
Implementation, Test and Evaluation
of Load Balancing Strategies

for Multi-User Inference Systems

by Tobias Berger

Supervisor: Prof. Dr. Ralf Möller
Second Supervisor: Assoc. Prof. Dr. Volker Haarslev

Advisor: Atila Kaya, M. Sc.

Submitted in partial fulfillment of the requirements for the degree
Master of Science in Information and Media Technologies

Hamburg, February 2007

Declaration

I declare that:
this work has been prepared by me,
all literal or content based quotations are clearly pointed out,
and no other sources or aids than the declared ones have been used.

Montréal, February 2007
Tobias Berger

Acknowledgements

I would like to thank Prof. Dr. Ralf Möller for providing me with a very in-
teresting and challenging topic of research and for giving me the opportunity
to perform this work at the Concordia University in Montreal, Canada.

I would also like to thank Associate Prof. Dr. Volker Haarslev for giving
me the opportunity to perform this work at his department at Concordia
University and providing me with excellent equipment for the testing.

Further I want to thank Atila Kaya for his patience, dedication and
very many, long and valuable telephone conferences that provided me with
inspiration and valuable guidance throughout this work.

I also would like to thank Irma Sofia Espinosa Peraldi and Michael Wessel
for their valuable advices.

I would further like to thank the DAAD for providing me with the very
important financial support that first gave me the possibility to stay in
Montreal and perform my thesis abroad.

Contents

Declaration ii

1 Introduction 1
1.1 Multimedia Document Retrieval 2
1.2 Towards A Middleware for Semantic Web Inference Systems . 3

2 Load Balancing in Well-known Systems 5
2.1 Application Areas for Load Balancing 5

2.1.1 Server Load Balancing 5
2.1.2 Global Server Load Balancing 6
2.1.3 Firewall Load Balancing 6
2.1.4 Cache Switching . 6

2.2 The Benefits of Load Balancing 7
2.2.1 Scalability . 7
2.2.2 Availability . 7
2.2.3 Manageability . 7
2.2.4 Security . 8
2.2.5 Quality of Service . 8

2.3 Load Distribution . 8
2.3.1 Stateless vs. Stateful Load Balancing 8
2.3.2 Strategies . 9

2.4 Health Checking . 10
2.5 Implementation . 10
2.6 High Availability Design . 11

2.6.1 Active-Standby Configuration 11
2.6.2 Active-Active Configuration 12

3 Multi-User Inference Systems 13
3.1 Description Logics Reasoners 13

3.1.1 Description Logics . 13
3.1.2 TBox . 14
3.1.3 ABox . 16
3.1.4 OWL Query Language 17

CONTENTS v

3.1.5 Current Reasoner Technology 18
3.2 Semantic Middleware . 19
3.3 Requirements for a Semantic Web Middleware 19

3.3.1 Integration into Existing Architecture 19
3.3.2 Improved Load Balancing 20
3.3.3 Integration with other Components 21
3.3.4 Scalability . 21
3.3.5 Availability . 21
3.3.6 Support for Standard Query Languages and Protocols 22
3.3.7 Iterative Query Answering 23
3.3.8 Server-side Knowledge Base Selection 23
3.3.9 Quality of Service . 24

4 Optimization Criteria 25
4.1 Query Types . 25

4.1.1 Query to an Unknown Knowledge Base 25
4.1.2 New Query to a Known Knowledge Base 26
4.1.3 Known Query to a Known Knowledge Base 26
4.1.4 Continuation Query 26

4.2 Cache Usage . 27
4.2.1 Safeguarded the Order of Answers 28

4.3 Exploitation of Subsumption Relationships 28
4.3.1 QBox . 29
4.3.2 Earlier Query Subsumes Current Query 29
4.3.3 Current Query Subsumes Earlier Query 29
4.3.4 Subsumption Relationship in Both Directions 30
4.3.5 No Subsumption Relationship 30

4.4 Forced Knowledge Base Distribution 31
4.4.1 The Ideal Knowledge Base Distribution 31
4.4.2 The Optimal Knowledge Base Distribution 33
4.4.3 Choosing the Optimal Knowledge Base 34
4.4.4 Systems with Initially Known Knowledge Bases 36

5 Load Balancing Strategy 37
5.1 Requirements . 38
5.2 Ant Colony Optimization . 38

5.2.1 The Ant’s Way of Navigation 38
5.2.2 Navigating Networks with Artificial Ants 40
5.2.3 The AntNet Algorithm 41

5.3 Load Balancing with Artificial Pheromones 42
5.3.1 Balancing the Load with Reverse ACO 42

CONTENTS vi

6 System Implementation 46
6.1 RacerManager . 47
6.2 Workflow Assignment . 47

6.2.1 Classifier . 48
6.2.2 Workflows . 48
6.2.3 Cache . 50
6.2.4 Cache Optimizer . 51
6.2.5 Subsumption Optimizer 52
6.2.6 Knowledge Base Distributor 55
6.2.7 Load Balancer . 57

6.3 Queuing . 59
6.4 Test Framework . 59

6.4.1 jMeter Query Assembler 59

7 Evaluation 62
7.1 Environment for Empirical Evaluation 62

7.1.1 Test Plans . 62
7.1.2 Knowledge Bases . 63
7.1.3 Framework . 63
7.1.4 System . 64
7.1.5 Data . 65

7.2 Evaluation of Load Balancing 65
7.2.1 Benchmark I . 65
7.2.2 Benchmark II . 71
7.2.3 Evaluation Results . 75

7.3 Evaluation of Optimization by Cache Usage 77
7.3.1 Benchmark III . 78
7.3.2 Benchmark IV . 80
7.3.3 Evaluation Results . 82

7.4 Evaluation of Optimization by Subsumption 83
7.4.1 Benchmark V . 83
7.4.2 Benchmark VI . 85
7.4.3 Evaluation Results . 88

8 Conclusion and Future Work 90
8.1 Conclusion . 90

8.1.1 The Benefit of Load Balancing 90
8.1.2 Optimization . 91

8.2 Future Work . 92
8.2.1 Single vs. Multiple Semantic Middleware Systems . . 92
8.2.2 Developing the Semantic Middleware 92
8.2.3 Publish and Subscribe Service 93
8.2.4 Knowledge Base Alternation 93
8.2.5 Support for Server-Side Knowledge Base Selection . . 93

CONTENTS vii

8.2.6 High Availability Design 94
8.2.7 Implementation . 94

Appendices 96

A Additional Algorithms 96

B Benchmarking Result Tables 98

C Benchmarking Result Charts 109
C.1 Charts for 7.2.1 Benchmark 1 109

C.1.1 ACO-LB Result Charts 109
C.1.2 RoundRobin Result Charts 113
C.1.3 Comparison of the ACO-LB and RoundRobin Results 116

C.2 Charts for 7.2.2 Benchmark 2 117
C.2.1 ACO-LB Result Charts 117
C.2.2 RoundRobin Result Charts 120
C.2.3 Comparison of the ACO and RoundRobin Results . . 123

C.3 Charts for 7.3.1 Benchmark 3 124
C.4 Charts for 7.3.2 Benchmark 4 128
C.5 Charts for 7.4.1 Benchmark 5 131
C.6 Charts for 7.4.2 Benchmark 6 132

D LUBM Queries in OWL QL 135

Bibliography 150

List of Figures

3.1 Architecture of a knowledge representation system based on
Description Logics.[4] . 14

3.2 TBox defining concepts of the domain family. 15
3.3 Taxonomy based on the family TBox. 16

5.1 The two experimental setups for the double bridge experiment
by Deneubourg and colleagues, 1990. [15] 39

5.2 Example network graph for the AntNet algorithm 41

6.1 Enhanced Architecture for Semantic Web Middleware 46
6.2 jMeter Query Assembler - Example GUI view with 2 clients

and the control panel. The first client has a list of 4 queries
to execute, the second client a list of just 1 query. 60

7.1 Benchmark I. The chart compares the development of the average ACO-
LB query response times for each of the settings. A single graph for each
setting comparing the response time developments for each client can be
found in figures C.1, C.2, C.3 and C.4. Notice that the graph for "3
reasoners" is covered by the one for "4 reasoners". 67

7.2 Benchmark I. The chart compares the development of the query response
times for ACO-LB from the system’s perspective. It shows the devel-
opment in the order in which the queries where answered by the reasoners. 68

7.3 Benchmark I. The chart compares the development of the average Round
Robin query response times for each of the settings. A single graph for
each setting comparing the response time developments for each client
can be found in figures C.7, C.8 and C.9. 70

7.4 Benchmark I. The chart compares the development of the query response
times for Round Robin from the system’s perspective. It shows the
development in the order in which the queries where answered by the
reasoners. 71

7.5 Benchmark I. The column chart compares the average response times
for queries to the ACO-LB balanced and the Round Robin balanced
systems with 1, 2 and 3 reasoners settings. 72

73figure.7.6

LIST OF FIGURES ix

7.7 Benchmark II. The chart compares the development of the query re-
sponse times for ACO-LB from the system’s perspective. It shows the
development in the order in which the queries where answered by the
reasoners. 74

7.8 Benchmark II. The chart compares the development of the average
Round Robin query response times for each of the settings. A sin-
gle graph for each setting comparing the response time developments for
each client can be found in Figures C.19 and C.20. 75

7.9 Benchmark II. The chart compares the development of the query re-
sponse times for Round Robin from the system’s perspective. It shows
the development in the order in which the queries where answered by
the reasoners. 76

7.10 Benchmark II. The column chart compares the average response times
for queries to the ACO-LB balanced and the Round Robin balanced
systems with 1 and 2 reasoners settings. 76

7.11 Benchmark III. The chart compares the development of the query re-
sponse times for a system with and without a cache (from the system’s
perspective). It shows the development in the order in which the queries
where answered by the reasoner as they are shown in Figure 7.11. Note
that queries 1-10 are the same as 11-20. 79

7.12 Benchmark III. The column chart compares the average response times
of the queries 11-20. 80

7.13 Benchmark IV. The chart compares the development of the query re-
sponse times for a system with and without a cache (from the system’s
perspective). It shows the development in the order in which the queries
where answered by the reasoner. Note that queries 1-6 are equal to
queries 7-12 and 13-18. 81

7.14 Benchmark IV. The column chart compares the average response times
of the queries 7-18 and 13-18 (which are the intervals where differences
occured due to the cache/no cache implementation) as they are shown
in Figure 7.13. Note that the difference between the both is that in the
comparison 7-18 the accumulated waiting times of queries 1-6 affect the
response times for the queries 7-12, while 13-18 shows a cache/no cache
comparison free of waiting times. 82

7.15 Benchmark V. The chart compares the development of the
response times of the four queries for the system without and
with subsumption optimization. 84

7.16 Benchmark V. The chart compare the average response times
for all four queries of a system with and without subsump-
tion optimization. The second pair of columns does the same
comparison for the queries 2 to 4. 85

LIST OF FIGURES x

7.17 Benchmark VI. The chart compares the development of the
response times of the four queries for the system without sub-
sumption optimization, with child subsumption and with full
child & parent subsumption optimization. 86

7.18 Benchmark VI. The chart compares the average response times
for each client individually in regard to the different system
settings. 87

C.1 Scenario: 3 concurrent clients send 3 pairwise different queries sequen-
tially (the next query is send when the answer to the previous was re-
ceived) to 1KB each (i.e. to 3 KBs in total). The 3 knowledge bases
are identical. System Setting: ACO-LB manages 1 reasoner. The graph
shows the development of the response times from a the perspective of
each client. 109

C.2 Scenario: 3 concurrent clients send 3 pairwise different queries sequen-
tially (the next query is send when the answer to the previous was re-
ceived) to 1KB each (i.e. to 3 KBs in total). The 3 knowledge bases are
identical. System Setting: ACO-LB manages 2 reasoners. The graph
shows the development of the response times from a the perspective of
each client. 110

C.3 Scenario: 3 concurrent clients send 3 pairwise different queries sequen-
tially (the next query is send when the answer to the previous was re-
ceived) to 1KB each (i.e. to 3 KBs in total). The 3 knowledge bases are
identical. System Setting: ACO-LB manages 3 reasoners. The graph
shows the development of the response times from a the perspective of
each client. 110

C.4 Scenario: 3 concurrent clients send 3 pairwise different queries sequen-
tially (the next query is send when the answer to the previous was re-
ceived) to 1KB each (i.e. to 3 KBs in total). The 3 knowledge bases are
identical. System Setting: ACO-LB manages 4 reasoners. The graph
shows the development of the response times from a the perspective of
each client. Important to notice here is that there is no change at all to
the measured times in the 3 reasoner scenario, Fig. C.3. 111

C.5 The chart compares the development of the average ACO-LB query re-
sponse times for each of the settings shown in figures C.1, C.2, C.3 and
C.4. Notice that the graph for "3 reasoners" is covered by the one for "4
reasoners". 111

C.6 The chart compares the development of the query response times for
ACO-LB from the system’s perspective. It shows the development in
the order in which the queries where answered by the reasoner. Note
that the order 1,2,3,4... of the queries in the graph do not correspond to
the order in the data tables. It is based on the, by time-stamp reordered
tables. 112

LIST OF FIGURES xi

C.7 Scenario: 3 concurrent clients send 3 pairwise different queries sequen-
tially (the next query is send when the answer to the previous was re-
ceived) to 1KB each (i.e. to 3 KBs in total). System Setting: RoundRobin
manages 1 reasoner. The graph shows the development of the response
times from a the perspective of each client. 113

C.8 Scenario: 3 concurrent clients send 3 pairwise different queries sequen-
tially (the next query is send when the answer to the previous was re-
ceived) to 1KB each (i.e. to 3 KBs in total). System Setting: RoundRobin
manages 2 reasoners. The graph shows the development of the response
times from a the perspective of each client. 113

C.9 Scenario: 3 concurrent clients send 3 pairwise different queries sequen-
tially (the next query is send when the answer to the previous was re-
ceived) to 1KB each (i.e. to 3 KBs in total). System Setting: RoundRobin
manages 3 reasoners. The graph shows the development of the response
times from a the perspective of each client. 114

C.10 The chart compares the development of the average RoundRobin query
response times of each of the settings shown in figures C.7, C.8 and C.9. 114

C.11 The chart compares the development of the query response times for RR
from the system’s perspective. It shows the development in the order in
which the queries where answered by the reasoner. Note that the order
1,2,3,4... of the queries in the graph do not correspond to the order in
the data tables. It is based on the, by time-stamp reordered tables. . . . 115

C.12 The chart shows a layering of the figures C.6 and C.11 in order to compare
the performance of an ACO-LB managed system and a system with a
pure RoundRobin. 116

C.13 The column chart compare the average response times for the query of
the ACO-LB balanced and the RR balanced system for the a 1, 2 and 3
reasoners setting. 116

C.14 Scenario: 10 concurrent clients send 2 queries each sequentially(the next
query is send when the answer to the previous was received) to 2KBs. 5
clients to KB1, 5 clients to KB2. The 2 knowledge bases are identical.
The queries to KB1 are the same as to KB2. System Setting: ACO-LB
manages 1 reasoner. The graph shows the development of the response
times from a the perspective of each client. 117

C.15 Scenario: 10 concurrent clients send 2 queries each sequentially(the next
query is send when the answer to the previous was received) to 2KBs. 5
clients to KB1, 5 clients to KB2. The 2 knowledge bases are identical.
The queries to KB1 are the same as to KB2. System Setting: ACO-LB
manages 2 reasoners. The graph shows the development of the response
times from a the perspective of each client. 118

C.16 The chart compares the development of the average ACO-LB query re-
sponse times for each of the settings shown in figures C.14 and C.15.
. 118

LIST OF FIGURES xii

C.17 The chart compares the development of the query response times for
ACO-LB from the system’s perspective. It shows the development in
the order in which the queries where answered by the reasoner. Note
that the order 1,2,3,4... of the queries in the graph do not correspond to
the order in the data tables. The charts is based on the, by time-stamp
reordered tables. 119

C.18 This chart shows the development from the same perspective as fig. C.17
but for each KB individually. The graph for 1 reasoner of fig. C.17 thus
splits into 2 graphs, as does the one for 2 reasoners. Consequently this
chart can only show the development over 10 queries, because the 20
queries that reach the whole system split into 10 per KB. 119

C.19 Scenario: 10 concurrent clients send 2 queries each sequentially (the
next query is send when the answer to the previous was received) to
2KBs. 5 clients to KB1, 5 clients to KB2. The 2 knowledge bases are
identical. The queries to KB1 are the same as to KB2. System Setting:
RoundRobin manages 1 reasoner. The graph shows the development of
the response times from the perspective of each client. 120

C.20 Scenario: 10 concurrent clients send 2 queries each sequentially (the
next query is send when the answer to the previous was received) to
2KBs. 5 clients to KB1, 5 clients to KB2. The 2 knowledge bases are
identical. The queries to KB1 are the same as to KB2. System Setting:
RoundRobin manages 2 reasoners. The graph shows the development of
the response times from the perspective of each client. 121

C.21 The chart compares the development of the average RR query response
times for each of the settings shown in figures C.19 and C.20 121

C.22 The chart compares the development of the query response times for RR
from the system’s perspective. It shows the development in the order in
which the queries where answered by the reasoner. Note that the order
1,2,3,4... of the queries in the graph do not correspond to the order in the
data tables. The charts is based on the, by time-stamp reordered tables. 122

C.23 This chart shows the development from the same perspective as fig. C.22
but for each KB individually. The graph for 1 reasoner of fig. C.22 thus
splits into 2 graphs, as does the one for 2 reasoners. Consequently this
chart can only show the development over 10 queries, because the 20
queries that reach the whole system split into 10 per KB. 122

C.24 The chart shows a layering of the figures C.17 and C.22 in order to
compare the performance of an ACO-LB managed system and a system
with a pure RoundRobin. 123

C.25 The column chart compare the average response times for the query of
the ACO-LB balanced and the RR balanced system for the a 1 and 2
reasoners setting. 123

LIST OF FIGURES xiii

C.26 Scenario: 10 concurrent clients, each of which sequentially (the next
query is send when the answer to the previous was received) sends 2
times the same query. 5 clients send to KB1, 3 clients to KB2. The
2 knowledge bases are identical, have been previous loaded - each on
one of the reasoners - and the index structures have been built. The
queries to KB1 are the same as to KB2, but are pairwise different to
the other queries to the same knowledge base. System Setting: a pure
ACO-LB without cache manages 2 reasoners. The graph shows on the
one hand the response times from the client perspective in comparison
to the others and on the other hand compares the first time a query
was answered with the second (as in this case a client is identical to a
particular query). Note: The first time the query arrives it is new to the
system and the reasoner, the second time the query arrives it is known
by system/reasoner. 124

C.27 Scenario: 10 concurrent clients, each of which sequentially (the next
query is send when the answer to the previous was received) sends 2
times the same query. 5 clients send to KB1, 3 clients to KB2. The 2
knowledge bases are identical, have been previous loaded - each on one
of the reasoners - and the index structures have been built. The queries
to KB1 are the same as to KB2, but are pairwise different to the other
queries to the same knowledge base. System Setting: a pure ACO-LB
with cache manages 2 reasoners. The graph shows on the one hand the
response times from the client perspective in comparison to the others
and on the other hand compares the first time a query was answered
with the second (as in this case a client is identical to a particular query).
Note: The first time the query arrives it is new to the system and the
reasoner, the second time the query arrives it is known by system/reasoner.125

C.28 The chart compares the development of the average query response times
shown in figures C.26 and C.27 for a system with cache and without cache.125

C.29 The chart compares the development of the query response times for a
system with and without a cache - from the system’s perspective. It
shows the development in the order in which the queries where answered
by the reasoner. Note that queries 1-10 are the same as 11-20. 126

C.30 The chart shows the same comparison as fig. C.29, but focuses on the
queries 11-20. 127

C.31 The column chart compares the average response times of the queries
11-20 as they are shown in fig. C.30. 127

LIST OF FIGURES xiv

C.32 Scenario: 6 concurrent clients, each of which sequentially (the next query
is send when the answer to the previous was received) sends 3 times the
same query. 3 clients send to KB1, 3 clients to KB2. The 2 knowledge
bases are identical, have been previous loaded - each on one of the rea-
soners - and the index structures have been built. The queries to KB1
are the same as to KB2, but are pairwise different to the other queries
to the same knowledge base. System Setting: a pure ACO-LB without
cache manages 2 reasoners. The graph shows on the one hand the re-
sponse times from the client perspective in comparison to the others and
on the other hand compares the first time a query was answered with
the second and third (as in this case a client is identical to a particular
query). Note: The first time the query arrives it is new to the system
and the reasoner, the second and third time the query arrives it is known
by system/reasoner. 128

C.33 Scenario: 6 concurrent clients, each of which sequentially (the next query
is send when the answer to the previous was received) sends 3 times the
same query. 3 clients send to KB1, 3 clients to KB2. The 2 knowledge
bases are identical, have been previous loaded - each on one of the rea-
soners - and the index structures have been built. The queries to KB1
are the same as to KB2, but are pairwise different to the other queries to
the same knowledge base. System Setting: a pure ACO-LB with cache
manages 2 reasoners. The graph shows on the one hand the response
times from the client perspective in comparison to the others and on the
other hand compares the first time a query was answered with the second
and third (as in this case a client is identical to a particular query). Note:
The first time the query arrives it is new to the system and the reasoner,
the second and third time the query arrives it is known by system/reasoner.129

C.34 The chart compares the development of the average query response times
shown in figures C.32 and C.33 for a system with cache and without cache.129

C.35 The chart compares the development of the query response times for a
system with and without a cache - from the system’s perspective. It
shows the development in the order in which the queries where answered
by the reasoner. Note that queries 1-6 are equal to queries 7-12 and 13-18.130

C.36 The column chart compares the average response times of the queries 7-
18 and 13-18 (which is the interval where differences occured due to the
cache/no cache implementation) as they are shown in fig. C.35. Note
that the difference between the both is that in the comparison 7-18 the
accumulated waiting times of queries 1-6 affect the response times for
the queries 7-12, while 13-18 shows a cache/no cache comparison free of
waiting times. 130

C.37 Benchmark V. The chart compares the development of the response times
of the four queries for the system without and with subsumption opti-
mization. 131

LIST OF FIGURES xv

C.38 Benchmark V. The chart compare the average response times for all four
queries of a system with and without subsumption optimization. The
second pair of columns does the same comparison for the queries 2 to 4. 131

C.39 Benchmark VI. The chart shows the individual developments of the re-
sponse times for each of the clients in the setting without subsumption
optimization. 132

C.40 Benchmark VI. The chart shows the individual developments of the re-
sponse times for each of the clients in the setting with child subsumption
optimization. 132

C.41 Benchmark VI. The chart shows the individual developments of the re-
sponse times for each of the clients in the setting with full child & parent
subsumption optimization. 133

C.42 Benchmark VI. The chart compares the development of the response
times of the four queries for the system without subsumption optimiza-
tion, with child subsumption and with full child & parent subsumption
optimization. 133

C.43 Benchmark VI. The chart shows the development of the response times
from a systems perspective, in the order they were answered. The graph
compares the settings without subsumption, with child subsumption and
with child & parent subsumption optimization 134

C.44 Benchmark VI. The chart compares the average response times for each
client individually in regard to the different system settings. 134

List of Tables

5.1 Pheromone Table for node 1, before first packet. 41
5.2 Pheromone Table for node 1, after first packet, before second. 41

B.1 Results for: Response times on unloaded system. 98
B.2 Results for: 3 KBs, 3 parallel clients, 3 queries per client.

Scenario with ACO. 98
B.3 Results for: 3 KBs, 3 parallel clients, 3 queries per client.

Scenario with ACO. 99
B.4 Results for: 3 KBs, 3 parallel clients, 3 queries per client.

Scenario with ACO. 99
B.5 Results for: 3 KBs, 3 parallel clients, 3 queries per client.

Scenario with ACO. 99
B.6 Results for: 3 KBs, 3 parallel clients, 3 queries per client.

Scenario with RR. 100
B.7 Results for: 3 KBs, 3 parallel clients, 3 queries per client.

Scenario with RR. 100
B.8 Results for: 3 KBs, 3 parallel clients, 3 queries per client.

Scenario with RR. 100
B.9 Results for: 2 KBs, 10 parallel clients, 2 queries per client.

Scenario with ACO. 101
B.10 Results for: 2 KBs, 10 parallel clients, 2 queries per client.

Scenario with ACO. 102
B.11 Results for: 2 KBs, 10 parallel clients, 2 queries per client.

Scenario with RR. 103
B.12 Results for: 2 KBs, 10 parallel clients, 2 queries per client.

Scenario with RR. 104
B.13 Results for: 2 KBs, 6 parallel clients, 3 queries per client.

Scenario with ACO. 104
B.14 Results for: 2 KBs, 6 parallel clients, 3 queries per client.

Scenario with ACO. 105
B.15 Results for: 2 KBs, 10 parallel clients, 2 queries per client.

Scenario with ACO. 105

LIST OF TABLES xvii

B.16 Results for: 2 KBs, 10 parallel clients, 2 queries per client.
Scenario with ACO. 106

B.17 Results for: 1 KBs, 1 parallel clients, 4 queries per client.
Scenario with 1 reasoners. 107

B.18 Results for: 1 KBs, 1 parallel clients, 4 queries per client.
Scenario with 1 reasoners. 107

B.19 Results for: 1 KBs, 3 parallel clients, 4 queries per client.
Scenario with 1 reasoners. 107

B.20 Results for: 1 KBs, 3 parallel clients, 4 queries per client.
Scenario with 1 reasoners. 108

B.21 Results for: 1 KBs, 3 parallel clients, 4 queries per client.
Scenario with 1 reasoners. 108

Chapter 1

Introduction

They want to deliver vast amounts of information over the Internet. And
again, the Internet is not something you just dump something on. It’s not a
big truck. It’s a series of tubes.
And if you don’t understand those tubes can be filled and if they are filled,

when you put your message in, it gets in line and it’s going to be delayed
by anyone that puts into that tube enormous amounts of material, enormous
amounts of material.
- Senator Ted Stevens, member of the United States Senate, June 28th 2006

In its beginning the Internet was mostly the playground for people pur-
suing academic interests, connecting individual research networks with each
other. At this time there was no to very little consumer use. Even when the
personal use on the Internet increased in the middle of the 1990’s web sites
were not used much for commerce, it was more a new media for presenta-
tion. More or less none of the use was in any way critical to the profit of a
company. At that time a single server was able to handle the traffic of even
the most popular web sites, and when it needed to be maintained or went
down due to a failure, it was not much of a big issue.

When companies started to recognize the potential of the Internet com-
bined and triggered by a highly increased amount of users and potential
customers, its importance for commerce and companies’ profits started to
rise. With the increase of its significance, many issues that could be ne-
glected before became crucial and had to be addressed.

In the beginning companies and Internet Service Providers started to
increase the capabilities of their servers, e.g., by increasing the memory or
upgrading the processor. But this can only scale to a certain point. Thus
a way had to be found to distribute the load over more than one server.
The solution was the introduction of load balancing techniques that spread

1.1 Multimedia Document Retrieval 2

in many varieties into various application areas to ensure and even increase
scalability, availability and the quality of service.

Commercialization of the Semantic Web

A crucial requirement of the Semantic Web vision to come true is the effi-
ciency of reasoning over web-wide distributed ontologies and the quality of
service connected to that. In a way the Semantic Web undergoes the same
development as the Internet did in its infancy.

State-of-the-art reasoners are able to deal with standard reasoning tasks
and large ontologies in a quiet efficient way. The quality of service they offer
suits their users, who mainly use it for special tasks that involve only a few
users, respectively use it for academic purposes. Similar to the development
of Internet technologies the Semantic Web offers a wide field for new busi-
ness models and commercial activities that will change the demands for the
systems.

The typical Semantic Web scenario where software agents accomplish
complex tasks requires a scalable inference infrastructure that provides for
efficient reasoning on ontologies with respect to implicit knowledge. The
following example will illustrate that.

1.1 Multimedia Document Retrieval
The project BOEMIE (Bootstrapping Ontology Evolution with Multimedia
Information Extraction), funded by the European Commission, is currently
involved in developing a system to automatically extract information from
multimedia content. Low-level objects are extracted from from several
modalities such as still images and based on these more abstract (highlevel)
knowledge will be discovered with the help of reasoning about multimedia
ontologies.

Example. Illustrators of newspapers, online content, books or other media
enrich the textual content with pictures that fit the topic and underline
the point the article tries to make. For this purpose they can access large
databases of content brokers that offer photographs for all kinds of different
topics and current events. In this case the illustrator may be working on an
article about athletics and searches for an athlete jumping over a hurdle in a
race to underline the strength, agility and technique needed in athletics. The
service, provided with the keywords, will search the database for matches
and return the found photographs. The information about the pictures in
the database have been attached to the image (a.k.a. annotations) by a
person previously.

In the BOEMIE scenario the attaching of information would be unnec-
essary. When a new photograph is put into the system, the service will

1.2 Towards A Middleware for Semantic Web Inference Systems 3

recognize low-level objects like a horizontal bar (the hurdle bar), two verti-
cal bars, or a person with his legs spread (jumping) above the vertical bar.
Given the low-level objects the reasoner can, based on the multimedia on-
tologies, infer knowledge about this photograph, using high-level semantics
to put the low-level objects together to an athlete jumping over a hurdle. In
combination with further information coming from a database, like where
and when the picture was taken, the multimedia document retrieval service
will find a match for the search criteria of the illustrator. Moreover endusers
of the system, e.g., the illustrator in our example, can not only make a key
word based search but also pose complex queries.

Scalability, Availability and Quality of Service

Like other services on the Internet, this service will attract many users who
will access the service in parallel and wont be willing to wait for other users
to finish their searches before using the service themselves. A single reasoner
is not capable of answering multiple requests at the same time, i.e. not able
to provide multi-user support that is essential for the Semantic Web scenario.
Thus in order to address the upcoming, business critical issues of scalability,
availability and quality of service the system has to increase its reasoning
capabilities. More than one reasoner have to work in parallel to support the
service and remove the bottleneck of the system, supported by an intelligent
load balancing algorithm that distributes the incoming requests over the
reasoners.

In the given example even more is needed. The service works on in-
formation of multiple sources, inferred by a reasoner and retrieved from a
database. These information have to be combined to return the most suiting
matches. Furthermore, as such a service will often involve critical business
issues, more features may be needed to support it. Secure connections, elec-
tronic signatures, payment services, etc. Thus more than a plain and simple
load balancing system is needed to support and integrate all demands. These
features are not unique to the example, but will be needed in many other
fields of application.

1.2 Towards A Middleware for Semantic Web
Inference Systems

The analysis of the example showed that today’s inference systems are nei-
ther well enough equipped to offer the same quality of service for multiple,
parallel clients as for a single client. Nor do they offer the services and
openness to be integrated into an existing service infrastructure and busi-
ness environment.

To bridge this gap this thesis proposes the introduction of a Semantic

1.2 Towards A Middleware for Semantic Web Inference Systems 4

Web middleware that will be able to cope with the upcoming requirements
for multi-user Semantic Web inference systems. While considering all re-
quirements, the focus of this thesis is the issue of load balancing. Load
balancing is of particular interest because introducing more reasoners for
inference tasks are not enough to scale the system. It is the most essential
requirement for such a middleware, as it builds the basis for multi-user sys-
tems, i.e. it builds as well the basis for the other requirements and further
features.

In the following all the possibilities and constraints of load balancing for
inference, or reasoning systems will be described and explained to come up
with an intelligent load balancing algorithm. After the theoretic consider-
ations, its effects on availability, scalability and quality of service will be
evaluated on an empirical basis.

Further, the positive effects of intensive preprocessing as part of the
load balancing activity will be analyzed and evaluated, theoretically and
empirically as well.

The analysis of the topic will start with an overview on how load balancing
techniques are applied in todays existing, well-known systems.

Chapter 2

Load Balancing in
Well-known Systems

Load Balancing as such is not a new concept. It is well-known in many
application areas, where load balancers of different kinds perform valuable
work in order to enable large scale systems, networks and applications.

Load balancing systems exist in various kinds of implementations and are
equipped with multiple extra features to serve the diverse requirements of
the different systems. The main application areas are given in the following.

2.1 Application Areas for Load Balancing

2.1.1 Server Load Balancing

Servers are the publicly best-known, probably because most obvious, ap-
plication area for load balancing. In situations when a single server is not
capable to cope with the load because it exceeds its capabilities, more servers
are put together in clusters. The load balancer serves as the central and only
connection of the cluster to the external network. Redundancy and auto-
matic failure handling and recovery can be easily integrated into the system,
offering a high level of availability.

A common scenario for the use of Server Load Balancing[3] (SLB) is the
use of load balancers in the webserver environment. Websites like Yahoo!
offer their services to millions of users, and to tens of thousands in parallel.
In order to have the service available and responding in an appropriate time,
the load in form of requests must be distributed over many single servers
that can cope with the requests in parallel. These servers include webservers
as well as database servers.

As load balancing is best known from this application area and it is the
area with the most significance in terms of the thesis, this chapter will focus
mainly on server load balancing.

2.1 Application Areas for Load Balancing 6

2.1.2 Global Server Load Balancing

The driving forces behind Global Server Load Balancing[3] (GSLB) are the
need for high availability and faster response times.

While SLB addresses the problem of availability of a service by introduc-
ing server clusters, a certain redundancy with a high degree of automatic
action in failure situations, GSLB tries to address the availability problem
on the macro level and resolve the problem of a whole data center being
disconnected. In the case of a natural disaster like an earthquake GSLB
tries to ensure that the application, e.g. a website, can be operated from
another data center probably located somewhere else in the world.

Besides the availability aspect, the response time is targeted as well.
GSLB addresses the problem of network latency coming into play for long
distance connections. If a website would be operated from a single data
center, clients from the whole world would have to connect to this center in
order to receive a response, which can be of serious concern. GSLB tries to
distribute the requests based on information of the clients location. Thus
the client will be connected to the nearest available data center to improve
the response time.

2.1.3 Firewall Load Balancing

Firewalls have a limited throughput as they perform a costly task. If the
network design has to be scaled in order to support higher throughput the
introduction of one or more further firewalls may be the only solution. Fire-
wall load balancing[3] addresses this problem and helps to distribute the load
over systems with multiple firewalls.

A system with multiple firewalls is also preferable from an availability
perspective. In a single firewalled system, this is the single point of failure.
The whole system will loose its external connection when the firewall fails or
has to be taken out of work for maintenance. The introduction of multiple
firewalls improves the availability with one firewall being the backup for the
other.

2.1.4 Cache Switching

While in the examples discussed so far the load balancer tries to distribute
the load over the single units as evenly as possible, load balancing with
caches is in some respect different from that. Here the load balancer has
to pay attention to the information that are already contained in a certain
cache, as it is more effective to direct a request to a cache that has the
information already stored.

2.2 The Benefits of Load Balancing 7

2.2 The Benefits of Load Balancing

2.2.1 Scalability

By distributing the load across many real servers in a cluster, the load
balancer enables parallel processing of different requests. The collective
processing capacity is thus much higher than the processing capacity of
a single server. In an ideal scenario the processing capacity of the whole
system would be the sum of the servers capacities that are part of the system.
Although this is not necessarily achieved in real world applications, due to
various inefficiency factors, it provides an excellent scalability.

2.2.2 Availability

The load balancer is able to continuously perform health checks on the
connected servers by analyzing the traffic to and back from the server back.
If a server fails to respond the load balancer can be automatically excluded
this server and direct further work to one of the other, healthy servers. The
load balancer makes this work totally transparent for the user. As it is
done on the fly it minimizes downtime significantly. In a similar fashion, the
excluded server can be included later, once it is healthy again.

2.2.3 Manageability

The use of a load balancer improves significantly the manageability of a
system. When a server needs to be upgraded or maintained, it can be easily
excluded from the system by instructing the load balancer to send further
requests to one of the other servers in the cluster.

Besides the maintenance issue, the load balancer can also improve the
manageability of different content and services. The load balancer can direct
different kinds of services like HTTP and FTP to different servers, each of
which being specialized to offer the particular service. Different demands of
different services can be reflected by different amounts of servers, offering the
particular service. A split of services is also performed in database systems.
When a system-wide search task is offered, the work for this search is usually
performed by a different part of the cluster, on a replication of the original
database cluster. Being very performance critical, these processes can be
separated from the other read and write operations.

The same is true for large amounts of contents. In case the amount
of content is too big for one server, respectively is too big to guarantee
a response in a reasonable amount of time, it can be split. One possibility
might be the differentiation between dynamic and static content. In a cluster
a lot more processing power is needed to generate the dynamic content so
that more real servers can be assigned for this task while a smaller amount
will work on delivering static content only.

2.3 Load Distribution 8

2.2.4 Security

The load balancer is the only connection of the servers to the outer network.
As all traffic runs through the load balancer, the servers can have private
network IPs, which can not be reached from outside the network, thus pro-
tecting the servers from malicious queries . Many load balancers therefore
come equipped with features to prevent attacks on the servers they make
transparent.

2.2.5 Quality of Service

The quality of service (QoS) can be defined in different ways. A common
way of optimizing a system is to define the response time as an important
criteria for the QoS. Load balancers allow for real parallel processing of dif-
ferent requests and show an improvement over a single server (in an extreme
scenario single CPU) system, by reducing the average response time.

Besides the response time, availability is also a common known QoS
criteria.

2.3 Load Distribution

2.3.1 Stateless vs. Stateful Load Balancing

In server load balancing the system, respectively the servers in the system
can be stateless or stateful.

In a stateless system the servers do not keep track of the conversations
with the clients. Each of the requests that reach the server is handled in
the same way, and independent from each other. In case there is some
information that has to be carried from one request to the next, it has to be
included in the request, as no information is retained on server side. This
makes load balancing fairly easy, as each of the servers can be regarded as
equal and the decision on where to forward the request can be based only
on the current load level.

In a system with stateful servers load balancing is more complicated.
The load balancer has to take into account that it cannot blindly distribute
the load, but has to consider whether a request is part of an ongoing session.
If this is the case, the session has the priority and the request needs to be
forwarded to the server that owns the particular session.

For this purpose load balancers hold session tables. The tables map a
client, e.g. via its source IP and port, to a server in the system that owns the
session. Besides the advantage of being able to map sessions, these tables
come long with the disadvantage of extra work for maintenance.

2.3 Load Distribution 9

2.3.2 Strategies

The load balancing systems try to achieve the desired benefits by implement-
ing a particular strategy to evenly distribute the load among the connected
servers.

Random The load balancer picks randomly a server from a pool of idle
servers.

Round Robin The load balancer holds a circular list of all connected
servers. Circular in the sense that the first server in the list is the successor
of the the last server. Consequently an endless list of servers is created. The
load balancer always picks the next server in the list to send the request.

The advantage of the method lies in its simplicity. In situations where the
computing of other distribution algorithms can consume significant amounts
of processing time - e.g. when the least connections have to be found for
1000 real servers - round robin is a lot more effective [3].

On the other hand its simplicity is its biggest disadvantage. As this
method acts blindly it does not take the actual situation on the servers
into account, which could have very different amounts of work waiting to
be done due to different complexities of requests. This may lead to a very
unbalanced situation, at least for a certain period of time.

Least Connections The next request is sent to the server with the fewest
open connections at that time. As the load balancer is servers’ only connec-
tion to the network, it can keep track of each of the servers’ connections.
This method is one of the most popular and effective methods in load bal-
ancing for many applications [3].

Response Time Similar to the least connections strategy, the load dis-
tribution can also be based on the response times. As in many application
areas, e.g. for many websites this is the case, the quality of service is mea-
sured in response time, where it is absolutely crucial to deliver a response
as fast as possible. The server with the fastest response time gets the next
request. As this request, respectively a set of following requests, will slow
this server down again, another server will have the fastest response times
and therefore become the preferred one.

Server-Side Agents The use of server-side agents is another way of in-
cluding data about the current load status of a server into the the decision
process. This may be the most accurate process as the agents will deliver
all kinds of data, e.g. the CPU usage and information about the system’s

2.4 Health Checking 10

health. However using agents for this work also means a lot higher de-
gree of complexity. This increases the need for maintenance as well as the
complexity for maintenance.

Weighted Distribution The introduction of weights in the load distri-
bution gives the load balancer the possibility to reflect different processing
capabilities of the connected servers. Servers with the double amount of
processing capabilities than a "standard" server in a system, could have as-
signed twice the standard workload. Consequently, the existing equipment
can be used much more efficient.

2.4 Health Checking
Besides the distribution of load, the load balancer fulfills also the purpose
of health checking the system’s components. The level to which the health
checking is done is thereby arbitrarily high.

The basic health checking can be performed as so called in-band check.
This basically means that the load balancer keeps track, if it received a
response to a particular request it send. If so, the concerned server can be
considered to be healthy. A load balancer at OSI Layer 4 could, e.g., attempt
to access a specific TCP or UDP port. For that the load balancer sends a
TCP SYN request and waits for the TCP SYN ACK response from the
particular server in return. If the TCP SYN fails and no acknowledgment
is received, the particular port at the server is down.

In some applications the load balancer can also perform more sophisti-
cated health checking at the application layer. E.g., a load balancer could be
instructed to send out HTTP requests for a specific URL. The load balancer
can be configured to analyze the response code to detect 404 (Object not
found) codes.

The load balancer thereby performs a very valuable task and makes
efficiently use of its resources.

2.5 Implementation
Todays load balancers for server load balancing are mostly implemented in
two ways: as Layer 2 switch or Layer 4 Switch.

Layer 2 Switching got their name from and perform their work at the
OSI Model[1] Layer 2, the data link layer. They make use of the information
at this level, to make a decision on where to forward the request. As they
perform their work on a very basic level, it does not involve a lot of work for
the analysis of a packet and therefore can be performed very fast. The flip

2.6 High Availability Design 11

side of this medal is that thus they can not profit from these information
either. This is where Layer 4 Switching starts to work.

Layer 4 Switching tries to make use of the benefits that Layer 2 Switch-
ing neglects. It uses information from the headers of layer 4 (and sometimes
beyond this) to make more intelligent load balancing decisions. Besides an
improved load distribution, these load balancers also offer advanced health
checking by recognizing traffic for different protocols such as HTTP, SSL,
FTP etc.

2.6 High Availability Design
A very important feature with regard to the availability of a system is the
possibility of a load balancer to detect server failures and dynamically route
the traffic load to other available servers. However, a problem that is not
addressed by this mechanism is the failure of the load balancer itself. Being
the central in and out of a subnetwork the load balancer is a potential single
point of failure.

The solution in high availability design is again a backup - this time of
the load balancer- , respectively added redundancy to make the system more
tolerant to failures in load balancers. Load balancers can work in pairs in
two different modes: active-standby or active-active.

2.6.1 Active-Standby Configuration

The active-standby configuration involves two load balancers. As indicated
by the name, one of the load balancers is active while the other remains
in standby mode, monitoring the active load balancer. The standby unit
basically performs health checking through a private link on the active unit
to detect a failure, where it will take over the active part. Some systems are
able to do this in less than a second.

In order to take up full performance as fast as possible, the standby unit
has to keep track of the health status of the system. Thus, although being
in standby mode, it has to perform health checking to be better prepared
for a failure of the active unit.

Another issue is the session management. In order not to drop all current
connections, the system has to perform a stateful failover, which basically
means that the standby unit keeps a current copy of the session table of
the active one. This is only possible, if the active unit provides the standby
unit with an update whenever a new session is established. Due to the
heavy communication between the load balancers this feature can affect the
performance of the load balancers significantly. It is preferable to have the
units physically as close as possible in order to reduce network latency to a
minimum.

2.6 High Availability Design 12

2.6.2 Active-Active Configuration

The active-active configuration also involves the use of two load balancers,
but in this case both are active. While the active-standby configuration
provides good support for high availability, the load balancers in this config-
uration work simultaneously while backing each other up. Besides improved
availability this system offers higher load balancing performance as well. In
the case that one load balancer fails, the other has to do the whole work.

In order to be able to take over the other load balancers work the two
units have to share their sessions in the same way as it was described in the
stateful failover scenario of the active-standby configuration. Besides that
this allows for both load balancers to deal with any session that reaches the
system. Thus the system does not need to take care about routing a session
always to the same load balancer.

Chapter 3

Multi-User Inference
Systems

Today’s reasoning systems are developed to a point where they are highly
optimized for standard reasoning tasks and deal with large ontologies. In
an experimental, academic environment where the reasoning systems suffi-
ciently meet the demands and expectations of their users.

For an application of the Semantic Web technologies in a business en-
vironment where multiple users access the systems concurrently and the
applications will be embedded in an existing service infrastructure, new and
more requirements will be demanded from the systems that have to be ad-
dressed.

3.1 Description Logics Reasoners

3.1.1 Description Logics

Description Logics (DL)[4] are a family of formal languages for representing
knowledge and reasoning. The family of knowledge representation (KR)
systems provides the basis to represent knowledge of a domain by providing
the formalisms and to define the concepts of a domain as well as for escribing
the individuals and their attributes that occur in the domain.

Besides the representation of knowledge, description logics provide a way
to reason about this knowledge. Reasoning allows one to infer implicitly
represented knowledge from the knowledge that is explicitly contained in the
knowledge base.[4]. All this is supported by inference patterns. which are
also used by humans. This provides the systems with a clear distinction and
advantage over database systems.

Figure 3.1 shows the basic architecture of a DL based KR system. A
knowledge base (KB) consists of two components, the TBox, which describes
the terminology and the ABox, which gives assertions, the specifications of

3.1 Description Logics Reasoners 14

Figure 3.1: Architecture of a knowledge representation system based on
Description Logics.[4]

the individuals with reference to a TBox.

3.1.2 TBox

The TBox, the terminological Box[4] provides a knowledge base with the a
set of axioms that describes a domain. This vocabulary consists of concepts
and roles to describe relationships among the concepts.

Elementary descriptions are atomic concepts and atomic roles. All other
more complex description are constructed from them.

Description Language AL

The language AL[4] (attribute language) was introduced as the very basic
way to describe knowledge that is applicable in praxis. There are several.
AL provides the basis syntax for taxonomies to describe their concepts and
roles.

Terminologies

The DL uses axioms to make statements about concepts and their relations
such as inclusion or equivalance with other concepts in the TBox. The finite
set of definitions is called the terminology or TBox. In general these axioms
have the form

C v D or C ≡ D

where C and D are concepts. The same definitions also apply to roles
as well. Figure 3.2 shows an example TBox defining the concepts for the
domain family, assuming that the concepts Person and Female as well as
the roles hasChild and hasWife are atomic.

3.1 Description Logics Reasoners 15

Woman ≡ Person u Female
Man ≡ Person u ¬ Female

Mother ≡ Woman u ∃ hasChild.Person
Father ≡ Man u ∃ hasChild.Person
Parent ≡ Mother t Father

Grandmother ≡ Mother u ∃ hasChild.Parent
MotherWithoutSon ≡ Mother u ∀ hasChild.¬Man

Husband ≡ Man u ∃ hasWife.Woman
FatherWithoutSon v Father

Father v Parent

Figure 3.2: TBox defining concepts of the domain family.

In a domain there may be concepts that can not be defined entirely.
For those concepts inclusions can be used to at least state some necessary
conditions.

TBox Inference Services

As mentioned before, a knowledge representation system delivers more than
a storage unit for concepts and their assertions. Besides this explicit knowl-
edge, a KR system that is based on DL contains also implicit knowledge
that can be accessed through inference. A very basic example for inference
is that although it was not stated anywhere explicitly, it can be concluded
that a Grandmother is a Woman. The basic reasoning tasks for TBoxes[4]
are listed below, where checking a concept for satisfiability is a key inference.
Many other inference tasks can be reduced to a problem of satisfiability. For
the following list let τ be a TBox.

Satisfiability. A concept C is satisfiable with respect to τ , if there exists
a model ι of τ such that Cι is not empty.

Subsumption checks if one concept is more general than another. A con-
cept C subsumes a concept D, if in every model of τ the set defined
by D is a subset of the set defined by C.

Equivalence checks if two concepts C and D are equal, meaning if for
every model ι of τ Cι ≡ Dι.

Disjointness. Two concepts C and D are disjoint, if for every model ι of
τ the interception of Cι and Dι is the empty set.

Example. With respect to the TBox of figure 3.2 it can be stated that
e.g. Man subsumes Father, Mother subsumes Grandmother as well as that
Mother and Father are disjoint.

3.1 Description Logics Reasoners 16

Figure 3.3: Taxonomy based on the family TBox.

Taxonomy

DL reasoners often compute a hierarchy based on the subsumption relation-
ships of the concepts of a TBox. This is on the one hand a very demon-
strative and intuitive way for a human to explore the concepts and their
relationships of a TBox, on the other hand it offers a way to improve the
reasoning of a reasoner. An example taxonomy, based on the TBox given in
figure 3.2 is drawn in figure 3.3.

3.1.3 ABox

The second part of a knowledge base is called ABox[4], assertional Box or
world description. The ABox defines and describes the individuals of a
domain by asserting them particular concepts. The individuals of a concept
are similar to instances of a class.

homer : father,

with Homer being the individual and father the concept. In the same way
roles can be defined

(homer, bart) : hasChild

For sure the ABox has to be as consistent as the TBox, otherwise arbitrary
conclusions can be drawn from it.

ABox Inference Services

In the following the inference services[4] for ABoxes are given:

ABox satisfiability. The assertions in the ABox are checked for satisfia-
bility with respect to the referenced TBox. E.g., an ABox with the

3.1 Description Logics Reasoners 17

assertions homer : father and homer : mother is not satisfiable be-
cause the concepts father and mother are defined as disjoint concepts
in the TBox. (Remember figure 3.2 Man ≡ Person u ¬Female)

Instance checking. The system checks if the individual a an instance of
the concept C or if C subsumes the individual. a: instance?(a,C,A)

ABox realization. Compute for all individuals in A the most specific con-
cept they are an instance of (with respect to the TBox τ).

Similar to the TBox inference, the key inference is the satisfiability to
which all other inference services can be reduced.

Taxonomies

In the same way as a TBox taxonomy can be inferred from the concept
definitions, a taxonomy for the individuals can be created.

3.1.4 OWL Query Language

The OWL Query Language[13] (OWL-QL) is a candidate standard language
and protocol submitted to the W3C Consortium for query-answering dialogs
among Semantic Web agents. It is designed for a broad range of Seman-
tic Web applications, where servers derive answers for client queries. It is
intended for knowledge bases represented in the Web Ontology Language.

Examples for OWL-QL queries can be found in appendix D.

Web Ontology Language

The Web Ontology Language[14] (OWL) offers a formal way to describe,
publish and distribute ontologies. It is based on web languages as XML,
RDF and RDF-S, but exceeds their capabilities in terms of semantically
rich, machine-interpretable knowledge representation.

There are three species of OWL: OWL Lite, OWL DL and OWL Full.
Each of these sub-languages provides a different degree of expressiveness
with OWL Lite being the least expressive language.

OWL describes the terminology of a domain as classes and properties
and the assertions as instances. Its representation is XML.

OWL-QL Features

The OWL Query Language supports the following features, based on as-
sumptions about query-answering dialogs in the Semantic Web.

Variety Support. OWL-QL supports query-answering dialogs of different
kinds. Scenarios where agents perform automated reasoning, scenarios
with multiple as well as scenarios with unspecified knowledge bases are

3.1 Description Logics Reasoners 18

supported. Thus OWL-QL tries to be as universal as possible and live
up to the expectations of a multi-purpose Semantic Web environment.

Adaptable Query Answering Protocol. Not only the purposes of query-
ing, but also the queries as such are assumed to be very different. Thus
OWL-QL offers a means to handle partial information, performance
limitations and unpredictable settings in terms of answer sizes and
processing time by offering a protocol that on the one hand allows the
client to specify the maximum amount of answers and on the other
hand allows the server to respond with a partial set of answers.

Server-side KB Selection. Similar to the functions of todays’s search en-
gines, in the Semantic Web scenario there will be needs for a client
to send a query without specifying the knowledge base that is to be
queried. It will be expected from the server to select a reliable source
from which it will produce the answers. OWL-QL offers a means for
this feature, providing clients with the possibility to instruct servers
with the selection.

Representation Independence. On the Web of today there are a lot of
syntactically different notations for information. This can be assumed
to be the same in the Semantic Web scenario. OWL-QL supports
this variety of notations by defining only an abstract, structural level,
leaving the concrete implementation open.

Semantic Description. The promise of the Semantic Web is that knowl-
edge will be represented with formally defined semantics and a theory
of logic entailment. Thus this premise has to be also applied and sup-
ported by a query language. OWL-QL supports a semantic description
of the relationships among the queries and the knowledge bases they
use to generate answers.

3.1.5 Current Reasoner Technology

Description logic systems allow for formal domain modeling and support
decidable reasoning problems [4]. Nowadays, DL-based reasoners offer a
variety of useful inference services which solve reasoning problems.

However, when building practical applications, the efficient interaction
between clients and DL-based systems is still a big challenge for modern rea-
soners, especially in case of ontologies with a large number of individuals.
In the Semantic Web context, the amount of time a reasoning server needs
to answer a query and the answer size may both become unpredictable. Al-
though research on optimization techniques for single reasoning systems has
led to substantial performance improvements recently, optimization tech-
niques for front-end systems managing multiple reasoners have not been
developed.

3.2 Semantic Middleware 19

In the following requirements for a load balancing solution in connection
with the introduction of a semantic middleware will be discussed.

3.2 Semantic Middleware
Load balancing is a common technique in various systems, as it was ex-
plained in the previous chapter. Referring to paragraph 2.5 about the im-
plementation of load balancing in known systems, the first load balancing
was implemented as Layer 2 application, performing the load balancing on
the OSI Model Data Layer. Although this method still suites various cur-
rent applications very well, Layer 4 load balancing was introduced later to
perform its work on the OSI Model[1] Network Layer. This was done so to
profit from information that were contained within this layer to improve the
load balancing performance and enable other kinds of applications.

The same kind of evolution has now to take place in order to enable
efficient load balancing for Semantic Web applications. While, e.g. for
server load balancing, the Layer 4 systems achieved significant performance
improvements, the limited features of these kinds of systems are not suitable
for Semantic Web reasoning systems. Those information that will enable the
load balancer to make an efficient decision on where to direct the incoming
requests are contained in Layer 7. Therefore this information offers chances
for further improvements. Based on this and the following arguments it is
evident that the only suitable place for an efficient load balancing system is
at the application layer, Layer 7 of the OSI Model.

Moreover the requirements of many Semantic Web scenarios, as well as
the possibility for further optimization of the load balancing process due
to the special nature of reasoning systems, show clearly that it is required
to introduce a semantic middleware. This middleware has to offer possi-
bilities and address issues that go far beyond the capacities of a plain and
simple load balancer. The following arguments will support this claim of
implementing the load balancer as part of a Semantic Web middleware.

3.3 Requirements for a Semantic Web
Middleware

3.3.1 Integration into Existing Architecture

In order to make Semantic Web applications a success and suitable for many
clients, businesses and environments, applications and the load balancers will
have to be integrated in existing infrastructures and architectures. Thus the
systems have to implement widely accepted and used standard languages,
interfaces and protocols in order to achieve a broad client acceptance and

3.3 Requirements for a Semantic Web Middleware 20

to support a wide range of applications. Consequently service oriented ar-
chitectures (SOA) and web services are a first class choice.

This requirement alone exceeds the possibilities of known load balancer
implementations for server or firewalls. Only the extension of a load bal-
ancer to a middleware system on the Application Layer is able to handle
the integration of a load balanced reasoning system into an existing service
oriented architecture.

3.3.2 Improved Load Balancing

As mentioned earlier, although significant improvements have been made to
reasoners, reasoning still remains an expensive task. Therefore preprocessing
of requests and various steps of optimization, based on the information that
is contained in the requests, i.e. in the queries, offer a very promising way
for a significant performance improvement.

History Sensitivity

Reasoners are history sensitive, i.e. their performance for a particular query
is directly influenced by the queries they answered in the past.

The most significant factor about this issue is the fact if a reasoner has
already loaded the knowledge base that is referenced by the current query
or not. A reasoner that has, due to an earlier query to the same knowledge
base, already loaded the knowledge base for the current query, is able to
answer the query faster than a reasoner that has to load the knowledge base
prior to answer the current query. In the case of a large knowledge base this
advantage can be very significant.

But not only the time for the loading of a knowledge base is of signifi-
cance. In the Semantic Web context, the amount of time a reasoning server
needs to answer a query and the answer size may both become unpredictable.
In order improve the response times, most reasoners implement a cache that
will store the inferred knowledge. Especially in the case of very expensive
queries this can make a big difference, if a query has been answered by the
same reasoner before.

Sophisticated Strategy and Optimization

The history sensitivity of the reasoners makes it crucial for an effective load
balancer to implement a sophisticated load balancing algorithm that takes
into account as many information as possible to make the best decision for
the distribution of load.

Moreover a semantic middleware offers the possibility for optimization,
which gives the chance to avoid as much unnecessary reasoning as possible.

3.3 Requirements for a Semantic Web Middleware 21

3.3.3 Integration with other Components

In various Semantic Web scenarios features that exceed the basic load bal-
ancing are needed to enable different kinds of applications. A semantic
middleware is needed to integrate further services, like the following, into
the system.

Accounting Modules In some scenarios it is possible that clients pay for
the service that various reasoning services offer. Thus it must be pos-
sible to integrate a accounting module into the middleware to allow
the clients to identify, use a service and bill them for it. Instead of im-
plementing a system for each reasoner, the central middleware system
is the most efficient place for the integration of such a service.

Verification Service There will be clients that due to the seriousness of
there issues, will demand verification of the service provider and the
sources that were used. Especially in those scenarios that will include
payments for services this will be an important issue. For the same
reasons as in the previous module, the middleware system is the opti-
mal place for the integration of such a service.

Security Features Business applications for the Semantic Web will have
a need for security features such as encryption and firewalling in the
same way as current Web applications have it. Again a middleware
system is here the first choice as it offers a natural hiding and shield-
ing mechanism for the server architecture behind it. The integration
with a semantic middleware offers here a good chance for the use and
transfer of technologies that are known from other SOA applications.

3.3.4 Scalability

In the same way as scalability was and still is an issue in Webserver systems,
firewalls and other systems described in the previous chapter, it is an issue
in the Semantic Web scenario. Different applications will cause high query
traffic which will cause a need for the systems to scale. For the same reasons
as in known scenarios, the best scalability is provided by multiple reasoners
used in parallel an managed by a central load balancing unit, which as
argued in the previous paragraph, is ideally part of a semantic middleware.
Moreover, the fact that single reasoners are not able to handle concurrent
client requests makes it impossible for them to scale. Thus, in order to scale
further reasoner have to be added and managed in parallel.

3.3.5 Availability

Systems in the Semantic Web scenario will have to support as well a high
degree of availability.

3.3 Requirements for a Semantic Web Middleware 22

Handling of Concurrent Client Requests

Although highly optimized reasoners have achieved a significant performance
increase over the last years, in the application scenarios with multiple paral-
lel client requests this effect decreases significantly. Due to reasoners being
only able to handle one client request at a time, thus do not support con-
currency of client requests, a single query can block the whole reasoner, i.e.
the whole system.

In order to provide a basic and further on a high degree of availability, the
system has to provide capabilities for scenarios with multiple parallel client
requests. This leads to the same requirements as in the previous paragraph:
multiple, parallel reasoner instances that are managed by a central semantic
middleware.

Health Checking

Besides the basic support for parallel client requests, the issue of health
checking can provide a significant improvement of the availability of the
system. This is very similar to issues in server load balancing.

Failure Detection. In a scenario with a client and a single reasoner, the
client may not be able to detect that the reasoner failed and is no longer
- at least for a certain amount of time - able to provide reasoning
capabilities. A system with a central unit like a load balancer, i.e.
semantic middleware, is able to detect such failures. It is then able to
(i) send the current client’s request to another server in the system and
(ii) exclude the failed reasoner from further instructing with queries.
This allows the system to maintain a high degree of availability, even
more in combination with a mechanism for automatic recovery.

Automatic Recovery Besides the exclusion of failing reasoners, thus en-
suring the correct answering of client queries, the system can further
improve its availability by monitoring or even initiating automatic re-
covery functions in the reasoners. Once a reasoner failed, the semantic
middleware can, e.g. cause it to flush its memory or restart. When the
server is back and ready to perform, it can be dynamically reintegrated
in the list of available reasoners.

3.3.6 Support for Standard Query Languages and Protocols

As argued before the integration of the semantic middleware into existing
service oriented architectures is the preferred choice. In this scenario the
OWL Query Language, for the reasons that were given in paragraph 3.1.4,
offers a promising suitability as query language and protocol.

3.3 Requirements for a Semantic Web Middleware 23

The OWL-QL standard, as mentioned earlier, does not specify anything
about server-side implementation details such as caching, number of rea-
soners used as back-end etc. However, the OWL-QL protocol for query-
answering dialogs and the heterogeneous nature of the Semantic Web itself
makes it obvious that the middleware which claims to serve as an OWL-QL
server has to manage multiple reasoners in the background.

With regard to the near future of modern DL systems, the existing stan-
dard interface for accessing DL reasoners (DIG) will become more important
not only as a communication protocol but also as a query language. The
upcoming version, namely DIG 2.0 [19], offers many essential features such
as iterative query answering and query management. Thus it is realistic to
expect that DIG 2.0 will replace OWL-QL as a standard query language.

3.3.7 Iterative Query Answering

As explained in the previous paragraphs a semantic middleware has to sup-
port various application scenarios. The support of OWL-QL in the middle-
ware is one feature that helps to support this.

Modern reasoners as well as OWL-QL (being the interface to the client)
support iterative query answering, where clients may specify the maximum
number of answers they want to get from the server, and thus servers return
partial answer sets. By using available configuration options, such as incom-
plete modes, that are powerful enough for semi-structured ontologies, the
reasoner achieves significant performance improvements for handling large
ontologies. However, this task still demands reasonable hardware resources
and is notably memory-intensive.

Thus the semantic middleware not only has to support this feature, but
it is also required to exploit its functionalities and configuration options to
further improve the quality of service.

3.3.8 Server-side Knowledge Base Selection

The issue of server-side knowledge base selection was already mentioned in
the paragraph about OWL-QL. In some of the Semantic Web scenarios the
client may not be able to specify the knowledge base that is to be used to
answers the query. This may be due to missing information at the client
side, or due to improvement in the quality of service of the system. However,
the semantic middleware has to support this feature in order to be used in
these scenarios.

Firstly the semantic middleware has to support a query language and
protocol that considers this feature. As earlier mentioned the OWL Query
Language offers support for this.

Secondly the semantic middleware itself has to implement components
that allow for an efficient discovery and selection of an appropriate knowl-

3.3 Requirements for a Semantic Web Middleware 24

edge base. Even if the reasoners of the system are equipped to support the
feature, the more efficient way will be the central discovery and selection of
a knowledge base. All queries will profit from earlier discovered and already
loaded knowledge bases, independent of the particular reasoner that will be
instructed to deliver the answers.

3.3.9 Quality of Service

Besides the basic implementation of the given requirements, a central con-
cern for a semantic middleware will always be - as it was already in load
balancing systems for servers, firewalls, etc. - the improvement of the qual-
ity of service, respectively the offering of a quality of service above a certain
level. The two basic concerns in this respect are high availability and fast
responses.

High Availability. The specification, respectively the implementation of
a semantic middleware can put its focus on high availability. For
applications that require a system that they can absolutely rely on,
redundancies have to be implemented. The servers and the middle-
ware itself can be implemented redundantly, backup systems can be
installed and all in all the whole system can be focused more on the
requirement of health checking than others.

Fast Responses. A common requirement for any kind of Web application
are fast responses. As it was the case in many Web business applica-
tions, it will be the case for business scenarios on the Semantic Web
as well. Clients are very sensitive in terms of the time they are willing
to spend waiting for a certain service to respond. Especially nowadays
when the network becomes less and less of an issue, users are used to
fast responding applications and will demand this as well from appli-
cations of the Semantic Web. Thus the success of many Semantic Web
applications will depend on the time users have to spend waiting for
a response.

Chapter 4

Optimization Criteria

Reasoning is an expensive task. This makes it very probable for intensive
preprocessing to pay off. Thus various possibilities for optimization will be
analyzed and explained in order to improve the system’s availability and
quality of service by reducing the response times of the queries.

4.1 Query Types
Although the probability is very high that any kind of preprocessing of
a query pays off by reducing the amount of reasoning it has to be avoided
anywhere, where a profit from the preprocessing can be excluded beforehand.

Given the characteristics of reasoning systems, the queries can be classi-
fied as one of four query types, each of which offers a particular possibility
for optimization. The classification can be assumed to be a minor cost,
especially when compared with the unnecessary preprocessing that can be
avoided by it.

In the following the four query types with their characteristics will be
explained.

4.1.1 Query to an Unknown Knowledge Base

An unknown knowledgebase is a knowledgebase, which has not yet been
loaded by any of the reasoners that are managed by the semantic middle-
ware. As the only external connection of the reasoners goes through the
middleware an unknown knowledgebase is also always unknown to the mid-
dleware, which makes it more easily to detect.

Instances of this query class reference an unknown knowledgebase, which
means it is the first query to a knowledgebase. Thus the system cannot have
any information, neither about the knowledgebase nor about the query. This
query class therefore does not offer any possibility for optimization. Every
attempt for optimization would be a waste of resources and thus has to be

4.1 Query Types 26

avoided. In this case the classification will only help to avoid a decrease in
the response time by unnecessary optimization attempts.

4.1.2 New Query to a Known Knowledge Base

Instances of this query class are as well new to the system. The difference is
that the knowledgebase they reference is already known to the system, i.e. at
least one reasoner has already loaded the knowledgebase. Having a reasoner,
which has already loaded the knowledgebase and the implied fact the already
information of the particular knowledgebase has been retrieved due to the
earlier, at least one query offers a lot of possibilities for optimization.

Knowing which reasoner already has loaded the knowledgebase offers
the advantage to exclude the possibility that the reasoner which answers
the query will have to load the knowledgebase in order to be able to answer
the query. As the loading of a knowledgebase always adds on the response
time of a query (depending on the query and the size of the knowledgebase
the time to load a knowledgebase may exceed the answering time for a query
many times) it is always preferable from the perspective of the current query
to chose the reasoner that has already loaded the knowledgebase to answer
the current query. From the perspective of the whole system it might not
always be favorable.

Moreover the fact that already one ore more queries with reference to
the same knowledgebase as the current query have been answered offers the
possibility for optimization. Instances of this query class offer to profit from
the already reasoned information by exploiting subsumption relationships of
the current query with previous queries to the same knowledgebase.

4.1.3 Known Query to a Known Knowledge Base

In addition to the previously explained query class, queries that are instances
of this class are already known to the system, i.e. they have already been
answered completely or in parts for another client. This offers even more
effective possibilities for optimization.

To allow a current query to profit from an earlier query most effectively,
the semantic middleware has to implement a cache. Answers that have
been reasoned for earlier queries can be used to answer the current query
as another equal query to the reasoner will have to result in equal answers.
In the case that the requested number of answers of the current query does
not exceed the size of the answer bundle in the cache the whole query can
be answered without involving any reasoning.

4.1.4 Continuation Query

Instances of this query class are special cases of the previously described class
of known queries. These queries are as well known to system as the previous

4.2 Cache Usage 27

class of queries but they come with information about an existing session
which they want to pick up. This feature was described in the previous
chapter as iterative query answering.

Besides a session register to support the feature, the system should im-
plement, as it was already argued in the previous paragraph, a cache to let
as well continuation queries profit from previously gathered information of
other queries. However this will add more complexity to the cache.

The important advantage of instance of this class over instances of the
known query class is that no expensive search for the right entry in the cache
has to be made. The right cache entry can be found by letting the session
have a reference to it. This is a further step of optimization.

4.2 Cache Usage
As it was argued in the previous paragraphs, reasoning can be considered
to be an expensive task, requiring considerable system resources and time.
The usage of a caching mechanism for inferred knowledge offers for some
query classes the way to avoid reasoning in parts or even completely, but
still being answered correctly.

Most modern reasoners already implement efficient caching mechanisms
for inferred knowledge, which can speed up the answering of queries that
have been answered before by the particular reasoner. However the intro-
duction of a complete reasoning infrastructure with a central middlelayer
that mediates between the clients and the reasoners offers a much more
efficient way to cache the inferred knowledge.

Faster Response Times for the Current Query The usage of a cache
allows a query to be answered completely without the involvement of a
reasoner. In the case the query can be classified as a known query or a
continuation query the query was answered by the system before and in
consequence the answers are already contained in the cache.

Due to the support of iterative query answering the set of answers in the
cache is not necessarily complete and thus may not contain all the answers
that are requested by the current query. In this case it might be possible to
get the requested answer partly from the cache and instruct a reasoner to
deliver the missing number of tuples.

However the more popular a particular query is the higher is the prob-
ability that all answers will be contained in the cache. The cache definitely
ensures that all answers to a query will have to be inferred only once (in
case the cache does not expire).

By placing the cache in the middlelayer it can be ensured that all queries
that reach the system can profit from the inferred knowledge without being

4.3 Exploitation of Subsumption Relationships 28

dependent on the decision of the load balancer and thus dependent on the
cache of the particular reasoner that is instructed to answer the query.

Freeing Resources Another advantage of caching the inferred knowledge
in the middleware is the possibility of total exclusion of a reasoner in the
response process. This lets other queries benefit from free resources that
would have been otherwise blocked by a known query or continuation query.

4.2.1 Safeguarded the Order of Answers

An important prerequisite for the successful usage of a cache in the middle-
layer is that the cache ensures the genuine order of the answers. In praxis
this boils down to the fact that the cache makes sure that the answers it
returns to to the client are in the same order as if they came directly from
the reasoner. This prerequisite is important for two reasons.

Firstly most of the reasoners are non-repeating servers. These reasoners
ensure that in a response collection there are no duplicate answers. Moreover
a reasoner can be called terse when it ensures that none of its answers is
redundant. An answer can be called redundant, if it subsumes another
answer in the response collection. It is expected that most applications will
require the servers to be serially terse [14], thus the semantic middleware
has to support this feature as well, to be able to provide the same services
as a single reasoner.

Secondly a requirement for the semantic middleware was to support it-
erative query answering. This requirement can only be supported if the
cache safeguards the order of the answers as explained before. Otherwise
it might be possible that some answers come up more than once, when the
next answer bundle is requested from the system. Besides the right order
the cache has to integrate a kind of session register in order to know which
query and was referenced by a particular session and to know how many
answers already have been returned from the cache.

4.3 Exploitation of Subsumption Relationships
In the previous chapter the basics about DL reasoners and their way of
knowledge representation were given. The reasoner are able to compute
taxonomies for the TBoxes and ABoxes of their loaded knowlege bases,
ordering the concepts and assertions in a subsumption hierachy.

DL reasoners like RacerPro[5] can also classify queries in a subsumption
hierarchy. This offers instances of the query class "New query to a known
knowledgebase" two mutually exclusive ways to profit from previously an-
swered queries and thereby reduce their response times.

4.3 Exploitation of Subsumption Relationships 29

It should be noticed that although this way of optimization involves a
step of reasoning, the time spent on the computation of the query subsump-
tion is ignorable short compared with the time needed for query answering,
especially for complex queries and large knowledge bases.

4.3.1 QBox

A reasoner like RacerPro can be instructed to keep track of the queries to
its loaded knowledge bases. For this task the reasoner holds a query storage
unit, the QBox.

Based on the taxonomy of the TBox, the QBox sorts the queries in a
subsumption hierarchy. The query that asks for assertions of a concept C,
with D v C, subsumes the query that asks for the assertions of the concept
D.

Example. If query Qstudent asks for all individuals that belong to the
concept student and query Qgraduatestudent asks for all individuals of the
concept graduatestudent then it applies

Qgraduatestudent v Qstudent

given that

graduatestudent v student

4.3.2 Earlier Query Subsumes Current Query

The first possible way of subsumption is that the current query is subsumed
by one or more previous queries. The reasoning process can profit from
this relationship by reducing the search space for the current query to the
answer set of the so called parent query. However this implies that the same
reasoner answers the current query, which answered the parent query. A
smaller search space can result in a much faster reasoning process, especially
when the search space is significantly smaller than the complete TBox.

In the case that the current query is subsumed by more than one of the
previous queries, the one with the smallest answer set, i.e. with the smallest
search space for the current query is the preferred candidate. Thus that
query’s reasoner is to answer the current query.

4.3.3 Current Query Subsumes Earlier Query

Keeping the concept of the QBox in mind it is obvious that not only a pre-
vious query can subsume the current one, but also the opposite relationship
can exist between the queries. Finding the current query subsuming an ear-
lier query has an even bigger potential for optimization than the previously
described one.

4.3 Exploitation of Subsumption Relationships 30

The answer bundle of a subsumed query is included in the answer bun-
dle of the subsuming query. So if it is discovered that the current query
subsumes an earlier query it can be stated that parts of the answer bundle
of the current query have already been retrieved during the answering of
the so called child query, or in other words, all answers of the child query
are answers of the current query. In order to profit from these answers the
usage of a cache is essential.

As the answers of the subsumed query are included in the answer bundle
of the current query the idea is to let the current query profit from the
cached answers in the middleware by first returning those. This offers a way
to reduce the amount of needed reasoning, in case the current query is an
incremental query it even offers the chance of answering the query without
any reasoning at all. If the requested number of answers does not exceed
the number of cached answers of the subsumed query, the current query can
be answered completely from the cache. If it exceeds the number of cached
answers, only the missing answers have to be requested from the reasoner.

In case more than one previous query is subsumed by the current one, the
one with biggest answer bundle is to be preferred.The lesser the difference
in the two search spaces, the more the current query can profit from the
already cached answers as well as the whole system can profit from queries
equal to the current and the subsumed one.

4.3.4 Subsumption Relationship in Both Directions

In the case that the current query both subsumes a query and is subsumed
by another one the relationship of subsuming an earlier query should be
exploited. Considering the previously made argumentation the relationship
in this direction offers the possibility of profiting from the cache and even
avoiding reasoning completely, which is the most desired outcome of all the
preprocessing and optimization.

4.3.5 No Subsumption Relationship

If the current query neither subsumes any previous query nor is subsumed
by any previous query, there is only a small possibility for optimization.

As the query references a known knowledge base at least one of the rea-
soners has already loaded this knowledge base. Considering the arguments
that were given before it is preferable to let a reasoner answer a query that
already has loaded the referenced knowledge base. Thus this information
can and has to be exploited in order to avoid a waste of resources and shorten
the current query’s response time.

4.4 Forced Knowledge Base Distribution 31

4.4 Forced Knowledge Base Distribution
Considering the requirements for reasoning systems that were given in an
earlier chapter a basic concern of the system is to minimize the response
times. Short response times have a positive influence on the scalability,
the availability as well as on the quality of service. The distribution of the
knowledge bases that are known to the system over the system’s reasoners
has an important influence on the response times. Thus it is important to
have a closer look at this characteristic.

4.4.1 The Ideal Knowledge Base Distribution

The question about the ideal distribution of knowledge bases is a question
of perspective. To illustrate the problem consider the following example.

Example. The given system includes 2 reasoners (R1 and R2) that are
fully working, idle and prepared to answer queries. 2 knowledge bases (KB1

and KB2) are known to the system, which means the system only accepts
queries to these knowledge bases. Besides that 2 clients (C1 and C2) are
querying the system. Both are at first interested in information about KB1

and then in information about KB2.
In a first scenario each reasoner specializes in one knowledge base, i.e.

R1 loaded KB1 and R2 loaded KB2. Both clients query both kbs. In the
first step they both send a query about KB1 to the system. In the system
only R1 has loaded KB1. So the queries are put in sequence in the way they
arrived and answered one after the other by R1. In step 2 both received the
answer and now request information about KB2 at the same time. Again
only one reasoner has loaded the knowledge base. This time its R2. Both
queries are again answered sequentially.

In this scenario there is no gain for the system having more than one
reasoner working. Although 2 reasoners are working the whole system acts
as if it would be only one, which answered the queries. The response time
for C1 can be considered to be t1, while the response time for C2 is t1+t2 -
the time for waiting for C1’s query being answered plus the time to answer
the own query.

The whole outcome would have been different in the case that both
reasoners had loaded both knowledge bases, which is the second scenario.
In this case the two queries about the same knowledge base arrive again
at the same time at the system. But this time both reasoners are able to
answer the query. Thus C1’s queries are answered by R1 and C2’s queries
are answered by R2, which means not sequentially but concurrently.

With regard to the response times this means that C1’s response time
still is t1 per query. But C2’s response time was reduced by t1 to be t2.

4.4 Forced Knowledge Base Distribution 32

Complete Knowledge Base Distribution

The example shows clearly that in situations when the majority of queries
that reach the system refer to the same knowledge base, it is preferable to
have more than one reasoner equipped to answer the query, i.e. have the
particular knowledge base loaded. Otherwise the system will perform below
its capabilities.

In a worst case scenario all queries at a particular moment that reach a
system refer to the same knowledge base. In this scenario all reasoners have
to have the referenced knowledge base loaded in order to use all capabilities
of the system. It will ensure that no resource will be unused as many queries
as possible will be answered concurrently.

If the situation changes and queries to other knowledge bases reach the
system, the complete distribution of knowledge bases will ensure that the
new queries will be answered as well in the fastest possible way, allowing the
load balancer to chose from all reasoners in the system.

Thus from this perspective the ideal system makes every reasoner load
every knowledge base to be able to answer every query at any time and
giving the load balancer the optimal setting to chose from and distribute
the load.

Minimum Knowledge Base Distribution

An important fact that neither the example nor the previous perspective
consider is the cost of loading a knowledge base. In many scenarios in which
load balancing techniques will be applied, the referenced knowledge bases
are initially unknown to the system and will be loaded by the reasoners on
the fly. This loading consumes time which adds down the overall response
time of the system, i.e. slows down the processes. The problem can be
viewed on from two sides.

From the view of a single query that reaches the system it is preferable
to be answered by a reasoner which already has loaded the knowledge base.
Otherwise the loading will add an additional waiting time to the response
time of the query, thus will extend the response time of this query. If already
one reasoner has loaded the knowledge base it is therefore preferable to let
this reasoner answer the query instead of letting another reasoner load the
knowledge base and answer the query.

Another view on the issue is the overall system performance. Having
another reasoner first load a knowledge base and then answer a query does
not only block the current query from being answered but also blocks the
reasoner from answering other queries. In a life-like scenario the reasoner has
to be considered to have already loaded other knowledge bases and therefore
is likely to receive queries to them. If it is now being scheduled to load the
new knowledge base its resources are blocked to answer queries to other

4.4 Forced Knowledge Base Distribution 33

knowledge bases. Having the reasoner load the new knowledge base will
result in extended response times for other queries that reach the system at
the same moment.

Besides the pure costs for loading a knowledge base the previous per-
spective and example may be considered not to be very likely, which would
reduce the benefits of distributing the knowledge bases. In a real world
system a situation where all queries at a certain point of time refer to the
same knowledge base may not occur at all, and if it occurs it may occur very
rarely. So the costs of loading a knowledge base may weigh more than the
benefits in many cases.

Therefore the second perspective on the knowledge base distribution
argues for a minimal distribution, i.e. each knowledge base is loaded by
only one reasoner. Thus the costs of loading a new knowledge base will be
reduced to a minimum.

4.4.2 The Optimal Knowledge Base Distribution

The optimal solution has to consider both perspectives and try to find a
good balance in order to improve the system’s performance and average
response time.

The crux of this issue lies in the undeterminable pay-off - or from the
other perspective the undeterminable costs - of loading a knowledge base.
The pay-off is higher, the bigger the amount of concurrent queries to the
particular knowledge base is in the future. The costs are lower, the less
queries to other knowledge bases arrive at the same time at the system.

Thus the proposed way is to make use of idle times at reasoners to load
knowledge bases and thus reduce the costs of doing so to a minimum.

Loading Knowledge Bases during Reasoner Idle Times

The idea of this optimization criteria is to recognize idle times at reasoners.
If for a certain amount of time the queue of a reasoner has been empty,
the estimation is that as well in the coming near future there wont be any
queries for this reasoner due to a general unpopularity of the loaded knowl-
edge bases, which means the reasoner is and will be idle. Letting this idle
reasoner load a new knowledge base - preferably one that is heavily queried
to create the biggest relieve for the whole system - resolves the two basic
problems that were given during the description of the minimum knowledge
base distribution.

The first problem of extending the response time of the current query
which references the new knowledge base is resolved by letting the reasoner
load a new knowledge base without having a query waiting for it. No query
to the knowledge base that is to be loaded will recognize any difference
during the loading process.

4.4 Forced Knowledge Base Distribution 34

The second problem was the interference with queries to other knowledge
bases. As it is only estimated that the idle reasoner will not receive any query
and thus will be also idle in the near future the costs of having a query to
another knowledge base wait cannot be ruled out completely. But they are
reduced to a minimum, which can be considered insignificant in contrast to
the benefit that will originate from it. This benefit also originates from the
choice of the right knowledge base, which will be discussed in the following
paragraph.

4.4.3 Choosing the Optimal Knowledge Base

Many scenarios in which load balancers for reasoning systems are applied
include the querying of many different knowledge bases, or at least the
possibility for that. It is therefore very likely that in the situation when
a reasoner is idle, many knowledge bases are known to the system but only
a few have been loaded by the reasoner. As it is the aim of distributing the
knowledge bases to shift some load to the idle reasoner, it is unlikely and
desired that the reasoner is not idle anymore after loading the knowlegebase.
Thus it can not load all knowledge bases it is missing at the same time and
has has to be make a decision for the optimal knowledge base to load.

This decision for the optimal knowledge base to load has to be based on
the various constraints that will be explained in the following.

Knowledge Base with the Biggest Impact

As mentioned in the beginning of the paragraph the aim is to have all
reasoners load all knowledge bases. But this is not an end in itself. It is
more a means to achieve an equally as possible distribution of load over
the reasoners in the system. Having an equal distribution the system is
prepared for every coming query in the same way and thus no query has
to take the burden of a previously made false decision. In consequence the
optimal choice of a knowledge base to load is the knowledge base which will
have the biggest positive impact on the equality of the load distribution.
The important question to answer is, which are the factors that determine
if a knowledge base has a bigger positive impact than another one.

Load generated by a knowledge base. Important to consider is the
load that has been generated by a particular knowledge base. The generated
load consists of the number of queries that referenced the knowledge base,
weighted with the actual processing time the query needed to be answered.
Consequently a forced distribution of a particular knowledge base affects
more load if the knowledge base causes a lot of load on the system. Thus
the knowledge base causing the highest amount of load is preferable.

4.4 Forced Knowledge Base Distribution 35

Distribution of a knowledge base. Besides the actual load that is
caused by the queries, the distribution of the knowledge bases is important
as well. The waiting time caused by a knowledge base’s queries to other
queries as well the waiting times caused by those queries’ to the queries of
the knowledge base in question have to be considered. Consider the following
example.

In a system with three reasoners R3 goes idle. It now has to be decided
which knowledge base that R3 has not yet loaded but R1 or R2 have is to
be loaded by R3. R1 has loaded KBa and KBb, while R2 has loaded KBc.
The analysis of the load caused by the different knowledge bases resulted in
40% of the load for KBa, 20% of the load for KBb and 40% of the load for
KBc. As the load caused by KBa and KBb is equal they are both equally
preferable, regarding the arguments of the previous paragraph.

But this is not true. The difference is made by the second knowledge base
loaded on to the reasoner R1. Due to the other queries that are answered
by R1 the average waiting time for a query to KBa is higher then those to
KBc, as queries to KBa have to wait as well for the queries to KBb to be
answered. This makes the average response time for a query to KBa longer
than to KBc. When KBa is distributed to R3 it will not only cause parts
of its load to move to R3 and thereby speeding up the answering of queries
to KBa, but it will also cause the queue of R1 to shrink and thereby have
a positive effect on the average response time of queries to KBb as well by
reducing their waiting times.

Thus the distribution of the knowledge bases also has to be taken into
consideration in order to make the optimal decision.

Load distribution after knowledge base is distributed. The impor-
tant third factor influences the impact of both of the previous factors and
is at the same time virtually impossible to determine. The decision for the
optimal knowledge base to load by the idle reasoner is based on scenarios
about how the system, respectively the load distribution over the system,
will look like after the knowledge base has been loaded. This prediction of
the future depends on two variables.

Firstly it is unknown if the load caused by knowledge bases will be the
same is in the very moment when a knowledge base is chosen. The best
guess that can be made is that it is the same. Thus this will be anticipated.

Secondly it is unknown how much of the load will move from the reason-
ers that have already loaded the knowledge base to the idle reasoner. As the
reasoner is idle and thus is not occupied by other queries it is very probable
that a lot of the load will move to it. On the other hand, if a lot of the load
is caused by cached or subsumed queries the loading of the knowledge base
will cause less load to move to the new reasoner. How much this is exactly
is therefore not possible to tell. Thus to be able to calculate scenarios a

4.4 Forced Knowledge Base Distribution 36

percentage has to be anticipated.

Knowledge Base with Lowest Costs

While the previous considerations only focused on the benefit that the forced
distribution of a particular knowledge base has, it is important not to forget
about the costs that come with it. A knowledge base that takes less time to
be loaded is to be preferred over a knowledge base that takes a longer time
to load.

Firstly a faster loaded knowledge base makes the idle reasoner faster
functional again and thus makes it have an earlier impact on the system.
The earlier the system can profit from the reasoner having loaded the new
knowledge base the bigger the benefit.

Secondly a the faster a knowledge base can be loaded, the less likely it is
for the situation of the load distribution to change, the better the forecast
will be.

Thus a less costly, faster to load knowledge base has to be preferred.

4.4.4 Systems with Initially Known Knowledge Bases

Systems that only allow queries to a particular set of knowledge bases that
are known before hand are a special case. These reasoners in the system can
be prepared before they start working by letting them load all the knowledge
bases that will be referenced by the queries.

This way of handling the knowledge base distribution lets the system
benefit from the advantages of having all reasoners load all knowledge bases
without having to bear the costs of sacrificing processing time.

In the case that the total amount of knowledge bases exceeds the max-
imum number of knowledge bases a reasoner can have loaded at the same
time a decision of how to distribute the knowledge bases has to be made
upfront. This decision totally depends on the particular setting and needs
of the system.

Chapter 5

Load Balancing Strategy

In paragraph 3.2 the arguments and requirements for a semantic middleware
were listed and explained. It was argued that reasoning systems need a load
balancer that implements a sophisticated strategy, basing the distribution
decision on as much information as possible, due to complex scenarios and
the high costs of reasoning.

This need for a sophisticated strategy becomes even more obvious and
crucial considering all of the preprocessing for optimization that has been
discussed in the previous chapter. The optimization is already part of the
load distribution process. Each optimizer decides whether a particular query
can be answered without reasoning or partial reasoning, whether there is a
way for speeding up the reasoning process by choosing a particular reasoner
or if there is nothing that can be optimized. Whenever the decision involves
reasoning, the optimization module makes the decision for the reasoner that
is considered to be optimal to answer the current query. But, this decision
is made without further consideration of the current load situation.

Facing this issue the load balancer must implement a strategy that allows
it to adapt to an always changing load distribution so that the load will be
balanced over all connected reasoners. Static load balancing strategies like
Round-Robin that do not take any information regarding the current load
situation into account must therefore be regarded as not suitable for this
kind of system.

Instead the Ant Colony Optimization algorithm provides an optimal
basis for the development of a suiting strategy. Based on research on the
behavior of ants navigating the landscape, this algorithm already serves
as AntNet to route traffic through a network in a very efficient way. With
adoptions to the algorithm it will provide this system with an effective means
for load balancing.

5.1 Requirements 38

5.1 Requirements
The sophisticated load balancing strategy that was demanded throughout
the thesis has to fulfill the following requirements.

Balancing Blind Load Distribution The strategy must be able to cope
with the blind load distribution of the optimization modules. The
optimizers that were discussed in the previous chapter may chose a
preferred reasoner based on their analysis. This is done under the
premise that an optimizer’s choice is always to prefer, disregarding
the current load situation. But this premise does only hold if the load
balancer is able to

1. minimize the unbalancing effect of the optimizer’s blind choices,
by building a basis for an even as possible load distribution, e.g.
by having different reasoners load different knowledge bases.

2. cope with an always changing, dynamic load distribution, by con-
sidering even big inequalities between the single reasoners loads
and recognizing such situations when they happen.

Load Forecasting With regard to the previous requirement and the his-
tory sensitivity, which was explained in paragraph 3.3.2, the load bal-
ancer needs not only to react to current load situation, but also has
to keep in mind the future development of the load situation. In load
balancing for reasoning systems the current decision always has an
impact on the current and the future load distribution. Thus, to a
certain degree, the decision has to be based on forecasting.

5.2 Ant Colony Optimization

5.2.1 The Ant’s Way of Navigation

Early research on the behavior of ants showed that ants communicate among
each other, or between individuals and the environment with the help of
chemicals that they produce, so called pheromones. This is particularly im-
portant for some ant species to mark paths, e.g. from their nest to the food,
so that other ants can sense these pheromones and follow the discovered
path. This behavior was the basis for the research and one special experi-
ment that was conducted by Deneubourg, Aron, Goss and Pasteels in 1990
[15] which built the basis for the Ant Colony Optimization (ACO).

Double Bridge Experiment

While walking from their nest to the food and back, ants place pheromones
on the ground, forming a pheromone trail. Other ants can sense these

5.2 Ant Colony Optimization 39

Figure 5.1: The two experimental setups for the double bridge experiment
by Deneubourg and colleagues, 1990. [15]

pheromones and use them to navigate from to the food and back. It
was found that the ants tend to choose, probabilistically, path with a high
pheromone level over those with a lower one.

In order to investigate this behavior Deneubourg and colleagues con-
ducted the an experiment using two bridges to connect the nest with the
food. They ran the experiment with different settings, where in one setting
the two bridges had exactly the same size, while in the other setting one
bridge was significantly longer as the other (figure 5.1).

In the experiments with the first setup the outcome was that the ants
had no preference and they selected with the same probability any of the
branches. In one experiment one branch, in the other experiment the other
branch, but in almost all cases one was preferred. This shows that the ants
had no preference for one of the branches (in average over all experiments)
but due to random fluctuations a few more ants selected one branch over the
other. This made more ants follow this path and thus the they concentrated
on a single branch.

In the second setting of the experiments the length of the second branch
was doubled. In this case in almost all experiments the ants chose the shorter
branch over the longer one. As both paths appeared to the ants identical the
ants chose randomly so that half of the ants took the first branch and the
other half the second branch. However the difference here could be seen on
the way back. While the ants that chose the longer branch were still on the
way to the food, the ants on the short branch were already on their way back,
thus doubling the pheromone level on their path. Already the second time
when an ant had to decide which way to take to the food the pheromone level
was significantly higher on the shorter path, those increasing the probability
that the ant choses this way over the longer. Still, some ants decided for the
longer way. This can be interpreted as a type of "path exploration" [15].

For the further consideration it is important to notice that the actual
length of a path is not the factor that directly influences the decision for one

5.2 Ant Colony Optimization 40

or another branch. In fact it is the throughput that determines whether a
path is to prefer or not. So it is the shortest way in terms of time needed to
get from its beginning to its end.

5.2.2 Navigating Networks with Artificial Ants

Packet-switched networks use routing tables in the network nodes to guide
data packets from their source to their destination. These routing tables
hold information connected nodes which represent the shortest path to other
nodes. One so called link-state algorithm used in network routing to create
these tables is Dĳkstra’s algorithm. Whenever a path to another node is
found it will be placed in the table, in case a shorter path is found the
according value will replace the old one. Dĳkstra’s algorithm allows a packet
to be routed on the shortest way through the network. However it does not
consider traffic or load balancing on the net.

AntNet

Just like ants move along a path from their nest to the food, packets move
along a network from their source to the destination. The idea of AntNet
is to let the packets, or a special form of packets (artificial ants), reinforce
shorter paths in a network with the use of artificial pheromones. Pheromone
tables, replacing the existing routing tables in the network nodes, store
information about the pheromone level of their network connections. The
artificial ants update the pheromone tables when moving along their path
through the network, like real ants drop their pheromones. The quicker the
ants move along a path, the more throughput can be achieved. Thus the
pheromone level for this path will be higher. The pheromone levels of each
node will bias the probability for a packet to take the a particular path.

Pheromone Trail Evaporation

In experiments with the Simple ACO, an offspring of the ACO, it was found
that the algorithm performs much better when the artificial pheromones
evaporate. In fact a higher evaporation level is needed than that of real ant
pheromones.

Evaporation here means, that earlier placed pheromones loose their im-
pact over time, which could be done, e.g. by reducing the current pheromone
level of all paths by 10% prior to the update with the new pheromone.

In the following explanation of the AntNet algorithm the evaporation
will be done by the normalization step.

5.2 Ant Colony Optimization 41

Figure 5.2: Example network graph for the AntNet algorithm

Next Node % chance
2 33.33%
3 33.33%
4 33.33%

Table 5.1: Pheromone Table for node 1, before first packet.

5.2.3 The AntNet Algorithm

To explain the algorithm, respectively the implementation in every node of
the network, the problem will be reduced to a network with 5 nodes, shown
in figure 5.2. Node 1 is the source and node 5 is the destination.

The pheromone routing table (table 5.1 in node 1 shows in the beginning
equal levels for each of the paths. As the choice for a path is based on
probabilities that are biased by the pheromone levels of each path, the table
shows that each path has the same probability for being selected.

In this case node 2 is selected and the packet will travel along that path.
The decision for node 2 leads to an update of the pheromone table in node
1, which consists of 2 steps.

1. Add 100% to the probability of node 2. The value will rise to 133.33%.

2. Normalize all values in the table, i.e. bringing the sum back to 100%
- which means, with added 100% a division by 2.

Thus the updated pheromone table, table 5.2, reflects the last packet
taking the path to node 2.

Next Node % chance
2 66.66%
3 16.66%
4 16.66%

Table 5.2: Pheromone Table for node 1, after first packet, before second.

5.3 Load Balancing with Artificial Pheromones 42

This table will be then the basis for further packets that arrive at node
1. The probabilities with which a packet will move on from node 1 to node
2,3, or 4 to reach node 5 will now be biased by the weights in the table. The
chance that node 2 will be selected by the next packet is now 4 times higher
than for the other nodes.

5.3 Load Balancing with Artificial Pheromones
The ACO offers a promising basis for a load balancing strategy that suites
the needs of the semantic middleware. While the problem of navigating
through a whole network was reduced to a single node with its adjacent nodes
in the explanation of the AntNet algorithm above, this situation basically
reflects the problem of load balancing different reasoners.

Node 1 represents the load balancer. The queries arrive here and then
have to be distributed to one of the reasoners (node 2,3,4). From there on
the reasoner’s response is forwarded to a feedback module or the front-end
that creates the response to the client (node 5).

Before explaining the reasons for this algorithm being very well suited
for the problem at hand, the basic difference has to be discussed. The
ACO bases its routing decisions on the assumption that those paths that
are preferred now, because they are the fastest ones, are as well the better
choice for the next ant, packet or query. This is due to the fact that a single
ant or packet is not able to block the whole traffic on that path, instead
a path that offers a certain throughput can be assumed to do that as well
for the next ones to come. This is totally different to the load balancing
situation in reasoning systems.

Reasoners are, as explained earlier, only able to work on one query at
a time. Thus once a query is send along a path it will block the following
node (the reasoner) for a certain time, making this path less attractive for
the following queries. This is a fundamental difference to the ACO. In fact it
is kind of the reverse decision mechanism that has to be implemented here.

5.3.1 Balancing the Load with Reverse ACO

Like the AntNet algorithm, this load balancing algorithm is based on a
pheromone table that is situated at the load balancer which keeps track of
the load on each reasoner by updating the pheromone level for every query
that a reasoner is instructed with.

Going for the Lowest Pheromone Level

As mentioned before, the basic difference for this strategy is to go for the
minimal level in the pheromone table as this offers the biggest chance for a
fast response.

5.3 Load Balancing with Artificial Pheromones 43

Thus in this strategy there is no longer a need´to base the decision on
probabilities, in order to have the queries do some kind of "path exploration"
(to avoid being stuck due to a too high difference in pheromone levels). As
the choice of the smallest level always comes in connection with an increase
of this particular level. This system itself ensures that every path will be
taken, thus the pheromone levels wont be used as biases for a probabilistic
decision, but as basis for a clear, unambiguous choice for one particular
reasoner.

Forecasting with Pheromones

The forecasting model of this strategy assumes that recently popular knowl-
edge bases have a higher probability to become popular in the near future
than those that have been unpopular in the past. The load balancer will
involve this anticipation of the development of the load to improve its the
overall load balancing performance.

Reflecting All Scheduled Queries All queries that are scheduled for a
reasoner can be reflected by an increase of the corresponding pheromone
level in the central pheromone table. Thus the load balancer can keep
track of the load distribution and consider the impact of every query,
including those that come directly from one of the optimizers, by con-
sidering only the situation reflected in a single, central table.

Compensate Current Fluctuation To understand the importance of the
consideration of earlier queries for current load balancing decisions it
is necessary to remember the history sensitivity of the reasoners which
was explained earlier. Reasoners that have been very busy in the past,
due to a very popular knowledge base they have loaded, are likely to
become busy again when this knowledge base becomes popular again
- especially due to direct scheduling of queries by the cache and sub-
sumption optimizers (see 4.2 and 4.3). If the load balancer would
base its decision exclusively on the current situation of the load dis-
tribution, there would be the danger of reacting to strong to an one
time fluctuation, like a very steep increase in the load for a particular
knowledge base that will never be queried again after this. Moreover
it is very likely that information about recently heavily queried knowl-
edge bases will be neglected and thus lead to misinterpretations of the
current situation and wrong decisions.

Compensate Legacy It is also important to ensure that information about
former load situations on the reasoners do not have a too big impact
on the decision. A step-wise decrease in impact from young to old in-
formation would lead to the right balance for the forecast. The further

5.3 Load Balancing with Artificial Pheromones 44

a query lies in the past, the lesser should its impact be. The normal-
ization that was also performed in AntNet offers this effect. Due to the
constant division by 1+x, with x being the increase of the pheromone
level for the current query, earlier pheromones loose their impact over
time, yet very recent pheromones are still represented in the current
pheromone level.

The very important factor in this forecasting model is the amount x by
which the pheromone level of a reasoner will be increased for a single query,
i.e. how much more influence a current query should have on the decision
of the load balancer than an older query. The higher the amount x is, the
higher the impact of the current query, and the faster older pheromones will
evaporate, due to a likewise increase of the divisor 1 + x.

The decision on the amount x can not be made universally for all possible
scenarios in which the semantic middleware might be applied. The use of a
slow or fast evaporation will depend on the particular applications, and the
situation in terms of query types that the system has to deal with preferably.

Different Increases for Different Queries

The pheromone table offers a way of reflecting even more information.
While one query involves only the retrieval of further answers to a query

that had been partially answered before, others make a reasoner load a
new knowledge base prior to answer the query. A a query referencing a
new knowledge base might cause 4 times the load a continuation query that
comes from the cache causes, thus this should be accounted for by increasing
the pheromone level 4 times higher then the continuation query does.

The load, a particular query will cause on a reasoner, will vary signifi-
cantly from query to query. In order to give the load balancer a accurate
picture of the load situation this has to be considered. As it is impossible
to determine for each single query in advance how much load it will cause,
a convenient way to handle the issue is to classify the queries. Each class
of queries will have assigned a reasonable value, reflecting the assumed load
compared to the other query classes.

Such a classification was already introduced in the beginning of chapter
4. The further use of this classification would be suitable and convenient.

Dynamic Query Load Update

Introducing different pheromone level increases alone does not solve the
issue. The problem still is how to define the ratios of the different query
types to each other.

One way to introduce the ratios is to make the measurements and set
the ratios upfront. The problem with these values is that (i) they may not

5.3 Load Balancing with Artificial Pheromones 45

reflect the situation in the actual application scenario and (ii) it does not
prepare for a possibility that these ratios may change over time.

Thus the best solution will be to dynamically change and adapt the ratios
to the real average amounts of load the queries cause. As the load a query
causes can be measured in the time it needs to be answered, each query will
be measured so that an average time can be calculated for every query type.
These average values will than be compared and the corresponding ratios
will be determined.

The proposed algorithm will in the following be called ACO-LB (Ant
Colony Optimization - Load Balancing).

Chapter 6

System Implementation

In order to support the many assumptions and theories that have been de-
veloped throughout the thesis - above all that the introduction of a semantic
middleware creates a benefit -, a system has been implemented to provide
the basis for empirical testing of the assumptions and modules.

In the following the the system architecture and the implementation of
each mayor module and paradigm will be described and explained.

Figure 6.1: Enhanced Architecture for Semantic Web Middleware

6.1 RacerManager 47

6.1 RacerManager
The system is based on the open source system RacerManager1 which has
been developed by a workgroup of the STS department, University of Tech-
nology Hamburg. RacerManager acts as an OWL-QL server (henceforce
called OWL-QL server) and forwards the queries to a local or remote DL
reasoner. The used RacerManager implemented components to connect to
the RacerPro reasoner, which was used as DL reasoner. Therefore it pro-
vided as well a translation module OWL-QL to NRQL to correnspond with
the RacerPro instances.

This OWL-QL server is implemented in Java, intended to run as ap-
plication in the widely used application server Apache Tomcat[8]. It fur-
ther implements well known components such as the Apache Axis Web
Services Framework[7], XMLBeans Framework[11] and Jena Semantic Web
Framework[10].

The given RacerManager is implemented in a commonly used n-tier ar-
chitecture, which makes it fairly easy to modify modules and offers a clear
separation of responsibilities.

Racer Manager already includes a basic cache and load balancing strat-
egy, which is kind-of similar to Round Robin. On this strategy the dispatch-
ing to the particular reasoner instances is based. Both of these modules have
been altered during the implementation to fit to the changed requirements,
thus they will be explained more detailed in the following.

Besides the feature for incremental query answering, this OWL-QL server
also support premise queries. These queries can be seen as a special case of
a "knew query", and thus wont be discussed further.

6.2 Workflow Assignment
A mayor change that had to be made to the system was the introduction of
workflows. In chapter 4 various query classes were introduced. Part of that
was the idea to minimize the preprocessing for each query as far as possible
by determining as exact as possible its chances for optimization.

In consequence every query gets a workflow attached, which exactly
states the used modules and the order in which they are applied to the
query.

In the following the classifier module, which classifies a query based on
certain parameters, followed by a description of the four workflows.

1RacerManager can be found at: http://racerproject.sourceforge.net

6.2 Workflow Assignment 48

6.2.1 Classifier

After being received and processed by the Web service interface, the classifier
is the first module in the OWL-QL server that works on the queries. Based
on the proposal given in 4.1 the module categorizes the queries into one of
the four disjoint classes (i) first query to an unknown KB; (ii) new query to
a known KB; (iii) known query to a known KB; (iv) continuation query.

The procedure that is implementing by the classifier is shown in algo-
rithm 1.

Algorithm 1 classify(query):
dialog := null
worklflow := null

if continuation_query(query) then
worklflow := createContinuationQueryWorkflow()

else if ¬referenced_KB_loaded(query) then
worklflow := createF irstQueryToUnknownKBWorkflow()

else
dialog := searchDialog(query)
if dialog 6= null then

worklflow := createKnownQueryToKnownKBWorkflow()
else

worklflow := createNewQueryToKnownKBWorkflow()
end if

end if

assignWorkflowToQuery(query, worklflow

6.2.2 Workflows

Continuation Query

A continuation query comes along with a process handle which identifies
the session that contains all valuable information to enable the incremental
query answering. Thus the workflow first retrieves the session.

The session contains a reference to the dialog which contains the already
retrieved data. Besides that the session keeps track of the number of already
send answers. This way it is possible to not send the client any of the answers
twice, and to decide when the client has received the complete set of answers.

In order to retrieve the requested number of answers, the cache optimizer
will be invoked and provided with the information it needs to retrieve the
next set of anwers.

6.2 Workflow Assignment 49

After receiving the response from the cache optimizer this workflow will
place the answers in the answer queue of the particular client where it will
be picked up and processed to be returned to the client.

The corresponding Algorithm 6 can be found in appendix A.

Known Query to a Known Knowledge base

The workflow of a known query is very similar to that of a continuation
query. However, this query does not provide a process handle. Thus the
query has to be compared to the queries that are referenced by the dialogs
in order to find the matching dialog that contains the information to answer
the current query.

When the dialog is found, the same procedure as in for previously de-
scribed workflow is implemented, i.e. the subsumption optimizer is invoked
and the received response is placed in the clients answer queue.

The corresponding Algorithm 7 can be found in appendix A.

New Query to a Known Knowledge base

The workflow for a new query to a known knowledge base consists of three
steps. In the first step the subsumption optimizer is instructed to find
an earlier query that is subsumed by the current one. In the case one
is found a new subsumption dialog is created in the cache, which holds a
reference to the dialog of the subsumed query. Further information about
the implementation can be found at 6.2.3 and 6.2.5. In the case no earlier
query was subsumed the second step follows.

In the second step the subsumption optimizer is instructed to find earlier
queries that subsume the current query. If one is found, the query gets
immediately assigned the same reasoner as the subsuming query in order to
let it profit from a smaller search space. In the case that also this relationship
could not be found, the third step will be executed.

In the third step the query will be handed over to the load balancer that
is implemented in the system, which will take over from their on.

The corresponding Algorithm 8 can be found in appendix A.

Query to an Unknown Knowledge base

The workflow for a new query to a new knowledgebase is very straight for-
ward as it does not offer any potential for optimization.

In order to keep the subsumtion optimizer updated, the first step in the
workflow is the instruction of the subsumption reasoner to load the new
knowledge base.

In the next step it just has to create a session and a dialog in the cache,
before it then is handed over to the implemented load balancer.

The corresponding Algorithm 9 can be found in appendix A.

6.2 Workflow Assignment 50

6.2.3 Cache

The cache implementation of the new system is based on the cache of Rac-
erManager. The OWL-QL server implemented the cache in the way that all
results that were gained through reasoning were cached. This is as well the
case for the new implementation.

The cache consists of four different registers, that keep track of the infor-
mation. They will be explained in the following. In parts these registers did
already exist in the previous system. In order to have them more efficiently
work together they were integrated into one cache component

Knowledge Base Register The knowlegde base register contains infor-
mation about all the knowledge bases that are known to the system, i.e.
they have been referenced by at least one query that was handled by the
system.

Dialog Register The dialog register contains the inferred knowledge. The
first time a particular query reaches the system, a dialog is created where
information about the query, the results and further information about the
communication are stored.

The further information includes a flag that indicates if more information
can possibly retrieved from the reasoner or if definitely all answers have been
received. In order to be able to retrieve further results for a query, the dialog
holds as well a query identifier, which unambiguously identifies the particular
query on a particular reasoner. Consequently the dialog holds as well the
information about which reasoner answered the query.

The expression dialog is taken from the OWL-QL specifications[13]. Here
a dialog contains the information of a conversation between a particular
client and a reasoner. By introducing the cache as a kind of new layer for
the queries, the cache became the client for all reasoners, thus a dialog always
happens between the cache and a reasoner. Thus this implementation lets
more than one client profit from the inferred knowledge that is contained in
a dialog.

Session Register As the system supports incremental query answering,
it must be able to identify a particular client, when the client asks for more
answers. Thus the OWL-QL server holds a session register, which keeps
track of a list of session identifiers with attached information about the
dialog that contains the information and the number of already sent answers.
This session identifier, the so called process handle is returned with every
query that offers more answers than having been retrieved yet.

Query Register The query register had to be introduced to support the
subsumption optimizer. It brings together query identifiers and dialogs.

6.2 Workflow Assignment 51

More information on this will follow in paragraph 6.2.5

Completed Answer Set

In order to improve incremental query answering, a little trick was imple-
mented into the querying procedure. The cache always requests one answer
more from the reasoner than it is needed to provide the client with the
amount of answers he actually asked for.

When the cache was not differently told by the reasoner, it knows that
there are still more answers to get from the reasoner. Thus the system sends
a process handle along with the answers to allow the client to request further
answers. If the cache receives less answers than the requested, the system
sends a so called termination token along with the answers. This tells the
client that all answers have been delivered. However, there is a problem with
the case that the cache asks for the exact number of answers that can still
be inferred. The cache will then conclude that there will be more answers,
as it was not told differently, and will tell the same to the client. When the
client then sends another query, to receive further answers, only an empty
answer set will be returned.

In order ensure the client that it will only receive a process handle,
when there are more information to retrieve, the cache asks for one more
answer than needed, and thus ensuring that at least one more answer can
be returned.

Cache Maintenance

Caching can result in extraordinary resource consumption. Thus intelligent
cache management strategies are required. However, in the test scenarios
the used resources are very small and therefore any cache expiration method
was turned off or excluded in order not to interfere with the test results.

6.2.4 Cache Optimizer

Due to the growing functionality the cache optimizer (CO) was intro-
duced to provide a good separation between the data - stored and managed
by the cache - and the business logic that worked on the data, which was
mainly placed in the CO, parts of it as well in the sumbsumption optimizer.

The CO basically implements the one central function of answering a
query that is known to the system. Algorithm 2 describes in detail how the
method is implemented.

The CO first tries to answer the current query from the cache by extract-
ing the number of requested answers from the corresponding dialog. In case
the dialog did not contain enough answers and it is not terminated - which
would mean that the reasoner does not have further answers either - more
answer are requested from the reasoner. For this information are taken from

6.2 Workflow Assignment 52

Algorithm 2 getResponsesFromCache(dialog, answerSize, retrievedAnswers):
answers := cache.getAnswers(dialog, answerSize, retrievedAnswers)

if answers.size() < answerSize then
if ¬isTerminated(dialog) then

missingNumberOfAnswers := answerSize− answers.size()

query := dialog.getQuery()
query.setAnswerQueue(thisCacheOptimzerQueue)
reasonerQueue := getReasonerQueue(dialog)
reasonerQueue.put(dialog.getQuery())

// wait until reasoner places answer in the answerQueue
reasonedAnswers := thisCacheOptimizerQueue.take()

answers.add(reasonedAnswers)
cache.addToDialog(dialog, reasonedAnswers)

end if
end if

return answers

the dialog about the which reasoner answered the query and which identifier
was provided by this reasoner to retrieve further answers.

In a second step the answers from the cache and the answers from the
reasoner are combined and returned to the workflow. The initiation of an
update of the cache is made by the feedbacker module. It is an extra thread
working concurrently to the system, taking the information that were re-
turned from the reasoner and caring for updates of all kinds.

6.2.5 Subsumption Optimizer

The subsumption optimizer implements the theoretical description and
discussion of paragraph 4.3. The two ways of benefiting from a subsumption
relationship introduced: either by a child or by a parent relationship.

As it was argued as well in the theoretical description, the discovery of
a child relationship offers a bigger potential for improvement than a parent,
i.e. finding a query that is subsumed by the current one is better than the
other way around.

This argument is reflected in the workflow for a "new query to a known
knowledge base", where the subsumption optimizer is invoked. The workflow
puts the two methods in the order of first checking for a subsumee (a child)
and then for a subsumer(a parent).

6.2 Workflow Assignment 53

Algorithm 3 getSubsumee(query):
subsumee := null
children :=

children := subsumptionReasoner.getChildren(query)
if children.size > 0 then

if children.size > 1 then
subsumee := getReasonerWithLowestPheromoneLevel(child)

else
subsumee := children0

end if
end if

return subsumee

The Subsumption Reasoner

The system uses the capabilities of a local reasoner instance. Like the other
reasoners that are managed by the system, this one is a RacerPro[5] reasoner.
The reasoner offers the possibility of maintaining a query repository, the so
called QBox. Here, based on the TBox and the ABox of the knowledge
base, all queries are reflected in a subsumption hierarchy. THe QBox can
be accessed to determine the successor or ancestors of a query, in particular
its children and parents.

In order to offer the subsumption optimzation to every new query, the
subsumption reasoner has to know about every query that was received and
answered by the system. Thus the reasoner has to load every knowledge
base that is known by the system, and has to add each of the queries to its
QBox.

Finding the Relative

The algorithms to find a child or a parent of a query are virtually equal.
In the implementation they only differ from each other by one query to the
reasoner. Thus, only the algorithm to find the subsumee will be described,
exemplarily for both. It is described as well in algorithm 3.

The first step is to instruct the subsumption reasoner to retrieve all
child-queries from the QBox for the current query. The reasoner will return
a list of child elements which is either the bottom-query, contains one child
or contains more than one child.

In case of the bottom-query it is clear that there exists no child-query
for the current one. The situation is as well very clear in case that only one
query was found to be the direct child of the current query. In the case that
more queries are the children of the current one, a decision for one of the

6.2 Workflow Assignment 54

queries has to be made.

Most existing answers One way of making the decision is to consider the
answers that are already contained in the cache. As the current query
is intended to be answered by the cached answers of its child query,
this might be the best decision from the current query’s perspective.

Smallest Load on Server Having a mature system, probably implement-
ing a knowledge base distributor, it is likely that the found children
have been answered by different reasoners. As it must be assumed
that the number of answers that can be provided by a child will not
be sufficient to satisfy the current client, there is a high probability
that it will involve reasoning as well to answer the current query. Thus
it makes sense to consider the load situation on the reasoners by which
the particular children were answered. Choosing the one with the cur-
rently lowest load must be preferred.
Besides speeding up the answering process for the current query, such
a decision will also help to balance the load.

The implemented system takes the second option and considers the load
situation as more important. It is combined with the implemented load
balancing strategy: ACO-LB. Therefore the decision is based on the existing
pheromone level of the reasoners. The child-query which references the
reasoner with the currently smallest level will be chosen.

Cache Item Chains

In order to have the queries with a child-subsumption further profit from this
relationship, the cache was extended to reflect it. When a child-subsumption
is discovered a new subsumption-dialog is created which contains a reference
to the answers of the child query. When the current query, respectively later,
equal queries, are answered, the cache will first take the answers from the
child-dialog, and then access the own answer tuples in the own dialog.

This creates two important advantages.

Cache Efficiency By referencing other answer tuples, these information
do not have to be copied into the answer set of the new dialog. Thus
the redundancy of stored data in the cache is reduced to a minimum,
the cache becomes more efficient and does not waste resources.

Answer Set Fill-up Due to the referencing the current query can profit
from the answers in the subsumed dialog. Moreover it also benefits
from later queries to the subsumed dialog, which may further fill up
its answer set. Thus, the next time a clone of the current query is
received, the inferred knowledge for its own dialog grew with it. The
same is true for the other way around.

6.2 Workflow Assignment 55

In order to ensure the right order the system was implemented so that
always first the subsumed dialog has to be filled up, before answers
that are specific to the own dialog will be retrieved from the reasoner.

But the whole implementation with references comes as well with a draw-
back. Theoretically dialog-chains of arbitrary size can develop. The worst
case scenario would be that a client wants to have all answers to the broad-
est query (which subsumes all the others) and none of the subsumed dialogs
have been completed. One after another the whole chain would have to be
filled up, starting with the most specific. Each of these fill-ups would involve
an interaction with the reasoner, thus causing an arbitrary amount of load
on this machine and blocking the system probably totally.

To avoid that situation a safeguard had been implemented which ensures
that always when a dialog is subsumed by another, the subsumed dialog
checks (in case it subsumes as well another dialog) if this dialog if filled up
completely. If it is not, it triggers a query which will cause the dialog to be
terminated.

Query Modification

The idea of the subsumption optimizer is to let queries profit from already
existing answers in the cache. If it now happens that further answers have
to be retrieved from the reasoner, the dialog that asks for more answers does
not want to receive as well those that are already contained in the answer
set that it subsumes. Thus the query has to be modified, excluding the
answers of the subsumed query. The implementation has shown to be very
straightforward.

It should be mentioned that in case of a dialog chain still only the an-
swer set of the immediately subsumed dialog has to be excluded as this
answer set contains as well those answers of the dialog itself subsumes. This
automatically prohibits the queries from becoming arbitrarily complex.

6.2.6 Knowledge Base Distributor

The knowledge base distributor is implemented in the system as an own
thread, acting autonomously from the rest of the system. It is triggered by
one of reasoners placing a request in its input queue.

Following the argumentations of the theoretical analysis and consider-
ations of section 4.4 the most important part in the set of tasks of the
knowledge base distributor is the identification of the knowledge base that
is best suited to be loaded by the idle reasoner.

An important consideration in this context is the definition of load that
builds the basis for the decision.

6.2 Workflow Assignment 56

Algorithm 4 getKBToLoad(reasoner):
kbCandidates := null
scenarios :=
kbCandidates := getAllKBsNotLoadedByReasoner(reasoner)

if kbCandidates 6= null then

for each_kbCandidates do
newScenario := createScenario(pheromoneTable, reasoner)
newStandardDeviation := getStandardDeviationOfReasonerLoad(newScenario)

scenarios := scenarios∪(newStandardDeviation, current_kbCandidate)
end for

return getKBWithLowestStDeviation(scenarios)
else

return null
end if

Definition of Load

The common view on load on a computing system is that the load
corresponds to the work that the system has to perform. The work can
generally be seen as a series of calculations, each of which causes a fixed
amount of work w0. The work, or load that a single request causes therefore
must be a multiple of the basic work unit w0.

wi = ni × w0 (6.1)

The abstract term work can also be expressed in a better graspable
manner. Due to the systems fixed processing frequency, the performed work
can be expressed in time as they are in a linear relationship to each other.
The work w0 for a fixed amount of work corresponds to a particular time
that is needed to perform it.

t0 = w0 × 1÷ fr (6.2)

With the frequency being constant it can be stated that

t0 ≡ w0 (6.3)

This means that the load on the systems corresponds to the time that is
needed to perform the work that caused the load. Thus the load is equivalent
to the time.

6.2 Workflow Assignment 57

Finding the Optimal KB to Load

In order to determine the optimal KB the implementation of the knowledge
base distributor follows the ideas and argumentations of section 4.4 very
closely. The basic algorithm is shown in Algorithm 4.

The decision for the optimal KB has to be based on the load situation
that will exist after the KB has been loaded. Thus for every knowledge base
that is a candidate for this reasoner, as it has not yet been loaded by it, a
scenario will be created, simulating the load situation after the particular
knowledge base would be chosen. At this point it should be mentioned that
the whole implementation of the knowledge base distributor is very much
related to the ACO-LB load balancing algorithm, e.g. the pheromones are
used to calculate the load scenarios.

An essential assumption that has to be mentioned in this context as
well is that the system assumes that 50% of the all over existing load for
the particular knowledge base will shift in the near future to the now idle
reasoner, due to its low load situation.

Once the scenarios are created, the standard deviations (see next para-
graph) will be calculated and compared. The one with the smallest standard
deviation will be chosen to be loaded.

Standard Deviation of Reasoner Waiting Times

As explained at the end of section 4.4 the decision for the optimal KB is
all but trivial. In order to account for the load that a particular knowledge
base creates, on the other hand for the positive impact that the distribution
of another knowledge base has on the waiting times of the other queries and
its own, the following idea was developed.

The so called waiting time for each reasoner is calculated as the sum of
all waiting times experienced by the queries of each of the loaded knowledge
bases. Then, in the next step the standard deviation of all reasoner waiting
times will be calculated.

The reason to chose the one scenario with the smallest standard deviation
is the fact that a small standard deviation means very small differences in
the waiting times of the reasoners. Very small differences again mean that
the load on each of the servers is fairly equally distributed, i.e. balanced,
which is a primary goal of the load balancer in order to be able to provide
every next query, independent of how it looks like with the same quality of
service.

6.2.7 Load Balancer

The load balancer module implements the proposed ACO-LB algorithm of
chapter 5. Based on artificial pheromones - which are represented by double
values - the load situation will be reflected in an internal pheromone table.

6.2 Workflow Assignment 58

This table keeps track on the load situation of all of the reasoners as also of
the load that was caused by a particular knowledge base.

Distribution Decision

The load balancer makes its decision on where to forward the current query
by comparing the pheromone levels of all reasoners. The pheromones are
implemented in the way they were proposed in 5. The reasoner with the
lowest pheromone level can be considered to be the least busy one, thus the
query will be scheduled with that reasoner.

The load balancing strategy also offers a way not to consider all but
just a given set of reasoners. If a new query to a known knowledge base
does not profit from any of the subsumption relationships, the load balancer
has to decide where to place it. As the load balancer still implements the
assumption that a query will be faster answered when the KB has already
been loaded by the reasoner, it will perform a comparison just over the
subset of servers that have loaded the KB.

Pheromone Update

An important part of the strategy is the update of the pheromone table for
every query that is queued for a reasoner. The algorithm that is implemented
to perform this task is Algorithm 5. As it can be seen the algorithm first
updates the level of the reasoner that was just instructed to answer the
query. In a second step the algorithm normalized the whole table back to 1.
This is the implementation of the pheromone evaporation that was discussed
in 5.2.2.

Algorithm 5 pheromoneUpdate(currentReasoner, newPheromone):
oldPheromoneLevel := getLevel(currentReasoner)
newPheromoneLevel := oldPheromoneLevel + newPheromone
setPhermoneLevel(currentReasoner, newPheromoneLevel)

all_Pheromones :=
all_Pheromones := getAllPheromones()
for all_Pheromones do

currentPheromone := pheromone_i/(1 + newPheromone)
end for

Pheromone Adjustment

The load balancing system tries to optimize itself during the operation.
In order to perform the pheromone increases for each type of query in the
correct way, the processing time for each query is measured and in a feedback

6.3 Queuing 59

method compared to the times of the other query types. Doing so the
system will be able to provide the right ratios for each of the query types
after a certain time of operation. Besides that, this implementation offers a
possibility for the system to react on certain changes.

6.3 Queuing
The existing system was altered by implementing more concurrently exe-
cuted threads that communicate with each other by the means of queues.
For example, each of the reasoner implements its on queue and thus allows
more than one query waiting for the reasoner become idle.

6.4 Test Framework
The test framework, which will be explained in detail in chapter 7, is based
on the opensource load and performance measurement tool Apache jMe-
ter [9]. JMeter performs the load tests on the specified systems based on
the instructions that are contained in so called test plans. These test plans
are XML documents that are structured in a certain way so that it can be
interpreted by jMeter.

The normal way to create such test plans is by the use of the jMeter
GUI application that allows to assemble parallel clients in combination with
different standard components (like a HTTP request sampler) quiet com-
fortable. However, during it turned out pretty fast that assembly of test
plans for OWL-QL queries was much less straight forward than assumed.
Therefore it was decided to implement an own GUI and query assembling
application that was tailored toward the convenient assembly of OWL-QL
queries into multi-user test plans that could be executed by jMeter.

6.4.1 jMeter Query Assembler

The View

The jMeter Query Assembler (jMeterQA) was implemented as a full Java
application, based on the model view controller Apache Struts 2 Frame-
work[17]. jMeterQA runs on the application server Apache Tomcat[8].

The Model

As mentioned before the test plan that is loaded by jMeter is an XML
document. The document contains all information about each of the used
components: general information about the test, the number of clients and
the queries that each of the clients should execute, as well as information

6.4 Test Framework 60

Figure 6.2: jMeter Query Assembler - Example GUI view with 2 clients and
the control panel. The first client has a list of 4 queries to execute, the
second client a list of just 1 query.

about listener modules that can be attached to each test in order to record
and analyze the measured data.

In order to be able to model all of the components they were converted
into classes, which provided the basis for the assembly of the test plans.

The OWL QL Query Module Due to the implemented OWL-QL server
offering a Web service interface the test framework had to adapt to that.
The SOAP module that came with jMeter offered the basic functionality
needed to establish a connection with RacerManager. But in order to send
an OWL-QL query to the server, the module had to be further adapted.

Query Pool Part of the idea to create a tailored assembly application was
to increase the convenience for this task. Thus the application implements
a query pool from where particular, predefined queries can be chosen. The
application sorts those queries by their referenced knowledge bases, allowing
the user to first select a KB and then the according query to the KB.

Continuation Query Due to the fact that jMeter is able to process the
answers it receives, it can be instructed to filter out the process handle that
is contained in the answer of one of the queries and then also automatically
place this piece of information in the next query.

jMeterQA uses this functionality to support continuation queries. The
GUI identifies on the fly when one of the queries in the list of a particular

6.4 Test Framework 61

client has the same combination of KB and query as one of the previous
queries. It application offers than the user the possibility to declare this
query to be a continuation query.

Assembly Once the user is finished with the composition of the test plan,
the representation of it that exists within the system will be translated into
XML and stored at a specified location. From there one it will be handled
by jMeter itself.

In the same way as the rest of the system, the user interface (or the
"view") was especially tailored toward this particular application. Figure
6.2 shows an example of the building of a test plan.

The user can add new client groups and queries as well as delete those
with just one press of a button. Clients and queries are displayed in a
way that reflects their relationship to each other as well as their order of
execution. That provides the user with a very good overview over the whole
test plan.

Chapter 7

Evaluation

After the theoretical approach to the topic in chapter 4 and 5 the system
was implemented as described in chapter 6 This chapter is concerned with
the evaluation of the various theories and assumptions that were proposed
during the previous chapters based on empirical testing.

After describing the environment in which the tests were carried out, the
different steps, different modules and features of the system will be looked
at and evaluated based on the results of the test.

7.1 Environment for Empirical Evaluation
The choice of the right test environment is significantly important to assure
genuine and reproducible test results. Thus components were chosen that
are able to support this.

7.1.1 Test Plans

Each test follows a previously compiled test plan which describes

• the number of clients that concurrently send queries to the system

• each particular query that is used in the plan: the query pattern, the
knowledge base and the number of answers

• the order in which each client sends the queries to the service.

When a test plan instructs a client to send more than one query, these
queries are always executed sequentially, i.e. when the response for query 1
is received, query 2 will instantly be sent.

Knowledge Base Initialization

In some benchmarks the test plans will claim that previous to the test run
the used knowledge bases were loaded and the index structures have been

7.1 Environment for Empirical Evaluation 63

built. This was done by a initialization query to each involved knowledge
base causing a reasoner to load the KB and built the index structures in order
to answer the query. It was assured that the used queries did not interfere
with any of the queries in the benchmark, e.g. by making it possible for a
query to profit from the cache or subsumption relationship.

7.1.2 Knowledge Bases

The knowledge base that was used for the testing was based on the Lehigh
University Benchmark Ontology (LUBM)[18] and created with the Data
Generator(UBA) that is provided by the SWAT team of the Lehigh Univer-
sity. The original knowledge base that was used in the test can be down-
loaded at
http://tobiasberger.eu/racermanager/ont/univ-bench.zip.

In order to create meaningful benchmarks more than one knowledge
base was needed. To still assure that the results were not biased by queries
referencing a different knowledge base than others, the knowledge bases were
simply copied and differently named. Thus an equal basis for all queries were
given, while still providing - from a system and test perspective - different
knowledge bases

Queries

The queries are translations into OWL-QL of the 14 LUBM queries, which
are provided by along with the benchmark ontology. All translations of
those of the 14 LUBM queries that were used in the testing can be found in
appendix D and can also be found at
http://tobiasberger.eu/racermanager/ont/lubm-owlql.zip.

The use of these widely used queries make the results reproducible and
comparable to later versions of the system that may have a different interface
as well as to other systems that already exist.

7.1.3 Framework

The test plans that were previously described were compiled by the jMeter
Query Assembler1 (jMeterQA). The output of the assembler application is
an xML document which is structured in a way that it can be read and
executed by the load and performance measurement tool Apache jMeter[9]
(jMeter).

1For more information about the application please see the chapter about the imple-
mentation, paragraph 6.4.1. The application implementation and operation are described
there in detail.

7.1 Environment for Empirical Evaluation 64

Apache jMeter

Originally designed for load and performance tests on standard Web ap-
plications and servers jMeter became a widely used tool for performance
and load testing both on static and dynamic resources (files, Servlets, Perl
scripts, Java Objects, Data Bases and Queries, FTP Servers and more)[9].
It is a 100% Java application which makes it suitable for more many envi-
ronments.

jMeter comes equipped with a module for SOAP over HTTP. This allows
it to send messages to the SOAP service that is implemented by the Semantic
Web middleware that is to evaluate.

Although jMeter provides a GUI, the application was executed in a non-
GUI mode due to the system and in order to minimize the impact of the
application on the measured results.

Concurrency jMeter is full multi-threading application which allows to
simulate the action of many concurrently acting clients, each which can
perform different functions - i.e. in this case that each client can query the
system in a different way, with different queries.

Response Time Measurement The time that jMeter measures is the
difference of the time when the query is sent to the system and the time
when the response arrives at the system. The data that is send with the
response is neglected in order not to slow down further processing by making
jMeter busy with handling the response.

All the times and describing data, like the query name, are cached while
a test is executed. After the test each data tuple - consisting of the measured
time and describing data - is stored in a text file. This way the measurements
are as less as possible influenced.

Data Handling and Analysis jMeter also provides means for the dis-
play and analysis of the data that was measured. These functions are only
available in the GUI mode of jMeter and fairly limited. Thus only the
measurement and storage of the data was done by jMeter.

7.1.4 System

Architecture

The test system that was used to run the semantic middleware, the reasoners
and the test framework was a multi-processor Sun Solaris Server with 8
processors and 32GB memory. The used architecture allowed to reduce the
impact of the network latency on the measured times while keeping system
performance untouched.

7.2 Evaluation of Load Balancing 65

The significance of the problem of network latency can be seen in the
following, especially in the evaluation of the cache usage. Here were times
measured less than 30ms which easily double with a certain degree of latency.

On the other hand placing all applications and reasoners on a single
server - to minimize the latency - with too few processors would reduce the
performance of each of the components. Comparing (i) 1 reasoner that fully
uses 1 processor to answer 2 queries sequentially with (ii) 2 reasoners that
share 1 processor and answer the queries in parallel wont show huge, if at
all differences in their behavior and response times.

Reasoners

For the tests the semantic middleware application managed different num-
bers of RacerPro inference servers in the version 1.9.0.

7.1.5 Data

Due to time limitations each evaluation is based on a the measurements of a
particular test run and not on the average values of multiple runs. However,
for each benchmark several test runs were made, all of which showed very
similar values with slight to no variation.

7.2 Evaluation of Load Balancing
The whole system and its implementation is based on the assumption that
load balancing is able to provide a means for scalability, higher availability,
and faster responses than a single reasoner is able to.

Consequently the system will be evaluated

• with regard to load balancing as such, if it can provide a benefit or
not

• with regard to the used load balancing strategy, if as proposed an
intelligent strategy is more efficient than a ignorant one

The evaluation is based on two benchmarks that will compare the query
response times (response time) of systems with different number of reasoners
and different load balancing strategies.

7.2.1 Benchmark I

Benchmark I measures and compares the response times for a system that
implements an ACO-LB as it was previously described and a pure Round
Robin strategy.

7.2 Evaluation of Load Balancing 66

Test Plan

3 clients concurrently send queries to the system. Each client sequentially
sends 3 pairwise different queries, each of which references the same KB.
Each client references a different KB, thus in total 3 KBs are referenced.
Each client sends the same set of queries in the same order.

At the time when each client’s first query arrives at the system, the
referenced knowledge base is not yet loaded and the index structures have
not been built.

The test plan intentionally uses different knowledge bases to create a
more realistic example of a Semantic Web scenario. In order to make the
individual results of the clients comparable, each of the clients sends the
same queries to the system.

Setting: ACO-LB

The system is a basic implementation, using a Ant Colony Optimization
Load Balancing Algorithm (ACO-LB) without further optimization mod-
ules. The system implements the paradigm that once a knowledge base is
loaded, all queries to that KB are send to it without further load balancing
considerations.

The response times for the queries are measured for settings where 1, 2,
3 or 4 reasoners are managed by the semantic middleware. The 1 reasoner
system presents an equivalent to a system without any load balancing ca-
pabilities, respectively a single reasoner without a middleware. The single
reasoner still has to be managed by the middleware to create equal condi-
tions for single and multiple reasoner systems. Besides that it acts as an
interface for the SOAP messages, which is needed for the test framework.

Setting: Round Robin

In the second setting for this benchmark the system bases its load balancing
decisions on a pure Round Robin strategy, pure in the way that it bases its
load distribution decision only on its server list just like it is done in DNS
Load Balancing or Server Load Balancing. The strategy does not make any
further considerations or assumptions for the load balancing.

Here tests will be made on systems with 1, 2, and 3 managed reason-
ers. As argued before, the single reasoner will be as well managed by the
middleware to create equal conditions.

This setting is intended to pick up the basic load balancing ideas that are
well known and implemented, e.g. in server systems, and evaluate how such
a strategy will perform in the Semantic Web scenario. The results will be
especially evaluated in comparison to the previous setting ACO. The Round
Robin strategy presents one of the best known example for such strategies.

7.2 Evaluation of Load Balancing 67

Results for ACO-LB

Basis for the evaluation of the system and its various variation in which it is
tested are the response times as they are measured at the client. Due to the
order in which the queries arrived at the system and were processed different
waiting and processing times let each measure different developments of the
response times. However, it is not the aim of the semantic middleware to
improve the processing for a particular client but in average for all clients.
Consequently the average response times have to provide the basis for the
evaluation2.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

3 Reasoners

4 Reasoners

Figure 7.1: Benchmark I. The chart compares the development of the average ACO-
LB query response times for each of the settings. A single graph for each setting comparing
the response time developments for each client can be found in figures C.1, C.2, C.3 and
C.4. Notice that the graph for "3 reasoners" is covered by the one for "4 reasoners".

Figure 7.1 shows the development of the average response times for the
ACO-LB balanced systems with 1, 2, 3 and 4 reasoners. Each of the devel-
opments show a clear downwards trend. As the pure processing times for
the different queries are more or less equal, and definitely not in a range
of about 40000ms (which corresponds to the reduction from query 1 to 2)
the trend can be explained with the stepwise reduction of waiting time in
the reasoner queues. As previously mentioned the first query to a particular
knowledge base will cause the reasoner to load the KB and create the index
structures. Thus the response times for the first queries consist of the 3
components waiting time, KB loading, and processing time. The response
times of the second and third queries, which reach the system when the
corresponding previous query was answered, are composed of waiting time
and processing time. As there is no further need for KB loading due to the

2For further information on the response time developments for every single client see
the figures C.1, C.2, C.3 and C.4 in the appendix.

7.2 Evaluation of Load Balancing 68

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3 4 5 6 7 8 9

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

3 Reasoners

4 Reasoners

Figure 7.2: Benchmark I. The chart compares the development of the query response
times for ACO-LB from the system’s perspective. It shows the development in the order
in which the queries where answered by the reasoners.

algorithm.
The differences in the response times of the three systems for query

1 result from the different waiting times. While the systems with 3 and
4 reasoners are able to answer the 3 concurrent queries in parallel without
waiting times, the others can’t. In the system with 2 reasoners only 2 queries
can be answered in parallel, while the third query has to wait in one of the
queues for one of the other queries to finish. This waiting time equals the
processing time of the query (which can be assumed to be equal for all three
first queries) thus doubling the response time for this particular query.

The same is true for a system with just one reasoner. Here the query
1 that arrives second has to wait for the first to be answered - doubling its
response time -, and the query 1 that arrives third has to wait for the first
and the second query to be answered - tripling its response time.

The second graph, Figure 7.2 shows this development very clearly. While
for systems with 3 and 4 reasoners the response time stays constant for the
first 3 answered queries (these are the three query 1) the third in the 2
reasoner system and the second and the third in the 1 reasoner system have
response times, with increases in the size of the response time of the previous
query(es).

As mentioned earlier query 2 and query 3 only consist of processing time
and waiting time. As query 2 is send when query 1 was answered, this means
for the system with 3 and 4 reasoners that query 2 reaches the reasoner when
it is idle, i.e. when there are no waiting times. Thus the average response
time of query 2 for these systems is the pure processing time that is needed
to answer the query. This does not change for query 3 as the conditions are
equal when they arrive at the system.

7.2 Evaluation of Load Balancing 69

This is especially different for the system with 1 reasoner. Here the
first query 2 reaches the system when the second query 1 just started to
be processed by the reasoner and the third one is still waiting. Thus its
response time contains approximately 2 times the response time of query 1
in addition to its own processing time. This causes a significant difference to
the 3 and 4 reasoner system, as can be seen in Figure 7.2. The development
continues in the same manner for the following queries which - still true for
queries 3 - contain a significant amount of waiting time in their response
time.

The system with 2 reasoners is a special case. It is kind of a hybrid of
the 1 and 3 reasoner system. Due to the 3 KBs that share 2 reasoners, the
3 queries to KB1 behave like they being processed by a 3 reasoner system,
while the other 2 share a reasoner and behave like being processed by a
1 reasoner system. These different behaviors are reflected by the zick-zack
pattern that the graph describes - on the one side touching the 3/4 reasoners
graph on the other side the 1 reasoner graph. The peaks in the graph are
caused again by the waiting times of queries to KB2 and KB3.

Both graphs show clearly that a multi-reasoner system with an ACO-LB
is able to reduce the response times for concurrent clients by minimizing the
waiting times.

A further important result that the benchmark showed, is that - given
the fairly few concurrent clients - the maximum number needed to provide
an optimal system is equal to the amount of knowledge bases. Due to the
paradigm that queries will be send to those reasoners that already have the
corresponding KB loaded, no query in this benchmark has reached reasoner
4 at all. Thus the system behaves like a 3 reasoner system and the fourth
is just an unused, in a way redundant resource.

Results for Round Robin

Equal to the previous paragraph here the average response time provides
the basis for the analysis and comparison of the different systems. Figure
7.3 shows the development of the average query response times for a Round
Robin balanced system with 1, 2 and 3 reasoners 3.

This time there is no clear downwards trend but each system shows
its own particular behavior. The system with 1 reasoner shows the same
behavior as the 1 reasoner ACO-LB system does. The reasons for this is
that they are basically the same. Thus the development of the curve is as
well based on the significant accumulations of waiting times that are stepwise
decreased over time. The 1 reasoner graph in Figure 7.4 basically matches
the corresponding graph of the ACO-LB system.

3For further information on the response time developments for every single client see
the figures C.7, C.8 and C.9 in the appendix.

7.2 Evaluation of Load Balancing 70

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

3 Reasoners

Figure 7.3: Benchmark I. The chart compares the development of the average Round
Robin query response times for each of the settings. A single graph for each setting
comparing the response time developments for each client can be found in figures C.7, C.8
and C.9.

The reason for the other graphs of the Round Robin system not matching
the corresponding one in the ACO-LB system are the additional KB loading
times that occur in the systems with 2 and 3 reasoners. Due to the blind
distribution by the Round Robin strategy also the queries 2 and 3 can cause
a reasoner to load and index a knowledge base. As it is not ensured that
queries are preferably send to a reasoner that already has the referenced
knowledge base loaded, it might be that the KB of query 2 or 3 is still
unknown to the reasoner.

The effect for the 2 reasoner system is that - given the fact that queries
are alternately send to the reasoners and it is a uneven number of KBs that
are concurrently referenced - for query 2 a switch happens. All queries that
were first answered by the first reasoner are now answered by the second,
and the other way around. This causes a significant increase of the response
times for query 2 compared to query 1. Queries have to wait for other queries
to be processed and for further KBs to be loaded.

The same effect can be seen for the system with 3 reasoners, but only
partly shifted to query 3, due to the different constellation of 3 KBs and 3
reasoners, which makes it more likely for the queries being always answered
on the same reasoner - as long as they don’t change their order. The change
of order definitely happened for query 7, as can be seen in Figure 7.4. It
causes a very significant increase in the response time due to existing wait-
ing times and additional KB loading time. Another loading seems to have
happened for query 9. All in all this behavior causes an increase of the
average response times for query 3.

7.2 Evaluation of Load Balancing 71

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3 4 5 6 7 8 9

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

3 Reasoners

Figure 7.4: Benchmark I. The chart compares the development of the query response
times for Round Robin from the system’s perspective. It shows the development in the
order in which the queries where answered by the reasoners.

Comparing ACO-LB and Round Robin

A very basic difference of both systems in terms of their response times is
that the ACO-LB offers a much more predictable behavior than the Round
Robin system. Due to the blindness of Round Robin additional KB loading
times occur and it is hard to say when a query, or a certain system setting
will cause a significant load increase or not.

As Figure 7.5 shows in both cases leads the increase in the number of
reasoners to a decrease of the average response times. Due to the additional
loading times the graph shows as well that this decrease is much more sig-
nificant for the ACO-LB balanced system than for one implementing a pure
Round Robin strategy. It shows that in the case of the ACO-LB one addi-
tional reasoner causes the average response time to drop by half.

7.2.2 Benchmark II

Benchmark II measures and compares as well the response times for a system
that implements an ACO-LB and a pure Round Robin strategy, just like
benchmark I. This time the number of clients is increased to 10 to evaluate
the impact of a bigger number of clients on the response times.

Benchmark I previously showed that the optimal number of reasoners
depends on the number of different knowledge bases that are queried by
the clients. Therefore it is no difference in the behavior of system with 2
KBs and 2 reasoners and a system with 20 KBs and 20 reasoners. This
benchmark was designed to analyze the systems’ behavior for an increased
number of clients.

7.2 Evaluation of Load Balancing 72

0

10000

20000

30000

40000

50000

60000

70000

1 2 3

reasoners in system

a
v

.

r
e

s
p

o
n

s
e

t
i
m

e

/

q

u
e

r
y

[
m

s
]

ACO

RoundRobin

Figure 7.5: Benchmark I. The column chart compares the average response times for
queries to the ACO-LB balanced and the Round Robin balanced systems with 1, 2
and 3 reasoners settings.

Test Plan

10 clients concurrently send queries to the system. Each client sequentially
sends 2 pairwise different queries, each of which references the same KB. The
10 clients reference 2 different KBs, 5 clients per KB. Further the queries of
the 5 clients that query the same knowledge base are pairwise different, but
both KBs will be queried by the same set queries.

At the time when each client’s first query arrives at the system, the
referenced knowledge base is not yet loaded and the index structures have
not been built.

Setting: ACO-LB

As in benchmark I the system is a basic implementation, using ACO-LB
without further optimization modules. As well, the system implements the
paradigm that once a knowledge base is loaded, all queries to that KB are
send to it without further load balancing considerations.

The response times for the queries are measured for settings where 1, 2,
or 3 reasoners are managed by the semantic middleware. Again the 1 rea-
soner system presents an equivalent to a system without any load balancing
capabilities, respectively a single reasoner without a middleware. Still the 1
reasoner will be managed by the middleware, too.

Setting: Round Robin

The second setting for this benchmark is the analogous setting of the pre-
vious benchmark. The system bases its load balancing decisions on a pure

7.2 Evaluation of Load Balancing 73

Round Robin strategy. For further information see benchmark I.
Again tests will be made on systems with 1, 2, and 3 managed reason-

ers. As argued before, the single reasoner will be as well managed by the
middleware to create equal conditions.

Results for ACO-LB

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

Figure 7.6: Benchmark II5. The chart compares the development of the average ACO-
LB query response times for each of the settings. A single graph for each setting comparing
the response time developments for each client can be found in figures C.14 and C.15.

Just like the previous benchmark, Figure 7.6 shows the development of
the average response times for the whole system. The resulting graph mirrors
the behavior that was already discovered for the ACO-LB in benchmark I.
Here again a clear downwards trend can be discovered, due to the same
reasons as in benchmark I.

For query 1 the average response time for a single reasoner system is
approximately double the time of the 2 reasoner system. This is again due
to the additional waiting time for the 8 queries that come after the first two.
While the first query has no waiting time, the second query has to wait for
the first to be answered, but will as well cause the reasoner to load its KB
as it references very probably the other KB. All following have to wait for
both to load the KBs and to be answered.

This is different for the system with 2 reasoners. Here the queries are
equally distributed by their KB. This will cause the both reasoners to only
load one KB, which is done in parallel after the first arrived. Thus all
following queries - in both reasoner queues - will only have to wait for 1 KB
to be loaded and the previous queries to be answered.

This behavior is as well reflected in Figure 7.7 which shows the devel-
opment of the response times from the system’s perspective, ordering the

7.2 Evaluation of Load Balancing 74

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

Figure 7.7: Benchmark II. The chart compares the development of the query response
times for ACO-LB from the system’s perspective. It shows the development in the order
in which the queries where answered by the reasoners.

queries by the order they were answered. The graph shows the increasing
response times for the single reasoner system for the queries 1-10 and shows
the effect of decreasing waiting time for the next 10. This is as well true for
the 2 reasoner system.

Both graphs in the figure show a change of the slope around the queries
12 to 14, which can be explained with the answering of queries with high
processing times.

Results for Round Robin

Figure 7.8 shows that contrary to the ACO-LB strategy the Round Robin
strategy does not show an overall response time decrease with an increasing
number of reasoners. While the single reasoner implementation shows as
well the the same behavior as for the ACO-LB, the behavior for a 2 reasoner
system is a lot less predictable.

Figure 7.9 shows two developments into opposite directions for queries
11 to 17. As queries are alternately answered by reasoner 1 and reasoner
2, the graph shows the differences for the response times of queries that
are answered by one or the other reasoner. As the Round Robin strategy
distributes the queries blindly, it cause a reasoner here and there to load a
further KB - which is the reason for peaks in the response times.

This behavior makes it random and unpredictable how the response time
for a particular client will look like, so that the very different response time
developments can be noticed regarding each client individually6.

6For further information on the response time developments for every single client see
the figures C.19 and C.20 in the appendix.

7.2 Evaluation of Load Balancing 75

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

Figure 7.8: Benchmark II. The chart compares the development of the average Round
Robin query response times for each of the settings. A single graph for each setting
comparing the response time developments for each client can be found in Figures C.19
and C.20.

Comparing ACO-LB and Round Robin

Analogous to benchmark I, benchmark II shows that the behavior of a single
reasoner system reasoner is equal for both load balancing strategies. Both
strategies behave very similar as there is obviously nothing to balance, if
there is only one reasoner.

The measurements clearly show that the ACO-LB system is superior
when it comes to the reduction of response times. A comparison of both
strategies is illustrated shown in Figure 7.10.

Compared to the Round Robin strategy, the ACO-LB system delivers
very predictable results for each client, i.e. the scaling from 1 to 2 reasoners
has a positive effect for all queries and all clients in the same way.

7.2.3 Evaluation Results

The evaluation of benchmark I and II based on empirical data delivers the
following results.

Scalability It was proved that a Semantic Web inference system is able to
scale by increasing the number of reasoners and distributing the load
by means of a load balancing algorithm.

Availability The queuing mechanism led to an increased availability by
prohibiting the rejection of a query. Instead the query was queued
and the service was always available.

Quality of Service: Faster Responses The system as it was described
was not able to increase the response time of a single particular query

7.2 Evaluation of Load Balancing 76

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

Figure 7.9: Benchmark II. The chart compares the development of the query response
times for Round Robin from the system’s perspective. It shows the development in the
order in which the queries where answered by the reasoners.

0

10000

20000

30000

40000

50000

60000

70000

1 2

reasoners in system

a
v

.

r
e

s
p

o
n

s
e

t
i
m

e

/

q

u
e

r
y

[
m

s
]

ACO

RoundRobin

Figure 7.10: Benchmark II. The column chart compares the average response times
for queries to the ACO-LB balanced and the Round Robin balanced systems with 1
and 2 reasoners settings.

7.3 Evaluation of Optimization by Cache Usage 77

by decreasing its processing time. A faster response could be achieved
by distributing different queries over different reasoners and thus re-
ducing waiting times which otherwise would have occurred for the
query.

Intelligent Query Distribution The ACO-LB assumption that a query
should preferably be answered by the reasoner that has already loaded
the referenced knowledge base was proved to be valuable. The per-
formance increase that could be achieved compared to a ignorantly
acting Round Robin strategy was significant.

Waiting Times Decreasing waiting times showed to be the key element for
the decreasing of response times. By adding a further reasoner to the
system the average response times could be decreased by more than
50% (Figures 7.10). The impact of the accumulating waiting times is
very significant for the performance of a system.

Optimal Number of needed Reasoners benchmark I showed that the
maximum number of needed reasoners is equal to the number of dif-
ferent KBs that queries reference. This result is only true in so far as
the number of clients that concurrently send their queries to a partic-
ular knowledge base are fairly limited. In case the load for a single
knowledge base becomes too big for a single reasoner it is preferable
to have a second reasoner supporting the first.
As a result the system should be able to dynamically add new reasoners
in order to handle load increases.

7.3 Evaluation of Optimization by Cache Usage
The second principal assumption is that the implementation of a cache in
the semantic middleware will help to improve the systems performance by
reducing the need for reasoning.

By the means of benchmarks III and IV the cache usage will be evaluated
by comparing the response times of a system without cache with a system
with cache.

For the evaluation Both benchmarks will instruct different numbers of
clients to repeatedly send the same query. This, one might argue, is not an
example that is very near to the real world and thus night not be suitable
for the evaluation of the test. But it has to be noticed that having one client
repeatedly send the same query and this is done in sequence - which is the
case as explained previously - is equal to having a set of clients sequentially
sending the query. Therefore the used test plans match real world scenarios.

7.3 Evaluation of Optimization by Cache Usage 78

7.3.1 Benchmark III

Test Plan

10 clients concurrently send queries to the system. Each client sequentially
sends 2 completely equal queries. The 10 clients reference 2 different KBs, 5
clients per KB. The queries of the 5 clients that query the same knowledge
base are pairwise different. Both KBs will be queried by the same set of
queries.

The system has been initialized so that the 2 KBs have been loaded and
indexed before the first query was received, each KB by one reasoner.

The queries were chosen so that they offer a chance for the system to
profit from the cache.

Setting: System without Cache

The system is a basic implementation, using a ACO-LB strategy without
further optimization modules, the same as it was used in the previous bench-
marks.

Based on the previously found results, the middleware manages 2 rea-
soners, each of which has been initialized with one KB so that the load
balancer will distribute the queries accordingly.

Setting: System with Cache

As the purpose of this benchmark is to evaluate the benefit of a cache im-
plementation in the semantic middleware, the second system’s settings are
equal to the previously described ones, except the fact that a cache is added
to the system.

Results

The similarities and differences in the behavior of a system with and without
cache are best seen in Figure 7.11. It shows the development of the query
response times from the system’s perspective, i.e. in the order as they were
answered by the system.

Both systems show the same behavior for the first 10 queries, as for both
the received queries are new and unknown. The development here is the
same that already occurred in benchmark I and II. Although the knowledge
bases have been preloaded, later queries still have to wait for earlier queries
to be processed. These waiting times lead to ever increasing response times
for the queries. However, a clear difference can be seen from query 11 on.

The second time the queries arrive the system they are already known.
For the system without a cache this has no immediate impact. The queries
are will be handled in the same way as they have been, when they arrived
for the first time. The existing waiting times lead to a further increase of

7.3 Evaluation of Optimization by Cache Usage 79

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

no cache

cache

Figure 7.11: Benchmark III. The chart compares the development of the query response
times for a system with and without a cache (from the system’s perspective). It shows
the development in the order in which the queries where answered by the reasoner as they
are shown in Figure 7.11. Note that queries 1-10 are the same as 11-20.

the response times. Only later a pretty drastic decrease is observed. This
leads to the assumption that also for the system without cache there is a
difference between a query being answered the first or the second time.

The reasoners also contain a caching mechanism that allows them to
answer previously answered queries faster. This explains the behavior of
the not cached system (i.e. not cached refers to ’no cache in the middle-
ware’). By speeding up the processing of the queries the reasoners are able
to decrease the waiting times and thus the response times significantly.

The system with the cache in the middleware shows a different behavior.
Here all queries are able to immediately profit from the cache. As the cache
is implemented in the middleware it can be accessed, and the response can
be created without consultation of a reasoner. Thus virtually no waiting
times occur for the second set of queries. As there exists no waiting time
for query 11 and the answer generation in the cache is very fast the further
queries as well experience no or a very minimal waiting time.

The significant difference of a cached and a not cached system becomes
even clearer when comparing the average response times for both. Figure
7.12 shows that the average response time from the cache was less than a
100ms, which is significantly less than the average for a not-cached system.

The high impact the reasoner cache had on the reduction of the response
times for the queries makes it interesting to compare as well the third step.
No waiting times will then exist in either of the systems, which would lead
to a direct comparison of the middleware and reasoner cache. The next
benchmark will as well address this issue.

7.3 Evaluation of Optimization by Cache Usage 80

4066

68

0

500

1000

1500

2000

2500

3000

3500

4000

4500

av. of queries 11-20

a
v

.

r
e

s
p

o
n

s
e

t
i
m

e

/

q

u
e

r
y

[
m

s
]

no cache

cache

Figure 7.12: Benchmark III. The column chart compares the average response times
of the queries 11-20.

7.3.2 Benchmark IV

Test Plan

6 clients concurrently send queries to the system. Each client sequentially
sends 3 completely equal queries. The 3 clients reference 2 KB. 3 clients per
KB. The queries of the 3 clients that query the same knowledge base are
pairwise different. Both KBs will be queried by the same set of queries.

The system has been initialized so that the 2 KBs have been loaded and
indexed before the first query was received, each KB by one reasoner.

Setting: System without Cache

As in the other cache benchmark the system is a basic implementation, using
a ACO-LB strategy without further optimization modules.

Again, based on the previously found results, the middleware manages
2 reasoners - corresponding to the 2 referenced KBs. As well, each of the
reasoners has been initialized with one KB so that the load balancer will
distribute the queries accordingly.

Setting: System with Cache

The settings of the system with cache are equal to those cached system’s
settings of benchmark III.

Results

As in the previous benchmark figure 7.13 shows the development of the
response times from the system’s perspective, in the order that the queries

7.3 Evaluation of Optimization by Cache Usage 81

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

no cache

cache

Figure 7.13: Benchmark IV. The chart compares the development of the query response
times for a system with and without a cache (from the system’s perspective). It shows
the development in the order in which the queries where answered by the reasoner. Note
that queries 1-6 are equal to queries 7-12 and 13-18.

arrived at the system.
What one can see is that the behavior of both systems just mirror the

behavior they showed with benchmark III. For the the first time the set of
6 queries are received, both systems show an equal behavior. Due to longer
processing times of the particular queries the waiting time for the following
queries adds up and thus increases those response times.

For the second time the set of six answers are received the system here
shows as well the same behavior as in the previous benchmark. On the one
hand the response times of the not-cached system for the queries 7 and 8
first rise due to the existing waiting times, but then drop as well due to
the effect of the reasoners’ caching. On the other hand the response times
for the system with the middleware cache immediately drop, once a known
query is received. The system does not have to care for a reasoner to answer
it, but creates the response directly from the cache.

While the first two parts of the graph only support the arguments and
results that have been found in benchmark III, the third part contains valu-
able new information.

The third time the set of the six queries reach the system, there exist
virtually no to very minimal waiting times for the queries in both systems.
Both systems use their caching mechanism to answer the queries, either at
the middle-layer or at the reasoner layer.

The trends of both systems are very equal and stable, showing both no
bigger variations up or down. However the response times in this section are
still higher for the system without a middleware cache. This result is even
clearer reflected in Figure 7.14 where the average response times for the last

7.3 Evaluation of Optimization by Cache Usage 82

0

200

400

600

800

1000

1200

1400

av. Queries 7-18 av. Queries 13-18

a
v

.

r
e

s
p

o
n

s
e

t
i
m

e

/

q

u
e

r
y

[
m

s
]

no cache

cache

Figure 7.14: Benchmark IV. The column chart compares the average response times
of the queries 7-18 and 13-18 (which are the intervals where differences occured due to the
cache/no cache implementation) as they are shown in Figure 7.13. Note that the difference
between the both is that in the comparison 7-18 the accumulated waiting times of queries
1-6 affect the response times for the queries 7-12, while 13-18 shows a cache/no cache
comparison free of waiting times.

to sections are compared. It can be seen that there still exists a significant
difference in the response times for the third segment, but the real effect of
a cache reveals itself in the second section, by helping the queries to avoid
long waiting times.

7.3.3 Evaluation Results

The two benchmarks have both explicitly shown the benefits of a system
which implements a cache in the middleware over a system that just relies
on the reasoners caching mechanism. However there are three cases that
have to be distinguished.

The
In the case of existing or emerging waiting times due to former queries

the middleware-cached system has a clear advantage over the other one.
The cache provides an alternative source for information that can act in-
dependently of the reasoners. Thus it is as well independent of the queues
and the waiting times. As it was already shown in the evaluation of load
balancing in section 7.2, the waiting times are an important factor with a
big influence on the response times of a system. Here, due to the possibility
of the system to answer the query from either one of the caches very fast,
this factor gains even more importance. Consequently the impact of the
cache in the middleware is very high, as it lets the query avoid these waiting
times.

The second case is when there are no queries waiting in the queues for

7.4 Evaluation of Optimization by Subsumption 83

both systems. Here the advantage of the middleware cache becomes smaller,
as it cannot differentiate from a reasoner by creating responses without
waiting times. However it shows that a response from the middleware cache
is still faster than a cached response from the reasoner. Obviously this is the
result of the communication and translation overhead in case reasoner caches
are exploited. Depending on the network latency between middleware and
reasoner this effect can significantly increase.

Considering both cases it can be stated that the use of a cache always
can be considered as a benefit for creating faster responses.

7.4 Evaluation of Optimization by Subsumption
By proving to provide a mayor improvement in the quality of service regard-
ing the decrease of the response times, the cache provides the needed basis
for the evaluation of the optimization by subsumption. As a mayor part of
this optimization involves the usage of the cache it was very important that
the cache as such did not harm to the system by increasing response times
or similar.

Thus the benchmarks V and VI will compare the response times for
systems with and without a subsumption optimizer implemented. The first
of the two benchmarks will compare only the results for one client with
incrementally subsuming queries. The second benchmark tests the systems
with the same incremental queries but interfered by queries without any
subsumption relationship.

7.4.1 Benchmark V

Test Plan
In this test plan only 1 single client queries the system. The client sequen-
tially sends 4 queries to the system, each to the same KB. The queries
incrementally subsume each other and want to retrieve instances of: As-
sociateProfessor, Professor, Faculty, Person. Between those concepts the
following relationships exist:

Person ⊆ Faculty ⊆ Professor ⊆ AssociateProfessor

The system has been initialized so that the KB has been loaded and
indexed before the first query was received.

Setting: System Without Subsumption

The system is a basic implementation, using a ACO-LB strategy with an
implemented cache. This cache wont have an effect on any of the queries,
as no repetition of known queries occurs, but is part of the system to ensure

7.4 Evaluation of Optimization by Subsumption 84

better comparability to the system with subsumption. No further features
are implemented.

Setting: System with Subsumption

The second system is equal to the first with the addition of a subsumption
module. This subsumption module will test the query first for previously
answered more specific queries (children) from which the query could profit
in combination with the cache. Secondly the query will be tested for pre-
viously answered more general queries (parents) in order to profit from a
smaller search space.

Results

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

no subsumption

subsumption (child & parent)

Figure 7.15: Benchmark V. The chart compares the development of the
response times of the four queries for the system without and with sub-
sumption optimization.

Figure 7.15 shows the development of the response times for the system
with and without the subsumption module. In order to explain the behavior,
it is useful to look at two different parts of the graph individually.

The first part is query 1. This query is not able to profit from any sub-
sumption relationship to a previous query as it is the first. This makes it
equal for both systems in the way that indipendent of how much subsump-
tion checking will be made, there is no way to profit for the query. Thus it
will be processed by a reasoner to provide the responses anyways. This is
then the reason for the subsumption-system’s higher response time of query
1. The module that checks the query for subsumption adds additional pre-
processing time on the processing time of the query and thereby increases
the response time.

7.4 Evaluation of Optimization by Subsumption 85

5468

4316

4463

3155

0

1000

2000

3000

4000

5000

6000

query 1-4 query 2-4

a
v

.

r
e

s
p

o
n

s
e

t
i
m

e

/

q

u
e

r
y

[
m

s
]

no subsumption

subsumption (child & parent)

Figure 7.16: Benchmark V. The chart compare the average response times
for all four queries of a system with and without subsumption optimization.
The second pair of columns does the same comparison for the queries 2 to
4.

The second part are queries 2 to 4. These queries have a subsumption
relationship with all of their predecessors, thus they have a chance to profit
from the extra effort. This is as well reflected in 7.15. Both graphs show
approximately the same developing, the subsumption-system’s graph shifted
down by a few hundred milliseconds.

All in all, as Figure 7.16 shows, the introduction of a module for sub-
sumption checking payed off. The response times for queries that have a
subsumption (2-4) relationship could be lowered by more than 25%.

7.4.2 Benchmark VI

Test Plan

In this test plan only 3 concurrent clients query the system. The first client
sequentially sends - equal to the previous benchmark - the 4 incrementally
subsuming queries to the system. The other two clients send queries without
any subsumption relationship to any other query. All queries go to the same
KB.

The system has been initialized so that the KB has been loaded and
indexed before the first query was received.

Setting: System Without Subsumption

Equal to the previous benchmark the system is a basic implementation,
using a ACO-LB strategy with an implemented cache.

7.4 Evaluation of Optimization by Subsumption 86

Setting: System with Subsumption - Parent & Child

The same is true for the second setting. The system is equal to the first
setting with the addition of a subsumption module that checks queries for
subsumption (child and parent).

Setting: System with Subsumption - Child

As the previously described system, this system here implements as well a
subsumption module. The difference however is that here only the child
relation to a previous query will be checked.

Results

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

no subsumption

subsumption (child only)

subsumption (child & parent)

Figure 7.17: Benchmark VI. The chart compares the development of the
response times of the four queries for the system without subsumption opti-
mization, with child subsumption and with full child & parent subsumption
optimization.

Similar to the previous benchmark Figure 7.17 shows the development of
the response times for all three settings - this times the displayed response
times are the averages of the three clients.

The graphs reflect great differences and similarities in the behavior of
the systems. In order to find reasons for this behavior the graph will be
analyzed in three steps.

The fist step is again query 1. Here the same behavior can be found,
that was already reflected in the previous benchmark. Due to the additional
preprocessing time that is invested into the first query, which shows - due to
the not existing subsumption relationship - no benefit, the response times
for query 1 increase for the systems with subsumption optimization. The

7.4 Evaluation of Optimization by Subsumption 87

0

5000

10000

15000

20000

25000

30000

35000

1 2 3

clients

a
v

.

r
e

s
p

o
n

s
e

t
i
m

e

/

q

u
e

r
y

[
m

s
]

no subsumption

subsumption (child)

subsumption (child & parent)

Figure 7.18: Benchmark VI. The chart compares the average response times
for each client individually in regard to the different system settings.

graph shows as well that analysis of a query for child and parent relationship
with a previous query causes higher response times than the optimization
that only concentrates on the child relationship.

In addition to that the presence of further queries adds a waiting time
component to the response times, as all queries will be answered by the same
reasoner.

The second step includes queries 2 and 3. Here again the same behavior
as in the previous benchmark is reflected. The subsumption relationship
is detected in both subsumption-systems and lead to a reduction of the
response times. When comparing the particular developments of each client
it can be seen that this has as well a positive effect on the queries without a
subsumption relationship that are answered concurrently. Those profit from
the reduced waiting times in the system.

The fact that the graphs for queries 2-3 are approx. equal can be ex-
plained with the implementation of the modules. In the module that checks
for both relationships, the child relationship is checked for first and dom-
inant. Which means whenever a child relation is detected the rest of the
checking is canceled. Thus both behave equally for these queries.

The third step includes only query 4. Here a new behavior is reflected
that was not seen in the previous benchmark. Although a subsumption
relationship exists to the predecessors of query 4, the system without sub-
sumption checking responded faster to all 3 queries than the other systems.
Given as well the fact that the three query 4’s showed all in general very small
response times let conclude that the extra effort for subsumption checking
in combination with a cache lookup took longer than the simple and plain
reasoning for these queries.

7.4 Evaluation of Optimization by Subsumption 88

The overview on the average query response times in Figure 7.18 un-
derlines the analysis that was made so far. The system that implements
both child and parent subsumption checking causes higher response times
for those clients that can not profit from such a relationship. It further shows
that in the case of only checking for the child relationship the response times
stay equal compared to the system without subsumption checking. The rea-
son therefore must be seen in the waiting times. The avoidance of reasoning
for the first client let to a reduction of waiting times for the second and third
client, thus equaling out the increases that were made to their response times
by the additional, yet useless subsumption checking.

As already seen in the previous benchmark, for the client 1 the subsump-
tion checking led to a clear reduction of response times.

7.4.3 Evaluation Results

The analysis of benchmark V and VI does not paint a picture that is as clear
as in the for the previous evaluation. On the one hand the exploitation of
subsumption relationships pays off for those queries that actually have such
a relationship to an earlier one. On the other hand it was shown that the
system, implemented in the way it is, meant even a disadvantage for those
queries that do not have such a relationship.

Benefit for Subsumption-Queries It was demonstrated in both bench-
marks that the exploitation of an existing subsumption relationship
proved to be a benefit for the system by decreasing the response times
and decreasing waiting times for other queries.

Disadvantage for Low-Load Queries However, the previous point has
to be limited to the extend that this benefit reveals itself only above
a certain threshold value of the time needed for reasoning. Thus this
benefit is not applicable for queries that mean a very small amount of
load for the system.

Unavoidable Extra Effort without Profit The subsumption optimizer
proved to be an immediate disadvantage for all those queries that can
not profit from it. The development of the average response times from
benchmark V to VI shows that with an increasing number of queries
that can not profit from the optimizer the benefits for the whole system
decrease and turn more and more into a reason for increased response
times.

It must be concluded that subsumption optimization is not suitable for
every system. The benefit is dependent on the ratio of queries with a sub-
sumption relationship to a previous one and those which don’t. The compo-
nents that were used in the implementation do not allow for a more efficient

7.4 Evaluation of Optimization by Subsumption 89

way of checking the relationships between the queries. Thus it has to be
decided from application to application if a use of this optimization means
a advantage or disadvantage.

A possible solution may be to introduce the subsumption optimization
into the system, when it has reached a certain degree of maturity. This
would mean that already many queries had been answered and thus the
chances increase for a new query to have a subsumption relationship to one
of the earlier queries.

The system may offer as well a higher probability for the subsumption
checking to be advantageous, when the the reasoners are not local but re-
mote. This could lead to significant increases of the response time due to
network latency. Therefore the subsumption optimizer would not only help
to avoid the processing time, but also the time for transportation.

A further scenario that shows a high probability for the beneficial use
of subsumption optimization is the involvement of payments in the use of
reasoning capabilities. If a service provider offers the use of its reasoner for
the payment of a certain amount (may be even dependent on the number
of requested answers) the middleware that connects to this server will try
to avoid the reasoning as far as possible in order to reduce the costs of
payments. This will shift the measurement for the evaluation by response
times to the evaluation of made payments. The additional preprocessing
time that the subsumption optimizer creates looses its importance as it is
more important to answer queries as much as possible from the local cache.

Chapter 8

Conclusion and Future Work

8.1 Conclusion
Based on the requirements of different scenarios for Semantic Web applica-
tions the thesis proposed the implementation of a Semantic Web middleware
system (Chapter 3). The middleware was intended to support scalability,
availability and a reasonable quality of service for multi-user inference sys-
tems, while offering an open platform for the addition of further modules.

8.1.1 The Benefit of Load Balancing

The empirical evaluation of the benefit of load balancing in section 7.2 con-
firmed that a semantic middleware system is able provide the required scal-
ability and availability of a multi-user system.

By implementing a load balancing strategy that distributes the load
over a set of reasoners the empirical testing showed that the implemented
middleware was able to

• concurrently handle multiple client requests, thus providing a much
higher availability than a single reasoner

• scale well by increasing the number of reasoners to handle a higher
load, as well for scenarios involving multiple knowledge bases

• provide significantly faster response times than a single reasoner sys-
tem in multi-user scenarios

The empirical testing showed further the superiority of the proposed
intelligent load balancing algorithm, which was based on Ant Colony Opti-
mization (the ACO-LB). The blind and ignorant acting Round Robin strat-
egy, which was used in some of the already well-known systems (see chapter
2, showed a very unpredictable behavior and far slower response times than
the ACO-LB. These results confirmed the assumption that distributing the

8.1 Conclusion 91

queries preferably onto reasoners that already have the required knowledge
base loaded is a benefit for the system.

8.1.2 Optimization

The characteristics of todays reasoners, as they were explained in chapter 3,
made it very likely to improve an inference system’s overall performance by
investing into extensive preprocessing of the queries. The empirical results
for the cache evaluation supported this assumption entirely. The testings
showed that the implementation of a cache in the middleware provides an
enormous decrease of the response times of recurring queries, which also has
a beneficial effect on the whole system. The middleware-cached system not
only showed to be superior in high load situations where a lot of waiting
times occur, it showed also faster response times than an fairly unloaded
system which profits from the caching mechanisms in the reasoners.

Different from the cache, the subsumption optimizer could not deliver
the expectations that were formulated in section 4.3. While providing those
queries with an advantage that had a subsuming relationship with one or
more of the earlier queries, those queries that did not have it, experienced an
increase of their response times. It was shown that the benefit that would be
provided by the subsumption optimizer for an entire system does very much
depend on the particular scenario and composition of the involved queries.

During the evaluation of load balancing the result was found that an
the optimal number of reasoners heavily depend on the number of different
referenced knowledge bases. This seems to make the implementation of a
knowledge base distributor obsolete. However, it is important to consider
that benchmarks always simulate a reasonable, yet artificial scenario. In
various Semantic Web scenarios different knowledge bases will be queried
with different intensities, thus making it still promising to further distribute
heavily queried KBs. The effect here will be then similar to scaling the
system from one to two or more reasoners, making the load distribute over
all of the entities.

In consequence the conclusion for the knowledge base distributor is a
similar as the one for the subsumption optimizer. The benefit that may
come from using this component is very much dependent on the particular
scenario and can neither be confirmed nor denied in general.

All-in-all the semantic middleware proved to fulfill all of the basic require-
ments, while being able to increase the quality of service. The theoretical
considerations in combination with empirical results and the implemented
system will provide a good foundation for further investigation and improve-
ments in the field of multi-user inference systems.

8.2 Future Work 92

8.2 Future Work
The thesis discussed the very basics of load balancing in multi-user inference
systems. As this field promises a lot of potential there were many topics
that could not be addressed in detail or at all in the limits of this thesis.
Further various new ideas and topics were discovered during the analysis of
the different aspects of load balancing.

In the following a list of the main topics and concerns for future work
will be given and shortly explained.

8.2.1 Single vs. Multiple Semantic Middleware Systems

The evaluation of the implemented system showed that the semantic mid-
dleware is able to provide the system with a good degree of scalability and
availability. However it has to be assumed that also this system can not scale
infinitely and will may reach its limit at a certain point. Further there will
exist scenarios where reasoners or reasoner clusters are locally distributed,
e.g. being placed in the internal network of different company locations.

These considerations open up a whole area for further investigation:

• what are the limits of a single semantic middleware, i.e. in terms of
the numbers of managed reasoners, queries (respectively throughput)
per second, etc.

• when is it more efficient to replace a single semantic middleware ap-
plication with multiple, parallel middleware applications

• what is an efficient way to balance the load on parallel semantic mid-
dleware systems

• how can the load be balanced efficiently between locally distributed
reasoners or reasoning cluster

These investigations have to be considered as vital for the application of
the semantic middleware in the business context.

8.2.2 Developing the Semantic Middleware

The proposal for the semantic middleware system in chapter 3 listed more
requirements than just the basic ones: scalability, availability, quality of ser-
vice. Various additional functions were suggested to be integrated into the
single middlelayer application, including functions for security and account-
ing.

In order to develop the concept of a semantic middleware further, those
components, their requirements and application areas have to be analyzed
and evaluated. Such an evaluation also has to include the consideration if

8.2 Future Work 93

such a single system is able to handle all these entirely by itself, or if it is
more efficient to outsource parts of the functions to other existing or new
components.

8.2.3 Publish and Subscribe Service

The publish and subscribe mechanism is a very common service that is of-
fered in the area of information retrieval, content syndication and various
other applications. The client instructs the system to send him further in-
formation, whenever something new was added to the field he subscribed
for.

A publish and subscribe service should also be considered and evaluated
for inference systems, especially as it is not as straight forwarded as for other
systems. For instance, such a service is very unlikely to provide a benefit for
users that use the incremental query answering. It may only then become
of interest for the client, if he already received all answers from the system.
It may then be applicable to offer the user a way to subscribe for further
answers, when they occur.

All of this will only then makes sense, if the system, different from the
current implementation, considers and allows knowledge bases to be altered
- which is another interesting topic for further investigation.

8.2.4 Knowledge Base Alternation

As mentioned in the previous paragraph, the current system implementation
considers the knowledge bases to remain unchanged throughout the system’s
complete lifecycle.

Thus, further effort has to be put into the issue of exchanging whole
knowledge bases or altering their content to provide the semantic middleware
with a wider area of application.

Part of this effort will be to reevaluate the cache and its implementation,
considering its efficiency especially with regard to the expiration of data
items.

8.2.5 Support for Server-Side Knowledge Base Selection

Chapter 3 proposed, based on the arguments that were given in the OWL-
QL specification[13], the support for server-side knowledge base retrieval. In
his query, the client would instruct the inference system to chose the best
suitable knowledge base for the optimal answer retrieval. Such a function
brings up various issues that have to be analyzed carefully in order to provide
the basis for such an implementation, issues such like:

• where does the system find the knowledge bases, are they contained in
a local repository, thus providing a finite set of KBs, or has the suiting

8.2 Future Work 94

KB to selected from any resource on the net

• how is such a knowledge base handled after the query was answered -
will be forgot or kept for further answering

• how does the system decide that one knowledge base provides better
suiting information than another

8.2.6 High Availability Design

One reason to implement a load balancing system is to increase its availabil-
ity. Due to health checking that will be conducted by the middleware the
failure of reasoners can be detected and recovered reasoners can dynamically
be reintegrated into the load distribution process.

An important issue that has to be addressed in this context is the failure
of the middleware load balancing system. The middleware application so far
represents a single point of failure, which when failing, will make the whole
application fail.

Following the example of the in section 2.6 discussed active-standby and
active-active systems such a scenario has to be analyzed as well for an load
balanced inference system. Methods to provide efficient redundancy and
recovery methods have to be found and implemented to address this very
important issue.

8.2.7 Implementation

Besides the needed basic research in various topics, further effort has to be
also put into the implemented system in order to provide the features and
methods to work in a business environment.

Health Checking

In chapter 2Health checking was introduced as a mayor feature of load bal-
ancing systems in well-known environments. This issue could not be ad-
dressed at all in the scope of this thesis. However, it is a very important
issue as well in Semantic Web reasoning systems.

In order to further improve the availability and flexibility of the system
further effort has to be put into the investigation of efficient methods for

Reasoner Failure In order to provide a high degree of availability, the sys-
tem has to implement a method that recognize the failure of a reasoner.
In such a case this reasoner has to be automatically excluded from the
load distribution process - which will involve further consequences for
the system, such as cache expiration.

8.2 Future Work 95

Reasoner Recovery In addition to the identification of a reasoner failure,
the system should implement a mechanism that allows it to automati-
cally trigger the recovery of a failed reasoner. Moreover the recovered
reasoner has to be dynamically reintegrated into the system in order
to reestablish the required scale and quality of service.

Monitoring The current implementation only provides a very basic way of
monitoring. In order to let such a system be integrated in a business
environment, a more extensive and sophisticated way of monitoring
has to be implemented.

Data Expiration

The implementation of a cache can lead to an enormous use of resources.
Moreover, in the case the system will be extended to support alteration
of loaded knowledge bases, the cache must adapt to this as well. It must
provide functions that allow cache elements to expire when a KB was altered
and prohibit the cache from growing unlimited.

Right now the cache is implemented to store the inferred knowledge
volatile in memory. In order to prevent all cached information from vanishing
in case the middleware crashes a solution could be to persistently store all
inferred knowledge in a database.

Besides the cache, the subsumption optimizer has to be considered for
data expiration as well. When a dialog expires in the cache it has to be
ensured that the referenced query will be deleted from the subsumption
reasoner. Otherwise inconsistencies will occur, if the subsumption reasoner
finds relatives of the current query that do not exist in the cache anymore.

Interfaces to Other Reasoner Products

By now the implemented OWL-QL reasoner RacerManager just provides an
interface to instances of the reasoner product RacerPro. In the future addi-
tional interfaces should be developed to improve the possibilities to integrate
the semantic middleware with existing reasoning infrastructure.

DIG 2.0 Client Interface

Besides the implementation of various backend interfaces, the expansion of
the system by implementing further ontology query language protocols.

With regard to the near future of modern DL systems, a promising can-
didate for such an extension is the existing standard interface for accessing
DL reasoners (DIG). It is realistic to expect that the upcoming version, DIG
2.0[19], will replace OWL-QL as a standard query language. The upcoming
version of DIG offers many features that have been found to be essential
such as iterative query answering.

Appendix A

Additional Algorithms

Algorithm 6 continuationWorkflow.execute(query):
session := getSessionId(query)
dialog := getDialog(session)

requestedAnswerSize := getAnswerSize(query)
deliveredAnswerSize := getAnswerSizeFromSession(session)

answers := getResponsesFromCache(dialog, requestedAnswerSize,
deliveredAnswerSize)
query.setAnswers(answers)

responseQueue := query.getResponseQueue()
responseQueue.put(query)

Algorithm 7 knownQueryWorkflow.execute(query):
dialog := search_dialog(query)
query.setSession(createNewSessionId(dialog))
requestedAnswerSize := getAnswerSize(query)

answers := getResponsesFromCache(dialog, requestedAnswerSize, 0
query.setAnswers(answers)

responseQueue := query.getResponseQueue()
responseQueue.put(query)

97

Algorithm 8 newQueryToKnownKBWorkflow.execute(query):
subsumee := null
subsumer := null
subReasonerQueue := null
newKB := false

subsumee := getSubsumee(query)
if subsumee 6= null then

createSubsumptionDialog(query, subsumee)
knownQueryWorkflow.execute(query)

else
subsumer := getSubsumer(query)
if subsumer 6= null then

subReasonerQueue := getReasonerQueue(subsumer)
subReasonerQueue.put(query)

else
loadBalancer.balance(query, newKB)

end if
end if

Algorithm 9 newQueryToNewKBWorkflow.execute(query):
subsumptionReasoner.loadKB(query)
query.setSession(createNewSessionId(createNewDialog(query)))
loadBalancer.balance(query, newKB)

Appendix B

Benchmarking Result Tables

No. TimeStamp Response Time Query Client
1 1172029724416 472 1:lubm-Q01 Client 1
2 1172029725178 3056 2:lubm-Q02 Client 1
3 1172029728236 1131 3:lubm-Q05 Client 1
4 1172029729369 1309 4:lubm-Q06 Client 1
5 1172029730679 488 5:lubm-Q07 Client 1
6 1172029731169 10732 6:lubm-Q09 Client 1
7 1172029741902 1822 7:lubm-Q10 Client 1
8 1172029743726 395 8:lubm-Q11 Client 1
9 1172029744122 301 9:lubm-Q15 Client 1

10 1172029744425 302 10:lubm-Q16 Client 1

Table B.1: Results for: Response times on unloaded system.

No. TimeStamp Response Time Query Client
1 1172069557636 77800 1:lubm-Q02 Client 1
2 1172069635438 57927 2:lubm-Q05 Client 1
3 1172069693366 25291 3:lubm-Q06 Client 1
4 1172069557636 134243 1:lubm-Q02 Client 2
5 1172069691882 1483 2:lubm-Q05 Client 2
6 1172069693368 25386 3:lubm-Q06 Client 2
7 1172069557636 38210 1:lubm-Q02 Client 3
8 1172069596133 97221 2:lubm-Q05 Client 3
9 1172069693356 25205 3:lubm-Q06 Client 3

Table B.2: Results for: 3 KBs, 3 parallel clients, 3 queries per client. Sce-
nario with ACO.

99

No. TimeStamp Response Time Query Client
1 1172070998110 39842 1:lubm-Q02 Client 1
2 1172071038249 55107 2:lubm-Q05 Client 1
3 1172071093358 5153 3:lubm-Q06 Client 1
4 1172070998110 39842 1:lubm-Q02 Client 2
5 1172071038250 1160 2:lubm-Q05 Client 2
6 1172071038371 2148 3:lubm-Q06 Client 2
7 1172070998110 94092 1:lubm-Q02 Client 3
8 1172071092205 1219 2:lubm-Q05 Client 3
9 1172071093426 5179 3:lubm-Q06 Client 3

Table B.3: Results for: 3 KBs, 3 parallel clients, 3 queries per client. Sce-
nario with ACO.

No. TimeStamp Response Time Query Client
1 1172071413511 39783 1:lubm-Q02 Client 1
2 1172071453582 1160 2:lubm-Q05 Client 1
3 1172071453703 1832 3:lubm-Q06 Client 1
4 1172071413511 39803 1:lubm-Q02 Client 2
5 1172071453582 1741 2:lubm-Q05 Client 2
6 1172071455325 1756 3:lubm-Q06 Client 2
7 1172071413511 39783 1:lubm-Q02 Client 3
8 1172071453582 1741 2:lubm-Q05 Client 3
9 1172071455325 1815 3:lubm-Q06 Client 3

Table B.4: Results for: 3 KBs, 3 parallel clients, 3 queries per client. Sce-
nario with ACO.

No. TimeStamp Response Time Query Client
1 1172072589879 39900 1:lubm-Q02 Client 1
2 1172072630040 1608 2:lubm-Q05 Client 1
3 1172072631650 1792 3:lubm-Q06 Client 1
4 1172072589879 39873 1:lubm-Q02 Client 2
5 1172072630040 1173 2:lubm-Q05 Client 2
6 1172072630165 1766 3:lubm-Q06 Client 2
7 1172072589879 39873 1:lubm-Q02 Client 3
8 1172072630041 1168 2:lubm-Q05 Client 3
9 1172072630161 1853 3:lubm-Q06 Client 3

Table B.5: Results for: 3 KBs, 3 parallel clients, 3 queries per client. Sce-
nario with ACO.

100

No. TimeStamp Response Time Query Client
1 1172091072415 91720 1:lubm-Q02 Client 1
2 1172091164138 80401 2:lubm-Q05 Client 1
3 1172091244542 1286 3:lubm-Q06 Client 1
4 1172091072415 38666 1:lubm-Q02 Client 2
5 1172091111369 133170 2:lubm-Q05 Client 2
6 1172091244542 2427 3:lubm-Q06 Client 2
7 1172091072415 170524 1:lubm-Q02 Client 3
8 1172091242942 1597 2:lubm-Q05 Client 3
9 1172091244541 1389 3:lubm-Q06 Client 3

Table B.6: Results for: 3 KBs, 3 parallel clients, 3 queries per client. Sce-
nario with RR.

No. TimeStamp Response Time Query Client
1 1172092467512 39437 1:lubm-Q02 Client 1
2 1172092506951 120213 2:lubm-Q05 Client 1
3 1172092627167 340 3:lubm-Q06 Client 1
4 1172092467512 91883 1:lubm-Q02 Client 2
5 1172092559397 68243 2:lubm-Q05 Client 2
6 1172092627642 3010 3:lubm-Q06 Client 2
7 1172092467512 39097 1:lubm-Q02 Client 3
8 1172092506900 37609 2:lubm-Q05 Client 3
9 1172092544512 17809 3:lubm-Q06 Client 3

Table B.7: Results for: 3 KBs, 3 parallel clients, 3 queries per client. Sce-
nario with RR.

No. TimeStamp Response Time Query Client
1 1172093879671 39472 1:lubm-Q02 Client 1
2 1172093919432 52154 2:lubm-Q05 Client 1
3 1172093971588 40386 3:lubm-Q06 Client 1
4 1172093879671 44489 1:lubm-Q02 Client 2
5 1172093924162 1483 2:lubm-Q05 Client 2
6 1172093925647 115406 3:lubm-Q06 Client 2
7 1172093879671 39475 1:lubm-Q02 Client 3
8 1172093919432 37775 2:lubm-Q05 Client 3
9 1172093957213 18749 3:lubm-Q06 Client 3

Table B.8: Results for: 3 KBs, 3 parallel clients, 3 queries per client. Sce-
nario with RR.

101

No. TimeStamp Response Time Query Client
1 1172076059648 39591 1:lubm-Q01 Client 1
2 1172076099527 67634 2:lubm-Q09 Client 1
3 1172076060493 76534 1:lubm-Q01 Client 2
4 1172076137030 60354 2:lubm-Q09 Client 2
5 1172076061503 80458 1:lubm-Q02 Client 3
6 1172076141963 55475 2:lubm-Q10 Client 3
7 1172076062503 79678 1:lubm-Q02 Client 4
8 1172076142183 55296 2:lubm-Q10 Client 4
9 1172076063503 79650 1:lubm-Q05 Client 5

10 1172076143155 67656 2:lubm-Q11 Client 5
11 1172076064513 95467 1:lubm-Q05 Client 6
12 1172076159983 50866 2:lubm-Q11 Client 6
13 1172076065523 99219 1:lubm-Q06 Client 7
14 1172076164744 46176 2:lubm-Q15 Client 7
15 1172076066532 98317 1:lubm-Q06 Client 8
16 1172076164851 46130 2:lubm-Q15 Client 8
17 1172076067533 97453 1:lubm-Q07 Client 9
18 1172076164988 46064 2:lubm-Q16 Client 9
19 1172076068532 96531 1:lubm-Q07 Client 10
20 1172076165066 46045 2:lubm-Q16 Client 10

Table B.9: Results for: 2 KBs, 10 parallel clients, 2 queries per client.
Scenario with ACO.

102

No. TimeStamp Response Time Query Client
1 1172076425651 39062 1:lubm-Q01 Client 1
2 1172076465000 6707 2:lubm-Q09 Client 1
3 1172076426489 38224 1:lubm-Q01 Client 2
4 1172076465000 8459 2:lubm-Q09 Client 2
5 1172076427499 41482 1:lubm-Q02 Client 3
6 1172076468983 2717 2:lubm-Q10 Client 3
7 1172076428499 40301 1:lubm-Q02 Client 4
8 1172076468802 6652 2:lubm-Q10 Client 4
9 1172076429500 40412 1:lubm-Q05 Client 5

10 1172076469914 1863 2:lubm-Q11 Client 5
11 1172076430509 39198 1:lubm-Q05 Client 6
12 1172076469709 15268 2:lubm-Q11 Client 6
13 1172076431519 40005 1:lubm-Q06 Client 7
14 1172076471526 369 2:lubm-Q15 Client 7
15 1172076432529 38705 1:lubm-Q06 Client 8
16 1172076471236 14223 2:lubm-Q15 Client 8
17 1172076433529 38137 1:lubm-Q07 Client 9
18 1172076471668 362 2:lubm-Q16 Client 9
19 1172076434529 36856 1:lubm-Q07 Client 10
20 1172076471387 14132 2:lubm-Q16 Client 10

Table B.10: Results for: 2 KBs, 10 parallel clients, 2 queries per client.
Scenario with ACO.

103

No. TimeStamp Response Time Query Client
1 1172097727578 37069 1:lubm-Q01 Client 1
2 1172097764930 221589 2:lubm-Q09 Client 1
3 1172097728424 73800 1:lubm-Q01 Client 2
4 1172097802229 226445 2:lubm-Q09 Client 2
5 1172097729433 117350 1:lubm-Q02 Client 3
6 1172097846786 181941 2:lubm-Q10 Client 3
7 1172097730433 146712 1:lubm-Q02 Client 4
8 1172097877148 151619 2:lubm-Q10 Client 4
9 1172097731433 172349 1:lubm-Q05 Client 5

10 1172097903784 125080 2:lubm-Q11 Client 5
11 1172097732443 199434 1:lubm-Q05 Client 6
12 1172097931879 97011 2:lubm-Q11 Client 6
13 1172097733453 202550 1:lubm-Q06 Client 7
14 1172097936005 92953 2:lubm-Q15 Client 7
15 1172097734464 226700 1:lubm-Q06 Client 8
16 1172097961167 67854 2:lubm-Q15 Client 8
17 1172097735463 226943 1:lubm-Q07 Client 9
18 1172097962408 66682 2:lubm-Q16 Client 9
19 1172097736463 247956 1:lubm-Q07 Client 10
20 1172097984422 44726 2:lubm-Q16 Client 10

Table B.11: Results for: 2 KBs, 10 parallel clients, 2 queries per client.
Scenario with RR.

104

No. TimeStamp Response Time Query Client
1 1172096656502 37588 1:lubm-Q01 Client 1
2 1172096694382 95185 2:lubm-Q09 Client 1
3 1172096657351 36739 1:lubm-Q01 Client 2
4 1172096694382 98240 2:lubm-Q09 Client 2
5 1172096658351 62352 1:lubm-Q02 Client 3
6 1172096720707 49388 2:lubm-Q10 Client 3
7 1172096659351 62199 1:lubm-Q02 Client 4
8 1172096721552 94885 2:lubm-Q10 Client 4
9 1172096660361 80091 1:lubm-Q05 Client 5

10 1172096740455 53848 2:lubm-Q11 Client 5
11 1172096661371 79674 1:lubm-Q05 Client 6
12 1172096741047 88258 2:lubm-Q11 Client 6
13 1172096662371 81180 1:lubm-Q06 Client 7
14 1172096743553 63749 2:lubm-Q15 Client 7
15 1172096663380 80875 1:lubm-Q06 Client 8
16 1172096744257 63111 2:lubm-Q15 Client 8
17 1172096664380 79312 1:lubm-Q07 Client 9
18 1172096743694 85798 2:lubm-Q16 Client 9
19 1172096665391 79000 1:lubm-Q07 Client 10
20 1172096744393 97941 2:lubm-Q16 Client 10

Table B.12: Results for: 2 KBs, 10 parallel clients, 2 queries per client.
Scenario with RR.

No. TimeStamp Response Time Query Client

Table B.13: Results for: 2 KBs, 6 parallel clients, 3 queries per client.
Scenario with ACO.

105

No. TimeStamp Response Time Query Client
1 1172339927367 3194 1:lubm-Q02 Client 1
2 1172339930845 126 2:lubm-Q02 Client 1
3 1172339930973 90 3:lubm-Q02 Client 1
4 1172339929223 10217 1:lubm-Q06 Client 2
5 1172339939443 238 2:lubm-Q06 Client 2
6 1172339939683 138 3:lubm-Q06 Client 2
7 1172339931222 8568 1:lubm-Q07 Client 3
8 1172339939792 191 2:lubm-Q07 Client 3
9 1172339939985 207 3:lubm-Q07 Client 3

10 1172339928233 3033 1:lubm-Q02 Client 4
11 1172339931268 60 2:lubm-Q02 Client 4
12 1172339931330 55 3:lubm-Q02 Client 4
13 1172339930232 9860 1:lubm-Q06 Client 5
14 1172339940094 140 2:lubm-Q06 Client 5
15 1172339940235 126 3:lubm-Q06 Client 5
16 1172339932242 8065 1:lubm-Q07 Client 6
17 1172339940310 178 2:lubm-Q07 Client 6
18 1172339940490 158 3:lubm-Q07 Client 6

Table B.14: Results for: 2 KBs, 6 parallel clients, 3 queries per client.
Scenario with ACO.

No. TimeStamp Response Time Query Client
1 1172103554200 3170 1:lubm-Q02 Client 1
2 1172103557655 15347 2:lubm-Q02 Client 1
3 1172103555049 3349 1:lubm-Q05 Client 2
4 1172103558399 15002 2:lubm-Q05 Client 2
5 1172103556047 11005 1:lubm-Q06 Client 3
6 1172103567054 6396 2:lubm-Q06 Client 3
7 1172103557057 14223 1:lubm-Q09 Client 4
8 1172103571282 2946 2:lubm-Q09 Client 4
9 1172103558056 15029 1:lubm-Q10 Client 5

10 1172103573087 1085 2:lubm-Q10 Client 5
11 1172103559066 3084 1:lubm-Q02 Client 6
12 1172103562152 15698 2:lubm-Q02 Client 6
13 1172103560067 3114 1:lubm-Q05 Client 7
14 1172103563183 14860 2:lubm-Q05 Client 7
15 1172103561086 10812 1:lubm-Q06 Client 8
16 1172103571900 6240 2:lubm-Q06 Client 8
17 1172103562086 14009 1:lubm-Q09 Client 9
18 1172103576097 2804 2:lubm-Q09 Client 9
19 1172103563086 14830 1:lubm-Q10 Client 10
20 1172103577918 935 2:lubm-Q10 Client 10

Table B.15: Results for: 2 KBs, 10 parallel clients, 2 queries per client.
Scenario with ACO.

106

No. TimeStamp Response Time Query Client
1 1172103074526 3253 1:lubm-Q02 Client 1
2 1172103078064 155 2:lubm-Q02 Client 1
3 1172103075377 3432 1:lubm-Q05 Client 2
4 1172103078811 225 2:lubm-Q05 Client 2
5 1172103076377 11119 1:lubm-Q06 Client 3
6 1172103087498 121 2:lubm-Q06 Client 3
7 1172103077387 14327 1:lubm-Q09 Client 4
8 1172103091716 177 2:lubm-Q09 Client 4
9 1172103078386 14932 1:lubm-Q10 Client 5

10 1172103093321 69 2:lubm-Q10 Client 5
11 1172103079396 2992 1:lubm-Q02 Client 6
12 1172103082391 114 2:lubm-Q02 Client 6
13 1172103080397 3003 1:lubm-Q05 Client 7
14 1172103083402 182 2:lubm-Q05 Client 7
15 1172103081406 10757 1:lubm-Q06 Client 8
16 1172103092165 117 2:lubm-Q06 Client 8
17 1172103082417 13937 1:lubm-Q09 Client 9
18 1172103096356 146 2:lubm-Q09 Client 9
19 1172103083416 14640 1:lubm-Q10 Client 10
20 1172103098059 60 2:lubm-Q10 Client 10

Table B.16: Results for: 2 KBs, 10 parallel clients, 2 queries per client.
Scenario with ACO.

107

No. TimeStamp Response Time Query Client
1 1172268204037 1308 1:getAssociateProfessor Client 1
2 1172268205628 1394 2:getProfessor Client 1
3 1172268207024 873 3:getFaculty Client 1
4 1172268207898 888 4:getPerson Client 1

Table B.17: Results for: 1 KBs, 1 parallel clients, 4 queries per client.
Scenario with 1 reasoners.

No. TimeStamp Response Time Query Client
1 1172267468647 1152 1:getAssociateProfessor Client 1
2 1172267470081 1628 2:getProfessor Client 1
3 1172267471711 1357 3:getFaculty Client 1
4 1172267473070 1331 4:getPerson Client 1

Table B.18: Results for: 1 KBs, 1 parallel clients, 4 queries per client.
Scenario with 1 reasoners.

No. TimeStamp Response Time Query Client
1 1172270925151 1310 1:getAssociateProfessor Client 1
2 1172270926743 9814 2:getProfessor Client 1
3 1172270936562 6637 3:getFaculty Client 1
4 1172270943202 2294 4:getPerson Client 1
5 1172270926010 12501 1:lubm-Q02 Client 2
6 1172270938513 10995 2:lubm-Q05 Client 2
7 1172270949510 4824 3:lubm-Q06 Client 2
8 1172270954336 2303 4:lubm-Q07 Client 2
9 1172270926011 18309 1:lubm-Q09 Client 3

10 1172270944322 4601 2:lubm-Q10 Client 3
11 1172270948926 326 3:lubm-Q11 Client 3
12 1172270949254 2762 4:lubm-Q15 Client 3

Table B.19: Results for: 1 KBs, 3 parallel clients, 4 queries per client.
Scenario with 1 reasoners.

108

No. TimeStamp Response Time Query Client
1 1172276253177 1275 1:getAssociateProfessor Client 1
2 1172276254740 10060 2:getProfessor Client 1
3 1172276266802 4704 3:getFaculty Client 1
4 1172276271508 4077 4:getPerson Client 1
5 1172276254026 6429 1:lubm-Q02 Client 2
6 1172276260457 9297 2:lubm-Q05 Client 2
7 1172276269757 3786 3:lubm-Q06 Client 2
8 1172276273545 3017 4:lubm-Q07 Client 2
9 1172276254035 10148 1:lubm-Q09 Client 3

10 1172276264185 6543 2:lubm-Q10 Client 3
11 1172276270730 2361 3:lubm-Q11 Client 3
12 1172276273093 2705 4:lubm-Q15 Client 3

Table B.20: Results for: 1 KBs, 3 parallel clients, 4 queries per client.
Scenario with 1 reasoners.

No. TimeStamp Response Time Query Client
1 1172270196836 1197 1:getAssociateProfessor Client 1
2 1172270198324 6744 2:getProfessor Client 1
3 1172270205070 13319 3:getFaculty Client 1
4 1172270218393 1574 4:getPerson Client 1
5 1172270197687 3074 1:lubm-Q02 Client 2
6 1172270200764 14063 2:lubm-Q05 Client 2
7 1172270214830 4311 3:lubm-Q06 Client 2
8 1172270219143 949 4:lubm-Q07 Client 2
9 1172270197697 5218 1:lubm-Q09 Client 3

10 1172270202917 14022 2:lubm-Q10 Client 3
11 1172270216941 1662 3:lubm-Q11 Client 3
12 1172270218605 805 4:lubm-Q15 Client 3

Table B.21: Results for: 1 KBs, 3 parallel clients, 4 queries per client.
Scenario with 1 reasoners.

Appendix C

Benchmarking Result Charts

C.1 Charts for 7.2.1 Benchmark 1

C.1.1 ACO-LB Result Charts

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client1

Client2

Client3

Figure C.1: Scenario: 3 concurrent clients send 3 pairwise different queries sequentially
(the next query is send when the answer to the previous was received) to 1KB each (i.e. to
3 KBs in total). The 3 knowledge bases are identical. System Setting: ACO-LB manages
1 reasoner. The graph shows the development of the response times from a the perspective
of each client.

C.1 Charts for 7.2.1 Benchmark 1 110

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client1

Client2

Client3

Figure C.2: Scenario: 3 concurrent clients send 3 pairwise different queries sequentially
(the next query is send when the answer to the previous was received) to 1KB each (i.e. to
3 KBs in total). The 3 knowledge bases are identical. System Setting: ACO-LB manages 2
reasoners. The graph shows the development of the response times from a the perspective
of each client.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client1

Client2

Client3

Figure C.3: Scenario: 3 concurrent clients send 3 pairwise different queries sequentially
(the next query is send when the answer to the previous was received) to 1KB each (i.e. to
3 KBs in total). The 3 knowledge bases are identical. System Setting: ACO-LB manages 3
reasoners. The graph shows the development of the response times from a the perspective
of each client.

C.1 Charts for 7.2.1 Benchmark 1 111

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3

query

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client1

Client2

Client3

Figure C.4: Scenario: 3 concurrent clients send 3 pairwise different queries sequentially
(the next query is send when the answer to the previous was received) to 1KB each (i.e. to
3 KBs in total). The 3 knowledge bases are identical. System Setting: ACO-LB manages 4
reasoners. The graph shows the development of the response times from a the perspective
of each client. Important to notice here is that there is no change at all to the measured
times in the 3 reasoner scenario, Fig. C.3.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

3 Reasoners

4 Reasoners

Figure C.5: The chart compares the development of the average ACO-LB query response
times for each of the settings shown in figures C.1, C.2, C.3 and C.4. Notice that the graph
for "3 reasoners" is covered by the one for "4 reasoners".

C.1 Charts for 7.2.1 Benchmark 1 112

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3 4 5 6 7 8 9

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

3 Reasoners

4 Reasoners

Figure C.6: The chart compares the development of the query response times for ACO-
LB from the system’s perspective. It shows the development in the order in which the
queries where answered by the reasoner. Note that the order 1,2,3,4... of the queries in the
graph do not correspond to the order in the data tables. It is based on the, by time-stamp
reordered tables.

C.1 Charts for 7.2.1 Benchmark 1 113

C.1.2 RoundRobin Result Charts

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client1

Client2

Client3

Figure C.7: Scenario: 3 concurrent clients send 3 pairwise different queries sequentially
(the next query is send when the answer to the previous was received) to 1KB each (i.e.
to 3 KBs in total). System Setting: RoundRobin manages 1 reasoner. The graph shows
the development of the response times from a the perspective of each client.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client1

Client2

Client3

Figure C.8: Scenario: 3 concurrent clients send 3 pairwise different queries sequentially
(the next query is send when the answer to the previous was received) to 1KB each (i.e.
to 3 KBs in total). System Setting: RoundRobin manages 2 reasoners. The graph shows
the development of the response times from a the perspective of each client.

C.1 Charts for 7.2.1 Benchmark 1 114

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]
Client1

Client2

Client3

Figure C.9: Scenario: 3 concurrent clients send 3 pairwise different queries sequentially
(the next query is send when the answer to the previous was received) to 1KB each (i.e.
to 3 KBs in total). System Setting: RoundRobin manages 3 reasoners. The graph shows
the development of the response times from a the perspective of each client.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

3 Reasoners

Figure C.10: The chart compares the development of the average RoundRobin query
response times of each of the settings shown in figures C.7, C.8 and C.9.

C.1 Charts for 7.2.1 Benchmark 1 115

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3 4 5 6 7 8 9

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

3 Reasoners

Figure C.11: The chart compares the development of the query response times for RR
from the system’s perspective. It shows the development in the order in which the queries
where answered by the reasoner. Note that the order 1,2,3,4... of the queries in the
graph do not correspond to the order in the data tables. It is based on the, by time-stamp
reordered tables.

C.1 Charts for 7.2.1 Benchmark 1 116

C.1.3 Comparison of the ACO-LB and RoundRobin
Results

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3 4 5 6 7 8 9

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

ACO: 1 Reasoner

ACO: 2 Reasoners

ACO: 3 Reasoners

RR: 1 Reasoners

RR: 2 Reasoners

RR: 3 Reasoners

Figure C.12: The chart shows a layering of the figures C.6 and C.11 in order to compare
the performance of an ACO-LB managed system and a system with a pure RoundRobin.

0

10000

20000

30000

40000

50000

60000

70000

1 2 3

reasoners in system

a
v

.

r
e

s
p

o
n

s
e

t
i
m

e

/

q

u
e

r
y

[
m

s
]

ACO

RoundRobin

Figure C.13: The column chart compare the average response times for the query of
the ACO-LB balanced and the RR balanced system for the a 1, 2 and 3 reasoners setting.

C.2 Charts for 7.2.2 Benchmark 2 117

C.2 Charts for 7.2.2 Benchmark 2

C.2.1 ACO-LB Result Charts

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client1

Client2

Client3

Client 4

Series5

Series6

Series7

Series8

Series9

Series10

Figure C.14: Scenario: 10 concurrent clients send 2 queries each sequentially(the next
query is send when the answer to the previous was received) to 2KBs. 5 clients to KB1, 5
clients to KB2. The 2 knowledge bases are identical. The queries to KB1 are the same as
to KB2. System Setting: ACO-LB manages 1 reasoner. The graph shows the development
of the response times from a the perspective of each client.

C.2 Charts for 7.2.2 Benchmark 2 118

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client1

Client2

Client3

Client 4

Series5

Series6

Series7

Series8

Series9

Series10

Figure C.15: Scenario: 10 concurrent clients send 2 queries each sequentially(the next
query is send when the answer to the previous was received) to 2KBs. 5 clients to KB1,
5 clients to KB2. The 2 knowledge bases are identical. The queries to KB1 are the
same as to KB2. System Setting: ACO-LB manages 2 reasoners. The graph shows the
development of the response times from a the perspective of each client.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

Figure C.16: The chart compares the development of the average ACO-LB query re-
sponse times for each of the settings shown in figures C.14 and C.15.

C.2 Charts for 7.2.2 Benchmark 2 119

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

Figure C.17: The chart compares the development of the query response times for
ACO-LB from the system’s perspective. It shows the development in the order in which
the queries where answered by the reasoner. Note that the order 1,2,3,4... of the queries
in the graph do not correspond to the order in the data tables. The charts is based on the,
by time-stamp reordered tables.

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

Queries to KB 1: 1 Reasoner

Queries to KB 2: 1 Reasoner

Queries to KB 1: 2 Reasoners

Queries to KB 2: 2 Reasoner

Figure C.18: This chart shows the development from the same perspective as fig. C.17
but for each KB individually. The graph for 1 reasoner of fig. C.17 thus splits into
2 graphs, as does the one for 2 reasoners. Consequently this chart can only show the
development over 10 queries, because the 20 queries that reach the whole system split into
10 per KB.

C.2 Charts for 7.2.2 Benchmark 2 120

C.2.2 RoundRobin Result Charts

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client1

Client2

Client3

Client 4

Series5

Series6

Series7

Series8

Series9

Series10

Figure C.19: Scenario: 10 concurrent clients send 2 queries each sequentially (the next
query is send when the answer to the previous was received) to 2KBs. 5 clients to KB1,
5 clients to KB2. The 2 knowledge bases are identical. The queries to KB1 are the same
as to KB2. System Setting: RoundRobin manages 1 reasoner. The graph shows the
development of the response times from the perspective of each client.

C.2 Charts for 7.2.2 Benchmark 2 121

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client 1

Client 2

Client 3

Client 4

Client 5

Client 6

Client 7

Client 8

Client 9

Client 10

Figure C.20: Scenario: 10 concurrent clients send 2 queries each sequentially (the next
query is send when the answer to the previous was received) to 2KBs. 5 clients to KB1,
5 clients to KB2. The 2 knowledge bases are identical. The queries to KB1 are the same
as to KB2. System Setting: RoundRobin manages 2 reasoners. The graph shows the
development of the response times from the perspective of each client.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

Figure C.21: The chart compares the development of the average RR query response
times for each of the settings shown in figures C.19 and C.20 .

C.2 Charts for 7.2.2 Benchmark 2 122

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

1 Reasoner

2 Reasoners

Figure C.22: The chart compares the development of the query response times for RR
from the system’s perspective. It shows the development in the order in which the queries
where answered by the reasoner. Note that the order 1,2,3,4... of the queries in the graph
do not correspond to the order in the data tables. The charts is based on the, by time-stamp
reordered tables.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

Queries to KB 1: 1 Reasoner

Queries to KB 2: 1 Reasoner

Queries to KB 1: 2 Reasoners

Queries to KB 2: 2 Reasoner

Figure C.23: This chart shows the development from the same perspective as fig. C.22
but for each KB individually. The graph for 1 reasoner of fig. C.22 thus splits into
2 graphs, as does the one for 2 reasoners. Consequently this chart can only show the
development over 10 queries, because the 20 queries that reach the whole system split into
10 per KB.

C.2 Charts for 7.2.2 Benchmark 2 123

C.2.3 Comparison of the ACO and RoundRobin Results

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

ACO: 1 Reasoner

ACO: 2 Reasoners

RR: 1 Reasoner

RR: 2 Reasoners

Figure C.24: The chart shows a layering of the figures C.17 and C.22 in order to compare
the performance of an ACO-LB managed system and a system with a pure RoundRobin.

0

10000

20000

30000

40000

50000

60000

70000

1 2

reasoners in system

a
v

.

r
e

s
p

o
n

s
e

t
i
m

e

/

q

u
e

r
y

[
m

s
]

ACO

RoundRobin

Figure C.25: The column chart compare the average response times for the query of
the ACO-LB balanced and the RR balanced system for the a 1 and 2 reasoners setting.

C.3 Charts for 7.3.1 Benchmark 3 124

C.3 Charts for 7.3.1 Benchmark 3

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client 1

Client 2

Client 3

Client 4

Client 5

Client 6

Client 7

Client 8

Client 9

Client 10

Figure C.26: Scenario: 10 concurrent clients, each of which sequentially (the next query
is send when the answer to the previous was received) sends 2 times the same query. 5
clients send to KB1, 3 clients to KB2. The 2 knowledge bases are identical, have been
previous loaded - each on one of the reasoners - and the index structures have been built.
The queries to KB1 are the same as to KB2, but are pairwise different to the other queries
to the same knowledge base. System Setting: a pure ACO-LB without cache manages 2
reasoners. The graph shows on the one hand the response times from the client perspective
in comparison to the others and on the other hand compares the first time a query was
answered with the second (as in this case a client is identical to a particular query). Note:
The first time the query arrives it is new to the system and the reasoner, the second time
the query arrives it is known by system/reasoner.

C.3 Charts for 7.3.1 Benchmark 3 125

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client 1

Client 2

Client 3

Client 4

Client 5

Client 6

Client 7

Client 8

Client 9

Client 10

Figure C.27: Scenario: 10 concurrent clients, each of which sequentially (the next query
is send when the answer to the previous was received) sends 2 times the same query. 5
clients send to KB1, 3 clients to KB2. The 2 knowledge bases are identical, have been
previous loaded - each on one of the reasoners - and the index structures have been
built. The queries to KB1 are the same as to KB2, but are pairwise different to the
other queries to the same knowledge base. System Setting: a pure ACO-LB with cache
manages 2 reasoners. The graph shows on the one hand the response times from the client
perspective in comparison to the others and on the other hand compares the first time a
query was answered with the second (as in this case a client is identical to a particular
query). Note: The first time the query arrives it is new to the system and the reasoner,
the second time the query arrives it is known by system/reasoner.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

No Cache

Cache

Figure C.28: The chart compares the development of the average query response times
shown in figures C.26 and C.27 for a system with cache and without cache.

C.3 Charts for 7.3.1 Benchmark 3 126

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

no cache

cache

Figure C.29: The chart compares the development of the query response times for a
system with and without a cache - from the system’s perspective. It shows the development
in the order in which the queries where answered by the reasoner. Note that queries 1-10
are the same as 11-20.

C.3 Charts for 7.3.1 Benchmark 3 127

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

11 12 13 14 15 16 17 18 19 20

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

no cache

cache

Figure C.30: The chart shows the same comparison as fig. C.29, but focuses on the
queries 11-20.

4066

68

0

500

1000

1500

2000

2500

3000

3500

4000

4500

av. of queries 11-20

a
v

.

r
e

s
p

o
n

s
e

t
i
m

e

/

q

u
e

r
y

[
m

s
]

no cache

cache

Figure C.31: The column chart compares the average response times of the queries
11-20 as they are shown in fig. C.30.

C.4 Charts for 7.3.2 Benchmark 4 128

C.4 Charts for 7.3.2 Benchmark 4

0

2000

4000

6000

8000

10000

12000

1 2 3

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client 1

Client 2

Client 3

Client 4

Client 5

Client 6

Figure C.32: Scenario: 6 concurrent clients, each of which sequentially (the next query
is send when the answer to the previous was received) sends 3 times the same query. 3
clients send to KB1, 3 clients to KB2. The 2 knowledge bases are identical, have been
previous loaded - each on one of the reasoners - and the index structures have been built.
The queries to KB1 are the same as to KB2, but are pairwise different to the other queries
to the same knowledge base. System Setting: a pure ACO-LB without cache manages 2
reasoners. The graph shows on the one hand the response times from the client perspective
in comparison to the others and on the other hand compares the first time a query was
answered with the second and third (as in this case a client is identical to a particular
query). Note: The first time the query arrives it is new to the system and the reasoner,
the second and third time the query arrives it is known by system/reasoner.

C.4 Charts for 7.3.2 Benchmark 4 129

0

2000

4000

6000

8000

10000

12000

1 2 3

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client 1

Client 2

Client 3

Client 4

Client 5

Client 6

Figure C.33: Scenario: 6 concurrent clients, each of which sequentially (the next query
is send when the answer to the previous was received) sends 3 times the same query. 3
clients send to KB1, 3 clients to KB2. The 2 knowledge bases are identical, have been
previous loaded - each on one of the reasoners - and the index structures have been
built. The queries to KB1 are the same as to KB2, but are pairwise different to the
other queries to the same knowledge base. System Setting: a pure ACO-LB with cache
manages 2 reasoners. The graph shows on the one hand the response times from the client
perspective in comparison to the others and on the other hand compares the first time a
query was answered with the second and third (as in this case a client is identical to a
particular query). Note: The first time the query arrives it is new to the system and the
reasoner, the second and third time the query arrives it is known by system/reasoner.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

No Cache

Cache

Figure C.34: The chart compares the development of the average query response times
shown in figures C.32 and C.33 for a system with cache and without cache.

C.4 Charts for 7.3.2 Benchmark 4 130

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

no cache

cache

Figure C.35: The chart compares the development of the query response times for a
system with and without a cache - from the system’s perspective. It shows the development
in the order in which the queries where answered by the reasoner. Note that queries 1-6
are equal to queries 7-12 and 13-18.

0

200

400

600

800

1000

1200

1400

av. Queries 7-18 av. Queries 13-18

a
v

.

r
e

s
p

o
n

s
e

t
i
m

e

/

q

u
e

r
y

[
m

s
]

no cache

cache

Figure C.36: The column chart compares the average response times of the queries
7-18 and 13-18 (which is the interval where differences occured due to the cache/no cache
implementation) as they are shown in fig. C.35. Note that the difference between the
both is that in the comparison 7-18 the accumulated waiting times of queries 1-6 affect the
response times for the queries 7-12, while 13-18 shows a cache/no cache comparison free
of waiting times.

C.5 Charts for 7.4.1 Benchmark 5 131

C.5 Charts for 7.4.1 Benchmark 5

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

no subsumption

subsumption (child & parent)

Figure C.37: Benchmark V. The chart compares the development of the response times
of the four queries for the system without and with subsumption optimization.

5468

4316

4463

3155

0

1000

2000

3000

4000

5000

6000

query 1-4 query 2-4

a
v

.

r
e

s
p

o
n

s
e

t
i
m

e

/

q

u
e

r
y

[
m

s
]

no subsumption

subsumption (child & parent)

Figure C.38: Benchmark V. The chart compare the average response times for all four
queries of a system with and without subsumption optimization. The second pair of
columns does the same comparison for the queries 2 to 4.

C.6 Charts for 7.4.2 Benchmark 6 132

C.6 Charts for 7.4.2 Benchmark 6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client 1

Client 2

Client 3

Figure C.39: Benchmark VI. The chart shows the individual developments of the re-
sponse times for each of the clients in the setting without subsumption optimization.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]

Client 1

Client 2

Client 3

Figure C.40: Benchmark VI. The chart shows the individual developments of the re-
sponse times for each of the clients in the setting with child subsumption optimization.

C.6 Charts for 7.4.2 Benchmark 6 133

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4

queries

r
e

s
p

o
n

s
e

 t
im

e
 [

m
s

]
Client 1

Client 2

Client 3

Figure C.41: Benchmark VI. The chart shows the individual developments of the re-
sponse times for each of the clients in the setting with full child & parent subsumption
optimization.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

no subsumption

subsumption (child only)

subsumption (child & parent)

Figure C.42: Benchmark VI. The chart compares the development of the response
times of the four queries for the system without subsumption optimization, with child
subsumption and with full child & parent subsumption optimization.

C.6 Charts for 7.4.2 Benchmark 6 134

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8 9 10 11 12

query

r
e

s
p

o
n

s
e

t
i
m

e

[
m

s
]

no subsumption

subsumption (child)

subsumption (child & parent)

Figure C.43: Benchmark VI. The chart shows the development of the response times
from a systems perspective, in the order they were answered. The graph compares the set-
tings without subsumption, with child subsumption and with child & parent subsumption
optimization

0

5000

10000

15000

20000

25000

30000

35000

1 2 3

clients

a
v

.

r
e

s
p

o
n

s
e

t
i
m

e

/

q

u
e

r
y

[
m

s
]

no subsumption

subsumption (child)

subsumption (child & parent)

Figure C.44: Benchmark VI. The chart compares the average response times for each
client individually in regard to the different system settings.

Appendix D

LUBM Queries in OWL QL

LUBM Query 01

<?xml version="1.0"?>
<query
xmlns="http://www.w3.org/2003/10/owl-ql-syntax#"
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uni="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#">
<queryPattern>
<rdf:RDF>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#GraduateStudent"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<uni:takesCourse rdf:resource="http://www.Department0.University0.edu/GraduateCourse0"/>
</rdf:Description>

</rdf:RDF>
</queryPattern>
<mustBindVars>
<var:x/>
</mustBindVars>
<answerKBPattern>
<kbRef rdf:resource="file://localhost/~/univ-bench-1.owl"/>
</answerKBPattern>
<answerSizeBound>
0
</answerSizeBound>
</query>

136

LUBM Query 02

<?xml version="1.0"?>
<query
xmlns="http://www.w3.org/2003/10/owl-ql-syntax#"
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uni="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#">
<queryPattern>
<rdf:RDF>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#GraduateStudent"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#y">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#University"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#z">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Department"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<uni:memberOf rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#z"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#z">
<uni:subOrganizationOf rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#y"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<uni:undergraduateDegreeFrom rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#y"/>
</rdf:Description>

</rdf:RDF>
</queryPattern>
<mustBindVars>
<var:x/>
<var:y/>
<var:z/>
</mustBindVars>
<answerKBPattern>
<kbRef rdf:resource="file://localhost/~/univ-bench-1.owl"/>
</answerKBPattern>
<answerSizeBound>
0
</answerSizeBound>
</query>

137

LUBM Query 05

<?xml version="1.0"?>
<query
xmlns="http://www.w3.org/2003/10/owl-ql-syntax#"
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uni="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#">
<queryPattern>
<rdf:RDF>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Person"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<uni:memberOf rdf:resource="http://www.Department0.University0.edu"/>
</rdf:Description>

</rdf:RDF>
</queryPattern>
<mustBindVars>
<var:x/>
</mustBindVars>
<answerKBPattern>
<kbRef rdf:resource="file://localhost/~/univ-bench-1.owl"/>
</answerKBPattern>
<answerSizeBound>
0
</answerSizeBound>
</query>

138

LUBM Query 06

<?xml version="1.0"?>
<query
xmlns="http://www.w3.org/2003/10/owl-ql-syntax#"
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uni="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#">
<queryPattern>
<rdf:RDF>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Student"/>
</rdf:Description>

</rdf:RDF>
</queryPattern>
<mustBindVars>
<var:x/>
</mustBindVars>
<answerKBPattern>
<kbRef rdf:resource="file://localhost/~/univ-bench-1.owl"/>
</answerKBPattern>
<answerSizeBound>
0
</answerSizeBound>
</query>

139

LUBM Query 07

<?xml version="1.0"?>
<query
xmlns="http://www.w3.org/2003/10/owl-ql-syntax#"
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uni="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#">
<queryPattern>
<rdf:RDF>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Student"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#y">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Course"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.Department0.University0.edu/FullProfessor0">
<uni:teacherOf rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#y"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<uni:takesCourse rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#y"/>
</rdf:Description>

</rdf:RDF>
</queryPattern>
<mustBindVars>
<var:x/>
<var:y/>
</mustBindVars>
<answerKBPattern>
<kbRef rdf:resource="file://localhost/~/univ-bench-1.owl"/>
</answerKBPattern>
<answerSizeBound>
0
</answerSizeBound>
</query>

140

LUBM Query 09

<?xml version="1.0"?>
<query
xmlns="http://www.w3.org/2003/10/owl-ql-syntax#"
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uni="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#">
<queryPattern>
<rdf:RDF>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Student"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#y">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Faculty"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#z">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Course"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<uni:advisor rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#y"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<uni:takesCourse rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#z"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#y">
<uni:teacherOf rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#z"/>
</rdf:Description>

</rdf:RDF>
</queryPattern>
<mustBindVars>
<var:x/>
<var:y/>
<var:z/>
</mustBindVars>
<answerKBPattern>
<kbRef rdf:resource="file://localhost/~/univ-bench-1.owl"/>
</answerKBPattern>
<answerSizeBound>
0
</answerSizeBound>
</query>

141

LUBM Query 10

<?xml version="1.0"?>
<query
xmlns="http://www.w3.org/2003/10/owl-ql-syntax#"
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uni="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#">
<queryPattern>
<rdf:RDF>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Student"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<uni:takesCourse rdf:resource="http://www.Department0.University0.edu/GraduateCourse0"/>
</rdf:Description>

</rdf:RDF>
</queryPattern>
<mustBindVars>
<var:x/>
</mustBindVars>
<answerKBPattern>
<kbRef rdf:resource="file://localhost/~/univ-bench-1.owl"/>
</answerKBPattern>
<answerSizeBound>
0
</answerSizeBound>
</query>

142

LUBM Query 11

<?xml version="1.0"?>
<query
xmlns="http://www.w3.org/2003/10/owl-ql-syntax#"
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uni="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#">
<queryPattern>
<rdf:RDF>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#ResearchGroup"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<uni:subOrganizationOf rdf:resource="http://www.University0.edu"/>
</rdf:Description>

</rdf:RDF>
</queryPattern>
<mustBindVars>
<var:x/>
</mustBindVars>
<answerKBPattern>
<kbRef rdf:resource="file://localhost/~/univ-bench-1.owl"/>
</answerKBPattern>
<answerSizeBound>
0
</answerSizeBound>
</query>

143

LUBM Query: Variation to 06 (Q15)

<?xml version="1.0"?>
<query
xmlns="http://www.w3.org/2003/10/owl-ql-syntax#"
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uni="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#">
<queryPattern>
<rdf:RDF>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Student"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#y">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Course"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.Department0.University0.edu/FullProfessor1">
<uni:teacherOf rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#y"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<uni:takesCourse rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#y"/>
</rdf:Description>

</rdf:RDF>
</queryPattern>
<mustBindVars>
<var:x/>
<var:y/>
</mustBindVars>
<answerKBPattern>
<kbRef rdf:resource="file://localhost/~/univ-bench-1.owl"/>
</answerKBPattern>
<answerSizeBound>
0
</answerSizeBound>
</query>

144

LUBM Query: Variation to 06 (Q16)

<?xml version="1.0"?>
<query
xmlns="http://www.w3.org/2003/10/owl-ql-syntax#"
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uni="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#">
<queryPattern>
<rdf:RDF>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Student"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#y">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Course"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.Department0.University0.edu/FullProfessor2">
<uni:teacherOf rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#y"/>
</rdf:Description>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<uni:takesCourse rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#y"/>
</rdf:Description>

</rdf:RDF>
</queryPattern>
<mustBindVars>
<var:x/>
<var:y/>
</mustBindVars>
<answerKBPattern>
<kbRef rdf:resource="file://localhost/~/univ-bench-1.owl"/>
</answerKBPattern>
<answerSizeBound>
0
</answerSizeBound>
</query>

145

LUBM Query: getAssociateProfessor - Subsumption Query 1

<?xml version="1.0"?>
<query
xmlns="http://www.w3.org/2003/10/owl-ql-syntax#"
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uni="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#">
<queryPattern>
<rdf:RDF>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#AssociateProfessor"/>
</rdf:Description>

</rdf:RDF>
</queryPattern>
<mustBindVars>
<var:x/>
</mustBindVars>
<answerKBPattern>
<kbRef rdf:resource="file://localhost/~/univ-bench-1.owl"/>
</answerKBPattern>
<answerSizeBound>1</answerSizeBound>
</query>

146

LUBM Query: getProfessor - Subsumption Query 2

<?xml version="1.0"?>
<query
xmlns="http://www.w3.org/2003/10/owl-ql-syntax#"
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uni="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#">
<queryPattern>
<rdf:RDF>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Professor"/>
</rdf:Description>

</rdf:RDF>
</queryPattern>
<mustBindVars>
<var:x/>
</mustBindVars>
<answerKBPattern>
<kbRef rdf:resource="file://localhost/~/univ-bench-1.owl"/>
</answerKBPattern>
<answerSizeBound>
1
</answerSizeBound>
</query>

147

LUBM Query: getFaculty - Subsumption Query 3

<?xml version="1.0"?>
<query
xmlns="http://www.w3.org/2003/10/owl-ql-syntax#"
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uni="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#">
<queryPattern>
<rdf:RDF>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Faculty"/>
</rdf:Description>

</rdf:RDF>
</queryPattern>
<mustBindVars>
<var:x/>
</mustBindVars>
<answerKBPattern>
<kbRef rdf:resource="file://localhost/~/univ-bench-1.owl"/>
</answerKBPattern>
<answerSizeBound>
1
</answerSizeBound>
</query>

148

LUBM Query: getPerson - Subsumption Query 4

<?xml version="1.0"?>
<query
xmlns="http://www.w3.org/2003/10/owl-ql-syntax#"
xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uni="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#">
<queryPattern>
<rdf:RDF>
<rdf:Description
rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">
<rdf:type rdf:resource="http://www.lehigh.edu/\%7Ezhp2/2004/0401/univ-bench.owl#Person"/>
</rdf:Description>

</rdf:RDF>
</queryPattern>
<mustBindVars>
<var:x/>
</mustBindVars>
<answerKBPattern>
<kbRef rdf:resource="file://localhost/~/univ-bench-1.owl"/>
</answerKBPattern>
<answerSizeBound>
1
</answerSizeBound>
</query>

149

Bibliography

[1] Tony Bourke (2001). Server Load Balancing. O’Reilly

[2] Jeremy D. Zawodny, Derek J. Balling (2004). High Performance MySQL. O’Reilly

[3] Chandra Kopparapu (2002). Load balancing servers, firewalls, and caches. Wiley

[4] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider (2003). The
Description Logic Handbook: Theory, Implementation, Applications.. Cambridge
University Press

[5] Volker Haarslev, Ralf Moeller, Michael Wessel (2005). RacerPro User’s Guide. Racer
Systems GmbH & Co. KG, Version 1.9, published on December 8th 2005

[6] Volker Haarslev, Ralf Moeller, Michael Wessel (2005). RacerPro Reference Manual. Racer
Systems GmbH & Co. KG, Version 1.9, published on December 8th 2005

[7] Apache Axis Web Services Framework. Website: http://ws.apache.org/axis/. Last accessed
February 27th 2007

[8] Apache Tomcat Application Server. Website: http://jakarta.apache.org/tomcat/. Last
accessed February 27th 2007

[9] Apache JMeter User’s Manual. Website: http://jakarta.apache.org/jmeter/usermanual/.
Last accessed February 27th 2007

[10] Jena Semantic Web Framework. Website: http://sourceforge.net/projects/jena/. Last
accessed February 27th 2007

[11] XMLBeans. Website: http://xmlbeans.apache.org/. Last accessed February 27th 2007

[12] Inference Web. Website: http://iw.stanford.edu/. Last accessed February 27th 2007

[13] Richard Fikes, Patrick Hayes, and Ian Horrocks OWL-QL A Language for Deductive
Query Answering on the Semantic Web. W3C Recommendation, Website:
http://www-ksl.stanford.edu/projects/owl-ql/

[14] Deborah McGuinness and Frank van Harmelen (2004) OWL Web Ontology Language -
Overview. W3C Recommendation, Website:
http://w3.org/TR/owl-features/REC-owl-features-20040210, 2004

[15] Marco Dorigo, Thomas Stuetzle (2004). Ant Colony Optimization. The MIT Press

[16] Lawrence Botley (2006) Artificial intelligence network load balancing using Ant Colony
Optimisation. Website:
http://www.codeproject.com/useritems/Ant_Colony_Optimisation.asp

[17] Apache (2006) Struts 2 Framework. Website: http://struts.apache.org/2.0.6/

[18] The Semantic Web and Agent Technologies Lab, Lehigh University (2006) Lehigh
University Benchmark. Website: http://swat.cse.lehigh.edu/projects/lubm/

BIBLIOGRAPHY 151

[19] Anni-Yasmin Turhan, Sean Bechhofer, Alissa Kaplunova, Thorsten Liebig, Marko Luther,
Ralf Moeller, Olaf Noppens, Peter Patel-Schneider, Boontawee Suntisrivaraporn, and Timo
Weithoener (2006). DIG 2.0 - Towards a Flexible Interface for Description Logic
Reasoners. In B. Coence Grau, P. Hitzler, C. Shankey, and E. Wallace, editors, OWL:
Experiences and Directions 2006

	Title Page
	Declaration
	Introduction
	Multimedia Document Retrieval
	Towards A Middleware for Semantic Web Inference Systems

	Load Balancing in Well-known Systems
	Application Areas for Load Balancing
	Server Load Balancing
	Global Server Load Balancing
	Firewall Load Balancing
	Cache Switching

	The Benefits of Load Balancing
	Scalability
	Availability
	Manageability
	Security
	Quality of Service

	Load Distribution
	Stateless vs. Stateful Load Balancing
	Strategies

	Health Checking
	Implementation
	High Availability Design
	Active-Standby Configuration
	Active-Active Configuration

	Multi-User Inference Systems
	Description Logics Reasoners
	Description Logics
	TBox
	ABox
	OWL Query Language
	Current Reasoner Technology

	Semantic Middleware
	Requirements for a Semantic Web Middleware
	Integration into Existing Architecture
	Improved Load Balancing
	Integration with other Components
	Scalability
	Availability
	Support for Standard Query Languages and Protocols
	Iterative Query Answering
	Server-side Knowledge Base Selection
	Quality of Service

	Optimization Criteria
	Query Types
	Query to an Unknown Knowledge Base
	New Query to a Known Knowledge Base
	Known Query to a Known Knowledge Base
	Continuation Query

	Cache Usage
	Safeguarded the Order of Answers

	Exploitation of Subsumption Relationships
	QBox
	Earlier Query Subsumes Current Query
	Current Query Subsumes Earlier Query
	Subsumption Relationship in Both Directions
	No Subsumption Relationship

	Forced Knowledge Base Distribution
	The Ideal Knowledge Base Distribution
	The Optimal Knowledge Base Distribution
	Choosing the Optimal Knowledge Base
	Systems with Initially Known Knowledge Bases

	Load Balancing Strategy
	Requirements
	Ant Colony Optimization
	The Ant's Way of Navigation
	Navigating Networks with Artificial Ants
	The AntNet Algorithm

	Load Balancing with Artificial Pheromones
	Balancing the Load with Reverse ACO

	System Implementation
	RacerManager
	Workflow Assignment
	Classifier
	Workflows
	Cache
	Cache Optimizer
	Subsumption Optimizer
	Knowledge Base Distributor
	Load Balancer

	Queuing
	Test Framework
	jMeter Query Assembler

	Evaluation
	Environment for Empirical Evaluation
	Test Plans
	Knowledge Bases
	Framework
	System
	Data

	Evaluation of Load Balancing
	Benchmark I
	Benchmark II
	Evaluation Results

	Evaluation of Optimization by Cache Usage
	Benchmark III
	Benchmark IV
	Evaluation Results

	Evaluation of Optimization by Subsumption
	Benchmark V
	Benchmark VI
	Evaluation Results

	Conclusion and Future Work
	Conclusion
	The Benefit of Load Balancing
	Optimization

	Future Work
	Single vs. Multiple Semantic Middleware Systems
	Developing the Semantic Middleware
	Publish and Subscribe Service
	Knowledge Base Alternation
	Support for Server-Side Knowledge Base Selection
	High Availability Design
	Implementation

	Appendices
	Additional Algorithms
	Benchmarking Result Tables
	Benchmarking Result Charts
	Charts for 7.2.1 Benchmark 1
	ACO-LB Result Charts
	RoundRobin Result Charts
	Comparison of the ACO-LB and RoundRobin Results

	Charts for 7.2.2 Benchmark 2
	ACO-LB Result Charts
	RoundRobin Result Charts
	Comparison of the ACO and RoundRobin Results

	Charts for 7.3.1 Benchmark 3
	Charts for 7.3.2 Benchmark 4
	Charts for 7.4.1 Benchmark 5
	Charts for 7.4.2 Benchmark 6

	LUBM Queries in OWL QL
	Bibliography

