workflow scheduler which utilizes the transaction bracket-
ing [BN97] technique to save sequence of transaction operations in the server
module before these are scheduled for execution by the module.

In the first approach, the server module could be extended by developing a CRUD
operations command interpreter to support more complex sequences transaction of
CRUD operations. The idea behind the command interpreter is underlied by the
possible syntax extension of some CCMS CRUD operations which allow the nesting

6.2 Outlook 85

of one operation inside the other, or putting that in other words, one CRUD opera-
tion takes another CRUD operation as parameter instead of taking only simple asset
instances or expressions which evaluate to assets as parameters. One of these kind of
CRUD operation examples is already shown in code example 2.1.6 of chapter 2. In
that example the delete operation takes as parameter an expression which itself rep-
resents another CRUD operation – the lookfor operation. Because the asset language
does not set limit for such extended syntax in the language usage, CRUD opera-
tions takes on a transactional dimension by using commands such as those similar to
the example of the mentioned code, it is necessary to lend the server module with
the capability of analyzing, parsing and scheduling these operations in a manner so
that more complex transactions can be broken down into manageable atomic CRUD
operations or sequences of operations which are then scheduled by a scheduler for
execution. One interesting point to mention here is that whether the scheduler must
have knowledge of client context information for the identification and association of
transaction requests with their initiators. It turns out that in a distributed environ-
ment, this identification information is needed and must be taken into account in the
design of the scheduler and workflow controller.

The second approach basically states that a workflow controller, whether it is
implemented as a server module extension or as a stand-alone component which co-
operates with the server module, it must bracket the transactional operations before
it actually invoke the correct CRUD operations on behalf of the requesters. It means
that the controller must implement buffers for storing the operation requests so that it
can remember the entire sequence of operations within the transaction bracket before
executing the individual atomic transaction operations. Traditionally, this is accom-
plished by issuing a begin of transaction – BOT command before the first operation
of the entire transaction sequence and an end of transaction – EOT command after
the last atomic operation is read into the buffer. The task of the workflow controller is
to start the transaction and let the scheduler coordinate the atomic operations. The
controller then waits for the completion of the operations; finally arbitrating whether
a commit operation will be executed if all the precedent atomic operations are success-
ful or to execute the abort operation in case one operation fails to complete. It implies
that the workflow controller must remember the return status of the operations in
the entire sequence as soon as it starts the transaction. It must also remember the in-
termediate states between two atomic operations using logging techniques in order to
undo the changes or compensate the effects of the precedent operation in case a roll-
back operation is requested. Furthermore, since different CCMSs can be distributed
widely over the network, it is therefore necessary for a server module to support the
2PC protocol1 because multiple distributed transactions must either all commit at
the same time in case of successful operations or all abort and release resource in case
of failure. The goal of using the 2PC protocol is to ensure that a transaction can meet
this requirement. For more details on the 2PC protocol implementation see [BN97].

Caching Support

A sophisticated caching mechanism can increase the overall system performance of
query operations. The performance of the system perceived by a client can be en-
hanced if the server module would cache assets it gets from the base module on behalf
of a client.

The server module could introduce an appropriate cache replacement algorithm
to invalidate older cache entries base on some specific criterias, for instance, using
a timestamp to track the time elapsed since the the last create or modify operation
on an asset in the cache entry which the server module gets from the base module.
The responsibility to invalidate older cache entries in the server local cache belongs

12PC – the two phase commit protocol

86 Summary and Outlook

to the server module. In order to enforce the replacement algorithm strictly, it means
that the server module must take asset state or lifecycle information into account
to keep track of the validity of the cache entries. On one side, caching will increase
overall system response rate; however this approach also introduces a greater amount
of processing overhead for the server module. Occasionally, the responsibility to
invalidate older cache entries could be shifted from the server module to a web services
client by forcing the client-side to keep a local client cache. By and large caching is
definitely crucial when it comes to enhancing server module performance.

Security and Access Control Model

Information systems are accessed by users continuously, The ubiquitous security risks
that malicious users impose on the web services server module such as unauthorized
access or malicious attacks have threatened the safety of the information system as a
whole. The necessity of a sophisticated security model for the exposed web services
endpoint is therefore very obvious.

The appropriate security model for the web services server module should meet
the following requiements:

• authentication and authorization of web services clients,

• transport security with encryption.

Some web services security frameworks such as the WS-Security [ftAoSISO04]
and WS-Trust [ftAoSISO06b] framework implementations can be integrated with the
server module to add a security and authentication layer to the web services endpoint.

For client authentication, the WS-Security standard introduces a credentials header
that contains a set of credentials information encapsulated in the header portion of
the exchanged SOAP messages. Inclusion of multiple credentials can be used for mul-
tiple authentication sessions. Digital certificates can be used to authenticate a web
service client based on its claimed identity.

The aspect of transport security begins with securing the communication channel
between the web services endpoint and web services clients via cryptographic tech-
nologies. A web server or application server is generally used to deploy a web services
endpoint; consequently an adequate security model can use the built-in security fea-
tures in a web server or an application server. The fact that many popular web server
and application server platforms can support encryption mechanisms for HTTP using
secured communication channel means that the communication can be adequately se-
cured between web services participants. Encrypted communication channels using
the TLS2 technology are often used for this purpose. TLS has become the de facto
standard to encrypt data transmitted between HTTP requesters and HTTP servers.
It operates at the network session layer and provides point-to-point message confi-
dentiality, unidirectional or bidirectional HTTPS authentication. Security tokens like
Digital certificates and the public key cryptography technology play the central role
in this security model. The server authentication operations and optionally client-side
authentication can create a secured HTTP session where all network traffic between
the two parties is encrypted to secure message confidentiality and integrity. TLS can
be used as a baseline web services communication security mechanism. However, a
more sophisticated way to ensure peer-to-peer security should be a technology which
incorporates security at the application level. But incorporating security into an ap-
plication is often a complicated task. It turns out that by adding a message-level
security layer to the SOAP messages is a good solution. This approach is adopted by
the recently released web services security standards such as WS-Security.

An interesting approach to manage client access control is to map user identities
of the web services clients themselves into a representation of asset models containing

2TLS – Transport Layer Security, the successor of SSL

6.2 Outlook 87

a set of user asset classes. The users identities become literally manageable asset
instances inside a CCMS. By modeling the resources to which access control must
be enforced in connection with the user asset classes, for instance, by creating re-
lationships of the user asset classes to secured resources within a security model,
sophisticated access control can be enforced by providing access control constraints
on the protected asset resources. A CCMS could manage a set of asset control lists
based on this principle mentioned to build an effective access control model.

88 Summary and Outlook

Appendix A

XML Schema of Generic
Types

1 <?xml version="1.0" encoding="utf-8"?>
2 <xsd:schema targetNamespace="urn:de.tuhh.sts.cocoma.generic"
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
4 xmlns:tns="urn:de.tuhh.sts.cocoma.generic"
5 xmlns:generic="urn:de.tuhh.sts.cocoma.generic">
6 <xsd:element name="AbstractAsset" type="generic:AbstractAsset"/>
7 <xsd:element name="Asset" type="generic:Asset"/>
8 <xsd:element name="AssetClass" type="generic:AssetClass"/>
9 <xsd:element name="AssetList" type="generic:AssetList"/>

10 <xsd:element name="AssetIterator" type="generic:AssetIterator"/>
11 <xsd:element name="QueryConstraint" type="generic:QueryConstraint"/>
12 <xsd:element name="CharacteristicQueryConstraint"
13 type="generic:CharacteristicQueryConstraint"/>
14 <xsd:element name="ToManyRelationshipQueryConstraint"
15 type="generic:ToManyRelationshipQueryConstraint"/>
16 <xsd:element name="ToOneRelationshipQueryConstraint"
17 type="generic:ToOneRelationshipQueryConstraint"/>
18 <xsd:element name="MemberInitialization"
19 type="generic:MemberInitialization"/>
20 <xsd:element name="AttributeInitialization"
21 type="generic:AttributeInitialization"/>
22 <xsd:element name="CharacteristicInitialization"
23 type="generic:CharacteristicInitialization"/>
24 <xsd:element name="ContentInitialization"
25 type="generic:ContentInitialization"/>
26 <xsd:element name="RelationshipInitialization"
27 type="generic:RelationshipInitialization"/>
28 <xsd:element name="ID" type="generic:ID"/>
29 <xsd:element name="NoAsset" type="generic:NoAsset"/>
30 <xsd:element name="ConstraintDescription.ComparisonOperator"
31 type="generic:ComparisonOperator"/>
32 <xsd:complexType name="ID">
33 <xsd:sequence>
34 <xsd:element name="componentName" type="xsd:string"/>
35 <xsd:element name="moduleName" type="xsd:string"/>
36 <xsd:element name="internalID" type="xsd:string"/>

90 XML Schema of Generic Types

37 <xsd:element name="hashCode" type="xsd:int"/>
38 </xsd:sequence>
39 </xsd:complexType>
40 <xsd:complexType name="NoAsset">
41 <xsd:annotation>
42 <xsd:documentation>
43 NoAsset models the NULL object,
44 it resembles an Asset in its structure.
45 It states that if an Asset is removed,
46 it still retains it ID and may possess a dangling
47 reference to a related instance of Asset.
48 </xsd:documentation>
49 </xsd:annotation>
50 <xsd:sequence>
51 <xsd:element name="id"
52 type="generic:ID"
53 minOccurs="1" maxOccurs="1"/>
54 <xsd:element name="type"
55 type="generic:AssetClass"
56 minOccurs="0" maxOccurs="1"/>
57 </xsd:sequence>
58 </xsd:complexType>
59 <xsd:simpleType name="ComparisonOperator">
60 <xsd:annotation>
61 <xsd:documentation>this type models the enumeration
62 type ConstraintDescription.ComparisonOperator
63 in the generic package</xsd:documentation>
64 </xsd:annotation>
65 <xsd:restriction base="xsd:string">
66 <xsd:enumeration value="EQUAL"/>
67 <xsd:enumeration value="GREATER"/>
68 <xsd:enumeration value="GREATER_OR_EQUAL"/>
69 <xsd:enumeration value="LESS"/>
70 <xsd:enumeration value="LESS_OR_EQUAL"/>
71 <xsd:enumeration value="NOT_EQUAL"/>
72 <xsd:enumeration value="SIMILIAR"/>
73 </xsd:restriction>
74 </xsd:simpleType>
75 <xsd:complexType name="AbstractAsset" abstract="true">
76 <xsd:sequence>
77 <xsd:element name="id"
78 type="generic:ID"
79 minOccurs="1" maxOccurs="1"/>
80 <xsd:element name="type"
81 type="generic:AssetClass"
82 minOccurs="0" maxOccurs="1"/>
83 </xsd:sequence>
84 </xsd:complexType>
85 <xsd:complexType name="Asset">
86 <xsd:complexContent>
87 <xsd:extension base="generic:AbstractAsset"/>
88 </xsd:complexContent>
89 </xsd:complexType>
90 <xsd:complexType name="AssetClass">

91

91 <xsd:complexContent>
92 <xsd:extension base="generic:Asset">
93 <xsd:sequence>
94 <xsd:element name="name"
95 type="xsd:string"
96 minOccurs="1" maxOccurs="1"/>
97 <xsd:element name="superclass"
98 type="generic:AssetClass"
99 minOccurs="0" maxOccurs="1"/>

100 </xsd:sequence>
101 </xsd:extension>
102 </xsd:complexContent>
103 </xsd:complexType>
104 <xsd:complexType name="AssetList">
105 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
106 <xsd:element name="AssetListElement"
107 type="generic:Asset"/>
108 </xsd:sequence>
109 </xsd:complexType>
110 <xsd:complexType name="AssetIterator">
111 <xsd:complexContent>
112 <xsd:extension base="generic:AssetList"/>
113 </xsd:complexContent>
114 </xsd:complexType>
115 <xsd:complexType name="QueryConstraint">
116 <xsd:sequence>
117 <xsd:element name="attributeName"
118 type="xsd:string"
119 minOccurs="0" maxOccurs="1"/>
120 <xsd:element name="comparator"
121 type="xsd:anyType"
122 minOccurs="0" maxOccurs="1"/>
123 </xsd:sequence>
124 </xsd:complexType>
125 <xsd:complexType name="CharacteristicQueryConstraint">
126 <xsd:complexContent>
127 <xsd:extension base="generic:QueryConstraint">
128 <xsd:sequence>
129 <xsd:element name="constrainingValue"
130 type="xsd:anyType"
131 minOccurs="1" maxOccurs="1"/>
132 </xsd:sequence>
133 </xsd:extension>
134 </xsd:complexContent>
135 </xsd:complexType>
136 <xsd:complexType name="ToManyRelationshipQueryConstraint">
137 <xsd:complexContent>
138 <xsd:extension base="generic:QueryConstraint">
139 <xsd:sequence>
140 <xsd:element name="relatedAssets"
141 type="generic:AssetList"
142 minOccurs="0" maxOccurs="1"/>
143 </xsd:sequence>
144 </xsd:extension>

92 XML Schema of Generic Types

145 </xsd:complexContent>
146 </xsd:complexType>
147 <xsd:complexType name="ToOneRelationshipQueryConstraint">
148 <xsd:complexContent>
149 <xsd:extension base="generic:QueryConstraint">
150 <xsd:sequence>
151 <xsd:element name="relatedAsset"
152 type="generic:Asset"
153 minOccurs="0" maxOccurs="1"/>
154 </xsd:sequence>
155 </xsd:extension>
156 </xsd:complexContent>
157 </xsd:complexType>
158 <xsd:complexType name="MemberInitialization">
159 <xsd:sequence>
160 <xsd:element name="membername" type="xsd:string"/>
161 </xsd:sequence>
162 </xsd:complexType>
163 <xsd:complexType name="AttributeInitialization">
164 <xsd:complexContent>
165 <xsd:extension base="generic:MemberInitialization"/>
166 </xsd:complexContent>
167 </xsd:complexType>
168 <xsd:complexType name="CharacteristicInitialization">
169 <xsd:complexContent>
170 <xsd:extension base="generic:AttributeInitialization">
171 <xsd:sequence>
172 <xsd:element name="value"
173 type="xsd:anyType"/>
174 </xsd:sequence>
175 </xsd:extension>
176 </xsd:complexContent>
177 </xsd:complexType>
178 <xsd:complexType name="ContentInitialization">
179 <xsd:complexContent>
180 <xsd:extension base="generic:MemberInitialization">
181 <xsd:sequence>
182 <xsd:element name="value"
183 type="xsd:anyType"/>
184 </xsd:sequence>
185 </xsd:extension>
186 </xsd:complexContent>
187 </xsd:complexType>
188 <xsd:complexType name="RelationshipInitialization">
189 <xsd:complexContent>
190 <xsd:extension base="generic:AttributeInitialization">
191 <xsd:sequence>
192 <xsd:element name="value"
193 type="generic:Asset"/>
194 </xsd:sequence>
195 </xsd:extension>
196 </xsd:complexContent>
197 </xsd:complexType>
198 </xsd:schema>

93

199

Appendix B

XML Schema Generator
Configurations

without substitutionGroup
1

2 <?xml version="1.0"?>
3 <cat xmlns:util="http://www.sts.tu-harburg.de/2004/java/util/xmlconfigfile">
4 <scanner class="de.tuhh.sts.cocoma.compiler.ADLScanner"/>
5 <parser class="de.tuhh.sts.cocoma.compiler.ADLParser"/>
6 <configuration name="xmlschema">
7 <param name="outputDirBase">gen</param>
8 <generator name="schemagen"
9 class="de.tuhh.sts.cocoma.compiler.generators.xmlschema.ALDToXMLSchemaGenerator">

10 <param name="outputFile">
11 <util:xpath
12 path="../../../param[@name=’outputDirBase’]/text()"/>/schema/schema.xsd
13 </param>
14 <param name="targetNamespace">urn:de.tuhh.sts.cocoma.generic</param>
15 <param name="prefix">gkns</param>
16 <param name="ignore-constraints">true</param>
17 </generator>
18 </configuration>
19 </cat>
20

with substitutionGroup
1

2 <?xml version="1.0"?>
3 <cat xmlns:util="http://www.sts.tu-harburg.de/2004/java/util/xmlconfigfile">
4 <scanner class="de.tuhh.sts.cocoma.compiler.ADLScanner"/>
5 <parser class="de.tuhh.sts.cocoma.compiler.ADLParser"/>
6 <configuration name="xmlschema">
7 <param name="outputDirBase">gen</param>
8 <generator name="schemagen"
9 class="de.tuhh.sts.cocoma.compiler.generators.xmlschema.ALDToXMLSchemaGenerator">

10 <param name="outputFile">
11 <util:xpath
12 path="../../../param[@name=’outputDirBase’]/text()"/>/schema/schema.xsd
13 </param>
14 <param name="targetNamespace">urn:de.tuhh.sts.cocoma.generic</param>
15 <param name="prefix">gkns</param>

95

16 <param name="ignore-constraints">true</param>
17 <param name="substitutionGroup">true</param>
18 <param name="typeSuffix"></param>
19 </generator>
20 </configuration>
21 </cat>
22

Appendix C

WSDL Generator
Configuration

1 <cat xmlns:util="http://www.sts.tu-harburg.de/2004/java/util/xmlconfigfile">
2 <scanner class="de.tuhh.sts.cocoma.compiler.ADLScanner"/>
3 <parser class="de.tuhh.sts.cocoma.compiler.ADLParser"/>
4 <configuration name="wsdlgenerator">
5 <param name="outputDirBase">generated</param>
6 <generator name="schemagen"
7 class="de.tuhh.sts.cocoma.compiler.generators.xmlschema.ALDToXMLSchemaGenerator">
8 <param name="outputFile">
9 <util:xpath

10 path="../../../param[@name=’outputDirBase’]/text()"/>/schema/schema.xsd
11 </param>
12 <param name="targetNamespace">http://www.sts.tu-harburg.de/test/</param>
13 <param name="prefix">tns</param>
14 <param name="ignore-constraints">true</param>
15 <param name="substitutionGroup">true</param>
16 <param name="typeSuffix"></param>
17 </generator>
18 <generator name="ald2wsdlgenerator"
19 class="de.tuhh.sts.cocoma.compiler.generators.ws.wsdl.ALD2WSDLGenerator">
20 <param name="outputFile">
21 <util:xpath path="../../../param[@name=’outputDirBase’]/text()"/>
22 /schema/wsdl/cocoma_s_module_interface.wsdl
23 </param>
24 <param name="generatorClass">ALD2WSDLGenerator</param>
25 <param name="generatorName">cocoma wsdl generator</param>
26 <param name="generatorType">service module generator</param>
27 <param name="generatorID">wsdlgen_r1</param>
28 <param name="generatorVersion">0.1</param>
29 <param name="generatorAuthor">Patrick Un</param>
30 <param name="generatorConfigurationName">wsdlgenerator</param>
31 <param name="generatorConfigurationPath">config</param>
32 <param name="generatorConfigurationFile">cat_wsdlgen.xml</param>
33 <param name="generatorMappingRulesFile">
34 config/wsdlgenerator_mapping_rules.xml
35 </param>
36 <param name="generatorMetaMappingRulesFile">
37 config/wsdlgenerator_mapping_meta_rules.xml

97

38 </param>
39 <param name="generatorDependency">schemagen</param>
40 <param name="generatorImportedXSDSchemaFile">schema.xsd</param>
41 <param name="generatorTargetNamespace">urn:de.tuhh.sts.cocoma.generic</param>
42 <param name="generatorTargetNamespacePrefix">tns</param>
43 <param name="generatorWSDLSOAPStyle">document</param>
44 <param name="generatorWSDLversion">1.1</param>
45 <param name="generatorOutput">web services description language</param>
46 <param name="generatorOutputFileType">WSDL</param>
47 <param name="generatorOutputFileName">cocoma_s_module_interface.wsdl</param>
48 <param name="generatorWSDLServiceName">CocomaGenericSModuleService</param>
49 <param name="generatorWSDLServiceURL">
50 http://localhost:8080/axis/services/CocomaGenericSModuleService
51 </param>
52 <param name="generatorLoggingEnable">true</param>
53 <param name="generatorLoggingLevel">FATAL</param>
54 </generator>
55 </configuration>
56 </cat>
57

Appendix D

WSDL Document of Server
Module

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="urn:de.tuhh.sts.cocoma.generic"

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="urn:de.tuhh.sts.cocoma.generic"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:generic="urn:de.tuhh.sts.cocoma.generic"
xmlns:cocoma="urn:de.tuhh.sts.cocoma.generic"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:impl="urn:de.tuhh.sts.cocoma.generic">

<wsdl:types>
<xsd:import namespace="urn:de.tuhh.sts.cocoma.generic"

schemaLocation="generic_interface_hierarchy.xsd"/>
<xsd:import namespace="urn:de.tuhh.sts.cocoma.generic.smodule"

schemaLocation="schema.xsd"/>
</wsdl:types>
<wsdl:message name="getClassRequest">

<wsdl:part name="argument0" type="xsd:string"/>
</wsdl:message>
<wsdl:message name="getClassResponse">

<wsdl:part name="getClassReturn" type="impl:AssetClass"/>
</wsdl:message>
<wsdl:message name="createRequest_1">

<wsdl:part name="argument0" type="impl:AssetClass"/>
<wsdl:part name="argument1" type="impl:ArrayOfModuleMemberInitialization"/>

</wsdl:message>
<wsdl:message name="createResponse_1">

<wsdl:part name="createReturn" type="impl:Asset"/>
</wsdl:message>
<wsdl:message name="createRequest_2">

<wsdl:part name="argument0" type="impl:AssetClass"/>
<wsdl:part name="argument1" type="impl:AbstractAsset"/>

</wsdl:message>
<wsdl:message name="createResponse_2">

<wsdl:part name="createReturn" type="impl:Asset"/>
</wsdl:message>

99

<wsdl:message name="createRequest_3">
<wsdl:part name="argument0" type="impl:AssetClass"/>
<wsdl:part name="argument1" type="impl:AssetIterator"/>

</wsdl:message>
<wsdl:message name="createResponse_3">

<wsdl:part name="createReturn" type="impl:Asset"/>
</wsdl:message>
<wsdl:message name="deleteRequest_1">

<wsdl:part name="argument0" type="impl:Asset"/>
</wsdl:message>
<wsdl:message name="deleteResponse_1">

<wsdl:part name="deleteReturn" type="impl:NewAsset"/>
</wsdl:message>
<wsdl:message name="deleteRequest_2">

<wsdl:part name="argument0" type="impl:AssetIterator"/>
</wsdl:message>
<wsdl:message name="deleteResponse_2">

<wsdl:part name="deleteReturn" type="impl:AssetIterator"/>
</wsdl:message>
<wsdl:message name="lookforRequest_1">

<wsdl:part name="argument0" type="impl:ID"/>
</wsdl:message>
<wsdl:message name="lookforResponse_1">

<wsdl:part name="lookforReturn" type="impl:Asset"/>
</wsdl:message>
<wsdl:message name="lookforRequest_2">

<wsdl:part name="argument0" type="xsd:string"/>
</wsdl:message>
<wsdl:message name="lookforResponse_2">

<wsdl:part name="lookforReturn" type="impl:AssetIterator"/>
</wsdl:message>
<wsdl:message name="lookforRequest_3">

<wsdl:part name="argument0" type="impl:AssetClass"/>
<wsdl:part name="argument1" type="xsd:string"/>

</wsdl:message>
<wsdl:message name="lookforResponse_3">

<wsdl:part name="lookforReturn" type="impl:AssetIterator"/>
</wsdl:message>
<wsdl:message name="lookforRequest_4">

<wsdl:part name="argument0" type="impl:AssetClass"/>
<wsdl:part name="argument1" type="impl:ArrayOfModuleQueryConstraint"/>

</wsdl:message>
<wsdl:message name="lookforResponse_4">

<wsdl:part name="lookforReturn" type="impl:AssetIterator"/>
</wsdl:message>
<wsdl:message name="lookforRequest_5">

<wsdl:part name="argument0" type="impl:AssetClass"/>
<wsdl:part name="argument1" type="impl:AbstractAsset"/>

</wsdl:message>
<wsdl:message name="lookforResponse_5">

<wsdl:part name="lookforReturn" type="impl:AssetIterator"/>
</wsdl:message>
<wsdl:message name="lookforRequest_6">

<wsdl:part name="argument0" type="impl:AssetClass"/>

100 WSDL Document of Server Module

<wsdl:part name="argument1" type="impl:AssetIterator"/>
</wsdl:message>
<wsdl:message name="lookforResponse_6">

<wsdl:part name="lookforReturn" type="impl:AssetIterator"/>
</wsdl:message>
<wsdl:message name="modifyRequest_1">

<wsdl:part name="argument0" type="impl:Asset"/>
<wsdl:part name="argument1" type="impl:ArrayOfModuleMemberInitialization"/>

</wsdl:message>
<wsdl:message name="modifyResponse_1">

<wsdl:part name="modifyReturn" type="impl:Asset"/>
</wsdl:message>
<wsdl:message name="modifyRequest_2">

<wsdl:part name="argument0" type="impl:Asset"/>
<wsdl:part name="argument1" type="impl:AbstractAsset"/>

</wsdl:message>
<wsdl:message name="modifyResponse_2">

<wsdl:part name="modifyReturn" type="impl:Asset"/>
</wsdl:message>
<wsdl:message name="modifyRequest_3">

<wsdl:part name="argument0" type="impl:AssetIterator"/>
<wsdl:part name="argument1" type="impl:ArrayOfModuleMemberInitialization"/>

</wsdl:message>
<wsdl:message name="modifyResponse_3">

<wsdl:part name="modifyReturn" type="impl:AssetIterator"/>
</wsdl:message>
<wsdl:message name="modifyRequest_4">

<wsdl:part name="argument0" type="impl:AssetIterator"/>
<wsdl:part name="argument1" type="impl:AbstractAsset"/>

</wsdl:message>
<wsdl:message name="modifyResponse_4">

<wsdl:part name="modifyReturn" type="impl:AssetIterator"/>
</wsdl:message>
<wsdl:portType name="CocomaGenericSModulePortType">

<wsdl:operation name="getClass" parameterOrder="argument0">
<wsdl:input name="getClassRequest" message="impl:getClassRequest"/>
<wsdl:output name="getClassResponse" message="impl:getClassResponse"/>

</wsdl:operation>
<wsdl:operation name="create" parameterOrder="argument0 argument1">

<wsdl:input name="createRequest_1" message="impl:createRequest_1"/>
<wsdl:output name="createResponse_1" message="impl:createResponse_1"/>

</wsdl:operation>
<wsdl:operation name="create" parameterOrder="argument0 argument1">

<wsdl:input name="createRequest_2" message="impl:createRequest_2"/>
<wsdl:output name="createResponse_2" message="impl:createResponse_2"/>

</wsdl:operation>
<wsdl:operation name="create" parameterOrder="argument0 argument1">

<wsdl:input name="createRequest_3" message="impl:createRequest_3"/>
<wsdl:output name="createResponse_3" message="impl:createResponse_3"/>

</wsdl:operation>
<wsdl:operation name="delete" parameterOrder="argument0">

<wsdl:input name="deleteRequest_1" message="impl:deleteRequest_1"/>
<wsdl:output name="deleteResponse_1" message="impl:deleteResponse_1"/>

</wsdl:operation>

101

<wsdl:operation name="delete" parameterOrder="argument0">
<wsdl:input name="deleteRequest_2" message="impl:deleteRequest_2"/>
<wsdl:output name="deleteResponse_2" message="impl:deleteResponse_2"/>

</wsdl:operation>
<wsdl:operation name="lookfor" parameterOrder="argument0">

<wsdl:input name="lookforRequest_1" message="impl:lookforRequest_1"/>
<wsdl:output name="lookforResponse_1" message="impl:lookforResponse_1"/>

</wsdl:operation>
<wsdl:operation name="lookfor" parameterOrder="argument0">

<wsdl:input name="lookforRequest_2" message="impl:lookforRequest_2"/>
<wsdl:output name="lookforResponse_2" message="impl:lookforResponse_2"/>

</wsdl:operation>
<wsdl:operation name="lookfor" parameterOrder="argument0 argument1">

<wsdl:input name="lookforRequest_3" message="impl:lookforRequest_3"/>
<wsdl:output name="lookforResponse_3" message="impl:lookforResponse_3"/>

</wsdl:operation>
<wsdl:operation name="lookfor" parameterOrder="argument0 argument1">

<wsdl:input name="lookforRequest_4" message="impl:lookforRequest_4"/>
<wsdl:output name="lookforResponse_4" message="impl:lookforResponse_4"/>

</wsdl:operation>
<wsdl:operation name="lookfor" parameterOrder="argument0 argument1">

<wsdl:input name="lookforRequest_5" message="impl:lookforRequest_5"/>
<wsdl:output name="lookforResponse_5" message="impl:lookforResponse_5"/>

</wsdl:operation>
<wsdl:operation name="lookfor" parameterOrder="argument0 argument1">

<wsdl:input name="lookforRequest_6" message="impl:lookforRequest_6"/>
<wsdl:output name="lookforResponse_6" message="impl:lookforResponse_6"/>

</wsdl:operation>
<wsdl:operation name="modify" parameterOrder="argument0 argument1">

<wsdl:input name="modifyRequest_1" message="impl:modifyRequest_1"/>
<wsdl:output name="modifyResponse_1" message="impl:modifyResponse_1"/>

</wsdl:operation>
<wsdl:operation name="modify" parameterOrder="argument0 argument1">

<wsdl:input name="modifyRequest_2" message="impl:modifyRequest_2"/>
<wsdl:output name="modifyResponse_2" message="impl:modifyResponse_2"/>

</wsdl:operation>
<wsdl:operation name="modify" parameterOrder="argument0 argument1">

<wsdl:input name="modifyRequest_3" message="impl:modifyRequest_3"/>
<wsdl:output name="modifyResponse_3" message="impl:modifyResponse_3"/>

</wsdl:operation>
<wsdl:operation name="modify" parameterOrder="argument0 argument1">

<wsdl:input name="modifyRequest_4" message="impl:modifyRequest_4"/>
<wsdl:output name="modifyResponse_4" message="impl:modifyResponse_4"/>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="CocomaGenericSModuleBinding" type="tns:CocomaGenericSModulePortType">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
<wsdl:operation name="getClass">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="getClassRequest">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getClassResponse">

<soap:body use="literal"/>

102 WSDL Document of Server Module

</wsdl:output>
</wsdl:operation>
<wsdl:operation name="create">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="createRequest_1">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="createResponse_1">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="create">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="createRequest_2">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="createResponse_2">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="create">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="createRequest_3">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="createResponse_3">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="delete">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="deleteRequest_1">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="deleteResponse_1">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="delete">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="deleteRequest_2">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="deleteResponse_2">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="lookfor">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="lookforRequest_1">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="lookforResponse_1">

<soap:body use="literal"/>

103

</wsdl:output>
</wsdl:operation>
<wsdl:operation name="lookfor">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="lookforRequest_2">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="lookforResponse_2">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="lookfor">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="lookforRequest_3">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="lookforResponse_3">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="lookfor">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="lookforRequest_4">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="lookforResponse_4">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="lookfor">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="lookforRequest_5">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="lookforResponse_5">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="lookfor">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="lookforRequest_6">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="lookforResponse_6">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="modify">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="modifyRequest_1">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="modifyResponse_1">

<soap:body use="literal"/>

104 WSDL Document of Server Module

</wsdl:output>
</wsdl:operation>
<wsdl:operation name="modify">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="modifyRequest_2">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="modifyResponse_2">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="modify">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="modifyRequest_3">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="modifyResponse_3">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="modify">

<soap:operation soapAction="default" style="document"/>
<wsdl:input name="modifyRequest_4">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="modifyResponse_4">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>
<wsdl:service name="CocomaGenericSModuleService">
<wsdl:port name="CocomaGenericSModuleServicePort"

binding="tns:CocomaGenericSModuleBinding">
<soap:address
location="http://ws.sts.tu-harburg.de:8080/axis/services/CocomaGenericSModuleService"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Appendix E

Code Excerpt

public class ProxyAgent {

private static ProxyAgent instance = null;

private static HashMap<String,ServerModule> registry = null;

private static HashMap<String,Component> component = null;

/**
* private default constructor
*/

private ProxyAgent() {
if (registry == null) {

registry = new HashMap<String, ServerModule>();
}
if (component == null) {

component = new HashMap<String, Component>();
}

}

/**
*
* @return singleton instance
*/
public static ProxyAgent getInstance() {

if (instance == null) {
instance = new ProxyAgent();

}
return instance;

}

/**
* @return the registry
*/
private static HashMap<String, ServerModule> getRegistry() {

return registry;
}

106 Code Excerpt

/**
* @return the component
*/

private static HashMap<String, Component> getComponent() {
return component;

}

/**
*
* @param moduleName
* @param module
*/
synchronized public void register(String moduleName, ServerModule module) {

if(moduleName == null || moduleName.length() == 0) {
return;

}
if(module == null || !(module instanceof ServerModule)) {

return;
}
getRegistry().put(moduleName, module);

}

/**
*
* @param moduleName
* @return
*/
public ServerModule lookup(String moduleName) {

if(moduleName == null || moduleName.length() == 0) {
return null;

}
ServerModule module = (ServerModule)getRegistry().get(moduleName);
return module;

}

/**
*
* @param componentName
* @param cocomaComponent
*/
synchronized public void registerComponent(String componentName,

Component cocomaComponent) {
if(componentName == null || componentName.length() == 0) {

return;
}
if(cocomaComponent == null || !(cocomaComponent instanceof Component)){

return;
}
getComponent().put(componentName,cocomaComponent);

}

/**
*
* @param componentName

107

* @return
*/

public Component lookupComponent(String componentName) {
if(componentName == null || componentName.length() == 0) {

return null;
}
Component cocomaComponent = (Component)getComponent().get(componentName);
return cocomaComponent;

}

}

108 Code Excerpt

Appendix F

Class Diagrams

110 Class Diagrams

A
L

D
2W

S
D

L
G

en
er

at
o

r

+
G

E
N

E
R

A
T

O
R

_N
A

M
E

 :
S

tr
in

g
=

 "
C

O
C

O
M

A
 W

E
B

 S
E

R
V

IC
E

 M
O

D
U

LE
 W

S
D

L
G

E
N

E
R

A
T

O
R

"{
re

ad
O

nl
y}

+
G

E
N

E
R

A
T

O
R

_S
Y

M
B

O
L_

T
A

B
LE

_N
A

M
E

 :
S

tr
in

g
=

 A
LD

2W
S

D
LG

en
er

at
or

S
ym

bo
lT

ab
le

D
es

cr
ip

tio
n.

S
Y

M
B

O
L_

T
A

B
LE

_N
A

M
E

{r
ea

dO
nl

y}
−

lo
gg

er
 :

Lo
gg

er
 =

 W
S

D
LG

en
er

at
or

Lo
gg

er
.in

st
an

ce
()

.g
et

Lo
gg

er
()

<
<

co
ns

tr
uc

to
r>

>
+

A
LD

2W
S

D
LG

en
er

at
or

()
+

ad
dP

ro
gr

es
sL

is
te

ne
r(

 a
rg

0
: P

ro
gr

es
sL

is
te

ne
r

)
: v

oi
d

<
<

Ja
va

E
le

m
en

t>
>

 <
<

ge
tte

r>
>

+
ge

tP
ro

du
ce

dS
ym

bo
lT

ab
le

(
ar

g0
 :

In
te

rm
ed

ia
te

M
od

el
)

 :
S

ym
bo

lT
ab

le
D

es
cr

ip
tio

n{
Ja

va
A

nn
ot

at
io

ns
 =

 @
O

ve
rr

id
e}

<
<

Ja
va

E
le

m
en

t>
>

 <
<

ge
tte

r>
>

+
ge

tR
eq

ue
st

ed
P

ar
am

et
er

s(
 a

rg
0

: I
nt

er
m

ed
ia

te
M

od
el

)
 :

C
ol

le
ct

io
n{

Ja
va

A
nn

ot
at

io
ns

 =
 @

O
ve

rr
id

e}
<

<
Ja

va
E

le
m

en
t>

>
 <

<
ge

tte
r>

>
+

ge
tR

eq
ue

st
ed

S
ym

bo
lT

ab
le

s(
 a

rg
0

: I
nt

er
m

ed
ia

te
M

od
el

)
 :

C
ol

le
ct

io
n{

Ja
va

A
nn

ot
at

io
ns

 =
 @

O
ve

rr
id

e}
<

<
Ja

va
E

le
m

en
t>

>
+

ge
ne

ra
te

(
im

 :
In

te
rm

ed
ia

te
M

od
el

, s
ym

T
ab

s
: S

ym
bo

lT
ab

le
"[

]"
, p

ar
am

s
: M

ap
)

 :
S

ym
bo

lT
ab

le
{J

av
aA

nn
ot

at
io

ns
 =

 @
O

ve
rr

id
e}

A
L

D
2W

S
D

L
G

en
er

at
o

rS
ym

b
o

lT
ab

le
D

es
cr

ip
ti

o
n

−
S

Y
M

B
O

L_
T

A
B

LE
_N

A
M

E
 :

S
tr

in
g

=
 "

C
O

C
O

M
A

 W
E

B
 S

E
R

V
IC

E
 M

O
D

U
LE

 W
S

D
L

G
E

N
E

R
A

T
O

R
 S

Y
M

B
O

L
T

A
B

LE
"{

re
ad

O
nl

y}

<
<

Ja
va

E
le

m
en

t>
>

 <
<

ge
tte

r>
>

+
ge

tN
am

e(
)

: S
tr

in
g{

Ja
va

A
nn

ot
at

io
ns

 =
 @

O
ve

rr
id

e}
<

<
Ja

va
E

le
m

en
t>

>
 <

<
ge

tte
r>

>
+

ge
tT

yp
e(

)
: C

la
ss

{J
av

aA
nn

ot
at

io
ns

 =
 @

O
ve

rr
id

e}

A
L

D
2W

S
D

L
G

en
er

at
o

rS
ym

b
o

lT
ab

le

−
co

co
m

aG
en

er
ic

T
yp

es
T

oX
S

T
yp

es
M

ap
 :

H
as

hM
ap

 =
 n

ul
l

−
m

od
ul

eM
et

ho
dT

oW
S

C
al

ls
M

ap
 :

T
re

eM
ap

 =
 n

ul
l

−
w

sd
lD

oc
um

en
tT

yp
es

Li
st

 :
A

rr
ay

Li
st

 =
 n

ul
l

−
w

sd
lD

oc
um

en
tM

es
sa

ge
sL

is
t :

 A
rr

ay
Li

st
 =

 n
ul

l
−

w
sd

lD
oc

um
en

tP
or

tT
yp

eL
is

t :
 A

rr
ay

Li
st

 =
 n

ul
l

−
w

sd
lD

oc
um

en
tB

in
di

ng
Li

st
 :

A
rr

ay
Li

st
 =

 n
ul

l
−

w
sd

lD
oc

um
en

tS
er

vi
ce

Li
st

 :
A

rr
ay

Li
st

 =
 n

ul
l

−
im

po
rt

ed
X

S
F

ile
Li

st
 :

A
rr

ay
Li

st
 =

 n
ul

l
−

im
po

rt
ed

W
S

D
LF

ile
Li

st
 :

A
rr

ay
Li

st
 =

 n
ul

l
−

w
sd

lF
ile

N
am

e
: S

tr
in

g
=

 n
ul

l

<
<

co
ns

tr
uc

to
r>

>
+

A
LD

2W
S

D
LG

en
er

at
or

S
ym

bo
lT

ab
le

()
<

<
ge

tte
r>

>
+

ge
tC

oc
om

aG
en

er
ic

T
yp

es
T

oX
S

T
yp

es
M

ap
()

 :
H

as
hM

ap
<

<
se

tte
r>

>
+

se
tC

oc
om

aG
en

er
ic

T
yp

es
T

oX
S

T
yp

es
M

ap
(

rh
s

: H
as

hM
ap

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tM
od

ul
eM

et
ho

dT
oW

S
C

al
ls

M
ap

()
 :

T
re

eM
ap

<
<

se
tte

r>
>

+
se

tM
od

ul
eM

et
ho

dT
oW

S
C

al
ls

M
ap

(
m

od
ul

eM
et

ho
dT

oW
S

C
al

ls
M

ap
 :

T
re

eM
ap

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tW
sd

lD
oc

um
en

tB
in

di
ng

Li
st

()
 :

A
rr

ay
Li

st
<

<
se

tte
r>

>
#s

et
W

sd
lD

oc
um

en
tB

in
di

ng
Li

st
(

w
sd

lD
oc

um
en

tB
in

di
ng

Li
st

 :
A

rr
ay

Li
st

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tW
sd

lD
oc

um
en

tM
es

sa
ge

sL
is

t(
)

: A
rr

ay
Li

st
<

<
se

tte
r>

>
#s

et
W

sd
lD

oc
um

en
tM

es
sa

ge
sL

is
t(

 w
sd

lD
oc

um
en

tM
es

sa
ge

sL
is

t :
 A

rr
ay

Li
st

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tW
sd

lD
oc

um
en

tP
or

tT
yp

eL
is

t(
)

: A
rr

ay
Li

st
<

<
se

tte
r>

>
#s

et
W

sd
lD

oc
um

en
tP

or
tT

yp
eL

is
t(

 w
sd

lD
oc

um
en

tP
or

tT
yp

eL
is

t :
 A

rr
ay

Li
st

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tW
sd

lD
oc

um
en

tS
er

vi
ce

Li
st

()
 :

A
rr

ay
Li

st
<

<
se

tte
r>

>
#s

et
W

sd
lD

oc
um

en
tS

er
vi

ce
Li

st
(

w
sd

lD
oc

um
en

tS
er

vi
ce

Li
st

 :
A

rr
ay

Li
st

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tW
sd

lD
oc

um
en

tT
yp

es
Li

st
()

 :
A

rr
ay

Li
st

<
<

se
tte

r>
>

#s
et

W
sd

lD
oc

um
en

tT
yp

es
Li

st
(

w
sd

lD
oc

um
en

tT
yp

es
Li

st
 :

A
rr

ay
Li

st
)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tIm

po
rt

ed
X

S
F

ile
Li

st
()

 :
A

rr
ay

Li
st

<
<

se
tte

r>
>

+
se

tIm
po

rt
ed

X
S

F
ile

Li
st

(
im

po
rt

ed
X

S
F

ile
Li

st
 :

A
rr

ay
Li

st
)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tW

sd
lF

ile
N

am
e(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tW

sd
lF

ile
N

am
e(

 w
sd

lF
ile

N
am

e
: S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tIm

po
rt

ed
W

S
D

LF
ile

Li
st

()
 :

A
rr

ay
Li

st
<

<
se

tte
r>

>
+

se
tIm

po
rt

ed
W

S
D

LF
ile

Li
st

(
im

po
rt

ed
W

S
D

LF
ile

Li
st

 :
A

rr
ay

Li
st

)
 :

vo
id

F
ig

u
re

F
.1

:
A

L
D

2W
SD

L
G

en
er

at
or

an
d

A
L
D

2W
SD

L
G

en
er

at
or

Sy
m

bo
lT

ab
le

111

W
S

D
L

E
le

m
en

t

−
el

em
en

tN
am

e
: Q

N
am

e
=

 n
ul

l
−

na
m

e
: S

tr
in

g
=

 n
ul

l
−

pa
re

nt
 :

W
S

D
LE

le
m

en
t =

 n
ul

l
−

ch
ild

re
n

: A
rr

ay
Li

st
 =

 n
ul

l
−

at
tr

ib
ut

eL
is

t :
 A

rr
ay

Li
st

 =
 n

ul
l

−
is

R
oo

tE
le

m
en

t :
 b

oo
le

an
 =

 fa
ls

e
−

ha
sN

S
P

re
fix

 :
bo

ol
ea

n
=

 fa
ls

e
−

ha
sA

ttr
ib

ut
es

 :
bo

ol
ea

n
=

 fa
ls

e
−

ha
sP

ar
en

t :
 b

oo
le

an
 =

 fa
ls

e
−

ha
sC

hi
ld

re
n

: b
oo

le
an

 =
 fa

ls
e

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LE

le
m

en
t(

)
<

<
co

ns
tr

uc
to

r>
>

+
W

S
D

LE
le

m
en

t(
 e

le
m

en
tN

am
e

: Q
N

am
e

)
<

<
co

ns
tr

uc
to

r>
>

+
W

S
D

LE
le

m
en

t(
 e

le
m

en
tN

am
e

: Q
N

am
e,

 a
ttr

ib
ut

eL
is

t :
 A

rr
ay

Li
st

)
<

<
co

ns
tr

uc
to

r>
>

+
W

S
D

LE
le

m
en

t(
 e

le
m

en
tN

am
e

: Q
N

am
e,

 p
ar

en
t :

 W
S

D
LE

le
m

en
t,

ch
ild

re
n

: A
rr

ay
Li

st
, a

ttr
ib

ut
eL

is
t :

 A
rr

ay
Li

st
)

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LE

le
m

en
t(

 e
le

m
en

tN
am

e
: Q

N
am

e,
 p

ar
en

t :
 W

S
D

LE
le

m
en

t)
<

<
co

ns
tr

uc
to

r>
>

+
W

S
D

LE
le

m
en

t(
 e

le
m

en
tN

am
e

: Q
N

am
e,

 c
hi

ld
re

n
: A

rr
ay

Li
st

, a
ttr

ib
ut

eL
is

t :
 A

rr
ay

Li
st

)
<

<
co

ns
tr

uc
to

r>
>

+
W

S
D

LE
le

m
en

t(
 e

le
m

en
tN

am
e

: Q
N

am
e,

 p
ar

en
t :

 W
S

D
LE

le
m

en
t,

ch
ild

re
n

: A
rr

ay
Li

st
)

+
ac

ce
pt

(
vi

si
to

r
: W

S
D

LS
tr

uc
tu

ra
lA

rt
ifa

ct
V

is
ito

r
)

: v
oi

d
+

co
m

pa
re

T
o(

 o
 :

W
S

D
LE

le
m

en
t)

 :
in

t
+

eq
ua

ls
(

ob
j :

 O
bj

ec
t)

 :
bo

ol
ea

n
+

ha
sh

C
od

e(
)

: i
nt

+
to

S
tr

in
g(

)
: S

tr
in

g
<

<
ge

tte
r>

>
+

ge
tA

ttr
ib

ut
eL

is
t(

)
: A

rr
ay

Li
st

<
<

ge
tte

r>
>

+
ge

tC
hi

ld
re

n(
)

: A
rr

ay
Li

st
<

<
ge

tte
r>

>
+

ge
tE

le
m

en
tN

am
e(

)
: Q

N
am

e
+

ha
sA

ttr
ib

ut
es

()
 :

bo
ol

ea
n

+
ha

sC
hi

ld
re

n(
)

: b
oo

le
an

+
ha

sN
S

P
re

fix
()

 :
bo

ol
ea

n
+

ha
sP

ar
en

t(
)

: b
oo

le
an

<
<

ge
tte

r>
>

+
is

R
oo

tE
le

m
en

t(
)

: b
oo

le
an

+
be

co
m

eR
oo

tE
le

m
en

t(
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tP

ar
en

t(
)

: W
S

D
LE

le
m

en
t

<
<

se
tte

r>
>

+
se

tA
ttr

ib
ut

eL
is

t(
 a

ttr
ib

ut
eL

is
t :

 A
rr

ay
Li

st
)

 :
vo

id
<

<
se

tte
r>

>
+

se
tC

hi
ld

re
n(

 r
hs

 :
A

rr
ay

Li
st

)
 :

vo
id

+
m

er
ge

A
ttr

ib
ut

eL
is

ts
(

at
tr

ib
ut

eL
is

tT
oM

er
ge

 :
A

rr
ay

Li
st

)
 :

vo
id

+
m

er
ge

C
hi

ld
re

n(
 e

le
m

en
tL

is
tT

oM
er

ge
 :

A
rr

ay
Li

st
)

 :
vo

id
+

ad
dA

ttr
ib

ut
e(

 a
ttr

ib
ut

e
: W

S
D

LA
ttr

ib
ut

e
)

: v
oi

d
+

ad
dC

hi
ld

(
ch

ild
 :

W
S

D
LE

le
m

en
t)

 :
vo

id
<

<
se

tte
r>

>
+

se
tE

le
m

en
tN

am
e(

 e
le

m
en

tN
am

e
: Q

N
am

e
)

: v
oi

d
<

<
ge

tte
r>

>
+

is
C

hi
ld

O
f(

 p
ar

en
t :

 W
S

D
LE

le
m

en
t)

 :
bo

ol
ea

n
+

ha
sA

ttr
ib

ut
e(

 a
ttr

ib
ut

e
: W

S
D

LA
ttr

ib
ut

e
)

: b
oo

le
an

+
ha

sC
hi

ld
(

ch
ild

 :
W

S
D

LE
le

m
en

t)
 :

bo
ol

ea
n

<
<

se
tte

r>
>

+
se

tP
ar

en
t(

 r
hs

 :
W

S
D

LE
le

m
en

t)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tC
hi

ld
re

nL
en

gt
h(

)
: i

nt
<

<
ge

tte
r>

>
+

ge
tA

ttr
ib

ut
es

Le
ng

th
()

 :
in

t
<

<
se

tte
r>

>
−

se
tH

as
A

ttr
ib

ut
es

(
ha

sA
ttr

ib
ut

es
 :

bo
ol

ea
n

)
: v

oi
d

<
<

se
tte

r>
>
−

se
tH

as
C

hi
ld

re
n(

 h
as

C
hi

ld
re

n
: b

oo
le

an
)

 :
vo

id
<

<
se

tte
r>

>
+

se
tH

as
N

S
P

re
fix

(
ha

sN
S

P
re

fix
 :

bo
ol

ea
n

)
: v

oi
d

<
<

se
tte

r>
>
−

se
tH

as
P

ar
en

t(
 h

as
P

ar
en

t :
 b

oo
le

an
)

 :
vo

id
<

<
se

tte
r>

>
−

se
tR

oo
tE

le
m

en
t(

 is
R

oo
tE

le
m

en
t :

 b
oo

le
an

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tN
am

e(
)

: S
tr

in
g

<
<

ge
tte

r>
>

+
ge

tQ
ua

lif
ie

dN
am

e(
)

: Q
N

am
e

<
<

se
tte

r>
>

#s
et

N
am

e(
 n

am
e

: S
tr

in
g

)
: v

oi
d

M
ap

p
in

g
R

u
le

−
na

m
e

: S
tr

in
g

=
 n

ul
l

−
id

 :
S

tr
in

g
=

 n
ul

l
−

m
ap

pi
ng

R
ul

eK
ey

 :
M

ap
pi

ng
R

ul
eK

ey
 =

 n
ul

l
−

ns
ur

i :
 S

tr
in

g
=

 "
ur

n:
de

.tu
−

ha
rb

ur
g.

st
s.

co
co

m
a.

ge
ne

ra
to

rs
.w

s.
w

sd
l"{

re
ad

O
nl

y}
−

ns
ur

ip
re

fix
 :

S
tr

in
g

=
 "

w
sd

lg
en

"{
re

ad
O

nl
y}

−
rp

cM
et

ho
d

: S
tr

in
g

=
 n

ul
l

−
m

et
ho

dV
is

ib
ili

ty
 :

S
tr

in
g

=
 n

ul
l

−
m

et
ho

dM
od

ifi
er

 :
S

tr
in

g
=

 n
ul

l
−

m
et

ho
dR

et
ur

nT
yp

e
: S

tr
in

g
=

 n
ul

l
−

m
et

ho
dA

rg
um

en
ts

Li
st

 :
A

rr
ay

Li
st

 =
 n

ul
l

−
m

et
ho

dE
xc

ep
tio

ns
Li

st
 :

A
rr

ay
Li

st
 =

 n
ul

l
−

w
sd

lA
rt

ifa
ct

s
: M

ap
pe

dW
S

D
LA

rt
ifa

ct
s

=
 n

ul
l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pi
ng

R
ul

e(
)

<
<

ge
tte

r>
>

+
ge

tId
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tId

(
id

 :
S

tr
in

g
)

: v
oi

d
+

ha
sM

et
ho

dA
rg

um
en

ts
()

 :
bo

ol
ea

n
+

ha
sM

et
ho

dE
xc

ep
tio

ns
()

 :
bo

ol
ea

n
<

<
ge

tte
r>

>
+

ge
tM

et
ho

dA
rg

um
en

ts
Li

st
()

 :
A

rr
ay

Li
st

<
<

se
tte

r>
>

+
se

tM
et

ho
dA

rg
um

en
ts

Li
st

(
m

et
ho

dA
rg

um
en

ts
Li

st
 :

A
rr

ay
Li

st
)

 :
vo

id
+

ad
dM

et
ho

dA
rg

um
en

t(
 a

rg
um

en
tM

ap
 :

M
ap

pi
ng

R
ul

eM
et

ho
dA

rg
um

en
ts

)
 :

vo
id

+
ad

dM
et

ho
dE

xc
ep

tio
n(

 e
xc

ep
tio

nM
ap

 :
M

ap
pi

ng
R

ul
eM

et
ho

dE
xc

ep
tio

ns
)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tM

et
ho

dE
xc

ep
tio

ns
Li

st
()

 :
A

rr
ay

Li
st

<
<

se
tte

r>
>

+
se

tM
et

ho
dE

xc
ep

tio
ns

Li
st

(
m

et
ho

dE
xc

ep
tio

ns
Li

st
 :

A
rr

ay
Li

st
)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tM

et
ho

dM
od

ifi
er

()
 :

S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
et

ho
dM

od
ifi

er
(

m
et

ho
dM

od
ifi

er
 :

S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tM
et

ho
dR

et
ur

nT
yp

e(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
et

ho
dR

et
ur

nT
yp

e(
 m

et
ho

dR
et

ur
nT

yp
e

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tM
et

ho
dV

is
ib

ili
ty

()
 :

S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
et

ho
dV

is
ib

ili
ty

(
m

et
ho

dV
is

ib
ili

ty
 :

S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tN
am

e(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tN
am

e(
 n

am
e

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tR
pc

M
et

ho
d(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tR

pc
M

et
ho

d(
 r

cp
M

et
ho

d
: S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tW

sd
lA

rt
ifa

ct
s(

)
: M

ap
pe

dW
S

D
LA

rt
ifa

ct
s

<
<

se
tte

r>
>

+
se

tW
sd

lA
rt

ifa
ct

s(
 w

sd
lA

rt
ifa

ct
s

: M
ap

pe
dW

S
D

LA
rt

ifa
ct

s
)

: v
oi

d
<

<
se

tte
r>

>
−

se
tM

ap
pi

ng
R

ul
eK

ey
()

 :
vo

id
<

<
se

tte
r>

>
#s

et
M

ap
pi

ng
R

ul
eK

ey
(

na
m

e
: S

tr
in

g,
 id

 :
S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tM

ap
pi

ng
R

ul
eK

ey
()

 :
M

ap
pi

ng
R

ul
eK

ey
<

<
ge

tte
r>

>
+

ge
tN

su
ri(

)
: S

tr
in

g
<

<
ge

tte
r>

>
+

ge
tN

su
rip

re
fix

()
 :

S
tr

in
g

W
S

D
L

S
tr

ea
m

in
g

S
er

ia
liz

at
io

n
V

is
it

o
r

−
lo

gg
er

 :
Lo

gg
er

 =
 W

S
D

LG
en

er
at

or
Lo

gg
er

.in
st

an
ce

()
.g

et
Lo

gg
er

()
−

el
em

S
ta

ck
 :

S
ta

ck
 =

 n
ul

l
−

at
tr

S
ta

ck
 :

S
ta

ck
 =

 n
ul

l

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LS

tr
ea

m
in

gS
er

ia
liz

at
io

nV
is

ito
r(

)
+

vi
si

t(
 s

im
pl

ea
ttr

ib
ut

e
: W

S
D

LS
im

pl
eA

ttr
ib

ut
e

)
: v

oi
d

+
vi

si
t(

 a
ttr

ib
ut

e
: W

S
D

LA
ttr

ib
ut

e
)

: v
oi

d
+

vi
si

t(
 e

le
m

en
t :

 W
S

D
LE

le
m

en
t)

 :
vo

id
<

<
Ja

va
E

le
m

en
t>

>
−

pu
sh

E
le

m
en

t(
 r

hs
 :

W
S

D
LE

le
m

en
t)

 :
vo

id
{J

av
aA

nn
ot

at
io

ns
 =

 @
S

up
pr

es
sW

ar
ni

ng
s(

"u
nu

se
d"

)}
<

<
Ja

va
E

le
m

en
t>

>
−

po
pE

le
m

en
t(

)
: W

S
D

LE
le

m
en

t{
Ja

va
A

nn
ot

at
io

ns
 =

 @
S

up
pr

es
sW

ar
ni

ng
s(

"u
nu

se
d"

)}
<

<
Ja

va
E

le
m

en
t>

>
−

to
pE

le
m

en
t(

)
: W

S
D

LE
le

m
en

t{
Ja

va
A

nn
ot

at
io

ns
 =

 @
S

up
pr

es
sW

ar
ni

ng
s(

"u
nu

se
d"

)}
<

<
Ja

va
E

le
m

en
t>

>
−

pu
sh

A
ttr

(
rh

s
: W

S
D

LA
ttr

ib
ut

e
)

: v
oi

d{
Ja

va
A

nn
ot

at
io

ns
 =

 @
S

up
pr

es
sW

ar
ni

ng
s(

"u
nu

se
d"

)}
<

<
Ja

va
E

le
m

en
t>

>
−

po
pA

llA
ttr

()
 :

vo
id

{J
av

aA
nn

ot
at

io
ns

 =
 @

S
up

pr
es

sW
ar

ni
ng

s(
"u

nu
se

d"
)}

−
po

pA
ttr

()
 :

W
S

D
LA

ttr
ib

ut
e

<
<

Ja
va

E
le

m
en

t>
>
−

to
pA

ttr
()

 :
W

S
D

LA
ttr

ib
ut

e{
Ja

va
A

nn
ot

at
io

ns
 =

 @
S

up
pr

es
sW

ar
ni

ng
s(

"u
nu

se
d"

)}
<

<
ge

tte
r>

>
−

ge
tA

ttr
S

ta
ck

()
 :

S
ta

ck
<

<
se

tte
r>

>
−

se
tA

ttr
S

ta
ck

(
at

tr
S

ta
ck

 :
S

ta
ck

)
 :

vo
id

<
<

ge
tte

r>
>
−

ge
tE

le
m

S
ta

ck
()

 :
S

ta
ck

<
<

se
tte

r>
>
−

se
tE

le
m

S
ta

ck
(

el
em

S
ta

ck
 :

S
ta

ck
)

 :
vo

id

W
S

D
L

V
er

si
o

n
1S

tr
at

eg
y

−
m

ap
pi

ng
ru

le
s

: W
S

D
LC

on
fig

ur
at

io
n

=
 n

ul
l

−
lo

gg
er

 :
Lo

gg
er

 =
 W

S
D

LG
en

er
at

or
Lo

gg
er

.in
st

an
ce

()
.g

et
Lo

gg
er

()
−

st
yl

e
: B

in
di

ng
S

ty
le

 =
 n

ul
l

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LV

er
si

on
1S

tr
at

eg
y(

)
<

<
se

tte
r>

>
−

se
tD

ef
au

ltS
O

A
P

B
in

di
ng

S
ty

le
()

 :
vo

id
−

te
st

S
et

B
in

di
ng

S
ty

le
(

co
nf

ig
ur

at
io

n
: C

on
fig

ur
at

io
nC

on
te

xt
)

 :
vo

id
<

<
Ja

va
E

le
m

en
t>

>
+

bu
ild

S
tr

uc
tu

re
()

 :
W

S
D

LE
le

m
en

t{
Ja

va
A

nn
ot

at
io

ns
 =

 @
O

ve
rr

id
e}

<
<

ge
tte

r>
>

+
ge

tM
ap

pi
ng

ru
le

s(
)

: W
S

D
LC

on
fig

ur
at

io
n

<
<

se
tte

r>
>
−

se
tM

ap
pi

ng
ru

le
s(

 m
ap

pi
ng

ru
le

s
: W

S
D

LC
on

fig
ur

at
io

n
)

: v
oi

d
−

ha
nd

le
D

oc
um

en
tE

le
m

en
tA

ttr
ib

ut
es

()
 :

A
rr

ay
Li

st
−

ha
nd

le
T

yp
eE

le
m

en
t(

 d
oc

um
en

tE
le

m
en

t :
 W

S
D

LE
le

m
en

t)
 :

W
S

D
LE

le
m

en
t

−
ha

nd
le

M
es

sa
ge

E
le

m
en

ts
(

do
cu

m
en

tE
le

m
en

t :
 W

S
D

LE
le

m
en

t,
in

te
rm

ed
ia

te
Li

st
 :

A
rr

ay
Li

st
)

 :
A

rr
ay

Li
st

−
ha

nd
le

P
or

tT
yp

eE
le

m
en

t(
 d

oc
um

en
tE

le
m

en
t :

 W
S

D
LE

le
m

en
t)

 :
W

S
D

LE
le

m
en

t
−

ha
nd

le
B

in
di

ng
E

le
m

en
t(

 d
oc

um
en

tE
le

m
en

t :
 W

S
D

LE
le

m
en

t)
 :

W
S

D
LE

le
m

en
t

−
ha

nd
le

S
er

vi
ce

E
le

m
en

t(
 d

oc
um

en
tE

le
m

en
t :

 W
S

D
LE

le
m

en
t)

 :
W

S
D

LE
le

m
en

t
<

<
ge

tte
r>

>
−

ge
tS

ty
le

()
 :

B
in

di
ng

S
ty

le
<

<
se

tte
r>

>
−

se
tS

ty
le

(
st

yl
e

: B
in

di
ng

S
ty

le
)

 :
vo

id

M
ap

p
ed

P
o

rt
T

yp
eO

p
er

at
io

n

−
m

ap
pe

dO
pe

ra
tio

nN
am

e
: S

tr
in

g
=

 n
ul

l
−

m
ap

pe
dO

pe
ra

tio
nP

ar
am

O
rd

er
 :

S
tr

in
g

=
 n

ul
l

−
m

ap
pe

dI
np

ut
N

am
e

: S
tr

in
g

=
 n

ul
l

−
m

ap
pe

dI
np

ut
M

es
sa

ge
 :

S
tr

in
g

=
 n

ul
l

−
ns

pr
ef

ix
in

 :
S

tr
in

g
=

 n
ul

l
−

m
ap

pe
dO

ut
pu

tN
am

e
: S

tr
in

g
=

 n
ul

l
−

m
ap

pe
dO

ut
pu

tM
es

sa
ge

 :
S

tr
in

g
=

 n
ul

l
−

ns
pr

ef
ix

ou
t :

 S
tr

in
g

=
 n

ul
l

−
m

ap
pe

dO
ut

pu
tF

au
ltN

am
e

: S
tr

in
g

=
 n

ul
l

−
m

ap
pe

dO
ut

pu
tF

au
ltM

es
sa

ge
 :

S
tr

in
g

=
 n

ul
l

−
ns

pr
ef

ix
fa

ul
t :

 S
tr

in
g

=
 n

ul
l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pe
dP

or
tT

yp
eO

pe
ra

tio
n(

)
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dI
np

ut
N

am
e(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tM

ap
pe

dI
np

ut
N

am
e(

 m
ap

pe
dI

np
ut

N
am

e
: S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dO
pe

ra
tio

nN
am

e(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
ap

pe
dO

pe
ra

tio
nN

am
e(

 m
ap

pe
dO

pe
ra

tio
nN

am
e

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dO

pe
ra

tio
nP

ar
am

O
rd

er
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tM

ap
pe

dO
pe

ra
tio

nP
ar

am
O

rd
er

(
m

ap
pe

dO
pe

ra
tio

nP
ar

am
O

rd
er

 :
S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dI
np

ut
M

es
sa

ge
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tM

ap
pe

dI
np

ut
M

es
sa

ge
(

m
ap

pe
dI

np
ut

M
es

sa
ge

 :
S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tN

sp
re

fix
in

()
 :

S
tr

in
g

<
<

se
tte

r>
>

+
se

tN
sp

re
fix

in
(

rh
s

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dO

ut
pu

tM
es

sa
ge

()
 :

S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
ap

pe
dO

ut
pu

tM
es

sa
ge

(
m

ap
pe

dO
ut

pu
tM

es
sa

ge
 :

S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tN
sp

re
fix

ou
t(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tN

sp
re

fix
ou

t(
 r

hs
 :

S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dO

ut
pu

tN
am

e(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
ap

pe
dO

ut
pu

tN
am

e(
 m

ap
pe

dO
ut

pu
tN

am
e

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dO

ut
pu

tF
au

ltM
es

sa
ge

()
 :

S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
ap

pe
dO

ut
pu

tF
au

ltM
es

sa
ge

(
m

ap
pe

dO
ut

pu
tF

au
ltM

es
sa

ge
 :

S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dO

ut
pu

tF
au

ltN
am

e(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
ap

pe
dO

ut
pu

tF
au

ltN
am

e(
 m

ap
pe

dO
ut

pu
tF

au
ltN

am
e

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tN
sp

re
fix

fa
ul

t(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tN
sp

re
fix

fa
ul

t(
 n

sp
re

fix
fa

ul
t :

 S
tr

in
g

)
: v

oi
d

W
S

D
L

M
ap

p
in

g
R

u
le

sA
ss

em
b

le
E

xc
ep

ti
o

n

−
se

ria
lV

er
si

on
U

ID
 :

lo
ng

 =
 5

01
51

64
71

22
59

24
08

67
L{

re
ad

O
nl

y}

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LM

ap
pi

ng
R

ul
es

A
ss

em
bl

eE
xc

ep
tio

n(
)

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LM

ap
pi

ng
R

ul
es

A
ss

em
bl

eE
xc

ep
tio

n(
 m

es
sa

ge
 :

S
tr

in
g

)
<

<
co

ns
tr

uc
to

r>
>

+
W

S
D

LM
ap

pi
ng

R
ul

es
A

ss
em

bl
eE

xc
ep

tio
n(

 c
au

se
 :

T
hr

ow
ab

le
)

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LM

ap
pi

ng
R

ul
es

A
ss

em
bl

eE
xc

ep
tio

n(
 m

es
sa

ge
 :

S
tr

in
g,

 c
au

se
 :

T
hr

ow
ab

le
)

W
S

D
L

C
o

n
fi

g
u

ra
ti

o
n

−
w

sd
lM

et
ho

dM
ap

pi
ng

 :
A

rr
ay

Li
st

 =
 n

ul
l

−
xm

ln
sw

sd
lg

en
 :

S
tr

in
g

=
 n

ul
l

−
xm

ln
ss

ch
em

ag
en

 :
S

tr
in

g
=

 n
ul

l
−

xm
ln

sc
oc

om
a

: S
tr

in
g

=
 n

ul
l

−
xm

ln
sa

pi
 :

S
tr

in
g

=
 n

ul
l

−
xm

ln
sa

ld
 :

S
tr

in
g

=
 n

ul
l

−
xm

ln
sg

en
er

ic
 :

S
tr

in
g

=
 n

ul
l

−
xm

ln
si

m
pl

 :
S

tr
in

g
=

 n
ul

l
−

xm
ln

sj
av

a
: S

tr
in

g
=

 n
ul

l
−

xm
ln

sx
sd

 :
S

tr
in

g
=

 n
ul

l

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LC

on
fig

ur
at

io
n(

)
+

ha
sM

et
ho

dM
ap

pi
ng

()
 :

bo
ol

ea
n

<
<

ge
tte

r>
>

+
ge

tW
sd

lM
et

ho
dM

ap
pi

ng
()

 :
A

rr
ay

Li
st

<
<

se
tte

r>
>

+
se

tW
sd

lM
et

ho
dM

ap
pi

ng
(

w
sd

lM
et

ho
dM

ap
pi

ng
 :

A
rr

ay
Li

st
)

 :
vo

id
+

ad
dW

sd
lM

et
ho

dM
ap

pi
ng

(
w

sd
lM

et
ho

dM
ap

pi
ng

 :
W

S
D

LM
et

ho
dM

ap
pi

ng
)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tX

m
ln

sc
oc

om
a(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tX

m
ln

sc
oc

om
a(

 x
m

ln
sc

oc
om

a
: S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tX

m
ln

si
m

pl
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tX

m
ln

si
m

pl
(

xm
ln

si
m

pl
 :

S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tX
m

ln
sj

av
a(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tX

m
ln

sj
av

a(
 x

m
ln

sj
av

a
: S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tX

m
ln

ss
ch

em
ag

en
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tX

m
ln

ss
ch

em
ag

en
(

xm
ln

ss
ch

em
ag

en
 :

S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tX
m

ln
sw

sd
lg

en
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tX

m
ln

sw
sd

lg
en

(
xm

ln
sw

sd
lg

en
 :

S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tX
m

ln
sx

sd
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tX

m
ln

sx
sd

(
xm

ln
sx

sd
 :

S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tX
m

ln
sa

ld
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tX

m
ln

sa
ld

(
xm

ln
sa

ld
 :

S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tX
m

ln
sa

pi
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tX

m
ln

sa
pi

(
xm

ln
sa

pi
 :

S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tX
m

ln
sg

en
er

ic
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tX

m
ln

sg
en

er
ic

(
xm

ln
sg

en
er

ic
 :

S
tr

in
g

)
: v

oi
d

C
o

n
fi

g
u

ra
ti

o
n

C
o

n
te

xt

−
in

st
an

ce
 :

C
on

fig
ur

at
io

nC
on

te
xt

 =
 n

ul
l

−
w

sd
lw

rit
er

 :
X

M
LS

tr
ea

m
W

rit
er

 =
 n

ul
l

−
w

sd
lfi

le
ha

nd
le

 :
F

ile
 =

 n
ul

l
−

ou
ts

tr
ea

m
 :

F
ile

O
ut

pu
tS

tr
ea

m
 =

 n
ul

l
−

pa
ra

m
et

er
M

ap
 :

M
ap

 =
 n

ul
l

−
ge

ne
ric

T
yp

es
2X

M
LS

ch
em

aM
ap

 :
H

as
hM

ap
 =

 n
ul

l
−

de
fa

ul
tP

ar
am

et
er

s
: H

as
hM

ap
 =

 n
ul

l
−

G
E

N
E

R
IC

_T
Y

P
E

S
_N

S
U

R
L

: S
tr

in
g

=
 "

ur
n:

de
.tu

hh
.s

ts
.c

oc
om

a.
ge

ne
ric

"{
re

ad
O

nl
y}

−
G

E
N

E
R

IC
_T

Y
P

E
S

_P
R

E
F

IX
 :

S
tr

in
g

=
 "

ge
ne

ric
"{

re
ad

O
nl

y}
−

G
E

N
E

R
A

T
E

D
_T

Y
P

E
S

_N
S

U
R

L
: S

tr
in

g
=

 "
ur

n:
de

.tu
hh

.s
ts

.c
oc

om
a.

ge
ne

ric
.s

m
od

ul
e"

{r
ea

dO
nl

y}
−

G
E

N
E

R
A

T
E

D
_T

Y
P

E
S

_P
R

E
F

IX
 :

S
tr

in
g

=
 "

co
co

m
a"

{r
ea

dO
nl

y}
−

lo
gg

er
 :

Lo
gg

er
 =

 W
S

D
LG

en
er

at
or

Lo
gg

er
.in

st
an

ce
()

.g
et

Lo
gg

er
()

+
in

st
an

ce
()

 :
C

on
fig

ur
at

io
nC

on
te

xt
<

<
co

ns
tr

uc
to

r>
>
−

C
on

fig
ur

at
io

nC
on

te
xt

()
<

<
ge

tte
r>

>
+

ge
tP

ar
am

et
er

M
ap

()
 :

M
ap

<
<

se
tte

r>
>

#s
et

P
ar

am
et

er
M

ap
(

pa
ra

m
et

er
M

ap
 :

M
ap

)
 :

vo
id

+
in

itC
on

fig
ur

at
io

nP
ar

am
et

er
s(

 p
ar

am
et

er
M

ap
 :

M
ap

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tD
ef

au
ltP

ar
am

et
er

s(
)

: H
as

hM
ap

<
<

ge
tte

r>
>

+
ge

tW
sd

lw
rit

er
()

 :
X

M
LS

tr
ea

m
W

rit
er

<
<

se
tte

r>
>
−

se
tW

sd
lw

rit
er

(
w

sd
lw

rit
er

 :
X

M
LS

tr
ea

m
W

rit
er

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tO
ut

st
re

am
()

 :
F

ile
O

ut
pu

tS
tr

ea
m

<
<

se
tte

r>
>
−

se
tO

ut
st

re
am

(
ou

ts
tr

ea
m

 :
F

ile
O

ut
pu

tS
tr

ea
m

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tW
sd

lfi
le

ha
nd

le
()

 :
F

ile
<

<
se

tte
r>

>
−

se
tW

sd
lfi

le
ha

nd
le

(
w

sd
lfi

le
ha

nd
le

 :
F

ile
)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tM

et
ho

dM
ap

pi
ng

M
ap

()
 :

T
re

eM
ap

<
<

ge
tte

r>
>

+
ge

tG
en

er
ic

T
yp

es
2X

M
LS

ch
em

aM
ap

()
 :

H
as

hM
ap

A
L

D
2W

S
D

L
G

en
er

at
o

rS
ym

b
o

lT
ab

le

−
co

co
m

aG
en

er
ic

T
yp

es
T

oX
S

T
yp

es
M

ap
 :

H
as

hM
ap

 =
 n

ul
l

−
m

od
ul

eM
et

ho
dT

oW
S

C
al

ls
M

ap
 :

T
re

eM
ap

 =
 n

ul
l

−
w

sd
lD

oc
um

en
tT

yp
es

Li
st

 :
A

rr
ay

Li
st

 =
 n

ul
l

−
w

sd
lD

oc
um

en
tM

es
sa

ge
sL

is
t :

 A
rr

ay
Li

st
 =

 n
ul

l
−

w
sd

lD
oc

um
en

tP
or

tT
yp

eL
is

t :
 A

rr
ay

Li
st

 =
 n

ul
l

−
w

sd
lD

oc
um

en
tB

in
di

ng
Li

st
 :

A
rr

ay
Li

st
 =

 n
ul

l
−

w
sd

lD
oc

um
en

tS
er

vi
ce

Li
st

 :
A

rr
ay

Li
st

 =
 n

ul
l

−
im

po
rt

ed
X

S
F

ile
Li

st
 :

A
rr

ay
Li

st
 =

 n
ul

l
−

im
po

rt
ed

W
S

D
LF

ile
Li

st
 :

A
rr

ay
Li

st
 =

 n
ul

l
−

w
sd

lF
ile

N
am

e
: S

tr
in

g
=

 n
ul

l

<
<

co
ns

tr
uc

to
r>

>
+

A
LD

2W
S

D
LG

en
er

at
or

S
ym

bo
lT

ab
le

()
<

<
ge

tte
r>

>
+

ge
tC

oc
om

aG
en

er
ic

T
yp

es
T

oX
S

T
yp

es
M

ap
()

 :
H

as
hM

ap
<

<
se

tte
r>

>
+

se
tC

oc
om

aG
en

er
ic

T
yp

es
T

oX
S

T
yp

es
M

ap
(

rh
s

: H
as

hM
ap

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tM
od

ul
eM

et
ho

dT
oW

S
C

al
ls

M
ap

()
 :

T
re

eM
ap

<
<

se
tte

r>
>

+
se

tM
od

ul
eM

et
ho

dT
oW

S
C

al
ls

M
ap

(
m

od
ul

eM
et

ho
dT

oW
S

C
al

ls
M

ap
 :

T
re

eM
ap

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tW
sd

lD
oc

um
en

tB
in

di
ng

Li
st

()
 :

A
rr

ay
Li

st
<

<
se

tte
r>

>
#s

et
W

sd
lD

oc
um

en
tB

in
di

ng
Li

st
(

w
sd

lD
oc

um
en

tB
in

di
ng

Li
st

 :
A

rr
ay

Li
st

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tW
sd

lD
oc

um
en

tM
es

sa
ge

sL
is

t(
)

: A
rr

ay
Li

st
<

<
se

tte
r>

>
#s

et
W

sd
lD

oc
um

en
tM

es
sa

ge
sL

is
t(

 w
sd

lD
oc

um
en

tM
es

sa
ge

sL
is

t :
 A

rr
ay

Li
st

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tW
sd

lD
oc

um
en

tP
or

tT
yp

eL
is

t(
)

: A
rr

ay
Li

st
<

<
se

tte
r>

>
#s

et
W

sd
lD

oc
um

en
tP

or
tT

yp
eL

is
t(

 w
sd

lD
oc

um
en

tP
or

tT
yp

eL
is

t :
 A

rr
ay

Li
st

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tW
sd

lD
oc

um
en

tS
er

vi
ce

Li
st

()
 :

A
rr

ay
Li

st
<

<
se

tte
r>

>
#s

et
W

sd
lD

oc
um

en
tS

er
vi

ce
Li

st
(

w
sd

lD
oc

um
en

tS
er

vi
ce

Li
st

 :
A

rr
ay

Li
st

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tW
sd

lD
oc

um
en

tT
yp

es
Li

st
()

 :
A

rr
ay

Li
st

<
<

se
tte

r>
>

#s
et

W
sd

lD
oc

um
en

tT
yp

es
Li

st
(

w
sd

lD
oc

um
en

tT
yp

es
Li

st
 :

A
rr

ay
Li

st
)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tIm

po
rt

ed
X

S
F

ile
Li

st
()

 :
A

rr
ay

Li
st

<
<

se
tte

r>
>

+
se

tIm
po

rt
ed

X
S

F
ile

Li
st

(
im

po
rt

ed
X

S
F

ile
Li

st
 :

A
rr

ay
Li

st
)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tW

sd
lF

ile
N

am
e(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tW

sd
lF

ile
N

am
e(

 w
sd

lF
ile

N
am

e
: S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tIm

po
rt

ed
W

S
D

LF
ile

Li
st

()
 :

A
rr

ay
Li

st
<

<
se

tte
r>

>
+

se
tIm

po
rt

ed
W

S
D

LF
ile

Li
st

(
im

po
rt

ed
W

S
D

LF
ile

Li
st

 :
A

rr
ay

Li
st

)
 :

vo
id

W
S

D
L

S
im

p
le

A
tt

ri
b

u
te

−
at

tr
ib

ut
eN

am
e

: Q
N

am
e

=
 n

ul
l

−
at

tr
ib

ut
eV

al
ue

 :
Q

N
am

e
=

 n
ul

l
−

na
m

e
: S

tr
in

g
=

 n
ul

l

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LS

im
pl

eA
ttr

ib
ut

e(
)

+
ac

ce
pt

(
vi

si
to

r
: W

S
D

LS
tr

uc
tu

ra
lA

rt
ifa

ct
V

is
ito

r
)

: v
oi

d
<

<
co

ns
tr

uc
to

r>
>

+
W

S
D

LS
im

pl
eA

ttr
ib

ut
e(

 a
ttr

ib
ut

eN
am

e
: Q

N
am

e
)

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LS

im
pl

eA
ttr

ib
ut

e(
 a

ttr
ib

ut
eN

am
e

: Q
N

am
e,

 a
ttr

ib
ut

eV
al

ue
 :

Q
N

am
e

)
+

co
m

pa
re

T
o(

 o
 :

W
S

D
LS

im
pl

eA
ttr

ib
ut

e
)

: i
nt

+
eq

ua
ls

(
ob

j :
 O

bj
ec

t)
 :

bo
ol

ea
n

+
ha

sh
C

od
e(

)
: i

nt
<

<
ge

tte
r>

>
+

ge
tA

ttr
ib

ut
eN

am
e(

)
: Q

N
am

e
<

<
se

tte
r>

>
+

se
tA

ttr
ib

ut
eN

am
e(

 a
ttr

ib
ut

eN
am

e
: Q

N
am

e
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tA

ttr
ib

ut
eV

al
ue

()
 :

Q
N

am
e

<
<

se
tte

r>
>

+
se

tA
ttr

ib
ut

eV
al

ue
(

at
tr

ib
ut

eV
al

ue
 :

Q
N

am
e

)
: v

oi
d

+
to

S
tr

in
g(

)
: S

tr
in

g
<

<
ge

tte
r>

>
+

ge
tA

ttr
ib

ut
eV

al
ue

S
tr

in
g(

)
: S

tr
in

g
<

<
ge

tte
r>

>
+

ge
tN

am
e(

)
: S

tr
in

g
<

<
ge

tte
r>

>
+

ge
tQ

ua
lif

ie
dN

am
e(

)
: Q

N
am

e
<

<
se

tte
r>

>
#s

et
N

am
e(

 n
am

e
: S

tr
in

g
)

: v
oi

d

W
S

D
L

C
o

n
fi

g
u

ra
ti

o
n

M
ap

p
in

g
R

u
le

sM
an

ag
er

−
in

st
an

ce
 :

W
S

D
LC

on
fig

ur
at

io
nM

ap
pi

ng
R

ul
es

M
an

ag
er

 =
 n

ul
l

−
co

nf
ig

ur
at

io
nC

on
te

xt
 :

C
on

fig
ur

at
io

nC
on

te
xt

 =
 n

ul
l

−
m

ap
pi

ng
C

on
te

xt
 :

D
ig

es
te

r
=

 n
ul

l
−

m
ap

pi
ng

fil
e

: F
ile

 =
 n

ul
l

−
m

ap
pi

ng
M

et
af

ile
 :

F
ile

 =
 n

ul
l

−
lo

gg
er

 :
Lo

gg
er

 =
 W

S
D

LG
en

er
at

or
Lo

gg
er

.in
st

an
ce

()
.g

et
Lo

gg
er

()

+
in

st
an

ce
()

 :
W

S
D

LC
on

fig
ur

at
io

nM
ap

pi
ng

R
ul

es
M

an
ag

er
<

<
co

ns
tr

uc
to

r>
>
−

W
S

D
LC

on
fig

ur
at

io
nM

ap
pi

ng
R

ul
es

M
an

ag
er

()
+

im
po

rt
R

ul
es

()
 :

W
S

D
LC

on
fig

ur
at

io
n

−
im

po
rt

R
ul

es
(

m
ap

pi
ng

C
on

te
xt

 :
D

ig
es

te
r

)
: W

S
D

LC
on

fig
ur

at
io

n
<

<
se

tte
r>

>
−

se
tM

ap
pi

ng
R

ul
es

C
on

fig
ur

at
io

n(
 m

ap
pi

ng
C

on
te

xt
 :

D
ig

es
te

r
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tM

ap
pi

ng
R

ul
es

C
on

fig
ur

at
io

n(
)

: D
ig

es
te

r
<

<
ge

tte
r>

>
+

ge
tC

on
fig

ur
at

io
nC

on
te

xt
()

 :
C

on
fig

ur
at

io
nC

on
te

xt
+

in
iti

al
iz

eC
on

fig
ur

at
io

nC
on

te
xt

(
m

ai
nC

on
te

xt
 :

C
on

fig
ur

at
io

nC
on

te
xt

)
 :

vo
id

<
<

se
tte

r>
>
−

se
tC

on
fig

ur
at

io
nC

on
te

xt
(

co
nf

ig
ur

at
io

nC
on

te
xt

 :
C

on
fig

ur
at

io
nC

on
te

xt
)

 :
vo

id
<

<
ge

tte
r>

>
#g

et
M

ap
pi

ng
fil

e(
)

: F
ile

<
<

se
tte

r>
>

#s
et

M
ap

pi
ng

fil
e(

 m
ap

pi
ng

fil
e

: F
ile

)
 :

vo
id

<
<

ge
tte

r>
>

#g
et

M
ap

pi
ng

M
et

af
ile

()
 :

F
ile

<
<

se
tte

r>
>

#s
et

M
ap

pi
ng

M
et

af
ile

(
m

ap
pi

ng
M

et
af

ile
 :

F
ile

)
 :

vo
id

W
S

D
L

A
tt

ri
b

u
te

−
co

nt
ex

t :
 W

S
D

LM
ap

pe
dA

ttr
ib

ut
eP

ar
tn

er
 =

 n
ul

l
−

en
cl

os
in

ge
le

m
en

t :
 W

S
D

LE
le

m
en

t =
 n

ul
l

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LA

ttr
ib

ut
e(

)
<

<
co

ns
tr

uc
to

r>
>

+
W

S
D

LA
ttr

ib
ut

e(
 m

ap
pi

ng
C

on
te

xt
 :

W
S

D
LM

ap
pe

dA
ttr

ib
ut

eP
ar

tn
er

)
+

ac
ce

pt
(

vi
si

to
r

: W
S

D
LS

tr
uc

tu
ra

lA
rt

ifa
ct

V
is

ito
r

)
: v

oi
d

+
co

m
pa

re
T

o(
 o

 :
W

S
D

LA
ttr

ib
ut

e
)

: i
nt

<
<

ge
tte

r>
>

+
ge

tC
on

te
xt

()
 :

W
S

D
LM

ap
pe

dA
ttr

ib
ut

eP
ar

tn
er

<
<

se
tte

r>
>
−

se
tC

on
te

xt
(

co
nt

ex
t :

 W
S

D
LM

ap
pe

dA
ttr

ib
ut

eP
ar

tn
er

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tN
am

e(
)

: S
tr

in
g

<
<

ge
tte

r>
>

+
ge

tQ
ua

lif
ie

dN
am

e(
)

: Q
N

am
e

<
<

ge
tte

r>
>

+
ge

tE
nc

lo
si

ng
el

em
en

t(
)

: W
S

D
LE

le
m

en
t

<
<

se
tte

r>
>

+
se

tE
nc

lo
si

ng
el

em
en

t(
 e

nc
lo

si
ng

el
em

en
t :

 W
S

D
LE

le
m

en
t)

 :
vo

id

W
S

D
L

V
er

si
o

n
2S

tr
at

eg
y

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LV

er
si

on
2S

tr
at

eg
y(

)
<

<
Ja

va
E

le
m

en
t>

>
+

bu
ild

S
tr

uc
tu

re
()

 :
W

S
D

LE
le

m
en

t{
Ja

va
A

nn
ot

at
io

ns
 =

 @
O

ve
rr

id
e}

<
<

ge
tte

r>
>

+
ge

tM
ap

pi
ng

ru
le

s(
)

: W
S

D
LC

on
fig

ur
at

io
n

W
S

D
L

A
tt

ri
b

u
te

P
ar

tn
er

sM
ap

p
ab

le

+
m

ap
(

at
tr

ib
ut

es
 :

A
rr

ay
Li

st
, t

an
de

m
 :

W
S

D
LM

ap
pe

dA
ttr

ib
ut

eP
ar

tn
er

)
 :

A
rr

ay
Li

st

W
S

D
L

A
tt

ri
b

u
te

P
ar

tn
er

sM
ap

p
er

−
in

st
an

ce
 :

W
S

D
LA

ttr
ib

ut
eP

ar
tn

er
sM

ap
pe

r
=

 n
ul

l

+
in

st
an

ce
()

 :
W

S
D

LA
ttr

ib
ut

eP
ar

tn
er

sM
ap

pe
r

<
<

co
ns

tr
uc

to
r>

>
−

W
S

D
LA

ttr
ib

ut
eP

ar
tn

er
sM

ap
pe

r(
)

+
m

ap
(

at
tr

ib
ut

es
 :

A
rr

ay
Li

st
, t

an
de

m
 :

W
S

D
LM

ap
pe

dA
ttr

ib
ut

eP
ar

tn
er

)
 :

A
rr

ay
Li

st
#m

ap
_N

A
M

E
_T

A
R

G
E

T
_N

S
(

at
tr

ib
ut

es
 :

A
rr

ay
Li

st
)

 :
A

rr
ay

Li
st

#m
ap

_N
A

M
E

_T
A

R
G

E
T

_N
S

_X
M

LN
S

(
at

tr
ib

ut
es

 :
A

rr
ay

Li
st

)
 :

A
rr

ay
Li

st
#m

ap
_N

A
M

E
_T

Y
P

E
(

at
tr

ib
ut

es
 :

A
rr

ay
Li

st
)

 :
A

rr
ay

Li
st

#m
ap

_N
A

M
E

_E
LE

M
E

N
T

(
at

tr
ib

ut
es

 :
A

rr
ay

Li
st

)
 :

A
rr

ay
Li

st
#m

ap
_N

A
M

E
_P

A
R

A
M

E
T

E
R

_O
R

D
E

R
(

at
tr

ib
ut

es
 :

A
rr

ay
Li

st
)

 :
A

rr
ay

Li
st

#m
ap

_N
A

M
E

_M
E

S
S

A
G

E
(

at
tr

ib
ut

es
 :

A
rr

ay
Li

st
)

 :
A

rr
ay

Li
st

#m
ap

_N
S

_S
C

H
E

M
A

LO
C

A
T

IO
N

(
at

tr
ib

ut
es

 :
A

rr
ay

Li
st

)
 :

A
rr

ay
Li

st
#m

ap
_N

S
_L

O
C

A
T

IO
N

(
at

tr
ib

ut
es

 :
A

rr
ay

Li
st

)
 :

A
rr

ay
Li

st
#m

ap
_S

T
Y

LE
_T

R
A

N
S

P
O

R
T

(
at

tr
ib

ut
es

 :
A

rr
ay

Li
st

)
 :

A
rr

ay
Li

st
#m

ap
_S

T
Y

LE
_S

O
A

P
_A

C
T

IO
N

(
at

tr
ib

ut
es

 :
A

rr
ay

Li
st

)
 :

A
rr

ay
Li

st
#m

ap
_U

S
E

_N
S

(
at

tr
ib

ut
es

 :
A

rr
ay

Li
st

)
 :

A
rr

ay
Li

st
#m

ap
_N

A
M

E
_U

S
E

(
at

tr
ib

ut
es

 :
A

rr
ay

Li
st

)
 :

A
rr

ay
Li

st
#m

ap
_M

E
S

S
A

G
E

_U
S

E
(

at
tr

ib
ut

es
 :

A
rr

ay
Li

st
)

 :
A

rr
ay

Li
st

#m
ap

_M
E

S
S

A
G

E
_P

A
R

T
_U

S
E

(
at

tr
ib

ut
es

 :
A

rr
ay

Li
st

)
 :

A
rr

ay
Li

st
#m

ap
_N

A
M

E
_B

IN
D

IN
G

(
at

tr
ib

ut
es

 :
A

rr
ay

Li
st

)
 :

A
rr

ay
Li

st

W
S

D
L

C
o

n
fi

g
u

ra
ti

o
n

M
ap

p
in

g
R

u
le

sC
o

n
te

xt

+
in

iti
al

iz
eC

on
fig

ur
at

io
nC

on
te

xt
(

m
ai

nC
on

te
xt

 :
C

on
fig

ur
at

io
nC

on
te

xt
)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tC

on
fig

ur
at

io
nC

on
te

xt
()

 :
C

on
fig

ur
at

io
nC

on
te

xt
<

<
ge

tte
r>

>
+

ge
tM

ap
pi

ng
R

ul
es

C
on

fig
ur

at
io

n(
)

: D
ig

es
te

r
+

im
po

rt
R

ul
es

()
 :

W
S

D
LC

on
fig

ur
at

io
n

U
n

kn
o

w
n

M
ap

p
in

g
R

u
le

N
am

eE
xc

ep
ti

o
n

−
se

ria
lV

er
si

on
U

ID
 :

lo
ng

 =
 −

96
27

95
28

48
98

01
35

76
L{

re
ad

O
nl

y}

<
<

co
ns

tr
uc

to
r>

>
+

U
nk

no
w

nM
ap

pi
ng

R
ul

eN
am

eE
xc

ep
tio

n(
 m

es
sa

ge
 :

S
tr

in
g

)

U
n

kn
o

w
n

M
ap

p
in

g
R

u
le

Id
E

xc
ep

ti
o

n

−
se

ria
lV

er
si

on
U

ID
 :

lo
ng

 =
 −

61
46

72
18

37
58

85
71

29
0L

{r
ea

dO
nl

y}

<
<

co
ns

tr
uc

to
r>

>
+

U
nk

no
w

nM
ap

pi
ng

R
ul

eI
dE

xc
ep

tio
n(

 m
es

sa
ge

 :
S

tr
in

g
)

U
n

kn
o

w
n

M
ap

p
in

g
R

u
le

E
xc

ep
ti

o
n

−
se

ria
lV

er
si

on
U

ID
 :

lo
ng

 =
 4

96
86

03
17

85
32

33
19

4L
{r

ea
dO

nl
y}

<
<

co
ns

tr
uc

to
r>

>
+

U
nk

no
w

nM
ap

pi
ng

R
ul

eE
xc

ep
tio

n(
 m

es
sa

ge
 :

S
tr

in
g

)

W
S

D
L

S
tr

u
ct

u
ra

lA
rt

if
ac

tV
is

it
ab

le

+
ac

ce
pt

(
vi

si
to

r
: W

S
D

LS
tr

uc
tu

ra
lA

rt
ifa

ct
V

is
ito

r
)

: v
oi

d

W
S

D
L

S
tr

u
ct

u
ra

lA
rt

if
ac

tV
is

it
o

r

+
vi

si
t(

 s
im

pl
ea

ttr
ib

ut
e

: W
S

D
LS

im
pl

eA
ttr

ib
ut

e
)

: v
oi

d
+

vi
si

t(
 a

ttr
ib

ut
e

: W
S

D
LA

ttr
ib

ut
e

)
: v

oi
d

+
vi

si
t(

 e
le

m
en

t :
 W

S
D

LE
le

m
en

t)
 :

vo
id

W
S

D
L

S
tr

u
ct

u
re

A
ss

em
b

ly
A

lg
o

ri
th

m
s

+
bu

ild
S

tr
uc

tu
re

()
 :

W
S

D
LE

le
m

en
t

<
<

ge
tte

r>
>

+
ge

tM
ap

pi
ng

ru
le

s(
)

: W
S

D
LC

on
fig

ur
at

io
n

W
S

D
L

S
tr

u
ct

u
ra

lA
rt

if
ac

t

<
<

ge
tte

r>
>

+
ge

tN
am

e(
)

: S
tr

in
g

<
<

ge
tte

r>
>

+
ge

tQ
ua

lif
ie

dN
am

e(
)

: Q
N

am
e

W
S

D
L

S
tr

u
ct

u
re

A
ss

em
b

le
S

tr
at

eg
y

+
bu

ild
S

tr
uc

tu
re

()
 :

W
S

D
LE

le
m

en
t

F
ig

u
re

F
.2

:
W

SD
L

ge
ne

ra
to

r
cl

as
se

s
P
ar

t1

112 Class Diagrams

A
L

D
2W

S
D

L
G

en
er

at
o

r

+
G

E
N

E
R

A
T

O
R

_N
A

M
E

 :
S

tr
in

g
=

 "
C

O
C

O
M

A
 W

E
B

 S
E

R
V

IC
E

 M
O

D
U

LE
 W

S
D

L
G

E
N

E
R

A
T

O
R

"{
re

ad
O

nl
y}

+
G

E
N

E
R

A
T

O
R

_S
Y

M
B

O
L_

T
A

B
LE

_N
A

M
E

 :
S

tr
in

g
=

 A
LD

2W
S

D
LG

en
er

at
or

S
ym

bo
lT

ab
le

D
es

cr
ip

tio
n.

S
Y

M
B

O
L_

T
A

B
LE

_N
A

M
E

{r
ea

dO
nl

y}
−

lo
gg

er
 :

Lo
gg

er
 =

 W
S

D
LG

en
er

at
or

Lo
gg

er
.in

st
an

ce
()

.g
et

Lo
gg

er
()

<
<

co
ns

tr
uc

to
r>

>
+

A
LD

2W
S

D
LG

en
er

at
or

()
+

ad
dP

ro
gr

es
sL

is
te

ne
r(

 a
rg

0
: P

ro
gr

es
sL

is
te

ne
r

)
: v

oi
d

<
<

Ja
va

E
le

m
en

t>
>

 <
<

ge
tte

r>
>

+
ge

tP
ro

du
ce

dS
ym

bo
lT

ab
le

(
ar

g0
 :

In
te

rm
ed

ia
te

M
od

el
)

 :
S

ym
bo

lT
ab

le
D

es
cr

ip
tio

n{
Ja

va
A

nn
ot

at
io

ns
 =

 @
O

ve
rr

id
e}

<
<

Ja
va

E
le

m
en

t>
>

 <
<

ge
tte

r>
>

+
ge

tR
eq

ue
st

ed
P

ar
am

et
er

s(
 a

rg
0

: I
nt

er
m

ed
ia

te
M

od
el

)
 :

C
ol

le
ct

io
n<
−

>
P

ar
am

et
er

D
es

cr
ip

tio
n>

{J
av

aA
nn

ot
at

io
ns

 =
 @

O
ve

rr
id

e}
<

<
Ja

va
E

le
m

en
t>

>
 <

<
ge

tte
r>

>
+

ge
tR

eq
ue

st
ed

S
ym

bo
lT

ab
le

s(
 a

rg
0

: I
nt

er
m

ed
ia

te
M

od
el

)
 :

C
ol

le
ct

io
n{

Ja
va

A
nn

ot
at

io
ns

 =
 @

O
ve

rr
id

e}
<

<
Ja

va
E

le
m

en
t>

>
+

ge
ne

ra
te

(
im

 :
In

te
rm

ed
ia

te
M

od
el

, s
ym

T
ab

s
: S

ym
bo

lT
ab

le
"[

]"
, p

ar
am

s
: M

ap
)

 :
S

ym
bo

lT
ab

le
{J

av
aA

nn
ot

at
io

ns
 =

 @
O

ve
rr

id
e}

<
<

Ja
va

E
le

m
en

t>
>
−

na
m

es
pa

ce
P

re
fix

es
 :

H
as

ht
ab

le
 =

 n
ew

 H
as

ht
ab

le
<

S
tr

in
g,

S
tr

in
g>

()
{J

av
aA

nn
ot

at
io

ns
 =

 @
S

up
pr

es
sW

ar
ni

ng
s(

"u
nu

se
d"

)}

<
<

Ja
va

E
le

m
en

t>
>

 <
<

se
tte

r>
>
−

se
tN

am
es

pa
ce

P
re

fix
es

(
na

m
es

pa
ce

P
re

fix
es

 :
H

as
ht

ab
le

)
 :

vo
id

{J
av

aA
nn

ot
at

io
ns

 =
 @

S
up

pr
es

sW
ar

ni
ng

s(
"u

nu
se

d"
)}

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LN

am
es

pa
ce

()
<

<
ge

tte
r>

>
+

ge
tN

am
es

pa
ce

P
re

fix
es

()
 :

H
as

ht
ab

le
<

<
ge

tte
r>

>
+

ge
tN

am
es

pa
ce

U
R

I(
 p

re
fix

 :
S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tP

re
fix

(
na

m
es

pa
ce

U
R

I :
 S

tr
in

g
)

: S
tr

in
g

+
m

er
ge

(
sr

c
: W

S
D

LN
am

es
pa

ce
C

ap
ab

le
)

 :
vo

id
<

<
se

tte
r>

>
+

se
tN

am
es

pa
ce

(
pr

ef
ix

 :
S

tr
in

g,
 n

am
es

pa
ce

U
R

I :
 S

tr
in

g
)

: v
oi

d
<

<
se

tte
r>

>
+

se
tP

re
fix

(
pr

ef
ix

 :
S

tr
in

g
)

: v
oi

d
#a

ut
oG

en
er

at
eN

am
es

pa
ce

()
 :

S
tr

in
g

W
S

D
L

N
am

es
p

ac
e

A
L

D
2W

S
D

L
G

en
er

at
o

rS
ym

b
o

lT
ab

le
D

es
cr

ip
ti

o
n

−
S

Y
M

B
O

L_
T

A
B

LE
_N

A
M

E
 :

S
tr

in
g

=
 "

C
O

C
O

M
A

 W
E

B
 S

E
R

V
IC

E
 M

O
D

U
LE

 W
S

D
L

G
E

N
E

R
A

T
O

R
 S

Y
M

B
O

L
T

A
B

LE
"{

re
ad

O
nl

y}

<
<

Ja
va

E
le

m
en

t>
>

 <
<

ge
tte

r>
>

+
ge

tN
am

e(
)

: S
tr

in
g{

Ja
va

A
nn

ot
at

io
ns

 =
 @

O
ve

rr
id

e}
<

<
Ja

va
E

le
m

en
t>

>
 <

<
ge

tte
r>

>
+

ge
tT

yp
e(

)
: C

la
ss

{J
av

aA
nn

ot
at

io
ns

 =
 @

O
ve

rr
id

e}

M
ap

p
in

g
R

u
le

K
ey

−
se

ria
lV

er
si

on
U

ID
 :

lo
ng

 =
 −

99
45

24
68

12
39

86
45

6L
{r

ea
dO

nl
y}

−
ta

rg
et

M
et

ho
dN

am
e

: S
tr

in
g

=
 n

ul
l

−
id

 :
In

te
ge

r
=

 n
ul

l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pi
ng

R
ul

eK
ey

(
na

m
es

pa
ce

U
R

I :
 S

tr
in

g,
 lo

ca
lP

ar
t :

 S
tr

in
g,

 p
re

fix
 :

S
tr

in
g,

 m
ap

pi
ng

R
ul

eI
d

: I
nt

eg
er

+

co
m

pa
re

T
o(

 r
hs

 :
M

ap
pi

ng
R

ul
eK

ey
)

 :
in

t
<

<
ge

tte
r>

>
+

ge
tT

ar
ge

tM
et

ho
dN

am
e(

)
: S

tr
in

g
<

<
se

tte
r>

>
#s

et
T

ar
ge

tM
et

ho
dN

am
e(

 ta
rg

et
M

et
ho

dN
am

e
: S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tId

()
 :

In
te

ge
r

<
<

se
tte

r>
>

#s
et

Id
(

id
 :

In
te

ge
r

)
: v

oi
d

W
S

D
L

D
ig

es
te

r

−
w

sd
lC

on
fig

ur
at

io
n

: W
S

D
LC

on
fig

ur
at

io
n

=
 n

ul
l

−
m

an
ag

er
 :

W
S

D
LC

on
fig

ur
at

io
nM

ap
pi

ng
R

ul
es

M
an

ag
er

 =
 W

S
D

LC
on

fig
ur

at
io

nM
ap

pi
ng

R
ul

es
M

an
ag

er
.in

st
an

ce
()

−
m

ap
pi

ng
fil

e
: F

ile
 =

 n
ew

 F
ile

("
co

nf
ig

/w
sd

lg
en

er
at

or
_m

ap
pi

ng
_r

ul
es

.x
m

l")
−

m
ap

pi
ng

M
et

af
ile

 :
F

ile
 =

 n
ew

 F
ile

("
co

nf
ig

/w
sd

lg
en

er
at

or
_m

ap
pi

ng
_m

et
a_

ru
le

s.
xm

l")
−

lo
gg

er
 :

Lo
gg

er
 =

 W
S

D
LG

en
er

at
or

Lo
gg

er
.in

st
an

ce
()

.g
et

Lo
gg

er
()

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LD

ig
es

te
r(

)
+

di
ge

st
()

 :
vo

id
+

m
ai

n(
 a

rg
s

: S
tr

in
g"

[]"
)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tW

sd
lC

on
fig

ur
at

io
n(

)
: W

S
D

LC
on

fig
ur

at
io

n
<

<
se

tte
r>

>
+

se
tW

sd
lC

on
fig

ur
at

io
n(

 w
sd

lC
on

fig
ur

at
io

n
: W

S
D

LC
on

fig
ur

at
io

n
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tM

ap
pi

ng
fil

e(
)

: F
ile

<
<

ge
tte

r>
>

+
ge

tM
ap

pi
ng

M
et

af
ile

()
 :

F
ile

<
<

ge
tte

r>
>

+
ge

tL
og

ge
r(

)
: L

og
ge

r

M
ap

p
ed

M
es

sa
g

es

−
m

ap
pe

dR
eq

ue
st

M
es

sa
ge

 :
M

ap
pe

dR
eq

ue
st

M
es

sa
ge

 =
 n

ul
l

−
m

ap
pe

dR
es

po
ns

eM
es

sa
ge

 :
M

ap
pe

dR
es

po
ns

eM
es

sa
ge

 =
 n

ul
l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pe
dM

es
sa

ge
s(

)
+

ha
sM

ap
pe

dR
eq

ue
st

M
es

sa
ge

()
 :

bo
ol

ea
n

+
ha

sM
ap

pe
dR

es
po

ns
eM

es
sa

ge
()

 :
bo

ol
ea

n
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dR
eq

ue
st

M
es

sa
ge

()
 :

M
ap

pe
dR

eq
ue

st
M

es
sa

ge
<

<
se

tte
r>

>
+

se
tM

ap
pe

dR
eq

ue
st

M
es

sa
ge

(
m

ap
pe

dR
eq

ue
st

M
es

sa
ge

 :
M

ap
pe

dR
eq

ue
st

M
es

sa
ge

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dR

es
po

ns
eM

es
sa

ge
()

 :
M

ap
pe

dR
es

po
ns

eM
es

sa
ge

<
<

se
tte

r>
>

+
se

tM
ap

pe
dR

es
po

ns
eM

es
sa

ge
(

m
ap

pe
dR

es
po

ns
eM

es
sa

ge
 :

M
ap

pe
dR

es
po

ns
eM

es
sa

ge
)

 :
vo

id

M
ap

p
ed

W
S

D
L

A
rt

if
ac

ts

−
m

ap
pe

dM
et

ho
dN

am
e

: S
tr

in
g

=
 n

ul
l

−
m

ap
pe

dM
es

sa
ge

s
: M

ap
pe

dM
es

sa
ge

s
=

 n
ul

l
−

m
ap

pe
dP

or
tT

yp
eO

pe
ra

tio
n

: M
ap

pe
dP

or
tT

yp
eO

pe
ra

tio
n

=
 n

ul
l

−
m

ap
pe

dB
in

di
ng

 :
M

ap
pe

dB
in

di
ng

 =
 n

ul
l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pe
dW

S
D

LA
rt

ifa
ct

s(
)

+
ha

sM
ap

pe
dM

es
sa

ge
sP

or
tio

n(
)

: b
oo

le
an

+
ha

sM
ap

pe
dP

or
tT

yp
eP

or
tio

n(
)

: b
oo

le
an

+
ha

sM
ap

pe
dB

in
di

ng
P

or
tio

n(
)

: b
oo

le
an

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dB

in
di

ng
()

 :
M

ap
pe

dB
in

di
ng

<
<

se
tte

r>
>

+
se

tM
ap

pe
dB

in
di

ng
(

m
ap

pe
dB

in
di

ng
 :

M
ap

pe
dB

in
di

ng
)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dM
es

sa
ge

s(
)

: M
ap

pe
dM

es
sa

ge
s

<
<

se
tte

r>
>

+
se

tM
ap

pe
dM

es
sa

ge
s(

 m
ap

pe
dM

es
sa

ge
s

: M
ap

pe
dM

es
sa

ge
s

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dM

et
ho

dN
am

e(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
ap

pe
dM

et
ho

dN
am

e(
 m

ap
pe

dM
et

ho
dN

am
e

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dP

or
tT

yp
eO

pe
ra

tio
n(

)
: M

ap
pe

dP
or

tT
yp

eO
pe

ra
tio

n
<

<
se

tte
r>

>
+

se
tM

ap
pe

dP
or

tT
yp

eO
pe

ra
tio

n(
 m

ap
pe

dP
or

tT
yp

eO
pe

ra
tio

n
: M

ap
pe

dP
or

tT
yp

eO
pe

ra
tio

n
)

: v
oi

d

W
S

D
L

C
o

n
fi

g
u

ra
ti

o
n

M
ap

p
in

g
R

u
le

sE
xc

ep
ti

o
n

−
se

ria
lV

er
si

on
U

ID
 :

lo
ng

 =
 3

07
58

74
17

51
37

95
92

07
L{

re
ad

O
nl

y}

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LC

on
fig

ur
at

io
nM

ap
pi

ng
R

ul
es

E
xc

ep
tio

n(
)

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LC

on
fig

ur
at

io
nM

ap
pi

ng
R

ul
es

E
xc

ep
tio

n(
 m

es
sa

ge
 :

S
tr

in
g

)
<

<
co

ns
tr

uc
to

r>
>

+
W

S
D

LC
on

fig
ur

at
io

nM
ap

pi
ng

R
ul

es
E

xc
ep

tio
n(

 c
au

se
 :

T
hr

ow
ab

le
)

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LC

on
fig

ur
at

io
nM

ap
pi

ng
R

ul
es

E
xc

ep
tio

n(
 m

es
sa

ge
 :

S
tr

in
g,

 c
au

se
 :

T
hr

ow
ab

le
)

W
S

D
L

V
er

si
o

n
H

an
d

le
r

+
se

le
ct

W
S

D
LV

er
sD

ef
in

iti
on

(
w

sd
lv

er
si

on
 :

W
S

D
LV

er
si

on
)

 :
W

S
D

LS
tr

uc
tu

re
A

ss
em

bl
yA

lg
or

ith
m

s

M
ap

p
ed

S
O

A
P

O
u

tp
u

t

−
m

ap
pe

dS
O

A
P

B
in

dO
ut

pu
tN

am
e

: S
tr

in
g

=
 n

ul
l

−
m

ap
pe

dS
O

A
P

B
in

dE
nc

od
in

gS
ty

le
 :

S
tr

in
g

=
 n

ul
l

−
m

ap
pe

dS
O

A
P

B
in

dN
S

 :
S

tr
in

g
=

 n
ul

l
−

m
ap

pe
dS

O
A

P
B

in
du

se
 :

S
tr

in
g

=
 n

ul
l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pe
dS

O
A

P
O

ut
pu

t(
)

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dS

O
A

P
B

in
dE

nc
od

in
gS

ty
le

()
 :

S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
ap

pe
dS

O
A

P
B

in
dE

nc
od

in
gS

ty
le

(
m

ap
pe

dS
O

A
P

B
in

dE
nc

od
in

gS
ty

le
 :

S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dS

O
A

P
B

in
dN

S
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tM

ap
pe

dS
O

A
P

B
in

dN
S

(
m

ap
pe

dS
O

A
P

B
in

dN
S

 :
S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dS
O

A
P

B
in

dO
ut

pu
tN

am
e(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tM

ap
pe

dS
O

A
P

B
in

dO
ut

pu
tN

am
e(

 m
ap

pe
dS

O
A

P
B

in
dO

ut
pu

tN
am

e
: S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dS
O

A
P

B
in

du
se

()
 :

S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
ap

pe
dS

O
A

P
B

in
du

se
(

m
ap

pe
dS

O
A

P
B

in
du

se
 :

S
tr

in
g

)
: v

oi
d

M
ap

p
ed

S
O

A
P

F
au

lt

−
m

ap
pe

dS
O

A
P

B
in

dF
au

ltN
am

e
: S

tr
in

g
=

 n
ul

l
−

m
ap

pe
dS

O
A

P
B

in
dE

nc
od

in
gS

ty
le

 :
S

tr
in

g
=

 n
ul

l
−

m
ap

pe
dS

O
A

P
B

in
dN

S
 :

S
tr

in
g

=
 n

ul
l

−
m

ap
pe

dS
O

A
P

B
in

du
se

 :
S

tr
in

g
=

 n
ul

l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pe
dS

O
A

P
F

au
lt(

)
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dS
O

A
P

B
in

dE
nc

od
in

gS
ty

le
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tM

ap
pe

dS
O

A
P

B
in

dE
nc

od
in

gS
ty

le
(

m
ap

pe
dS

O
A

P
B

in
dE

nc
od

in
gS

ty
le

 :
S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dS
O

A
P

B
in

dF
au

ltN
am

e(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
ap

pe
dS

O
A

P
B

in
dF

au
ltN

am
e(

 m
ap

pe
dS

O
A

P
B

in
dF

au
ltN

am
e

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dS

O
A

P
B

in
dN

S
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tM

ap
pe

dS
O

A
P

B
in

dN
S

(
m

ap
pe

dS
O

A
P

B
in

dN
S

 :
S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dS
O

A
P

B
in

du
se

()
 :

S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
ap

pe
dS

O
A

P
B

in
du

se
(

m
ap

pe
dS

O
A

P
B

in
du

se
 :

S
tr

in
g

)
: v

oi
d

M
ap

p
ed

S
O

A
P

In
p

u
t

−
m

ap
pe

dS
O

A
P

B
in

dI
np

ut
N

am
e

: S
tr

in
g

=
 n

ul
l

−
m

ap
pe

dS
O

A
P

B
in

dE
nc

od
in

gS
ty

le
 :

S
tr

in
g

=
 n

ul
l

−
m

ap
pe

dS
O

A
P

B
in

dN
S

 :
S

tr
in

g
=

 n
ul

l
−

m
ap

pe
dS

O
A

P
B

in
du

se
 :

S
tr

in
g

=
 n

ul
l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pe
dS

O
A

P
In

pu
t(

)
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dS
O

A
P

B
in

dE
nc

od
in

gS
ty

le
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tM

ap
pe

dS
O

A
P

B
in

dE
nc

od
in

gS
ty

le
(

m
ap

pe
dS

O
A

P
B

in
dE

nc
od

in
gS

ty
le

 :
S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dS
O

A
P

B
in

dI
np

ut
N

am
e(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tM

ap
pe

dS
O

A
P

B
in

dI
np

ut
N

am
e(

 m
ap

pe
dS

O
A

P
B

in
dI

np
ut

N
am

e
: S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dS
O

A
P

B
in

dN
S

()
 :

S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
ap

pe
dS

O
A

P
B

in
dN

S
(

m
ap

pe
dS

O
A

P
B

in
dN

S
 :

S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dS

O
A

P
B

in
du

se
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tM

ap
pe

dS
O

A
P

B
in

du
se

(
m

ap
pe

dS
O

A
P

B
in

du
se

 :
S

tr
in

g
)

: v
oi

d

W
S

D
L

S
tr

u
ct

u
re

A
ss

em
b

ly
E

xc
ep

ti
o

n

−
se

ria
lV

er
si

on
U

ID
 :

lo
ng

 =
 4

33
80

88
18

73
66

23
43

50
L{

re
ad

O
nl

y}

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LS

tr
uc

tu
re

A
ss

em
bl

yE
xc

ep
tio

n(
)

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LS

tr
uc

tu
re

A
ss

em
bl

yE
xc

ep
tio

n(
 m

es
sa

ge
 :

S
tr

in
g

)
<

<
co

ns
tr

uc
to

r>
>

+
W

S
D

LS
tr

uc
tu

re
A

ss
em

bl
yE

xc
ep

tio
n(

 c
au

se
 :

T
hr

ow
ab

le
)

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LS

tr
uc

tu
re

A
ss

em
bl

yE
xc

ep
tio

n(
 m

es
sa

ge
 :

S
tr

in
g,

 c
au

se
 :

T
hr

ow
ab

le
)

U
n

su
p

p
o

rt
ed

M
ap

p
in

g
R

u
le

E
xc

ep
ti

o
n

−
se

ria
lV

er
si

on
U

ID
 :

lo
ng

 =
 3

62
24

74
87

36
65

59
25

06
L{

re
ad

O
nl

y}

<
<

co
ns

tr
uc

to
r>

>
+

U
ns

up
po

rt
ed

M
ap

pi
ng

R
ul

eE
xc

ep
tio

n(
)

<
<

co
ns

tr
uc

to
r>

>
+

U
ns

up
po

rt
ed

M
ap

pi
ng

R
ul

eE
xc

ep
tio

n(
 m

es
sa

ge
 :

S
tr

in
g,

 c
au

se
 :

T
hr

ow
ab

le
)

<
<

co
ns

tr
uc

to
r>

>
+

U
ns

up
po

rt
ed

M
ap

pi
ng

R
ul

eE
xc

ep
tio

n(
 m

es
sa

ge
 :

S
tr

in
g

)
<

<
co

ns
tr

uc
to

r>
>

+
U

ns
up

po
rt

ed
M

ap
pi

ng
R

ul
eE

xc
ep

tio
n(

 c
au

se
 :

T
hr

ow
ab

le
)

M
ap

p
ed

R
es

p
o

n
se

M
es

sa
g

e

−
m

ap
pe

dR
es

pM
es

sa
ge

N
am

e
: S

tr
in

g
=

 n
ul

l
−

re
sp

on
se

M
es

sa
ge

P
ar

ts
Li

st
 :

A
rr

ay
Li

st
 =

 n
ul

l
−

re
sp

on
se

F
au

ltM
es

sa
ge

sL
is

t :
 A

rr
ay

Li
st

 =
 n

ul
l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pe
dR

es
po

ns
eM

es
sa

ge
()

−
so

rt
R

es
po

ns
eM

es
sa

ge
P

ar
ts

()
 :

vo
id

−
so

rt
F

au
ltM

es
sa

ge
P

ar
ts

()
 :

vo
id

+
ad

dR
es

po
ns

eM
es

sa
ge

P
ar

ts
(

rh
s

: M
ap

pe
dR

es
po

ns
eM

es
sa

ge
P

ar
ts

)
 :

vo
id

+
ad

dF
au

ltM
es

sa
ge

(
rh

s
: M

ap
pe

dF
au

ltM
es

sa
ge

)
 :

vo
id

+
ha

sR
es

po
ns

eM
es

sa
ge

P
ar

ts
()

 :
bo

ol
ea

n
+

ha
sF

au
ltM

es
sa

ge
s(

)
: b

oo
le

an
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dR
es

pM
es

sa
ge

N
am

e(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
ap

pe
dR

es
pM

es
sa

ge
N

am
e(

 m
ap

pe
dR

es
pM

es
sa

ge
N

am
e

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tR
es

po
ns

eF
au

ltM
es

sa
ge

sL
is

t(
)

: A
rr

ay
Li

st
<

<
se

tte
r>

>
#s

et
R

es
po

ns
eF

au
ltM

es
sa

ge
sL

is
t(

 r
es

po
ns

eF
au

ltM
es

sa
ge

sL
is

t :
 A

rr
ay

Li
st

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tR
es

po
ns

eM
es

sa
ge

P
ar

ts
Li

st
()

 :
A

rr
ay

Li
st

<
<

se
tte

r>
>

#s
et

R
es

po
ns

eM
es

sa
ge

P
ar

ts
Li

st
(

re
sp

on
se

M
es

sa
ge

P
ar

ts
Li

st
 :

A
rr

ay
Li

st
)

 :
vo

id

W
S

D
L

V
er

si
o

n
H

an
d

le
rI

m
p

l

−
in

st
an

ce
 :

W
S

D
LV

er
si

on
H

an
dl

er
Im

pl
 =

 n
ul

l

+
in

st
an

ce
()

 :
W

S
D

LV
er

si
on

H
an

dl
er

Im
pl

<
<

co
ns

tr
uc

to
r>

>
−

W
S

D
LV

er
si

on
H

an
dl

er
Im

pl
()

+
se

le
ct

W
S

D
LV

er
sD

ef
in

iti
on

(
ve

rs
io

n
: W

S
D

LV
er

si
on

)
 :

W
S

D
LS

tr
uc

tu
re

A
ss

em
bl

yA
lg

or
ith

m
s

M
ap

p
ed

B
in

d
in

g

−
m

ap
pe

dO
pe

ra
tio

nN
am

e
: S

tr
in

g
=

 n
ul

l
−

m
ap

pe
dS

O
A

P
O

pe
ra

tio
nA

ct
io

n
: S

tr
in

g
=

 n
ul

l
−

m
ap

pe
dS

O
A

P
In

pu
t :

 M
ap

pe
dS

O
A

P
In

pu
t =

 n
ul

l
−

m
ap

pe
dS

O
A

P
O

ut
pu

t :
 M

ap
pe

dS
O

A
P

O
ut

pu
t =

 n
ul

l
−

m
ap

pe
dS

O
A

P
F

au
lt

: M
ap

pe
dS

O
A

P
F

au
lt

=
 n

ul
l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pe
dB

in
di

ng
()

+
ha

sS
O

A
P

In
pu

t(
)

: b
oo

le
an

+
ha

sS
O

A
P

O
ut

pu
t(

)
: b

oo
le

an
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dO
pe

ra
tio

nN
am

e(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
ap

pe
dO

pe
ra

tio
nN

am
e(

 m
ap

pe
dO

pe
ra

tio
nN

am
e

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dS

O
A

P
In

pu
t(

)
: M

ap
pe

dS
O

A
P

In
pu

t
<

<
se

tte
r>

>
+

se
tM

ap
pe

dS
O

A
P

In
pu

t(
 m

ap
pe

dS
O

A
P

In
pu

t :
 M

ap
pe

dS
O

A
P

In
pu

t)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dS

O
A

P
O

pe
ra

tio
nA

ct
io

n(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
ap

pe
dS

O
A

P
O

pe
ra

tio
nA

ct
io

n(
 m

ap
pe

dS
O

A
P

O
pe

ra
tio

nA
ct

io
n

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dS

O
A

P
O

ut
pu

t(
)

: M
ap

pe
dS

O
A

P
O

ut
pu

t
<

<
se

tte
r>

>
+

se
tM

ap
pe

dS
O

A
P

O
ut

pu
t(

 m
ap

pe
dS

O
A

P
O

ut
pu

t :
 M

ap
pe

dS
O

A
P

O
ut

pu
t)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tM

ap
pe

dS
O

A
P

F
au

lt(
)

: M
ap

pe
dS

O
A

P
F

au
lt

<
<

se
tte

r>
>

+
se

tM
ap

pe
dS

O
A

P
F

au
lt(

 m
ap

pe
dS

O
A

P
F

au
lt

: M
ap

pe
dS

O
A

P
F

au
lt

)
: v

oi
d

W
S

D
L

C
o

n
fi

g
u

ra
ti

o
n

M
ap

p
in

g
R

u
le

sM
an

ag
er

E
xc

ep
ti

o
n

−
se

ria
lV

er
si

on
U

ID
 :

lo
ng

 =
 −

42
82

60
05

39
05

80
89

84
0L

{r
ea

dO
nl

y}

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LC

on
fig

ur
at

io
nM

ap
pi

ng
R

ul
es

M
an

ag
er

E
xc

ep
tio

n(
 m

es
sa

ge
 :

S
tr

in
g

)

U
n

kn
o

w
n

V
er

si
o

n
F

o
rS

tr
u

ct
u

re
A

ss
em

b
ly

E
xc

ep
ti

o
n

−
se

ria
lV

er
si

on
U

ID
 :

lo
ng

 =
 6

12
55

72
78

53
50

55
26

56
L{

re
ad

O
nl

y}

<
<

co
ns

tr
uc

to
r>

>
+

U
nk

no
w

nV
er

si
on

F
or

S
tr

uc
tu

re
A

ss
em

bl
yE

xc
ep

tio
n(

 m
es

sa
ge

 :
S

tr
in

g
)

M
ap

p
ed

R
eq

u
es

tM
es

sa
g

e

−
m

ap
pe

dR
eq

M
es

sa
ge

N
am

e
: S

tr
in

g
=

 n
ul

l
−

re
qu

es
tM

es
sa

ge
P

ar
ts

Li
st

 :
A

rr
ay

Li
st

 =
 n

ul
l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pe
dR

eq
ue

st
M

es
sa

ge
()

<
<

ge
tte

r>
>

+
ge

tM
ap

pe
dR

eq
M

es
sa

ge
N

am
e(

)
: S

tr
in

g
−

so
rt

R
eq

ue
st

M
es

sa
ge

P
ar

ts
()

 :
vo

id
<

<
se

tte
r>

>
+

se
tM

ap
pe

dR
eq

M
es

sa
ge

N
am

e(
 m

ap
pe

dR
eq

M
es

sa
ge

N
am

e
: S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tR

eq
ue

st
M

es
sa

ge
P

ar
ts

Li
st

()
 :

A
rr

ay
Li

st
<

<
se

tte
r>

>
+

se
tR

eq
ue

st
M

es
sa

ge
P

ar
ts

Li
st

(
re

qu
es

tM
es

sa
ge

P
ar

ts
Li

st
 :

A
rr

ay
Li

st
)

 :
vo

id
+

ad
dR

eq
ue

st
M

es
sa

ge
P

ar
ts

(
rh

s
: M

ap
pe

dR
eq

ue
st

M
es

sa
ge

P
ar

ts
)

 :
vo

id
+

ha
sR

eq
ue

st
M

es
sa

ge
P

ar
ts

()
 :

bo
ol

ea
n

W
S

D
L

S
er

ia
liz

er

−
ty

pe
s

: A
rr

ay
Li

st
 =

 n
ul

l
−

m
es

sa
ge

 :
A

rr
ay

Li
st

 =
 n

ul
l

−
po

rt
T

yp
e

: A
rr

ay
Li

st
 =

 n
ul

l
−

bi
nd

in
g

: A
rr

ay
Li

st
 =

 n
ul

l
−

se
rv

ic
e

: A
rr

ay
Li

st
 =

 n
ul

l
−

lo
gg

er
 :

Lo
gg

er
 =

 W
S

D
LG

en
er

at
or

Lo
gg

er
.in

st
an

ce
()

.g
et

Lo
gg

er
()

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LS

er
ia

liz
er

()
+

ge
ne

ra
te

W
S

D
L(

 d
oc

um
en

te
le

m
en

t :
 W

S
D

LE
le

m
en

t,
w

rit
er

 :
X

M
LS

tr
ea

m
W

rit
er

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tB
in

di
ng

()
 :

A
rr

ay
Li

st
<

<
se

tte
r>

>
−

se
tB

in
di

ng
(

bi
nd

in
g

: A
rr

ay
Li

st
)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tP

or
tT

yp
e(

)
: A

rr
ay

Li
st

<
<

se
tte

r>
>
−

se
tP

or
tT

yp
e(

 p
or

tT
yp

e
: A

rr
ay

Li
st

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tS
er

vi
ce

()
 :

A
rr

ay
Li

st
<

<
se

tte
r>

>
−

se
tS

er
vi

ce
(

se
rv

ic
e

: A
rr

ay
Li

st
)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tT

yp
es

()
 :

A
rr

ay
Li

st
<

<
se

tte
r>

>
−

se
tT

yp
es

(
ty

pe
s

: A
rr

ay
Li

st
)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tM

es
sa

ge
()

 :
A

rr
ay

Li
st

<
<

se
tte

r>
>
−

se
tM

es
sa

ge
(

m
es

sa
ge

 :
A

rr
ay

Li
st

)
 :

vo
id

−
tr

av
er

se
S

ub
E

le
m

en
t(

 r
hs

 :
W

S
D

LE
le

m
en

t,
w

rit
er

 :
X

M
LS

tr
ea

m
W

rit
er

)
 :

vo
id

−
tr

av
er

se
A

ttr
ib

ut
es

(
rh

s
: W

S
D

LA
ttr

ib
ut

e,
 w

rit
er

 :
X

M
LS

tr
ea

m
W

rit
er

)
 :

vo
id

U
n

su
p

p
o

rt
ed

S
tr

u
ct

u
re

A
ss

em
b

ly
E

xc
ep

ti
o

n

−
se

ria
lV

er
si

on
U

ID
 :

lo
ng

 =
 −

90
53

87
40

93
73

76
98

09
9L

{r
ea

dO
nl

y}

<
<

co
ns

tr
uc

to
r>

>
+

U
ns

up
po

rt
ed

S
tr

uc
tu

re
A

ss
em

bl
yE

xc
ep

tio
n(

 m
es

sa
ge

 :
S

tr
in

g
)

W
S

D
L

S
tr

u
ct

u
re

A
ss

em
b

ly
M

an
ag

er

−
in

st
an

ce
 :

W
S

D
LS

tr
uc

tu
re

A
ss

em
bl

yM
an

ag
er

 =
 n

ul
l

−
st

ra
te

gy
 :

W
S

D
LS

tr
uc

tu
re

A
ss

em
bl

yA
lg

or
ith

m
s

=
 n

ul
l

−
lo

gg
er

 :
Lo

gg
er

 =
 W

S
D

LG
en

er
at

or
Lo

gg
er

.in
st

an
ce

()
.g

et
Lo

gg
er

()

+
in

st
an

ce
()

 :
W

S
D

LS
tr

uc
tu

re
A

ss
em

bl
yM

an
ag

er
<

<
co

ns
tr

uc
to

r>
>
−

W
S

D
LS

tr
uc

tu
re

A
ss

em
bl

yM
an

ag
er

()
+

as
se

m
bl

e(
)

: W
S

D
LE

le
m

en
t

+
se

le
ct

V
er

si
on

(
w

sd
lv

er
si

on
 :

W
S

D
LV

er
si

on
)

 :
vo

id
<

<
ge

tte
r>

>
+

ge
tS

tr
at

eg
y(

)
: W

S
D

LS
tr

uc
tu

re
A

ss
em

bl
yA

lg
or

ith
m

s
<

<
se

tte
r>

>
−

se
tS

tr
at

eg
y(

 s
tr

at
eg

y
: W

S
D

LS
tr

uc
tu

re
A

ss
em

bl
yA

lg
or

ith
m

s
)

: v
oi

d
<

<
ge

tte
r>

>
−

ge
tV

er
si

on
F

ro
m

E
nv

iro
nm

en
t(

)
: W

S
D

LV
er

si
on

<
<

ge
tte

r>
>

#g
et

M
et

ho
dM

ap
pi

ng
R

ul
es

M
ap

()
 :

T
re

eM
ap

M
ap

p
in

g
R

u
le

M
et

h
o

d
E

xc
ep

ti
o

n
s

−
m

et
ho

dE
xc

ep
tio

nM
ap

 :
H

as
hM

ap
 =

 n
ul

l
−

m
et

ho
dE

xc
ep

tio
nT

yp
e

: S
tr

in
g

=
 n

ul
l

−
m

et
ho

dE
xc

ep
tio

nN
am

e
: S

tr
in

g
=

 n
ul

l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pi
ng

R
ul

eM
et

ho
dE

xc
ep

tio
ns

()
+

w
rit

eM
et

ho
dE

xc
ep

tio
nM

ap
(

na
m

e
: S

tr
in

g,
 ty

pe
 :

S
tr

in
g

)
: v

oi
d

+
ha

sE
xc

ep
tio

nN
am

eV
al

ue
()

 :
bo

ol
ea

n
+

ha
sE

xc
ep

tio
nT

yp
eV

al
ue

()
 :

bo
ol

ea
n

<
<

ge
tte

r>
>

+
is

E
m

pt
y(

)
: b

oo
le

an
<

<
ge

tte
r>

>
+

ge
tM

et
ho

dE
xc

ep
tio

nM
ap

()
 :

H
as

hM
ap

<
<

se
tte

r>
>

+
se

tM
et

ho
dE

xc
ep

tio
nM

ap
(

m
et

ho
dE

xc
ep

tio
nM

ap
 :

H
as

hM
ap

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tM
et

ho
dE

xc
ep

tio
nN

am
e(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tM

et
ho

dE
xc

ep
tio

nN
am

e(
 m

et
ho

dE
xc

ep
tio

nN
am

e
: S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tM

et
ho

dE
xc

ep
tio

nT
yp

e(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
et

ho
dE

xc
ep

tio
nT

yp
e(

 m
et

ho
dE

xc
ep

tio
nT

yp
e

: S
tr

in
g

)
: v

oi
d

M
ap

p
in

g
R

u
le

M
et

h
o

d
A

rg
u

m
en

ts

−
m

et
ho

dA
rg

um
en

tM
ap

 :
H

as
hM

ap
 =

 n
ul

l
−

m
et

ho
dA

rg
um

en
tT

yp
e

: S
tr

in
g

=
 n

ul
l

−
m

et
ho

dA
rg

um
en

tN
am

e
: S

tr
in

g
=

 n
ul

l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pi
ng

R
ul

eM
et

ho
dA

rg
um

en
ts

()
+

ha
sA

rg
N

am
eV

al
ue

()
 :

bo
ol

ea
n

+
ha

sA
rg

T
yp

eV
al

ue
()

 :
bo

ol
ea

n
+

w
rit

eM
et

ho
dA

rg
um

en
tM

ap
(

na
m

e
: S

tr
in

g,
 ty

pe
 :

S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
is

E
m

pt
y(

)
: b

oo
le

an
<

<
ge

tte
r>

>
+

ge
tM

et
ho

dA
rg

um
en

tM
ap

()
 :

H
as

hM
ap

<
<

se
tte

r>
>

+
se

tM
et

ho
dA

rg
um

en
tM

ap
(

m
et

ho
dA

rg
um

en
tM

ap
 :

H
as

hM
ap

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tM
et

ho
dA

rg
um

en
tN

am
e(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tM

et
ho

dA
rg

um
en

tN
am

e(
 m

et
ho

dA
rg

um
en

tN
am

e
: S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tM

et
ho

dA
rg

um
en

tT
yp

e(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tM
et

ho
dA

rg
um

en
tT

yp
e(

 m
et

ho
dA

rg
um

en
tT

yp
e

: S
tr

in
g

)
: v

oi
d

W
S

D
L

N
am

es
p

ac
eC

ap
ab

le

<
<

ge
tte

r>
>

+
ge

tN
am

es
pa

ce
P

re
fix

es
()

 :
H

as
ht

ab
le

<
<

ge
tte

r>
>

+
ge

tP
re

fix
(

na
m

es
pa

ce
U

R
I :

 S
tr

in
g

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tP

re
fix

(
pr

ef
ix

 :
S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tN

am
es

pa
ce

U
R

I(
 p

re
fix

 :
S

tr
in

g
)

: v
oi

d
<

<
se

tte
r>

>
+

se
tN

am
es

pa
ce

(
pr

ef
ix

 :
S

tr
in

g,
 n

am
es

pa
ce

U
R

I :
 S

tr
in

g
)

: v
oi

d
+

m
er

ge
(

sr
c

: W
S

D
LN

am
es

pa
ce

C
ap

ab
le

)
 :

vo
id

W
S

D
L

G
en

er
at

o
rL

o
g

g
er

−
in

st
an

ce
 :

W
S

D
LG

en
er

at
or

Lo
gg

er
 =

 n
ul

l
−

lo
gg

er
 :

Lo
gg

er
 =

 n
ul

l
−

lo
gg

er
Le

ve
l :

 L
ev

el
 =

 n
ul

l
−

lo
gg

er
na

m
e

: S
tr

in
g

=
 "

W
S

D
LG

en
er

at
or

Lo
gg

er
"{

re
ad

O
nl

y}

<
<

co
ns

tr
uc

to
r>

>
−

W
S

D
LG

en
er

at
or

Lo
gg

er
(

ar
g0

 :
S

tr
in

g
)

+
in

st
an

ce
()

 :
W

S
D

LG
en

er
at

or
Lo

gg
er

<
<

ge
tte

r>
>

+
ge

tL
og

ge
r(

)
: L

og
ge

r
<

<
se

tte
r>

>
−

se
tL

og
ge

r(
 lo

gg
er

 :
Lo

gg
er

)
 :

vo
id

<
<

ge
tte

r>
>

+
ge

tL
og

ge
rn

am
e(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tL

og
gi

ng
Le

ve
l(

co
nf

ig
ur

at
io

n
: C

on
fig

ur
at

io
nC

on
te

xt
)

 :
vo

id
<

<
se

tte
r>

>
−

se
tL

og
gi

ng
Le

ve
lP

riv
at

e(
 lo

gg
in

gl
ev

el
 :

S
tr

in
g

)
: v

oi
d

W
S

D
L

M
et

h
o

d
M

ap
p

in
g

−
m

ap
pi

ng
R

ul
es

M
ap

 :
T

re
eM

ap
 =

 n
ul

l
−

na
m

e
: S

tr
in

g
=

 n
ul

l

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LM

et
ho

dM
ap

pi
ng

()
<

<
ge

tte
r>

>
+

ge
tN

am
e(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tN

am
e(

 n
am

e
: S

tr
in

g
)

: v
oi

d
+

ad
dM

ap
pi

ng
R

ul
e(

 m
ap

pi
ng

R
ul

e
: M

ap
pi

ng
R

ul
e

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tM
ap

pi
ng

R
ul

es
M

ap
()

 :
T

re
eM

ap
<

<
se

tte
r>

>
+

se
tM

ap
pi

ng
R

ul
es

M
ap

(
m

ap
pi

ng
R

ul
es

M
ap

 :
T

re
eM

ap
)

 :
vo

id

W
S

D
L

M
et

h
o

d
M

ap
p

in
g

E
xc

ep
ti

o
n

−
se

ria
lV

er
si

on
U

ID
 :

lo
ng

 =
 −

67
85

17
04

13
37

15
99

22
9L

{r
ea

dO
nl

y}

<
<

co
ns

tr
uc

to
r>

>
+

W
S

D
LM

et
ho

dM
ap

pi
ng

E
xc

ep
tio

n(
 m

es
sa

ge
 :

S
tr

in
g

)

U
n

su
p

p
o

rt
ed

M
ap

p
in

g
E

xc
ep

ti
o

n

−
se

ria
lV

er
si

on
U

ID
 :

lo
ng

 =
 2

45
87

46
29

63
47

07
62

35
L{

re
ad

O
nl

y}

<
<

co
ns

tr
uc

to
r>

>
+

U
ns

up
po

rt
ed

M
ap

pi
ng

E
xc

ep
tio

n(
 m

es
sa

ge
 :

S
tr

in
g

)

<
<

Ja
va

E
nu

m
er

at
io

n>
>

W
S

D
L

M
ap

p
ed

A
tt

ri
b

u
te

P
ar

tn
er

<
<

Ja
va

E
nu

m
er

at
io

nL
ite

ra
l>

>
−

S
T

A
N

D
A

LO
N

E
<

<
Ja

va
E

nu
m

er
at

io
nL

ite
ra

l>
>
−

N
A

M
E

_X
M

LN
S

<
<

Ja
va

E
nu

m
er

at
io

nL
ite

ra
l>

>
−

N
A

M
E

_T
A

R
G

E
T

_N
S

<
<

Ja
va

E
nu

m
er

at
io

nL
ite

ra
l>

>
−

N
A

M
E

_T
A

R
G

E
T

_N
S

_X
M

LN
S

<
<

Ja
va

E
nu

m
er

at
io

nL
ite

ra
l>

>
−

N
A

M
E

_T
Y

P
E

<
<

Ja
va

E
nu

m
er

at
io

nL
ite

ra
l>

>
−

N
A

M
E

_E
LE

M
E

N
T

<
<

Ja
va

E
nu

m
er

at
io

nL
ite

ra
l>

>
−

N
A

M
E

_P
A

R
A

M
E

T
E

R
_O

R
D

E
R

<
<

Ja
va

E
nu

m
er

at
io

nL
ite

ra
l>

>
−

N
A

M
E

_M
E

S
S

A
G

E
<

<
Ja

va
E

nu
m

er
at

io
nL

ite
ra

l>
>
−

N
S

_S
C

H
E

M
A

LO
C

A
T

IO
N

<
<

Ja
va

E
nu

m
er

at
io

nL
ite

ra
l>

>
−

N
S

_L
O

C
A

T
IO

N
<

<
Ja

va
E

nu
m

er
at

io
nL

ite
ra

l>
>
−

S
T

Y
LE

_T
R

A
N

S
P

O
R

T
<

<
Ja

va
E

nu
m

er
at

io
nL

ite
ra

l>
>
−

S
O

A
P

_A
C

T
IO

N
<

<
Ja

va
E

nu
m

er
at

io
nL

ite
ra

l>
>
−

E
N

C
O

D
IN

G
S

T
Y

LE
_N

A
M

E
S

P
A

C
E

_U
S

E
<

<
Ja

va
E

nu
m

er
at

io
nL

ite
ra

l>
>
−

N
A

M
E

_U
S

E
<

<
Ja

va
E

nu
m

er
at

io
nL

ite
ra

l>
>
−

M
E

S
S

A
G

E
_U

S
E

<
<

Ja
va

E
nu

m
er

at
io

nL
ite

ra
l>

>
−

M
E

S
S

A
G

E
_P

A
R

T
_U

S
E

<
<

Ja
va

E
nu

m
er

at
io

nL
ite

ra
l>

>
−

N
A

M
E

_B
IN

D
IN

G

<
<

Ja
va

E
nu

m
er

at
io

n>
>

B
in

d
in

g
S

ty
le

<
<

Ja
va

E
nu

m
er

at
io

nL
ite

ra
l>

>
−

S
O

A
P

_B
IN

D
IN

G
_S

T
Y

LE
_R

P
C

<
<

Ja
va

E
nu

m
er

at
io

nL
ite

ra
l>

>
−

S
O

A
P

_B
IN

D
IN

G
_S

T
Y

LE
_D

O
C

U
M

E
N

T

M
ap

p
ed

R
es

p
o

n
se

M
es

sa
g

eP
ar

ts

−
pa

rt
N

am
e

: S
tr

in
g

=
 n

ul
l

−
pa

rt
T

yp
e

: S
tr

in
g

=
 n

ul
l

−
ns

pr
ef

ix
 :

S
tr

in
g

=
 n

ul
l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pe
dR

es
po

ns
eM

es
sa

ge
P

ar
ts

()
+

co
m

pa
re

T
o(

 r
hs

 :
M

ap
pe

dR
es

po
ns

eM
es

sa
ge

P
ar

ts
)

 :
in

t
<

<
ge

tte
r>

>
+

ge
tP

ar
tN

am
e(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tP

ar
tN

am
e(

 p
ar

tN
am

e
: S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tN

sp
re

fix
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tN

sp
re

fix
(

rh
s

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tP
ar

tT
yp

e(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tP
ar

tT
yp

e(
 p

ar
tT

yp
e

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
is

E
m

pt
y(

)
: b

oo
le

an
+

ha
sV

al
ue

s(
)

: b
oo

le
an

M
ap

p
ed

R
eq

u
es

tM
es

sa
g

eP
ar

ts

−
pa

rt
N

am
e

: S
tr

in
g

=
 n

ul
l

−
pa

rt
T

yp
e

: S
tr

in
g

=
 n

ul
l

−
ns

pr
ef

ix
 :

S
tr

in
g

=
 n

ul
l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pe
dR

eq
ue

st
M

es
sa

ge
P

ar
ts

()
+

co
m

pa
re

T
o(

 r
hs

 :
M

ap
pe

dR
eq

ue
st

M
es

sa
ge

P
ar

ts
)

 :
in

t
<

<
ge

tte
r>

>
+

ge
tP

ar
tN

am
e(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tP

ar
tN

am
e(

 p
ar

tN
am

e
: S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tN

sp
re

fix
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tN

sp
re

fix
(

rh
s

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tP
ar

tT
yp

e(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tP
ar

tT
yp

e(
 p

ar
tT

yp
e

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
is

E
m

pt
y(

)
: b

oo
le

an
+

ha
sV

al
ue

s(
)

: b
oo

le
an

W
S

D
L

S
tr

u
ct

u
re

A
ss

em
b

ly
C

o
n

te
xt

+
se

le
ct

V
er

si
on

(
w

sd
lv

er
si

on
 :

W
S

D
LV

er
si

on
)

 :
vo

id
+

as
se

m
bl

e(
)

: W
S

D
LE

le
m

en
t

M
ap

p
ed

F
au

lt
M

es
sa

g
e

−
fa

ul
tN

am
e

: S
tr

in
g

=
 n

ul
l

−
fa

ul
tT

yp
e

: S
tr

in
g

=
 n

ul
l

−
ns

pr
ef

ix
 :

S
tr

in
g

=
 n

ul
l

<
<

co
ns

tr
uc

to
r>

>
+

M
ap

pe
dF

au
ltM

es
sa

ge
()

+
co

m
pa

re
T

o(
 r

hs
 :

M
ap

pe
dF

au
ltM

es
sa

ge
)

 :
in

t
<

<
ge

tte
r>

>
+

ge
tF

au
ltN

am
e(

)
: S

tr
in

g
<

<
se

tte
r>

>
+

se
tF

au
ltN

am
e(

 fa
ul

tN
am

e
: S

tr
in

g
)

: v
oi

d
<

<
ge

tte
r>

>
+

ge
tN

sp
re

fix
()

 :
S

tr
in

g
<

<
se

tte
r>

>
+

se
tN

sp
re

fix
(

rh
s

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
ge

tF
au

ltT
yp

e(
)

: S
tr

in
g

<
<

se
tte

r>
>

+
se

tF
au

ltT
yp

e(
 fa

ul
tT

yp
e

: S
tr

in
g

)
: v

oi
d

<
<

ge
tte

r>
>

+
is

E
m

pt
y(

)
: b

oo
le

an
+

ha
sV

al
ue

s(
)

: b
oo

le
an

<
<

Ja
va

E
nu

m
er

at
io

n>
>

W
S

D
L

V
er

si
o

n

<
<

Ja
va

E
nu

m
er

at
io

nL
ite

ra
l>

>
−

W
S

D
L_

V
E

R
S

IO
N

_1
_1

<
<

Ja
va

E
nu

m
er

at
io

nL
ite

ra
l>

>
−

W
S

D
L_

V
E

R
S

IO
N

_1
_2

F
ig

u
re

F
.3

:
W

SD
L

ge
ne

ra
to

r
cl

as
se

s
P
ar

t2

Bibliography

[AM02] Naresh Apte and Toral Mehta. UDDI: building registry-based web
services solutions. Prentice Hall PTR Inc., One Lake Street Upper
Saddle River, NJ 07458, USA, 1st edition, December 2002.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Som-
merlad, and Michael Stal. Pattern-oriented software architecture:
a system of patterns. Wiley Publishing Inc., 10475 Crosspoint
Blvd. Indianapolis, IN 46256, USA, 1st edition, Feb 1996.

[BN97] Philip Bernstein and Eric Newcomer. Principles of transaction
processing. Morgan Kaufmann Publishers, an imprint of Elsevier
Science, 340 Pine Street, 6th floor, San Francisco, CA 94104-3205,
USA, 1st edition, Feb 1997.

[Bos03] Sebastian Bossung. Semi-automatic discovery of mapping rules to
match xml schemas. Studienarbeit, The University of Auckland,
November 2003.

[Bos04] Sebastian Bossung. Generating schema information for views over
semistructured data. Diplomarbeit, TU Hamburg-Harburg, July
2004.

[BSHS06] Sebastian Bossung, Hans-Werner Sehring, Patrick Hupe, and
Joachim W. Schmidt. Open and dynamic schema evolution in
content-intensive web applications. In Jose Cordeiro, Vitor Pe-
drosa, Bruno Encarnacao, and Joaquim Filipe, editors, Proceed-
ings of the Second International Conference on Web Information
Systems and Technologies, pages 109–116. INSTICC, INSTICC
Press, April 2006.

[Cas55] Ernst Cassirer. Philosophy of Symbolic Forms. Yale University
Press, Yale USA, 1st edition, 1955.

[Cas01] Ernst Cassirer. The language, philosophy of symbolic forms. Felix
Meiner Verlag GmbH, 2001.

[Con00] World Wide Web Consortium. Soap messages with attachments,
2000. http://www.w3.org/TR/SOAP-attachments.

[Con01] World Wide Web Consortium. Web services description language
(wsdl) 1.1, March 2001. http://www.w3.org/TR/wsdl.

[Con02] World Wide Web Consortium. Web services activity, 2002.
http://www.w3.org/2002/ws/Activity.

[Con03a] World Wide Web Consortium. Soap 1.2 adjuncts, 2003.
http://www.w3.org/TR/soap12-part2/.

114 BIBLIOGRAPHY

[Con03b] World Wide Web Consortium. Soap 1.2 messaging framework,
2003. http://www.w3.org/TR/soap12-part1/.

[Con03c] World Wide Web Consortium. Soap 1.2 primer, 2003.
http://www.w3.org/TR/soap12-part0/.

[Con04a] World Wide Web Consortium. The xml schema language part0
primer, October 2004. http://www.w3.org/TR/xmlschema-0/.

[Con04b] World Wide Web Consortium. The xml schema language part0 to
2, October 2004. Primer: (http://www.w3.org/TR/xmlschema-
0/), Structures: (http://www.w3.org/TR/xmlschema-1/),
Datatypes: (http://www.w3.org/TR/xmlschema-2/).

[Con05] World Wide Web Consortium. Web services addressing
(ws-addressing), 2005. http://www.w3.org/Submission/ws-
addressing/.

[Con06a] World Wide Web Consortium. Web services descrip-
tion language (wsdl) 2.0 part0 primer, March 2006.
http://www.w3.org/TR/wsdl20-primer/.

[Con06b] World Wide Web Consortium. Web services descrip-
tion language (wsdl) 2.0 part1 core language, March 2006.
http://www.w3.org/TR/wsdl20/.

[Con06c] World Wide Web Consortium. Web services descrip-
tion language (wsdl) 2.0 part2 adjuncts, March 2006.
http://www.w3.org/TR/wsdl20-adjuncts/.

[Con06d] World Wide Web Consortium. Web services policy 1.2 framework
(ws-policy), 2006. http://www.w3.org/Submission/WS-Policy/.

[dev04] IBM developerWorks. International business machine corpora-
tion developerworks – web services security, 2004. http://www-
128.ibm.com/developerworks/library/specification/ws-secure/.

[dev05a] IBM developerWorks. International business ma-
chine corporation developerworks – business pro-
cess execution language for web services 1.1, 2005.
ftp://www6.software.ibm.com/software/developer/library/ws-
bpel.pdf.

[dev05b] IBM developerWorks. International business ma-
chine corporation developerworks – web ser-
vices atomic transaction specification, 2005.
ftp://www6.software.ibm.com/software/developer/library/WS-
AtomicTransaction.pdf.

[dev05c] IBM developerWorks. International business ma-
chine corporation developerworks – web ser-
vices business activity specification, 2005.
ftp://www6.software.ibm.com/software/developer/library/WS-
BusinessActivity.pdf.

[dev05d] IBM developerWorks. International business machine corporation
developerworks – web services coordination specification, 2005.
ftp://www6.software.ibm.com/software/developer/library/WS-
Coordination.pdf.

BIBLIOGRAPHY 115

[dev05e] IBM developerWorks. International business ma-
chine corporation developerworks – web ser-
vices reliable messaging, 2005. http://www-
128.ibm.com/developerworks/library/specification/ws-rm/.

[dev05f] IBM developerWorks. International business ma-
chine corporation developerworks – web ser-
vices reliable messaging specification, 2005.
ftp://www6.software.ibm.com/software/developer/library/ws-
reliablemessaging200502.pdf.

[dev06] IBM developerWorks. International business machine corpora-
tion developerworks – web services definition, 2006. http://www-
128.ibm.com/developerworks/webservices/newto/websvc.html.

[Erl04] Thomas Erl. service-oriented architecture: a field guide to inte-
grating xml and web services. Prentice Hall PTR Inc., Pearson
Education Inc. Upper Saddle River, NJ 07458, USA, 1st edition,
April 2004.

[Fou06] Apache Software Foundation. Apache axis, 2006.
http://ws.apache.org/axis/java/index.html.

[ftAoSISO02] Organization for the Advancement of Structured Infor-
mation Standards (OASIS). Uddi technical specifica-
tions, 2002. http://www.oasis-open.org/committees/uddi-
spec/doc/tcspecs.htm.

[ftAoSISO04] Organization for the Advancement of Structured In-
formation Standards (OASIS). Web services se-
curity (ws-security), 2004. http://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf.

[ftAoSISO06a] Organization for the Advancement of Structured Information
Standards (OASIS). Universal description discovery and integra-
tion oasis, 2006. http://uddi.org/.

[ftAoSISO06b] Organization for the Advancement of Structured Informa-
tion Standards (OASIS). Web services trust 1.3 (ws-trust),
2006. http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-
trust-1.3-spec-cd-01.pdf.

[ftAoSISOwssw06] Organization for the Advancement of Structured Informa-
tion Standards (OASIS) web services security (wss). Ws-
security core specification 1.1, 2006. http://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf.

[GD02] Brian Gibb and Suresh Damodaran. ebXML: concepts and applica-
tion. Wiley Publishing Inc., 10475 Crosspoint Blvd. Indianapolis,
IN 46256, USA, 1st edition, October 2002.

[GDS04] Steve Graham, Doug Davis, and Simeon Simeonov. Building web
services with java: making sense of xml, soap, wsdl, and uddi.
Sams Publishing, 201 West 103rd Street, Indianapolis, IN 46290,
USA, 2nd edition, June 2004.

116 BIBLIOGRAPHY

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: elements of reusable object-oriented software.
Addison Wesley, Pearson Educations Inc., Pearson Education, Inc.
One Lake Street Upper Saddle River, NJ 07458, USA, 1st edition,
June 1994. Addison Wesley Professional Computer Series.

[Gri98] Frank Griffel. Componentware: Konzept und Techniken eines
Softwareparadigmas. dpunkt Verlag, Heidelberg, Germany, 1st
edition, 1998.

[HWB04] Gregor Hohpe, Bobby Woolf, and Kyle Brown. Enterprise In-
tegration Patterns: designing, building and deploying messaging
solutions. Addison Wesley, Pearson Educations Inc., Pearson Edu-
cation, Inc. One Lake Street Upper Saddle River, NJ 07458, USA,
1st edition, June 2004. Addison Wesley Signature Series.

[jcp06] The java community process. Jcp jax-rpc, 2006. https://jax-
rpc.dev.java.net/.

[KWW01] Alan Kotok, David Webber, and David R. Webber. ebXML: the
new global standard for doing business on the internet. Sams Pub-
lishing, 201 West 103rd Street, Indianapolis, IN 46290, USA, 1st
edition, August 2001.

[Lar98] Craig Larman. Applying UML and patterns: an introduction to
object-oriented analysis and design. Prentice Hall PTR Inc., Pear-
son Education Inc. Upper Saddle River, NJ 07458, USA, 2st edi-
tion, April 1998.

[Mah04] Qusay H. Mahmoud. Developing web services
with java 2 enterprise edition platform, 2004.
http://java.sun.com/developer/technicalArticles/J2EE/j2eews/.

[Mic06] Sun Microsystems. java api for xml-based rpc, 2006.
http://java.sun.com/webservices/jaxrpc/.

[MTSM03] James McGovern, Sameer Tyagi, Michael Stevens, and Sunil
Matthew. Java web services architecture. Morgan Kaufmann Pub-
lishers, an imprint of Elsevier Science, 340 Pine Street, 6th floor,
San Francisco, CA 94104-3205, USA, 1st edition, Jan 2003.

[MW06] Thomas Mattern and Dan Woods. Enterprise SOA: designing IT
for business innovation. O’Reilly Media Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472, USA, 1st edition, 2006.

[Nl04] Eric Newcomer and Greg lomow. Understanding SOA with web
services. Addison Wesley, Pearson Education, Inc., Pearson Edu-
cation, Inc. One Lake Street Upper Saddle River, NJ 07458, USA,
1st edition, 2004.

[omg98] OMG The object management group. Corba iiop specification,
1998. http://www.omg.org/technology/documents/formal/.

[SBMS04] Inderjeet Singh, Sean Brydon, Greg Murray, and Beth Stearns.
Designing web services with the J2EE 1.4 Platform. Addison Wes-
ley, Pearson Educations Inc., Pearson Education, Inc. One Lake
Street Upper Saddle River, NJ 07458, USA, 1st edition, June 2004.

BIBLIOGRAPHY 117

[Seh04] Hans-Werner Sehring. Konzeptorientierte Inhaltsverwaltung Mod-
ell Systemarchitektur und Prototypen Hamburg University of Tech-
nology. PhD thesis, University of Technology Hamburg, STS Insti-
tute for Software Systems, Harburger Schlossstr. 20, 21073 Ham-
burg, February 2004. dissertation.de - Verlag im Internet GmbH.

[SG96] Mary Shaw and David Garlan. Software architecture, perspective
on an emerging discipline. Prentice-Hall Inc., Upper Saddle River,
New Jersey, USA, 1st edition, 1996.

[SM06] Inc. Sun Microsystems. Java rmi tutorial, 1995-2006.
http://java.sun.com/docs/books/tutorial/rmi/index.html.

[SS03] Joachim W. Schmidt and Hans-Werner Sehring. Conceptual con-
tent modeling and management the rationale of an asset language.
In Manfred Broy and Alexandre V. Zamulin, editors, volume 2890
of Lecture Notes in Computer Science, page 469. Springer Verlag,
2003. Proceedings Perspectives of Systems Informatics Novosi-
birsk, Akademgorodok, Russia, July 9-12.

[Ton06] Kent Tong. Developing web services with Apache AXIS. LuLu
Press, P.O. Box 2344, Napa, CA 94558, USA, 1st edition, April
2006.

[Wal02] Aaron E. Walsh. ebXML: the technical specifications. Prentice
Hall PTR Inc., One Lake Street Upper Saddle River, NJ 07458,
USA, 1st edition, January 2002.

	Introduction
	Motivation
	Communication beyond Content Management Systems
	Rationale for Web Services Adoption

	Server Module Design Objectives
	General Web Services Provision
	Server Modules as Web Services Endpoints

	Structure of the Thesis

	Concept-oriented Content Management
	Concept-oriented Content Management Systems --- CCMSs
	Assets --- the Building Blocks of CCMSs
	Definition of Assets
	Manipulation of Asset Instances
	Querying Asset Instances

	The CCMS Compiler Framework
	Overview of the Asset Language Compiler
	Compiler Frontend
	Compiler Backend
	Dynamic System Creation

	CCMS Component Architecture
	Overview of the CCMS Component Architecture
	Component Implementation of CCMSs
	Modularization
	Configurability of Modules
	Epilogue on Web Services Server Module

	Web Services
	Fundamentals of Web Services
	Defining Web Services
	Benefits of Web Services
	Development and Challenges
	Web Services Protocol

	Web Services Server Module Endpoint Requirements
	Generation of Web Services Description
	Functional Requirements of a Server Module
	Functional Requirements of Web Technologies
	Non-functional Requirements

	Web Services Technologies Survey
	Java based Web Services Technologies

	WSDL Generator and Web Services Modules Design
	Web Services Interface Description --- WSDL
	Mapping the Module Interface to WSDL
	Modeling Generic Asset Types with XML Schema
	Generation of XML Schema Definitions

	WSDL Generator
	Design Overview
	Generator Software Architecture
	Internal Design

	Web Services Endpoint Design
	Architectural Overview
	The AXIS Framework
	Web Services Endpoint Design Approaches
	HTTP Server and Embedded Web Container

	Implementation of the WSDL Generator and Web Services Module
	WSDL Generator
	Generator Classes
	Methods Implementations
	Configuration of the WSDL Generator

	AXIS Framework Integration
	Setup and Configuration
	Generation of Service Implementations from WSDL
	Service Deployment in J2EE Servlet Container

	Server Module
	Server Module Configuration
	Configuration of Embedded Servlet Container --- Jetty
	Module Initialization and Modification

	Summary and Outlook
	Conclusion and Assessments
	Outlook

	XML Schema of Generic Types
	XML Schema Generator Configurations
	WSDL Generator Configuration
	WSDL Document of Server Module
	Code Excerpt
	Class Diagrams

