Technische Universitat Hamburg-Harburg

Prototypesfor Solving Consistency Problems
In Model Engineering

Master Thesis

Submitted by:
Meng Xue
I nformatik-Ingenieurwesen

Matriculation Number: 17263

Supervised by:

Prof. Dr. Ralf Moller (STS)
Prof. Dr. Rolf-Rainer Grigat (T11)
M.Sc. Miguel Garcia (STS)

Hamburg, Germany
7th January 2006

Declar ation

Hereby | declare that this work has been prepared by me, all literally or content-related
guotations from other sources are clearly pointed out, and no other sources or aids than the

ones that are declared are used.

Meng Xue

Hamburg, Germany
7th Jan. 2006

Acknowledgement

| would like to thank Prof. Dr. Ralf Méller and Prof. Dr. Rolf-Rainer Grigat for giving me the
opportunity to work on this thesis project under their supervision.

| would also like to thank M. Sc. Miguel Garcia, who was very helpful in providing advice
and direction on this thesis.

This project could not have been as fruitful as it was, without the support, interest and inputs
from individuals and their willingness to share their experience and knowledge, and the time
given to discuss related topics.

Table of contents

Abstract 5
Chapter 1 Overview 6
Chapter 2 Case Study 7
21 US ng ATL for Check|ng Modds ... 7

2.2 Summary ... 10
Chapter 3 Introduction to ILOG Business Rules 11
3.1 The Chal | e']ge and &l ut| (0] ERE R P P PP PP P PP PP PP T PP PR PP PP 11
3.21LOG Bus ness Rule Stud|o Overv|aN ... 12

3.3 Maln Features Of ILOG Bus ness Rule Stud|0 ... 13

34 Concepts .. 13

35 Summary ... 17
Chapter 4 Prototype Based on Business Rules: 18
4.1 Advant@& Of Applyl ng Bus ness Rul& ... 18

4.2 Transformatlon from OCL |nvar|ants to Bus ness Rul& .. 19
4.2.11LOG Rule Languwe ST UCTUIE =+ v v e rer e e sttt 19

4.22 Octopus Java Code Ga']eran (0] LR R T TP P P P PP P PP P PRSP PRPTEP 21

4.2.3 Mappl ng from OCL tO TR sreeerereeereeeee e 24

4.2.4 Chang& Made to Octopus .. 29

4.3 Runt|me Executlon .. 32

4.4 Summary ... 35
Chapter 5 Prototype Based on AOP and Back Navigation Algorithm 36
51 Gma‘al AOP Approach ... 36

5.2 AOP and Back Na\llgatlon Approach ... 40

521 The noAccounts |nvar|ant Exarnple .. 40

522 Ge’]eral Octopus Gma‘ated Non Sdeeff&t_free Mahod Pattern:- - eoeeeeererreremeime 42

523 PO' ntcut for Am|at|on C|a$.. 44

524 POI ntcut and Adv|ce for al 1 (010 210 = R RR T T P P P T PP P PP P P PP PP PR PP PIPPP 48

525 Back Na\llgatlon Algorlthm .. 50

5.2.6 Dra\Nback Of al 1 nstances and Weak Refera']ce ... 56

527 Other S U (2o R R TY PR TS 58

528 Consgmcy Ver|f|cat|0n |nfraﬂructure ... 59

529 AspectJ Code Ta'npl e (= LR PP P PP PP P P PP PP P PP PP 59

5.2.10 Code Ga']eratlon [00 = o R T PP P P P PP P PP PP PR PR PP PP PP 61

5211 |mp|a'ne']tat|on ... 61

5 3 Summary ... 63
Chapter 6 Conclusions 64
Appendix A 65
Appendix B 66
References 69

Abstract

Today, the analysis and design of software systems rely heavily on modeling. In model
engineering, a number of models are produced during the software development process and
MDA inparticular. These models are usually expressed in UML and should be related in
different way to each other. One of the most important relationships between them is that
they should remain consistent during the lifetime. In object oriented world, the Object
Constraint Language (OCL) is introduced to define constraints on UML models, namely, a
means to define consistent models. The maintenance and verification of consistency should
also be performed efficiently at runtime. Prototypes for such consistency verification
infrastructure areto be designed and implemented. Putting these questions into the
discussion and trying to find answers are the main topics to be addressed in this master thesis.

Chapter 1

Overview

Nowadays, object oriented modeling is mature enough and applied widely to provide a
normalized way of designing software systems. In this engineering process, models can be
viewed as an abstraction of artifacts and are expressed by using a suitable modeling language.
However, this is usually not enough in practice. Additional consistency rules need be
specified. For instance, imagine that we are designing a human resource management
system for a company and have defined a new class named Enpl oyee with the attribute age of
type integer. Any employee with negative age should be considered as an invalid entity.
Actually the attribute age should be constrained to stay inside somerange. If the system ill
accepts employees with invalid age, the consistency is broken. So besides by applying
modeling language to define the models, one needs other approaches to specify the
consistency rules of the whole system. In thisway, the model is said to be consistent.

Here one can formulate the precise definition of consistent model. A model is said to be
consistent when it conforms to the semantics of all the domains involved in the development
process. Normally the consistency rules can be expressed in form of constraints enforced on
models. In response to this requirement, the OMG (Object Management Group) specified
OCL to define constraints on models.

However, the maintenance of consistency always becomes more and more uncontrollable as
the system grows and expands. At runtime, an update may break predefined constraints
and introduce inconsistency. In this case, we prefer to get informed about the situation and
take proper actions to handle it. Manual consistency management is not applicable.
Because it is error-prone in such a complicated engineering process. So prototypes for
reliable consistency management system are expected.

Chapter 2

Case Sudy

In this chapter, we will go through a case study which also deals with model consistency
problems. Itisagood beginning to start from here. Because by learning the case study, we
can gain some inspirations and a few useful tips to implement our own infrastructures.

2.1 Using ATL for Checking Models

This project deals with model consistency problems based on extending the standard object
constraint language (OCL) and ATLAS transformation language (ATL) [3]. Theend
solution has been implemented as an Eclipse based plug-in.

Currently, some tools are available to check OCL invariants on UML models. However,
there are very few tools able to do the same for any metamodel. This is quite inconvenient
for the DSL (Domain Specific Language) approach to model engineering. The DSL
approach promotes the definition of a large number of small domain-specific metamodels,
rather than using asingle and large metamodel. At the present time, few DSL tools are able
to evaluate constraintson models. The objective of this project is to show how existing
model transformation tools, such as ATL, can be used for this purpose.

A very simple DSL called CD for Class Diagrams is used as a motivating example. A
metamodel of CD isgiveninfigure2.1. CD can be considered as a simplified subset of
UML. Every element of aclassdiagram hasaname. Classes can have supertypes and

St ruct ur al Feat ur es, which are Ref er ences to other d asses Or Attri but es.

St ruct ur al Feat ur es have amultiplicity and are typed by ad ass or aDat aType. Packages
are used to structure diagrams by grouping related elements.

~+confents ModelEfement
+HrameE = Sing

?
Package Classiflier +Hype StructuralFoatures
-Hower : Intager
M|
+sh1 ciuralReatures: Wmegw Boolaan
4}‘ -HsUnigue @ Boolean

| | .
DataType N Class +OWrer 4_‘.
HisAbatract - Bookan | |

1| Atribute Reference
+supertypes 0.1 sComainer : Boolean

i

Figure 2.1 Simple Class Diagram M etamodel

The definition of the metamodel is however not complete. One can create models
conforming to CD that are sill not valid classdiagrams. Additionally, constraints should
be defined to complete the specification. To simplify the complete definition, just two
constraints (C1) and (C2) are added.

(C1) A assi fi er names must be unique within a Package
(C2) The name of ad assi fi er should begin with an upper case letter

In order to be automatically verified, constraints must be written in an executable language.
The well-known OCL solution isused here. Invariants must be verified at all times so that a
model is supposed to be in aconsistent state. An invariant is defined in the context of a
metamodel type. It iscomposed of a Boolean expression, which must evaluate to true for
every element of thistype. It is however not aways easy to understand the issue with the
Boolean expression associated to the invariant. Sometimes it is even useful to specify
constraints that should not be violated. When such constraints are not verified, the
consistency of the model is not provably wrong. For example, if (C2) isviolated, in this
case, it should not be considered as an error and does not impact the structure of the
metamodel at all. Onecantresat it just as a style convention. On the other hand, it is critical
if (C1) isbroken. Thisisquite similar to the way that compilers traditionally tag messages
aserror or warning. Anerror is fatal while awarning indicates a potential problem. The
term “severity” is used here to indicate the failure degree of the problem.

So far, the violation of an invariant can only be associated to the constraint itself, its severity
and the violating model element. In order to better inform the user, “description” is used to
state the problem in a human understandable manner. At the end, “location” is also reported
which states the location of the problem in a computer readable format.

Generally speaking, people name the result of verification as a “diagnostic”’. The simplest
form of diagnostic isaBoolean. The true value means the model satisfies all the constraints
whereas false means the model failsto satisfy all of them. If the diagnostic is represented as
an integer, it can be used to encode the failure degree. The above mentioned extension is
also aform of diagnostic. Since the diagnostic is a model, any transformation can be
performed onit. Within an IDE, the diagnostic model can be mapped to the native
representation (e.g. IMarkersin Eclipse). The problems then show up at the corresponding

8

location in the editor and in the "Problems” view, as shown in figure 2.2.

ATL isaQVT-like (Query/View/Transformation) model transformation language. An
execution engine for ATL is available as an open-source Eclipse plug-in. The ATL engine
can be used to verify constraints. The algorithm to create a checking program from a set of
constraints is the following: for each constraint, create an ATL transformation rule so that:

1 The source pattern type of the rule is the context of the constraint.

1 Theguard of the rule contains the negation of the Boolean expression associated to the
constraint.

1 Thetarget pattern of the rule specifies asingle type: Problem, which isto be created on a
match (i.e. on aviolation of the invariant).

1 It will beinitialized using three bindings for: the severity of the invariant, a description of
theissue and itslocation. Since the target element is initialized from OCL expressions
navigating the source model, the implementation of a description as a constructed string
is straightforward.

They implemented the verification of a slightly larger set of constraints on CD modelsin an
Eclipse plug-in using the Eclipse Modeling Framework. They chose to represent class
diagrams textually, using asimple syntax. In this case, the location of a Problem is therefore
composed of aline and a column number. Figure 2.2 shows what is actually presented to the
user when a class diagram contains problems.

4= ATL - Test.km3 - Eclipse Platform . o] |
File Edit Mawvigate Search Project Run Window Help
chj' = Jﬁ'i} ALF B J & J*\'P\P' T Fj %5Debug Ir.n.TL [resource
[£3 Megamod.., 52 _':' 8 m\ B || 5= cutline &2) =]
SN = lpackage Test © alm Ellr““I Metamadel
-+ Package @ Test
B--ﬁ; Tesk e = tE E
LB project 3 class L { " B Cass:
EH oA 4 reference b : b; E-E dass:b
. i ieg B Reference : b
5 3 il :
B Class: C
&
7 class b extends b {
=
g reference b ; A&:
=] H
10
511 abstract class C {
12 1
13} -
1 2
Megamodel Browser | [Preblems 52 xfroperties|C0nsole| e = m|
1 error, 1 warning, 1 info
I Drzscripkion I Mosource I In Foldcr I Laocation I
@ the Class b contains another Feature fincluding inherited ones) with the same name: b Testkm3 | Test line &
(% the abstract Class C has no children Testkm3 Test lime: 11
i the name of Classifier b should begin with an upper case Testkm3 Test line 7
| | | Wrizable | Insert | TGl |

Figure 2.2 Screenshot of the Eclipse Prototype [Jouault05]

The source of an ATL transformation implementing this solution for (C1) is shown in figure
2.3.

-— (C1) Error: the name of a Classifier must
-— be unique within its package.
rule ClassifierNameUniqueInPackage {
from
i : CDIClassifier (
i.package.contents->exists(e |
(e <> i) and (e.name = i.name)))
to
o : Problem!Problem (
severity <- Severity::error,

description <- ’a Classifier of the same name ’ +
’already exists in the same package: ’ + 1.name,
location <- 1i.location
)
3
Figure 2.3 ATL Transformation of (C1) with OCL Extensions [Jouault05]
2.2 Summary

In this chapter we have reviewed a case study which improves the constraint checking in
model engineering. In this approach, constraints are associated to additional information.
This can be, for instance, severity, description and location. The diagnostic resulting from
the verification of constraints is considered as a model, which can then be transformed into
any representation. The ATL language can be used to express constraints on models and the
ATL engine performs the verification in a batch-manner, i.e. not immediately upon an update
is performed, but once the checks are run one after the other. Mechanisms to improve the
efficiency of constraint checking are necessary.

10

Chapter 3

| ntroduction to | L OG Business Rules

Before we start to discuss our prototype, ILOG Business Rules [4] isfirst introduced, which is
akey component used in our first consistency verification infrastructure. Generally speaking,
business rules are precise statements, which describe the enterprise operations, constraints or
definitions applied to businessissues. These rules help the companies achieve better goals,
operate more efficiently and facility the communication between different parties. It isalso
the same case when business rules are applied to information technology field. A typical
product in thisfield is ILOG Business Rules, which allows business rules to be quickly
changed and redeployed without changing the application code, thus reducing maintenance
costs and extending the life of business applications.

3.1 The Challenge and Solution

Nowadays, more and more enterprise applications are developed with the increase in
complexity and the pace of updating different aspects during the implementation time. By
applying the traditional software architectures and mixing different aspects in the same code,
one is not able to handle the complex and voluminous process as the system grows and
expands. It isalso difficult to map enterprise requirements to the implementation and then
trace the implementation back to requirements. The ability to respond quickly to changing
requirements and environmental conditionsis rapidly becoming the key to solving this issue.

Besides that, forward-thinking I T architects consider present and as well as potential future
requirements. Failing to take into account the potential future requirements may eventually
lead to changing many parts of the system. On the other hand, over design resultsin a
difficult-to-control, bloated system. In order to satisfy requirements in business domain,
some architects make the business logic an integral part of the application code. The long
term impact of developing your application in thisway is that changing the business logic
becomes impossible without having to redevelop large parts of the application logic. So the
architects encourage their companies to realize the value of managing business rules as assets
separate from data and code.

A new methodology is specifically targeted the management of this issue, by applying
businessrules. A businessruleis aprecise statement that describes, constrains, or controls

11

some aspect of your business process. The strategic importance of business rulesisto
implement a company's objectives and accomplish the company's vision and goals. With
business rules, one is able to distinguish the business logic from the application logic. In
addition one adds agility and flexibility to the business application by allowing the business
logic to be changed dynamically with very little overhead. Companies who have adopted
business rule management need an enterprise-class Business Rule Management System
(BRMS) to make the running of their business more practical.

3.2 1LOG Business Rule Studio Overview

We want to focus on learning business rule technology, instead of another development
environment. With ILOG Business Rule Studio and ILOG JRules (J stands for Java here),
one uses the familiar Eclipse IDE to embed rules into equally familiar Java/J2EE applications.
ILOG Business Rule Studio is the first business rule authoring, testing and debugging
environment for Eclipse. It enables the development of applications that evolve with
changing business requirements. Powerful reasoning engines execute these businessrulesin
real time to develop the best possible operating decisions, either as operator recommendations
or as automated actions.

:\/ Deploy Rules V"L} ; &
Business Rule el]
Studio JRules Engine ;x5 plication Data
EditDebug
Rules Use:
Application :
i ﬁ'iﬁ San
1 ﬂ Application Logic
{ A End Users
Developer

' Business Application

Figure 3.1 Scenario of Using the Business Rule System [4]

A typical scenario of using ILOG Business Rule Studio and the JRules rule engine isthe
following:

The JRules rule engine executes business rules which implement the business logic. It
handles application data through the application logic.

12

The application logic is not aware of the business logic. It presents the business data to
the users and calls the rule engine when the business logic is applied.

The developer uses Business Rule Studio to edit, debug and test business rules. When
new rules are ready, they can be deployed in the JRules rule engine to change the
business logic on the fly.

3.3 Main Featuresof ILOG Busness Rule Studio

ILOG Business Rule Studio offers a rich, developer-centric environment to author, test and
deploy businessrules. The developer can write and debug Java code and business rules from
the same environment without interfering with each other. The Business Rule Studio is
integrated with any Eclipse-based IDE including IBM's WebSphere Studio Application
Developer.

With Business Rule Studio's embedded rule engine, one can test and debug rules locally
without deploying them to an external rule engine. Business Rule Studio provides a new
Eclipse project type called rule project. It stores resources like rules, packages and ruleflows.
Two perspectives support rule editing and debugging (similar to Eclipse Java editing and
debugging). Text editor isused for rule authoring. The Business Rule Studio text editor
includes all the features of Eclipse's Java code editors. It supports basic editing capabilities.
Advanced capabilities include code completion, syntax checking, auto-indentation and
syntax-coloring. Source code control integration like the most popular CVS is also provided
to facility the working process. Last but not the least, the engine API integrates and controls
the business rule engine using an extensive and comprehensive Java library, which is also
delivered.

3.4 Concepts

Rule Engine
The basic functionality of the rule engine can be described as follows; it:

can read its rules dynamically (at runtime)
reasons on objects it knows

can keep track of changes to the objects it knows
can invoke the firing of rules

The rule engine is service oriented, meaning that it responds to explicit invocations. The
rule engine enables business behavior to be managed separately from the core, code-based
architecture of an application, which also means that it can evolve more rapidly than the code.
The rule engine in ILOG Business Rules operates with rules expressed in the ILOG Rule
Language (IRL), geared specifically for the expression of business rules directly translatable
to rule engine execution.

Therule engine is provided as a set of class libraries, which enable it to be integrated into any
Java application. Architecture is not imposed, which allows the engine to be integrated into

13

an application without constraining the application or technical architecture. The rule engine
can be deployed in this way on the Java 2 Standard Edition (J2SE) platform or on the Java 2
Enterprise Edition (J2EE) platform. The rule engine must be provided with rules, usually in
the form of aruleset (.irl) file, and a set of classes. When the ruleset has been passed to the
rule engine, it is then possible to interact with the rule engine object using the API. When
application objects are inserted into the rule engine object, two things happen. First,
references to the native Java application objects are added to the rule engine. These references
enable the rule engine to monitor the application objects. Second, the conditions of all rules
intheruleset are evaluated. If the conditions of a rule are met, the rule is declared eligible to
execute, or fire.

In ILOG JRules, therule engine is an instance of the 1 | r Cont ext class, so the rule engine is
simply aJavaobject. This class contains all the methods required to control the rule engine.
AnllrContext isalwaysattachedtoanli|rRul eset. The constructor for anl|r Cont ext
may taketheform 11 rContext (11 rRul eset) orllrContext(). IfthellrContext object
is created without aruleset passed as an argument, it will create itsown ruleset. The

Il rRul eset classisused for the management of therulesand I | r Cont ext isused for the
execution of therules. An| 1 rCont ext associates aruleset with application objects and
implements the rule engine that controls the relationship between the rule part of the
application and the application data. An application can contain several rule engine objects.
These can be direct instances of the I | r Cont ext class or instances of derived classes. A rule
in ILOG JRules is represented as an object, which isan instance of theI | rRul e class. The
Il rRul e classisresponsible for the management of rules and is always attached to arule
engine object.

lirContext lIrRuleset lirRule
insert() addRule() getName()
fireAllIRules() addRules() getPacketName()
fireRule() getRule() makeF actony)
execute() parseFile()
executeTask) parseStream()
setMainTask) parseString)
setParametersy) removeRule()
retract() removeRules()
update()

Figure 3.2 APIsof Business Rules

A rule can be executed (fired) by the method I | r Context . fireRul e(). Onecanusethe
methods of the class 1 | r Rul eset to dynamically add/remove rules to/from the ruleset, which
isthe file that contains all defined rules. One can add arule or several rulesto the ruleset by
using the methods addRul e and addRul es of theclass! | r Rul eset. One canremovearule
or several rules from the ruleset by using the methods r enoveRul e and r enoveRul es of the
classi|rRul eset. Rules may be dynamically added, modified or removed from the rule
engine, enumerated and inspected, packaged into sets, and executed individually or as sets.

14

Rules

Business rules are implemented in ILOG Business Rules by expressing them as execution
rulesin the ILOG Rule Language (IRL), where they can be executed by the ILOG rule engine.
Like other programming languages, IRL has a number of keywords, or reserved words. A
rule is defined by means of the rule keyword.

Tule rndeMame {
priority = pricorifyFalue ;
property properiyMName = value:

when { condifions ... }
then { awfoms ... 7}
else { oxfions ...}

Figure 3.3 Skeleton of Rule

An execution rule has an IRL structure composed of a header, a condition part, and an action
part.

The header part defines the name of the rule with ther ul e keyword statement, the
properties, and its priority.

The condition part, which begins with the keyword when, is also referred to asthe
left-hand side (LHS) of the rule. It utilizes the object-oriented structure of Javato
carry out pattern matching on objects. This pattern matching binds variables to objects
and field values. Rule conditions are also used to test field values. This provides a
filtering mechanism for objects.

The action part, composed of one or two parts, is also referred to as the right-hand
side (RHS) of therule. Thefirst part begins with the keyword t hen. The optional
second part begins with the keyword el se. The action part of the rule specifies actions
to be taken if the rule is executed.

Figure 3.4 shows atypical example:

rule FindFilm {
priority = 1;

when {

Filmilanguage == Englizsh: Production¥Year > 1980 & < 1990;: Yt:titled:

Cinemailocation == Pari=: filmTitle == 7t;

showingTaime > 13.00 & < 16.00; Yo name);

b
then {

Sv=temn.out .println("The film: " + 7t + " iz showing at the cinema:

+ Yo

h

Figure 3.4 Example Rule FindFilm

After ther ul e keyword in the first line we find the name of the rule, FindFilm. The second
line expresses its priority by means of the pri ori ty keyword. In this example there are two
conditions. These conditions use the classesFi | mand G nema. InILOG JRules, arule can
have any number of conditions, but a rule without any conditionsisnot allowed. Thet hen
keyword marks the end of the conditions and the start of the actions. In the example, there is

15

only one action: an ILOG JRules instruction that printsthe title of a film showing at a cinema
in Paris.

Execution Object M odel

The eXecution Object Model (XOM) provides classes for arule engine that can be used by
rules written in the ILOG Rule Language (IRL). The XOM can be accessed through classes
of the Factory API. This package provides reflective requests on aruleset and supports
persistence and sharing through an object representation of rules.

ILOG Rule Language

The ILOG Rule Language (IRL) is the executable rule language for ILOG Business Rules.
All businessrules are translated into this language before parsing by the rule engine. IRL
provides arich set of constructs which includes collections, support for relations between
objects, and temporal reasoning. The ILOG JRules rule engine uses various optimization
techniques to improve efficiency in rule processing. An IRL program can be integrated into
multithreaded applications and deployed in environments including J2EE. It also provides
support for XML-based reporting. One of the important features of ILOG Business Rulesis
its Business Rule L anguage support which uses a framework to ensure the translation from
the business rule language to the execution rule language: IRL.

Algorithms

One has a choice of algorithms used during rule engine operation. An algorithm called the
Rete algorithm operates efficiently in the domain of pattern matching. The sequential
algorithm is designed for speed of execution.

The Rete network is used by the rule engine to minimize the number of rules and conditions
that need to be evaluated, compute which rules should be executed, and identify in which
order these rules should be fired. The Rete network includes a working memory and an
agenda for containing and manipulating application objects.

The ILOG JRules sequential algorithm utilizes a dynamic rule compilation that can
significantly improve the speed of rule processing. The performance of an engine will
improve using the sequential algorithm if it is provided with a large ruleset made of basic but
test-intensive rules with static priorities.

Working memory

Under the Rete algorithm, each rule engine in ILOG JRules is paired with aworking memory.
The working memory contains all the objects that need be treated by the rules. Objects can
be added to, updated in and removed from the working memory. In other words, the engine
is aware of the objectsthat are in the working memory and those which are linked to them.

If an object is not accessible from the working memory, it cannot be used by the rule engine.

Agenda
The agenda is where ILOG JRules stores the rules whose patterns are all matched. Any rule

that entersthe agenda is said to be instantiated. The agenda stores rule instances that are
eligible to be fired.

16

3.5 Summary

In this chapter we learned what Business Rules are and what advantages they bring to us
compared to the other traditional methodologies. Then, ILOG Business Rule Studio is
introduced asthe first business rule authoring, testing and debugging environment for Eclipse.
Features and concepts are listed for the reader to gain an overview of the ILOG Business Rule
Studio.

17

Chapter 4

Prototype Based on Business Rules

In the previous chapter we learned the concept of Business Rules and got familiar with the
structure of the rule and rule engine. Due to the separation of the business logic and
application code, we can treat the consistency requirements as part of the business logic in our
case. And with the support of the business rule engine and provided APIs, we can conceive
our first prototype based on Business Rules and manage the consistency problems efficiently.
The infrastructure is implemented as an extension of the Eclipse plug-in Octopus [1], which
supportsthe use of both UML and OCL for modeling.

4.1 Advantages of Applying Business Rules

Model engineering is based on the definition of models. Besides models, additional
constraints are necessary to be specified to improve consistency management. In response to
these requirements, the OMG (Object Management Group) specified OCL to express
constraints on models. OCL usually returns a Boolean value to indicate whether the
invariant is violated or not. However, it is not dways desirable and easy to understand the
issue with only the Boolean expression associated to the constraint. One needs another
mechanism or extension to detect the inconsistency and take the corresponding action.

With the help of Business Rules, one is able to extend the ability of OCL. Not only can
inconsistency be detected as usual, but also proper actions can be carried out if the
consistency is broken. The consistency requirements can be specified in the condition part
of the Business Rules and the problem handling can be done in the action part. How to
handle the issue if the consistency is violated is left to the designer. The infrastructure can
inform the user about the inconsistency by stating the problem in a human understandable
manner. It isalso desirable if the system is able to automatically repair the inconsistency in
some cases. All these can be specified by Business Rules.

18

4.2 Transformation from OCL invariantsto Business Rules

Since OCL is till the standard and most famous language used to define model constraints,
the first step for us to implement our infrastructure is to define a mapping from OCL
invariants to ILOG rule language. One may ask how well OCL invariants can be mapped to
ILOG rule language due to the different language semantics and structures, and whether the
mapping can be carried out without any loss. Before answering those questions, let us take a
deep look at the structure of the ILOG rule language again.

4.2.11LOG Rule Language Structure

A business rule has the following form: IF conditions THEN actions. The keyword when is
used to specify the condition part of arule. The condition part of a rule is composed of a set
of conditions, or patterns, that refer to Java objects. Each pattern is matched, if possible,
with one or more application objects. More precisely, a pattern comprises tests that are
applied to each object in the working memory, and an object is said to match the pattern when
it passes these tests successfully. The pattern is tested by evaluating public attributes and/or
public methods of Java objects in the working memory. The ILOG rule language also offers
afew keywords to facilitate the pattern matching test. They are listed in figure 4.1.

Rule Condition Part

after, before, collect, evaluate,
event, exists, from, in, instanceof,
isknown, isunknown, logical, not,

occursin, tirmeaf, until, wait, when, where

Figure 4.1 Keywordsin Rule Condition Part
Here only some of those keywords are of interest to our case.
1 collect

[?vari abl e:] collect [(expr essi on)] col | ecti onTar get
[where (col | ectionTest; ... collectionTest,)];

Thecol | ect statement is used in the condition part of arule to create a collection object.

The collection object stores instances of the classcol | ecti onTar get that match the
condition. This condition may contain tests on the classfields. The collection object may
be bound to avariable for the scope of therule. Thecol | ect statement may contain alist of
tests on the collection object in the wher e part of the statement.

1 evaluate

evaluate (expr essi on);

19

The eval uat e statement is used in the condition part of arule to test objects of the working
memory. Aneval uat e statement must have a simple condition preceding it that binds a
variable to an object or avalue. Any such variable bound to an object or a value may be
tesed. Note that the statementsnot , exi st's, and col | ect are not simple conditions. An
eval uat e statement istrue if all the tests carried out in the expression aretrue. The
expression may be multiple tests enclosed by braces ({}).

In the case where the condition part of arule ends with an eval uat e statement, the action part
can have an el se part, executed if the eval uat e statement returnsfalse. If it returnstrue,
the t hen part is executed.

1 where

[Aari abl e:] collect [(expr essi on)] col | ecti onTar get
[where(col | ectionTest; ... collectionTest,)];

Thecol | ect statement is used in the condition part of arule to create a collection object.
Thewher e part of the statement may contain tests that the collection object must fulfill. It
may be left empty.

Besides those keywords, ILOG rule language offers also operators, which are a subset of the
operators provided in the Java programming language. Figure 4.2 displays all those
operators.

Operator Operand Type(s) E)peration Performed
object, member object member access
(] array, int array element access
{args) methad, arglist methad invacation
+ otring, String string concatenation
++, -- watiable post-increment, decrement
++, - variahle [pre-increment, decrement
+,-' number unary plus, unary minus
! boalean boolean MOT
{ ey class, arglist object creation
(type) type, any cast (type conversion)
= Y numEer, nurmber multiplication, division, remainder
+, - hurmber, number addition, subtraction
5 string, any string concatenation
<, <= hurmber, number less than, less than or equal
:=-; == nurmber, number greater th.an, greater than or equal
instanceof reference, type type comparisan
== primitive, primitive |equal (have identical values)
I= prirmitive, primitive not equal (have difterent values)
== referenn:é, reference |equal (refer to same ohject)
I= reference, reference not equal (refer to different objects)
[8.8 boolean, boolean conditional AMD
I boolean, boolean conditional OR
= variable, any assignment
i*=, I=, %=, +=, -=, [variable, any assignment with operation

20

Figure4.2 Operatorsin ILOG Rule Language

As one can see, the structure of the ILOG rule language is heavily based on Java language.

Given that Octopus plug-in already provides the functionality of transforming OCL to Java
code, one can take advantage of this available feature. In order to continue our work, one
needs to know how Octopus transforms OCL invariants to Java code first.

4.2.2 Octopus Java Code Gener ation

Octopus defines its own OCL metamodel. Figure 4.3 shows the hierarchy of Octopus OCL
metamodel inalisted view. Every OCL expressionisof type Ccl Expression. The
invariant can be displayed as an AST (Abstract Syntax Tree). It contains different kinds of
sub expressions. During the code generation process, invariant is analyzed and split into
pieces. The corresponding Java code is generated for each sub expression. Depending on
the complexity of each sub expression, simply Java clause or complete Java method may be
created. For example, Vari abl eExp resultsin only a simple Java attribute access, which can
be expressed by stating the variable name. On the other hand, 1 t er at eExp causes iteration
over a Set, which is much more complicated than the first case. Octopus handles such cases
by generating private methods which return the intermediate results. For instance, a private
method which returns the iteration result will be created for | t er at eExp. Those
intermediate results may be used by the public invariant checking method or other
intermediate private method resulted from the parent node. Finally, a public method used
for checking invariant is generated, which is expected to be invoked by the end user.

-
Package Explorer ?g Hierarchy &3 T :’I_; Tl::

Hierarchy : OclExpression
= Cbject
E--E= OclExpression
------ (] IFExp
...... & LetExp
E--& LiteralExp
CollectionLiteralExp
- EnurnLiteralExp
. OclStateliteralExp
-3 CclTypeLiteralExp
& PrimitiveLiteralExp
------ (C] BooleanLiter alExp
=3 mMumericLiteralExp
-3 IntegerliteralExp
“A3 RealliteralExp
(2 ocdUndefinedLiteralExp
i@ StringliteralExp
-2 TupleLiteralExp
------ [C] DclMessageExp
[—]@ PropertyiZallExp
E@ LoopExp
. A3 IterateExp
w3 IteratorExp
== ModelPropertyCallExp
(3 abtributecallExp
=3 MavigationCallExp
------ (C] AssociationClassCallExp
‘@ AssociationEndCallExp
“e{® OperationCallExp
------ [C] UnspecifiedyalueExp
------ (& wariableExp

21

Figure 4.3 Metamodel of OCL in Octopus

In order to better understand the generation process, we take the following OCL invariant
from the famous Loyal and Royal project (UML diagram given in appendix A) as an example:

context Customer
inr =izesigree:
program=s->size() = cards->select| wvalid = true)-rsizel)

Thisinvariant statesthe consistency rule that in class Cust oner the size of associated
progr ans should be equal to the size of those associated car ds, whose atributesval i d are
settotrue. TheAST of the above OCL invariant is displayed in figure 4.4.

- WariableExp> referredVariable: [self]

= YappliedFroperty>
“hssociationEndCallExp? referredidssociationEnd: [programs]
= “appliedPropertys
= DperationCallExpr referrediperation: [size]
{arguments
= {appliedProperty>
- “perationCallExpr referrediperation: [=]
- targumentsF
- “¥ariableExp> referredVariable: [=zelf]
= “appliedProperty>
“hesociationEndCallExp referredhssociationEnd: [cards]
- “appliedPropertys
- «IteratorExp® name: [select]
- {iteratorsr
“Nariablelleclaration? name: [1i_CustomerCard] type: [CustomerCard]
—- Thodyr
- “WariableExpr» referredVariable: [i_CustomerCard]
= YappliedFroperty>
AttributeCallExp? referredittribute; [walid]
- “appliedFropertys
- {perationCallExp> referrediperation: [=]
= {ar gumentsr
‘BooleanliteralExp» spmbol: [true]
—- “appliedPropertys
- OperationCallExp> referrediperation: [=ize]
‘arguments

Figure4.4 AST View of Invariant si zesAgr ee

The AST view shows that this invariant consists of different OCL sub expressions, e.g.,

Vari abl eExps, Associ at i onEndCal | Exps, Oper at i onCal | Exps, At t ri but eCal | Exps and
Bool eanLi t eral Exp. The analysis sequence istop down as shown inthe AST view. That
means if the example OCL invariant is given, one starts from the root of the AST, in this case,
Vari abl eExp sel f. By invoking the get Appl i edPr oper t y, the next sub expression is
returned, namely, Associ at i onEndCal | Exp programs. Following the same way, all the sub
expressions will be traversed and handled. Each kind of OCL expression has its own Java
code pattern. For example, the generated code for Associ at i onEndCal | Exp returns just the
corresponding get t er method of that associationend. Inour case, t hi s. get Progr ams()
is the generated Java code for Associ at i onEndCal | Exp programs. Complicated caseis for
examplel t er at or Exp sel ect, it deals with a selection over a Set, and the selection result is
againaSet. Inorder to make the code more readable, Octopus creates a private method to
calculate the selection over that Set. And this private method will be invoked in the public

22

invariant checking method. The name of the invariant checking method begins with

i nvari ant _ and is followed by the same string as the invariant name if the name is defined in
OCL. If not given, the Java method name begins with i nvari ant _ and is followed by a
number, which is incremented automeatically for each unnamed invariant. Intermediate
private methods follow the similar naming convention, only the name begins with what it
actually performs.

In the final invariant checking method, abool ean variable isdefined. If the invariant is
broken, the bool ean variable is set to false and an | nvar i ant Except i on isthrown.

Figure 4.5 shows the generated Java code by Octopus:

A*% Implements —-r3elect| i CustomerCard @ Customercard | i1 CustomercCard.wsalid
i
private 3Set selectl() |

Set S*(CustomerCard) */ result = new HashSet (| /*CustomerCard®/):
Iterator it = this.f cards.iterator();

while [it.hasNext (]] {1
CustomerCard 1 CustomerCard = (CustomerCard] it.nexti);
if [(i_CustomerCard.f walid == true] | {

result.add(i CustomerCard |;

H
return result:
H

Ju% Tmplements self.programs—->=size () = self.cards-rzelect| i CustomerCard @ C
w
public void invariant sizeslgree()] throws InvariantException {
hoolean result = false;
try |
result = [(this.getPrograms() .size() == =selectl().=si=ze()):

} catch [(Exception e) |
e.print3tackTrace () ;
}

if [! result) |
Jtring mwessage = "invariant sizeslgrees)
message = message + "is broken in object 7
message = message + this.getId3tringi)
message = message + "' of type '" 4+ this.getClass|() .getlame () + ™' 7

throw new InvariantException(this, mwessage):;

Figure 4.5 Generated Java Code of Invariant si zeAgr ee

One may ask why not just simply evaluate the generated public invariant checking methods in
the condition part of the ILOG rule to test whether the consistency is broken or not. The key
isthat public variables should be accessed instead of method callsin IRL condition part as
much as possible in order to improve the performance. Otherwise, the rule engine needs to
reevaluate that method whenever we update the object in the working memory, and will not
detect on its own that arule instance has to be added to the agenda.

23

4.2.3 Mapping from OCL to IRL

The mapping should start from the OCL metamodels, which are exactly what the figure 4.3
displays. Next step, we will explain the mapping for each of these metamodels.

Sometimes, a direct mapping is not possible. In this case, the generated Java method should
be invoked in the IRL condition part instead of formulating the counterpart in the business
rules. Although performing a direct method invocation instead of attribute access may lose
some performance at run time, it guarantees that no information is missing after this mapping
happens.

1 IfExp
Ithasthelf - then - el se pattern. | f corresponds to when in condition part of IRL
language. The other two correspond to the action part. Depending on whether the
condition part is fulfilled, the proper action is carried out.

1 LetExp
OCL: let definedVariable : type = defExp
IRL: Not possible to define new variable in IRL condition part.
Direct method invocation in IRL condition part.

1 LiteralExp

1. CoallectionLiteralExp
OCL: Set {Integer* | Float* | Sring*}
IRL: Not possible to collect primitive types as a Set in IRL condition part.
Direct method invocation in IRL condition part.

2. EnumLiteralExp
OCL: Type::EmunName (e.g. Gender::male)
IRL: JavaType.EnumNameToUpperCase (e.g. Gender.MALE)

3. OCLSateLiteral Exp
No change.

4. OCLTypelLiteralExp
No change.

5. BooleanLiteralExp
No change.

6. IntegerLiteralExp
No change.

7. RealLiteralExp
OCL: RealLiteralExp
IRL: (float) RealLiteral Exp

8. OclUndefinedLiteral Exp
OCL: OclUndefinedLiteral Exp
IRL: null

24

9. SringLiteralExp
No change.

10. TupleLiteral Exp
No change.

OclMessageExp
Not handled by Octupus.

VariableExp
OCL: sif
IRL: ?self

AttributeCall Exp
OCL: attributeName (e.g. name)
IRL: javaFieldName (e.g. f_name)

AssociationClassCallExp
OCL: AssociationClassName (e.g. Membership)
IRL: javaFieldName (e.g. f_membership)

AssociationEndCallExp
OCL: AssociationEndName (e.g. cards)
IRL: javaFieldName (e.g. f_cards)

OperationCallExp

OCL: alllnstances
IRL: className.alllnstances()

OCL: Class operation
IRL: className.opName.(args)

CollectionOper:
OCL: source.count(obj)

IRL: ?countCollection: collect obj Type(source.contains(this))
...2countCollection.size()...

OCL: source.excludes(obj)
IRL: !'source.contains(obj)

OCL: source.excludesAll(coll)
IRL: Stdlib.excludesAll(source, coll)

OCL: source.includes(obj)
IRL: source.contains(obyj)

OCL: source.includesAll(coll)
IRL: source.containsAll(coll)

25

OCL: source.isEmpty()
IRL: source.isEmpty()

OCL: source.notEmpty()
IRL: !'source.isEmpty()

OCL: source.size()
IRL: source.size()

OCL:source.sum()

IRL: It needs iterator to travel through every element to sum them up and is not
supported directly.

Direct method invocation in IRL condition part.

OCL: source = arg
IRL: Sdlib.(setEquals | bagEquals | sequenceEquals | orderedsetEquals).(source, arg)

OCL: source <> arg
IRL:! Sdlib.(setEquals | bagEquals | sequenceEquals | orderedsetEquals).(source, arg)

OCL: source - call
IRL: The sequence can not be guaranteed.
Direct method invocation in IRL condition part.

OCL: source.append(obj)
IRL: The sequence can not be guaranteed.
Direct method invocation in IRL condition part.

OCL: source.at(Int)
IRL: source.get(int — 1)

OCL: source.excluding(obyj)
IRL: ?excludingColl collect obj Type(source.contains(this); !obj.equals(this))

OCL: sourcefirst()
IRL: source.get(0)

OCL: source.flatten()
IRL: Sdlib.(setFlatten | bagFlatten | bagFlatten | orderedsetFlatten).(source)

OCL: source.including(obyj)
IRL: ?excludingColl collect obj Type(source.contains(this) || obj.equals(this))

OCL: source. indexOf(obyj)
IRL: source.indexOf(obj) + 1

OCL: source.insertAt(int, obyj)
IRL: Stblib.insertAt(source, int — 1, obyj)

OCL: source.intersection(set)
IRL: ?intersectionColl collect obj Type(source.contains(this); set.contains(this))

26

OCL: source.last()
IRL: source.get(source.size() — 1)

OCL: source.prepend(obyj)
IRL: The sequence can not be guaranteed.
Direct method invocation in IRL condition part.

OCL: source.subOrderedSet(int, int)
IRL: source.sublist(int, int)

OCL: source.subsequence(int, int)
IRL: source.sublist(int, int)

OCL: source.symmetricDifference(set)
IRL: ? symmetricDiffColl collect objType(!source.contains(this); set.contains(this))

OCL: source.union(sequence)

Depending on the source type, if the type isOr der edSet , no duplicated
objects are allowed in the result set.

IRL: ? unionCall collect obj Type(source.contains(this) || sequence.contains(this))
Otherwise, duplicated case is considered, not supported in IRL.

Direct method invocation in IRL condition part.

OCL: source.asBag()
IRL: Stdlib.collectionAsBag(source)

OCL: source.asSequence ()
IRL: Stdlib.collectionAsSequence (source)

OCL: source.asOrderedSet ()
IRL: Stdlib.collectionAsOrderedSet (source)

OCL: source.asSet ()
IRL: Stdlib.collectionAsSet (source)

OCL: source.ocll sUndefined()
IRL: source == null

LoopExp -> iteratorExp -> Exists

OCL: source->exists(expr)

IRL: ?existsColl: collect objType(source.contains(this); expr)
evaluate(... (?existsColl.size() > 0) ...)

Source code in Octopus:

package com.klasse.octopus.codegen.umi Tol RL.expgenerator s.creator s,

LoopExpl RLCreator

createExists

27

LoopExp -> iteratorExp -> ForAll

OCL: source->forAll(expr)

IRL: ? forAllColl: collect objType(source.contains(this); !expr)
evaluate(... (?forAllColl.size() == 0) ...)

Source code in Octopus:

package com.klasse.octopus.codegen.umi Tol RL.expgenerator s.creator s,

LoopExpl RLCreator

createForAll

LoopExp -> iteratorExp -> IsUnique

OCL: source->isUnique(expr)

IRL: not supported in IRL.

Direct method invocation in IRL condition part.

LoopExp -> iteratorExp -> any

OCL: source->any(expr)

IRL: ? any: objType(source.contains(this); expr)
Drawback: The rule could be fired more than once.

LoopExp -> iteratorExp -> one

OCL: source->one(expr)

IRL: ? oneColl: collect obj Type(source.contains(this); expr)
evaluate(...(?oneColl.size() == 1)...)

LoopExp -> iteratorExp -> collect

OCL: source.collect(expr)

Depending on the argType, if the type is CollectionType

IRL: Direct method invocation in IRL condition part.

Otherwise

IRL: ? coll: collect obj Type(this.assoEnd.equals(source); expr != null)

LoopExp -> iterator Exp -> collectNested
OCL: source.collectNested(expr)
IRL: ? collNested: collect objType(this.assoEnd.equal s(source); expr != null)

LoopExp -> iteratorExp -> select
OCL: source.select(expr)
IRL: ?selectColl: collect obj Type(source.contains(this); expr)

LoopExp -> iteratorExp -> reject
OCL: source.reject(expr)
IRL: ? rejectColl: collect obj Type(source.contains(this); !expr)

LoopExp -> iteratorExp -> sortedBy

OCL: source.sortedBy(expr)

IRL: Not possible to sort objectsin a Set in IRL condition part.
Direct method invocation in IRL condition part.

28

1 LoopExp -> iterateExp
OCL: source->iterate(variable declariation, expression)
IRL: Not possible to define new variable in IRL condition part.
Direct method invocation in IRL condition part.

IRL Template

The next step to implement this extension is to design the general IRL code template. The
key isto build the correct skeleton and put the generated condition code and action code in
their right places. In order to let the reader put more atention to the mapping, we just
simplify the action code to make it report an error message in the console if the consistency is
broken. Later, if necessary, one can extend and generate more complicated user defined
action template by himself.

rul e Rul eName {
when {
?sel f: Sonmed ass();
i RLI nt er medi at eCondi ti onContent // if any
evaluate (!i RLFi nal Condition);

t hen {
out.println("invariant ... is brokenin object" + ?self.getldString()
+ " of type " + 7?self.getC ass().getNane());

b

The dynamically generated contents are Rul eNane, Sonmed ass,

i RLI nt er medi at econdi ti onCont ent and i RLFi nal Condi ti on. Inorderto assurethe
uniqueness of the rule names, they are denominated the same as their corresponding Java
invariant checking method names. Somed ass represents the class that this invariant is
referred to. i RLI nt er medi at econdi ti onCont ent may contain intermediate defined
collection variables depending on the complexity of the invariant. i RLFi nal Condi tion IS
the final condition that should be evaluated by the rule engine. If the evaluation fails, the
error message about the content of the invariant, ID and name of the class is printed in the
console.

4.2.4 Changes M ade to Octopus

Public Attributes:

First of all, the generated Java attributes should have public visibility. Inthisway, the
attributes can be directly accessed in IRL condition part instead of invoking the corresponding
getter andsetter methods.

The change is made in:

package com.klasse.octopus.codegen.umliToJava.modelgenerators.creators;
public class AttributeCreator
fieldl.setVisibility(OJVisibilityKind.PUBLIC);

Effect:

29

e.g. Royal and Loyal Cust oner Class

public String f_name = "";
public String f_title =""
public boolean f_isMale =
public Date f_dateOBirth
public int f_age = O;

fal se;
= nul | ;

Public Navigation Fields:

It is also reasonable to set navigation fields to public and access them directly in IRL
condition part. The change is made in:

package com.klasse.octopus.codegen.umliToJava.modelgenerators.creators;
public class NavigationCreator
fieldl.setVisibility(OJVisibilityKind.PUBLIC);

Effect:
e.g. Royal and Loyal Ccust oner Class

public Set /*(Transaction)*/ f_cards = new HashSet(/*CustonerCard*/);
Public Association End Fields:

For the same reason, we make association end fields public.

package com.klasse.octopus.codegen.umliToJava.modelgenerators.creators;
public class AssocClassCreator

//set association end fields in association class to public

private void commonStuff(OJClass owner, | AssociationClass asscls) {

field4.setVisibility(OVisibilityKind. PUBLIC);
field5.setViisibility(OVisibilityKind. PUBLIC):

//set association end field in base class to public
private void addToBaseType(...){

fieldL setVisibility(OVisibilityKind.PUBLIC):
private void addMultToBaseType(...){

field2.setVisibility(OVisibilityKind.PUBLIC):
private void addMultMultToBaseType(...) {

field3.setVisibility(OVisibilityKind. PUBLIC):

30

Effect:

e.g. Royal and Loyal Menber shi p Class

public Custonmer f_participants = null;
public Loyal tyProgramf_prograns = null;

e.g. Royal and Loyal Customer Class

public Set /*(Transaction)*/ f_menbership = new HashSet (/*Loyal t yProgrant/);
Newly Added Classes

Besides the above mentioned changes, afew new classes are added to redlize the
transformation from OCL to ILOG rules. They are al packed under the same package,
namely, com kl asse. oct opus. codegen. um Tol RL. expgenerators. creators. The
classes are listed in figure 4.6.

== amlToIEL
=l expgenerators
=l [+ creators
u BasicTypelperCallTRICreator. java
u CollectionOperCallIRICreator. java
u ComparatorIRICreator. java
u EnumTypelperCallTRICreator. java
u ExpressionlBICreator. java
u InvHelper=IRICreator. java
u LiteralExpIRICreator. java
u LoopExpIRICreator. java
u OperationCallTRICreator. java
u OwerwritesIRICreator. java
u PropCallIBICreator. java
u TupleTypelBICreator. java

Figure 4.6 Classesfor IRL Generation

Basi cTypeQper Cal | | RLCr eat or handles the transformation of all basic type operation calls,
such as"div", "mod", "size", "concat", etc.

Col | ecti onQper Cal | | RLCr eat or handles the transformation of all collection operation calls,
such as “count”, “excludes”, “includes”, etc.

Conpar at or | RLCr eat or generates the code for the comparison result of two objects, which
could be of any primitive type.

EnunilypeQper Cal | | RLCr eat or generates the code for the enumeration type operation.

Expr essi onl RLCr eat or isthe topmost classin thishierarchy. Herethe OCL expression is
split and sub expressions are delivered to the corresponding creators to be further processed.

31

Li t er al Expl RLCr eat or generates code for Li t er al Exp.
LoopExpl RLCr eat or generates code either for it er at or Exp Or i t er at eExp.

Oper ati onCal | | RLCr eat or generates the code for OCL operations like ocl | sUndef i ned,
ocl | sTypeO, ocl | sKi ndOF , €C.

PropCal | | RLCr eat or deals with the transformation of LoopExp, at t ri but eCal | Exp,
associ at i onEndCal | Exp and associ at i ond assCal | Exp.

4.3 Runtime Execution

With the newly added extension, the user is able to automatically generate not only Java code
but associated IRL rules by opening the Octopus context menu on the Java project and
selecting “Generate Java Code”. After doing that, one can see that the generated IRL rule
files are created under the same directories where the corresponding Java files are located.
Next step, one has to create a Rule project in Eclipse and define the eXecution Object Model
(XOM) asthe previously mentioned Octopus project. Then import the generated IRL rules
in the source directory. After compilation, afile named rul eset . i rl isgenerated, which
contains all defined IRL rulesin asingle file and can be used later by the rule engine.

In realistic application environments, the rule engine is invoked using some Javacode. To
do this one needs a piece of Java code to:

Initialize the Java application

Create an instance of the rule engine

Load some rules

Initialize the working memory with some objects to be processed by the rules

Start the rule engine so that it executes all rules that match the objects in the working
memory

Perform a final Java action such as output analysis, persistence, logging, and shut
down the Java application.

ILOG Business Rule Studio provides a wizard that enables one to generate a Java application
that carries out the steps described above. Thiskind of project is called Java Proj ect for
Rules, which contains a single runnable main class to execute some rules contained in the
output folder of arule project. Figure 4.7 displays the content of this class.

32

7 = S, T
[% package Explorer 52N Hierarchy = O || [z main.itl
by 5

== wpublic class SimpleRuleEngineRunner | -~

1= brstudia-application
S src
=53 (default package)
=- [J] simpleRuleEngineRunner. java
E@,_ SimpleRuleEngineRunner
L @® main(String(])
[rules-runtime - brstudio-rules

b public static wvoid tString[] args) 1
Inputitream stream = SimpleRuleEngineRunner.cl
.getResourcels3tream("ruleset.ir1™) ;

// Load the ruleset

()

IlrRuleset ruleset = new IlrRulesetc():
L"J'"%“a JRE System Library []2"'31-.4-2_—03] boolean parsed = ruleset.parseStream(stream)
[J---%. ILOG_BR_STUDIO_HOME] b/ jrules-enc if {'parsed)
Bl ILOG_BR_STUDIO_HOME libjsam. jar - S

[ILOG_BR_STUDIO_HOME/lib/beel. jar -
-2 brstudia-rules

-2 brstudio-xom // Execute the ruleset

IlrContext context = new IerDntext(rulesetj:_l_vJ
.3

1 i 4 |

Figure4.7 Main Classto Execute Rules
One can now insert objects in the working memory of the rule engine using the Java API:

1. Inthe Javaproject, locate and edit the file Si npl eRul eEngi neRunner . j ava

2. Inthe main method, locate the line that createsthe rule engine (class| | r Cont ext).
Thislineis:
Il rContext context = new Il rContext(ruleset);

3. Insert aline break below and type the code to instantiate the objects.

Each time a new instance is created, the instance should be inserted into the working memory
by calling cont ext . i nsert (i nstance); .

And each time the object is updated in the Java code, the working memory should be
informed. This is done by calling cont ext . updat e(updat edl nstance, true);. The
Boolean argument is set to true, which indicates that the update will cause the agenda to be
refreshed.

At the transaction commit time, cont ext . execut e() isinvoked for consistency checking.
This method executes the ruleflow defined in the context'sruleset. Any inconsistency can be
caught by calling this method. If inconsistency exists, rules are fired and actions are carried
out.

To better understand this process, we take the Royal and Loyal project as example again.

First create a Java project, name it “RandL”. Then add Octopus nature to it and define Royal
and Loyal modelsusing UML. The previously mentioned invariant Si zesAgr ee is defined
here in OCL file to specify the consistency. Here we define only one single invariant in
order to simplify the whole process. The generated Cust oner . i r1 file contains the
corresponding rule. Figure 4.8 displays the generated rule of i nvari ant _si zesAgr ee.

33

rule invariant sizeskgree |

when |
?gelf: Customer():
ffimplements ->select | i CustomerCard : CustomerCard | i CustowerCard.walid = true |
?gelectl: collect CustomerCard(?self.f cards.contains(this): this.f walid == true):
evaluate (!(|?self.getPrograms|().=size() == [(?selectl.=sizei)))]):

}

then {

out.println("invariant sizeslgree is broken in okject™ +
Igelf.getlId3tring() + ™ of type "™ 4+ Pzelf.getClass|() .getMame ()] :

Figure 4.8 Generated Rulei nvari ant _si zesAgr ee

Next, one creates a Rule project called RL_Rul es and associates the eXecution Object Model
(XOM) to the previously mentioned Octopus project, namely, “RandL”. I mport the
Custoner.irl filetothesrc directory in the Rule project and compile it, afile named

rul eset.irl isgenerated, which contains all defined IRL rulesin this project and can be
used later by the rule engine, though in this case, just a single rule has been defined.

Last step, one has to create a “Java Project for Rules” to executetherules. We name the
project RandLJavaPr oj ect 4Rul es. Locatethefile Si npl eRul eEngi neRunner . j ava and
add the following code below I | r Cont ext context = new Il rContext (rul eset);.

fiTest
CustomerCard cl
CustomerCard ci

new CustomerCardl():

new CustomerCard():
Customer ¢ = new Customer ("Xue®™, "Mr", true):

cl.zetowner (o) ;
cl.f walid = false;

CZ.3etOowner (&) ;
cZ.f wvalid = fals=e;

LoyvaltyProgram objPl = new LoyaltyProgrami) :
et objfet = new Hashlet () :

obiZet.add (obhiF1l):

c.setPrograms (okh]3et)

cohtext.insert (o) :

System.out.println("First Execution®™):
context.execute (] ;

Here two Cust omer Car d instances are created and associated to a Cust ormer instance.
Initially the two Cust oner Car d instances are all setto invalid (f _valid = false). Thena
single Loyal t yPr ogr aminstance obj P1 is created and associated to the same Cust omer
instance. Next, the Cust ormer instance should be added to the working memory by calling
context.insert(c). Inorderto distinguishthe execution sequence, a string is printed in
the console before each time the execut e() iscalled. According to the definition of
invariant Si zesAgr ee, the invariant is broken at the first execution time (size of Pr ogr ans

34

equals one, while size of valid Car ds equalszero). The following error message is printed
out in the console.

First Execution
invariant sizesbgree is broken in ohject XEue of type BRandl.Customer

Next, we continue our work and add the following lines below the first execution.

cl.f wvalid = true;
context.update(cl, true);

System.out.printlni"Second Execution'™) :
context.execute () ;

Here one of the Cust omer Car d instances is updated to be valid. After the update, one has to
inform the working memory by calling cont ext . update(). Without it, the objects in the
working memory are unaware of the update and thus remain inconsistent. The second
execution causes no action just as one expected. Because the inconsistency is repaired by
setting thef _val i d attribute to true. In that way, the size of Pr ogr ans and the size of valid
Car ds arethe same.

4.4 Summary

In this chapter we implemented our first infrastructure based on Business Rules for
consistency checking. Rule based approach enables the separation of application code and
consistency verification. One of the advantages is that the definition of action pattern is
flexible, though in this chapter we just demonstrated the simplest action, e.g. an error message
isprinted in the console. Other complicated and proper action patterns can be considered to
improve this infrastructure.

35

Chapter 5

Prototype Based on AOP and Back
Navigation Algorithm

In this chapter, a new prototype based on Aspect-Oriented Programming (AOP) and back
navigation algorithm will be discussed. This infrastructure is also implemented as an
extension of Octopus plug-in. The consistency verification should be carried out as a
separate concern. Inthiscase, AOP isthe best candidate technology which can be applied to
handle thiskind of issue. Here back navigation algorithm is used to improve the consistency
verification performance. The reader is assumed to have a basic knowledge of AspectJ.
Reading the paper of my project work [XueO5] is also helpful to better understand this
chapter.

5.1 General AOP Approach

Needless to mention, Octopus also generates Java methods for consistency checking. One
inconvenient thing is that those constraint checking methods have to be invoked explicitly if
we want checks (e.g. evaluation of invariants) to be carried out a runtime. We wish things
get easier. We wish those checking methods to be invoked automatically. AspectJ helps us
in solving this problem. First we can define the pointcut in AspectJ, namely the place where
checking method should be invoked. Then we can define the advice, which checks the
congtraints. If it is broken, in our case an error message is printed in the console.

The general approach without back navigation algorithm is straight forward. Since Octopus
generates the checkAl | I nvari ants method for the Java class if any invariant is defined for
this class, we could in principle call this method after the creation of an instance of this class,
before and after most of the public methods. Notice that checkAl | I nvari ants calls every
single invariant checking method, which is defined as publ i ¢ too. These public invariant
check methods should be excluded from the pointcut, otherwise the AspectJ code leads to a
recursive call. And all gett er methods defined for attributes are also excluded, since they
do not change anything and could be called within invariant checking methods. Octopus
generates three extra methods for every class, which ae toString(),
getldentifyingString() andalllnstances(). They should not be listed in the pointcut
list either (get | dentifyingString() is aways called within invariant checking methods,
default by Octopus) .

36

The starting point of this extension is to design the general AspectJ code templates for
enforcing invariants. Figure 5.1 shows the detailed templates.

//define point cut for invariant check

public pointcut invPointCut(SomeClass self):

(
(execution(public [method-r etur n-type] SomeClass.someM ethod(
[parameter types of the method — if any]))
[llany futhur methods]

)
& & target(sdf);

// Before the execution of every public method in SomeClass
befor e(SomeClass sdif) :
invPointCut(self) {
javautil.List invErrorList=self.checkAlllnvariants();
for (int i=0; i<invErrorList.size(); i++){
System.out.printin(" After the execution of method in Class
+invErrorList.toArray()[i].toString()); }

}

/I After the execution of every public method in SomeClass
after (SomeClass sdif) :
invPointCut(self) {
javautil.List invErrorList=self.checkAlllnvariants();
for (int i=0; i<invErrorList.size(); i++){
System.out.printin(" After the execution of method in Class
+invErrorList.toArray()[i].toString()); }

}

/I After the execution of any constructor in SomeClass
after (SomeClass sdif) :

execution(public SomeClass.new(..))

& & target(saf) {

javauutil.List invErrorList=self.checkAlll nvariants();
for (int i=0; i<invErrorList.size(); i++){
System.out.printin("After the execution of any constructor in Class
+invErrorList.toArray()[i].toString()); }

Figure 5.1 AspectJ Code Templates

The AspectJ source code will be generated according to our templates. Reviewing the
templates, we can find that our main tasks include creating the condition checking method in
Java source code, creating the correct pointcut, listing the class type, the method arguments
and building the AspectJ skeleton. Mogt of the information can be extracted in the Java code
generation process. Here the implementation detail is skipped.

In order to check this general AOP prototype, we create a new Octopus project and define the
UML and OCL filesin the following way.

37

UML file:

W = 52
——Example Model File
=package> Example

=<class> Enployee
<attributes> + name: String:
+ age: Integer;
+ igFromEU: Boolean;
+ agelfEntrvy: Integer;
+ salary: Real:
<operations> + raise3alaryirate: BReal): Real:
“endclass>
<clas=s> Project
<attributes> + name: String:

=endclass>

<associations:-
+ Emplovee.Participants[l..%] <-> + Project.WorkingProject[O..*]:

<endpackage >

Figure5.2 stsDepartment.uml File
OCL file:

package Example

context Employee::isFromEU
init: true

context Employee
def: get¥earsOfiervice (] : Integer = age — agelfEntry

context Employee
inr: age »>= 22

context Employee
inv: age <= 100

context Employee::raiseSalarvirate: Real): Real
bhody: salary¥(l.04rate)

context Employee::raiselSalarvirate: Real): Real
pre: salary > 0 and rate > 0

post: salary - salaryipre

context Project
inr isSupervisorlefined: Participants-rselect (ocllsUndefined())->size)=0

endpackage

Figure 5.3 Constraints.ocl File

Part of the AspectJ code for enforcing invariant is listed below in figure 5.4:

38

hefore (Employee self):
[
(execution (public float Employee.raiseSalary(float)))
|| (execution (public void Employee.setName (String))
|| iexecution (public void Employee.setlge (int)))
|| iexecution (public void Employee.setIsFromEU (boolean))]
|| iexecution (public void Employee.setlgeCfEntry(int))
|| iexecution (public void Employee.setSalary(float)]))
|| itexecution (public veoid Employee.setWorkingProject (Set /* (Emplovee] #/)1))
|| iexecution (public void Enployee.addToWorkingProject (Project)))
|| iexecution (public void Enployee.removeFromWorkingProject (Project))
|| iexecution (public Set /% (Employee) %/ Employvee.getWorkingProjecti)))
| | iexecution (public void Employee.z internaldddToWorkingProject (Project))
|| iexecution (public void Employee.z internalRemoveFromWorkingProject (Project)))
|| iexecution (public int Employee.get¥earsOflervice())
I
sstarget (self) {

Java.util.List invErrorList=self.checkillInvariantsi();

foriint i=0; i<inwvErrorList.=ize(]: i4++]{

SJystemw.out.println("Before execution of method in Employee "+invErrorlist.tolrray()[i].toString()): H

Figure 5.4 AspectJ Code for Enforcing Invariant

If having installed Aspect] Development Tools [5] (adlso a plug-in, available at Eclipse
homepage) in Eclipse, one can test the code. First write a main class to create an instance
and then invoke its methods to deliberately break the invariants. One can see the error
messages printed in the console after running the program, as shown in figure 5.5.

=public olass HainTlmss §

pulilic static veld mainidcrimg(] aras)i
Emg loyss m=mnew Employss [§:
a.mecAalacy (2005
s.catimaSalucy{3p:
AYE L. ONT PEANT LN (TOET] 8
w.mathgm (1) F

Froblwes| Jarwdes Deslurstivn) Conzale £ o
Starmimated? Bainllass [Tovs dpplication) O \Fregres Files Tovel ifrel d & 00 Ukin' jeves exe PO05-3-5 (36047
Before execucion of mechod in Employes invarisnt aslf.age >= 22 is bhroken in ohjecc '' of cype 'Example.Erplopee’

ALtwr exwcution O narthodd LD Emploves LOVeCiant sall.wge == 2T i3 Dooken in object of type 'Exemple.Enployes’

Jfrer the swecuwcisn of any conscructor in Emplowes imvarisant ssif.sags »= 22 {8 beoksn i obiece ' of eype ' Exenple, Enployse’

Before execution of mechod in Employes iovarimnt self.age #= 22 is bhroken in ohjecc '' of cype 'Exoeple.Erployee’

Aftec sxecution O nethod 1n Emploves lnvACiant sell.ege > 37 18 Deoken dim object '' of cype 'Execple.Epployes’
Eeafors swacytisn oFf mechad in Enplowes imvarcisant sslf.sms == 2F i3 Broksn in apjees ‘' af eype ‘Exemple.Exployes’
Postoonditioni=seli.salary # oelf.saleacy fadiled!

Figure 5.5 Result of the Runtime Invariant Checking

The readers may already find a few disadvantages of this approach. According to the
Aspectd code pattern, the pointcuts are defined too generally. For example, in the above
example, every time the public method Enpl oyee. set Nane is executed, the invariants must
be rechecked, though this method does not influence the consistency at all. In this way,
redundancy could be introduced. Another potential problem is the execution performance
of checkAlllnvariants. In the above example, only two invariants are defined for
Enpl oyee and one for Project. That means, if the method checkAl |l lnvariants IS
invoked, all private invariant checking methods will have to be executed. This could
become an overload if too many invariants are defined for a single class. Considering the
redundancy problem and potential poor runtime performance, one needs a more specific
approach to define the pointcuts and invoke the invariant checking methods.

39

5.2 AOP and Back Navigation Approach

In order to avoid redundancy, the pointcut and advice should be defined in a more precise
manner. So we’re interested in defining a calculus that operates on OCL expressions (which
in turn refer to a UML class model) to determine the navigation paths of the data elements on
which the invariant depends. In this approach, a certain invariant checking method need
only be invoked if the data elements on the navigation paths have been updated. Only those
updates may potentially cause the violation of the consistency. The invariant checking
performance can be improved by applying this approach.

5.2.1 ThenoAccount s I nvariant Example

To illustrate, let us go back to the Royal and Loyal project (UML diagram is given in
appendix A) and begin with an OCL invariant.

In the example an invariant noAccount s is given:

cont ext Loyal tyProgram
i nv noAccounts: partners.deliveredServices->
forAl | (pointsEarned = 0 and pointsBurned = 0)
i mpl i es Menbershi p. account - >i senpt y()

the forward-navigation links are:

self +
| - partners.deliveredServices +
| | - poi ntsEarned
| | - poi nt sBurned
| - Menbership. account

Heresel f represents Loyal t yPr ogr am namely, the context class. All the other expressions
(association end call, association class call and attribute call expression) in the naviagtion
links are named data elements in this OCL expression.

Let usimagine the following case. At runtime, the user updates the poi nt sEar ned of
certain Servi ce instance, all the Loyal t yPr ogr am instances which are associated with this
Ser vi ce instance should be checked to insure this noAccount s invariant is not broken. The
attribute poi nt sEar ned can be updated by calling the method set Poi nt sEar ned. In other
words, whenever set Poi nt sEar ned is called, the noAccount s invariant should be rechecked.
The method set Poi nt sEar ned should be defined as pointcut, and the advice should be
defined to invoke the invariant checking method i nvar i ant _noAccount s() of all associated
Loyal t yProgr am instances. The next task isto find all the associated Loyal t yPr ogr am
instances. The starting point isthe owner of the atribute poi nt sEar ned, namely, the class
Servi ce (del i ver edSer vi ces istherole name, defined in UML). To find the correct
associated Loyal t yPr ogr am instances, one should follow the path sel f . par t ner. progr ans
(heresel f represents Servi ce), We denominate this path as back navigation path. The
path returns a collection of associated Loyal t yProgram Since Octopus has already
generated the invariant checking method i nvari ant _noAccount s, we need only to iterate
over the collection and invokei nvari ant _noAccount s on each of them to check the

40

consistency. The back navigation paths of all elementsin noAccount s Invariant arelisted in
the table 5.1 below.

Element back navigation
partners sel f. prograns
del i veredServi ces sel f. partner. prograns
Menber si hp sel f. prograns
account sel f. Menber shi p. progr ans

Table 5.1 Back Navigation Paths of All Elementsin noAccount s

Notice that before one decides the pointcut and back navigation path of a certain data element
in the invariant expression, first one has to find the parent data element or in other words, the

owner of the current data element. Both the pointcut and back link are referred to that parent
element but not the current element. So, for example, if the current data element is

del i ver edSer vi ces, the corresponding parent data element is part ners.

In thisway, the back navigation paths should be

- for[partners] :self

- for [partners. del i veredServi ces] : sel f. prograns

- for [partners. del i veredSer vi ces. poi nt sEar ned] : sel f. part ner. progr ams
- for [partners. del i veredSer vi ces. poi nt sBur ned] : sel f. part ner. programs
- for [Menber ship] : sel f

- for [Menber shi p. account] : sel f. programs

The two main tasks of this approach consist in definining non side-effect-free methods as
pointcut and finding the back navigation path. Here the non side-effect-free methods refer to
those methods which are related to certain data element in the OCL invariant expression and
invoking them may potentially break the invariant, e.g. insert entity, delete entity, update
attribute, insert relationship, etc.

Octopus generated non side-effect-free methodsin invariant noAccounts

Let us consider the invariant noAccount s again and analyze which Octopus generated Java
methods are non side-effect-free in this case.

1. assignment of the self.par t ner s field
add/ removeinsel f. partners

2. assignment of del i ver edSer vi ces field in someiteminsel f .part ners
add / removeinsel f. partners. del i ver edSer vi ces

3. update of the simple-type attribute Ser vi ce. poi nt sEar ned

41

There may be Ser vi ces which are not associated over del i ver edSer vi ces to a
Progr anPar t ner (because it is not a composition). In these cases, the result of the back
navigation should return nul | .

4. update of the simple type attribute Ser vi ce. poi nt sBur ned (Similar to
Ser vi ce. poi nt sEar ned)

5. thecardinality of sel f. Menber shi p isgiven by therolepar ti ci pants onthe Cust oner
side of the association with Loyal t yProgram Itismany inthiscase. Given that for
each Menber shi p aLoyal t yAccount will be collected, the following affects
5.1 assignment of the sel f. Menber shi p field
5.2 add/removeinsel f. Member shi p
5.3 assignment of an existing itemin sel f. Menber shi p

6. assignment of account field in someiteminsel f. Menber shi p
(thereisno add / remove in sel f. Menber shi p. account, cardinality is1. Nor isthere
assignment of an existing item insel f. Menber shi p. account , for the same reason)

7. giventhat no attribute of Loyal t yAccount isreferred to in an iterator (instead a
->i sEnpt y() iscalled) thereis no updated of simple-type attribute in Loyal t yAccount .

Generally speaking, from a class the following is reachable:

- anatribute

- Ltol, an Octopus-managed association with cardinality 1 on the other end

- LtoN, an Octopus-managed association with cardinality N on the other end

- LtoA, the other end is an association class and therefore some of the involved calsses may
access the tuple which they are related to by using the association class name, e.g.
Menber shi p, instead of the other end’s role name.

5.2.2 General Octopus Generated Non Side-effect-free M ethod Pattern

Table 5.2 displays the general non side-effect-free method pattern. The reason we name it
“general” is because that there are certain special cases which differ alittle bit from this
pattern. Those special cases will be discussed later.

attribute - st ()
- st ()
Ltol - z_internalRemoveFrom ()

- z_internalAddTo_()

- sat<Role>(collection)

- z_internalRemoveFrom ()
- z_internalAddTo_()

- addTo_(collection)

LtoN - addTo ()

- removeFrom_(collection)

- removeFrom ()

- removeAllFrom() no args

42

Table 5.2 General Non Side-effect-free M ethod Pattern

The first special case is non Java simply type attribute. Unlike those managed by an
association end or association class, given such an attribute, there is no field for the other
association end (there is no code to manage the association, in fact). Let us consider the
following example.

<cl ass> Person
<attri butes>
nane: String;
age: Integer;
<endcl ass>

<cl ass> Depart nent
<attributes>

nane: String;

manager: Person

enpl oyees: Set (Person);
<endcl ass>

cont ext Depart nment
i nv noSaneNane:
enpl oyees- >sel ect (nanme = manager.nane) -> i sEnpty()

Given that an OCL invariant may refer to the non Java simply type attribute and that we can
detect changes on it, how do we navigate back to the instance where the invariant is anchored?
Although there is still a value relationship between the instances. In this case, the look-up
code for amanager is that

Departnent. al | I nstances -> sel ect (manager . equal s(aManager))

and for an employee is that

Departnent . al | I nstances -> sel ect (enpl oyees. cont ai ns(aEnpl oyee))

In general it takes alot of computing at runtime to resolve such problems.

Three alternatives:

(8 warn about OCL ASTs containing non Java simply type attribute (it is ok if the .uml
contains them and they are not referred to in any OCL invariant)

(b) generate look-up code. Even if this code is functionally correct, its performance will
approach (or exceed) for a deep enough level of the first general AOP approach.

(c) check invariant for al instances

Expressions involving association classes are dealt with in the next section.

43

5.2.3 Pointcut for Association Class

Here besides the description of the pointcut for association class, special cases of association
end are also explained. They areall listed in table 5.3.

LtoA, accessing
the association
class itself

e.g.

aLoyal t yProgra

m Menber shi p.
account - >

i SEnpty()

All methods that

affect
f _menber shi p

Almost the same as LtoN, because this LtoA has cardinality N (would be
same as Ltol otherwise). The differences are that external add / remove
methods are referred to another association end (in this example,
parti ci pants) and the method r enoveAl | From () should be included.

In Loyal t yProgram the following Octopus generated methods affect
f _menber shi p:

public void setMembership(List val)

public void z_internal AddT oM embership(Membership assocClass)
public void z_internal RemoveFromMembership(Membership assocClass)

public void removeFromParticipants(Customer par)
public void removeFromParticipants(Collection oldElems)
public void removeAllFromParticipants()

public void addToParticipants(Customer par)
public void addT oParticipants(Collection newElems)

Last but not the least, set Parti ci pant s is not included in the pointcut,
because it isinvoked inside addToParti ci pant s.

LtoA, accessing
an association
end of an
association class

e.g.

aLoyal t yProgra

m partici pants
->si ze()

All methods that

affect
f _menber shi p

Special case for association end, which is the end of an association class.
The effect is the same as the above case. See explanation below the
table.

LtoA, accessing
an association
class followed by
the assocaition
end

e.g.

All methodsthat affect f _menber shi p in Loyal t yPr ogr amis the same as
the first case. Single method that affects f_participants in class
Menber shi p iScl ean(). See explanation below the table.

44

aLoyal tyProgra
m Menber shi p. p
articipants->s
ize()

Table 5.3 Pointcuts for Association Class

The first case is a pure access to the association class itself. No further explanations are
necessary. Let us consider the second and the third cases. The two queries
aLoyal t yProgram partici pants and aloyal t yProgram Menber shi p. parti ci pants
actually return the same items. Below is the generated Java code

Code for aLoyal t yProgram parti ci pants isshown in figure 5.6.

A% Tmplements the getter for '+ participants : OrderedSet (Customer) '
w
public List [sidcicigehlehfetveg= (] |
List /*({Customer)*/ result = new ArrayList(/*Customer®/);
Iterator it = this.f wewbership.iterator():
while | it.hasMNext() | {
Menbership elem = [(Membership) it.nexti():
result.add| elem.getParticipantsi()):

¥
return resultc;

Figure 5.6 Generated Java M ethod for aLoyal t yProgram parti ci pants

Code for aLoyal t yProgr am Menber shi p. parti ci pants isshownin figure5.7:

/7% Implements -rcollect(i Membership : Membership | i Membership.participants |

i
private List collect3 (] {

List /#(Customer)*/ result = new ArrayList(/*Customer®/):

Iterator it = this.getMewbership() .iterator ()

while ([it.hasNexti) 1
Membership i Mewmbership = [Membership) it.nexc():
Chject bhodyExpResult = i Mewbership.getParticipants():
if | bodyExpResult '= mull) result.add| hodyExpResult | :

i
return result:

Figure 5.7 Generated Java M ethod for aLoyal t yPr ogr am Menber shi p. parti ci pants

In the second case, the element parti ci pant s isnormally treated as an association end. But
what makes it different from a normal association end is that it has an associaiton class
Menber shi p defined. In other words, this association end corresponds to the end of an
association class. According to our general Octopus generated non side-effect-free method
pattern, the following methods should be defined as pointcut.

45

context LoyaltyProgram

public void setParticipants (List par)

public void z_internal RemoveFromParticipants(Customer par)
public void z_internal AddT oParticipants(Customer par)
public void removeFromParticipants(Customer par)

public void removeFromParticipants(Collection oldElems)
public void removeAllFromParticipants()

public void addToParticipants(Customer par)

public void addToParticipants(Collection newElems)

But the correct result is actually:

context LoyaltyProgram

public void setMembership(List val)

public void z_internal AddT oM embership(M embership assocClass)
public void z_internal RemoveFromM embership(Membership assocClass)
public void removeFromParticipants(Customer par)

public void removeFromParticipants(Collection oldElems)

public void removeAllFromParticipants()

public void addToParticipants(Customer par)

public void addToParticipants(Collection newElems)

Thereare no z_i nt er nal RenoveFr onPart i ci pants and z_i nt er nal AddToParti ci pants in
classLoyal t yProgram And instead of observing the method set Parti ci pant s,

set Menber shi p should be watched. Because when set Part i ci pant s isinvoked,
addToParti ci pant s iscalled internally. This method is already under our observation.

In the third case, the association class is followed by the corresponding assocaition end.
The problem isthat if one writes Loyal t yPr ogr am Menber shi p. parti ci pants,
Theparti ci pants isviewed as LtoN association end, and again according to our general
pattern, the following methods are defined as pointcut:

context LoyaltyProgram

public void setParticipants (List par)

public void z_internal RemoveFromParticipants(Customer par)
public void z_internal AddT oParticipants(Customer par)
public void removeFromParticipants(Customer par)

public void removeFromParticipants(Collection oldElems)
public void removeAllFromParticipants()

public void addToParticipants(Customer par)

public void addToParticipants(Collection newElems)

46

which isincorrect again. Actually no methods need be watched here. Because the
preceding element Menber shi p aready generates the correct pointcut. Thereis a method
called cl ean() inthe association class Menber shi p, which we should pay attention to. It
removes both ends of the association. Internal z_i nt er nal RenoveFr omvenber ship (in
Loyal t yProgram) iscalled to catchit. We need to catch it by defining:

context Membership

public void clean()

So the difficulty lies in checking whether the association end corresponds to the end of an
association classor not. This solution will be discussed later in the implementation phase.

Finally, applying the above pattern, one gets the following non side-effect-free methods for
the case of noAccount s invariant.

context LoyaltyProgram

public void setPartners(Set elements)

public void z_internal AddT oPartners(ProgramPartner element)
public void z_internal RemoveFromPartners(ProgramPartner element)
public void addToPartners(Collection newElems)

public void addToPartners(ProgramPartner element)

public void removeFromPartners(Collection oldElems)

public void removeFromPartners(ProgramPartner element)

public void removeAllFromPartners()

context LoyaltyProgram

public void setMembership(List val)

public void z_internal AddT oM embership(M embership assocClass)
public void z_internal RemoveFromM embership(Membership assocClass)
public void removeFromParticipants(Customer par)

public void removeFromParticipants(Collection oldElems)

public void removeAllFromParticipants()

public void addToParticipants(Customer par)

public void addToParticipants(Collection newElems)

context Membership

public void setAccount(LoyaltyAccount element)
public void z_internal AddT oAccount(LoyaltyAccount element)
public void z_internal RemoveFromAccount(LoyaltyAccount element)

47

context ProgramPartner

public void setDeliveredServices(Set elements)

public void z_internal AddT oDeliveredServices(Service element)
public void z_internal RemoveFromDeliveredServices(Service element)
public void addToDeliveredServices(Collection newElems)

public void addToDeliveredServices(Service element)

public void removeFromDeliveredServices(Collection oldElems)
public void removeFromDeliveredServices(Service element)

public void removeAllFromDeliveredServices()

context Service

public void setPointsEarned(int element)
public void setPointsBurned(int element)

5.2.4 Pointcut and Advicefor alll nstances

Theal | I nst ances isaclass operation that can be applied only to classes. In all other cases,
it will result in undefined. For aclass, it resultsin a set of all instances of that class,
including all instances of itssubclasses. From the OCL reference books, al | I nst ances can
only be used as <Type>: : al | I nst ances, however Octopus is more permissive, and therefore
atranslator would be able to handle the variants in syntax.

The variant is whether the source expression isan instance or aclass. Here which specific
instance appears is not relevant (only its declared class counts). So the following two
expressions are the same.

anEnpl oyee. al | I nst ances
Enpl oyee. al | I nst ances

In order to be able to return al instances of a certain class, in Octopus generated Java code,
every instance need be added to a collection held by the class itself, i.e. a static field of type
Col l ection. Seethefollowing generated code for class Loyal t yPr ogr am in figure 5.8.

48

public class LoyaltyProgram
private String £ name = "";
private Set /¥ (Zervice]*/ f partners = new Hash3et | /*PrograwPartner®/);
private List /*(Customer)?*/ £ levels = new LrraylList(/*Servicelevel®/):
private List /*(Customer)?*/ £ menbership = new ArravList| /*Customer®/):
static private boolean useslilllInstances = false;
static private List alllnstances = new ArrayListc();

f*% Constructor for LoyaltyProgram
*

* @param nare
L%
public LoyaltyProgram(3tring hamwme) |
super():
this.setNawe (hame) ;
if | useskllInstances | {
alllInstances.addi(this) !

H

Figure5.8 al I I nst ances in Generated Java Code

There will be no back navigation to a specific instance because the invariant should be
checked in turn not on a subset of instances but on all instances. Let us consider the
following example.

cont ext Loyal tyProgram
inv atrificiallnvl:
partners.all I nstances()->size() <10

In this case, there is no back navigation for al I I nst ances. All we can do isto define a
pointcut on the static variable al | | nst ances of class Progr anPar t ner (part ners istherole
name of the association between Pr ogr anPar t ner and Loyal t yProgram). Inthe advice, we
get the collection of al | | nst ances of type Loyal t yPr ogr amand invoke the invariant
checking method on each of them. Here one should distinguish the two kinds of

al I I nstances. Oneisdefined in the pointcut and the other in advice (always refersto the
context class). They may belong to different class types.

The next issue we should take into consideration is that either an attribute, an association end
or an association class is collected over al | I nst ances. Generally speaking, anything
appearing after al | I nst ances belongsto thiscase. The previously discussed pointcut
pattern is also valid here. But the advice should be defined to invoke the invariant checking
method over al | | nst ances of the context class. One example of thiskind is given below:

cont ext Loyal tyProgram
inv atrificiallnv2:
partners. alllnstances()->sel ect(nunberOf Custoners > 100)->size() <10

Table 5.4 categorizes these two different cases.

<Class>.alll nstances Pointcut on the static variable al | | nst ances
or Advice: invoke invariant checking method on
anl nstance.alll nstances al instances of context class

49

<Class>.alllnstances.attri / asso Pointcut same as the previously discussed
or pattern. Advice: invoke invariant checking
anlnstance.alll nstances.attri / asso method on all instances of context class

Table 5.4 Pointcuts and Advicesfor al | | nst ances

5.2.5 Back Navigation Algorithm

In this section we will describe the back navigation algorithm. In order to better understand
the algorithm, the reader should have basic knowledge about OCL metamodels, OCL AST
and the general AST visitor.

Figure 5.9 displays the OCL metamodels. After exploring OCL AST, some issues relevant
for the implementation of the algorithm to determine backlinks become apparent. For
example, the AST walker will have visited some arguments to an operation before visiting the
operation itself, asaresult of OCL syntax (try with the AST of “a+ b” and walk it with
ASTWalker). Thisisin contrast to the walkers for other grammars one might be used to.

Another particularity has to do with the handling of variable declarations for ‘normal’ usages
of attributes and associations vs. their usage inside the body of a collection operation. Inthe
second case, an intermediate iterator variable is declared (which will range over each item of
the collection). The usages in the body refer to the iterator variable, not to the ‘actual’ items
being iterated.

Package Explorer ?g Hierarchy &3 = :1; ﬁ:

Hierarchy : OclExpression
=2 Object
== OclExpression
------ @ IFExp
------ @ LetExp
=3 LiteralExp
B CollectionLiter alExp
_—C EnumLiteralExp
{2 odstateliteralExp
-3 OcTypeLiteralExp
A2 PrimitiveliteralExp
L8 BooleanLiteralExp
{3 MumericLiteralExp
: i@ IntegerLiteralExp
: L@ RealliteralExp
(3@ ocdundefinedLiteralExp
{8 SkringliteralExp
- TupleLiteralExp
------ ® ocdMessageExp
== Property_allExp
E-{& LoopExp
L@ TterateExp
e (D IteratorExp
=3 ModelPropertyCalExp
(@ AttributeCallExp
{3 MavigationCallExp
------ @ AssociationClassCallExp
-] AssociationEndallExp
@ OperationCallExp
------ @ UnspecifiedyalueExp
------ (& wariableExp

50

Figure5.9 OCL Metamodels

Let usfirst take alook at the AST Tree View of previously mentioned invariant noAccount s,
which isdisplayed in figure 5.10. Herewhat also need be mentioned isthat Ast Wl ker
visitsthe I Ccl Expr essi on in exactly the same sequence as what the whole | Ccl Expr essi on
displaysin the AST Tree View (namely, from top to bottom). The inner

get Appl i edProperty iscalled first before the next appl i edPr operty at the same depth.

bleEsxr
—- “appliedPFroperty>
hzzociationEndCallExp> referredhzszociationEnd: [partners]
- “appliedProperty
- ‘IteratorExp? name: [collect]
S “iteratorsr
“Wariablelaclaration? name: [i_ProgramPartmer] tsxpe: [ProgramPartner]
= hodyr
—|- “WariableExp> referred¥ariable: [i_FrogramFartner]
= YappliedFroperty>
“hesociationEndCallExp® referredidssociationEnd: [deliweredSerwices]
- “appliedPropertyr
- ‘IteratorExp> name: [forsll]
S ‘iteratorsr
“Wariableleclaration? name: [i_Serwice] type: [Serwice]
= hodyr
- WariableExp> referredVariable: [i_Serwvice]
= YappliedFroperty>
“httributeCallExpr> referreddttribute:; [pointsEarned]
- “appliedPropertys
- “perationCallExp> referrediperation: [=]
— farguments’
IntegerLiteralExpr symbol: [0O]
- “appliedPropertys
= “OperationCallExp> referredlperation: [and]
- {arguments
— “¥ariableExp> referredWariable: [i _Serwice]
= “appliedPropertyr
httributeCallExp> referredittribute: [pointsBurned]
=] €appliedProperty>
Z ‘OperationCallExpr referredlperation: [=]
- Larguments >
“IntegerLiteralExp> =ymbol: [O]

=] €appliedProperty>
Z|- “0perationCallExpr referredlperation: [implies]
- Largument s
= <¥ariableExp> referredVariable: [=elf]
= “appliedProperty>
“hesociationClassCallExps referredbssociationClass: [Memberzhip]
- “appliedProperty
—- “IteratorExp> mname: [collect]
- {dterators?
Narigbleleclaration® mname: [i_Membership 1 type: [Memberczhip]
—- “hodyr
= “¥ariableExp> referredVariable: [i Membership]
(=] %appliedProperty>
hesociationEndCallExp> referredhssociationEnd: [account]
- YappliedPropertyr
= “OperationCallExpr referredlperation: [izEmpty]
fargument s

Figure5.10 AST Tree View of Invariant noAccount s

51

Since we are interested in navigation path, in other words, association, only

associ ati onEndCal | Exp and associ ati ond assCal | Exp are of the most importance.
Both of these two expressions have a method called get Sour ce() , which returns the referred
variable of the current expression. We know that the attribute or association will in fact
range over a collection, and that the iterator variable stands for one element of that collection
at atime. For example, get Sour ce() returnsi Vari abl eExp “i _Progr anPar t ner ” for the
Associ at i onEndCal | Exp “del i ver edServi ces”. But anl Vari abl eExp has no method
get Source(). Neither doesit haveitsget Ref erredVvari abl e(). Therefore,

| Associ ati onEndCal | Exp and | Associ ati onCd assCal | Exp (once visited) can only trace
their anchor back to the | vari abl eExp. But what this| vari abl eExp iterates over, cannot
be determined unless intermediate infomation has been kept. Only in this way one can know
to whomthis| Vari abl eExp should be anchored. Listsf_Variandf_ForwardLi nk are
defined to record intermediate information. The former records all visited

| Vari abl eDecl ar at i on, the latter saves the forward navigation path, which will be used to
build the back navigation path. These two lists are always assumed to have the same size.

Figure 5.11 displays the content of the back navigtion algorithm.

Aspect Jl nvari ant Vi si t or implements| Ast Vi si t or {

Li st f_gatheredStuffs

-- save all visted | AssociationEndCall, 1AssociationClass or | Attribute, without

-- repetitation. In the case that the same | AssociationEndCall, | AssociationClass or
-- | Attribute appears more than once, in order to avoid creating the pointcut more than
-- once, not part of the algorithm

Li st <lvari abl eDecl arati on> f_Vari

-- save all visited I VariableDeclaration

Li st <String>f_ForwardLi nk

-- save the back navigation forwardly, later one can build the correct back naviation
-- by traversing the list reversely

Bool ean f _Al I I nstances_visited = fal se;

-- aflag to indicate if alll nstances has been visited in this particilar OCL branch

vari abl eExp {
Check the name of the referred variable, if it equals “sel f *{
Cleanf _Vvari,f_ForwardLi nk
Setf Alllnstances_visitedtofal se

}
}

vari abl eDecl ar ati on{
Add the name of variable declarationtof _Vari
}

oper ati onCal | Exp{
if the name of referred operation equals “al | I nst ances™{

f_Alllnstances_visited = true,
No back navigation, all instances should be checked

}

52

associ at i onEndCal | Exp{
If name of referred variable does not equal “sel f *{
Get the index of thenamein f_Vari
If the index does not equal thesizeof f _vari — 1 {
Only keep the first index + 1 itemsin
f_Vari, f_ForwardLi nk

}

If for the case that
this associationEnd is an end role of an associationClass
-- 9. AssoEnd parti ci pant s isthe end role of AssoClass Menber shi p
and
this associationEnd is preceded by exactly that corresponding associationClass
-- €.0. Loyal t yProgr amMenber shi p.parti ci pants,
{
back navigation returns the name of the association class -- e.g. Menber shi p
add the back navigation of this associationEnd to f _For war dLi nk
}
else
{
back navigation returns the name of the other association end
add the back navigation of this associationEnd to f _For war dLi nk

}

Iff _All I nstances_visited equals true

{
No back navigation, all instances should be checked
}
else
{
Build the correct back navigation by traversing all itemsinthe f _For war dLi nk
reversely
}

}

associ ati onC assCal | Exp{
If name of referred variable does not equal “sel f ”’{
Get the index of the nameinf _Vari
If the index does not equal the sizeof f _vari —1{
Only keep the first index + 1 itemsin
f_Vari, f_ForwardLi nk
}
}

add the back navigation of this associationEnd to f _For war dLi nk

Iff _All I nstances_visited equals true

{
}

No back navigation, all instances should be checked

53

else

{

Build the correct back navigation by traversing all itemsinthe f _For war dLi nk
reversely

Figure5.11 Back Navigation Algorithm

Inthe AST, the referred variable “sel f ” represents the context classitself. Inasingle OCL
invariant expression, “sel f ” can appear more than once. Every time “sel f ” isvisited, it
means everything starts from the beginning (for example, in the noAccount s invariant
example, “sel f” occurstwice). The previously recorded information, e.g. the forward
navigation path or the names of visited variable, becomes useless. All information in the
algorithm must be reset to the initial conditions at thispoint. It isdoneinvari abl eExp.

Theal I I nst ances inan AST isactually a parameterless operation. See the following
example:

cont ext Enpl oyee
i nv whatlsAlllnstances :
al l I nstances()->size() < 10

=- <WariableExp> referredvariable: [self]
El <appliedProperty =
LB «operationCallExp> referredOperation: [Oclany: alllnstances]
: - <arguments s
El <appliedProperty =
= <operationCallExp> referredOperation: [size]
i - <arguments s
=8 <appliedProperty =
=- <operationCalExp= referredOperation: [<]
EI <arguments =
<IntegerLiteralExp> symbal [10]

Figure5.12 al I I nst ances in AST

So one needs to check each oper at i onCal | Exp and catch the case that the name of referred
operation equals “al | I nst ances”. No back navigation path needs to be computed here and
neither do those elements afterwards on the same branch.

Fromassoci ati onEndCal | Exp Or associ ati onCl assCal | Exp one can get the name of
corresponding referred variable. The index (depth) of that referred variable is calculated and
thefirst index + 1 itemsinf _For war dLi nk bulid the forward back navigation, one only
needs to rebuild the correct result by traversing all itemsin the f _For war dLi nk reversely.

Special case isthe pattern associ ati ond ass. associ at i onEndCf That Associ ati onCl ass
should be treated differently from normal association end. In this case the back navigation
of the associ ati onEnd should be the name of the association class itself but not the name of
the other associationend. Table 5.5 lists the case for parti ci pant s.

54

OCL Expression Back Navigation Path of partici pants

Loyal t yProgram parti ci pants pr ogr ans

Loyal t yProgram Menber shi p. parti ci pants Menber shi p. progr ans

Table 5.5 Back Navigation Paths of Two Different parti ci pants
This algorithm has been intensively tested on all the OCL invariants provided in the Royal
and Loyal project and proved to work correctly. However, there are some cases where the
current algorithm does not return the expected back navigations.

Let’s assume the following UML:

<package> myoc

<cl ass> Depart nent
<attri butes>

nane : String;
<endcl ass>

<cl ass> Enpl oyee
<attri butes>

age : Integer;

addr AsAttr : Address;
<endcl ass>

<cl ass> Address
<attributes>

nunber : | nteger;
<endcl ass>

<associ ati ons>
Depart ment . dept Of GoodEnp [O0..*] <-> Enpl oyee. goodEnps [0..*];
Departnment . dept Of BadEnp [0..*] <-> Enpl oyee. badEnps [O0..*];
Enpl oyee. enpRol eWor k <-> Addr ess. wor kKAddress [1];
Enpl oyee. enpRol eHone <-> Address. honeAddress [1];

<endpackage>

and the following OCL invariant:

package nyocl
cont ext Depart nent
i nv probl emNthUni on
goodEnps- >uni on(badEnps) - >f or Al | (age >= 18)

endpackage

The invariant pr obl em t hUni on shows that the usage of age in the body of thef or Al I has
ani _Enpl oyee asreferredvari abl e() (seefigure5.13). Ingenera, after a- >uni on() the

55

iterator variable will be typed with the nearest common ancestor in the type hierarchy. In
this case, both sets under uni on() have the same type.

If fragments of the backlink are collected in the visit order supported by ASTVal ker , the
partial chain at the time of visiting age will be sel f. badEnps. The fact that in addition to
sel f. badEnps, the backlink over the goodEnps association need also be followed at runtime
is overlooked (the same Enpl oyee could be reachable over goodEnps from one Depar t ment
and over badEnps from another, when an update occurs in Enpl oyee. age all relevant
instances of Depar t ment should be returned).

E-ariableExp> referrediariable: [self]
= =appliedProperty >
<hssociationEndCalExp> referredfssociationEnd: [goodEmps]
[=]- =appliedProperty =
B- <0perationCallExp> referredOperation: [union]
El <arguments >
=- <VariableExp> referredvariable: [self]
=8 < appliedProperty =
<hssociationEndCalExp= referredfssociationEnd: [badEmps]
[=]- <appliedProperty =
B- <IteratorExp> name: [Foral]
El <iterators =
: . e ariableDeclaration= name: [i_Employee] type: [Employves]
=8 <hody =
=- <VariableExp=> referredvariable: [i_Employves]
El < appliedProperty =
aatkributeCalExp= referredaktribute: [age]
=8 < appliedProperty =
=- <OperationCalExp> referredOperation: [==]
El <arguments
<IntegerLiteralExp> symbal [18]

Figure5.13 AST of invariant pr obl emW t hUni on

5.2.6 Drawback of alll nstances and Weak Reference

From the Octopus documentation, a drawback to use a static field to hold all instances of a
certain class is that the garbage collection will not do its work properly when an instance is
present inal | | nst ances collection but is not used anymore elsewhere. Having areference
to an object that yet does not prevent the object from being garbage collected is possible in
Javawithj ava. | ang. ref . WeakRef erence. Part of the API is given below:

WeakRef erence(Obj ect referent)
Creates a new weak reference that refers to the given object.

public Object get()
Returns this reference object's referent. If this reference object has been cleared, either by the
program or by the garbage collector, then this method returns null.

Suppose that the garbage collector determines at a certain point in time that an object is
weakly reachable. At that time it will atomically clear all weak referencesto that object and
all weak references to any other weakly-reachable objects from which that object is reachable

56

through a chain of strong and soft references. At the same time it will declare all of the
formerly weakly-reachable objectsto be finalizable. This API allows a programmer to
maintain special references to objects that allow the program to interact with the garbage
collector in limited ways. Detailed information about weak reference can be found in SDK
documentation.

Additionally, an optimization could be made to Octopus generated Java code. Instead of
generating the code like:

static private hoolean useslilllInstances = false;
static private List alllnstances = new ArrayListi():

S% Constructor for LovaltyFrogram
W

* @Aparam name
L
public LoyaltyProgram (3tring nsme] |
super () ;
this.setName (name) ;
if [usesillInstances | |
alllnstances.add(this) ;

+

Figureb5.14 usesAl | I nstances in Octopus Generated Java Code

one could generate usesAl | | nst ances field to befi nal and set it to t r ue for some classes.
That way, the compiler can optimize away unreachable code in the then-part of

if (usesAlllnstances)

Another argument for declaring that field f i nal isthat it does not make sense to make it go
fromf al se to true at runtime, as there is no way to know what instances might have been
created beforehand and still be reachable onthe heap. Setting it fromt r ue to f al se instead
would be reasonable, resulting in freeing the weakRef er ences that collect al | | nst ances.

Let us consider the following invariant:

cont ext Depart nment
i nv nunber Enpl oyees:
sel f. enpl oyee->si ze() <= Enpl oyee. all I nstances()->size()/2

In the example, we will assume that unlinking an enpl oyee from the depar t nent makesit a
candidate for garbage collection. In terms of management of the static variable

Enpl oyee. al | | nst ances, assuming the pattern based on WeakRef er ence is used, one has
the items of that collection unchanged, only awrapped value in WeakRef er ence to that

enpl oyee (which goesto null).

57

5.2.7 Other |ssues

No updates during the evaluation of invariants should be assumed. Once the instances
returned by the back navigation have been determined, the next step consists in invoking the
invariant checking method, which is supposed to be side-effect-free. Otherwise, the
pointcuts to detect state updates will be activated. This should be considered as an error or
an exception.

It does not appear that during the evaluation of invariants, intermediate results would result in
the instantiation of business domain objects. Thereis no object instantiation construct in
OCL. One needsresorting to invoking a user-defined operation to achieve that. All OCL
self-provided operations (e.g. si ze() , asSequence(), ocl | sUndef i ned()) do not influence
the business domain objects. An OCL expression containing a user-defined operation cannot
be considered to be side-effect-free.

After the back navigation path is computed, one can take the advantage of the Java code
generation functionality provided by Octopus. Here asingle OCL file is generated, which
contains only OCL def expressions of the formz_i nt er nal _I nst ancesAf f ect edBy_BI aBl a.
Each definition expression corresponds to the result of a back navigation path. The result
can either be a collection of instances or a single instance, depending on the multiplicity of the
association. Later this.ocl file will be translated to Java by Octopus. The body of the
AspectJ advice will invoke those generated methods to gather the references to the affected
instances and to wrap them in the WeakReferences before queuing them for evaluation at
transaction commit time.

Figure 5.15 displays the generated defs.ocl of invariant noAccount s.
5] x

context RandLl::ProgramwmParther

def: z internal InstancesAffectedBy deliveredServices 0]
: Collection(RandL: :LovaltyFProgram)
= Programs

context RandLl: :Service

def: z internal InstancesliffectedBy pointsEarned 1()
: Collection(BandL: :LovaltyPrograrm)
= parther.prograns

context RandL::3ervice

def: z internal InstancesliffectedBEy pointsBurned 2 (]
: Collection (BandL: :LoyvaltyPrograrm)
= parther.programns

context Randl: :HMembership
def: z internal InstancesliffectedBy participants 3 (]

: RandL::LoyaltyProgram
= programs

Figure5.15 Generated defs.ocl of Invariant noAccount s

58

5.2.8 Consistency Verification I nfrastructure

In order to perform the consistency verification on models, an infrastructure is needed.
Remember in our case, there are two types of back navigation, or better to say, oneis
computable, the other does not exist (in thiscase, al | I nst ances of the context class should
be checked, so we denote the back navigation path as“al | I nst ances™). Two different
mechanisms are necessary to handle them. For the case that back navigation path is
computable, WweakRef er ence is applied to hold the affected instance. What we also need isa
St ri ng to save the name of the invariant checking method generated by Octopus. These two
build a pair and we name it as WeakRef | nst ance_I nv_Pai r. Again it correspondsto a
single affected instance. To collect all affected instances, WeakRef | nst ance_I nv_Set iS
used. So at transaction commit time, one can iterate over this set and use the Java reflection
to invoke the invariant checking method on each affected instance to check the consistency,
which is done by invoking the method Eval uat eveakRef | nst ance_I nv_Set. If the
invariant is broken, an error message is printed in the console. At the end all instances
which did not break the consistency should be deleted from the WeakRef | nst ance_I nv_Set
and only those broken ones will be kept for rechecking at the next transaction commit time.

For the second case, one has to handle the invariant checking of all instances. Here instead
of affected instance, affected class type should be saved. At the transaction commit time,
one can get al | I nst ances from that class type (by using Java reflection) and then iterate over
each of them to invoke the invariant checking method. Therest isthe same as the first case.
We namethemd ass_Inv_Pair andd ass_I nv_Set .

At last we need aclass| nvCheckl nf rast ruct ur e to hold these two different sets. These
two sets are defined as static fields so that one can access them by calling the class every time.
At transaction commit time, the consistency can be checked just by invoking

| nvCheckl nfrastructure. Eval uat eConsi st ency(), which isalso astatic method. The
complete Java code of this infrastructure is listed in appendix B.

5.2.9 Aspectd Code Templates

Also in this approach one needs to design the general AspectJ code templates for enforcing
invariants for later checking. There are three different cases, depending on whether the back
navigation path exists and the number of affected instances if the path exists. The templates
are shown in figure 5.16.

/[for the case that back navigation exists and a collection of instances are affected
after (SomeClass self) :

(
pointcut generated according to the pointcut pattern

)

& & target(self) {
Collection coll = null;
try{

}

coll = self.z_internal_InstancesAffectedBy_BlaBla();

59

catch(Exception exc){
return; //error message could be printed in the console here
}

if(coll.equals(null)) return;

Iterator it = coll.iterator();

while (‘it.hasNext()) {

Object o = it.next();

WeakReflnstance Inv_Pair pairWi = new WeakReflnstance Inv_Pair(o,
"InvariantCheckingMethodName");

InvCheckl nfrastructure.s WeakRefl nstance_Inv_Set.add(pairWi);

}
}

/[for the case that back navigation exists and a single instance is affected
after (SomeClass self) :

(
pointcut generated according to the pointcut pattern

)
& & target(self) {

Object o = null;
try{
0 = self.z_internal_InstancesAffectedBy_BlaBla();

}
catch(Exception exc){

return; //error message could be printed in the console here
}
if(o.equals(null)) return;
WeakReflnstance_Inv_Pair pairWwi = new WeakReflnstance_Inv_Pair(o,

"InvariantCheckingMethodName");
InvCheckl nfrastructure.s WeakRefl nstance_Inv_Set.add(pairWi);

}

/[for the case that back navigation does not exist
after (SomeClass self) :
(

pointcut generated according to the pointcut pattern
)
& & target(self) {
try{
Class ¢ = Class.forName(“AffectedClassName”);
Class_Inv_Pair pairCl = new Class_Inv_Pair(c, " InvariantCheckingM ethodName");
InvCheckInfrastructure.s Class Inv_Set.add(pairCl);
}
catch(Exception exc){
return; //error message could be printed in the console here
}

}

60

Figure 5.16 AspectJ Code Templates

If the defined back navigation method returns a collection of affected instances, one has first
to iterate over the collection to get each instance, and then add the instance and the name of its
invariant checking method to the invariant checking infrastructure. 1f no back navigation
path exists, the affected class type in stead of instance is recorded. An example of the third
case is given below in figure 5.17:

after (ProgramPartner self) @
(execution (¥ PrograwwParther.setliumberCofCuscomers(..])

1
L& target (zelf) |
try!
Class ¢ = Class.forName ("RandL.LoyvaltyProgram™) ;
Class Inv Pair pairCI = new Class Inv Pair(c, "invariant atrificiallnwvi™);
InvCheckInfrastructure.z Class Inv Jet.add(pairCI):
H
catch(Exception exc) {
return;
}

Figure 5.17 Sample AspectJ Code

5.2.10 Code Gener ation Process

The code generation process is divided into pre-generation phase and formal code generation
phase. Inthe pre-generation phase, both the .uml and .ocl files are parsed and models are
built into memory. During this phase, OCL invariant expressions are visited and back
navigation paths for each data element are computed. Each back navigation path resultsin a
new OCL definition expression in the newly generated def s. ocl file. Now, thedef s. ocl
file and the previous defined .uml and .ocl files build new models.

In the formal code generation phase, again, new models (equipped with operations defined in
def s. ocl file) are built in memory. Invariants of each classarevisited. For each
potentially affected element in that OCL invariant expression, AspectJ file with properly
defined pointcut and advice is created. The AspectJfileis created under the same package
where the corresponding Javafile islocated. The Javafiles for invariant checking
infrastructure are also generated at the end, which are all located under the

src/ I nfrastructure directory.

5.2.11 Implementation

Each Q1d ass hasafield f _hasAspect J of typebool ean. Default value of f _hasAspect J
isfalse. Thisfieldissettotrue if the corresponding Q1d ass has invariant defined and so
the @d ass will be translated to AspectJ.

A new package aspect j gener at or s is created under
com kl asse. oct opus. codegen. um ToJava. New classes related to AspectJfile generation

61

are added here. To study these new classes, we will first go back to class
Tr ansf or mat i onCont r ol | er , where the AspectJ generation starts.

Inthe class Tr ansf or mat i onCont r ol | er, new method gener at eAspect J isadded, where an
Aspect JControl | er instanceiscreated and itst r ansf or m method isinvoked. Inthis

t ransf or m method, the uni nodel ischecked first. If things goes fine, instance of class
Aspect Jl nvari ant sGener at or IS created, which extends Def aul t PackageVi si t or and can
be used to visit the um nodel . Inthiscase only Cl ass isof interest tous. In method

cl ass_Bef or e, each Q14 ass ischecked to seeif it contains invariants. |If so,

Aspect Jl nvari ant Creat or iscreated and itsaddl nvari ant method is responsible for
appending AspectJinfo to QlPackage.

Before continuing, an extension to Ccl Cont ext | npl should be explained. A field

f _correspondi nglavaMet hodNane isadded to Ccl Cont ext I npl . Itsfunction isto save the
corresponding Java method name of the Ccl Context. In

com Kkl asse. oct opus. codegen. unl ToJava. expgener ators. creat ors | nvari ant Creat or,
method addI nvari ant isresponsible for creating the invariant Java method. Extension is
made here

((Ccl Context I npl)cont). set Correspondi ngJavaMet hodNare(| NV_NANE) ;

to save the | NV_NAME to the Ocl Cont ext | npl , SO that next time when the visitorstravelsthis
Qcl Cont ext , it knows what the name of the Javamethod is. So the sequence is important
that gener at eAspect J should be invoked after the invocation of gener at eExpr essi ons.

Back to Aspect JI nvari ant Cr eat or, in method addl nvari ant , Aspect JI nvari ant Vi si t or
is created to processthe invariant. It implements| Ast Vi si t or and takestwo parameters.
One isthe QlPackage, which represents the whole Javamodel. The other isa st ri ng,
which records the Cor r espondi ngJavaMet hodNane.

Take the example again:

cont ext Loyal tyProgram
i nv noAccounts: partners.deliveredServices->
forAl | (pointsEarned = 0 and pointsBurned = 0)
i mpl i es Menbershi p. account - >i senpty()

self +
| - partners.deliveredServices +
| | - poi ntsEarned
| | - poi nt sBurned
| - Menbership. account

Herewe areinterested in| At t ri but eCal | Exp, | Associ ati onEndCal | Exp and

| Associ ati onC assCal | Exp. We need to find the non side-effect-free methods, parent
class and back navigation for each of them. The starting point is the method

addAspect Jt oParent O ass. Hereset HasAspect J isinvoked to set thef hasAspect J to
trueto indicate that the @ d ass contains invariant and should be translated to AspectJ code
later.

For example, when the visitor encountersdel i ver edSer vi ces, the parent classis
ProgranPartner. A pointcut and advice should be generated for Progr anPartner. The
parent class can be computed by:

62

| Classifier ¢ = exp.getSource().getNodeType();

if (cinstanceof Classifierlmpl && !(c instanceof |EnumerationType)) {
Classifierlmpl in = (Classifierlmpl) c;
OJPathName path = GenerationHel pers.pathname(in.getPathName());
OJClass myClass = f_OJPackage.findClass(path);

With the help of St r uct ur al Feat ur eMap, one can get the names of all non side-effect-free
methods. For the case of | Associ at i onEndCal | Exp and | Associ ati onCl assCal | Exp, one
should first check the multiplicity to see whether it’s Ltol or LtoN and then choose the
correct non side-effect-free method pattern, which is done in method
isMultiplicityTypelLtoN.

5.3 Summary

In this chapter, we implemented our second prototype based on AOP and back navigation
algorithm. A simple and straight forward approach was first discussed to illustrate the
benefit of applying AOP technology. Afterwards, what also became clear was that the
pointcut and advice were defined too generally, which may result in poor performance in a
large modeling project. Dueto that reason, a more complicated approach was conceived to
conquer the problem. Back navigation algorithm is used to compute the potentially affected
instances and also in this way the invocation of invariant checking methods can be limited to
the minimum. The improvement of performance is achieved.

63

Chapter 6

Conclusions

The goal of this master thesis is to design and implement prototypes which solve the
consistency verification problems in model engineering.

We started from the introduction of consistency problems in model engineering. After that,
the project “Using ATL for Checking Models” was studied and served as a good example for
us. Thisapproach introduces the extension of constraints with additional information and
can be used for any metamodel and in several contexts for consistency verification.

Before we started to implement our first prototype, the technology “Business Rules” was
introduced and discussed in detail, which is one of the key components used in our first
prototype. One of the main advantages of this technology enables the separation of
consistency verification logic from the application code; the other isthe flexibility of defining
rule action part to handle the inconsistency. Also the performance of the business rule
engineisimpressive. Transformation need be carried out from OCL to ILOG rule language
here. Dueto the different structure and semantic of these languages, one may wonder
whether this mapping is applicable. Indeed, sometimes a direct mapping is not possible.

But thanks to the Octopus generated Java code and the direct Java method invocation ability
in ILOG rule, no information is missing after the transformation.

The second prototype is based on AOP and back navigation algorithm. A general AOP
approach with poor performance was first presented. Especially for large modeling project,
it is by no means acceptable. In the second version, improvement was achieved by
combining the back navigation algorithm with AOP. By doing so, the pointcut and advice
can all be strictly defined.

Appendix A

LoyaltyProgram Customer
name : String ;;;g*_ﬂsihﬁgé"ﬂ
prﬂgmms E‘T‘Jl‘ﬂ“t_ﬂ: -: Ellﬁtm‘lﬂr} . rams e IS.'H‘E.‘IE' H Bﬂﬂtﬂ'ﬂ.ﬁ
T getServices(): Sel{Services) l 5 __g TSarse L dateQiBirth : Date
" 5 ,participants | yomiotal
program | 1 : ago. iniegs
1.7 |partners i age() : Integer
ProgramPartner : owrer] 1
numberCiCustomers ; Integer 0.*
name : String Membership
partner | 1 levels 1 1] 1 cards| 0..
{ordered) |1..* |currentLevel I customerCard
card
ServicelLevel valid : Boolean
- name : String | validFrom : Date
delivered 0. Tiovel account| 0..1 goodThru : Date
____Services | Y- 0..* LoyaltyAccount Et}l_l]l : Color _
Service available points : Integer fprintedName : String
condition : Boolean |Services number : Integer 1| card
pointsEarned : Integer earn(i : Integer)
description : String isEmpty() : Boolean
sarviceNr : Integer T e
calcPoints() : Integer
generatedBy | 1 transactions{ 0.."
Transaction
0.." | points : Integer 0.’
transachons| date * Date transactions
amount: Real
programi) :
LoyaltyProgram
Burnin Earnin
<<datatype>> e g
Date <<enumeration>>
now : Date mb] Color
== == o '
isBefore(l : Date) : Boolean ARy Ciass E'hi'ﬁr
isAfter(t : Date) : Boolean gold
= (t : Date) : Boolean

UML Diagram of Royal and Loyal

65

Appendix B

Infrastructure. | nvCheckl nfrastructure

package Infrastructure;
import java.lang.reflect.#;[]

public class InvCheckInfrastructure |
public static WeakRefInstance Inv Set S UWeakRefInstance Inv Set = new WeakRefInstance Inv Set(];
public static Class_Inv Set 5 Class Inv Set = new Class Inv Seti):

public static void EvaluateConsistency() throws Exceptiond
g_WeakRefInstance Inv Set.EvaluateWeakRefInstance Inv Set (]!
g_Claszs_Inv_Set.EvaluateClass_Inv_3et():

I nfrastructure. WakRef | nst ance_I nv_Pai r

package Infrastructure:;

“import java.lang.ref.®;
import java.lang.reflect.Method:
import utilities.InvariantException;

‘public class WeakRefInstance Inv_Pair {
private Chject £ obj = null;
private WeakReference £ WeakFeference = null;
private String f invMethodName = null;
private boolean f isBroken = false;

k. public WeakRefInstance Inv Pair(Object o, String invMethodName) {
£ ohi = o:
f WeakReference = new WeakReference(f obj):
£ invMethodName = invHMethodName:

7 public Cbhject getChjecti(){
return £ ohj:

= public WeakReference getlWeakReferencel(){
return f_HeakReference:

7 public String getInvMethodWare () {
return £ invMethodNze:

& public bhoolean getIsBroken(){
return f isEBEroken;

3 public void Invoke() throws Exception {
Object o = £ WeakReference.get();
if ['o.equals (nmll)) {
Class aC = o.getClas=();
Method w = aC.getMethod(f invMethodName, null):
try{
m. invoke (o, null);
%
catch (Exception exc)
{
f_isBroken = true;
System.out.println("Invariant broken!'"):
exc.print3tackTrace ()2
System.out.println("™);

66

%
else!
System.out.println(™Ohject GC!7T);

I nfrastructure. WakRef | nstance_I nv_Set

package Infrastructure;

“import
import
import

public

private Set f WeakReflInstance Inv_ Set

java.util.Itcerator;
Java.util.3et;
Java.util.Hashiet;

class WeakRefInstance Inwv Jet {

new Hash3et():;

public void add|WeakRefInstance Inv Pair chjPair){
Iterator it = £ WeakBefInstance Inv_Set.iterator():

while | it.hasNexti(] | {
WeakFRefInstance Inv_ Palr currentPair

if [currentPair.getCbhject () .equals (objPair.getdbhject ())

{WeakRefInstance Inv_Pair)it.next():
L&

currentPair.getInviethodlame () .equals (objPair.gecInvMethodName ()))

return;
i
f_WeakReflInstance Inv Set.add(objPair):

public void cleardll(){

£ WeakBReflnstance Inv Set.clear():

public void EvaluatelWeakRefInstance Inv_ Zet()
Iterator it = £ WeakBefInstance Inv_Set.iterator():

while [it.hasNexti(] | {
WeakFeflInstance Inv_ Palr currentFair
currentPair. Invoke (] :

i

et tewmpSet new HashSet():

it = f WeakRefInstance Inv Set.iteratori()

while [it.hasMNexti(] 1 {
WeakRefInstance Inv Fair currentPair
if (currentPair.getIzEroken|()

tempSet.add (currentPairc) ;

H
f_WeakReflnstance Inv_Set = templ3et;

Infrastructure. d ass_Inv_Pair

package Infrastructure:

“import
import
import
import
import

public

private Class f Class

Java.
Java.
Java.
Jarva.

lang.ref. MeakReference;
lang.reflect.Method;
util.Iterator:
util.List:

utilities. InvariantException;

class Class Inv Pair |
null;

private String £ invlMethodName = null;

private boolean f isEroken

false:

f_Class = classVar;
£ invMethodNamwe invMethodiatme ;

7 public Class getClassType ()

return £ Class;

throws Exception{

(WeakRefInstance Inv_Pair)it.next():

(WeakRefInstance Inv Pair)it.nextij:

public Class Inv Pair(Class classVar, String invMethodName) |

67

= public String getInvMethodMName () {
return f_ianethDdName;

7 public boolean getIsBrokeni){
return £ isEroken:

b public void Invoke() throws Exception{
Method m = £ Class.getMethod("allInstances", null):
Method invMethod = £ Class.getMethod(f invMethodName, null):
Chiject result = w.invoke (null, null) ;

List allIns = [(List)result;
Iterator it = alllns.iteratori():
while | it.hasNext() | {

Object o = it.nexti():

try{

invMethod. invoke (o, null);
}
catch(Exception exc)
{

f isBroken = true:

System.out.println("Invariant broken!"):
exc.print3tackTrace () ;
System.out.println(™m)

Infrastructure. d ass_I nv_Set

package Infrastructure;

rimport Java.util.Iterator;
import java.util.Zet:;
import java.util.Hash3et:

‘public class Class_Inv_Set {
private Set £ Class Inv_Set = new Hash3et():

public void addiClass Inv Pair chjPair){
Iterator it = £ Class Inv Set.iterator():

while [it.hasMNext() | {
Class_Inv Falr currentPair = (Class Inv_Pair)it.next(];
if (currentPair.getClassType () .equals (objPair.getClassType ()] &&
currentPair.getInvMethodNawe () .equals (ochijPair.getInviethodName () 1)
return;

i
£ Class_Inv_3Zet.add{obiPair);

public void cleardll(){
f Class_Inwv_ Set.clear();

public wvoid EvaluatecClass Inv_Set (] throws Exception{
Iterator it = £ Class Inv Set.iterator():
while [it.hasMNext()] 1 {
Class_Inv Falr currentPair = (Class Inv_Pair) it.next(];
currentPair. Invoke (] :

Jet templet = new Hash3et():
it = £ Class_Inv_SJet.iterator();
while | it.hasNext (] | {
Class_Inv FPair currentPair = (Class_Inv_Pair)it.next():
if (currentPair.getIsBrokeni())
tewplet.add (currentPair) ;
i
f Class_Inw_ Set = Cemp3et)

68

References

[1] Octopus Official Website
URL: http://www.klasse.nl/octopus/index.html

[2] Octopus Documentation
URL: http://www.klasse.nl/octopus/octopus-developer-pack.zip

[3] ATL Official Website
URL: http://www.eclipse.org/gmt/at!/

[4] ILOG Business Rules Official Website
URL: http://www.ilog.com/products/jrules/

[5] Aspectd Development Tools (AJDT) Official Website
URL: http://www.eclipse.org/ajdt/

[6] Object Management Group, Model Driven Architecture Official Website
URL: http://www.omg.org/mda/

[XueO5] Meng Xue, OCL Engine, Technical University Hamburg Harburg, 2005,
http://www.sts.tu-harburg.de/pw-and-m-theses/papers.html/

[Jouault05] Jean Bezivin, Frederic Jouault, Using ATL for Checking Models, University of
Nantes, 2005, http://tfs.cs.tu-berlin.de/gramot/FinalV ersions/ PDF/BezivinJouault. pdf/

[WarmerO3]Bast, W., A. Kleppe, and J. Warmer, MDA Explained: The Model Driven
Architecture: Practice and Promise, Addison Wesley, 2003.

[AkehurstO1] D. H. Akehurst and B. Bordbar, On Querying UML Data Models with OCL,
<<UML>> - The Unified Modeling Language, Modeling Languages, Concepts and Tools, 4th
International Conference, Toronto, Canada, 2001.

[Booch99] Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified Modeling
Language User Guide, Addison-Wesley, 1999.

[Eriksson00] Hans-Erik Eriksson and Magnus Penker, Business Modeling with UML,
Business Patterns at Work, John Wiley & Sons, 2000.

[Kleppe03] Anneke Kleppe, Jos Warmer, and Wim Bast, MDA Explained; The Model Driven
Architecture: Practice and Promise, Addison-Wesley, 2003.

[KleppeO3] Jos Warmer, Anneke Kleppe, Object Constraint Language, Getting Y our Models
Ready for MDA, Second Edition, Addison Wesley, 2003.

[OCLO3] Response to the UML 2.0 OCL RfP, revision 1.6, OMG document ad 2003-01-06.

[Richters01] Mark Richters, A Precise Approach to Validating UML Models and OCL
Constraints, Logos Verlag Berlin, 2001.

69

http://www.klasse.nl/octopus/index.html
http://www.klasse.nl/octopus/octopus-developer-pack.zip
http://www.eclipse.org/gmt/atl/
http://www.ilog.com/products/jrules/
http://www.eclipse.org/ajdt/
http://www.omg.org/mda/
http://www.sts.tu-harburg.de/pw-and-m-theses/papers.html/
http://tfs.cs.tu-berlin.de/gramot/FinalVersions/PDF/BezivinJouault.pdf/

[Rumbaugh99] James Rumbaugh, Grady Booch, and Ivar Jacobson, Unified Modeling
Language Reference Manual, Addison-Wesley, 1999.

[Arthorne04] John Arthorne, Chris Laffra, Official Eclipse 3.0 Fags, Addison-Wesley, 2004.

[Gamma03] Erich Gamma,Kent Beck, Contributing to Eclipse: Principles, Patterns, and
Plug-1ns, Addison-Wesley, 2003.

[Richters01] Mark Richters and Martin Gogolla, OCL - Syntax, Semantics and Tools. In Tony
Clark and Jos Warmer, editors, Advances in Object Modelling with the OCL, pages 43-69.
Springer, Berlin, 2001.

[Kiczales01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,J. Palm, and W. G. Griswold,
An overview of AspectJ, Springer-Verlag, June 2001.

[Holzner04] Steve Holzner, Eclipse Cookbook, O'Reilly, 2004.

[Gallardo03] David Gallardo, Ed Burnette, Robert McGovern, Eclipse in ActionA Gudie For
Java Developers, Manning, 2003.

[Colyer04] Adrian Colyer, Andy Clement, George Harley, Matthew Webster, Eclipse AspectJ:
Aspect-Oriented Programming with AspectJ and the Eclipse AspectJ Development Tools,
Addison Wesley, 2004.

[Briand04] L. C. Briand, W. Dzidek, Y. Labiche, Using Aspect-Oriented Programming to
Instrument OCL Contractsin Java, Technical Report SCE-04-03, Carleton University, 2004
http://www.sce.carleton.ca/Squall/pubs/tech report/TR_SCE-04-03.pdf

70

http://www.sce.carleton.ca/Squall/pubs/tech_report/TR_SCE-04-03.pdf

