

Prototypes for Solving Consistency Problems
in Model Engineering

Master Thesis

Submitted by:

Meng Xue

Informatik-Ingenieurwesen

Matriculation Number: 17263

Supervised by:

Prof. Dr. Ralf Möller (STS)
Prof. Dr. Rolf-Rainer Grigat (TI1)

M.Sc. Miguel Garcia (STS)

Hamburg, Germany
7th January 2006

 2

Declaration

Hereby I declare that this work has been prepared by me, all literally or content-related
quotations from other sources are clearly pointed out, and no other sources or aids than the
ones that are declared are used.

Meng Xue

Hamburg, Germany
7th Jan. 2006

 3

Acknowledgement

I would like to thank Prof. Dr. Ralf Möller and Prof. Dr. Rolf-Rainer Grigat for giving me the
opportunity to work on this thesis project under their supervision.

I would also like to thank M. Sc. Miguel Garcia, who was very helpful in providing advice
and direction on this thesis.

This project could not have been as fruitful as it was, without the support, interest and inputs
from individuals and their willingness to share their experience and knowledge, and the time
given to discuss related topics.

 4

Table of contents

Abstract ·· 5

Chapter 1 Overview ··· 6

Chapter 2 Case Study··· 7
2.1 Using ATL for Checking Models ··· 7
2.2 Summary ··· 10

Chapter 3 Introduction to ILOG Business Rules ·· 11
3.1 The Challenge and Solution ··· 11
3.2 ILOG Business Rule Studio Overview ··· 12
3.3 Main Features of ILOG Business Rule Studio··· 13
3.4 Concepts·· 13
3.5 Summary ··· 17

Chapter 4 Prototype Based on Business Rules··· 18
4.1 Advantages of Applying Business Rules··· 18
4.2 Transformation from OCL invariants to Business Rules·· 19

4.2.1 ILOG Rule Language Structure··· 19
4.2.2 Octopus Java Code Generation ··· 21
4.2.3 Mapping from OCL to IRL ··· 24
4.2.4 Changes Made to Octopus ·· 29

4.3 Runtime Execution ·· 32
4.4 Summary ··· 35

Chapter 5 Prototype Based on AOP and Back Navigation Algorithm ·· 36
5.1 General AOP Approach ··· 36
5.2 AOP and Back Navigation Approach ··· 40

5.2.1 The noAccounts Invariant Example ·· 40
5.2.2 General Octopus Generated Non Side-effect-free Method Pattern·· 42
5.2.3 Pointcut for Association Class ·· 44
5.2.4 Pointcut and Advice for allInstances ··· 48
5.2.5 Back Navigation Algorithm ·· 50
5.2.6 Drawback of allInstances and Weak Reference ··· 56
5.2.7 Other Issues·· 58
5.2.8 Consistency Verification Infrastructure ··· 59
5.2.9 AspectJ Code Templates··· 59
5.2.10 Code Generation Process ·· 61
5.2.11 Implementation··· 61

5.3 Summary ··· 63

Chapter 6 Conclusions ··· 64

Appendix A ·· 65

Appendix B ·· 66

References ·· 69

 5

Abstract

Today, the analysis and design of software systems rely heavily on modeling. In model
engineering, a number of models are produced during the software development process and
MDA in particular. These models are usually expressed in UML and should be related in
different way to each other. One of the most important relationships between them is that
they should remain consistent during the life time. In object oriented world, the Object
Constraint Language (OCL) is introduced to define constraints on UML models, namely, a
means to define consistent models. The maintenance and verification of consistency should
also be performed efficiently at runtime. Prototypes for such consistency verification
infrastructure are to be designed and implemented. Putting these questions into the
discussion and trying to find answers are the main topics to be addressed in this master thesis.

 6

Chapter 1

Overview

Nowadays, object oriented modeling is mature enough and applied widely to provide a
normalized way of designing software systems. In this engineering process, models can be
viewed as an abstraction of artifacts and are expressed by using a suitable modeling language.
However, this is usually not enough in practice. Additional consistency rules need be
specified. For instance, imagine that we are designing a human resource management
system for a company and have defined a new class named Employee with the attribute age of
type integer. Any employee with negative age should be considered as an invalid entity.
Actually the attribute age should be constrained to stay inside some range. If the system still
accepts employees with invalid age, the consistency is broken. So besides by applying
modeling language to define the models, one needs other approaches to specify the
consistency rules of the whole system. In this way, the model is said to be consistent.

Here one can formulate the precise definition of consistent model. A model is said to be
consistent when it conforms to the semantics of all the domains involved in the development
process. Normally the consistency rules can be expressed in form of constraints enforced on
models. In response to this requirement, the OMG (Object Management Group) specified
OCL to define constraints on models.

However, the maintenance of consistency always becomes more and more uncontrollable as
the system grows and expands. At runtime, an update may break predefined constraints
and introduce inconsistency. In this case, we prefer to get informed about the situation and
take proper actions to handle it. Manual consistency management is not applicable.
Because it is error-prone in such a complicated engineering process. So prototypes for
reliable consistency management system are expected.

 7

Chapter 2

Case Study

In this chapter, we will go through a case study which also deals with model consistency
problems. It is a good beginning to start from here. Because by learning the case study, we
can gain some inspirations and a few useful tips to implement our own infrastructures.

2.1 Using ATL for Checking Models

This project deals with model consistency problems based on extending the standard object
constraint language (OCL) and ATLAS transformation language (ATL) [3]. The end
solution has been implemented as an Eclipse based plug-in.

Currently, some tools are available to check OCL invariants on UML models. However,
there are very few tools able to do the same for any metamodel. This is quite inconvenient
for the DSL (Domain Specific Language) approach to model engineering. The DSL
approach promotes the definition of a large number of small domain-specific metamodels,
rather than using a single and large metamodel. At the present time, few DSL tools are able
to evaluate constraints on models. The objective of this project is to show how existing
model transformation tools, such as ATL, can be used for this purpose.

A very simple DSL called CD for Class Diagrams is used as a motivating example. A
metamodel of CD is given in figure 2.1. CD can be considered as a simplified subset of
UML. Every element of a class diagram has a name. Classes can have supertypes and
StructuralFeatures, which are References to other Classes or Attributes.
StructuralFeatures have a multiplicity and are typed by a Class or a DataType. Packages
are used to structure diagrams by grouping related elements.

 8

Figure 2.1 Simple Class Diagram Metamodel

The definition of the metamodel is however not complete. One can create models
conforming to CD that are still not valid class diagrams. Additionally, constraints should
be defined to complete the specification. To simplify the complete definition, just two
constraints (C1) and (C2) are added.

(C1) Classifier names must be unique within a Package
(C2) The name of a Classifier should begin with an upper case letter

In order to be automatically verified, constraints must be written in an executable language.
The well-known OCL solution is used here. Invariants must be verified at all times so that a
model is supposed to be in a consistent state. An invariant is defined in the context of a
metamodel type. It is composed of a Boolean expression, which must evaluate to true for
every element of this type. It is however not always easy to understand the issue with the
Boolean expression associated to the invariant. Sometimes it is even useful to specify
constraints that should not be violated. When such constraints are not verified, the
consistency of the model is not provably wrong. For example, if (C2) is violated, in this
case, it should not be considered as an error and does not impact the structure of the
metamodel at all. One can treat it just as a style convention. On the other hand, it is critical
if (C1) is broken. This is quite similar to the way that compilers traditionally tag messages
as error or warning. An error is fatal while a warning indicates a potential problem. The
term “severity” is used here to indicate the failure degree of the problem.

So far, the violation of an invariant can only be associated to the constraint itself, its severity
and the violating model element. In order to better inform the user, “description” is used to
state the problem in a human understandable manner. At the end, “location” is also reported
which states the location of the problem in a computer readable format.

Generally speaking, people name the result of verification as a “diagnostic”. The simplest
form of diagnostic is a Boolean. The true value means the model satisfies all the constraints
whereas false means the model fails to satisfy all of them. If the diagnostic is represented as
an integer, it can be used to encode the failure degree. The above mentioned extension is
also a form of diagnostic. Since the diagnostic is a model, any transformation can be
performed on it. Within an IDE, the diagnostic model can be mapped to the native
representation (e.g. IMarkers in Eclipse). The problems then show up at the corresponding

 9

location in the editor and in the "Problems" view, as shown in figure 2.2.

ATL is a QVT-like (Query/View/Transformation) model transformation language. An
execution engine for ATL is available as an open-source Eclipse plug-in. The ATL engine
can be used to verify constraints. The algorithm to create a checking program from a set of
constraints is the following: for each constraint, create an ATL transformation rule so that:

l The source pattern type of the rule is the context of the constraint.
l The guard of the rule contains the negation of the Boolean expression associated to the

constraint.
l The target pattern of the rule specifies a single type: Problem, which is to be created on a

match (i.e. on a violation of the invariant).
l It will be initialized using three bindings for: the severity of the invariant, a description of

the issue and its location. Since the target element is initialized from OCL expressions
navigating the source model, the implementation of a description as a constructed string
is straightforward.

They implemented the verification of a slightly larger set of constraints on CD models in an
Eclipse plug-in using the Eclipse Modeling Framework. They chose to represent class
diagrams textually, using a simple syntax. In this case, the location of a Problem is therefore
composed of a line and a column number. Figure 2.2 shows what is actually presented to the
user when a class diagram contains problems.

Figure 2.2 Screenshot of the Eclipse Prototype [Jouault05]

The source of an ATL transformation implementing this solution for (C1) is shown in figure
2.3.

 10

Figure 2.3 ATL Transformation of (C1) with OCL Extensions [Jouault05]

2.2 Summary

In this chapter we have reviewed a case study which improves the constraint checking in
model engineering. In this approach, constraints are associated to additional information.
This can be, for instance, severity, description and location. The diagnostic resulting from
the verification of constraints is considered as a model, which can then be transformed into
any representation. The ATL language can be used to express constraints on models and the
ATL engine performs the verification in a batch-manner, i.e. not immediately upon an update
is performed, but once the checks are run one after the other. Mechanisms to improve the
efficiency of constraint checking are necessary.

 11

Chapter 3

Introduction to ILOG Business Rules

Before we start to discuss our prototype, ILOG Business Rules [4] is first introduced, which is
a key component used in our first consistency verification infrastructure. Generally speaking,
business rules are precise statements, which describe the enterprise operations, constraints or
definitions applied to business issues. These rules help the companies achieve better goals,
operate more efficiently and facility the communication between different parties. It is also
the same case when business rules are applied to information technology field. A typical
product in this field is ILOG Business Rules, which allows business rules to be quickly
changed and redeployed without changing the application code, thus reducing maintenance
costs and extending the life of business applications.

3.1 The Challenge and Solution

Nowadays, more and more enterprise applications are developed with the increase in
complexity and the pace of updating different aspects during the implementation time. By
applying the traditional software architectures and mixing different aspects in the same code,
one is not able to handle the complex and voluminous process as the system grows and
expands. It is also difficult to map enterprise requirements to the implementation and then
trace the implementation back to requirements. The ability to respond quickly to changing
requirements and environmental conditions is rapidly becoming the key to solving this issue.

Besides that, forward-thinking IT architects consider present and as well as potential future
requirements. Failing to take into account the potential future requirements may eventually
lead to changing many parts of the system. On the other hand, over design results in a
difficult-to-control, bloated system. In order to satisfy requirements in business domain,
some architects make the business logic an integral part of the application code. The long
term impact of developing your application in this way is that changing the business logic
becomes impossible without having to redevelop large parts of the application logic. So the
architects encourage their companies to realize the value of managing business rules as assets
separate from data and code.

A new methodology is specifically targeted the management of this issue, by applying
business rules. A business rule is a precise statement that describes, constrains, or controls

 12

some aspect of your business process. The strategic importance of business rules is to
implement a company's objectives and accomplish the company's vision and goals. With
business rules, one is able to distinguish the business logic from the application logic. In
addition one adds agility and flexibility to the business application by allowing the business
logic to be changed dynamically with very little overhead. Companies who have adopted
business rule management need an enterprise-class Business Rule Management System
(BRMS) to make the running of their business more practical.

3.2 ILOG Business Rule Studio Overview

We want to focus on learning business rule technology, instead of another development
environment. With ILOG Business Rule Studio and ILOG JRules (J stands for Java here),
one uses the familiar Eclipse IDE to embed rules into equally familiar Java/J2EE applications.
ILOG Business Rule Studio is the first business rule authoring, testing and debugging
environment for Eclipse. It enables the development of applications that evolve with
changing business requirements. Powerful reasoning engines execute these business rules in
real time to develop the best possible operating decisions, either as operator recommendations
or as automated actions.

Figure 3.1 Scenario of Using the Business Rule System [4]

A typical scenario of using ILOG Business Rule Studio and the JRules rule engine is the
following:

• The JRules rule engine executes business rules which implement the business logic. It
handles application data through the application logic.

 13

• The application logic is not aware of the business logic. It presents the business data to
the users and calls the rule engine when the business logic is applied.

• The developer uses Business Rule Studio to edit, debug and test business rules. When
new rules are ready, they can be deployed in the JRules rule engine to change the
business logic on the fly.

3.3 Main Features of ILOG Business Rule Studio

ILOG Business Rule Studio offers a rich, developer-centric environment to author, test and
deploy business rules. The developer can write and debug Java code and business rules from
the same environment without interfering with each other. The Business Rule Studio is
integrated with any Eclipse-based IDE including IBM's WebSphere Studio Application
Developer.

With Business Rule Studio's embedded rule engine, one can test and debug rules locally
without deploying them to an external rule engine. Business Rule Studio provides a new
Eclipse project type called rule project. It stores resources like rules, packages and ruleflows.
Two perspectives support rule editing and debugging (similar to Eclipse Java editing and
debugging). Text editor is used for rule authoring. The Business Rule Studio text editor
includes all the features of Eclipse's Java code editors. It supports basic editing capabilities.
Advanced capabilities include code completion, syntax checking, auto-indentation and
syntax-coloring. Source code control integration like the most popular CVS is also provided
to facility the working process. Last but not the least, the engine API integrates and controls
the business rule engine using an extensive and comprehensive Java library, which is also
delivered.

3.4 Concepts

Rule Engine

The basic functionality of the rule engine can be described as follows; it:

• can read its rules dynamically (at runtime)
• reasons on objects it knows
• can keep track of changes to the objects it knows
• can invoke the firing of rules

The rule engine is service oriented, meaning that it responds to explicit invocations. The
rule engine enables business behavior to be managed separately from the core, code-based
architecture of an application, which also means that it can evolve more rapidly than the code.
The rule engine in ILOG Business Rules operates with rules expressed in the ILOG Rule
Language (IRL), geared specifically for the expression of business rules directly translatable
to rule engine execution.

The rule engine is provided as a set of class libraries, which enable it to be integrated into any
Java application. Architecture is not imposed, which allows the engine to be integrated into

 14

an application without constraining the application or technical architecture. The rule engine
can be deployed in this way on the Java 2 Standard Edition (J2SE) platform or on the Java 2
Enterprise Edition (J2EE) platform. The rule engine must be provided with rules, usually in
the form of a ruleset (.irl) file, and a set of classes. When the ruleset has been passed to the
rule engine, it is then possible to interact with the rule engine object using the API. When
application objects are inserted into the rule engine object, two things happen. First,
references to the native Java application objects are added to the rule engine. These references
enable the rule engine to monitor the application objects. Second, the conditions of all rules
in the ruleset are evaluated. If the conditions of a rule are met, the rule is declared eligible to
execute, or fire.

In ILOG JRules, the rule engine is an instance of the IlrContext class, so the rule engine is
simply a Java object. This class contains all the methods required to control the rule engine.
An IlrContext is always attached to an IlrRuleset. The constructor for an IlrContext
may take the form IlrContext(IlrRuleset) or IlrContext(). If the IlrContext object
is created without a ruleset passed as an argument, it will create its own ruleset. The
IlrRuleset class is used for the management of the rules and IlrContext is used for the
execution of the rules. An IlrContext associates a ruleset with application objects and
implements the rule engine that controls the relationship between the rule part of the
application and the application data. An application can contain several rule engine objects.
These can be direct instances of the IlrContext class or instances of derived classes. A rule
in ILOG JRules is represented as an object, which is an instance of the IlrRule class. The
IlrRule class is responsible for the management of rules and is always attached to a rule
engine object.

Figure 3.2 APIs of Business Rules

A rule can be executed (fired) by the method IlrContext.fireRule(). One can use the
methods of the class IlrRuleset to dynamically add/remove rules to/from the ruleset, which
is the file that contains all defined rules. One can add a rule or several rules to the ruleset by
using the methods addRule and addRules of the class IlrRuleset. One can remove a rule
or several rules from the ruleset by using the methods removeRule and removeRules of the
class IlrRuleset. Rules may be dynamically added, modified or removed from the rule
engine, enumerated and inspected, packaged into sets, and executed individually or as sets.

 15

Rules

Business rules are implemented in ILOG Business Rules by expressing them as execution
rules in the ILOG Rule Language (IRL), where they can be executed by the ILOG rule engine.
Like other programming languages, IRL has a number of keywords, or reserved words. A
rule is defined by means of the rule keyword.

Figure 3.3 Skeleton of Rule

An execution rule has an IRL structure composed of a header, a condition part, and an action
part.

• The header part defines the name of the rule with the rule keyword statement, the
properties, and its priority.

• The condition part, which begins with the keyword when, is also referred to as the
left-hand side (LHS) of the rule. It utilizes the object-oriented structure of Java to
carry out pattern matching on objects. This pattern matching binds variables to objects
and field values. Rule conditions are also used to test field values. This provides a
filtering mechanism for objects.

• The action part, composed of one or two parts, is also referred to as the right-hand
side (RHS) of the rule. The first part begins with the keyword then. The optional
second part begins with the keyword else. The action part of the rule specifies actions
to be taken if the rule is executed.

Figure 3.4 shows a typical example:

Figure 3.4 Example Rule FindFilm

After the rule keyword in the first line we find the name of the rule, FindFilm. The second
line expresses its priority by means of the priority keyword. In this example there are two
conditions. These conditions use the classes Film and Cinema. In ILOG JRules, a rule can
have any number of conditions, but a rule without any conditions is not allowed. The then
keyword marks the end of the conditions and the start of the actions. In the example, there is

 16

only one action: an ILOG JRules instruction that prints the title of a film showing at a cinema
in Paris.

Execution Object Model

The eXecution Object Model (XOM) provides classes for a rule engine that can be used by
rules written in the ILOG Rule Language (IRL). The XOM can be accessed through classes
of the Factory API. This package provides reflective requests on a ruleset and supports
persistence and sharing through an object representation of rules.

ILOG Rule Language

The ILOG Rule Language (IRL) is the executable rule language for ILOG Business Rules.
All business rules are translated into this language before parsing by the rule engine. IRL
provides a rich set of constructs which includes collections, support for relations between
objects, and temporal reasoning. The ILOG JRules rule engine uses various optimization
techniques to improve efficiency in rule processing. An IRL program can be integrated into
multithreaded applications and deployed in environments including J2EE. It also provides
support for XML-based reporting. One of the important features of ILOG Business Rules is
its Business Rule Language support which uses a framework to ensure the translation from
the business rule language to the execution rule language: IRL.

Algorithms

One has a choice of algorithms used during rule engine operation. An algorithm called the
Rete algorithm operates efficiently in the domain of pattern matching. The sequential
algorithm is designed for speed of execution.

The Rete network is used by the rule engine to minimize the number of rules and conditions
that need to be evaluated, compute which rules should be executed, and identify in which
order these rules should be fired. The Rete network includes a working memory and an
agenda for containing and manipulating application objects.

The ILOG JRules sequential algorithm utilizes a dynamic rule compilation that can
significantly improve the speed of rule processing. The performance of an engine will
improve using the sequential algorithm if it is provided with a large ruleset made of basic but
test-intensive rules with static priorities.

Working memory

Under the Rete algorithm, each rule engine in ILOG JRules is paired with a working memory.
The working memory contains all the objects that need be treated by the rules. Objects can
be added to, updated in and removed from the working memory. In other words, the engine
is aware of the objects that are in the working memory and those which are linked to them.
If an object is not accessible from the working memory, it cannot be used by the rule engine.

Agenda

The agenda is where ILOG JRules stores the rules whose patterns are all matched. Any rule
that enters the agenda is said to be instantiated. The agenda stores rule instances that are
eligible to be fired.

 17

3.5 Summary

In this chapter we learned what Business Rules are and what advantages they bring to us
compared to the other traditional methodologies. Then, ILOG Business Rule Studio is
introduced as the first business rule authoring, testing and debugging environment for Eclipse.
Features and concepts are listed for the reader to gain an overview of the ILOG Business Rule
Studio.

 18

Chapter 4

Prototype Based on Business Rules

In the previous chapter we learned the concept of Business Rules and got familiar with the
structure of the rule and rule engine. Due to the separation of the business logic and
application code, we can treat the consistency requirements as part of the business logic in our
case. And with the support of the business rule engine and provided APIs, we can conceive
our first prototype based on Business Rules and manage the consistency problems efficiently.
The infrastructure is implemented as an extension of the Eclipse plug-in Octopus [1], which
supports the use of both UML and OCL for modeling.

4.1 Advantages of Applying Business Rules

Model engineering is based on the definition of models. Besides models, additional
constraints are necessary to be specified to improve consistency management. In response to
these requirements, the OMG (Object Management Group) specified OCL to express
constraints on models. OCL usually returns a Boolean value to indicate whether the
invariant is violated or not. However, it is not always desirable and easy to understand the
issue with only the Boolean expression associated to the constraint. One needs another
mechanism or extension to detect the inconsistency and take the corresponding action.

With the help of Business Rules, one is able to extend the ability of OCL. Not only can
inconsistency be detected as usual, but also proper actions can be carried out if the
consistency is broken. The consistency requirements can be specified in the condition part
of the Business Rules and the problem handling can be done in the action part. How to
handle the issue if the consistency is violated is left to the designer. The infrastructure can
inform the user about the inconsistency by stating the problem in a human understandable
manner. It is also desirable if the system is able to automatically repair the inconsistency in
some cases. All these can be specified by Business Rules.

 19

4.2 Transformation from OCL invariants to Business Rules

Since OCL is still the standard and most famous language used to define model constraints,
the first step for us to implement our infrastructure is to define a mapping from OCL
invariants to ILOG rule language. One may ask how well OCL invariants can be mapped to
ILOG rule language due to the different language semantics and structures, and whether the
mapping can be carried out without any loss. Before answering those questions, let us take a
deep look at the structure of the ILOG rule language again.

4.2.1 ILOG Rule Language Structure

A business rule has the following form: IF conditions THEN actions. The keyword when is
used to specify the condition part of a rule. The condition part of a rule is composed of a set
of conditions, or patterns, that refer to Java objects. Each pattern is matched, if possible,
with one or more application objects. More precisely, a pattern comprises tests that are
applied to each object in the working memory, and an object is said to match the pattern when
it passes these tests successfully. The pattern is tested by evaluating public attributes and/or
public methods of Java objects in the working memory. The ILOG rule language also offers
a few keywords to facilitate the pattern matching test. They are listed in figure 4.1.

Figure 4.1 Keywords in Rule Condition Part

Here only some of those keywords are of interest to our case.

l collect

[?variable:] collect [(expression)] collectionTarget
 [where (collectionTest1 ... collectionTestn)];

The collect statement is used in the condition part of a rule to create a collection object.
The collection object stores instances of the class collectionTarget that match the
condition. This condition may contain tests on the class fields. The collection object may
be bound to a variable for the scope of the rule. The collect statement may contain a list of
tests on the collection object in the where part of the statement.

l evaluate

evaluate (expression);

 20

The evaluate statement is used in the condition part of a rule to test objects of the working
memory. An evaluate statement must have a simple condition preceding it that binds a
variable to an object or a value. Any such variable bound to an object or a value may be
tested. Note that the statements not, exists, and collect are not simple conditions. An
evaluate statement is true if all the tests carried out in the expression are true. The
expression may be multiple tests enclosed by braces ({}).

In the case where the condition part of a rule ends with an evaluate statement, the action part
can have an else part, executed if the evaluate statement returns false. If it returns true,
the then part is executed.

l where

[?variable:] collect [(expression)] collectionTarget
 [where (collectionTest1 ... collectionTestn)];

The collect statement is used in the condition part of a rule to create a collection object.
The where part of the statement may contain tests that the collection object must fulfill. It
may be left empty.

Besides those keywords, ILOG rule language offers also operators, which are a subset of the
operators provided in the Java programming language. Figure 4.2 displays all those
operators.

 21

Figure 4.2 Operators in ILOG Rule Language

As one can see, the structure of the ILOG rule language is heavily based on Java language.
Given that Octopus plug-in already provides the functionality of transforming OCL to Java
code, one can take advantage of this available feature. In order to continue our work, one
needs to know how Octopus transforms OCL invariants to Java code first.

4.2.2 Octopus Java Code Generation

Octopus defines its own OCL metamodel. Figure 4.3 shows the hierarchy of Octopus OCL
metamodel in a listed view. Every OCL expression is of type OclExpression. The
invariant can be displayed as an AST (Abstract Syntax Tree). It contains different kinds of
sub expressions. During the code generation process, invariant is analyzed and split into
pieces. The corresponding Java code is generated for each sub expression. Depending on
the complexity of each sub expression, simply Java clause or complete Java method may be
created. For example, VariableExp results in only a simple Java attribute access, which can
be expressed by stating the variable name. On the other hand, IterateExp causes iteration
over a Set, which is much more complicated than the first case. Octopus handles such cases
by generating private methods which return the intermediate results. For instance, a private
method which returns the iteration result will be created for IterateExp. Those
intermediate results may be used by the public invariant checking method or other
intermediate private method resulted from the parent node. Finally, a public method used
for checking invariant is generated, which is expected to be invoked by the end user.

 22

Figure 4.3 Metamodel of OCL in Octopus

In order to better understand the generation process, we take the following OCL invariant
from the famous Loyal and Royal project (UML diagram given in appendix A) as an example:

This invariant states the consistency rule that in class Customer the size of associated
programs should be equal to the size of those associated cards, whose attributes valid are
set to true. The AST of the above OCL invariant is displayed in figure 4.4.

Figure 4.4 AST View of Invariant sizesAgree

The AST view shows that this invariant consists of different OCL sub expressions, e.g.,
VariableExps, AssociationEndCallExps, OperationCallExps, AttributeCallExps and
BooleanLiteralExp. The analysis sequence is top down as shown in the AST view. That
means if the example OCL invariant is given, one starts from the root of the AST, in this case,
VariableExp self. By invoking the getAppliedProperty, the next sub expression is
returned, namely, AssociationEndCallExp programs. Following the same way, all the sub
expressions will be traversed and handled. Each kind of OCL expression has its own Java
code pattern. For example, the generated code for AssociationEndCallExp returns just the
corresponding getter method of that association end. In our case, this.getPrograms()
is the generated Java code for AssociationEndCallExp programs. Complicated case is for
example IteratorExp select, it deals with a selection over a Set, and the selection result is
again a Set. In order to make the code more readable, Octopus creates a private method to
calculate the selection over that Set. And this private method will be invoked in the public

 23

invariant checking method. The name of the invariant checking method begins with
invariant_ and is followed by the same string as the invariant name if the name is defined in
OCL. If not given, the Java method name begins with invariant_ and is followed by a
number, which is incremented automatically for each unnamed invariant. Intermediate
private methods follow the similar naming convention, only the name begins with what it
actually performs.

In the final invariant checking method, a boolean variable is defined. If the invariant is
broken, the boolean variable is set to false and an InvariantException is thrown.

Figure 4.5 shows the generated Java code by Octopus:

Figure 4.5 Generated Java Code of Invariant sizeAgree

One may ask why not just simply evaluate the generated public invariant checking methods in
the condition part of the ILOG rule to test whether the consistency is broken or not. The key
is that public variables should be accessed instead of method calls in IRL condition part as
much as possible in order to improve the performance. Otherwise, the rule engine needs to
reevaluate that method whenever we update the object in the working memory, and will not
detect on its own that a rule instance has to be added to the agenda.

 24

4.2.3 Mapping from OCL to IRL

The mapping should start from the OCL metamodels, which are exactly what the figure 4.3
displays. Next step, we will explain the mapping for each of these metamodels.
Sometimes, a direct mapping is not possible. In this case, the generated Java method should
be invoked in the IRL condition part instead of formulating the counterpart in the business
rules. Although performing a direct method invocation instead of attribute access may lose
some performance at run time, it guarantees that no information is missing after this mapping
happens.

l IfExp

It has the If – then – else pattern. If corresponds to when in condition part of IRL
language. The other two correspond to the action part. Depending on whether the
condition part is fulfilled, the proper action is carried out.

l LetExp
 OCL: let definedVariable : type = defExp
 IRL: Not possible to define new variable in IRL condition part.
 Direct method invocation in IRL condition part.

l LiteralExp

1. CollectionLiteralExp

OCL: Set {Integer* | Float* | String*}
IRL: Not possible to collect primitive types as a Set in IRL condition part.

 Direct method invocation in IRL condition part.

2. EnumLiteralExp
 OCL: Type::EmunName (e.g. Gender::male)
 IRL: JavaType.EnumNameToUpperCase (e.g. Gender.MALE)

3. OCLStateLiteralExp

 No change.

4. OCLTypeLiteralExp
 No change.

5. BooleanLiteralExp
 No change.

6. IntegerLiteralExp

 No change.

7. RealLiteralExp
 OCL: RealLiteralExp
 IRL: (float) RealLiteralExp

8. OclUndefinedLiteralExp

OCL: OclUndefinedLiteralExp
IRL: null

 25

9. StringLiteralExp
 No change.

 10. TupleLiteralExp
 No change.

l OclMessageExp
 Not handled by Octupus.

l VariableExp
 OCL: self

IRL: ?self

l AttributeCallExp

OCL: attributeName (e.g. name)
IRL: javaFieldName (e.g. f_name)

l AssociationClassCallExp
OCL: AssociationClassName (e.g. Membership)
IRL: javaFieldName (e.g. f_membership)

l AssociationEndCallExp
OCL: AssociationEndName (e.g. cards)
IRL: javaFieldName (e.g. f_cards)

l OperationCallExp

OCL: allInstances
IRL: className.allInstances()

OCL: Class operation
IRL: className.opName.(args)

CollectionOper:

 OCL: source.count(obj)
 IRL: ?countCollection: collect objType(source.contains(this))
 …?countCollection.size()…

OCL: source.excludes(obj)
IRL: !source.contains(obj)

OCL: source.excludesAll(coll)
IRL: Stdlib.excludesAll(source, coll)

OCL: source.includes(obj)
IRL: source.contains(obj)

OCL: source.includesAll(coll)
IRL: source.containsAll(coll)

 26

OCL: source.isEmpty()
IRL: source.isEmpty()

OCL: source.notEmpty()
IRL: !source.isEmpty()

OCL: source.size()
IRL: source.size()

OCL:source.sum()
IRL: It needs iterator to travel through every element to sum them up and is not
supported directly.
Direct method invocation in IRL condition part.

OCL: source = arg
IRL: Stdlib.(setEquals | bagEquals | sequenceEquals | orderedsetEquals).(source, arg)

OCL: source <> arg
IRL:! Stdlib.(setEquals | bagEquals | sequenceEquals | orderedsetEquals).(source, arg)

OCL: source - coll
IRL: The sequence can not be guaranteed.
Direct method invocation in IRL condition part.

OCL: source.append(obj)
IRL: The sequence can not be guaranteed.
Direct method invocation in IRL condition part.

OCL: source.at(Int)
IRL: source.get(int – 1)

 OCL: source.excluding(obj)
 IRL: ?excludingColl collect objType(source.contains(this); !obj.equals(this))

OCL: source.first()
IRL: source.get(0)

OCL: source.flatten()
IRL: Stdlib.(setFlatten | bagFlatten | bagFlatten | orderedsetFlatten).(source)

 OCL: source.including(obj)
 IRL: ?excludingColl collect objType(source.contains(this) || obj.equals(this))

OCL: source. indexOf(obj)
IRL: source.indexOf(obj) + 1

OCL: source.insertAt(int, obj)
IRL: Stblib.insertAt(source, int – 1, obj)

 OCL: source.intersection(set)
 IRL: ?intersectionColl collect objType(source.contains(this); set.contains(this))

 27

 OCL: source.last()

 IRL: source.get(source.size() – 1)

 OCL: source.prepend(obj)
 IRL: The sequence can not be guaranteed.
 Direct method invocation in IRL condition part.

 OCL: source.subOrderedSet(int, int)
 IRL: source.sublist(int, int)

 OCL: source.subsequence(int, int)
 IRL: source.sublist(int, int)

 OCL: source.symmetricDifference(set)
 IRL: ? symmetricDiffColl collect objType(!source.contains(this); set.contains(this))

 OCL: source.union(sequence)
 Depending on the source type, if the type is OrderedSet, no duplicated

 objects are allowed in the result set.
 IRL: ? unionColl collect objType(source.contains(this) || sequence.contains(this))
 Otherwise, duplicated case is considered, not supported in IRL.
 Direct method invocation in IRL condition part.

 OCL: source.asBag()
 IRL: Stdlib.collectionAsBag(source)

 OCL: source.asSequence ()
 IRL: Stdlib.collectionAsSequence (source)

 OCL: source.asOrderedSet ()
 IRL: Stdlib.collectionAsOrderedSet (source)

 OCL: source.asSet ()
 IRL: Stdlib.collectionAsSet (source)

 OCL: source.oclIsUndefined()

 IRL: source == null

l LoopExp -> iteratorExp -> Exists

OCL: source->exists(expr)
IRL: ?existsColl: collect objType(source.contains(this); expr)
 evaluate(… (?existsColl.size() > 0) …)
Source code in Octopus:
package com.klasse.octopus.codegen.umlToIRL.expgenerators.creators;
LoopExpIRLCreator

 createExists

 28

l LoopExp -> iteratorExp -> ForAll
OCL: source->forAll(expr)
IRL: ? forAllColl: collect objType(source.contains(this); !expr)
 evaluate(… (?forAllColl.size() == 0) …)
Source code in Octopus:
package com.klasse.octopus.codegen.umlToIRL.expgenerators.creators;
LoopExpIRLCreator

 createForAll

l LoopExp -> iteratorExp -> IsUnique

OCL: source->isUnique(expr)
IRL: not supported in IRL.
Direct method invocation in IRL condition part.

l LoopExp -> iteratorExp -> any
OCL: source->any(expr)
IRL: ? any: objType(source.contains(this); expr)
Drawback: The rule could be fired more than once.

l LoopExp -> iteratorExp -> one
OCL: source->one(expr)
IRL: ? oneColl: collect objType(source.contains(this); expr)

 evaluate(…(?oneColl.size() == 1)…)

l LoopExp -> iteratorExp -> collect
OCL: source.collect(expr)
Depending on the argType, if the type is CollectionType
IRL: Direct method invocation in IRL condition part.
Otherwise
IRL: ? coll: collect objType(this.assoEnd.equals(source); expr != null)

l LoopExp -> iteratorExp -> collectNested
 OCL: source.collectNested(expr)
 IRL: ? collNested: collect objType(this.assoEnd.equals(source); expr != null)

l LoopExp -> iteratorExp -> select
OCL: source.select(expr)
IRL: ?selectColl: collect objType(source.contains(this); expr)

l LoopExp -> iteratorExp -> reject
OCL: source.reject(expr)
IRL: ? rejectColl: collect objType(source.contains(this); !expr)

l LoopExp -> iteratorExp -> sortedBy
OCL: source.sortedBy(expr)
IRL: Not possible to sort objects in a Set in IRL condition part.
Direct method invocation in IRL condition part.

 29

l LoopExp -> iterateExp
OCL: source->iterate(variable declariation, expression)
IRL: Not possible to define new variable in IRL condition part.
Direct method invocation in IRL condition part.

IRL Template

The next step to implement this extension is to design the general IRL code template. The
key is to build the correct skeleton and put the generated condition code and action code in
their right places. In order to let the reader put more attention to the mapping, we just
simplify the action code to make it report an error message in the console if the consistency is
broken. Later, if necessary, one can extend and generate more complicated user defined
action template by himself.

rule RuleName {
 when {
 ?self: SomeClass();
 iRLIntermediateConditionContent // if any
 evaluate (!iRLFinalCondition);
 }
 then {
 out.println("invariant ... is broken in object" + ?self.getIdString()
 + " of type " + ?self.getClass().getName());
 }
 };

The dynamically generated contents are RuleName, SomeClass,
iRLIntermediateconditionContent and iRLFinalCondition. In order to assure the
uniqueness of the rule names, they are denominated the same as their corresponding Java
invariant checking method names. SomeClass represents the class that this invariant is
referred to. iRLIntermediateconditionContent may contain intermediate defined
collection variables depending on the complexity of the invariant. iRLFinalCondition is
the final condition that should be evaluated by the rule engine. If the evaluation fails, the
error message about the content of the invariant, ID and name of the class is printed in the
console.

4.2.4 Changes Made to Octopus

Public Attributes:

First of all, the generated Java attributes should have public visibility. In this way, the
attributes can be directly accessed in IRL condition part instead of invoking the corresponding
getter and setter methods.

The change is made in:

package com.klasse.octopus.codegen.umlToJava.modelgenerators.creators;
public class AttributeCreator
field1.setVisibility(OJVisibilityKind.PUBLIC);

Effect:

 30

e.g. Royal and Loyal Customer Class

public String f_name = "";
public String f_title = "";
public boolean f_isMale = false;
public Date f_dateOfBirth = null;
public int f_age = 0;

Public Navigation Fields:

It is also reasonable to set navigation fields to public and access them directly in IRL
condition part. The change is made in:

package com.klasse.octopus.codegen.umlToJava.modelgenerators.creators;
public class NavigationCreator
field1.setVisibility(OJVisibilityKind.PUBLIC);

Effect:
e.g. Royal and Loyal Customer Class

public Set /*(Transaction)*/ f_cards = new HashSet(/*CustomerCard*/);

Public Association End Fields:

For the same reason, we make association end fields public.

package com.klasse.octopus.codegen.umlToJava.modelgenerators.creators;
public class AssocClassCreator
//set association end fields in association class to public
private void commonStuff(OJClass owner, IAssociationClass asscls) {
…
field4.setVisibility(OJVisibilityKind.PUBLIC);
field5.setVisibility(OJVisibilityKind.PUBLIC);
…
}
//set association end field in base class to public
private void addToBaseType(…){
…
field1.setVisibility(OJVisibilityKind.PUBLIC);
…
}

private void addMultToBaseType(…){
…
field2.setVisibility(OJVisibilityKind.PUBLIC);
…
}

private void addMultMultToBaseType(…) {
...
field3.setVisibility(OJVisibilityKind.PUBLIC);

 31

...
}

Effect:

e.g. Royal and Loyal Membership Class

public Customer f_participants = null;
public LoyaltyProgram f_programs = null;

e.g. Royal and Loyal Customer Class

public Set /*(Transaction)*/ f_membership = new HashSet(/*LoyaltyProgram*/);

Newly Added Classes

Besides the above mentioned changes, a few new classes are added to realize the
transformation from OCL to ILOG rules. They are all packed under the same package,
namely, com.klasse.octopus.codegen.umlToIRL.expgenerators.creators. The
classes are listed in figure 4.6.
.

Figure 4.6 Classes for IRL Generation

BasicTypeOperCallIRLCreator handles the transformation of all basic type operation calls,
such as "div", "mod", "size", "concat", etc.

CollectionOperCallIRLCreator handles the transformation of all collection operation calls,
such as “count”, “excludes”, “includes”, etc.

ComparatorIRLCreator generates the code for the comparison result of two objects, which
could be of any primitive type.

EnumTypeOperCallIRLCreator generates the code for the enumeration type operation.

ExpressionIRLCreator is the topmost class in this hierarchy. Here the OCL expression is
split and sub expressions are delivered to the corresponding creators to be further processed.

 32

LiteralExpIRLCreator generates code for LiteralExp.

LoopExpIRLCreator generates code either for iteratorExp or iterateExp.

OperationCallIRLCreator generates the code for OCL operations like oclIsUndefined,
oclIsTypeOf, oclIsKindOf, etc.

PropCallIRLCreator deals with the transformation of LoopExp, attributeCallExp,
associationEndCallExp and associationClassCallExp.

4.3 Runtime Execution

With the newly added extension, the user is able to automatically generate not only Java code
but associated IRL rules by opening the Octopus context menu on the Java project and
selecting “Generate Java Code”. After doing that, one can see that the generated IRL rule
files are created under the same directories where the corresponding Java files are located.
Next step, one has to create a Rule project in Eclipse and define the eXecution Object Model
(XOM) as the previously mentioned Octopus project. Then import the generated IRL rules
in the source directory. After compilation, a file named ruleset.irl is generated, which
contains all defined IRL rules in a single file and can be used later by the rule engine.

In realistic application environments, the rule engine is invoked using some Java code. To
do this one needs a piece of Java code to:

• Initialize the Java application
• Create an instance of the rule engine
• Load some rules
• Initialize the working memory with some objects to be processed by the rules
• Start the rule engine so that it executes all rules that match the objects in the working

memory
• Perform a final Java action such as output analysis, persistence, logging, and shut

down the Java application.

ILOG Business Rule Studio provides a wizard that enables one to generate a Java application
that carries out the steps described above. This kind of project is called Java Project for
Rules, which contains a single runnable main class to execute some rules contained in the
output folder of a rule project. Figure 4.7 displays the content of this class.

 33

Figure 4.7 Main Class to Execute Rules

One can now insert objects in the working memory of the rule engine using the Java API:

1. In the Java project, locate and edit the file SimpleRuleEngineRunner.java
2. In the main method, locate the line that creates the rule engine (class IlrContext).

This line is:
IlrContext context = new IlrContext(ruleset);

3. Insert a line break below and type the code to instantiate the objects.

Each time a new instance is created, the instance should be inserted into the working memory
by calling context.insert(instance);.

And each time the object is updated in the Java code, the working memory should be
informed. This is done by calling context.update(updatedInstance, true);. The
Boolean argument is set to true, which indicates that the update will cause the agenda to be
refreshed.

At the transaction commit time, context.execute() is invoked for consistency checking.
This method executes the ruleflow defined in the context's ruleset. Any inconsistency can be
caught by calling this method. If inconsistency exists, rules are fired and actions are carried
out.

To better understand this process, we take the Royal and Loyal project as example again.
First create a Java project, name it “RandL”. Then add Octopus nature to it and define Royal
and Loyal models using UML. The previously mentioned invariant SizesAgree is defined
here in OCL file to specify the consistency. Here we define only one single invariant in
order to simplify the whole process. The generated Customer.irl file contains the
corresponding rule. Figure 4.8 displays the generated rule of invariant_sizesAgree.

 34

Figure 4.8 Generated Rule invariant_sizesAgree

Next, one creates a Rule project called RL_Rules and associates the eXecution Object Model
(XOM) to the previously mentioned Octopus project, namely, “RandL”. Import the
Customer.irl file to the src directory in the Rule project and compile it, a file named
ruleset.irl is generated, which contains all defined IRL rules in this project and can be
used later by the rule engine, though in this case, just a single rule has been defined.

Last step, one has to create a “Java Project for Rules” to execute the rules. We name the
project RandLJavaProject4Rules. Locate the file SimpleRuleEngineRunner.java and
add the following code below IlrContext context = new IlrContext(ruleset);.

Here two CustomerCard instances are created and associated to a Customer instance.
Initially the two CustomerCard instances are all set to invalid (f_valid = false). Then a
single LoyaltyProgram instance objP1 is created and associated to the same Customer
instance. Next, the Customer instance should be added to the working memory by calling
context.insert(c). In order to distinguish the execution sequence, a string is printed in
the console before each time the execute() is called. According to the definition of
invariant SizesAgree, the invariant is broken at the first execution time (size of Programs

 35

equals one, while size of valid Cards equals zero). The following error message is printed
out in the console.

Next, we continue our work and add the following lines below the first execution.

Here one of the CustomerCard instances is updated to be valid. After the update, one has to
inform the working memory by calling context.update(). Without it, the objects in the
working memory are unaware of the update and thus remain inconsistent. The second
execution causes no action just as one expected. Because the inconsistency is repaired by
setting the f_valid attribute to true. In that way, the size of Programs and the size of valid
Cards are the same.

4.4 Summary

In this chapter we implemented our first infrastructure based on Business Rules for
consistency checking. Rule based approach enables the separation of application code and
consistency verification. One of the advantages is that the definition of action pattern is
flexible, though in this chapter we just demonstrated the simplest action, e.g. an error message
is printed in the console. Other complicated and proper action patterns can be considered to
improve this infrastructure.

.

 36

Chapter 5

Prototype Based on AOP and Back
Navigation Algorithm

In this chapter, a new prototype based on Aspect-Oriented Programming (AOP) and back
navigation algorithm will be discussed. This infrastructure is also implemented as an
extension of Octopus plug-in. The consistency verification should be carried out as a
separate concern. In this case, AOP is the best candidate technology which can be applied to
handle this kind of issue. Here back navigation algorithm is used to improve the consistency
verification performance. The reader is assumed to have a basic knowledge of AspectJ.
Reading the paper of my project work [Xue05] is also helpful to better understand this
chapter.

5.1 General AOP Approach

Needless to mention, Octopus also generates Java methods for consistency checking. One
inconvenient thing is that those constraint checking methods have to be invoked explicitly if
we want checks (e.g. evaluation of invariants) to be carried out at runtime. We wish things
get easier. We wish those checking methods to be invoked automatically. AspectJ helps us
in solving this problem. First we can define the pointcut in AspectJ, namely the place where
checking method should be invoked. Then we can define the advice, which checks the
constraints. If it is broken, in our case an error message is printed in the console.

The general approach without back navigation algorithm is straight forward. Since Octopus
generates the checkAllInvariants method for the Java class if any invariant is defined for
this class, we could in principle call this method after the creation of an instance of this class,
before and after most of the public methods. Notice that checkAllInvariants calls every
single invariant checking method, which is defined as public too. These public invariant
check methods should be excluded from the pointcut, otherwise the AspectJ code leads to a
recursive call. And all getter methods defined for attributes are also excluded, since they
do not change anything and could be called within invariant checking methods. Octopus
generates three extra methods for every class, which are toString(),
getIdentifyingString() and allInstances(). They should not be listed in the pointcut
list either (getIdentifyingString() is always called within invariant checking methods,
default by Octopus) .

 37

The starting point of this extension is to design the general AspectJ code templates for
enforcing invariants. Figure 5.1 shows the detailed templates.

//define point cut for invariant check
public pointcut invPointCut(SomeClass self):
(

(execution(public [method-return-type] SomeClass.someMethod(
[parameter types of the method – if any]))
[||any futhur methods]

)
&& target(self);

// Before the execution of every public method in SomeClass
before(SomeClass self) :

invPointCut(self) {
java.util.List invErrorList=self.checkAllInvariants();

 for(int i=0; i<invErrorList.size(); i++){
 System.out.println("After the execution of method in Class "
+invErrorList.toArray()[i].toString()); }

}

// After the execution of every public method in SomeClass
after(SomeClass self) :

invPointCut(self) {
java.util.List invErrorList=self.checkAllInvariants();

 for(int i=0; i<invErrorList.size(); i++){
 System.out.println("After the execution of method in Class "
+invErrorList.toArray()[i].toString()); }

}

// After the execution of any constructor in SomeClass
after(SomeClass self) :

execution(public SomeClass.new(..))
&& target(self) {

java.util.List invErrorList=self.checkAllInvariants();
 for(int i=0; i<invErrorList.size(); i++){

 System.out.println("After the execution of any constructor in Class "
+invErrorList.toArray()[i].toString()); }

}

Figure 5.1 AspectJ Code Templates

The AspectJ source code will be generated according to our templates. Reviewing the
templates, we can find that our main tasks include creating the condition checking method in
Java source code, creating the correct pointcut, listing the class type, the method arguments
and building the AspectJ skeleton. Most of the information can be extracted in the Java code
generation process. Here the implementation detail is skipped.

In order to check this general AOP prototype, we create a new Octopus project and define the
UML and OCL files in the following way.

 38

UML file:

Figure 5.2 stsDepartment.uml File

OCL file:

Figure 5.3 Constraints.ocl File

Part of the AspectJ code for enforcing invariant is listed below in figure 5.4:

 39

Figure 5.4 AspectJ Code for Enforcing Invariant

If having installed AspectJ Development Tools [5] (also a plug-in, available at Eclipse
homepage) in Eclipse, one can test the code. First write a main class to create an instance
and then invoke its methods to deliberately break the invariants. One can see the error
messages printed in the console after running the program, as shown in figure 5.5.

Figure 5.5 Result of the Runtime Invariant Checking

The readers may already find a few disadvantages of this approach. According to the
AspectJ code pattern, the pointcuts are defined too generally. For example, in the above
example, every time the public method Employee.setName is executed, the invariants must
be rechecked, though this method does not influence the consistency at all. In this way,
redundancy could be introduced. Another potential problem is the execution performance
of checkAllInvariants. In the above example, only two invariants are defined for
Employee and one for Project. That means, if the method checkAllInvariants is
invoked, all private invariant checking methods will have to be executed. This could
become an overload if too many invariants are defined for a single class. Considering the
redundancy problem and potential poor runtime performance, one needs a more specific
approach to define the pointcuts and invoke the invariant checking methods.

 40

5.2 AOP and Back Navigation Approach

In order to avoid redundancy, the pointcut and advice should be defined in a more precise
manner. So we’re interested in defining a calculus that operates on OCL expressions (which
in turn refer to a UML class model) to determine the navigation paths of the data elements on
which the invariant depends. In this approach, a certain invariant checking method need
only be invoked if the data elements on the navigation paths have been updated. Only those
updates may potentially cause the violation of the consistency. The invariant checking
performance can be improved by applying this approach.

5.2.1 The noAccounts Invariant Example

To illustrate, let us go back to the Royal and Loyal project (UML diagram is given in
appendix A) and begin with an OCL invariant.

In the example an invariant noAccounts is given:

context LoyaltyProgram
 inv noAccounts: partners.deliveredServices->
 forAll(pointsEarned = 0 and pointsBurned = 0)
 implies Membership.account->isEmpty()

the forward-navigation links are:

self +
 |- partners.deliveredServices +
 | |- pointsEarned
 | |- pointsBurned
 |- Membership.account

Here self represents LoyaltyProgram, namely, the context class. All the other expressions
(association end call, association class call and attribute call expression) in the naviagtion
links are named data elements in this OCL expression.

Let us imagine the following case. At runtime, the user updates the pointsEarned of
certain Service instance, all the LoyaltyProgram instances which are associated with this
Service instance should be checked to insure this noAccounts invariant is not broken. The
attribute pointsEarned can be updated by calling the method setPointsEarned. In other
words, whenever setPointsEarned is called, the noAccounts invariant should be rechecked.
The method setPointsEarned should be defined as pointcut, and the advice should be
defined to invoke the invariant checking method invariant_noAccounts() of all associated
LoyaltyProgram instances. The next task is to find all the associated LoyaltyProgram
instances. The starting point is the owner of the attribute pointsEarned, namely, the class
Service (deliveredServices is the role name, defined in UML). To find the correct
associated LoyaltyProgram instances, one should follow the path self.partner.programs
(here self represents Service), We denominate this path as back navigation path. The
path returns a collection of associated LoyaltyProgram. Since Octopus has already
generated the invariant checking method invariant_noAccounts, we need only to iterate
over the collection and invoke invariant_noAccounts on each of them to check the

 41

consistency. The back navigation paths of all elements in noAccounts Invariant are listed in
the table 5.1 below.

Element

back navigation

partners

self.programs

deliveredServices

self.partner.programs

Membersihp

self.programs

account

self.Membership.programs

Table 5.1 Back Navigation Paths of All Elements in noAccounts

Notice that before one decides the pointcut and back navigation path of a certain data element
in the invariant expression, first one has to find the parent data element or in other words, the
owner of the current data element. Both the pointcut and back link are referred to that parent
element but not the current element. So, for example, if the current data element is
deliveredServices, the corresponding parent data element is partners.

In this way, the back navigation paths should be

- for [partners] : self
- for [partners.deliveredServices] : self.programs
- for [partners.deliveredServices.pointsEarned] : self.partner.programs
- for [partners.deliveredServices.pointsBurned] : self.partner.programs
- for [Membership] : self
- for [Membership.account] : self.programs

The two main tasks of this approach consist in definining non side-effect-free methods as
pointcut and finding the back navigation path. Here the non side-effect-free methods refer to
those methods which are related to certain data element in the OCL invariant expression and
invoking them may potentially break the invariant, e.g. insert entity, delete entity, update
attribute, insert relationship, etc.

Octopus generated non side-effect-free methods in invariant noAccounts

Let us consider the invariant noAccounts again and analyze which Octopus generated Java
methods are non side-effect-free in this case.

1. assignment of the self.partners field
add / remove in self.partners

2. assignment of deliveredServices field in some item in self.partners
add / remove in self.partners.deliveredServices

3. update of the simple-type attribute Service.pointsEarned

 42

There may be Services which are not associated over deliveredServices to a
ProgramPartner (because it is not a composition). In these cases, the result of the back
navigation should return null.

4. update of the simple type attribute Service.pointsBurned (similar to
Service.pointsEarned)

5. the cardinality of self.Membership is given by the role participants on the Customer
side of the association with LoyaltyProgram. It is many in this case. Given that for
each Membership a LoyaltyAccount will be collected, the following affects
5.1 assignment of the self.Membership field
5.2 add / remove in self.Membership
5.3 assignment of an existing item in self.Membership

6. assignment of account field in some item in self.Membership
(there is no add / remove in self.Membership.account, cardinality is 1. Nor is there
assignment of an existing item in self.Membership.account, for the same reason)

7. given that no attribute of LoyaltyAccount is referred to in an iterator (instead a
->isEmpty() is called) there is no updated of simple-type attribute in LoyaltyAccount.

Generally speaking, from a class the following is reachable:

- an attribute
- Lto1, an Octopus-managed association with cardinality 1 on the other end
- LtoN, an Octopus-managed association with cardinality N on the other end
- LtoA, the other end is an association class and therefore some of the involved calsses may

access the tuple which they are related to by using the association class name, e.g.
Membership, instead of the other end’s role name.

5.2.2 General Octopus Generated Non Side-effect-free Method Pattern

Table 5.2 displays the general non side-effect-free method pattern. The reason we name it
“general” is because that there are certain special cases which differ a little bit from this
pattern. Those special cases will be discussed later.

attribute

- set_(_)

Lto1

- set_(_)
- z_internalRemoveFrom_(_)
- z_internalAddTo_(_)

LtoN

- set<Role>(collection)
- z_internalRemoveFrom_(_)
- z_internalAddTo_(_)
- addTo_(collection)
- addTo_()
- removeFrom_(collection)
- removeFrom_(_)
- removeAllFrom() no args

 43

Table 5.2 General Non Side-effect-free Method Pattern

The first special case is non Java simply type attribute. Unlike those managed by an
association end or association class, given such an attribute, there is no field for the other
association end (there is no code to manage the association, in fact). Let us consider the
following example.

<class> Person
<attributes>
name: String;
age: Integer;
<endclass>

<class> Department
<attributes>
name: String;
manager: Person;
employees: Set(Person);
<endclass>

 context Department
 inv noSameName:
 employees->select(name = manager.name) -> isEmpty()

Given that an OCL invariant may refer to the non Java simply type attribute and that we can
detect changes on it, how do we navigate back to the instance where the invariant is anchored?
Although there is still a value relationship between the instances. In this case, the look-up
code for a manager is that

Department.allInstances -> select(manager.equals(aManager))

and for an employee is that

Department.allInstances -> select(employees.contains(aEmployee))

In general it takes a lot of computing at runtime to resolve such problems.

Three alternatives:

(a) warn about OCL ASTs containing non Java simply type attribute (it is ok if the .uml
contains them and they are not referred to in any OCL invariant)

(b) generate look-up code. Even if this code is functionally correct, its performance will
approach (or exceed) for a deep enough level of the first general AOP approach.

(c) check invariant for all instances

Expressions involving association classes are dealt with in the next section.

 44

5.2.3 Pointcut for Association Class

Here besides the description of the pointcut for association class, special cases of association
end are also explained. They are all listed in table 5.3.

LtoA, accessing
the association

class itself

e.g.
aLoyaltyProgra
m.Membership.
account->
isEmpty()

All methods that

affect
f_membership

Almost the same as LtoN, because this LtoA has cardinality N (would be
same as Lto1 otherwise). The differences are that external add / remove
methods are referred to another association end (in this example,
participants) and the method removeAllFrom_() should be included.

In LoyaltyProgram the following Octopus generated methods affect
f_membership:

public void setMembership(List val)

public void z_internalAddToMembership(Membership assocClass)
public void z_internalRemoveFromMembership(Membership assocClass)

public void removeFromParticipants(Customer par)
public void removeFromParticipants(Collection oldElems)
public void removeAllFromParticipants()

public void addToParticipants(Customer par)
public void addToParticipants(Collection newElems)

Last but not the least, setParticipants is not included in the pointcut,
because it is invoked inside addToParticipants.

LtoA, accessing
an association

end of an
association class

e.g.

aLoyaltyProgra
m.participants

->size()

All methods that
affect

f_membership

Special case for association end, which is the end of an association class.
The effect is the same as the above case. See explanation below the
table.

LtoA, accessing
an association

class followed by
the assocaition

end
e.g.

All methods that affect f_membership in LoyaltyProgram is the same as
the first case. Single method that affects f_participants in class
Membership is clean(). See explanation below the table.

 45

aLoyaltyProgra
m.Membership.p
articipants->s
ize()

Table 5.3 Pointcuts for Association Class

The first case is a pure access to the association class itself. No further explanations are
necessary. Let us consider the second and the third cases. The two queries
aLoyaltyProgram.participants and aLoyaltyProgram.Membership.participants
actually return the same items. Below is the generated Java code

Code for aLoyaltyProgram.participants is shown in figure 5.6.

Figure 5.6 Generated Java Method for aLoyaltyProgram.participants

Code for aLoyaltyProgram.Membership.participants is shown in figure 5.7:

Figure 5.7 Generated Java Method for aLoyaltyProgram.Membership.participants

In the second case, the element participants is normally treated as an association end. But
what makes it different from a normal association end is that it has an associaiton class
Membership defined. In other words, this association end corresponds to the end of an
association class. According to our general Octopus generated non side-effect-free method
pattern, the following methods should be defined as pointcut.

 46

context LoyaltyProgram

public void setParticipants (List par)
public void z_internalRemoveFromParticipants(Customer par)
public void z_internalAddToParticipants(Customer par)
public void removeFromParticipants(Customer par)
public void removeFromParticipants(Collection oldElems)
public void removeAllFromParticipants()
public void addToParticipants(Customer par)
public void addToParticipants(Collection newElems)

But the correct result is actually:

context LoyaltyProgram

public void setMembership(List val)
public void z_internalAddToMembership(Membership assocClass)
public void z_internalRemoveFromMembership(Membership assocClass)
public void removeFromParticipants(Customer par)
public void removeFromParticipants(Collection oldElems)
public void removeAllFromParticipants()
public void addToParticipants(Customer par)
public void addToParticipants(Collection newElems)

There are no z_internalRemoveFromParticipants and z_internalAddToParticipants in
class LoyaltyProgram. And instead of observing the method setParticipants,
setMembership should be watched. Because when setParticipants is invoked,
addToParticipants is called internally. This method is already under our observation.

In the third case, the association class is followed by the corresponding assocaition end.
The problem is that if one writes LoyaltyProgram.Membership.participants,
The participants is viewed as LtoN association end, and again according to our general
pattern, the following methods are defined as pointcut:

context LoyaltyProgram

public void setParticipants (List par)
public void z_internalRemoveFromParticipants(Customer par)
public void z_internalAddToParticipants(Customer par)
public void removeFromParticipants(Customer par)
public void removeFromParticipants(Collection oldElems)
public void removeAllFromParticipants()
public void addToParticipants(Customer par)
public void addToParticipants(Collection newElems)

 47

which is incorrect again. Actually no methods need be watched here. Because the
preceding element Membership already generates the correct pointcut. There is a method
called clean() in the association class Membership, which we should pay attention to. It
removes both ends of the association. Internal z_internalRemoveFromMembership (in
LoyaltyProgram) is called to catch it. We need to catch it by defining:

context Membership

public void clean()

So the difficulty lies in checking whether the association end corresponds to the end of an
association class or not. This solution will be discussed later in the implementation phase.

Finally, applying the above pattern, one gets the following non side-effect-free methods for
the case of noAccounts invariant.

context LoyaltyProgram

public void setPartners(Set elements)
public void z_internalAddToPartners(ProgramPartner element)
public void z_internalRemoveFromPartners(ProgramPartner element)
public void addToPartners(Collection newElems)
public void addToPartners(ProgramPartner element)
public void removeFromPartners(Collection oldElems)
public void removeFromPartners(ProgramPartner element)
public void removeAllFromPartners()

context LoyaltyProgram

public void setMembership(List val)
public void z_internalAddToMembership(Membership assocClass)
public void z_internalRemoveFromMembership(Membership assocClass)
public void removeFromParticipants(Customer par)
public void removeFromParticipants(Collection oldElems)
public void removeAllFromParticipants()
public void addToParticipants(Customer par)
public void addToParticipants(Collection newElems)

context Membership

public void setAccount(LoyaltyAccount element)
public void z_internalAddToAccount(LoyaltyAccount element)
public void z_internalRemoveFromAccount(LoyaltyAccount element)

 48

context ProgramPartner

public void setDeliveredServices(Set elements)
public void z_internalAddToDeliveredServices(Service element)
public void z_internalRemoveFromDeliveredServices(Service element)
public void addToDeliveredServices(Collection newElems)
public void addToDeliveredServices(Service element)
public void removeFromDeliveredServices(Collection oldElems)
public void removeFromDeliveredServices(Service element)
public void removeAllFromDeliveredServices()

context Service

public void setPointsEarned(int element)
public void setPointsBurned(int element)

5.2.4 Pointcut and Advice for allInstances

The allInstances is a class operation that can be applied only to classes. In all other cases,
it will result in undefined. For a class, it results in a set of all instances of that class,
including all instances of its subclasses. From the OCL reference books, allInstances can
only be used as <Type>::allInstances, however Octopus is more permissive, and therefore
a translator would be able to handle the variants in syntax.

The variant is whether the source expression is an instance or a class. Here which specific
instance appears is not relevant (only its declared class counts). So the following two
expressions are the same.

anEmployee.allInstances
Employee.allInstances

In order to be able to return all instances of a certain class, in Octopus generated Java code,
every instance need be added to a collection held by the class itself, i.e. a static field of type
Collection. See the following generated code for class LoyaltyProgram in figure 5.8.

 49

Figure 5.8 allInstances in Generated Java Code

There will be no back navigation to a specific instance because the invariant should be
checked in turn not on a subset of instances but on all instances. Let us consider the
following example.

context LoyaltyProgram
inv atrificialInv1:
partners.allInstances()->size() <10

In this case, there is no back navigation for allInstances. All we can do is to define a
pointcut on the static variable allInstances of class ProgramPartner (partners is the role
name of the association between ProgramPartner and LoyaltyProgram). In the advice, we
get the collection of allInstances of type LoyaltyProgram and invoke the invariant
checking method on each of them. Here one should distinguish the two kinds of
allInstances. One is defined in the pointcut and the other in advice (always refers to the
context class). They may belong to different class types.

The next issue we should take into consideration is that either an attribute, an association end
or an association class is collected over allInstances. Generally speaking, anything
appearing after allInstances belongs to this case. The previously discussed pointcut
pattern is also valid here. But the advice should be defined to invoke the invariant checking
method over allInstances of the context class. One example of this kind is given below:

context LoyaltyProgram
inv atrificialInv2:
partners.allInstances()->select(numberOfCustomers > 100)->size() <10

Table 5.4 categorizes these two different cases.

<Class>.allInstances

or
anInstance.allInstances

Pointcut on the static variable allInstances
Advice: invoke invariant checking method on
all instances of context class

 50

<Class>.allInstances.attri / asso

or
anInstance.allInstances.attri / asso

Pointcut same as the previously discussed
pattern. Advice: invoke invariant checking
method on all instances of context class

Table 5.4 Pointcuts and Advices for allInstances

5.2.5 Back Navigation Algorithm

In this section we will describe the back navigation algorithm. In order to better understand
the algorithm, the reader should have basic knowledge about OCL metamodels, OCL AST
and the general AST visitor.

Figure 5.9 displays the OCL metamodels. After exploring OCL AST, some issues relevant
for the implementation of the algorithm to determine backlinks become apparent. For
example, the AST walker will have visited some arguments to an operation before visiting the
operation itself, as a result of OCL syntax (try with the AST of “a + b” and walk it with
ASTWalker). This is in contrast to the walkers for other grammars one might be used to.

Another particularity has to do with the handling of variable declarations for ‘normal’ usages
of attributes and associations vs. their usage inside the body of a collection operation. In the
second case, an intermediate iterator variable is declared (which will range over each item of
the collection). The usages in the body refer to the iterator variable, not to the ‘actual’ items
being iterated.

 51

Figure 5.9 OCL Metamodels

Let us first take a look at the AST Tree View of previously mentioned invariant noAccounts,
which is displayed in figure 5.10. Here what also need be mentioned is that AstWalker
visits the IOclExpression in exactly the same sequence as what the whole IOclExpression
displays in the AST Tree View (namely, from top to bottom). The inner
getAppliedProperty is called first before the next appliedProperty at the same depth.

Figure 5.10 AST Tree View of Invariant noAccounts

 52

Since we are interested in navigation path, in other words, association, only
associationEndCallExp and associationClassCallExp are of the most importance.
Both of these two expressions have a method called getSource(), which returns the referred
variable of the current expression. We know that the attribute or association will in fact
range over a collection, and that the iterator variable stands for one element of that collection
at a time. For example, getSource() returns IVariableExp “i_ProgramPartner” for the
AssociationEndCallExp “deliveredServices”. But an IVariableExp has no method
getSource(). Neither does it have its getReferredVariable(). Therefore,
IAssociationEndCallExp and IAssociationClassCallExp (once visited) can only trace
their anchor back to the IVariableExp. But what this IVariableExp iterates over, cannot
be determined unless intermediate infomation has been kept. Only in this way one can know
to whom this IVariableExp should be anchored. Lists f_Vari and f_ForwardLink are
defined to record intermediate information. The former records all visited
IVariableDeclaration, the latter saves the forward navigation path, which will be used to
build the back navigation path. These two lists are always assumed to have the same size.

Figure 5.11 displays the content of the back navigtion algorithm.

AspectJInvariantVisitor implements IAstVisitor{

List f_gatheredStuffs
-- save all visted IAssociationEndCall, IAssociationClass or IAttribute, without
-- repetitation. In the case that the same IAssociationEndCall, IAssociationClass or
-- IAttribute appears more than once, in order to avoid creating the pointcut more than
-- once, not part of the algorithm
List <IvariableDeclaration> f_Vari
-- save all visited IVariableDeclaration
List <String> f_ForwardLink
-- save the back navigation forwardly, later one can build the correct back naviation
-- by traversing the list reversely
Boolean f_AllInstances_visited = false;
-- a flag to indicate if allInstances has been visited in this particilar OCL branch

 variableExp {
 Check the name of the referred variable, if it equals “self”{

 Clean f_Vari, f_ForwardLink
 Set f_AllInstances_visited to false

 }
 }

 variableDeclaration{
 Add the name of variable declaration to f_Vari
 }

 operationCallExp{

if the name of referred operation equals “allInstances”{
f_AllInstances_visited = true;
No back navigation, all instances should be checked

}
 }

 53

 associationEndCallExp{
 If name of referred variable does not equal “self”{
 Get the index of the name in f_Vari
 If the index does not equal the size of f_Vari – 1 {
 Only keep the first index + 1 items in
 f_Vari, f_ForwardLink

 }
 }

If for the case that
this associationEnd is an end role of an associationClass
-- e.g. AssoEnd participants is the end role of AssoClass Membership
and
this associationEnd is preceded by exactly that corresponding associationClass
-- e.g. LoyaltyProgram.Membership.participants,
{
 back navigation returns the name of the association class -- e.g. Membership
 add the back navigation of this associationEnd to f_ForwardLink
}
else
{
 back navigation returns the name of the other association end
 add the back navigation of this associationEnd to f_ForwardLink
}

 If f_AllInstances_visited equals true
 {
 No back navigation, all instances should be checked
 }
 else
 {

Build the correct back navigation by traversing all items in the f_ForwardLink
reversely

}
}

associationClassCallExp{

If name of referred variable does not equal “self”{
 Get the index of the name in f_Vari
 If the index does not equal the size of f_Vari – 1 {
 Only keep the first index + 1 items in
 f_Vari, f_ForwardLink

}
}

add the back navigation of this associationEnd to f_ForwardLink

 If f_AllInstances_visited equals true
 {
 No back navigation, all instances should be checked
 }

 54

 else
 {

Build the correct back navigation by traversing all items in the f_ForwardLink
reversely

}
 }

}

Figure 5.11 Back Navigation Algorithm

In the AST, the referred variable “self” represents the context class itself. In a single OCL
invariant expression, “self” can appear more than once. Every time “self” is visited, it
means everything starts from the beginning (for example, in the noAccounts invariant
example, “self” occurs twice). The previously recorded information, e.g. the forward
navigation path or the names of visited variable, becomes useless. All information in the
algorithm must be reset to the initial conditions at this point. It is done in variableExp.

The allInstances in an AST is actually a parameterless operation. See the following
example:

context Employee
 inv whatIsAllInstances :
 allInstances()->size() < 10

Figure 5.12 allInstances in AST

So one needs to check each operationCallExp and catch the case that the name of referred
operation equals “allInstances”. No back navigation path needs to be computed here and
neither do those elements afterwards on the same branch.

From associationEndCallExp or associationClassCallExp one can get the name of
corresponding referred variable. The index (depth) of that referred variable is calculated and
the first index + 1 items in f_ForwardLink bulid the forward back navigation, one only
needs to rebuild the correct result by traversing all items in the f_ForwardLink reversely.

Special case is the pattern associationClass.associationEndOfThatAssociationClass
should be treated differently from normal association end. In this case the back navigation
of the associationEnd should be the name of the association class itself but not the name of
the other association end. Table 5.5 lists the case for participants.

 55

OCL Expression

Back Navigation Path of participants

LoyaltyProgram.participants

programs

LoyaltyProgram.Membership.participants

Membership.programs

Table 5.5 Back Navigation Paths of Two Different participants

This algorithm has been intensively tested on all the OCL invariants provided in the Royal
and Loyal project and proved to work correctly. However, there are some cases where the
current algorithm does not return the expected back navigations.

Let’s assume the following UML:

<package> myocl

<class> Department
<attributes>
 name : String;
<endclass>

<class> Employee
<attributes>
 age : Integer;
 addrAsAttr : Address;
<endclass>

<class> Address
<attributes>
 number : Integer;
<endclass>

<associations>
 Department.deptOfGoodEmp [0..*] <-> Employee.goodEmps [0..*];
 Department.deptOfBadEmp [0..*] <-> Employee.badEmps [0..*];
 Employee.empRoleWork <-> Address.workAddress [1];
 Employee.empRoleHome <-> Address.homeAddress [1];

<endpackage>

and the following OCL invariant:

package myocl

context Department
 inv problemWithUnion :
 goodEmps->union(badEmps)->forAll(age >= 18)

endpackage

The invariant problemWithUnion shows that the usage of age in the body of the forAll has
an i_Employee as referredVariable() (see figure 5.13). In general, after a ->union() the

 56

iterator variable will be typed with the nearest common ancestor in the type hierarchy. In
this case, both sets under union() have the same type.

If fragments of the backlink are collected in the visit order supported by ASTWalker, the
partial chain at the time of visiting age will be self.badEmps. The fact that in addition to
self.badEmps, the backlink over the goodEmps association need also be followed at runtime
is overlooked (the same Employee could be reachable over goodEmps from one Department
and over badEmps from another, when an update occurs in Employee.age all relevant
instances of Department should be returned).

Figure 5.13 AST of invariant problemWithUnion

5.2.6 Drawback of allInstances and Weak Reference

From the Octopus documentation, a drawback to use a static field to hold all instances of a
certain class is that the garbage collection will not do its work properly when an instance is
present in allInstances collection but is not used anymore elsewhere. Having a reference
to an object that yet does not prevent the object from being garbage collected is possible in
Java with java.lang.ref.WeakReference. Part of the API is given below:

WeakReference(Object referent)
Creates a new weak reference that refers to the given object.

public Object get()
Returns this reference object's referent. If this reference object has been cleared, either by the
program or by the garbage collector, then this method returns null.

Suppose that the garbage collector determines at a certain point in time that an object is
weakly reachable. At that time it will atomically clear all weak references to that object and
all weak references to any other weakly-reachable objects from which that object is reachable

 57

through a chain of strong and soft references. At the same time it will declare all of the
formerly weakly-reachable objects to be finalizable. This API allows a programmer to
maintain special references to objects that allow the program to interact with the garbage
collector in limited ways. Detailed information about weak reference can be found in SDK
documentation.

Additionally, an optimization could be made to Octopus generated Java code. Instead of
generating the code like:

Figure 5.14 usesAllInstances in Octopus Generated Java Code

one could generate usesAllInstances field to be final and set it to true for some classes.
That way, the compiler can optimize away unreachable code in the then-part of

if (usesAllInstances)

Another argument for declaring that field final is that it does not make sense to make it go
from false to true at runtime, as there is no way to know what instances might have been
created beforehand and still be reachable on the heap. Setting it from true to false instead
would be reasonable, resulting in freeing the WeakReferences that collect allInstances.

Let us consider the following invariant:

context Department
inv numberEmployees:
self.employee->size() <= Employee.allInstances()->size()/2

In the example, we will assume that unlinking an employee from the department makes it a
candidate for garbage collection. In terms of management of the static variable
Employee.allInstances, assuming the pattern based on WeakReference is used, one has
the items of that collection unchanged, only a wrapped value in WeakReference to that
employee (which goes to null).

 58

5.2.7 Other Issues

No updates during the evaluation of invariants should be assumed. Once the instances
returned by the back navigation have been determined, the next step consists in invoking the
invariant checking method, which is supposed to be side-effect-free. Otherwise, the
pointcuts to detect state updates will be activated. This should be considered as an error or
an exception.

It does not appear that during the evaluation of invariants, intermediate results would result in
the instantiation of business domain objects. There is no object instantiation construct in
OCL. One needs resorting to invoking a user-defined operation to achieve that. All OCL
self-provided operations (e.g. size(), asSequence(), oclIsUndefined()) do not influence
the business domain objects. An OCL expression containing a user-defined operation cannot
be considered to be side-effect-free.

After the back navigation path is computed, one can take the advantage of the Java code
generation functionality provided by Octopus. Here a single OCL file is generated, which
contains only OCL def expressions of the form z_internal_InstancesAffectedBy_BlaBla.
Each definition expression corresponds to the result of a back navigation path. The result
can either be a collection of instances or a single instance, depending on the multiplicity of the
association. Later this .ocl file will be translated to Java by Octopus. The body of the
AspectJ advice will invoke those generated methods to gather the references to the affected
instances and to wrap them in the WeakReferences before queuing them for evaluation at
transaction commit time.

Figure 5.15 displays the generated defs.ocl of invariant noAccounts.

Figure 5.15 Generated defs.ocl of Invariant noAccounts

 59

5.2.8 Consistency Verification Infrastructure

In order to perform the consistency verification on models, an infrastructure is needed.
Remember in our case, there are two types of back navigation, or better to say, one is
computable, the other does not exist (in this case, allInstances of the context class should
be checked, so we denote the back navigation path as “allInstances”). Two different
mechanisms are necessary to handle them. For the case that back navigation path is
computable, WeakReference is applied to hold the affected instance. What we also need is a
String to save the name of the invariant checking method generated by Octopus. These two
build a pair and we name it as WeakRefInstance_Inv_Pair. Again it corresponds to a
single affected instance. To collect all affected instances, WeakRefInstance_Inv_Set is
used. So at transaction commit time, one can iterate over this set and use the Java reflection
to invoke the invariant checking method on each affected instance to check the consistency,
which is done by invoking the method EvaluateWeakRefInstance_Inv_Set. If the
invariant is broken, an error message is printed in the console. At the end all instances
which did not break the consistency should be deleted from the WeakRefInstance_Inv_Set
and only those broken ones will be kept for rechecking at the next transaction commit time.

For the second case, one has to handle the invariant checking of all instances. Here instead
of affected instance, affected class type should be saved. At the transaction commit time,
one can get allInstances from that class type (by using Java reflection) and then iterate over
each of them to invoke the invariant checking method. The rest is the same as the first case.
We name them Class_Inv_Pair and Class_Inv_Set.

At last we need a class InvCheckInfrastructure to hold these two different sets. These
two sets are defined as static fields so that one can access them by calling the class every time.
At transaction commit time, the consistency can be checked just by invoking
InvCheckInfrastructure.EvaluateConsistency(), which is also a static method. The
complete Java code of this infrastructure is listed in appendix B.

5.2.9 AspectJ Code Templates

Also in this approach one needs to design the general AspectJ code templates for enforcing
invariants for later checking. There are three different cases, depending on whether the back
navigation path exists and the number of affected instances if the path exists. The templates
are shown in figure 5.16.

//for the case that back navigation exists and a collection of instances are affected
after (SomeClass self) :
 (
 pointcut generated according to the pointcut pattern
)
 && target(self) {
 Collection coll = null;
 try{
 coll = self.z_internal_InstancesAffectedBy_BlaBla();
 }

 60

 catch(Exception exc){
 return; //error message could be printed in the console here
 }
 if(coll.equals(null)) return;
 Iterator it = coll.iterator();
 while (it.hasNext()) {
 Object o = it.next();
 WeakRefInstance_Inv_Pair pairWI = new WeakRefInstance_Inv_Pair(o,
"InvariantCheckingMethodName");
 InvCheckInfrastructure.s_WeakRefInstance_Inv_Set.add(pairWI);
 }
 }

//for the case that back navigation exists and a single instance is affected
after (SomeClass self) :
 (
 pointcut generated according to the pointcut pattern
)
 && target(self) {
 Object o = null;
 try{
 o = self.z_internal_InstancesAffectedBy_BlaBla();
 }
 catch(Exception exc){
 return; //error message could be printed in the console here
 }
 if(o.equals(null)) return;
 WeakRefInstance_Inv_Pair pairWI = new WeakRefInstance_Inv_Pair(o,
"InvariantCheckingMethodName");
 InvCheckInfrastructure.s_WeakRefInstance_Inv_Set.add(pairWI);
 }

//for the case that back navigation does not exist
after(SomeClass self) :
 (
 pointcut generated according to the pointcut pattern
)
 && target(self) {
 try{
 Class c = Class.forName(“AffectedClassName”);
 Class_Inv_Pair pairCI = new Class_Inv_Pair(c, " InvariantCheckingMethodName");
 InvCheckInfrastructure.s_Class_Inv_Set.add(pairCI);
 }
 catch(Exception exc){
 return; //error message could be printed in the console here
 }
 }

 61

Figure 5.16 AspectJ Code Templates

If the defined back navigation method returns a collection of affected instances, one has first
to iterate over the collection to get each instance, and then add the instance and the name of its
invariant checking method to the invariant checking infrastructure. If no back navigation
path exists, the affected class type in stead of instance is recorded. An example of the third
case is given below in figure 5.17:

Figure 5.17 Sample AspectJ Code

5.2.10 Code Generation Process

The code generation process is divided into pre-generation phase and formal code generation
phase. In the pre-generation phase, both the .uml and .ocl files are parsed and models are
built into memory. During this phase, OCL invariant expressions are visited and back
navigation paths for each data element are computed. Each back navigation path results in a
new OCL definition expression in the newly generated defs.ocl file. Now, the defs.ocl
file and the previous defined .uml and .ocl files build new models.

In the formal code generation phase, again, new models (equipped with operations defined in
defs.ocl file) are built in memory. Invariants of each class are visited. For each
potentially affected element in that OCL invariant expression, AspectJ file with properly
defined pointcut and advice is created. The AspectJ file is created under the same package
where the corresponding Java file is located. The Java files for invariant checking
infrastructure are also generated at the end, which are all located under the
src/Infrastructure directory.

5.2.11 Implementation

Each OJClass has a field f_hasAspectJ of type boolean. Default value of f_hasAspectJ
is false. This field is set to true if the corresponding OJClass has invariant defined and so
the OJClass will be translated to AspectJ.

A new package aspectjgenerators is created under
com.klasse.octopus.codegen.umlToJava. New classes related to AspectJ file generation

 62

are added here. To study these new classes, we will first go back to class
TransformationController, where the AspectJ generation starts.

In the class TransformationController, new method generateAspectJ is added, where an
AspectJController instance is created and its transform method is invoked. In this
transform method, the umlmodel is checked first. If things goes fine, instance of class
AspectJInvariantsGenerator is created, which extends DefaultPackageVisitor and can
be used to visit the umlmodel. In this case only Class is of interest to us. In method
class_Before, each OJClass is checked to see if it contains invariants. If so,
AspectJInvariantCreator is created and its addInvariant method is responsible for
appending AspectJ info to OJPackage.

Before continuing, an extension to OclContextImpl should be explained. A field
f_correspondingJavaMethodName is added to OclContextImpl. Its function is to save the
corresponding Java method name of the OclContext. In
com.klasse.octopus.codegen.umlToJava.expgenerators.creators InvariantCreator,
method addInvariant is responsible for creating the invariant Java method. Extension is
made here

((OclContextImpl)cont).setCorrespondingJavaMethodName(INV_NAME);

to save the INV_NAME to the OclContextImpl, so that next time when the visitors travels this
OclContext, it knows what the name of the Java method is. So the sequence is important
that generateAspectJ should be invoked after the invocation of generateExpressions.

Back to AspectJInvariantCreator, in method addInvariant, AspectJInvariantVisitor
is created to process the invariant. It implements IAstVisitor and takes two parameters.
One is the OJPackage, which represents the whole Java model. The other is a String,
which records the CorrespondingJavaMethodName.

Take the example again:

context LoyaltyProgram
 inv noAccounts: partners.deliveredServices->
 forAll(pointsEarned = 0 and pointsBurned = 0)
 implies Membership.account->isEmpty()

self +
 |- partners.deliveredServices +
 | |- pointsEarned
 | |- pointsBurned
 |- Membership.account

Here we are interested in IAttributeCallExp, IAssociationEndCallExp and
IAssociationClassCallExp. We need to find the non side-effect-free methods, parent
class and back navigation for each of them. The starting point is the method
addAspectJtoParentClass. Here setHasAspectJ is invoked to set the f_hasAspectJ to
true to indicate that the OJClass contains invariant and should be translated to AspectJ code
later.

For example, when the visitor encounters deliveredServices, the parent class is
ProgramPartner. A pointcut and advice should be generated for ProgramPartner. The
parent class can be computed by:

 63

IClassifier c = exp.getSource().getNodeType();
if (c instanceof ClassifierImpl && !(c instanceof IEnumerationType)) {
 ClassifierImpl in = (ClassifierImpl) c;
 OJPathName path = GenerationHelpers.pathname(in.getPathName());
 OJClass myClass = f_OJPackage.findClass(path);
 …

With the help of StructuralFeatureMap, one can get the names of all non side-effect-free
methods. For the case of IAssociationEndCallExp and IAssociationClassCallExp, one
should first check the multiplicity to see whether it’s Lto1 or LtoN and then choose the
correct non side-effect-free method pattern, which is done in method
isMultiplicityTypeLtoN.

5.3 Summary

In this chapter, we implemented our second prototype based on AOP and back navigation
algorithm. A simple and straight forward approach was first discussed to illustrate the
benefit of applying AOP technology. Afterwards, what also became clear was that the
pointcut and advice were defined too generally, which may result in poor performance in a
large modeling project. Due to that reason, a more complicated approach was conceived to
conquer the problem. Back navigation algorithm is used to compute the potentially affected
instances and also in this way the invocation of invariant checking methods can be limited to
the minimum. The improvement of performance is achieved.

 64

Chapter 6

Conclusions

The goal of this master thesis is to design and implement prototypes which solve the
consistency verification problems in model engineering.

We started from the introduction of consistency problems in model engineering. After that,
the project “Using ATL for Checking Models” was studied and served as a good example for
us. This approach introduces the extension of constraints with additional information and
can be used for any metamodel and in several contexts for consistency verification.

Before we started to implement our first prototype, the technology “Business Rules” was
introduced and discussed in detail, which is one of the key components used in our first
prototype. One of the main advantages of this technology enables the separation of
consistency verification logic from the application code; the other is the flexibility of defining
rule action part to handle the inconsistency. Also the performance of the business rule
engine is impressive. Transformation need be carried out from OCL to ILOG rule language
here. Due to the different structure and semantic of these languages, one may wonder
whether this mapping is applicable. Indeed, sometimes a direct mapping is not possible.
But thanks to the Octopus generated Java code and the direct Java method invocation ability
in ILOG rule, no information is missing after the transformation.

The second prototype is based on AOP and back navigation algorithm. A general AOP
approach with poor performance was first presented. Especially for large modeling project,
it is by no means acceptable. In the second version, improvement was achieved by
combining the back navigation algorithm with AOP. By doing so, the pointcut and advice
can all be strictly defined.

 65

Appendix A

UML Diagram of Royal and Loyal

 66

Appendix B
Infrastructure.InvCheckInfrastructure

Infrastructure.WeakRefInstance_Inv_Pair

 67

Infrastructure.WeakRefInstance_Inv_Set

Infrastructure.Class_Inv_Pair

 68

Infrastructure.Class_Inv_Set

 69

References
[1] Octopus Official Website
URL: http://www.klasse.nl/octopus/index.html

[2] Octopus Documentation
URL: http://www.klasse.nl/octopus/octopus-developer-pack.zip

[3] ATL Official Website
URL: http://www.eclipse.org/gmt/atl/

[4] ILOG Business Rules Official Website
URL: http://www.ilog.com/products/jrules/

[5] AspectJ Development Tools (AJDT) Official Website
URL: http://www.eclipse.org/ajdt/

[6] Object Management Group, Model Driven Architecture Official Website
URL: http://www.omg.org/mda/

[Xue05] Meng Xue, OCL Engine, Technical University Hamburg Harburg, 2005,
http://www.sts.tu-harburg.de/pw-and-m-theses/papers.html/

[Jouault05] Jean Bezivin, Frederic Jouault, Using ATL for Checking Models, University of
Nantes, 2005, http://tfs.cs.tu-berlin.de/gramot/FinalVersions/PDF/BezivinJouault.pdf/

[Warmer03]Bast, W., A. Kleppe, and J. Warmer, MDA Explained: The Model Driven
Architecture: Practice and Promise, Addison Wesley, 2003.

[Akehurst01] D. H. Akehurst and B. Bordbar, On Querying UML Data Models with OCL,
<<UML>> - The Unified Modeling Language, Modeling Languages, Concepts and Tools, 4th
International Conference, Toronto, Canada, 2001.

[Booch99] Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified Modeling
Language User Guide, Addison-Wesley, 1999.

[Eriksson00] Hans-Erik Eriksson and Magnus Penker, Business Modeling with UML,
Business Patterns at Work, John Wiley & Sons, 2000.

[Kleppe03] Anneke Kleppe, Jos Warmer, and Wim Bast, MDA Explained; The Model Driven
Architecture: Practice and Promise, Addison-Wesley, 2003.

[Kleppe03] Jos Warmer, Anneke Kleppe, Object Constraint Language, Getting Your Models
Ready for MDA, Second Edition, Addison Wesley, 2003.

[OCL03] Response to the UML 2.0 OCL RfP, revision 1.6, OMG document ad 2003-01-06.

[Richters01] Mark Richters, A Precise Approach to Validating UML Models and OCL
Constraints, Logos Verlag Berlin, 2001.

http://www.klasse.nl/octopus/index.html
http://www.klasse.nl/octopus/octopus-developer-pack.zip
http://www.eclipse.org/gmt/atl/
http://www.ilog.com/products/jrules/
http://www.eclipse.org/ajdt/
http://www.omg.org/mda/
http://www.sts.tu-harburg.de/pw-and-m-theses/papers.html/
http://tfs.cs.tu-berlin.de/gramot/FinalVersions/PDF/BezivinJouault.pdf/

 70

[Rumbaugh99] James Rumbaugh, Grady Booch, and Ivar Jacobson, Unified Modeling
Language Reference Manual, Addison-Wesley, 1999.

[Arthorne04] John Arthorne, Chris Laffra, Official Eclipse 3.0 Faqs, Addison-Wesley, 2004.

[Gamma03] Erich Gamma,Kent Beck, Contributing to Eclipse: Principles, Patterns, and
Plug-Ins, Addison-Wesley, 2003.

[Richters01] Mark Richters and Martin Gogolla, OCL - Syntax, Semantics and Tools. In Tony
Clark and Jos Warmer, editors, Advances in Object Modelling with the OCL, pages 43–69.
Springer, Berlin, 2001.

[Kiczales01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,J. Palm, and W. G. Griswold,
An overview of AspectJ, Springer-Verlag, June 2001.

[Holzner04] Steve Holzner, Eclipse Cookbook, O'Reilly, 2004.

[Gallardo03] David Gallardo, Ed Burnette, Robert McGovern, Eclipse in ActionA Gudie For
Java Developers, Manning, 2003.

[Colyer04] Adrian Colyer, Andy Clement, George Harley, Matthew Webster, Eclipse AspectJ:
Aspect-Oriented Programming with AspectJ and the Eclipse AspectJ Development Tools,
Addison Wesley, 2004.

[Briand04] L. C. Briand, W. Dzidek, Y. Labiche, Using Aspect-Oriented Programming to
Instrument OCL Contracts in Java, Technical Report SCE-04-03, Carleton University, 2004
http://www.sce.carleton.ca/Squall/pubs/tech_report/TR_SCE-04-03.pdf

http://www.sce.carleton.ca/Squall/pubs/tech_report/TR_SCE-04-03.pdf

