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Abstract 

 
Today, the analysis and design of software systems rely heavily on modeling.  In model 
engineering, a number of models are produced during the software development process and 
MDA in particular.  These models are usually expressed in UML and should be related in 
different way to each other.  One of the most important relationships between them is that 
they should remain consistent during the life time.  In object oriented world, the Object 
Constraint Language (OCL) is introduced to define constraints on UML models, namely, a 
means to define consistent models.  The maintenance and verification of consistency should 
also be performed efficiently at runtime.  Prototypes for such consistency verification 
infrastructure are to be designed and implemented.  Putting these questions into the 
discussion and trying to find answers are the main topics to be addressed in this master thesis. 
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Chapter 1  

 

Overview  

 
Nowadays, object oriented modeling is mature enough and applied widely to provide a 
normalized way of designing software systems.  In this engineering process, models can be 
viewed as an abstraction of artifacts and are expressed by using a suitable modeling language. 
However, this is usually not enough in practice.  Additional consistency rules need be 
specified.  For instance, imagine that we are designing a human resource management 
system for a company and have defined a new class named Employee with the attribute age of 
type integer.  Any employee with negative age should be considered as an invalid entity.  
Actually the attribute age should be constrained to stay inside some range.  If the system still 
accepts employees with invalid age, the consistency is broken.  So besides by applying 
modeling language to define the models, one needs other approaches to specify the 
consistency rules of the whole system.  In this way, the model is said to be consistent. 
 
Here one can formulate the precise definition of consistent model.  A model is said to be 
consistent when it conforms to the semantics of all the domains involved in the development 
process.  Normally the consistency rules can be expressed in form of constraints enforced on 
models.  In response to this requirement, the OMG (Object Management Group) specified 
OCL to define constraints on models. 
 
However, the maintenance of consistency always becomes more and more uncontrollable as 
the system grows and expands.   At runtime, an update may break predefined constraints 
and introduce inconsistency.  In this case, we prefer to get informed about the situation and 
take proper actions to handle it.  Manual consistency management is not applicable.  
Because it is error-prone in such a complicated engineering process.  So prototypes for 
reliable consistency management system are expected. 
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Chapter 2  

 

Case Study 

 
In this chapter, we will go through a case study which also deals with model consistency 
problems.  It is a good beginning to start from here.  Because by learning the case study, we 
can gain some inspirations and a few useful tips to implement our own infrastructures. 
 

2.1 Using ATL for Checking Models 

This project deals with model consistency problems based on extending the standard object 
constraint language (OCL) and ATLAS transformation language (ATL) [3].  The end 
solution has been implemented as an Eclipse based plug-in. 
 
Currently, some tools are available to check OCL invariants on UML models.  However, 
there are very few tools able to do the same for any metamodel.  This is quite inconvenient 
for the DSL (Domain Specific Language) approach to model engineering.  The DSL 
approach promotes the definition of a large number of small domain-specific metamodels, 
rather than using a single and large metamodel.  At the present time, few DSL tools are able 
to evaluate constraints on models.  The objective of this project is to show how existing 
model transformation tools, such as ATL, can be used for this purpose. 
  
A very simple DSL called CD for Class Diagrams is used as a motivating example.  A 
metamodel of CD is given in figure 2.1.  CD can be considered as a simplified subset of 
UML.  Every element of a class diagram has a name.  Classes can have supertypes and 
StructuralFeatures, which are References to other Classes or Attributes.  
StructuralFeatures have a multiplicity and are typed by a Class or a DataType. Packages 
are used to structure diagrams by grouping related elements. 
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Figure 2.1 Simple Class Diagram Metamodel 

 
The definition of the metamodel is however not complete.  One can create models 
conforming to CD that are still not valid class diagrams.   Additionally, constraints should 
be defined to complete the specification.  To simplify the complete definition, just two 
constraints (C1) and (C2) are added. 
 
(C1) Classifier names must be unique within a Package 
(C2) The name of a Classifier should begin with an upper case letter 
 
In order to be automatically verified, constraints must be written in an executable language. 
The well-known OCL solution is used here.  Invariants must be verified at all times so that a 
model is supposed to be in a consistent state.  An invariant is defined in the context of a 
metamodel type.  It is composed of a Boolean expression, which must evaluate to true for 
every element of this type.  It is however not always easy to understand the issue with the 
Boolean expression associated to the invariant.  Sometimes it is even useful to specify 
constraints that should not be violated.  When such constraints are not verified, the 
consistency of the model is not provably wrong.  For example, if (C2) is violated, in this 
case, it should not be considered as an error and does not impact the structure of the 
metamodel at all.  One can treat it just as a style convention.  On the other hand, it is critical 
if (C1) is broken.  This is quite similar to the way that compilers traditionally tag messages 
as error or warning.  An error is fatal while a warning indicates a potential problem.  The 
term “severity” is used here to indicate the failure degree of the problem.   
 
So far, the violation of an invariant can only be associated to the constraint itself, its severity 
and the violating model element.  In order to better inform the user, “description” is used to 
state the problem in a human understandable manner.  At the end, “location” is also reported 
which states the location of the problem in a computer readable format. 
 
Generally speaking, people name the result of verification as a “diagnostic”.  The simplest 
form of diagnostic is a Boolean.  The true value means the model satisfies all the constraints 
whereas false means the model fails to satisfy all of them.  If the diagnostic is represented as 
an integer, it can be used to encode the failure degree.  The above mentioned extension is 
also a form of diagnostic.  Since the diagnostic is a model, any transformation can be 
performed on it.  Within an IDE, the diagnostic model can be mapped to the native 
representation (e.g. IMarkers in Eclipse).  The problems then show up at the corresponding 
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location in the editor and in the "Problems" view, as shown in figure 2.2. 
 
ATL is a QVT-like (Query/View/Transformation) model transformation language.  An 
execution engine for ATL is available as an open-source Eclipse plug-in.  The ATL engine 
can be used to verify constraints.  The algorithm to create a checking program from a set of 
constraints is the following: for each constraint, create an ATL transformation rule so that: 
 
l The source pattern type of the rule is the context of the constraint. 
l The guard of the rule contains the negation of the Boolean expression associated to the 

constraint.  
l The target pattern of the rule specifies a single type: Problem, which is to be created on a 

match (i.e. on a violation of the invariant). 
l It will be initialized using three bindings for: the severity of the invariant, a description of 

the issue and its location.  Since the target element is initialized from OCL expressions 
navigating the source model, the implementation of a description as a constructed string 
is straightforward. 

 
They implemented the verification of a slightly larger set of constraints on CD models in an 
Eclipse plug-in using the Eclipse Modeling Framework.  They chose to represent class 
diagrams textually, using a simple syntax.  In this case, the location of a Problem is therefore 
composed of a line and a column number. Figure 2.2 shows what is actually presented to the 
user when a class diagram contains problems. 
 

 
 

Figure 2.2 Screenshot of the Eclipse Prototype [Jouault05] 
 
The source of an ATL transformation implementing this solution for (C1) is shown in figure 
2.3. 
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Figure 2.3 ATL Transformation of (C1) with OCL Extensions [Jouault05] 
 

2.2 Summary 

In this chapter we have reviewed a case study which improves the constraint checking in 
model engineering.  In this approach, constraints are associated to additional information.  
This can be, for instance, severity, description and location.  The diagnostic resulting from 
the verification of constraints is considered as a model, which can then be transformed into 
any representation.  The ATL language can be used to express constraints on models and the 
ATL engine performs the verification in a batch-manner, i.e. not immediately upon an update 
is performed, but once the checks are run one after the other.  Mechanisms to improve the 
efficiency of constraint checking are necessary. 
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Chapter 3  

 

Introduction to ILOG Business Rules 

 
Before we start to discuss our prototype, ILOG Business Rules [4] is first introduced, which is 
a key component used in our first consistency verification infrastructure.  Generally speaking, 
business rules are precise statements, which describe the enterprise operations, constraints or 
definitions applied to business issues.  These rules help the companies achieve better goals, 
operate more efficiently and facility the communication between different parties.  It is also 
the same case when business rules are applied to information technology field.  A typical 
product in this field is ILOG Business Rules, which allows business rules to be quickly 
changed and redeployed without changing the application code, thus reducing maintenance 
costs and extending the life of business applications.  
 

3.1 The Challenge and Solution 

Nowadays, more and more enterprise applications are developed with the increase in 
complexity and the pace of updating different aspects during the implementation time.  By 
applying the traditional software architectures and mixing different aspects in the same code, 
one is not able to handle the complex and voluminous process as the system grows and 
expands.  It is also difficult to map enterprise requirements to the implementation and then 
trace the implementation back to requirements.  The ability to respond quickly to changing 
requirements and environmental conditions is rapidly becoming the key to solving this issue.   
 
Besides that, forward-thinking IT architects consider present and as well as potential future 
requirements.  Failing to take into account the potential future requirements may eventually 
lead to changing many parts of the system.  On the other hand, over design results in a 
difficult-to-control, bloated system.  In order to satisfy requirements in business domain, 
some architects make the business logic an integral part of the application code.  The long 
term impact of developing your application in this way is that changing the business logic 
becomes impossible without having to redevelop large parts of the application logic.  So the 
architects encourage their companies to realize the value of managing business rules as assets 
separate from data and code. 
 
A new methodology is specifically targeted the management of this issue, by applying 
business rules.  A business rule is a precise statement that describes, constrains, or controls 
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some aspect of your business process.  The strategic importance of business rules is to 
implement a company's objectives and accomplish the company's vision and goals.  With 
business rules, one is able to distinguish the business logic from the application logic.  In 
addition one adds agility and flexibility to the business application by allowing the business 
logic to be changed dynamically with very little overhead.  Companies who have adopted 
business rule management need an enterprise-class Business Rule Management System 
(BRMS) to make the running of their business more practical.   
 

3.2 ILOG Business Rule Studio Overview   

We want to focus on learning business rule technology, instead of another development 
environment.  With ILOG Business Rule Studio and ILOG JRules (J stands for Java here), 
one uses the familiar Eclipse IDE to embed rules into equally familiar Java/J2EE applications.  
ILOG Business Rule Studio is the first business rule authoring, testing and debugging 
environment for Eclipse.  It enables the development of applications that evolve with 
changing business requirements.  Powerful reasoning engines execute these business rules in 
real time to develop the best possible operating decisions, either as operator recommendations 
or as automated actions.  
 

 
 
 

Figure 3.1 Scenario of Using the Business Rule System [4] 
 
A typical scenario of using ILOG Business Rule Studio and the JRules rule engine is the 
following:  

• The JRules rule engine executes business rules which implement the business logic. It 
handles application data through the application logic.  
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• The application logic is not aware of the business logic. It presents the business data to 
the users and calls the rule engine when the business logic is applied.  

• The developer uses Business Rule Studio to edit, debug and test business rules. When 
new rules are ready, they can be deployed in the JRules rule engine to change the 
business logic on the fly.  

 

3.3 Main Features of ILOG Business Rule Studio 

ILOG Business Rule Studio offers a rich, developer-centric environment to author, test and 
deploy business rules.  The developer can write and debug Java code and business rules from 
the same environment without interfering with each other.  The Business Rule Studio is 
integrated with any Eclipse-based IDE including IBM's WebSphere Studio Application 
Developer.  
 
With Business Rule Studio's embedded rule engine, one can test and debug rules locally 
without deploying them to an external rule engine.  Business Rule Studio provides a new 
Eclipse project type called rule project.  It stores resources like rules, packages and ruleflows.  
Two perspectives support rule editing and debugging (similar to Eclipse Java editing and 
debugging).  Text editor is used for rule authoring.  The Business Rule Studio text editor 
includes all the features of Eclipse's Java code editors.  It supports basic editing capabilities.  
Advanced capabilities include code completion, syntax checking, auto-indentation and 
syntax-coloring.  Source code control integration like the most popular CVS is also provided 
to facility the working process.  Last but not the least, the engine API integrates and controls 
the business rule engine using an extensive and comprehensive Java library, which is also 
delivered.   
 

3.4 Concepts 

Rule Engine 
 
The basic functionality of the rule engine can be described as follows; it:  

• can read its rules dynamically (at runtime)  
• reasons on objects it knows  
• can keep track of changes to the objects it knows  
• can invoke the firing of rules  

The rule engine is service oriented, meaning that it responds to explicit invocations.  The 
rule engine enables business behavior to be managed separately from the core, code-based 
architecture of an application, which also means that it can evolve more rapidly than the code. 
The rule engine in ILOG Business Rules operates with rules expressed in the ILOG Rule 
Language (IRL), geared specifically for the expression of business rules directly translatable 
to rule engine execution.  

The rule engine is provided as a set of class libraries, which enable it to be integrated into any 
Java application.  Architecture is not imposed, which allows the engine to be integrated into 
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an application without constraining the application or technical architecture.  The rule engine 
can be deployed in this way on the Java 2 Standard Edition (J2SE) platform or on the Java 2 
Enterprise Edition (J2EE) platform.  The rule engine must be provided with rules, usually in 
the form of a ruleset (.irl) file, and a set of classes.  When the ruleset has been passed to the 
rule engine, it is then possible to interact with the rule engine object using the API.  When 
application objects are inserted into the rule engine object, two things happen.  First, 
references to the native Java application objects are added to the rule engine. These references 
enable the rule engine to monitor the application objects.  Second, the conditions of all rules 
in the ruleset are evaluated.  If the conditions of a rule are met, the rule is declared eligible to 
execute, or fire.  

In ILOG JRules, the rule engine is an instance of the IlrContext class, so the rule engine is 
simply a Java object.  This class contains all the methods required to control the rule engine.  
An IlrContext is always attached to an IlrRuleset.  The constructor for an IlrContext 
may take the form IlrContext(IlrRuleset) or IlrContext().  If the IlrContext object 
is created without a ruleset passed as an argument, it will create its own ruleset.  The 
IlrRuleset class is used for the management of the rules and IlrContext is used for the 
execution of the rules.  An IlrContext associates a ruleset with application objects and 
implements the rule engine that controls the relationship between the rule part of the 
application and the application data.  An application can contain several rule engine objects. 
These can be direct instances of the IlrContext class or instances of derived classes.  A rule 
in ILOG JRules is represented as an object, which is an instance of the IlrRule class.  The 
IlrRule class is responsible for the management of rules and is always attached to a rule 
engine object.  

 

Figure 3.2 APIs of Business Rules 

A rule can be executed (fired) by the method IlrContext.fireRule().  One can use the 
methods of the class IlrRuleset to dynamically add/remove rules to/from the ruleset, which 
is the file that contains all defined rules.  One can add a rule or several rules to the ruleset by 
using the methods addRule and addRules of the class IlrRuleset.  One can remove a rule 
or several rules from the ruleset by using the methods removeRule and removeRules of the 
class IlrRuleset.  Rules may be dynamically added, modified or removed from the rule 
engine, enumerated and inspected, packaged into sets, and executed individually or as sets. 
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Rules 
 
Business rules are implemented in ILOG Business Rules by expressing them as execution 
rules in the ILOG Rule Language (IRL), where they can be executed by the ILOG rule engine. 
Like other programming languages, IRL has a number of keywords, or reserved words.  A 
rule is defined by means of the rule keyword.  
 

 

Figure 3.3 Skeleton of Rule 

An execution rule has an IRL structure composed of a header, a condition part, and an action 
part.  

• The header part defines the name of the rule with the rule keyword statement, the 
properties, and its priority.  

• The condition part, which begins with the keyword when, is also referred to as the 
left-hand side (LHS) of the rule. It utilizes the object-oriented structure of Java to 
carry out pattern matching on objects. This pattern matching binds variables to objects 
and field values. Rule conditions are also used to test field values. This provides a 
filtering mechanism for objects.  

• The action part, composed of one or two parts, is also referred to as the right-hand 
side (RHS) of the rule. The first part begins with the keyword then. The optional 
second part begins with the keyword else. The action part of the rule specifies actions 
to be taken if the rule is executed.  

Figure 3.4 shows a typical example: 

 

Figure 3.4 Example Rule FindFilm 

After the rule keyword in the first line we find the name of the rule, FindFilm.  The second 
line expresses its priority by means of the priority keyword.  In this example there are two 
conditions.  These conditions use the classes Film and Cinema.  In ILOG JRules, a rule can 
have any number of conditions, but a rule without any conditions is not allowed.  The then 
keyword marks the end of the conditions and the start of the actions. In the example, there is 
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only one action: an ILOG JRules instruction that prints the title of a film showing at a cinema 
in Paris.  
 
Execution Object Model  
 
The eXecution Object Model (XOM) provides classes for a rule engine that can be used by 
rules written in the ILOG Rule Language (IRL).  The XOM can be accessed through classes 
of the Factory API.  This package provides reflective requests on a ruleset and supports 
persistence and sharing through an object representation of rules.  
 
ILOG Rule Language 
 
The ILOG Rule Language (IRL) is the executable rule language for ILOG Business Rules.  
All business rules are translated into this language before parsing by the rule engine.  IRL 
provides a rich set of constructs which includes collections, support for relations between 
objects, and temporal reasoning.  The ILOG JRules rule engine uses various optimization 
techniques to improve efficiency in rule processing.  An IRL program can be integrated into 
multithreaded applications and deployed in environments including J2EE.  It also provides 
support for XML-based reporting.  One of the important features of ILOG Business Rules is 
its Business Rule Language support which uses a framework to ensure the translation from 
the business rule language to the execution rule language: IRL. 
 
Algorithms 
 
One has a choice of algorithms used during rule engine operation.  An algorithm called the 
Rete algorithm operates efficiently in the domain of pattern matching.  The sequential 
algorithm is designed for speed of execution.  
 
The Rete network is used by the rule engine to minimize the number of rules and conditions 
that need to be evaluated, compute which rules should be executed, and identify in which 
order these rules should be fired.  The Rete network includes a working memory and an 
agenda for containing and manipulating application objects.  
 
The ILOG JRules sequential algorithm utilizes a dynamic rule compilation that can 
significantly improve the speed of rule processing.  The performance of an engine will 
improve using the sequential algorithm if it is provided with a large ruleset made of basic but 
test-intensive rules with static priorities.  
 
Working memory 
 
Under the Rete algorithm, each rule engine in ILOG JRules is paired with a working memory.  
The working memory contains all the objects that need be treated by the rules.  Objects can 
be added to, updated in and removed from the working memory.  In other words, the engine 
is aware of the objects that are in the working memory and those which are linked to them.  
If an object is not accessible from the working memory, it cannot be used by the rule engine. 
 
Agenda 
 
The agenda is where ILOG JRules stores the rules whose patterns are all matched.  Any rule 
that enters the agenda is said to be instantiated.  The agenda stores rule instances that are 
eligible to be fired. 
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3.5 Summary 

In this chapter we learned what Business Rules are and what advantages they bring to us 
compared to the other traditional methodologies.  Then, ILOG Business Rule Studio is 
introduced as the first business rule authoring, testing and debugging environment for Eclipse.  
Features and concepts are listed for the reader to gain an overview of the ILOG Business Rule 
Studio. 
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Chapter 4  

 

Prototype Based on Business Rules 

 
In the previous chapter we learned the concept of Business Rules and got familiar with the 
structure of the rule and rule engine.  Due to the separation of the business logic and 
application code, we can treat the consistency requirements as part of the business logic in our 
case.  And with the support of the business rule engine and provided APIs, we can conceive 
our first prototype based on Business Rules and manage the consistency problems efficiently.  
The infrastructure is implemented as an extension of the Eclipse plug-in Octopus [1], which 
supports the use of both UML and OCL for modeling. 
 

4.1 Advantages of Applying Business Rules 

Model engineering is based on the definition of models.  Besides models, additional 
constraints are necessary to be specified to improve consistency management.  In response to 
these requirements, the OMG (Object Management Group) specified OCL to express 
constraints on models.  OCL usually returns a Boolean value to indicate whether the 
invariant is violated or not.  However, it is not always desirable and easy to understand the 
issue with only the Boolean expression associated to the constraint.  One needs another 
mechanism or extension to detect the inconsistency and take the corresponding action. 
 
With the help of Business Rules, one is able to extend the ability of OCL.  Not only can 
inconsistency be detected as usual, but also proper actions can be carried out if the 
consistency is broken.  The consistency requirements can be specified in the condition part 
of the Business Rules and the problem handling can be done in the action part.  How to 
handle the issue if the consistency is violated is left to the designer.  The infrastructure can 
inform the user about the inconsistency by stating the problem in a human understandable 
manner.  It is also desirable if the system is able to automatically repair the inconsistency in 
some cases.  All these can be specified by Business Rules. 
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4.2 Transformation from OCL invariants to Business Rules 

Since OCL is still the standard and most famous language used to define model constraints, 
the first step for us to implement our infrastructure is to define a mapping from OCL 
invariants to ILOG rule language.  One may ask how well OCL invariants can be mapped to 
ILOG rule language due to the different language semantics and structures, and whether the 
mapping can be carried out without any loss.  Before answering those questions, let us take a 
deep look at the structure of the ILOG rule language again. 
 

4.2.1 ILOG Rule Language Structure 

A business rule has the following form: IF conditions THEN actions.  The keyword when is 
used to specify the condition part of a rule.  The condition part of a rule is composed of a set 
of conditions, or patterns, that refer to Java objects.  Each pattern is matched, if possible, 
with one or more application objects.  More precisely, a pattern comprises tests that are 
applied to each object in the working memory, and an object is said to match the pattern when 
it passes these tests successfully.  The pattern is tested by evaluating public attributes and/or 
public methods of Java objects in the working memory.  The ILOG rule language also offers 
a few keywords to facilitate the pattern matching test.  They are listed in figure 4.1. 
 

 
 

Figure 4.1 Keywords in Rule Condition Part 
 
Here only some of those keywords are of interest to our case. 
 
l collect 
 
[?variable:] collect [(expression)] collectionTarget 
            [where (collectionTest1 ... collectionTestn)];  
 

The collect statement is used in the condition part of a rule to create a collection object.  
The collection object stores instances of the class collectionTarget that match the 
condition.  This condition may contain tests on the class fields.  The collection object may 
be bound to a variable for the scope of the rule.  The collect statement may contain a list of 
tests on the collection object in the where part of the statement.  
 
l evaluate 
 
evaluate (expression); 
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The evaluate statement is used in the condition part of a rule to test objects of the working 
memory.  An evaluate statement must have a simple condition preceding it that binds a 
variable to an object or a value.  Any such variable bound to an object or a value may be 
tested.  Note that the statements not, exists, and collect are not simple conditions.  An 
evaluate statement is true if all the tests carried out in the expression are true.  The 
expression may be multiple tests enclosed by braces ({}).  
 
In the case where the condition part of a rule ends with an evaluate statement, the action part 
can have an else part, executed if the evaluate statement returns false.  If it returns true, 
the then part is executed.  
 
l where 
 
[?variable:] collect [(expression)] collectionTarget 
            [where (collectionTest1 ... collectionTestn)]; 
 
The collect statement is used in the condition part of a rule to create a collection object.  
The where part of the statement may contain tests that the collection object must fulfill.  It 
may be left empty.  
 
Besides those keywords, ILOG rule language offers also operators, which are a subset of the 
operators provided in the Java programming language.  Figure 4.2 displays all those 
operators. 
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Figure 4.2 Operators in ILOG Rule Language 

 
As one can see, the structure of the ILOG rule language is heavily based on Java language.  
Given that Octopus plug-in already provides the functionality of transforming OCL to Java 
code, one can take advantage of this available feature.  In order to continue our work, one 
needs to know how Octopus transforms OCL invariants to Java code first. 
 

4.2.2 Octopus Java Code Generation  

Octopus defines its own OCL metamodel.  Figure 4.3 shows the hierarchy of Octopus OCL 
metamodel in a listed view.  Every OCL expression is of type OclExpression.  The 
invariant can be displayed as an AST (Abstract Syntax Tree).  It contains different kinds of 
sub expressions.  During the code generation process, invariant is analyzed and split into 
pieces.  The corresponding Java code is generated for each sub expression.  Depending on 
the complexity of each sub expression, simply Java clause or complete Java method may be 
created.  For example, VariableExp results in only a simple Java attribute access, which can 
be expressed by stating the variable name.  On the other hand, IterateExp causes iteration 
over a Set, which is much more complicated than the first case.  Octopus handles such cases 
by generating private methods which return the intermediate results.  For instance, a private 
method which returns the iteration result will be created for IterateExp.  Those 
intermediate results may be used by the public invariant checking method or other 
intermediate private method resulted from the parent node.  Finally, a public method used 
for checking invariant is generated, which is expected to be invoked by the end user.    
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Figure 4.3 Metamodel of OCL in Octopus 

 
In order to better understand the generation process, we take the following OCL invariant 
from the famous Loyal and Royal project (UML diagram given in appendix A) as an example: 
 

 
 
This invariant states the consistency rule that in class Customer the size of associated 
programs should be equal to the size of those associated cards, whose attributes valid are 
set to true.  The AST of the above OCL invariant is displayed in figure 4.4. 
 

 
 

Figure 4.4 AST View of Invariant sizesAgree 
 
The AST view shows that this invariant consists of different OCL sub expressions, e.g., 
VariableExps, AssociationEndCallExps, OperationCallExps, AttributeCallExps and 
BooleanLiteralExp.  The analysis sequence is top down as shown in the AST view.  That 
means if the example OCL invariant is given, one starts from the root of the AST, in this case, 
VariableExp self.  By invoking the getAppliedProperty, the next sub expression is 
returned, namely, AssociationEndCallExp programs.  Following the same way, all the sub 
expressions will be traversed and handled.  Each kind of OCL expression has its own Java 
code pattern.  For example, the generated code for AssociationEndCallExp returns just the 
corresponding getter method of that association end.   In our case, this.getPrograms() 
is the generated Java code for AssociationEndCallExp programs.  Complicated case is for 
example IteratorExp select, it deals with a selection over a Set, and the selection result is 
again a Set.  In order to make the code more readable, Octopus creates a private method to 
calculate the selection over that Set.  And this private method will be invoked in the public 
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invariant checking method.  The name of the invariant checking method begins with 
invariant_ and is followed by the same string as the invariant name if the name is defined in 
OCL.  If not given, the Java method name begins with invariant_ and is followed by a 
number, which is incremented automatically for each unnamed invariant.  Intermediate 
private methods follow the similar naming convention, only the name begins with what it 
actually performs. 
 
In the final invariant checking method, a boolean variable is defined.  If the invariant is 
broken, the boolean variable is set to false and an InvariantException is thrown. 
 
Figure 4.5 shows the generated Java code by Octopus: 
 

 
 

Figure 4.5 Generated Java Code of Invariant sizeAgree 
 
One may ask why not just simply evaluate the generated public invariant checking methods in 
the condition part of the ILOG rule to test whether the consistency is broken or not.  The key 
is that public variables should be accessed instead of method calls in IRL condition part as 
much as possible in order to improve the performance.  Otherwise, the rule engine needs to 
reevaluate that method whenever we update the object in the working memory, and will not 
detect on its own that a rule instance has to be added to the agenda. 
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4.2.3 Mapping from OCL to IRL 

The mapping should start from the OCL metamodels, which are exactly what the figure 4.3 
displays.  Next step, we will explain the mapping for each of these metamodels.  
Sometimes, a direct mapping is not possible.  In this case, the generated Java method should 
be invoked in the IRL condition part instead of formulating the counterpart in the business 
rules.  Although performing a direct method invocation instead of attribute access may lose 
some performance at run time, it guarantees that no information is missing after this mapping 
happens.   
 
l IfExp 

It has the If – then – else pattern. If corresponds to when in condition part of IRL 
language. The other two correspond to the action part.  Depending on whether the      
condition part is fulfilled, the proper action is carried out.     

 
l LetExp  
 OCL: let definedVariable : type = defExp 
   IRL: Not possible to define new variable in IRL condition part.   
  Direct method invocation in IRL condition part. 

 
l LiteralExp 

 
1. CollectionLiteralExp 

OCL: Set {Integer* | Float* | String*} 
IRL: Not possible to collect primitive types as a Set in IRL condition part.  

    Direct method invocation in IRL condition part. 
 

2. EnumLiteralExp 
    OCL: Type::EmunName (e.g. Gender::male) 
    IRL: JavaType.EnumNameToUpperCase (e.g. Gender.MALE) 
 
3. OCLStateLiteralExp 

 No change. 
 

4. OCLTypeLiteralExp 
 No change. 
 

5. BooleanLiteralExp 
 No change. 

  
6. IntegerLiteralExp 

 No change. 
 

7. RealLiteralExp 
  OCL: RealLiteralExp 
  IRL: (float) RealLiteralExp 

 
8. OclUndefinedLiteralExp 

OCL: OclUndefinedLiteralExp 
IRL: null 
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9. StringLiteralExp 
 No change. 

 
 10. TupleLiteralExp 
        No change. 
 
l OclMessageExp 
    Not handled by Octupus. 
 
l VariableExp 
    OCL: self 

IRL: ?self 
 
l AttributeCallExp 

OCL: attributeName (e.g. name) 
IRL: javaFieldName (e.g. f_name) 
 

l AssociationClassCallExp 
OCL: AssociationClassName (e.g. Membership) 
IRL: javaFieldName (e.g. f_membership) 
 

l AssociationEndCallExp 
OCL: AssociationEndName (e.g. cards) 
IRL: javaFieldName (e.g. f_cards) 
 

l OperationCallExp 
 

OCL: allInstances 
IRL: className.allInstances() 
 
OCL: Class operation 
IRL: className.opName.(args) 
 
CollectionOper: 
 

     OCL: source.count(obj) 
          IRL: ?countCollection: collect objType(source.contains(this)) 
     …?countCollection.size()… 

 
OCL: source.excludes(obj) 
IRL: !source.contains(obj) 
 
OCL: source.excludesAll(coll) 
IRL: Stdlib.excludesAll(source, coll) 
 
OCL: source.includes(obj) 
IRL: source.contains(obj) 
 
OCL: source.includesAll(coll) 
IRL: source.containsAll(coll) 
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OCL: source.isEmpty() 
IRL: source.isEmpty() 
 
OCL: source.notEmpty() 
IRL: !source.isEmpty() 
 
OCL: source.size() 
IRL: source.size() 
 
OCL:source.sum() 
IRL: It needs iterator to travel through every element to sum them up and is not 
supported directly. 
Direct method invocation in IRL condition part. 
 
OCL: source = arg 
IRL: Stdlib.( setEquals | bagEquals | sequenceEquals | orderedsetEquals).(source, arg) 
 
OCL: source <> arg 
IRL:! Stdlib.( setEquals | bagEquals | sequenceEquals | orderedsetEquals).(source, arg) 
 
OCL: source - coll 
IRL: The sequence can not be guaranteed. 
Direct method invocation in IRL condition part. 
 
OCL: source.append(obj) 
IRL: The sequence can not be guaranteed. 
Direct method invocation in IRL condition part. 
 
OCL: source.at(Int) 
IRL: source.get(int – 1) 
 

     OCL: source.excluding(obj) 
     IRL: ?excludingColl collect objType(source.contains(this); !obj.equals(this)) 

 
OCL: source.first() 
IRL: source.get(0) 
 
OCL: source.flatten() 
IRL: Stdlib.( setFlatten | bagFlatten | bagFlatten | orderedsetFlatten ).(source) 
 

     OCL: source.including(obj) 
     IRL: ?excludingColl collect objType(source.contains(this) || obj.equals(this)) 

 
OCL: source. indexOf(obj) 
IRL: source.indexOf(obj) + 1 
 
OCL: source.insertAt(int, obj) 
IRL: Stblib.insertAt(source, int – 1, obj) 

     
          OCL: source.intersection(set) 
      IRL: ?intersectionColl collect objType(source.contains(this); set.contains(this)) 
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    OCL: source.last() 

          IRL: source.get(source.size() – 1) 
 
    OCL: source.prepend(obj) 
       IRL: The sequence can not be guaranteed. 
       Direct method invocation in IRL condition part.          
   
    OCL: source.subOrderedSet(int, int) 
    IRL: source.sublist(int, int) 
 
    OCL: source.subsequence(int, int) 
    IRL: source.sublist(int, int) 
   

     OCL: source.symmetricDifference(set) 
     IRL: ? symmetricDiffColl collect objType(!source.contains(this); set.contains(this)) 

 
    OCL: source.union(sequence) 
    Depending on the source type, if the type is OrderedSet, no duplicated  

 objects are allowed in the result set.   
 IRL: ? unionColl collect objType(source.contains(this) || sequence.contains(this)) 
 Otherwise, duplicated case is considered, not supported in IRL. 
 Direct method invocation in IRL condition part. 

 
 OCL: source.asBag() 
 IRL: Stdlib.collectionAsBag(source) 
 
 OCL: source.asSequence () 
 IRL: Stdlib.collectionAsSequence (source) 
 
 OCL: source.asOrderedSet () 
 IRL: Stdlib.collectionAsOrderedSet (source) 
 
 OCL: source.asSet () 
 IRL: Stdlib.collectionAsSet (source) 
 
 OCL: source.oclIsUndefined() 

          IRL: source == null     
 
l LoopExp -> iteratorExp -> Exists 

OCL: source->exists(expr) 
IRL: ?existsColl: collect objType(source.contains(this); expr) 
     evaluate(… (?existsColl.size() > 0) …) 
Source code in Octopus: 
package com.klasse.octopus.codegen.umlToIRL.expgenerators.creators; 
LoopExpIRLCreator 

    createExists 
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l LoopExp -> iteratorExp -> ForAll 
OCL: source->forAll(expr) 
IRL: ? forAllColl: collect objType(source.contains(this); !expr) 
   evaluate(… (?forAllColl.size() == 0) …) 
Source code in Octopus: 
package com.klasse.octopus.codegen.umlToIRL.expgenerators.creators; 
LoopExpIRLCreator 

    createForAll 
 
l LoopExp -> iteratorExp -> IsUnique 

OCL: source->isUnique(expr) 
IRL: not supported in IRL. 
Direct method invocation in IRL condition part. 
 

l LoopExp -> iteratorExp -> any 
OCL: source->any(expr) 
IRL: ? any: objType(source.contains(this); expr) 
Drawback: The rule could be fired more than once.  
 

l LoopExp -> iteratorExp -> one 
OCL: source->one(expr) 
IRL: ? oneColl: collect objType(source.contains(this); expr) 

       evaluate(…(?oneColl.size() == 1)…) 
      

l LoopExp -> iteratorExp -> collect 
OCL: source.collect(expr) 
Depending on the argType, if the type is CollectionType 
IRL: Direct method invocation in IRL condition part. 
Otherwise 
IRL: ? coll: collect objType(this.assoEnd.equals(source); expr != null) 
 

l LoopExp -> iteratorExp -> collectNested 
 OCL: source.collectNested(expr) 
 IRL: ? collNested: collect objType(this.assoEnd.equals(source); expr != null) 
 

l LoopExp -> iteratorExp -> select 
OCL: source.select(expr) 
IRL: ?selectColl: collect objType(source.contains(this); expr) 
 

l LoopExp -> iteratorExp -> reject 
OCL: source.reject(expr) 
IRL: ? rejectColl: collect objType(source.contains(this); !expr) 
 

l LoopExp -> iteratorExp -> sortedBy 
OCL: source.sortedBy(expr) 
IRL: Not possible to sort objects in a Set in IRL condition part.   
Direct method invocation in IRL condition part. 
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l LoopExp -> iterateExp 
OCL: source->iterate(variable declariation, expression) 
IRL: Not possible to define new variable in IRL condition part. 
Direct method invocation in IRL condition part. 

 
IRL Template 
 
The next step to implement this extension is to design the general IRL code template.  The 
key is to build the correct skeleton and put the generated condition code and action code in 
their right places.  In order to let the reader put more attention to the mapping, we just 
simplify the action code to make it report an error message in the console if the consistency is 
broken.  Later, if necessary, one can extend and generate more complicated user defined 
action template by himself. 
 
rule RuleName { 
     when { 
        ?self: SomeClass();  
        iRLIntermediateConditionContent // if any  
        evaluate ( !iRLFinalCondition);  
     } 
     then { 
        out.println("invariant ... is broken in object" + ?self.getIdString() 
   + " of type " + ?self.getClass().getName()); 
     }  
 }; 
 
The dynamically generated contents are RuleName, SomeClass, 
iRLIntermediateconditionContent and iRLFinalCondition.  In order to assure the 
uniqueness of the rule names, they are denominated the same as their corresponding Java 
invariant checking method names.  SomeClass represents the class that this invariant is 
referred to.  iRLIntermediateconditionContent may contain intermediate defined 
collection variables depending on the complexity of the invariant.  iRLFinalCondition is 
the final condition that should be evaluated by the rule engine.  If the evaluation fails, the 
error message about the content of the invariant, ID and name of the class is printed in the 
console. 
 

4.2.4 Changes Made to Octopus 

Public Attributes: 
 
First of all, the generated Java attributes should have public visibility.  In this way, the 
attributes can be directly accessed in IRL condition part instead of invoking the corresponding 
getter and setter methods.  
 
The change is made in: 
 
package com.klasse.octopus.codegen.umlToJava.modelgenerators.creators; 
public class AttributeCreator 
field1.setVisibility(OJVisibilityKind.PUBLIC); 
 
Effect: 
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e.g.  Royal and Loyal Customer Class 
 
public String f_name = ""; 
public String f_title = ""; 
public boolean f_isMale = false; 
public Date f_dateOfBirth = null; 
public int f_age = 0; 
 
Public Navigation Fields: 
 
It is also reasonable to set navigation fields to public and access them directly in IRL 
condition part.  The change is made in: 
 
package com.klasse.octopus.codegen.umlToJava.modelgenerators.creators; 
public class NavigationCreator 
field1.setVisibility(OJVisibilityKind.PUBLIC); 

 
Effect: 
e.g.  Royal and Loyal Customer Class 
 
public Set /*(Transaction)*/ f_cards = new HashSet( /*CustomerCard*/); 
 
Public Association End Fields: 
 
For the same reason, we make association end fields public. 
 
 
package com.klasse.octopus.codegen.umlToJava.modelgenerators.creators; 
public class AssocClassCreator 
//set association end fields in association class to public  
private void commonStuff(OJClass owner, IAssociationClass asscls) { 
… 
field4.setVisibility(OJVisibilityKind.PUBLIC); 
field5.setVisibility(OJVisibilityKind.PUBLIC); 
… 
} 
//set association end field in base class to public 
private void addToBaseType(…){ 
… 
field1.setVisibility(OJVisibilityKind.PUBLIC); 
… 
} 
 
private void addMultToBaseType(…){ 
… 
field2.setVisibility(OJVisibilityKind.PUBLIC); 
… 
} 
 
private void addMultMultToBaseType(…) { 
... 
field3.setVisibility(OJVisibilityKind.PUBLIC); 
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... 
} 

 
Effect: 
 
e.g.  Royal and Loyal Membership Class 
 
public Customer f_participants = null; 
public LoyaltyProgram f_programs = null; 
 
e.g.  Royal and Loyal Customer Class 
 
public Set /*(Transaction)*/ f_membership = new HashSet( /*LoyaltyProgram*/); 
 
Newly Added Classes  
 
Besides the above mentioned changes, a few new classes are added to realize the 
transformation from OCL to ILOG rules.  They are all packed under the same package, 
namely, com.klasse.octopus.codegen.umlToIRL.expgenerators.creators.  The 
classes are listed in figure 4.6.  
. 
 

 
 

Figure 4.6 Classes for IRL Generation  
 
BasicTypeOperCallIRLCreator handles the transformation of all basic type operation calls, 
such as "div", "mod", "size", "concat", etc.   
 
CollectionOperCallIRLCreator handles the transformation of all collection operation calls, 
such as “count”, “excludes”, “includes”, etc. 
 
ComparatorIRLCreator generates the code for the comparison result of two objects, which 
could be of any primitive type. 
 
EnumTypeOperCallIRLCreator generates the code for the enumeration type operation. 
 
ExpressionIRLCreator is the topmost class in this hierarchy.  Here the OCL expression is 
split and sub expressions are delivered to the corresponding creators to be further processed. 
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LiteralExpIRLCreator generates code for LiteralExp. 
 
LoopExpIRLCreator generates code either for iteratorExp or iterateExp.   
 
OperationCallIRLCreator generates the code for OCL operations like oclIsUndefined, 
oclIsTypeOf, oclIsKindOf, etc. 
 
PropCallIRLCreator deals with the transformation of LoopExp, attributeCallExp, 
associationEndCallExp and associationClassCallExp. 
 

4.3 Runtime Execution 

With the newly added extension, the user is able to automatically generate not only Java code 
but associated IRL rules by opening the Octopus context menu on the Java project and 
selecting “Generate Java Code”.  After doing that, one can see that the generated IRL rule 
files are created under the same directories where the corresponding Java files are located.  
Next step, one has to create a Rule project in Eclipse and define the eXecution Object Model 
(XOM) as the previously mentioned Octopus project.  Then import the generated IRL rules 
in the source directory.  After compilation, a file named ruleset.irl is generated, which 
contains all defined IRL rules in a single file and can be used later by the rule engine. 

In realistic application environments, the rule engine is invoked using some Java code.  To 
do this one needs a piece of Java code to: 

• Initialize the Java application  
• Create an instance of the rule engine  
• Load some rules  
• Initialize the working memory with some objects to be processed by the rules  
• Start the rule engine so that it executes all rules that match the objects in the working 

memory  
• Perform a final Java action such as output analysis, persistence, logging, and shut 

down the Java application.  

ILOG Business Rule Studio provides a wizard that enables one to generate a Java application 
that carries out the steps described above.  This kind of project is called Java Project for 
Rules, which contains a single runnable main class to execute some rules contained in the 
output folder of a rule project.  Figure 4.7 displays the content of this class. 
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Figure 4.7 Main Class to Execute Rules 

One can now insert objects in the working memory of the rule engine using the Java API: 

1. In the Java project, locate and edit the file SimpleRuleEngineRunner.java  
2. In the main method, locate the line that creates the rule engine (class IlrContext). 

This line is: 
IlrContext context = new IlrContext(ruleset);  

3. Insert a line break below and type the code to instantiate the objects.   

Each time a new instance is created, the instance should be inserted into the working memory 
by calling context.insert(instance);.   

And each time the object is updated in the Java code, the working memory should be 
informed.  This is done by calling context.update(updatedInstance, true);.  The 
Boolean argument is set to true, which indicates that the update will cause the agenda to be 
refreshed.   

At the transaction commit time, context.execute() is invoked for consistency checking.  
This method executes the ruleflow defined in the context's ruleset.  Any inconsistency can be 
caught by calling this method.  If inconsistency exists, rules are fired and actions are carried 
out.     

To better understand this process, we take the Royal and Loyal project as example again.  
First create a Java project, name it “RandL”.  Then add Octopus nature to it and define Royal 
and Loyal models using UML.  The previously mentioned invariant SizesAgree is defined 
here in OCL file to specify the consistency.  Here we define only one single invariant in 
order to simplify the whole process.  The generated Customer.irl file contains the 
corresponding rule.  Figure 4.8 displays the generated rule of invariant_sizesAgree. 
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Figure 4.8 Generated Rule invariant_sizesAgree 

Next, one creates a Rule project called RL_Rules and associates the eXecution Object Model 
(XOM) to the previously mentioned Octopus project, namely, “RandL”.  Import the 
Customer.irl file to the src directory in the Rule project and compile it, a file named 
ruleset.irl is generated, which contains all defined IRL rules in this project and can be 
used later by the rule engine, though in this case, just a single rule has been defined.  

Last step, one has to create a “Java Project for Rules” to execute the rules.  We name the 
project RandLJavaProject4Rules.  Locate the file SimpleRuleEngineRunner.java and 
add the following code below IlrContext context = new IlrContext(ruleset);. 

 

Here two CustomerCard instances are created and associated to a Customer instance.  
Initially the two CustomerCard instances are all set to invalid (f_valid = false).  Then a 
single LoyaltyProgram instance objP1 is created and associated to the same Customer 
instance.  Next, the Customer instance should be added to the working memory by calling 
context.insert(c).  In order to distinguish the execution sequence, a string is printed in 
the console before each time the execute() is called.  According to the definition of 
invariant SizesAgree, the invariant is broken at the first execution time (size of Programs 
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equals one, while size of valid Cards equals zero).  The following error message is printed 
out in the console. 

 

Next, we continue our work and add the following lines below the first execution. 

 

Here one of the CustomerCard instances is updated to be valid.  After the update, one has to 
inform the working memory by calling context.update().  Without it, the objects in the 
working memory are unaware of the update and thus remain inconsistent.  The second 
execution causes no action just as one expected.  Because the inconsistency is repaired by 
setting the f_valid attribute to true.  In that way, the size of Programs and the size of valid 
Cards are the same.   

4.4 Summary 

In this chapter we implemented our first infrastructure based on Business Rules for 
consistency checking.  Rule based approach enables the separation of application code and 
consistency verification.  One of the advantages is that the definition of action pattern is 
flexible, though in this chapter we just demonstrated the simplest action, e.g. an error message 
is printed in the console.  Other complicated and proper action patterns can be considered to 
improve this infrastructure. 

 
 
 
 
 
.  
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Chapter 5  

 

Prototype Based on AOP and Back 
Navigation Algorithm 

 
In this chapter, a new prototype based on Aspect-Oriented Programming (AOP) and back 
navigation algorithm will be discussed.  This infrastructure is also implemented as an 
extension of Octopus plug-in.  The consistency verification should be carried out as a 
separate concern.  In this case, AOP is the best candidate technology which can be applied to 
handle this kind of issue.  Here back navigation algorithm is used to improve the consistency 
verification performance.  The reader is assumed to have a basic knowledge of AspectJ.  
Reading the paper of my project work [Xue05] is also helpful to better understand this 
chapter.  

5.1 General AOP Approach 

Needless to mention, Octopus also generates Java methods for consistency checking.  One 
inconvenient thing is that those constraint checking methods have to be invoked explicitly if 
we want checks (e.g. evaluation of invariants) to be carried out at runtime.  We wish things 
get easier.  We wish those checking methods to be invoked automatically.  AspectJ helps us 
in solving this problem.  First we can define the pointcut in AspectJ, namely the place where 
checking method should be invoked.  Then we can define the advice, which checks the 
constraints.  If it is broken, in our case an error message is printed in the console. 
 
The general approach without back navigation algorithm is straight forward.  Since Octopus 
generates the checkAllInvariants method for the Java class if any invariant is defined for 
this class, we could in principle call this method after the creation of an instance of this class, 
before and after most of the public methods.  Notice that checkAllInvariants calls every 
single invariant checking method, which is defined as public too.  These public invariant 
check methods should be excluded from the pointcut, otherwise the AspectJ code leads to a 
recursive call.  And all getter methods defined for attributes are also excluded, since they 
do not change anything and could be called within invariant checking methods.  Octopus 
generates three extra methods for every class, which are toString(), 
getIdentifyingString() and allInstances().  They should not be listed in the pointcut 
list either (getIdentifyingString() is always called within invariant checking methods, 
default by Octopus) .  
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The starting point of this extension is to design the general AspectJ code templates for 
enforcing invariants.  Figure 5.1 shows the detailed templates. 
 
 
//define point cut for invariant check 
public pointcut invPointCut(SomeClass self): 
( 

(execution(public [method-return-type] SomeClass.someMethod( 
[parameter types of the method – if any])) 
[||any futhur methods] 

) 
&& target(self); 
 
// Before the execution of every public method in SomeClass 
before(SomeClass self) : 

invPointCut(self) { 
java.util.List invErrorList=self.checkAllInvariants(); 

      for(int i=0; i<invErrorList.size(); i++){ 
        System.out.println("After the execution of method in Class " 
+invErrorList.toArray()[i].toString());    } 

} 
 
// After the execution of every public method in SomeClass 
after(SomeClass self) : 

invPointCut(self) { 
java.util.List invErrorList=self.checkAllInvariants(); 

      for(int i=0; i<invErrorList.size(); i++){ 
        System.out.println("After the execution of method in Class " 
+invErrorList.toArray()[i].toString());    } 

} 
 
// After the execution of any constructor in SomeClass 
after(SomeClass self) : 

execution(public SomeClass.new(..)) 
&& target(self) { 

java.util.List invErrorList=self.checkAllInvariants(); 
      for(int i=0; i<invErrorList.size(); i++){ 

        System.out.println("After the execution of any constructor in Class " 
+invErrorList.toArray()[i].toString());    } 

} 
 

 
Figure 5.1 AspectJ Code Templates 

 
The AspectJ source code will be generated according to our templates.  Reviewing the 
templates, we can find that our main tasks include creating the condition checking method in 
Java source code, creating the correct pointcut, listing the class type, the method arguments 
and building the AspectJ skeleton.  Most of the information can be extracted in the Java code 
generation process.  Here the implementation detail is skipped.  
 
In order to check this general AOP prototype, we create a new Octopus project and define the 
UML and OCL files in the following way. 
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UML file: 
 

 
 

Figure 5.2 stsDepartment.uml File 
 

OCL file: 
 

 
  

Figure 5.3 Constraints.ocl File 
 
Part of the AspectJ code for enforcing invariant is listed below in figure 5.4: 
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Figure 5.4 AspectJ Code for Enforcing Invariant 
 
If having installed AspectJ Development Tools [5] (also a plug-in, available at Eclipse 
homepage) in Eclipse, one can test the code.  First write a main class to create an instance 
and then invoke its methods to deliberately break the invariants.  One can see the error 
messages printed in the console after running the program, as shown in figure 5.5. 
 

 
 

Figure 5.5 Result of the Runtime Invariant Checking 
 
The readers may already find a few disadvantages of this approach.  According to the 
AspectJ code pattern, the pointcuts are defined too generally.  For example, in the above 
example, every time the public method Employee.setName is executed, the invariants must 
be rechecked, though this method does not influence the consistency at all.  In this way, 
redundancy could be introduced.   Another potential problem is the execution performance 
of checkAllInvariants.  In the above example, only two invariants are defined for 
Employee and one for Project.  That means, if the method checkAllInvariants is 
invoked, all private invariant checking methods will have to be executed.  This could 
become an overload if too many invariants are defined for a single class.  Considering the 
redundancy problem and potential poor runtime performance, one needs a more specific 
approach to define the pointcuts and invoke the invariant checking methods.  
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5.2 AOP and Back Navigation Approach 

In order to avoid redundancy, the pointcut and advice should be defined in a more precise 
manner.  So we’re interested in defining a calculus that operates on OCL expressions (which 
in turn refer to a UML class model) to determine the navigation paths of the data elements on 
which the invariant depends.  In this approach, a certain invariant checking method need 
only be invoked if the data elements on the navigation paths have been updated.  Only those 
updates may potentially cause the violation of the consistency.  The invariant checking 
performance can be improved by applying this approach.   
 

5.2.1 The noAccounts Invariant Example 

To illustrate, let us go back to the Royal and Loyal project (UML diagram is given in 
appendix A) and begin with an OCL invariant. 
 
In the example an invariant noAccounts is given: 
 
context LoyaltyProgram  
  inv noAccounts: partners.deliveredServices-> 
      forAll(pointsEarned = 0 and pointsBurned = 0 )  
      implies Membership.account->isEmpty() 
 
the forward-navigation links are: 
 
self + 
     |- partners.deliveredServices + 
     |                             |- pointsEarned 
     |                             |- pointsBurned 
     |- Membership.account 
 
Here self represents LoyaltyProgram, namely, the context class.  All the other expressions 
(association end call, association class call and attribute call expression) in the naviagtion 
links are named data elements in this OCL expression.  
 
Let us imagine the following case.  At runtime, the user updates the pointsEarned of 
certain Service instance, all the LoyaltyProgram instances which are associated with this 
Service instance should be checked to insure this noAccounts invariant is not broken.  The 
attribute pointsEarned can be updated by calling the method setPointsEarned.  In other 
words, whenever setPointsEarned is called, the noAccounts invariant should be rechecked.  
The method setPointsEarned should be defined as pointcut, and the advice should be 
defined to invoke the invariant checking method invariant_noAccounts() of all associated 
LoyaltyProgram instances.  The next task is to find all the associated LoyaltyProgram 
instances.  The starting point is the owner of the attribute pointsEarned, namely, the class 
Service (deliveredServices is the role name, defined in UML).  To find the correct 
associated LoyaltyProgram instances, one should follow the path self.partner.programs 
(here self represents Service),  We denominate this path as back navigation path.  The 
path returns a collection of associated LoyaltyProgram.  Since Octopus has already 
generated the invariant checking method invariant_noAccounts, we need only to iterate 
over the collection and invoke invariant_noAccounts on each of them to check the 
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consistency.  The back navigation paths of all elements in noAccounts Invariant are listed in 
the table 5.1 below. 
 

 
Element 

 

 
back navigation 

 
partners 

 

 
self.programs 

 
deliveredServices 

 

 
self.partner.programs 

 
Membersihp 

 

 
self.programs 

 
account 

 

 
self.Membership.programs 

 
 

Table 5.1 Back Navigation Paths of All Elements in noAccounts 
 
Notice that before one decides the pointcut and back navigation path of a certain data element 
in the invariant expression, first one has to find the parent data element or in other words, the 
owner of the current data element.  Both the pointcut and back link are referred to that parent 
element but not the current element.  So, for example, if the current data element is 
deliveredServices, the corresponding parent data element is partners. 
 
In this way, the back navigation paths should be  
 

- for [partners] : self 
- for [partners.deliveredServices] : self.programs 
- for [partners.deliveredServices.pointsEarned] : self.partner.programs 
- for [partners.deliveredServices.pointsBurned] : self.partner.programs 
- for [Membership] : self 
- for [Membership.account] : self.programs 
 

The two main tasks of this approach consist in definining non side-effect-free methods as 
pointcut and finding the back navigation path.  Here the non side-effect-free methods refer to 
those methods which are related to certain data element in the OCL invariant expression and 
invoking them may potentially break the invariant, e.g. insert entity, delete entity, update 
attribute, insert relationship, etc.    
 
Octopus generated non side-effect-free methods in invariant noAccounts 
 
Let us consider the invariant noAccounts again and analyze which Octopus generated Java 
methods are non side-effect-free in this case. 
 

1. assignment of the self.partners field 
add / remove in self.partners 

2. assignment of deliveredServices field in some item in self.partners 
add / remove in self.partners.deliveredServices 

3. update of the simple-type attribute Service.pointsEarned 
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There may be Services which are not associated over deliveredServices to a 
ProgramPartner (because it is not a composition).  In these cases, the result of the back 
navigation should return null. 

4. update of the simple type attribute Service.pointsBurned (similar to 
Service.pointsEarned) 

5. the cardinality of self.Membership is given by the role participants on the Customer 
side of the association with LoyaltyProgram.  It is many in this case.  Given that for 
each Membership a LoyaltyAccount will be collected, the following affects 
5.1  assignment of the self.Membership field 
5.2  add / remove in self.Membership 
5.3  assignment of an existing item in self.Membership 

6. assignment of account field in some item in self.Membership 
(there is no add / remove in self.Membership.account, cardinality is 1.  Nor is there 
assignment of an existing item in self.Membership.account, for the same reason) 

7. given that no attribute of LoyaltyAccount is referred to in an iterator (instead a 
->isEmpty() is called) there is no updated of simple-type attribute in LoyaltyAccount. 

 
Generally speaking, from a class the following is reachable: 
 
- an attribute 
- Lto1, an Octopus-managed association with cardinality 1 on the other end 
- LtoN, an Octopus-managed association with cardinality N on the other end 
- LtoA, the other end is an association class and therefore some of the involved calsses may 

access the tuple which they are related to by using the association class name, e.g. 
Membership, instead of the other end’s role name. 

 

5.2.2 General Octopus Generated Non Side-effect-free Method Pattern 

Table 5.2 displays the general non side-effect-free method pattern.  The reason we name it 
“general” is because that there are certain special cases which differ a little bit from this 
pattern.  Those special cases will be discussed later. 

 
attribute 

 

 
- set_(_) 

 
 

Lto1 

 
- set_(_) 
- z_internalRemoveFrom_(_) 
- z_internalAddTo_(_) 
 

 
 
 
 
 

LtoN 

 
- set<Role>(collection) 
- z_internalRemoveFrom_(_) 
- z_internalAddTo_(_) 
- addTo_(collection) 
- addTo_() 
- removeFrom_(collection) 
- removeFrom_(_) 
- removeAllFrom() no args 
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Table 5.2 General Non Side-effect-free Method Pattern 

 
The first special case is non Java simply type attribute.  Unlike those managed by an 
association end or association class, given such an attribute, there is no field for the other 
association end (there is no code to manage the association, in fact).  Let us consider the 
following example. 
 
 
 
<class> Person 
<attributes> 
name: String; 
age: Integer; 
<endclass> 
 
<class> Department 
<attributes> 
name: String; 
manager: Person; 
employees: Set(Person); 
<endclass>   
 
 
 context Department  
 inv noSameName:  
 employees->select( name = manager.name) -> isEmpty() 
 
Given that an OCL invariant may refer to the non Java simply type attribute and that we can 
detect changes on it, how do we navigate back to the instance where the invariant is anchored?  
Although there is still a value relationship between the instances.  In this case, the look-up 
code for a manager is that 
 
Department.allInstances -> select(manager.equals(aManager))  
 
and for an employee is that 
 
Department.allInstances -> select(employees.contains(aEmployee)) 
 
In general it takes a lot of computing at runtime to resolve such problems. 
 
Three alternatives: 
 

(a) warn about OCL ASTs containing non Java simply type attribute (it is ok if the .uml 
contains them and they are not referred to in any OCL invariant) 

(b) generate look-up code.  Even if this code is functionally correct, its performance will 
approach (or exceed) for a deep enough level of the first general AOP approach. 

(c) check invariant for all instances 
 
Expressions involving association classes are dealt with in the next section. 
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5.2.3 Pointcut for Association Class 

Here besides the description of the pointcut for association class, special cases of association 
end are also explained.  They are all listed in table 5.3. 
 

 
 
 
 
 
 

LtoA, accessing 
the association 

class itself 
 

e.g. 
aLoyaltyProgra
m.Membership. 
account-> 
isEmpty() 

 
All methods that 

affect 
f_membership 

 

 
Almost the same as LtoN, because this LtoA has cardinality N (would be 
same as Lto1 otherwise).  The differences are that external add / remove 
methods are referred to another association end (in this example, 
participants) and the method removeAllFrom_() should be included. 
 
In LoyaltyProgram the following Octopus generated methods affect 
f_membership: 
 
public void setMembership(List val) 
 
public void z_internalAddToMembership(Membership assocClass) 
public void z_internalRemoveFromMembership(Membership assocClass) 
 
public void removeFromParticipants(Customer par) 
public void removeFromParticipants(Collection oldElems) 
public void removeAllFromParticipants() 
 
public void addToParticipants(Customer par) 
public void addToParticipants(Collection newElems) 
 
Last but not the least, setParticipants is not included in the pointcut, 
because it is invoked inside addToParticipants. 
 

 
LtoA, accessing 
an association 

end of an 
association class 

 
e.g. 

aLoyaltyProgra
m.participants

->size() 
 

All methods that 
affect 

f_membership 
 

 
 
 
 
 
Special case for association end, which is the end of an association class. 
The effect is the same as the above case.  See explanation below the 
table. 

 
LtoA, accessing 
an association 

class followed by 
the assocaition 

end 
e.g. 

 
 
 
 
All methods that affect f_membership in LoyaltyProgram is the same as 
the first case.  Single method that affects f_participants in class 
Membership is clean().  See explanation below the table. 
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aLoyaltyProgra
m.Membership.p
articipants->s
ize() 
 
 

Table 5.3 Pointcuts for Association Class 
 
The first case is a pure access to the association class itself.  No further explanations are 
necessary.  Let us consider the second and the third cases.  The two queries 
aLoyaltyProgram.participants and aLoyaltyProgram.Membership.participants 
actually return the same items.  Below is the generated Java code  
 
Code for aLoyaltyProgram.participants is shown in figure 5.6. 
 

 
 

Figure 5.6 Generated Java Method for aLoyaltyProgram.participants 
 
Code for aLoyaltyProgram.Membership.participants is shown in figure 5.7: 
 

 
 

Figure 5.7 Generated Java Method for aLoyaltyProgram.Membership.participants 
 
In the second case, the element participants is normally treated as an association end.  But 
what makes it different from a normal association end is that it has an associaiton class 
Membership defined.  In other words, this association end corresponds to the end of an 
association class.  According to our general Octopus generated non side-effect-free method 
pattern, the following methods should be defined as pointcut. 
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context LoyaltyProgram 
 
public void setParticipants (List par) 
public void z_internalRemoveFromParticipants(Customer par) 
public void z_internalAddToParticipants(Customer par) 
public void removeFromParticipants(Customer par) 
public void removeFromParticipants(Collection oldElems) 
public void removeAllFromParticipants() 
public void addToParticipants(Customer par) 
public void addToParticipants(Collection newElems) 
 
 
But the correct result is actually:  
 
 
context LoyaltyProgram 
 
public void setMembership(List val) 
public void z_internalAddToMembership(Membership assocClass) 
public void z_internalRemoveFromMembership(Membership assocClass) 
public void removeFromParticipants(Customer par) 
public void removeFromParticipants(Collection oldElems) 
public void removeAllFromParticipants() 
public void addToParticipants(Customer par) 
public void addToParticipants(Collection newElems) 
 
 
There are no z_internalRemoveFromParticipants and z_internalAddToParticipants in 
class LoyaltyProgram.  And instead of observing the method setParticipants, 
setMembership should be watched.  Because when setParticipants is invoked, 
addToParticipants is called internally. This method is already under our observation.  

 
In the third case, the association class is followed by the corresponding assocaition end. 
The problem is that if one writes LoyaltyProgram.Membership.participants, 
The participants is viewed as LtoN association end, and again according to our general 
pattern, the following methods are defined as pointcut: 
 
 
context LoyaltyProgram 
 
public void setParticipants (List par) 
public void z_internalRemoveFromParticipants(Customer par) 
public void z_internalAddToParticipants(Customer par) 
public void removeFromParticipants(Customer par) 
public void removeFromParticipants(Collection oldElems) 
public void removeAllFromParticipants() 
public void addToParticipants(Customer par) 
public void addToParticipants(Collection newElems) 
 
 



 47 

which is incorrect again.  Actually no methods need be watched here.  Because the 
preceding element Membership already generates the correct pointcut.  There is a method 
called clean() in the association class Membership, which we should pay attention to.  It 
removes both ends of the association.  Internal z_internalRemoveFromMembership (in 
LoyaltyProgram) is called to catch it.  We need to catch it by defining: 
 
 
context Membership 
 
public void clean() 
 
 
So the difficulty lies in checking whether the association end corresponds to the end of an 
association class or not.  This solution will be discussed later in the implementation phase. 
 
Finally, applying the above pattern, one gets the following non side-effect-free methods for 
the case of noAccounts invariant. 
 
 
 
context LoyaltyProgram 
 
public void setPartners(Set elements) 
public void z_internalAddToPartners(ProgramPartner element) 
public void z_internalRemoveFromPartners(ProgramPartner element) 
public void addToPartners(Collection newElems) 
public void addToPartners(ProgramPartner element) 
public void removeFromPartners(Collection oldElems) 
public void removeFromPartners(ProgramPartner element) 
public void removeAllFromPartners() 
 
 
context LoyaltyProgram 
 
public void setMembership(List val) 
public void z_internalAddToMembership(Membership assocClass) 
public void z_internalRemoveFromMembership(Membership assocClass) 
public void removeFromParticipants(Customer par) 
public void removeFromParticipants(Collection oldElems) 
public void removeAllFromParticipants() 
public void addToParticipants(Customer par) 
public void addToParticipants(Collection newElems) 
 
 
context Membership 
 
public void setAccount(LoyaltyAccount element) 
public void z_internalAddToAccount(LoyaltyAccount element) 
public void z_internalRemoveFromAccount(LoyaltyAccount element) 
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context ProgramPartner 
 
public void setDeliveredServices(Set elements) 
public void z_internalAddToDeliveredServices(Service element) 
public void z_internalRemoveFromDeliveredServices(Service element) 
public void addToDeliveredServices(Collection newElems) 
public void addToDeliveredServices(Service element) 
public void removeFromDeliveredServices(Collection oldElems) 
public void removeFromDeliveredServices(Service element) 
public void removeAllFromDeliveredServices() 
 
 
context Service 
 
public void setPointsEarned(int element) 
public void setPointsBurned(int element) 
 
 

5.2.4 Pointcut and Advice for allInstances 

The allInstances is a class operation that can be applied only to classes.  In all other cases, 
it will result in undefined.  For a class, it results in a set of all instances of that class, 
including all instances of its subclasses.  From the OCL reference books, allInstances can 
only be used as <Type>::allInstances, however Octopus is more permissive, and therefore 
a translator would be able to handle the variants in syntax. 
 
The variant is whether the source expression is an instance or a class.  Here which specific 
instance appears is not relevant (only its declared class counts).  So the following two 
expressions are the same. 
 
anEmployee.allInstances 
Employee.allInstances 
 
In order to be able to return all instances of a certain class, in Octopus generated Java code, 
every instance need be added to a collection held by the class itself, i.e. a static field of type 
Collection.  See the following generated code for class LoyaltyProgram in figure 5.8. 
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Figure 5.8 allInstances in Generated Java Code 
 
There will be no back navigation to a specific instance because the invariant should be 
checked in turn not on a subset of instances but on all instances.  Let us consider the 
following example. 
 
context LoyaltyProgram 
inv atrificialInv1: 
partners.allInstances()->size() <10 
 
In this case, there is no back navigation for allInstances.  All we can do is to define a 
pointcut on the static variable allInstances of class ProgramPartner (partners is the role 
name of the association between ProgramPartner and LoyaltyProgram).  In the advice, we 
get the collection of allInstances of type LoyaltyProgram and invoke the invariant 
checking method on each of them.  Here one should distinguish the two kinds of 
allInstances.  One is defined in the pointcut and the other in advice (always refers to the 
context class).  They may belong to different class types. 
 
The next issue we should take into consideration is that either an attribute, an association end 
or an association class is collected over allInstances.  Generally speaking, anything 
appearing after allInstances belongs to this case.  The previously discussed pointcut 
pattern is also valid here.  But the advice should be defined to invoke the invariant checking 
method over allInstances of the context class.  One example of this kind is given below: 
 
context LoyaltyProgram 
inv atrificialInv2: 
partners.allInstances()->select( numberOfCustomers > 100 )->size() <10 
 
Table 5.4 categorizes these two different cases. 
 

 
<Class>.allInstances 

or 
anInstance.allInstances 

 
 

 
Pointcut on the static variable allInstances 
Advice: invoke invariant checking method on 
all instances of context class 
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<Class>.allInstances.attri / asso 

or 
anInstance.allInstances.attri / asso 

 

 
Pointcut same as the previously discussed 
pattern. Advice: invoke invariant checking 
method on all instances of context class 
 

 
Table 5.4 Pointcuts and Advices for allInstances 

 

5.2.5 Back Navigation Algorithm 

In this section we will describe the back navigation algorithm.  In order to better understand 
the algorithm, the reader should have basic knowledge about OCL metamodels, OCL AST 
and the general AST visitor. 
 
Figure 5.9 displays the OCL metamodels.  After exploring OCL AST, some issues relevant 
for the implementation of the algorithm to determine backlinks become apparent.  For 
example, the AST walker will have visited some arguments to an operation before visiting the 
operation itself, as a result of OCL syntax (try with the AST of “a + b” and walk it with 
ASTWalker).  This is in contrast to the walkers for other grammars one might be used to.  
 
Another particularity has to do with the handling of variable declarations for ‘normal’ usages 
of attributes and associations vs. their usage inside the body of a collection operation.  In the 
second case, an intermediate iterator variable is declared (which will range over each item of 
the collection).  The usages in the body refer to the iterator variable, not to the ‘actual’ items 
being iterated. 
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Figure 5.9 OCL Metamodels 

 
Let us first take a look at the AST Tree View of previously mentioned invariant noAccounts, 
which is displayed in figure 5.10.  Here what also need be mentioned is that AstWalker 
visits the IOclExpression in exactly the same sequence as what the whole IOclExpression 
displays in the AST Tree View (namely, from top to bottom).  The inner 
getAppliedProperty is called first before the next appliedProperty at the same depth.   
 
 

 
 

Figure 5.10 AST Tree View of Invariant noAccounts 
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Since we are interested in navigation path, in other words, association, only 
associationEndCallExp and associationClassCallExp are of the most importance.  
Both of these two expressions have a method called getSource(), which returns the referred 
variable of the current expression.  We know that the attribute or association will in fact 
range over a collection, and that the iterator variable stands for one element of that collection 
at a time.  For example, getSource() returns IVariableExp “i_ProgramPartner” for the 
AssociationEndCallExp “deliveredServices”.  But an IVariableExp has no method 
getSource().  Neither does it have its getReferredVariable().  Therefore, 
IAssociationEndCallExp and IAssociationClassCallExp (once visited) can only trace 
their anchor back to the IVariableExp.  But what this IVariableExp iterates over, cannot 
be determined unless intermediate infomation has been kept.  Only in this way one can know 
to whom this IVariableExp should be anchored.  Lists f_Vari and f_ForwardLink are 
defined to record intermediate information.  The former records all visited 
IVariableDeclaration, the latter saves the forward navigation path, which will be used to 
build the back navigation path.  These two lists are always assumed to have the same size.   
 
Figure 5.11 displays the content of the back navigtion algorithm. 
 
 
AspectJInvariantVisitor implements IAstVisitor{ 
 
List f_gatheredStuffs  
-- save all visted IAssociationEndCall, IAssociationClass or IAttribute, without  
-- repetitation. In the case that the same IAssociationEndCall, IAssociationClass or  
-- IAttribute appears more than once, in order to avoid creating the pointcut more than   
-- once, not part of the algorithm 
List <IvariableDeclaration> f_Vari 
-- save all visited IVariableDeclaration 
List <String> f_ForwardLink 
-- save the back navigation forwardly, later one can build the correct back naviation 
-- by traversing the list reversely  
Boolean f_AllInstances_visited = false; 
-- a flag to indicate if allInstances has been visited in this particilar OCL branch 

 
  variableExp { 
   Check the name of the referred variable, if it equals “self”{ 

   Clean f_Vari, f_ForwardLink 
       Set f_AllInstances_visited to false    

     }   
  } 
 
  variableDeclaration{ 
   Add the name of variable declaration to f_Vari 
  } 
 
  operationCallExp{ 

if the name of referred operation equals “allInstances”{ 
f_AllInstances_visited = true; 
No back navigation, all instances should be checked 

} 
  } 
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  associationEndCallExp{ 
    If name of referred variable does not equal “self”{ 
     Get the index of the name in f_Vari 
     If the index does not equal the size of f_Vari – 1 { 
       Only keep the first index + 1 items in  
     f_Vari, f_ForwardLink 

  } 
  } 
 

If for the case that 
this associationEnd is an end role of an associationClass 
-- e.g. AssoEnd participants is the end role of AssoClass Membership 
and   
this associationEnd is preceded by exactly that corresponding associationClass 
-- e.g. LoyaltyProgram.Membership.participants,  
{ 
 back navigation returns the name of the association class -- e.g. Membership 
 add the back navigation of this associationEnd to f_ForwardLink 
} 
else 
{ 
 back navigation returns the name of the other association end 
 add the back navigation of this associationEnd to f_ForwardLink 
} 

 
  If f_AllInstances_visited equals true 
  { 
     No back navigation, all instances should be checked 
  } 
  else 
  { 

Build the correct back navigation by traversing all items in the f_ForwardLink                
reversely 

} 
} 

 
associationClassCallExp{ 

If name of referred variable does not equal “self”{ 
  Get the index of the name in f_Vari 
  If the index does not equal the size of f_Vari – 1 { 
   Only keep the first index + 1 items in  
   f_Vari, f_ForwardLink 

} 
} 
 
add the back navigation of this associationEnd to f_ForwardLink 
 

  If f_AllInstances_visited equals true 
  { 
     No back navigation, all instances should be checked 
  } 
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  else 
  {  

Build the correct back navigation by traversing all items in the f_ForwardLink                
reversely 

} 
 } 

} 
 

 
Figure 5.11 Back Navigation Algorithm 

 
In the AST, the referred variable “self” represents the context class itself.  In a single OCL 
invariant expression, “self” can appear more than once.  Every time “self” is visited, it 
means everything starts from the beginning (for example, in the noAccounts invariant 
example, “self” occurs twice).  The previously recorded information, e.g. the forward 
navigation path or the names of visited variable, becomes useless.  All information in the 
algorithm must be reset to the initial conditions at this point.  It is done in variableExp. 
 
The allInstances in an AST is actually a parameterless operation.  See the following 
example:  
 
context Employee 
  inv whatIsAllInstances :  
     allInstances()->size() < 10 
 

 
 

Figure 5.12 allInstances in AST 
    
So one needs to check each operationCallExp and catch the case that the name of referred 
operation equals “allInstances”.  No back navigation path needs to be computed here and 
neither do those elements afterwards on the same branch. 
 
From associationEndCallExp or associationClassCallExp one can get the name of 
corresponding referred variable.  The index (depth) of that referred variable is calculated and 
the first index + 1 items in f_ForwardLink bulid the forward back navigation,  one only 
needs to rebuild the correct result by traversing all items in the f_ForwardLink reversely. 
 
Special case is the pattern associationClass.associationEndOfThatAssociationClass 
should be treated differently from normal association end.  In this case the back navigation 
of the associationEnd should be the name of the association class itself but not the name of 
the other association end.  Table 5.5 lists the case for participants. 
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OCL Expression 
 

 
Back Navigation Path of participants 

 
LoyaltyProgram.participants 

 

 
programs 

 
LoyaltyProgram.Membership.participants 

 

 
Membership.programs 

 
Table 5.5 Back Navigation Paths of Two Different participants 

 
This algorithm has been intensively tested on all the OCL invariants provided in the Royal 
and Loyal project and proved to work correctly.  However, there are some cases where the 
current algorithm does not return the expected back navigations.   
 
Let’s assume the following UML:  
 
<package> myocl 
 
<class> Department 
<attributes> 
 name : String; 
<endclass> 
 
<class> Employee 
<attributes> 
 age : Integer; 
 addrAsAttr : Address; 
<endclass> 
 
<class> Address 
<attributes> 
 number : Integer; 
<endclass> 
 
<associations> 
  Department.deptOfGoodEmp [0..*] <-> Employee.goodEmps [0..*]; 
  Department.deptOfBadEmp [0..*] <-> Employee.badEmps [0..*]; 
  Employee.empRoleWork <-> Address.workAddress [1]; 
  Employee.empRoleHome <-> Address.homeAddress [1]; 
   
<endpackage> 
 
and the following OCL invariant:  
 
package myocl 
 
context Department 
  inv problemWithUnion :  
    goodEmps->union(badEmps)->forAll(age >= 18) 
     
endpackage 
 
The invariant problemWithUnion shows that the usage of age in the body of the forAll has 
an i_Employee as referredVariable() (see figure 5.13).  In general, after a ->union() the 
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iterator variable will be typed with the nearest common ancestor in the type hierarchy.  In 
this case, both sets under union() have the same type.  
 
If fragments of the backlink are collected in the visit order supported by ASTWalker, the 
partial chain at the time of visiting age will be self.badEmps.  The fact that in addition to 
self.badEmps, the backlink over the goodEmps association need also be followed at runtime 
is overlooked (the same Employee could be reachable over goodEmps from one Department 
and over badEmps from another, when an update occurs in Employee.age all relevant 
instances of Department should be returned). 
 

 
 

Figure 5.13 AST of invariant problemWithUnion 
 

5.2.6 Drawback of allInstances and Weak Reference 

From the Octopus documentation, a drawback to use a static field to hold all instances of a 
certain class is that the garbage collection will not do its work properly when an instance is 
present in allInstances collection but is not used anymore elsewhere.  Having a reference 
to an object that yet does not prevent the object from being garbage collected is possible in 
Java with java.lang.ref.WeakReference.  Part of the API is given below: 
 
WeakReference(Object referent)  
Creates a new weak reference that refers to the given object.  
 
public Object get()  
Returns this reference object's referent. If this reference object has been cleared, either by the 
program or by the garbage collector, then this method returns null.  
 
Suppose that the garbage collector determines at a certain point in time that an object is 
weakly reachable.  At that time it will atomically clear all weak references to that object and 
all weak references to any other weakly-reachable objects from which that object is reachable 
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through a chain of strong and soft references.  At the same time it will declare all of the 
formerly weakly-reachable objects to be finalizable.  This API allows a programmer to 
maintain special references to objects that allow the program to interact with the garbage 
collector in limited ways.  Detailed information about weak reference can be found in SDK 
documentation. 
 
Additionally, an optimization could be made to Octopus generated Java code.  Instead of 
generating the code like: 
 

 
 

Figure 5.14 usesAllInstances in Octopus Generated Java Code 
 
one could generate usesAllInstances field to be final and set it to true for some classes.  
That way, the compiler can optimize away unreachable code in the then-part of 
 
if ( usesAllInstances ) 
 
Another argument for declaring that field final is that it does not make sense to make it go 
from false to true at runtime, as there is no way to know what instances might have been 
created beforehand and still be reachable on the heap.  Setting it from true to false instead 
would be reasonable, resulting in freeing the WeakReferences that collect allInstances. 
 
Let us consider the following invariant: 
 
context Department 
inv numberEmployees: 
self.employee->size() <= Employee.allInstances()->size()/2 
 
In the example, we will assume that unlinking an employee from the department makes it a 
candidate for garbage collection.  In terms of management of the static variable 
Employee.allInstances, assuming the pattern based on WeakReference is used, one has 
the items of that collection unchanged, only a wrapped value in WeakReference to that 
employee (which goes to null). 
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5.2.7 Other Issues 

No updates during the evaluation of invariants should be assumed.  Once the instances 
returned by the back navigation have been determined, the next step consists in invoking the 
invariant checking method, which is supposed to be side-effect-free.  Otherwise, the 
pointcuts to detect state updates will be activated.  This should be considered as an error or 
an exception. 
 
It does not appear that during the evaluation of invariants, intermediate results would result in 
the instantiation of business domain objects.  There is no object instantiation construct in 
OCL.  One needs resorting to invoking a user-defined operation to achieve that.  All OCL 
self-provided operations (e.g. size(), asSequence(), oclIsUndefined()) do not influence 
the business domain objects.  An OCL expression containing a user-defined operation cannot 
be considered to be side-effect-free.   
 
After the back navigation path is computed, one can take the advantage of the Java code 
generation functionality provided by Octopus.  Here a single OCL file is generated, which 
contains only OCL def expressions of the form z_internal_InstancesAffectedBy_BlaBla.  
Each definition expression corresponds to the result of a back navigation path.  The result 
can either be a collection of instances or a single instance, depending on the multiplicity of the 
association.  Later this .ocl file will be translated to Java by Octopus.  The body of the 
AspectJ advice will invoke those generated methods to gather the references to the affected 
instances and to wrap them in the WeakReferences before queuing them for evaluation at 
transaction commit time. 
 
Figure 5.15 displays the generated defs.ocl of invariant noAccounts. 
 

 
 

Figure 5.15 Generated defs.ocl of Invariant noAccounts 
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5.2.8 Consistency Verification Infrastructure 

In order to perform the consistency verification on models, an infrastructure is needed.  
Remember in our case, there are two types of back navigation, or better to say, one is 
computable, the other does not exist (in this case, allInstances of the context class should 
be checked, so we denote the back navigation path as “allInstances”).  Two different 
mechanisms are necessary to handle them.  For the case that back navigation path is 
computable, WeakReference is applied to hold the affected instance.  What we also need is a 
String to save the name of the invariant checking method generated by Octopus.  These two 
build a pair and we name it as WeakRefInstance_Inv_Pair.  Again it corresponds to a 
single affected instance.  To collect all affected instances, WeakRefInstance_Inv_Set is 
used.  So at transaction commit time, one can iterate over this set and use the Java reflection 
to invoke the invariant checking method on each affected instance to check the consistency, 
which is done by invoking the method EvaluateWeakRefInstance_Inv_Set.  If the 
invariant is broken, an error message is printed in the console.  At the end all instances 
which did not break the consistency should be deleted from the WeakRefInstance_Inv_Set 
and only those broken ones will be kept for rechecking at the next transaction commit time.   
 
For the second case, one has to handle the invariant checking of all instances.  Here instead 
of affected instance, affected class type should be saved.  At the transaction commit time, 
one can get allInstances from that class type (by using Java reflection) and then iterate over 
each of them to invoke the invariant checking method.  The rest is the same as the first case.  
We name them Class_Inv_Pair and Class_Inv_Set. 
 
At last we need a class InvCheckInfrastructure to hold these two different sets.  These 
two sets are defined as static fields so that one can access them by calling the class every time.  
At transaction commit time, the consistency can be checked just by invoking 
InvCheckInfrastructure.EvaluateConsistency(), which is also a static method.  The 
complete Java code of this infrastructure is listed in appendix B. 
 

5.2.9 AspectJ Code Templates 

Also in this approach one needs to design the general AspectJ code templates for enforcing 
invariants for later checking.  There are three different cases, depending on whether the back 
navigation path exists and the number of affected instances if the path exists.  The templates 
are shown in figure 5.16. 
 
 
//for the case that back navigation exists and a collection of instances are affected 
after (SomeClass self) : 
   ( 
   pointcut generated according to the pointcut pattern 
 )  
 && target(self) {  
   Collection coll = null; 
   try{ 
   coll = self.z_internal_InstancesAffectedBy_BlaBla(); 
   } 
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   catch(Exception exc){ 
       return;  //error message could be printed in the console here 
   } 
   if(coll.equals(null)) return; 
   Iterator it = coll.iterator(); 
   while ( it.hasNext() ) { 
   Object o = it.next(); 
   WeakRefInstance_Inv_Pair pairWI = new WeakRefInstance_Inv_Pair(o, 
"InvariantCheckingMethodName"); 
   InvCheckInfrastructure.s_WeakRefInstance_Inv_Set.add(pairWI); 
  } 
   } 
 
 
//for the case that back navigation exists and a single instance is affected 
after (SomeClass self) : 
   ( 
   pointcut generated according to the pointcut pattern 
 )  
 && target(self) {  
  Object o = null; 
  try{ 
   o = self.z_internal_InstancesAffectedBy_BlaBla(); 
  } 
  catch(Exception exc){ 
       return;  //error message could be printed in the console here  
  } 
  if(o.equals(null)) return;  
  WeakRefInstance_Inv_Pair pairWI = new WeakRefInstance_Inv_Pair(o, 
"InvariantCheckingMethodName"); 
  InvCheckInfrastructure.s_WeakRefInstance_Inv_Set.add(pairWI); 
 }  
 
 
//for the case that back navigation does not exist 
after(SomeClass self) : 
 ( 
      pointcut generated according to the pointcut pattern 
 )  
 && target(self) {  
     try{ 
    Class c = Class.forName(“AffectedClassName”); 
    Class_Inv_Pair pairCI = new Class_Inv_Pair(c, " InvariantCheckingMethodName"); 
    InvCheckInfrastructure.s_Class_Inv_Set.add(pairCI); 
     } 
   catch(Exception exc){ 
        return;  //error message could be printed in the console here 
     } 
 } 
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Figure 5.16 AspectJ Code Templates 
 
If the defined back navigation method returns a collection of affected instances, one has first 
to iterate over the collection to get each instance, and then add the instance and the name of its 
invariant checking method to the invariant checking infrastructure.  If no back navigation 
path exists, the affected class type in stead of instance is recorded.  An example of the third 
case is given below in figure 5.17: 
 

 
 

Figure 5.17 Sample AspectJ Code  
 

5.2.10 Code Generation Process 

The code generation process is divided into pre-generation phase and formal code generation 
phase.  In the pre-generation phase, both the .uml and .ocl files are parsed and models are 
built into memory.  During this phase, OCL invariant expressions are visited and back 
navigation paths for each data element are computed.  Each back navigation path results in a 
new OCL definition expression in the newly generated defs.ocl file.  Now, the defs.ocl 
file and the previous defined .uml and .ocl files build new models. 
 
In the formal code generation phase, again, new models (equipped with operations defined in 
defs.ocl file) are built in memory.  Invariants of each class are visited.  For each 
potentially affected element in that OCL invariant expression, AspectJ file with properly 
defined pointcut and advice is created.  The AspectJ file is created under the same package 
where the corresponding Java file is located.  The Java files for invariant checking 
infrastructure are also generated at the end, which are all located under the 
src/Infrastructure directory. 
 

5.2.11 Implementation 

Each OJClass has a field f_hasAspectJ of type boolean.  Default value of f_hasAspectJ 
is false.  This field is set to true if the corresponding OJClass has invariant defined and so 
the OJClass will be translated to AspectJ.   
 
A new package aspectjgenerators is created under 
com.klasse.octopus.codegen.umlToJava.  New classes related to AspectJ file generation 
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are added here.  To study these new classes, we will first go back to class 
TransformationController, where the AspectJ generation starts. 
 
In the class TransformationController, new method generateAspectJ is added, where an 
AspectJController instance is created and its transform method is invoked.  In this 
transform method, the umlmodel is checked first.  If things goes fine, instance of class 
AspectJInvariantsGenerator is created, which extends DefaultPackageVisitor and can 
be used to visit the umlmodel.  In this case only Class is of interest to us.  In method 
class_Before, each OJClass is checked to see if it contains invariants.  If so, 
AspectJInvariantCreator is created and its addInvariant method is responsible for 
appending AspectJ info to OJPackage.   
 
Before continuing, an extension to OclContextImpl should be explained.  A field 
f_correspondingJavaMethodName is added to OclContextImpl.  Its function is to save the 
corresponding Java method name of the OclContext.  In 
com.klasse.octopus.codegen.umlToJava.expgenerators.creators InvariantCreator, 
method addInvariant is responsible for creating the invariant Java method.  Extension is 
made here 
 
((OclContextImpl)cont).setCorrespondingJavaMethodName(INV_NAME); 
  
to save the INV_NAME to the OclContextImpl, so that next time when the visitors travels this 
OclContext, it knows what the name of the Java method is.  So the sequence is important 
that generateAspectJ should be invoked after the invocation of generateExpressions. 
 
Back to AspectJInvariantCreator, in method addInvariant, AspectJInvariantVisitor 
is created to process the invariant.  It implements IAstVisitor and takes two parameters.  
One is the OJPackage, which represents the whole Java model.  The other is a String, 
which records the CorrespondingJavaMethodName.   
 
Take the example again: 
 
context LoyaltyProgram  
  inv noAccounts: partners.deliveredServices-> 
      forAll(pointsEarned = 0 and pointsBurned = 0 )  
      implies Membership.account->isEmpty() 
 
self + 
     |- partners.deliveredServices + 
     |                             |- pointsEarned 
     |                             |- pointsBurned 
     |- Membership.account 
 
Here we are interested in IAttributeCallExp, IAssociationEndCallExp and 
IAssociationClassCallExp.  We need to find the non side-effect-free methods, parent 
class and back navigation for each of them.  The starting point is the method 
addAspectJtoParentClass.  Here setHasAspectJ is invoked to set the f_hasAspectJ to 
true to indicate that the OJClass contains invariant and should be translated to AspectJ code 
later. 
 
For example, when the visitor encounters deliveredServices, the parent class is 
ProgramPartner.  A pointcut and advice should be generated for ProgramPartner.  The 
parent class can be computed by: 
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IClassifier c = exp.getSource().getNodeType(); 
if ( c instanceof ClassifierImpl && !(c instanceof IEnumerationType)) {   
 ClassifierImpl in = (ClassifierImpl) c; 
 OJPathName path = GenerationHelpers.pathname(in.getPathName()); 
 OJClass myClass = f_OJPackage.findClass(path); 
 …  
 
With the help of StructuralFeatureMap, one can get the names of all non side-effect-free 
methods.  For the case of IAssociationEndCallExp and IAssociationClassCallExp, one 
should first check the multiplicity to see whether it’s Lto1 or LtoN and then choose the 
correct non side-effect-free method pattern, which is done in method 
isMultiplicityTypeLtoN.   
 

5.3 Summary 

In this chapter, we implemented our second prototype based on AOP and back navigation 
algorithm.  A simple and straight forward approach was first discussed to illustrate the 
benefit of applying AOP technology.  Afterwards, what also became clear was that the 
pointcut and advice were defined too generally, which may result in poor performance in a 
large modeling project.  Due to that reason, a more complicated approach was conceived to 
conquer the problem.  Back navigation algorithm is used to compute the potentially affected 
instances and also in this way the invocation of invariant checking methods can be limited to 
the minimum.  The improvement of performance is achieved. 
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Chapter 6  

 

Conclusions 

 
The goal of this master thesis is to design and implement prototypes which solve the 
consistency verification problems in model engineering.   
 
We started from the introduction of consistency problems in model engineering.  After that, 
the project “Using ATL for Checking Models” was studied and served as a good example for 
us.  This approach introduces the extension of constraints with additional information and 
can be used for any metamodel and in several contexts for consistency verification.   
 
Before we started to implement our first prototype, the technology “Business Rules” was 
introduced and discussed in detail, which is one of the key components used in our first 
prototype.  One of the main advantages of this technology enables the separation of 
consistency verification logic from the application code; the other is the flexibility of defining 
rule action part to handle the inconsistency.  Also the performance of the business rule 
engine is impressive.  Transformation need be carried out from OCL to ILOG rule language 
here.  Due to the different structure and semantic of these languages, one may wonder 
whether this mapping is applicable.  Indeed, sometimes a direct mapping is not possible.  
But thanks to the Octopus generated Java code and the direct Java method invocation ability 
in ILOG rule, no information is missing after the transformation.   
 
The second prototype is based on AOP and back navigation algorithm.  A general AOP 
approach with poor performance was first presented.  Especially for large modeling project, 
it is by no means acceptable.  In the second version, improvement was achieved by 
combining the back navigation algorithm with AOP.  By doing so, the pointcut and advice 
can all be strictly defined. 
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Appendix A 

 
 

UML Diagram of Royal and Loyal 
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Appendix B 
Infrastructure.InvCheckInfrastructure 
 

 
 
Infrastructure.WeakRefInstance_Inv_Pair 
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Infrastructure.WeakRefInstance_Inv_Set 
 

 
 
Infrastructure.Class_Inv_Pair 
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Infrastructure.Class_Inv_Set 
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