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Chapter 1

Introduction

The advances of information technology, electrical engineering and computer
science over the last decades has enabled what is often referred to as the
digital revolution. The common understanding of this term is the digital rep-
resentation of media artifacts like text, images, audio and video which had
been stored on analog storage like paper, vinyl or magnetic tapes in the past.
The word revolution in the term digital revolution regards the new abilities
that have arisen with digital representation of media artifacts. Nowadays,
media can be created, edited, transformed and, with the advent of the world
wide web, published by almost everyone which had been restricted to ex-
perts in that field in the past. The revolution can also be interpreted as the
enormous increase of data that comes with the new abilities of working with
digital media. The increase of data led to first research on management of
data, extraction of knowledge from and structured access to it. Out of this
long lasting research, successful applications like search engines for the web
with highly complex retrieval algorithms or pattern recognition for images
have evolved, all of them on different levels and with different goals.

Most of the ideas used in research on management of digital media have
their origin in the field of artificial intelligence which has been started out
since the late 1940s [34]. The main goal of artificial intelligence is, based on
the knowledge about how humans perceive, think and act, build intelligent
agents that do so as well. This makes clear that artificial intelligence has
strong links to other fields of science that also concern the study of mankind
such as biology, psychology or philosophy.

1.1 Intelligent agents
The term artificial intelligence covers a wide field of approaches and ideas, so
that it is necessary to define how the term is understood in this work. This
work makes use of the idea of an intelligent agent that solves specific tasks
in a human-like way within a certain domain. An intelligent agent therefore
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needs to be able to perceive its environment by means of a set of sensors.
In this scenario, various devices can be seen as sensors such as cameras,
microphones, temperature or humidity measuring units or also a keyboard.
However, sensors can also be seen as processing units for chunks of data like
text or images that enable the agent to work with that data. Data coming
from the sensors can be used by an agent in two ways: it can be used for
learning or acquiring knowledge from its environment or for acting within its
environment based on its existing knowledge and data coming from sensors.

In the learning case, data from sensors is used for extracting knowledge
usually in the form of patterns. The agent’s knowledge also needs to be
stored in a form that facilitates the agent to exploit the knowledge later.
This is called knowledge representation. Knowledge representation can take
many forms of which prominent examples are rule sets or ontologies. When
learning, an agent extends its existing knowledge by extracting new patterns
and storing them in its representation form of choice. The existing knowl-
edge can be based on previous learning processes or can be initially given
by a (human) expert.

In the acting case, data from sensors along with existing knowledge is
used by the agent to make decision or act. This process is also called rea-
soning which is the last part of the definition of an intelligent agent in this
work. Reasoning can therefore be seen as a service which is offered by the
agent and has sensor data of a certain type as input information and yields
a result within a certain range. What is happening in between can be re-
garded as a black box, in which the agents applies its "magic", namely its
knowledge and reasoning methodology, on the information.

Summing up, an intelligent agent needs to have the ability to perceive its
environment, be able to acquire and store knowledge and needs to employ
some sort of reasoning service for acting or making decisions.

1.2 Image Understanding
As stated above, intelligent agents are generally designed for specific tasks
within certain domains. In BOEMIE [7], a European IST research program,
such a task is defined as image understanding. In image understanding an
intelligent agent has the ability to perceive its environment by processing
images or image data, acquire additional knowledge from annotated images,
store knowledge in ontologies and recognize concepts from image data and
stored knowledge. In a simplified way, such an agent is given a an image (a
set of pixels) showing a couple of persons running next to each other on a red
underground with white lines and the agent would deliver a concept named
Men’s 100m as a result or classification. The process makes use of low level
features directly detectable from image data as well as high level reasoning
necessary for delivering abstract concepts. Details on the far more complex
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process will be given in chapter 2. Yet, the simplified example allows for
understanding idea behind such an agent.

The process of image understanding is seen as a further step in the re-
search on management of digital media offering new solutions to challenges
coming from the digital revolution. The main target of agents in image
understanding is the classification of images by means of concepts describ-
ing the content of the image in a semantic way. After a learning phase,
where experts train such agents, the classification would run self-controlled,
allowing for classifying large amounts of images. Furthermore, extending
the process of image understanding to different types of media, multi media
artifacts such as pages on the world wide web consisting of text and images
and eventually also audio and video data could be classified using the rea-
soning abilities of type specific agents by interchanging knowledge between
them. As an example, an image could be classified far more detailed based
on additional knowledge extracted from the surrounding text.

The process of image understanding will be the field of application for
the ideas presented in this work. However, with a higher level of abstrac-
tion those ideas can also be used within the general context of multimedia
interpretation. The next chapter will give a more detailed description of the
constituents of the image understanding process and will introduce notions
for further chapters. The following chapters will introduce the rough set
approach in a general way and as a specific part of the image understanding
process and present possible applications within the process. At the end of
this work approximate reasoning with rough mereology will be covered as a
possible extension based on rough set theory and be compared to the most
prominent examples of approximate reasoning based on fuzzy set theory and
probabilities.



Chapter 2

The Process of Image
Understanding

The previous chapter gave a short introduction into the concept of an in-
telligent agent and how image understanding can be seen as a task for an
intelligent agent. This chapter will give a detailed description of the image
understanding process and will identify areas for optimization.

2.1 Image Understanding
Recalling the simplified example used in the introduction, one can consider
the intelligent agent accepting image data as input and delivering concepts
describing the picture as the corresponding output. For splitting up the pro-
cess happening in between the agent will be divided into two main modules,
a low level image analysis and a high level reasoning service. The input for
the low level image analysis are images or image data and the corresponding
output is a set of mid-level concept (MLC) instances 1 identified in the pic-
ture. Mid-level concepts are for example lane, crossbar or pole which can be
detected directly from image data and low level features such as color, shape
and texture. The set of MLC instances is then used as input for the high
level reasoning service which delivers a high level concept (HLC) instance
2 as output. High level concepts are for example Men’s 100m, Pole Vault
Jump or Winner’s Ceremony which can be derived based on the output of
the low level image analysis.

1The term mid-level concept is a BOEMIE specific term describing concepts directly
detectable from image data.

2The term high-level concept is also a BOEMIE specific term describing abstract con-
cepts which can be only be delivered by making use of high level reasoning.
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Figure 2.1: Region based approach for MLC detection

2.2 Low level image analysis
In the low level image analysis, two separate approaches are taken whose
results are combined for a final set of MLC instances as output data. Addi-
tionally, the low level image analysis is able to deliver a set of spatial relations
concerning the MLC instances such as near(mlc1,mlc2) or above(mlc1,mlc2)
which is also part of the output data.

In the region-based approach the image is first segmented into different
regions using an image segmentation technique. For each region a set of
low level descriptors are being calculated. Such low level descriptors can di-
rectly be calculated from the image pixel values using dedicated algorithms.
Examples of low level descriptors are MPEG-7 color, shape and texture
descriptors as well as histograms or line orientation [8]. The low level de-
scriptors for each image region are used as input for a classifying algorithm
which assigns a MLC instance to the corresponding region. The classifying
algorithm therefore needs to have knowledge available in order to decide
which MLC corresponds to the set of low level descriptors given as input.
This knowledge is usually learned using a supervised learning method in a
previous step. The result of the region based approach is a MLC instance
for each segmented region and the corresponding low-level descriptors. Ad-
ditionally, for each MLC instance a mask is calculated that defines the set of
pixels in the image that make up the MLC instance. The mask can be seen
as the physical representation of the MLC instance in the image. Figure 2.2
illustrates the detection of MLC instances using the region-based approach.

In the holistic approach MLC instances are not derived from low level
descriptors but from primitives which are simple geometric objects like lines,
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Figure 2.2: Holistic approach for MLC detection

arcs and ellipses and spatial relations between them. Additionally, dedicated
algorithms are used for detecting specific objects such as parts of the human
body which can be directly classified as MLC instances. In some cases low
level descriptors can also be used for additional hints for MLC detection.
Similar to the region based approach, the primitives are used as an input
for a classifying algorithm that applies previously acquired knowledge for
assigning MLC instances to a set of primitives. Using the example of a
Men’s 100m image , a lane as a MLC could be detected by the holistic
approach through its definition as lane = {2 parallel lines and uniform color
in between} and the according set of line primitives and color information
from low level descriptors. The result of the holistic approach is a set of
MLC instances including the masks of their corresponding pixels. Figure
2.2 illustrates the detection of MLC instances using the holistic approach.

2.2.1 Calculation of Confidence Measures

As described above, MLC detection is done separately by two different ap-
proaches. However, for the low level image analysis module to deliver a
single result, the results of the region-based and holistic approach need to
be unified. Additionally, the results delivered by each of the two approaches
is also based on some degree of uncertainty. The classifying algorithms used
in the region-based and holistic approach assign MLCs by comparing low
level descriptors and primitives of the image with knowledge previously ac-
quired. In the general case, low level descriptors and primitives from an
image to be analyzed are not perfectly covered by existing knowledge. This
results in the fact that classifying algorithms have to find a way to assign
an MLC instance to a region or a set of primitives also in those cases, where
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there are for example two possible MLC instances for one region. Clas-
sifying algorithms use confidence measures in order to make decisions in
"unclear" cases. Those confidence measures are generally calculated based
on how well available information from the image fits to the existing knowl-
edge. Depending on the used algorithm and the underlying mathematical
foundations the semantics of those measures can have a probabilistic, usu-
ally frequency-based, notion or the notion of partial containment in case of
fuzzy set theory as the underlying model.

In [8] a method is proposed to unify the results delivered by the region-
based and holistic approaches including the calculation of a single confidence
measure. It is assumed that the same MLC instance MLCi has been de-
tected in the image by each of the both approaches. Each approach also
delivers its own confidence measure for the detected MLC instance which
are denoted as cH,i and cR,i for the holistic and region-based approach, re-
spectively. Additionally, each of the approaches also delivers the mask of
the according MLC instance. The mask is defined as the set of pixels that
the approach has assigned to be part of the MLC instance. Accordingly, the
masks are denoted as MH,i and MR,i. The calculation of a unified confidence
measure can then be formally defined as

ci = f(cH,i, cR,i,MH,i,MR,i)

with ci being the final confidence measure for MLCi coming from both
approaches.

In [8] an example function f is proposed which is defined as

ci =
max(cH,i, cR,i) · |MH,i ∩MR,i|

|MH,i ∪MR,i|

where |A| denotes the cardinality of the set A.

Example 2.2.1. Assume that the number of pixels covered by the intersec-
tion of the masks originating from the region-based and holistic approach
is |MH,i ∩MR,i| = 2045 and accordingly those pixels covered by the union
of the masks |MH,i ∪ MR,i| = 2304. Furthermore assume that the confi-
dence measure of the holistic approach has been calculated as cH,i = 0.8
and accordingly cR,i = 0.7. The final confidence measure is then calculated
as

ci =
max(0.8, 0.7) · 2045

2304
= 0.71

It needs to be noted that the above defined function calculates the final
confidence measure ci based on different underling concepts. First, using the
max-connective, the best confidence measure of either the region-based or
holistic approach is chosen although both values are based on different de-
tection concepts. This value is then multiplied with a coefficient expressing
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the similarity of two pixel regions based on intersection and union. The cal-
culation of the final confidence measure ci therefore brings up the question
of the underlying semantics of this value.

The way the function is defined above, the semantics of ci strongly de-
pends on the concepts of confidence calculation of the holistic and region-
based approach. Assuming an underlying concept of probabilities derived
from data in both approaches, ci could be interpreted as a probabilistic
value based on frequency count rather than a degree of belief. It is expected
that different functions will be defined for the calculation of ci during the
BOEMIE research project. An alternative could for example be the real-
ization of f by means of a fuzzy rule base which would deliver results of
fuzzy membership rather than probabilities. The rule base could be opti-
mized for specific membership functions depending on different MLCs and
the different MLC detection approaches.

The point of the semantics of ci is stressed here as MLCs and their
according confidence measure will be the input for the higher level reasoning
module. In the next section, the high level reasoning module will be covered
in more detail but in the first step without considering confidence measures.
Confidence measures as part of the interface between low level image analysis
and high level reasoning module will be covered in chapter 4 after settling
the basic notions.

2.3 High level reasoning module
Recalling the example from the previous section where a high level concept
like Men’s 100m has been extracted from image data, the section above
described the process in the low level image analysis module which delivers
a set of MLC instances and spatial relations as a result. However, it is not
possible for the low level image analysis to deliver HLC instances directly
as HLCs are not directly detectable from image data. The set of MLC
instances as an interface between low level image analysis and high level
reasoning module can therefore be seen as a layer of abstraction.

This section will describe the process of yielding a HLC instance from a
set of MLC instances using the high level reasoning module. In [8] the high
level reasoning module is based on reasoning with description logics (DL)
[2] which provides the required expressiveness to define high level concepts.
Description logics build the logical foundation for a set of reasoning services
offered by a reasoning system. The reasoning service proposed in the process
of image understanding is called abduction [15]. Abduction is based on the
idea of finding an explanation that concludes available background knowl-
edge and observations to be explained. While in deduction consequences
are derived from what is known, in abduction known facts are explained.
In abduction the reasoning process starts with a set of given facts for which
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the most likely explanations are derived.
The process of abduction can be written as

Σ ∪∆ ∪ Γ1 |= Γ2

where Σ is the available background knowledge, ∆ the explanation to be
found and Γ = Γ1 ∪ Γ2 the observation made and to be explained.

In the process of image understanding the constituents of the formula
above are defined as follows:

• Γ = Γ1 ∪ Γ2 is the input for the high level reasoning module, namely
the set of MLC instances and their spatial relations. The set of MLC
instances coming from low level image analysis is defined as Γ1 which
is referred to as bona fide assertions meaning that it is believed to be
true. The spatial relations between MLC instances are defined as Γ2

which is referred to as fiat assertions which need to be explained. As
the fiat assertions are not believed to be true but need to be explained,
they can be seen as the reasoning task. In the example of Men’s 100m,
Γ1 would be the detected MLC instances such as lanes and athletes
and Γ2 the spatial configuration also detected by low level analysis,
stating that athletes are above lanes and all athletes are next to each
other. In order to reason with MLC instances and their relations,
Γ is represented as an Abox that holds instances of MLCs and their
relations.

• Σ is the background knowledge used by the high level reasoning mod-
ule. In reasoning based on DL, knowledge is represented by means
of ontologies which consist of a Tbox 3 and an Abox 4. Details on
syntax and semantics of description logics as well as representation of
knowledge in form of Tbox and Abox can be found in [2]. In this work
it is assumed that background knowledge is represented by a TBox
which defines a set of high level concepts by means of subsumption,
existential restriction and role names which is a simplification of the
expressiveness of DL languages and systems. Furthermore it is as-
sumed that the Abox belonging to background knowledge is empty.
The definition of HLCs make use of MLCs (at a lower level in the con-
cept hierarchy) so that the finite set of MLCs, which are possible to
be detected by low level image analysis, form the basis for HLC defini-
tion. The same holds for spatial relations delivered by low level image
analysis which can be used as role names in the concept definitions.
Additionally, background knowledge is enriched by a set of DL-safe
rules, further referred to as reasoning rules which express knowledge

3A Tbox is a terminological component describing concepts and roles.
4An Abox is the assertional component specifying individuals and their relationships.
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Figure 2.3: Example image showing a pole vault event

that is not expressible with DL used in the process of image under-
standing. The safeness property of these rules lies in the preserving of
decidability of problems to be solved by applying knowledge consisting
of the TBox and the set of rules.
Background knowledge as defined above needs to be set up by an
expert or knowledge engineer in a previous step. The design of how
knowledge is represented by means of a Tbox and according DL-safe
rules is crucial for the success of the reasoning service offered by the
reasoning module. The design process therefore needs to take into
account the properties of the domain which is to be represented as
well as the data used for the reasoning process, namely the set of
detectable MLCs and relations. Finally, it needs to be possible to
define the reasoning task as a formal decision problem.

• ∆ is the explanation to be found by the abduction process. Hence,
∆ is empty at the beginning of the process. ∆ therefore needs to be
filled with instances that, together with background knowledge and Γ1

as the observations believed to be true, logically entail Γ2, namely the
spatial configuration of the detected MLC instances.

In order to clarify the way how the high level reasoning module explains
a set of MLC instances and their relations by means of an HLC, in the
following an example will be given.

Example 2.3.1. Figure 2.3 shows an example image to which the image
understanding process is applied. It is assumed that the low level image
analysis delivers the following MLC instances and their corresponding rela-
tions:
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pole1 : Pole
athlete1 : Athlete

crossbar1 : Crossbar
(athlete1, bar1) : above_facing

(athlete1, pole1) : near

This result of the image analysis is the observation Γ = Γ1 ∪ Γ2 where
Γ1 = {pole1, athlete1, crossbar1} represents the presence of the MLC in-
stances in the picture and believed to be true. The spatial configuration is
given as Γ2 = {(athlete1, bar1), (athlete1, pole1)} and is to be explained.

One part of the background knowledge Σ defined by a knowledge engineer
in a previous step consists of the following TBox:

Man v Person
Woman v Person

Man v ¬Woman
Athlete ≡ Person u ∃hasProfession.Sport

Foam_Mat v SportEquipment
Pole v SportEquipment

Crossbar v SportEquipment
Jumping_Event v Event

Pole_V ault v Jumping_Eventu
∃hasPart.Poleu
∃hasPart.Athleteu
∃hasPart.Crossbaru
∃hasPart.Foam_Mat

Additionally the following set of rules have been defined extending the
knowledge represented in the above presented TBox:

Pole_V ault(X) → Jumping_Event(X),
hasPart.Pole(X,A), Pole(A)
hasPart.Athlete(X,B), Athlete(B)
hasPart.Crossbar(X,C), Crossbar(C)
hasPart.Foam_Mat(X,D), Foam_Mat(D)
above_facing(B,C)
near(B,A)

Considering the formula of abduction, Σ, Γ1 and Γ2 have been set up
as defined above, while ∆ is empty in the beginning as it is considered the
explanation to be found. Therefore Σ ∪∆ ∪ Γ1 |= Γ2 does not hold for the
above defined models. In order find a possible explanation it is necessary
to apply the rule defined as part of Σ. This results in a binding of MLC
instances delivered by the low level image analysis and those defined in the
rule. MLCs that have not been found by low level image analysis but are
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defined in the rule are added. This means the existence of some missing
instances is assumed by abduction. For example, variable D is instantiated
with a MLC instance foam_mat1 which obviously has not been found by
the low level image analysis as it is not part of the picture. However, in
other cases this information can be used for finding more MLC instances in
the picture, for example by triggering the holistic approach again focused on
foam_mat objects. After applying the rule, ∆ is filled with the instances
delivered by the rule which now makes Σ ∪ ∆ ∪ Γ1 |= Γ2 true. The final
result of the abduction is an ABox as follows:

pole1 : Pole
athlete1 : Athlete

crossbar1 : Crossbar
(athlete1, bar1) : above_facing

(athlete1, pole1) : near
pv1 : Pole_V ault

(pv1, athlete1) : hasPart
(pv1, crossbar1) : hasPart

(pv1, pole1) : hasPart

2.4 Discussion
The example above presented the main idea of using a high level reasoning
module in the process of image understanding. In this simplified example,
some complexity of the high level reasoning module is hidden. It is obvi-
ous that in a domain such as track and field there are numerous high level
concepts. Those high level concepts do not necessarily only represent the
various disciplines but can also be concepts like winning ceremony, athlete
interview or starting signal. So the number of high level concepts repre-
sented in the knowledge base of the high level reasoning module can become
enormous.

In order to find an explanation for a set of MLC instances with the pro-
cess described above, it is necessary to apply each of the reasoning rules
and start the abduction process for finding out whether there is a successful
result. A possible optimization would be the introduction of a more target
oriented approach that offers a pre-processing module that delivers possible
explanations based on a specific set of MLC instances. The rule applying
and abduction would then be only necessary for a smaller number of HLCs,
which increases the performance as for some HLCs the process is not ini-
tiated. This pre-process for delivering possible explanations needs to make
use of additional knowledge from which a set of possible HLC can be de-
rived based on the MLC instances and relations delivered by low level image
analysis. This additional knowledge can be seen as an extension of the back-
ground knowledge, however knowledge representation and how knowledge is
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acquired may differ. The following chapters will describe how far such a pre-
process can be realized with rough set theory including its specific forms of
knowledge representation and learning of knowledge.

Another challenge arising from the abduction process is that of finding
the best explanation for a set of MLC instances, referred to as HLC selection
process. With a large number of HLCs it might be possible that a specific
set of MLC instances can be explained by two or more HLCs. The high
level reasoning module however has to select one of the HLCs which is
assumed to be the best (assumably correct) explanation. Finding the best
explanation can be considered as a multiple step process which is based on
several selection criteria. This includes for example the measurement based
on how many MLC instances and according relations used in the definition
of possible HLCs have been detected by low level image analysis. This can
lead to a selection of an HLC which best matches those MLC instances and
relations detected by low level image analysis.

Another criteria is based on the similarity of MLC instances detected
in the image under consideration and those MLC instances of images that
have been unambiguously classified being part of a specific HLC. Therefore
it is assumed that images which have already been successfully explained
are kept as reference or standard objects. The measurement of similarity of
MLC instances is based on the similarity of low level descriptors or primitives
in the low level image analysis. Those MLC instances that are part of a
standard HLC are compared to those MLC instances detected in the image
to be explained. If a detected set of MLC instances matches well with a
set of MLC instances of a standard HLC, this information can be included
within the HLC selection process for finding the best explanation.

What is however not yet exploited are confidence measures already men-
tioned when presenting low level image analysis. In the HLC selection pro-
cess MLC instances which have been detected and assigned high confidences
measures should be weighted higher compared to those MLC instances with
lower confidence measures. This would also lead to MLC instances that
might have been detected incorrectly not being of equal importance in the
HLC selection process as it is assumed that incorrect MLC instances gener-
ally have low confidence scores. Considering the confidence measures in the
HLC selection process can be seen as an additional criteria to those already
mentioned above. How the rough set approach can add additional criteria
for the HLC selection process, also including confidence measures, will also
be covered in the following chapters.

Summing up, there are two main points for which a possible application
of the rough set approach will be studied in the next chapters. The fist
one is that of assisting the high level reasoning module in offering a pre-
selection of HLCs for possible explanations based on a set of MLC instances
and its relations. The second one will consider how far confidence measures
as well as additional knowledge extractable by the rough set approach can
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be exploited for the HLC selection process.
Therefore, the next chapter will first give an introduction into the rough

set approach and its basic notions. Afterwards, possible applications of the
approach within the process of image understanding will be presented.



Chapter 3

Rough Sets

This chapter gives a brief introduction into rough set theory and its accord-
ing notions used in solutions and approaches in further chapters. The basics
of rough set theory as given in [27] will be briefly recalled and illustrated by
examples. The purpose of this chapter is to present the concepts behind the
application of rough set theory to extract knowledge from data and reason
on the data.

3.1 Classical Set Theory and Rough Sets
In classical set theory an element is uniquely defined as either belonging to
a set or not. Considering the set X = {x, y, z}, one can definitely say that
x belongs to the set X (x ∈ X) whereas a does not (a /∈ X). Classical set
theory can therefore also be considered as precise and its sets can be defined
as crisp.

For introducing the idea of a rough set compared to crisp sets from
classical set theory, the most prominent example in rough set theory will
be used. With medicine being one of the major fields for the application
of rough set theory, the example makes use of a set of patients for which
medical information has been recorded. This medical information includes a
set of symptoms such as blood pressure, body temperature or blood values
for each patient and whether the patient has had a certain disease a few days
after recording the symptoms. The idea behind recording this information
is the goal of simplifying the diagnosis of specific diseases. Based on the
knowledge about the symptoms a patient shows, a certain disease could be
diagnosed and medicated at early stages.

Such medical data usually shows the following characteristics: Some
patients having the same symptoms all have had the same disease while
others showing different symptoms did not become ill. However there is
also a set of patients which showed exactly the same symptoms, but only
some of them became ill while others didn’t. If the concept of getting a
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Figure 3.1: Vagueness in the sense of rough set theory

disease is seen with regard to the information about the symptoms, it is
said to be a vague concept as for some patients it is not possible to define
getting a disease based on the patients symptoms. Rough set theory handles
this vagueness by means of boundaries. All patients for which the symptoms
definitely have led to a disease are said to be part of the lower approximation
while all patients for which the symptoms definitely did not lead to a disease
are part of the outside region. Those patients showing the same symptoms
but for which only some have become ill are said to be part of the boundary
region. Figure 3.1 shows the ideas of boundaries in a graphical way. In
rough set theory the concept of vagueness is assumed to be based on lack of
knowledge which in the used example means that there might be additional
symptoms for which all patients can be classified for getting a disease or
not, based on the information about the symptoms. In the case of a vague
concept, the granulation of knowledge induced by the symptoms is too large
to define the concept of getting a disease in a crisp manner.

The idea of vague concepts is only the starting point of several techniques
for handling data using rough set theory. The main focus in this work will
be put on the extraction of knowledge from data with rough set theory
which is also referred to as approximate reasoning from data. Therefore
this chapter will set up the basic notions and mathematical foundations of
rough set theory needed for a further application within the context of image
understanding.

3.2 Information Systems
Data is intuitively often presented in tabular form. A table containing data
usually consists of rows or data sets that describe certain objects or events.
Each row is assigned a label or ID to identify the object’s data. Data values
of each row are organized into columns where each column describes a certain
attribute. Values of data can come from observations or experiments based
on sensor data or can also be given by a domain expert.

Formally an information system is defined as a pair A = (U,A), where
U is a finite non-empty set of objects called universe of discourse and A is
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U Wind Tide Swell Weather
x1 offshore high 1 m sunny
x2 onshore low 1 m cloudy
x3 onshore high 2 m cloudy
x4 offshore high 0 m sunny
x5 onshore low 1 m cloudy
x6 offshore high 2 m sunny
x7 offshore low 0 m sunny

Table 3.1: An example information system

a non-finite set of attributes such that a : U → Va for each a ∈ A. The set
Va is called the value set of a.

Example 3.2.1. Table 3.1 shows a simple example of an information sys-
tem. The universe of discourse consists of seven objects and can be written
as follows: U = {x1, x2, x3, x4, x5, x6, x7}. Accordingly the set of attributes
A = {Wind, T ide, Swell,Weather} consists of four elements.

3.3 Indiscernibility
In information systems, elements of the universe of discourse can be dis-
tinguished only by their attribute values. Often several objects have the
same attribute values and can therefore not be distinguished on the basis of
the knowledge available in the according information system. This fact is
covered by the notion of indiscernibility.

For the definition of indiscernibility the notion of an equivalence relation
is needed. An equivalence relation is defined as a binary relation R ⊆ X×X
which is reflexive (xRx, an object is related to itself), symmetric (if xRy
implies yRx) and transitive (if xRy and yRz implies xRz).

In an information system A = (U,A) withB ⊆ A, an equivalence relation
INDA(B) is defined as:

INDA(B) = {(x, x′) ∈ U2 | ∀a ∈ B a(x) = a(x′)}

An equivalence relation creates equivalence classes to which each object
of the universe uniquely belongs to. The equivalence class of an object
x ∈ U , denoted [x]B, consists of all objects y ∈ U such that xRy with
R = INDA(B).

In other words, for the attribute set A and its subsets there exists an
equivalence relation that divides the universe of discourse into certain parti-
tions. The notion of equivalence relation, equivalence classes and partitions
defined above will be illustrated in the following example:
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U Wind Tide Swell Weather Condition
x1 offshore high 1 m sunny good
x2 onshore low 1 m cloudy good
x3 onshore high 2 m cloudy good
x4 offshore high 0 m sunny bad
x5 onshore low 1 m cloudy bad
x6 offshore high 2 m sunny good
x7 offshore low 0 m sunny bad

Table 3.2: An example decision system describing surfing conditions

Example 3.3.1. In the information system of Table 3.1 non-empty subsets
of the attribute set A are for example {Wind}, {Swell} and {Wind, T ide}.
Each of those subsets create partitions of the universe by applying the in-
discernibility relation defined above.

IND({Wind}) = {{x1, x4, x6, x7}, {x2, x3, x5}}

IND({Swell}) = {{x1, x2, x5}, {x3, x6}, {x4, x7}}

IND({Wind, T ide}) = {{x1, x4, x6}, {x2, x5}, {x3}, {x7}}

For {Wind} there are two equivalence classes and for {Swell} and {Wind, T ide},
three and four, respectively. It is said that by employing the knowledge of
{Wind}, objects x1, x4, x6 and x7 are indiscernible, or they are indiscernible
with respect to the attribute Wind. Accordingly objects x3 and x7 are dis-
cernible with respect to the attributes Wind and Tide.

3.4 Decision Systems
While information systems give a structured overview of data, one is usually
interested to draw conclusions from that data. In order to draw conclusions
from data, a classification of data is needed that allows for referencing objects
to a certain classification value. Classification of data in information systems
is enabled by adding an extra attribute that describes the conclusion that can
be drawn from data. Such information systems are called decision systems
and are formally defined as A = (U,A ∪ {d}) with d /∈ A called decision
attribute. Accordingly attributes a ∈ A are called conditional attributes.
Furthermore the cardinality of the value set Vd of the decision attribute d is
called the rank of d.

Example 3.4.1. Table 3.2 shows a decision system created by adding the
decision attribute Condition to Table 3.1. The rank of the decision attribute
Condition is two with Vd = {good, bad}. Looking at the data of Table 3.2 one
can find out, that the each of the objects x1, x3, x4, x6 and x7 can uniquely
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be assigned with a value of the decision attribute by only considering the
conditional attributes of A. Objects x2 and x5 however are indiscernible
with respect to A and have both different values for the decision attribute
Condition.

3.5 Set Approximation
Referring to Example 3.4.1 the concept Condition = good (Condition =
bad, respectively) can not be exactly defined, or in other words, it can
not be defined in a crisp manner by only employing the knowledge of the
attribute set A. Similar to the example from the introduction, some ob-
jects of the universe can be identified as certainly belonging to the con-
cept Condition = good, while others as certainly belonging to the concept
Condition = bad. In Example 3.4.1 objects x1, x3 and x6 certainly belong
to the concept Condition = good and therefore make up the lower approx-
imation of the concept Condition = good. Objects x4 and x7 certainly do
not belong to the concept Condition = good and they make up the outside
region of the concept Condition = good. Objects x2 and x5 however can not
be uniquely classified based on their attribute values and therefore belong
to the boundary region.

Formally these notions are defined as follows: Let A = (U,A), be an
information system and let B ⊆ A and X ⊆ U . The B-lower approximation
of X then is constructed by

BX = {x|[x]B ⊆ X}.

Accordingly the B-upper approximation of X is constructed by

BX = {x|[x]B ∩X 6= ∅}.

The set
BNB(X) = BX −BX

is called the B-boundary region of X. A concept that can be defined with an
empty boundary region is called crisp, concepts with non-empty boundary
regions are called rough sets respectively.

Example 3.5.1. Taking the decision system from Table 3.2 and the at-
tribute set A the concept Condition = good can be approximated as follows:

AX = {{x1, x3, x6}}
AX = {{x1, x3, x6}, {x2, x5}}
BNA(X) = {{x2, x5}}

With B1 = {Swell} the concept Condition = good is approximated by
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B1X = {{x3, x6}}
B1X = {{x3, x6}, {x1, x2, x5}}
BNB1(X) = {{x1, x2, x5}}

With B2 = {Wind} the concept Condition = good is approximated by
B2X = ∅
B2X = {{x1, x4, x6, x7}, {x2, x3, x5}} = U
BNB2(X) = {{x1, x4, x6, x7}, {x2, x3, x5}} = U

In the case of the decision system of example 3.4.1 the concept Condition =
good can not be defined exactly even using the complete attribute set A.
However there might be an attribute ai /∈ A that assigns object x2 and x5

each into a different equivalence class (and therefore further partitioning the
universe) which would allow for crisp definition of the concept. If such an
ai exists and is not available in the according decision system, a concept is
said to be not exactly definable due to lack of knowledge.

The approximation of the concept Condition = good usingB2 = {Wind}
has the special property that the lower boundary is the empty set and the
upper boundary is made up of all element of the universe. Such an approxi-
mation is called totally B-undefinable. In fact, there are four classes of rough
sets:

• X is roughly B-definable, iff B(X) 6= ∅ and B(X) 6= U

• X is internally B-undefinable, iff B(X) = ∅ and B(X) 6= U

• X is externally B-undefinable, iff B(X) 6= ∅ and B(X) = U

• X is totally B-undefinable, iff B(X) = ∅ and B(X) = U

In order to define how well a concept can be approximated, a measure
called accuracy of approximation is introduced where |X| denotes the car-
dinality of the set X :

αB =
|B(X)|
|B(X)|

Obviously an approximation with αB = 1 is called crisp and αB < 1
rough, respectively, as defined above.

Example 3.5.2. Taking the attribute sets from the example above, one ob-
tains the following results of approximations of the concept X : Condition =
good: Using the attribute set A, the concept X is roughly A-definable with
an accuracy of αA = 3/5. Accordingly the concept X is roughly B1-definable
with an accuracy of αB1 = 2/5. Using the attribute set B2, the concept X
is totally B2-undefinable with αB2 = 0.
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3.6 Rough Membership Function
As stated in the introduction, in classical set theory an element either be-
longs to a set or not. If one considers the property of belonging to a set as a
function (membership function), in classical set theory this function would
have only one of the values 0 or 1.

In rough set theory the membership function has different properties. In
the decision system of Table 3.2, each object of the universe either belongs
to the concept Condition = good or not. Now let us consider an object
xi which has the same attribute values as objects x2 and x5 but for which
the classification, namely the Condition is not known. With the knowledge
available about object xi and objects of the known universe described in the
decision system, the Condition for object xi can not be derived exactly. The
problem in this case is that object xi is an element of an equivalence class
that is part of the boundary region. In order to derive measures to which
degree a single object belongs to a concept, the rough membership function
is introduced:

µBX(x) =
|[x]B ∩X|
|[x]B|

Example 3.6.1. In the following table, several objects and their according
rough membership values with regard to concept X : Condition = good are
given:

U Wind Tide Swell Weather µAX(x)
xi onshore low 1 m cloudy 1/2
xi+1 offshore high 1 m sunny 1
xi+2 offshore low 0 m sunny 0

The values of the rough membership function can also be interpreted as
a probability measure. In the example above xi has a probability of 0.5 for
belonging to concept X. Since the probability is based on some background
knowledge, this can in fact be seen as a conditional probability P (x ∈ X|u)
where u is the background knowledge being the attribute values of object x
as well as knowledge gained about the universe and its partition. It should
be noted that the rough membership values and according probability mea-
sures are directly derived from data. This leads to the typical property of
frequency count approaches where a different distribution of the universe of
discourse delivers differing results and measures.

For the interested reader Appendix C gives a comparison of the rough
membership and fuzzy membership functions.
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3.7 Rough Sets and Knowledge Discovery from
Databases

Since the introduction of rough set theory by Z. Pawlak in the early 1980s,
further research has led to various applications and extensions of rough set
theory in several fields like medicine, economic sciences, artificial intelligence
and computer science. However, all of these applications are based on the
general use of rough set theory already introduced in the very first pub-
lications referred to as knowledge discovery from databases. The following
section will present the standard rough set theory technique for extracting
knowledge from (potentially huge amounts of) tabular data and its repre-
sentation in the form of rules 1.

In the examples used throughout this chapter, one might be interested
in extracting short and general rules like if (Swell = 2 m) then (Condition =
good). Obviously this holds true for the universe of discourse in the according
decision system. The generation of such rules may aim at finding a minimal
decision algorithm expressing knowledge of the related decision system or at
finding rules that classify yet unseen objects into decision classes based on
the objects’ attribute values and the knowledge given by a decision system.

3.7.1 Decision Rules

In a decision system, each row corresponds to a decision rule based on at-
tribute value pairs for condition and decision attributes. Instead of deriving
a rule like

if (Swell = 2 m) then (Condition = good)

in the first step it is more obvious to derive rules for each object, e.g. for
object x3 in Table 3.2:

if (Wind = onshore) and (Tide = high) and (Swell = 2 m)
and (Weather = cloudy) then (Condition = good)

However, when trying to derive rules for object x2 and x5, one finds out
that although having the same attribute value pairs, each object leads to a
different decision. Therefore rules derived from objects x2 and x5 are called
conflicting or inconsistent. Accordingly rules derived from other objects
are called called non-conflicting or consistent. This notion is extended to a
decision system, being either consistent or inconsistent considering the set
of rules derived from it.

It can therefore be stated that a decision system with an attribute set A
is inconsistent, if a concept approximation results in a non-empty boundary

1Note that the term rules used in the context of rough set theory denotes a different
concept from that of reasoning rules used in the high level reasoning module.
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region, meaning (∃X |BNA(X) = AX−AX 6= ∅ or αA(X) < 1). Otherwise,
if all concept approximations result in empty boundary regions, meaning
(∀X |BNA(X) = AX −AX = ∅ or αA = 1), the underling decision system
is said to be consistent.

Generally, especially in the case of huge sets of data, it is assumed that
the according decision system is inconsistent. However, in case of several de-
cision concepts, for some of the decision concepts, the same decision system
might be consistent.

3.7.2 Reducts

In order to derive rules that are shorter than those having all attribute
value pairs of conditional attributes, redundant and unimportant infor-
mation needs to be dropped. This idea is referred to as reduct calcula-
tion. Having a closer look at Table 3.2, one can find out that attributes
Wind and Weather obviously have a functional dependency, being (Wind =
offshore) ⇔ (Weather = sunny) and (Wind = onshore) ⇔ (Weather =
cloudy). This can also be interpreted in such a way that attributes Wind
and Weather represent the same knowledge and that in fact only one of
both is needed for preserving the partition of the universe.

Example 3.7.1. Using the attribute setsA = {Wind, T ide, Swell,Weather},
B1 = {Tide, Swell,Weather} and B2 = {Wind, T ide, Swell} results in the
following equal partitions on Table 3.2

IND(A) = IND(B1) = IND(B2) = {{x1}, {x2, x5}, {x3}, {x4}, {x6}, {x7}}

where IND(A) denotes the equivalence relation induced by the attribute
set A.

In the notion of rough sets, B1 and B2 are reducts of A. For deriving
reducts from decision systems, the following notions are introduced, with
B ⊆ A and a ∈ B.

• An attribute a is dispensable in B if IND(B) = IND(B − {a}), oth-
erwise a is indispensable in B.

• The set B is independent if all its attributes are indispensable.

• The set B is a reduct of A if B is independent and IND(B) =
IND(A).

• The core of B is the set of all indispensable attribute of B: Core(B) =⋂
Red(B) with Red(B) the set of all reducts of B.

In the example above the core of the attribute setA is Core(A) = {Tide, Swell}.
In other words, the attributes Tide and Swell have the most significance
for preserving the partition of the universe. Dropping one these attributes
would result in a much broader partition.
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Decision Relative Reducts

In a decision system like Table 3.2, it is not only important to drop redun-
dant information only concerning the conditional attributes but also infor-
mation that is redundant concerning the decision concepts. For example,
the attribute set B3 = {Tide, Swell} is sufficient for describing the decision
concept Condition = good in the same way as the full attribute set A or
reducts of A.

Therefore the notion of dependencies of attributes similar to functional
dependencies in databases is introduced. Let D and C be subsets of A. D
depends in degree k on C, denoted C ⇒k D with

k = γ(C,D) =
|POSC(D)|

|U |

where
POSC(D) =

⋃
X∈U/IND(D)

CX

For k = 1, D depends totally on C, for k < 1, D depends partially on
C. POSC(D) is called the positive region and represents all elements in the
lower boundary of concept D by employing knowledge of C.

Example 3.7.2. For the attribute sets A = {Wind, T ide, Swell,Weather},
B1 = {Tide, Swell,Weather} and B3 = {Tide, Swell}, the decision at-
tribute set D = {Condition} and concept X : Condition = good, the fol-
lowing results are obtained:

POSA(D) = {{x1}, {x3}, {x6}}

POSB1(D) = {{x1}, {x3}, {x6}}

POSB3(D) = {{x1}, {x3, x6}}

kA = γ(A,D) = kB1 = γ(B1, D) = kB3 = γ(B3, D) = 3/7

Although the attribute sets A, B1 and B3 generate different partitions
of the universe, they result in the same number of elements in the lower
boundary for concept X and therefore D depends on A (B1 and B3 respec-
tively) in degree 3/7. Therefore the attribute set B3 = {Tide, Swell} is
sufficient for preserving the partition of the universe needed for the concept
X : Condition = good.

According to the definitions of reducts above, notions for the definitions
of decision relative reducts are introduced, with C,D ⊆ A and a ∈ C

• An attribute a is D-dispensable in C if POSC(D)) = POSC−{a}(D),
otherwise a is D-indispensable in C.
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• The set C is D-independent if all it attributes are D-indispensable.

• The set C is a D-reduct of A if C is D-independent and POSC(D)) =
POSA(D).

• The D-core of C is the set of all D-indispensable attribute of C:
CoreD(C) =

⋂
Red(C)D with RedD(B) the set of all D-reducts of

C.

Details on the calculation of reducts and decision relative reducts by
means of discernibility matrices are given in [38].

Value Reducts

With reducts and decision relative reducts at hand, rules can be generated
that are shorter than rules based on attribute-value pairs of the complete
attribute set. However, an even shorter rule like if (Swell = 2 m) then
(Condition = good), which is obviously true in the decision system in con-
sideration, can not be derived by using reducts or decision relative reducts.

The idea of value reducts is based on the general idea of reducts, namely
preserving the partition (in case of reducts) or the positive region (in case
of decision relative reducts). However, instead of working with complete
attributes, only single attribute values are dropped to further simplify gen-
erated rules. This again goes back to discernibility, meaning to find out
which attribute values are necessary in order to discern objects.

Example 3.7.3. The partitions of the universe of discourse of Table 3.2
generated by the attribute set {Swell} and {Condition} are presented be-
low.

IND({Swell}) = {{x1, x2, x5}, {x3, x6}, {x4, x7}}

IND({Condition}) = {{x1, x2, x3, x6}, {x4, x5, x7}}

It can be seen from the partitions and according attribute values from the
table, that the equivalence class of objects with Swell = 2 m is a sub-
set of the equivalence class of concept X : Condition = good, {x3, x6} ⊂
{x1, x2, x3, x6}. Accordingly the equivalence class of objects with Swell =
0 m are a subset of the equivalence class of concept Y : Condition = bad,
{x4, x7} ⊂ {x4, x5, x7}. Hence, attribute values 2 m and 0 m are already
sufficient for discerning the according objects from other objects relative to
the partition employed by the attribute set {Condition}.

Formal definitions and further details on value reducts can be found in
[27]. For the calculation of value reducts and decision relative value reducts
by means of discernibility matrices, refer to [38].
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3.7.3 Rule Selection

As presented so far, there are several ways to reduce the redundant infor-
mation while preserving the discernibility relative to the decision in consid-
eration. Instead of generating rules made up of attribute value pairs of the
complete attribute set A, several shorter rules can be calculated. However,
for various reducts, also different rules are generated that are based on the
same information about a certain object. For example, from the decision
system of Table 3.2 19 rules can be derived as given in Table B.1, although
Table 3.2 contains 7 objects only.

Minimal decision algorithm

One of the application areas of rules which are derived by applying rough
set theory to data is the implementation of control algorithms2 or control
protocols. The basic idea of this approach is that at certain points of time,
observations are being recorded that include a number of attribute values
and a decision. These observations are represented as a decision system
to which rough set theory techniques can be applied. An example of this
approach can be found in [27, 21] where the decisions of a stoker (a human
operator) of a rotary clinker kiln have been used for the implementation of
a control algorithm for automatic operation.

In such cases it is assumed that all possible situations have been recorded
and have been represented in the decision system. Hence, the decision sys-
tem completely represents the world of the domain in consideration, also
called closed world assumption. In the example decision system of Table 3.2
this would mean that all possible situations are being represented. E.g. the
case Swell = 3 m does not exist. Though this does not seem to make sense
in this example, there are other domains where such an assumption can be
applied [27, 21].

In the following a minimal decision algorithm based on the decision sys-
tem of Table 3.2 is presented. Note that there is more than one solution for
such a minimal algorithm. Besides the attribute set {Tide, Swell}, further
algorithms based on the attribute sets {Wind, Swell} and {Weather, Swell}
can be derived.

if (Tide = low) and (Swell = 1m) then (Condition = good or bad)
if (Swell = 2m) then (Condition = good)
if (Swell = 0m) then (Condition = bad)
if (Tide = high) and (Swell = 1m) then (Condition = good)

Note that the first rule is inconsistent, as no decision for concept Condi-
tion = good or Condition = bad can me made. This stems from the fact that

2Note that in rough set theory, algorithms (control or decision algorithms) are under-
stood as a fine set of instructions in form of decision rules.
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the underlying decision system is inconsistent and the concepts Condition
= good or Condition = bad can only be approximated by a rough set.

Classification of unseen objects

While minimal algorithms aim at representing the knowledge of the underly-
ing decision system in a minimal way, they are not well suited for classifying
yet unseen objects. Assume for example the following object xi which is to
be classified:

xi : (Wind = onshore), (Tide = high), (Swell = 3m), (Weather = sunny)

In the decision algorithm presented above, no rule would fire as none of the
conditions are fulfilled with object xi . However, in the set of decision rules
of Table B.1, rule 16 would fire and therefore object xi would be classified
as Condition = good.

The set of decision rules of Table B.1 is based on the set of all reducts.
The complexity of calculating the set of all reducts is exponential [38].
Therefore several heuristic algorithms including genetic and covering algo-
rithms [3] and LEM2 algorithm [12] have been proposed which calculate
good results for reducts and according rule sets in an appropriate time.

For most practical applications for which rough set theory is used it is
more important to find reducts that are able to classify unseen objects rather
than finding minimal sets or the complete set of decision rules. One approach
which aims to deliver appropriate reducts for practical applications, uses
approximate reducts [40] where reducts are calculated based on a certain
threshold e.g. preserving the indiscernibility relation up to a certain level.
Those reducts are concise and do not preserve the positive region of the
underlying decision system, however the rules derived from those reducts
are much smaller and better suited for classifying unseen objects. The error
introduced by the approximation of reducts needs to be fine-tuned for the
properties of data from which rules are generated.

A variant of approximate reducts are dynamic reducts [6] which also
have been proven successful for classifying unseen objects. With dynamic
reducts, the original decision table is first randomly split into several smaller
tables. For those subsets of the universe, reducts are being calculated. The
most stable reducts, e.g., those calculated from several subtables, are then
used for deriving according decision rules. Dynamic reducts are generally
not consistent with the original decision system, however they are better
suited for classifying unseen cases.

3.8 Summary
This chapter introduced the basic ideas of rough set theory. The starting
point was a vague concept and the inability of classical set theory to han-
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dle such vague concepts. Next, information and decision systems have been
introduced as typical representation forms of data and its classification. In
order to describe decision concepts based on attribute value pairs of ob-
jects, the indiscernibility relation is needed for partitioning the universe of
discourse into equivalence classes. Based on these partitions it is able to
approximate decision concepts by means of an upper and lower boundary.
Furthermore, the partition allows for the definition of a rough membership
function by which the membership of each object to a certain decision con-
cept can be calculated.

With knowledge discovery from databases being the major application
of rough set theory, the approach for deriving decision rules from decision
systems has been described. The approach includes the calculation of de-
cision relative reducts and value reducts from which rules can directly be
derived. Finally, the different cases of minimal rule sets and rule sets op-
timized for classification of unseen objects have been discussed. The basic
notions introduced in this chapter will build the theoretical foundation for
approaches presented in the following chapters.



Chapter 4

Rough Sets in Image
Understanding

In the previous chapter the foundations and basic notions of the rough set
approach have been presented as well as knowledge discovery from databases
as the main field of application. In this chapter, possible applications of
rough set theory within the image understanding process will be studied.
Therefore, the two major points, which will be focused on, are recalled:
In order to provide for a more goal oriented search of HLCs in the image
understanding process, a preselection of HLCs based on the set of MLC
instances and relations extracted from low level image analysis will be added
to the high level reasoning module. Additionally, the use of information
coming from the rough set approach will be considered for assistance of
finding the best explanation. Within this context the possibility of using
confidence measures assigned to MLC instances and according relations will
be studied as well. Both cases can be seen as an extension of the background
knowledge of the high level reasoning module.

4.1 Learning from Images
Typically applications exploit rough set theory for extracting knowledge in
form of rules from generally huge data sets. The rule sets extracted from
that data express the extracted knowledge of the complete data set. In the
process of image understanding presented so far, knowledge is represented
in various forms. In low level image analysis, classifiers are defined which
are able to detect MLC instances based on low level descriptors or geometric
primitives while in the high level reasoning module knowledge is expressed
as ontologies and reasoning rules.

In case of the high level reasoning module, ontologies and rules are ex-
pected to be defined in the design phase by a domain expert or knowledge
engineer. For the low level image analysis some classifiers or dedicated al-
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gorithms may also be defined in a design phase while some classifiers are
expected to be extracted from data as well.

As presented in the previous chapter, rough set theory is purely data
grounded, so that its application requires data sets from which the knowledge
is to be extracted. The extraction of knowledge is also called learning and in
case of rough set theory where data sets are the knowledge foundation, it is
called learning from observation. Each object or row in an information table
is considered to be an observation that has been made and from which can be
learned. As for each observation that has been made, the according decision
or result is also given, it is said to be a supervised learning approach. In the
case of rough set theory, each observation is accompanied with an according
decision value. The knowledge extracted from data in form of rules can then
be used as an approximation of a certain concept that is based on specific
decision attribute values.

In machine learning theory, this approach is also called inductive learn-
ing. The definition of inductive learning [34] is given as

Given a collection of examples of f ,
return a function h that approximates f .

In the case of rough set theory, the data basis is the collection of examples
of one ore more concepts f and the extracted rule set can be considered as
the function h that approximates those concepts. As large data sets are
generally assumed to be inconsistent in the sense of rough set theory, this
vagueness is also reflected in the extracted rule set. Generally there will be
rules that have the same conditional attribute values but different decision
attribute values.

Before going into the details of the application of rough set theory within
the image understanding process, some prerequisites for the approach are
defined next.

In order to use the rough set approach in the process of image under-
standing, it is assumed that there is a finite set of pictures that can be used
as training data from which rules are extracted. A single training object
is considered as a set of MLC instances and according relations and an as-
signed HLC instance which describes the image by means of a high level
concept. The set of MLC instances and according relations are assumed to
be delivered by low level image analysis while the assigned HLC instance
needs needs to be specified by a domain expert. For this purpose the do-
main expert is provided with appropriate tools to annotate the images that
constitute training data. Training data is presented in tabular form where
each MLC instance and each relation is used as a conditional attribute and
HLC as the decision attribute. Table 4.11 shows a subset of training data in
tabular form. With the increasing number of MLC instances and especially

1The meaning of the attributes is as follows: MLC instances: grnd - Ground Area, athl -
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U grnd athl pole cb jav t(a,j) n(a,p) n(a,c) HLC
...

...
...

...
...

...
...

...
...

...
xi 1 1 0 0 1 1 0 0 Javelin
xi+1 0 0 0 0 1 0 0 0 Javelin
xi+2 0 1 1 1 0 0 1 1 Pole_Vault
xi+3 1 1 0 0 0 0 0 0 High_Jump
xi+4 1 1 1 0 0 0 1 0 High_Vault
xi+5 0 1 0 1 0 0 0 1 High_Jump
...

...
...

...
...

...
...

...
...

...

Table 4.1: An example training data decision system

relations, the information system will contain a large number of attributes
which increases the complexity of reduct calculation. The tabular represen-
tation of the results of the low level image analysis forms the basis for the
application of rough set theory within the process of image understanding.

The formal definition of the decision system derived from low level image
analysis results can therefore be given as

A = (U,A ∪ {d})

where U is the finite set of training data, A is the attribute set defined as
A = MLC ∪Rel with MLC being the set of detectable MLC instances and
Rel being the set of possible relations between MLC instances2. The value
set VA of all attribute in A is defined as VA = {0, 1} where 1 denotes that
the according MLC instance or relation has been detected in the image, 0
otherwise. The value set Vd of the decision attribute d is defined as Vd =
HLC where HLC is the set of all possible high level concepts within the
domain of consideration.

4.2 Preselection of possible high level concepts
With the preliminaries set up in the previous section, this section will de-
scribe how knowledge extracted by using rough set theory can be used for
implementing a preselection of possible high level concepts as successful ex-
planations.

For illustrating the approach Table 4.2 will be used throughout the ex-
ample which is a simplified version of Table 4.1. The focus is on the decision
between two HLCs Paul_Vault and High_Jump, however the approach can

Athlete, pole - Pole, cb - Crossbar, jav - Javelin; Relations: t(a,j) - touches(athlete,javelin),
n(a,p) - near(athlete,pole), n(a,c) - near(athlete,crossbar)

2Here training data is only used for the rough set approach and classifiers of low level
image analysis have already been trained in a previous step.
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Class athlete pole crossbar position HLC support
c1 1 0 1 b High_Jump 59
c2 1 1 0 u Pole_Vault 9
c3 1 1 1 f Pole_Vault 49
c4 1 0 1 u Pole_Vault 7
c5 1 0 0 u High_Jump 18
c6 1 0 0 u Pole_Vault 7
c7 1 0 1 f Pole_Vault 17
c8 1 0 1 u High_Jump 12

Table 4.2: A refined training data decision system

be used for an arbitrary number of HLCs as decision values. The attribute
set A of the decision system is defined as

A = {athlete, pole, crossbar, position}

where athlete, pole and crossbar are MLC instances and position is derived
from a set of spatial relations. The value set of the MLC attributes is {0, 1}
whereas the value set of position is {f, b, u} with f denoting facing, b de-
noting backwards and u denoting undefined expressing the position of the
athlete above the crossbar. Defining a value set other than {0, 1} for position
is only because of readability reasons and could also be expressed by two rela-
tions, e.g. above_facing(athlete, crossbar) and above_backwards(athlete, crossbar)
where above_facing = 0 and above_backwards = 0 is equivalent to position =
u.

The data presented in Table 4.2 can be considered training data from
which knowledge is to be extracted. In order to extract representative knowl-
edge, training data has been selected in such a way that it reflects the typical
appearances of still images of high jump or pole vault events. Therefore a
set of each 89 images has been selected for which the low level image anal-
ysis delivers 3 different classes for high jump and 5 different classes for pole
vault. Classes are understood in the sense that from all images in the same
class the instances of the same MLCs and relations have been detected.
In Appendix A typical pictures for each class are presented. In Table 4.2
the support for each class is also presented denoting the number of images
in each class. Note that generally for all learning methods the quality of
training data is crucial for the quality of the extracted knowledge.

Applying an exhaustive algorithm for rule generation to the set of train-
ing data yields to the set of rules presented in Table 4.3. The exhaustive
algorithm calculates all possible decision relative reducts and value reducts
and generates rules based on these reducts. The mathematical foundations
of this calculation has been presented in chapter 3.

Considering the generated rules it becomes obvious that the existence of
an athlete in the pictures can be ignored when the training pictures of pole
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No. Rule condition Decision support
r1 if position = b then HLC = High_Jump 50
r2 if position = f then HLC = Pole_Vault 66
r3 if crossbar = 1 and position = u then HLC = High_Jump 21
r4 if crossbar = 1 and position = u then HLC = Pole_Vault 7
r5 if pole = 0 and position = u then HLC = High_Jump 39
r6 if pole = 0 and position = u then HLC = Pole_Vault 14
r7 if pole = 1 then HLC = Pole_Vault 58
r8 if pole = 0 and crossbar = 0 then HLC = High_Jump 18
r9 if pole = 0 and crossbar = 0 then HLC = Pole_Vault 7

Table 4.3: Rules extracted from training data

vault and high jump are used. However it should be noted that in a real
scenario with a large number of HLCs the existence of an athlete in a picture
might not be ignored by attribute reduction using rough set algorithms.

In Table 4.3 each rule is also assigned a support value. The support
value denotes the number of images (or objects in general) from which the
according rule has been derived from.

As an example, the rule set of Table 4.3 will now be used to propose
an HLC for which the abduction process in the high level module should be
started. This can be seen as using knowledge extracted from training images
for a preselection of possible explanation based on the set of MLC instances
and relations coming from low level image analysis. Note that in this simple
example the benefit of choosing one out of two possible explanations might
seem quite small, with a large number of high level concepts however the
goal directed search becomes more clear.

Assume that low level image analysis delivers the following set of MLC
instances and relations3:

x1 = {athlete, pole, crossbar, position(f)}

Looking at the rule set it becomes obvious that for object x1 rules 2 and 7
will fire which leads to the proposal of Pole_Vault as a possible explanation
for which the abduction process should be started.

For another object x2 delivered by low level image analysis

x2 = {athlete, pole, crossbar, position(u)}

the rules 3, 4 and 7 will fire, however from those rules no proposal can be
made as the firing rules are conflicting meaning that rule 3 has High_Jump
as decision value while rules 4 and 7 have Pole_Vault as decision value. Note

3Note that for the sake of simplicity athlete stands for athlete = 1 and MLC instances
not detected are not presented.
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that object x2 is an object that has not occurred in the training set from
which rules have been extracted. Objects to be classified which have not
occurred in the training set are also referred to as unseen objects or unseen
cases which however are assumed to be possible objects for classification.
The problem of conflicting rules however does not only occur with unseen
objects but also with objects that have been part of the training set, such
as

x3 = {athlete, crossbar, position(u)}

for which rules 3 and 4 would fire which also leads to a conflict. As a result,
a unique decision can not be obtained in case of conflicting rules. Rule
conflicts can occur in cases of unseen objects or might stem from the fact
that the underlying decision system has been inconsistent.

4.2.1 Conflict resolution

In the classical application of rough set theory for knowledge discovery from
databases the goal is to find a unique decision from the knowledge provided
even in such cases where there are conflicting firing rules. In the process of
image understanding however, it is rather wanted to have multiple decisions
with different priorities on the decision values (HLCs) in order to start the
high level reasoning with the best explanation from the point of training
data. The priority can also be used as an additional selection criteria for
the selection of the best explanation in the HLC selection process.

In the classical rough set approach conflict resolution meaning selecting
a single decision within a number of conflicting rule decisions is based on a
numerical value which can also be used for a priority of the decision values.
The calculations of the numerical value has various degrees of freedom and
can be based on several quality measures of a rule set, which will be defined
next.

Numerical measures

Formally a decision rule is defined as

α→ β

read as if α then β where the pattern α is called the antecedent of the rule
and β is called the consequent of the rule, respectively.

The support of a decision rule α → β is the number of objects from
which the rule has been calculated denoted support(α, β). In Table 4.3 the
support for each rule is given.

Based on the support the strength of a rule can be calculated as

strength(α, β) =
support(α, β)

|U |
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No. Strength Certainty Coverage
r1 0.28 1 0.56
r2 0.37 1 0.74
r3 0.12 0.75 0.24
r4 0.04 0.25 0.08
r5 0.22 0.74 0.44
r6 0.08 0.26 0.16
r7 0.33 1 0.65
r8 0.10 0.72 0.20
r9 0.04 0.28 0.08

Table 4.4: Rules extracted from training data

where |U | denotes the number of all images in the training data or objects
in the universe in general. The strength of a rule states how well the rule
covers or represents the data set.

The certainty of a rule is given as

certainty(α, β) =
support(α, β)

|α|

where |α| denotes the number of objects satisfying the pattern α as the an-
tecedent of the rule. The certainty is a frequency based estimate of the condi-
tional probability P (β|α). A rule α→ β with a certainty certainty(α, β) = 1
is called a certain decision rule, while rules with certainty(α, β) < 1 are
called uncertain decision rules. In the case of conflicting rules certainty(α, β) <
1 always holds. The certainty measure therefore gives an estimate about the
probability of a consequent β given an antecedent α.

The coverage of a rule is given as

coverage(α, β) =
support(α, β)

|β|

where |β| denotes the number of objects having the rule consequent pattern
β. Accordingly, the coverage can be interpreted as the conditional probabil-
ity P (α|β). The coverage states how well a pattern α represents a decision
β. In other words a rule with a high coverage reveals a "typical" pattern
α for a decision β. Note however, that those "typical" patterns can also be
highly uncertain.

Table 4.4 presents the rule quality measures of the rules given in Table
4.3. Note that in the special case of an equal distribution of two decision
values coverage(α, β) = 2 · strength(α, β) holds.

The numerical measures strength, certainty and coverage can be used
to calculate a uniform quality measure for a set of rules. The calculation
of this measure can generally be tuned for the specific set of rules in order
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to obtain the best quality under consideration of the rule set’s properties.
In [1] several quality measures are given which have been evaluated on an
empirical basis.

Voting

However, the numerical measures defined in the section above do not yet
solve the problem of conflicting rules. The process of voting is a general
technique for deriving a priority measure from a set of conflicting rules which
can take into account the quality measures defined in the section above.
Usually, the decision class with the highest priority measure is chosen as the
final decision.

In the voting process the set of rules taking part in the classification is
denoted as Rl.

For a single object xi for which a decision is to be made, the process
works as presented in the following:

1. The set of rules Rl is searched for those rules for which the object
xi satisfies the rule’s antecedent. Those rules selected are said to be
firing for object xi and are denoted Rl(xi). If none of the rules can
fire, either a fallback mechanism is initiated or the process ends with
an error.

Rl(xi) = {r ∈ Rl|xi |= α}

2. After identifying the set of firing rules, an election process among
the rules is initiated. Therefore, each firing rule r ∈ Rl(xi) casts a
number of votes in favor of its decision class. In a simple case, the
number of votes to be casted usually depends on the support of the
rule. However, it can also be based on the quality measures defined
in the section above which can be tuned for the rule set’s properties.
For each decision class the number of votes is added up from which
the final result is derived. For example, the number votes in favor of
a certain decision class β is the sum of all votes casted by all rules
predicting β and firing for xi.

Rxi,β = {r ∈ Rl(xi)|r predicts β}

votes(β) =
∑

r∈Rxi,β

votes(r)

3. Finally a decision score is calculated by dividing each number of votes
for a certain decision class by a normalization value. The normaliza-
tion value is based on the sum of all votes casted in the step before.
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HLC decision score
High_Jump 0.87
Long_Jump 0.78
Javelin 0.45
Pole_Vault 0.10
Hurdles 0.00
... 0.00

Table 4.5: Decision scores for several HLCs

decision_score(xi, β) =
votes(β)
norm(xi)

In order to clarify the voting process, an example will be given with the
data of Table 4.2.

Example 4.2.1. Taking object x2 = {athlete, pole, crossbar, position(u)}
again, it should now be classified by using a conflict resolution based on
voting. For the sake of simplicity, the number of votes to be casted in favor
of a certain decision class is defined to be based merely on the support of
the rule.

As already mentioned above the set of firing rules for object x2 isRl(x2) =
{r3, r4, r7} with Rx2,High_Jump = {r3} and Rx2,Pole_V ault = {r4, r7}. Ac-
cordingly, the number of votes in favor of the two decision classes are calcu-
lated as votes(High_Jump) = 21 and votes(Pole_V ault) = 65 with a nor-
malization value of 86. The leads to the decision score decision_score(x2,High_Jump) =
0.24 and decision_score(x2, Pole_V ault) = 0.76.

This example shows how a decision score is derived based on the vot-
ing process using the support as a rule quality measure. Again it should
be pointed out here that the number of votes each rule casts can also be
determined by a far more complex quality measure. The calculation of the
quality measure remains as one on many parameters within the use of the
rough set approach that needs to be adjusted for the specific data to be
applied on.

Furthermore, the example might not reveal the main intention of priori-
tizing the HLCs for which the abduction process is to be initiated. Table 4.5
shows the result of an arbitrary object (set of MLC instances and relations)
that has been classified by the above mentioned process.

In the case of Table 4.5 the high level reasoning module would apply
the abduction process first by trying to explain the delivered set of MLC
instances and relations through the high level concept High_Jump. As part
of the process the reasoning rules defined for High_Jump would be applied.
Using the decision scores resulting from the rough set approach, a goal
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MLC conf. measure
athlete 0.89
pole 0.25
crossbar 0.95
position(b) 0.81

Table 4.6: Confidence measures for MLC instances of object x4

directed search is introduced by a priority on the HLCs to be tried first.
The rough set approach therefore introduces a method to guide the high
level reasoning module based on knowledge that has been extracted from
image training data.

How the high level reasoning module proceeds after a successful explana-
tion using a certain HLC still needs to be defined. One simple and fast way
would be taking the first successful explanation starting with HLCs hav-
ing the highest decision score. It would also be possible to define a certain
threshold tconf that determines for which HLCs the abduction process is to
be initiated. This would then allow for finding several successful explana-
tions for which the HLC selection process needs to be applied. Recalling
chapter 2, several selection criteria have already been identified that can be
used to find the best explanation. The decision score could also be taken
into account in the selection process being an additional selection criteria.
For example, assume that for Table 4.5 High_Jump and Long_Jump both
have yielded a successful explanation in the abduction process. Then the
decision score could make the necessary difference in the selection process
if other criteria applied fails to identify the best explanation. It should be
stressed again that all measures originating from the rough set approach are
data grounded which makes it necessary to invest in the quality of train-
ing data as well as fine-tuning possible parameters accordingly in order to
obtain satisfying results.

4.3 Integrating confidence measures from low
level image analysis

The approach presented for exploiting rough set theory in the process of
image understanding so far ignores confidence measures that are assigned
to every MLC instance by the low level image analysis. Recalling chapter
2, the final confidence measure of a MLC instance is based on two different
measures resulting from the holistic and region based approaches as part of
the low level analysis process. Although the underlying semantics of the final
measure is not completely clear, it is interpreted as a pseudo probabilistic
value stating the certainty as a degree of belief that the identified object or
region in the picture is a MLC instance of a specific type.
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Figure 4.1: Image for object x4

In the following, the confidence measures from low level image analysis
will be used within the rough set approach in order to reflect the certainty
of specific MLC instances.

Assume that based on the image in Figure 4.1 the low level image analysis
delivers the following set of MLC instances and relations:

x4 = {athlete, pole, crossbar, position(b)}

Obviously the image in Figure 4.1 is a High_Jump event. However,
in the lower part of the picture the low level image analysis detects an
object which is identified as a pole. Using the classification approach as
described above with a support-based voting process for conflict resolution,
the decision scores are dshj = 0.46 for High_Jump and dspv = 0.54 for
Pole_Vault, respectively. As part of the rough set module, this leads to
Pole_Vault being a better explanation than High_Jump 4.

Next, the confidence measures delivered by low level analysis will be con-
sidered. Therefore it is assumed that each MLC instance and each relation
are assigned with an according value as given in Table 4.6. Note, that the
MLC instance pole that is detected by low level image analysis has been
assigned a low confidence measure which might result from e.g. not being in
focus or not having the appropriate size as defined in the analysis module.

In order to reflect the confidence measures in the rough set approach, an
extension of the voting process is proposed next.

The first step of the voting process remains the same in such a way that
the set of all rules is scanned for those rules that fire. In the support based
voting approach all firing rules predicting a decision class β cast the number

4It is assumed that the high level reasoning module finds both HLCs Pole_Vault and
High_Jump as explanations. With different ontology and rules, the high level reasoning
module might have also only found one explanation.
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of votes depending on the support of the rule, so that

Rβ = {r ∈ Rl(x)|r predicts β}

votes(β) =
∑
r∈Rβ

votes(r)

with
votes(r) = support(r)

In order to integrate the confidence measures from low level image anal-
ysis, the number of votes each rule casts has to reflect the measure values.
As an example, two firing rules having the same support, but different con-
fidence measures of MLC instances in their antecedents, also need to cast
different numbers of votes. Therefore each antecedent α is considered on
the basis of its constituents a1, a2, ..., an

α = a1 ∧ a2 ∧ ... ∧ an
where ai, i = 1, ..., n is a MLC instance or a relation in case of the

image understanding process. For each α a confidence measure needs to
be calculated which is based on the confidence measures of its constituents
a1, a2, ..., an. A simple way to do this is to use the arithmetic mean of con-
fidence measures of the constituents which results in a confidence measure
for the rule:

cmr =
1
n
·
n∑
i=1

cmai

However other functions or approaches can be used for calculating the re-
sulting confidence measure of α reflecting different type of constituents. For
example a weighted sum could be applied in order to weigh constituents
of a certain type higher than others, e.g. considering MLC instances more
important than relations.

The confidence measure of each firing rule can then be used to weigh the
number of votes each rule gets to cast. In a support based voting process,
the number of votes is then calculated as:

votes(r) = support(r) · cmr

This means that the higher the confidence measure of the rule, the more
votes are being casted by rule, where the rule’s confidence measure is com-
puted based on the confidence measures of the constituents of the rule’s
antecedent. Again, the integration of confidence measures in the voting pro-
cess can also be used in conjunction with more complex rule quality measures
as presented before instead of only using the support of a rule.

In order to clarify the extended voting process, the following example is
given.
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Example 4.3.1. For an object x4 = {athlete, pole, crossbar, position(b)},
the confidence measures of Table 4.6 and the set of rules of Table 4.3 are
given. First all firing rules are identified to constitute the set of firing rules
Rl(x4) = {r1, r7} with RPole_V ault = {r7} and RHigh_Jump = {r1}. Next,
for each rule the number of votes is calculated as

votes(r1) = support(r1) · cmα(r1) = 45

with support(r1) = 50 and cmα(r1) = 0.81. As rule r1 is the only rule firing in
favor of High_Jump this results in votes(High_Jump) = 45. Accordingly
votes(Pole_V ault) = votes(r7) = 14.5 is obtained with support(r7) = 58
and cmα(r7) = 0.25. Using normalization as presented in the voting process,
decision scores for High_Jump and Pole_Vault are finally obtained as dshj =
0.76 and dspv = 0.24.

This simple example shows how the confidence measures of constituents
of a firing rule can be reflected in the final decision scores. The proposed
approach allows for exploiting confidence measures from low level image
analysis by the high level reasoning module. Again it should be noted that
the confidence measures from low level image analysis are interpreted as
probability measures being degrees of belief. This is assumed for the low
level image analysis and definitely holds for decision scores directly extracted
from data by the rough set approach. This results in an interpretation of
the measures in such a way that the higher the value the more certain low
level image analysis is about a MLC instance, or HLC for the high level
reasoning module respectively. However, it still remains as an open issue
to define the semantics of a final certainty measure that is computed from
constituent measures. In the process of image understand these constituents
are two measures from low level image analysis coming from the holistic and
region based approach, as well as a decision score based on training images
and applying rough set theory. Nevertheless experiments can be conducted
to proof the practicability of such an approach. This however is outside the
scope of this work.

4.4 Summary
This chapter presented possible applications of the rough set approach within
the context of image understanding. For exploiting the rough set approach,
the method of image understanding needs to be extended by a learning
phase which allows for extracting knowledge in form of rules from training
image data. This additional knowledge which can be seen as an extension of
the background knowledge of the high level reasoning module, can then be
used for introducing a goal directed search within the high level reasoning
module: Based on a set of MLC instances and relations, HLCs as possible
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successful explanations can be preselected using knowledge extracted from
image training data.

Furthermore, the rough set approach introduces a decision score that
is based on quality measures of rules which have fired for a certain object.
This decision score can then also be used as an additional criteria for the
selection of the best explanation in case several HLCs lead to a successful
result in the abduction process.

As the calculation of the decision score offers several degrees of freedom,
it allows for integrating confidence measures from low level image analysis as
well. This enables reflecting the uncertainty of the low level image analysis
within the high level reasoning module up to a certain degree.

For deriving successful results with the approach as presented in this
chapter it will be necessary to make use of several tuning parameters at
different stages of the approach. This includes the selection of training data
as well as the selection of a specific rule generation algorithm in the learning
phase. For the appropriate application of rules to classify an object, a way
for the calculation of rule quality measures and the integration of confidence
measures has to be chosen. All these parameters are to be tuned in an
extensive "train and test" phase in order to find out the optimal parameter
values and selections.

Apart from the approach of using rough set theory in the image under-
standing process as proposed in this work, alternative approaches are also
considered as part of the BOEMIE research project. One of the approaches
is based on probabilistic default reasoning with conditional constraints [20]
where statistical knowledge for different classes of objects is used to derive
conclusions about properties of individuals. For an application of rough set
theory for probabilistic default reasoning Appendix D presents an idea how
statistical knowledge can be learned from data.



Chapter 5

Approximate Reasoning

The main contribution of this work has been applications of rough set theory
in the process of image understanding so far. This chapter will first present
approximate reasoning from a general point of view. Afterwards, it will focus
on different solutions for approximate reasoning including rough mereology
as an extension of rough set theory. Rough mereology as an approximate
reasoning approach will be presented in detail for which the basic notions of
rough set theory are needed. The chapter concludes with a comparison of
the different approaches to approximate reasoning presented in the following
sections.

5.1 Approximate Reasoning
Coming back to the concept of an intelligent agent used in the introduction,
an intelligent agent is based on the idea of acting an reasoning like humans.
Considering the abduction process of the high level reasoning module as
part of the overall reasoning ability of the agent, the abduction process is
a purely logical approach which can deliver one or more explanations or
fail. Regarding the approaches of the low level image analysis as well as the
rough set approach, results are obviously not only true or false but assigned a
specific confidence measure that expresses the level of uncertainty. The way
humans are reasoning is generally also based on some level of uncertainty.
Humans are generally not able to have complete knowledge of a given fact,
however they are able to make decision or derive conclusions based on those
uncertain facts.

As a first example consider a sentence like fast cars are expensive. This
sentence states a simple fact which humans regard as a true statement within
a certain domain. However, considering the constituents of the sentence, it
becomes clear that they handle some sort of uncertainty. For example,
the linguistic label fast is not defined in a crisp manner, meaning there
is no definition of the exact speed range of fast. The same fact holds for
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the label expensive. However, humans obviously have the ability to handle
this vagueness1 or graduality of the natural language. This also includes
reasoning fact such as implications in the form of "if a car is fast, then it
is expensive". One approach for handling those concepts for an intelligent
agent has led to the emerging of a field called computing with words which
is mainly realized by fuzzy set approaches. Therefore this chapter will give
an overview on how reasoning with fuzzy sets and according fuzzy rules can
be used for approximate reasoning.

As a second example, consider a statement like if the car doesn’t start,
the battery is not ok. This sentence actually expresses a specific combination
of cause and effect, namely the effect that the car doesn’t start is caused by
the battery not being ok. However there might also be other reasons why the
car doesn’t start, e.g. because a cable is broken or because there is no gas.
Considering the way humans handle those statements, one can introduce
the concept degrees of belief. E.g., if the car doesn’t start, a persons believes
in the battery not being ok in a high degree while a broken cable or no gas
have lower degrees of belief. Also, the person might not have all possible
reasons in mind for the fact that the car is not starting, however humans are
still able to reason in such situations and can act based on their degrees of
belief in a specific situation. Another characteristic in this way of reasoning
is the fact that degrees of belief change, whenever new knowledge has been
revealed. E.g., if the person has just fueled the car the degrees of belief
for the battery not being ok or the cable being broken will be higher than
without the knowledge of a fueled car. These facts can be taken into account
by exploiting probability theory and bayesian reasoning, which will become
the second focus of this chapter.

Compared to fuzzy set or probability approaches to approximate rea-
soning, rough mereology as the third approach presented in this chapter,
is a novel methodology. Rough mereology is based on the ideas and no-
tions of rough set theory as presented in this work so far and is combined
with mereology being the theory of being a part. The very basic underly-
ing concept of rough mereology is based on the extension of being a part
in mereology to being a part in a degree. The approach itself however, is
based on various constituents which will be covered in detail later. The
level of detail will be higher than for fuzzy and probabilistic approaches.
In fact, literature on rough mereology for approximate reasoning, especially
for readers not grounded in the mathematical theory, is rare. Therefore this
work tries to give a concise presentation of rough mereology for approxi-
mate reasoning. As an example for rough mereology consider a statement
like given a specification, deliver an object satisfying the specification to a
certain degree. The example shows that rough mereology is not based on
general concepts of human reasoning as linguistic labels in fuzzy or degrees

1Note, that the definition of vagueness differs from the definition in rough set theory.
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Figure 5.1: Membership functions of a fuzzy and a classical set

of belief in probabilistic approaches. Rough mereology is rather based on
an artificially designed scheme that makes use of knowledge that is directly
extracted from data. This relates rough mereology to the basic rough set
approach and can also be seen as reasoning from data.

This chapter concludes with a detailed discussion on the different ap-
proaches for approximate reasoning presented in this work and according
different fields of application.

5.2 Fuzzy Set Theory for Approximate Reasoning
As already stated in the introduction to rough set theory, in classical set
theory an element either belongs to a set or not which is also referred to as
crispness. Considering the property of belonging to a set as a membership
function the values of such a membership are only {0, 1}. In fuzzy set theory
the notion of belonging to a set is extended in such a way that an object
can have a membership value of a degree between 0 and 1 where 0 and 1
correspond to the membership in classical set theory and values between
are considered as partial membership. Figure 5.1 illustrates the idea of
membership functions of a classical and fuzzy set. Fuzzy set theory can
actually be seen as an generalization of classical set theory as every classical
set can be defined as a fuzzy set with a membership function as illustrated
in Figure 5.1.

With classical set theory being the basis for classical logic, fuzzy set
theory serves as a foundation for fuzzy logic where truth values are not only
0 and 1 (true and false) but can also take values in the interval [0, 1]. For
the logical connectives ∧ (and), ∨ (or), ¬ (not) and → (implication) used in
classical logic, according functions and relations are defined in fuzzy logic.
Pairs of t-norms and t-conorms are used for logical ∧, ∨ and ¬ and fuzzy
relations represent implication. For a short introduction into t-norms and
t-conorms refer to Appendix C. How implication is handled in fuzzy logic
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will be covered in the following sections along with reasoning based on fuzzy
rules.

5.2.1 Fuzzy Rules

As already stated in the introduction, statements like fast cars are expensive
can also be interpreted as rules in the form of if a car is fast then it is
expensive. With rules being a possible way of knowledge representation,
this rule can be seen as a fuzzy rule where fast and expensive are defined
as fuzzy sets. Furthermore, for a specific car ci the maximum speed might
be known exactly, for example 195.5 km/h, or it might also be defined by
a fuzzy set that describes the maximum speed as approximately 190 km/h.
Such data (or information) that is known for a specific object is referred to
as fuzzy data.

A fuzzy rule can then be written as

if c.speed is fast then c.price is expensive

where fast and expensive are defined as fuzzy sets.
A general fuzzy rule is written as

if x1 is A1 and x2 is A2 then y is B

with the fuzzy membership functions µA1(x1), µA2(x2) and µB(y). The
antecedent of such a rule can be the combination of several propositions by
means of logical connectives and negation.

In classical logic, implication is denoted as

ϕ→ ψ

which can be used for representing rules like

if ϕ then ψ

For fuzzy rules implication is not defined in a unique way but can be given
by means of an implication function. For example the rule above can be
realized by a fuzzy relation

R = I(>(A1, A2), B)

where > is a t-norm and I is an implication function.
The resulting fuzzy membership function is then derived as

µR(x1, x2, y) = I(>(µA1(x1), µA2(x2)), µB(y))
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Name ϕ→ ψ

Lukasiewicz min{1− ϕ+ ψ, 1}

Gödel
{

1 if ϕ ≤ ψ
ψ else

Goguen
{

1 if ϕ = 0
min{1, ψϕ} else

Kleene-Dienes max{1− ϕ,ψ}
Zadeh max{1− ϕ,min{ϕ,ψ}}
Reichenbach 1− ϕ+ ϕ · ψ
Mamdani min{ϕ,ψ}

Table 5.1: Fuzzy implication functions

5.2.2 Fuzzy implication functions

Compared to classical logic where implication is defined uniquely, in fuzzy
logic there are several functions that can be used to implement implication.
Table 5.1 lists some of the most popular implication functions used in fuzzy
logic.

Following [9] implication functions like those of Table 5.1 can be classified
into different categories:

• Fuzzy implications functions based on the classical implication where
ϕ→ ψ is defined by ¬ϕ ∨ ψ:

I(ϕ,ψ) = ⊥(¬ϕ,ψ)

which are also called S-implications. Examples of this type of impli-
cation functions are the Kleene-Dienes and Lukasiewicz implication
functions where the according t-conorms are ⊥max(a, b) = max{a, b}
for Kleene-Dienes and ⊥Luka(a, b) = min{a + b, 1} for Lukasiewicz
respectively.

• Fuzzy implication based on the implication in quantum logic:

I(ϕ,ψ) = ⊥(¬ϕ,>(ϕ,ψ))

• Fuzzy implications reflecting partial ordering on propositions:

I(ϕ,ψ) =


1 if ϕ ≤ ψ
0 if ϕ = 1 ∧ ψ = 0
(0, 1) else

Most of these implication functions are R-implications as they are
derived from a pair of t-norms and t-conorms by means of a residual.
Examples in this category are Gödel and Goguen implications which
are also R-implications.



5.2 Fuzzy Set Theory for Approximate Reasoning 48

• Fuzzy implications interpreted as a conjunction:

I(ϕ,ψ) = >(ϕ,ψ)

These implication functions do actually not represent implication in
the classical sense because they are based on conjunction. Conjunction
based fuzzy implication functions are mainly applied in fuzzy control
where the Mamdani conjunction is often used for implementing fuzzy
controllers.

With several options for implementing implication in fuzzy logic, also
different implication semantics come along with the implication functions.
Obviously, for the same truth values for ϕ and ψ different implication func-
tions yield different results as I(ϕ,ψ). Therefore when designing a system
that is based on fuzzy rules, the choice of an appropriate implication function
needs to represent the required semantics of the implication of an according
rule.

5.2.3 Reasoning with fuzzy rules

In the previous section various implication functions have been presented
that can be used for representing implication in case of fuzzy rules. What
remains open is the way how fuzzy rules can be used for inferring knowledge
based on fuzzy information.

In classical logic, if-then-rules can be represented as modus ponens which
is an inference rule that allows for inferring knowledge based on a given fact.
For example, a rule

if ϕ then ψ

can be written as
(ϕ→ ψ), ϕ

ψ

as modus ponens.
For reasoning with fuzzy rules, the compositional rule of inference as a

realization of the generalized modus ponens has been proposed which can be
written as

if x is A then y is B
x is A’
y is B’

where the rule if x is A then y is B is a fuzzy rule and x is A’ is fuzzy data
from which y is B’ is derived.

As an example take the rule

if c.speed is fast then c.price is expensive
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Figure 5.2: An example fuzzy rule applied to fuzzy data

with a given fact of a specific car’s speed of about 195 km/h from which the
car’s price can be inferred.

In the generalized modus ponens B’ is calculated from A’ by

B′ = A′ ◦R

where R is a fuzzy relation representing the rule if x is A then y is B.
Figure 5.2 gives a graphical example of the generalized modus ponens

with a fuzzy rule. In graphs a) and b) the fuzzy sets for the labels fast and
expensive are given, depending on the speed and the price of a car. Graph c)
represents the fuzzy information that is known about a specific car’s speed
defined as about 195 km/h. Graph d) shows the result as the car’s price
inferred from the the rule if c.speed is fast then c.price is expensive with
the fuzzy information of graph c) and using the Gödel implication function.
For details on the exact calculation of fuzzy rules using the compositional
rule of inference refer to [17].

5.2.4 Fuzzy rule base

So far, reasoning with a single fuzzy rule has been presented. Generally,
not only a single fuzzy rule is used to express certain knowledge but several
fuzzy rules are combined in a fuzzy rule base. A fuzzy rule base can therefore
be seen as a special form of knowledge representation in form of rules.

For fuzzy rule bases, specific properties have been identified being con-
tinuity, consistency and completeness. In order to satisfy the continuity
property of a rule base, rules with adjacent antecedents also need to have
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adjacent consequents. Adjacency of fuzzy sets generally means the overlap-
ping of fuzzy sets. In most cases a rule base is considered continuous when
there is a fuzzy partition of the universe, meaning that the universe is par-
titioned by fuzzy sets that overlap only with the next higher or lower fuzzy
set.

The consistency of a rule base states how far the knowledge expressed
by the set of rules in the according rule base is consistent. Consistency of
rule bases is not only a problem of rule base design but is often unavoidable
with large and complex rule bases. A simple example for two inconsistent
rules are

r1 : if obstacle in front then go left
r2 : if obstacle in front then go right

Apart from this obvious example, rule bases can easily become inconsistent
when extensively using the or connective in the rule antecedents. Note, that
question of consistency of a rule base is not restricted to fuzzy rule bases
which are focused in this section.

The completeness of a fuzzy rule base states how well certain input values
are being covered by an according rule base. In the worst case there may
be some regions in the universe of discourse that are not covered by an
according rule antecedent which are called blank spot. The according region
in the universe is called incomplete. On the semantics level this expresses a
lack of knowledge as no membership function for the according input data
has been defined. Completeness can be expressed in different grades which
is computed based on α as the sum of membership values of input data.
Subcompleteness (α < 1), strict completeness (α = 1) and overcompleteness
(α > 1) define different levels of completeness where in the case of regions
with strict completeness the membership values of certain input data is
equally distributed over the universe of discourse.

Aggregation of rules

As already stated above, a fuzzy rule base generally consists of a set of
fuzzy rules. Each of these rules is transformed into a fuzzy relation using an
implication function as discussed above. For a set of rules it is then possible
to either transform all rules into a single fuzzy relation and apply it to data
or first calculate the result of each rule and then aggregate the results.

The two different options are defined as
• global inference where the final result is based on a single relation R

that is aggregated based on relations Rk of according rk rules (also
called FATI - "first aggregate, then infer") and

• local inference where the result of each rule is calculated and then
aggregated into a final result (also called FITA - "first infer, then
aggregate).
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It can be shown that, using t-norms as implication functions (classical
conjunction based implication), there is no difference between global and
local inference, whereas for classical implication based implication functions
the results of global and local inference can differ. Also if the input data for
the rules are singletons, which are fuzzy sets that have a nonzero membership
value for only one element of the universe of discourse, there is no difference
between results obtained by global and local inference. However, the choice
of a rule aggregation strategy is an additional parameter when designing an
approximate reasoning system based on fuzzy set theory.

5.2.5 Semantics of Fuzzy Sets

In this work, approximate reasoning based on fuzzy set theory has been
presented as a method to handle the graduality or vagueness of the human
language or human thinking in general and to reason with these properties.
The success of expert systems based on fuzzy rules therefore depends on
the design of fuzzy membership functions, definition of rules, choices of
implication functions and a rule aggregation strategy as well as rule base
properties mentioned above. Finally, all these parameters need to be tuned
in such a way that the reasoning results are similar to those derived by
humans which was one of the basic ideas behind the concepts of fuzzy set
theory [45].

A different view on fuzzy set theory to be mentioned in this work is
possibility theory where fuzzy set theory is used as a different means for
representing uncertainty. In this context, fuzzy sets are seen as possibility
distributions of an object having a certain property. For example, given
a membership function µfast(x), the higher the value µfast(x), the higher
the possibility that speed(x) = fast. Note that the concept of possibility
differs from the concept of probability, as high possibility does not imply
high probability. The famous example is Hans’ breakfast stating that it is
possible to eat 5 eggs for breakfast, though not very probable. Possibility
theory is also based on a duality principle where for each possibility measure
and according necessity measure is calculated. Possibility and necessity are
then used together to give information about the certainty of an event. A
detailed discussion on possibility theory and its use within the context of
uncertainty handling can be found in [10].

5.3 Probabilistic reasoning
The next mechanism for approximate reasoning presented in this work is
based on probability theory. The theory of probabilities has been studied
for several hundreds of years in various forms of which the most relevant
for approximate reasoning is bayesian networks. As already discussed in
the introduction, probabilities allow expressing degrees of belief for different
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events, e.g. the probability of a starting motor. In the introduction of this
chapter the concept of cause and effect has also already been presented which
is formalized in bayesian networks.

The following section will therefore give a brief introduction into prob-
ability theory, its concepts and according mathematical laws. Afterwards
bayesian reasoning as a means for approximate reasoning with probabilities
and bayesian networks will be presented along with an illustrating example.

5.3.1 Probability theory

In the introduction the notion of a degree of belief as a means for expressing
an agent’s certainty has already been introduced. For example, a person
beliefs that the motor of its car starts with a probability of 90% if there is
enough gas and the battery is ok. The person also beliefs that the motor
does not start with a probability of 10% even though there is enough gas
and the battery is ok. The reason for the car not starting even though there
is enough gas and the battery is ok, can have several causes such as a broken
cable, spark plugs not being ok or an electronical problem. Accordning to
[34], those cases belonging to the probability of 10% can be classified into
three main classes:

• Laziness: There are simply too many reasons why the car does not
start even though there is enough gas and the battery is ok.

• Theoretical ignorance: There is no exact theory covering all reasons
why the car doesn’t start.

• Practical ignorance: Even though all reasons are known, there might
still remain cases which are uncertain as there is no knowledge about
them, e.g. the usage of a unique oil mixture.

Probability theory therefore offers a way to summarize the uncertainty
that comes from an agent’s laziness and ignorance. Still the question re-
mains open, how an agent is able to give an exact numerical value for its
degree of belief. This question has led to endless discussions on the origin
of probabilities. The frequentist view in this debate requires probabilities
coming from experiments. For example, if the car’s motor started 90 times
out of 100 with enough gas and the battery being ok the according proba-
bility is 0.9. Note that the rule quality measures of the rough set approach
are also based on the frequentist view of experiments. The objectivist view
sees probabilities rather as properties of objects than the degree of belief
of an agent. For example, a dice has the property that each number has a
probability of 1/6. Experiments of the frequentist view can then be seen as
a method to obtain those properties of objects, e.g. rolling the dice 10.000
times. Obviously, the objectivist view requires that there is some knowledge
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about the probabilistic properties of an object, which however is not always
practical. The subjectivist view sees probabilities as real degrees of belief as
it has been presented in this work so far. In the subjectivist view proba-
bilities reflect the agent’s knowledge and experience about the world rather
than deriving numerical values from experiments or physical properties of
objects. If not stated otherwise, probabilities will be considered degrees of
belief as defined in the subjectivist view in the following sections.

5.3.2 Laws of probability theory

In probability theory there are several axioms and rules that define how
probability measures can be used in order to calculate the likelihood of
an event. This section gives a brief introduction into the basic notions of
probability theory according to [25].

If a probability measure is given without any other information, the
measure is called prior probability. For example, if there is no additional
information about the status of the battery being ok, a degree of belief
can be given as P (battery ok = true) = 0.95 where battery ok = true is a
proposition describing the event.

Whenever other information is known, conditional probabilities need to
be given. For example, given that the battery is ok, the probability of the
motor starting is given as P (a|b) = 0.9 with a : motor starting = true
and b : battery ok = true. The conditional probability therefore states the
probability of a given the information b. Note that the conditional proba-
bility can be the same as the prior probability. For example P (battery ok =
true) = P (battery ok = true|headache = false) as the status of the battery
is obviously independent of the driver’s headache.

For all probabilities it always holds that 0 ≤ P (a) ≤ 1 and the probabil-
ities of necessarily true and false events are P (true) = 1 and P (false) = 0.

Assuming that two events are exclusive, meaning that only one of them
can occur, disjunction is calculated as

P (a ∨ b) = P (a) + P (b)

If the two events are not exclusive, e.g. a : battery ok = true and
b : enough gas = true which both can hold at the same time, disjunction is
calculated as

P (a ∨ b) = P (a) + P (b)− P (a ∧ b)

If the two events are exclusive and exhaustive, meaning that only one of
them can occur and they are the only possible events that can occur, e.g.
a : battery ok = true and b : battery ok = false, disjunction sums up to 1

P (a ∨ b) = P (a) + P (¬a) = 1
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This is given more generally for a set n of exclusive and exhaustive events
as ∑

i=1,...,n

P (ai) = 1

The calculation of the probability of two events occurring together, such
as a : battery ok = true and b : enough gas = true, is done using the
product rule given as

P (a ∧ b) = P (a) · P (b|a) = P (b) · P (a|b)

For two independent events this can be simplified as P (a ∧ b) = P (a) ·
P (b), e.g., assuming that there is enough gas independent from the status
of the battery.

The results of the product rule are used to derive Bayes’ theorem which
builds the foundation of reasoning systems based on probabilities:

P (a|b) =
P (b|a) · P (a)

P (b)

With the rules and laws presented in this section, the next section will
describe how these rules can be used for approximate reasoning in bayesian
networks.

5.3.3 Bayesian networks

The previous section presented the basic laws and rules of probability theory.
These laws and rules correspond to the laws and rules for reasoning based on
fuzzy set theory. Therefore an analogy between the probability theory and
fuzzy logics can be observed. In order to use probability theory to reason
about uncertain knowledge, a way to represent this knowledge is needed.
The knowledge requires to include the prior and conditional probability
measures of events in a specific domain, but also needs to represent the
causal connections of events. As an example, the fact the starting of a
motor is effected by the battery status needs to be represented as well as
the fact that the battery status does not effect the level of gas. Defining
those dependencies or influences is not only easier for a domain expert, but
also reduces the complexity of calculation of probabilities.

The main approach for representing dependencies of events are bayesian
networks. Formally, a bayesian network is a set of nodes with directed arcs
as connections between the nodes. Every node is connected to another node
but there are no directed cycles. Each node gives information about the
probability of a certain event which is influenced by its parents nodes only.
Nodes that have no parents are considered conditionally independent from
all events for which the prior probability is given. Nodes with parents are
given with a conditional probability table, denoting the conditional probabil-
ities of all possible combinations of values of the parent nodes.
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Figure 5.3: A simple bayesian network

Figure 5.3 shows a simple bayesian network representing the domain
about persons who get to work by car. The network is based on an example
given in [25] and has been adapted in this work. The network captures
the fact that whether the motor starts is influenced by the status of the
battery and whether there is enough gas. Both facts are considered to be
independent from all other events so that their prior probabilities are given.
Note that in a more detailed network, also causes for the battery status
and the gas can be given. E.g. whether the battery has been charged or
somebody has filled the tank. In the network shown in Figure 5.3 all these
causes are reflected in the prior probabilities representing the laziness and
ignorance mentioned earlier.

Whether the motor starts or not is directly influenced by the status
of the battery and the amount of gas available. This fact is captured by
two parent nodes for the node representing the starting motor. Along with
this node, the according conditional probability table is given, presenting
the conditional probabilities of P (m|b ∧ e), P (m|¬b ∧ e), P (m|b ∧ ¬e) and
P (m|¬b ∧ ¬e) with m: motor starts = true, b: battery ok = true and e:
enough gas = true. Note that the event enough gas = false does not mean
that there is no gas in the tank anymore but only that the warning light is
on. Therefore the degree of belief for the motor starting with the battery
being ok and not enough gas is still 0.75.

The last node gives the conditional probabilities for the event represent-
ing the arrival at work in time. Again, laziness and ignorance are reflected
in the probabilities. The network has been designed in such a way that only
a starting motor influences the arrival in time. However facts like traffic jam
or a broken tire can still mean that somebody gets late to work even though
the motor starts. On the other hand, if the motor does not start, there is
still ways to get to work in time, e.g. by taking the subway or calling a cab.

As an example, the network of Figure 5.3 will be used to calculate the
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probability of the battery being ok, a sufficient level of gas, that the motor
starts and getting to work in time.

P (b∧e∧m∧a) = P (b)·P (e)·P (m|b∧e)·P (a|m) = 0.95·0.8·0.99·0.65 = 0.49

Assuming that everything is "normal", there is still only a chance of about
50% to get to work in time given the information of the network in Figure
5.3.

In fact, a bayesian network represents the complete description of a do-
main. In the network of Figure 5.3 this means that all possible events con-
sidering the domain of getting to work along with their probability measures
are given. The probabilities of combinations of events can be calculated from
the network as shown above. Formally, a bayesian network represents the
full joint probability distribution that covers the probabilities of all possible
combinations of events within a certain domain. The full joint probability
distribution can also be given as a table which presents the probabilities of
all combinations of events. However such tables generally become very large
and causal dependencies of events can not be seen as simple as in a bayesian
network.

A single entry in the full joint probability distribution can be calculated
as

P (x1 ∧ ... ∧ xn) =
n∏
i=1

P (xi|parents(Xi))

where parents(Xi) denotes the events of the parent nodes of xi.
Apart from the calculation of single entries in the full joint probability

distribution, bayesian networks are mainly used to compute the probabil-
ities of events given the knowledge (or evidence) that certain events have
occurred. Instead of computing the probability of P (b ∧ e ∧ m ∧ a) one
might also be interested in the probability of the battery being ok given the
evidence that one has arrived to work in time, denoted as P (b|a). This can
be calculated by the formula

P (x|e) = αP (x, e) = α
∑
y

P (x, e, y)

where e is the set of events that have occurred and y the set of non-
evidence events being all possible combinations of events that have not oc-
curred. α is a normalization factor that remains constant and ensures that
P (x|e) + P (¬x|e) = 1 . This results in

P (b|a) = αP (b, a) = α
∑
m

∑
e

P (b)P (e)P (m|b, e)P (a|m)

where the summation is calculated over motor starts = true, motor starts
= false, enough gas = true and enough gas = false as the non-evidence
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motor starts enough gas P(b) P(e) P(m|b,e) P(a|m)
true true 0.95 0.8 0.99 0.65
true false 0.95 0.2 0.75 0.65
false true 0.95 0.8 0.01 0.15
false false 0.95 0.2 0.25 0.15

Table 5.2: Calculation of P(battery ok = true | arrival in time = true)

events. The evidence event is given as a: arrival in time = true and b: bat-
tery ok = true is the event for which the probabilities are calculated. This re-
sults in P (b|a) = 0.986 summing up the products P (b)P (e)P (m|b, e)P (a|m)
of each row of Table 5.2 and multiplying the sum with an according α2.
This means that given the evidence that one has arrived at work in time,
the probability of the battery being ok is 98.6 % which is higher than the
according prior probability. Given the evidence of specific events, an agent
making use of bayesian inference revises its degrees of belief by means of
calculations in corresponding networks.

The approach for calculating probabilities from a bayesian network given
some evidence is also called inference by enumeration as values are calculated
by computing sums of products of conditional probabilities from a bayesian
network. As given in [34], algorithms based on this approach are not suitable
for practical applications because of their high computational complexity.
Therefore several improvements for this approach have been proposed also
including approximate approaches that do not deliver exact but sufficiently
good numerical values from bayesian networks.

5.3.4 Summary

This section gave a brief introduction into probability theory and inference
using bayesian networks as an approximate reasoning approach. The main
idea behind probabilistic inference is an agent that expresses its degrees of
belief of certain events by means of numerical values and in case of bayesian
networks also defining the cause and effects of events by means of conditional
probabilities. An agent can then make use of a network to calculate the
probabilities of single events or a combination of events given some evidence.
Besides bayesian networks there are also other approaches for approximate
reasoning based on probabilities such as evidence theory. In evidence theory,
there is a distinction between uncertainty and ignorance and the belief in a
certain event is based on a probability mass function which allows for the
definition of the belief in an event and the plausibility of an event.

2For battery ok = true the term
∑

m

∑
e
P (b)P (e)P (m|b, e)P (a|m) results in 0.58995

and for battery ok = false 0.00865 respectively. This results in α = 1.67 ensuring P (b|a)+
P (¬b|a) = 1.
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5.4 Rough Mereology
Compared to fuzzy set and probabilistic approaches to approximate reason-
ing, rough mereology is an approach that emerged lately and has first been
published in the mid 1990s. Rough mereology is a foundation of granu-
lar computing [39] where information is seen in form of granules for which
calculi are developed. In granular computing approaches such as rough set
theory, fuzzy set theory, neural networks and rough mereology are combined
in order to allow for new formalisms which are able to handle incomplete,
imprecise and inexact information. Rough mereology is seen as the basis for
future applications in fields such as computer aided design, adaptive con-
trol of complex systems, business re-engineering and cooperative problem
solving [31].

Although the approach is mathematically formulated in numerous publi-
cations, each with slightly adapted notation depending on the context of the
publication, there are only few works giving links to real world examples.
Also, at the time of writing, no implemented approximate reasoning system
based on rough mereology is known. [22] and [43] give examples of research
projects with prototype implementations, however the concepts used therein
are not based on approximate reasoning but only on rough mereology as a
means to express the similarity of objects.

This work aims to give a concise overview on the numerous but mainly
theoretical work on rough mereology and approximate reasoning schemes.
The focus in this work will be put on the constituents of the approach and
the way they work together allowing for finding approximate solutions to
given problems.

5.4.1 Approximate synthesis of objects

Rough mereology as an approximate reasoning approach is based on the
idea of a set of reasoning agents that perform approximate reasoning by
assembling complex objects from simpler constructs. Note that the term
agent here slightly differs from the definition of an intelligent agent in the
introduction. In this section reasoning agents are constituents of a specific
approximate reasoning scheme with properties being further on. In the fol-
lowing, the approach will first be presented in a non-formal way. Afterwards,
the approach will be formalized and illustrated by an example.

Each agent in the rough mereological approach is equipped with an infor-
mation system which contains information about the agent’s objects. Each
agent represents an information unit and the objects in each agent’s informa-
tion system are part of the agent’s knowledge and are generally of a specific
type. The information system is a general information system as introduced
in the section about rough set theory, having a universe of discourse with the
agent’s objects, a set of attributes and according attribute values. Objects
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Figure 5.4: A set of reasoning agents

can for example represent artificial data or real world objects about which
information in the form of attribute values is known. The agent’s objects
are conceptually separated in two different classes of objects - standard and
non-standard objects. Standard objects, also referred to as standards, can
be considered reference points for the reasoning approach. Standards can
for example represent ideal data or ideal objects that in reality do not ex-
ist. As an example, a standard could be a non-real software product that
completely fulfills certain requirements while non-standard objects repre-
sent real software products fulfilling some of the requirements only. The
agent’s objects are perceived by means of their attribute values as presented
in the rough set approach. Two objects having the same attribute values
are indiscernible and therefore considered equivalent.

Additionally, an agent is equipped with a set of operations. The set of
operation enables the agent to construct objects in its information system
from objects of other agents. Therefore each agent has a set of child agents
that can send their (simpler) objects to their parents in order to construct
more complex objects. Hence, the complete set of agents can be seen as
a tree-like structure. Furthermore, there are agents in the complete set of
agents that are not equipped with a set of operations. The objects of such
agents are therefore not constructed from objects of other agents. Those
objects are called inventory and the agents dealing with them are called leaf
agents. Leaf agents therefore do not have any child agents.

In order to interact with the set of agents a customer agent is introduced.
The costumer agent has the ability to communicate with agents being part
and not being part of the set of agents. A customer agent can for example
be a human computer interface by which humans can interact with the set
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Figure 5.5: A single reasoning agent

of agents. Figures 5.4 and 5.5 show the concepts of the set of agents, objects
and operations.

The next constituents of the rough mereological approach are features of
standard objects and according specifications. For each standard, there is a
set of features or properties which are offered by the standard. In case of
software products, features of standards can for example be transactionality,
platform independence or the support for a specific programming language.
Features can be expressed either using a language that makes use of the
attribute values of the agent’s information system or by a specific language
that is understandable by the agent. Such languages can for example be
based on formulas of boolean propositions. As objects of non-leaf agents
are constructed by assembling objects from child agents, features of stan-
dard objects also need to be linked to the features of standard objects at
child agents. This linkage is also called decomposition rule, as specific or
a set of features of a standard is decomposed into features of standards of
child agents. Each decomposition rule also contains the according operation
needed for assembling according objects.

Conceptually, specifications are making use of features. Specifications
can be seen as artifacts expressing the requirement of a set of features. The
main idea behind this concept is that the costumer agent issues specifica-
tions that have to be fulfilled by the set of agents. As an example, the
costumer agent might issue a specification stating that a specific software
product needs to be transactional. This specification is then accepted by
the set of agents and decomposed into specifications that state requirements
for child agents which e.g. represent single software components. The de-
composition of specifications is based on the decomposition rules that link
features of standards to features of standards of child agents. A successful
decomposition of a specification results in a selection of standard objects
and according operations along the set of agents that fulfill the decomposed
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Figure 5.6: Decomposition rules linking features of standards and operations

specifications at all levels of the set of agents. Figure 5.6 illustrates the
concept of decomposition rules.

Summing up, the approach as presented so far offers a reasoning service
that can be stated as follows: Given a specification, the set of agents is able
to deliver a result stating whether the specification can be fulfilled using
standard objects as part of the agents universes. Note, that the reasoning
service and according features and specifications only make use of standard
objects and that non-standard objects are not considered.

In the next step, the reasoning service as stated above is extended in such
a way that allows for issuing specifications with a fulfillment degree: Given
a specification and an according fulfillment degree, the set of agents is able
to deliver a result stating whether the specification can be fulfilled to the
required degree using non-standard objects as part of the agents universes.
The main idea behind this extension is based on the similarity of standard
and non-standard objects. Given a specification that can be fulfilled by
assembling standard objects, meaning that the specification is fulfilled to a
degree 1, the same specification can also be fulfilled up to a certain degree
by non-standard objects.

The measure of similarity is based on the mereological distance of objects.
The mereological distance is calculated using a rough inclusion function that
measures similarity as being a part of an object to a certain degree. The
rough inclusion function is based on the attribute values of objects of an
agent. Therefore the mereological distance can only be expressed for objects
being part of the same universe of discourse. The mereological distance
between a standard and non-standard object is then used as a fulfillment
degree of according features. E.g., given a standard object representing
a software component that has platform independence as a feature, this
feature can also be fulfilled by a non-standard object to a certain degree
that is determined by the mereological distance of both objects.

The similarity measure enables the costumer agent to issue specifications
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with fulfillment degrees which are first decomposed based on decomposition
rules and standard objects as presented above. If the decomposition yields
a successful result, the agents use the information about the mereological
distances of standard and non-standard objects in their universes to deliver
non-standard objects that fulfill the specification to the required degree.
Note that it also might happen that high degrees of fulfillment can not be
satisfied by non-standard objects. This can be considered as failure of ful-
filling a specification of the costumer agent depending on whether standard
objects correspond to real objects or not. Note also that even though two
objects at non-leaf agents might have the required mereological distance, a
final result can only be given if the specification and according fulfillment
degrees are fulfilled at all levels of the decomposition.

After the presentation of the terminology and an overview of the ap-
proach, the next section formalizes the approach on a mathematical foun-
dation which is followed by an illustrating example.

5.4.2 Formalizing the approach

In order to formalize the approximate reasoning approach based on rough
mereology, the following section introduces the constituents of the reason-
ing scheme as defined in [31]. Some of the used terms have already been
introduced in the previous section.

The approximate reasoning schema based on rough mereology is derived
from the general reasoning scheme as given in [31] and based on a set of
agents Ag where for each agent ag ∈ Ag a label is defined as:

lab(ag) = (A(ag),M(ag), L(ag), St(ag), Link(ag), O(ag), Unc_rel(ag),
H(ag), Unc_rule(ag), Dec_rule(ag))

lab(ag) is a set of sets that make up the reasoning abilities and tools of an
agent. In the following the various parts of an agent’s label will be explained
in detail:

• A(ag) = (U(ag), A(ag)) is the information system of an agent where
U(ag) is the universe of discourse of the agent including standard and
non-standard objects and A(ag) the according attribute set.

• M(ag) = (U(ag), [0, 1] , µ(ag)) is a rough mereological model about the
agent’s universe of discourse where µ(ag) is a rough inclusion function
over the universe of discourse. Details on rough inclusions will be
given in following sections. For now, M(ag) can be interpreted as the
agent’s ability to express the similarity of objects in U(ag) based on
mereological distances.
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• L(ag) is a language used to express the features or properties of ob-
jects in U(ag). L(ag) can for example be derived from attributes and
according attribute values from the agent’s information system A(ag).

• St(ag) = {st(ag)1, ..., st(ag)n} ⊂ U(ag) is the set of standard objects
of an agent ag. Accordingly the set NonSt(ag) = {x|x /∈ St(ag)} is
the set of non-standard objects. Generally the set of non-standard
objects can be considered the complement of St(ag).

• Link(ag) is a collection of strings in the form of ag1ag2...agkag. These
strings are to be interpreted in such a way that agents ag1ag2...agk
are children of ag and can send to ag their simpler objects. ag uses
these objects for assembling more complex objects in U(ag). A specific
standard of ag however might only need some of the agents of the
string ag1ag2...agkag. Hence, a decomposition of a standard object
of ag into simpler objects can be considered as a more specific subset
of the agents in the string. Generally, Link(ag) can have more than
one element which is regarded as the ability of an agent to synthesize
objects using different child agents. Formally this is considered as the
option of renegotiating the synthesis scheme.

• O(ag) is the set of operations of an agent ag. Each operation o ∈ O(ag)
defines which standard from children of ag are needed in order to
produce a standard at ag. One standard st(ag) may be assembled
by different operations of O(ag). An operation can also be seen as a
function or a mapping which has certain standards of children of ag
as input and delivers st(ag) as output.

• Unc_rel(ag) is the set of uncertainty relations. A specific uncertainty
relation unc_reli ∈ Unc_rel(ag) is defined as
(oi, ρi,
ag1, st(ag1), ag2, st(ag2), ..., agk, st(agk), ag, st(ag),
µ0(ag1), µ0(ag2), ..., µ0(agk), µ0(agk))

where oi is the operation which produces st(ag) from st(ag1), st(ag1), ..., st(agk)
with ag1, ..., agk being children of ag.
ρi is a set of tuples of non-standard objects and uncertainty bounds

ρi((x1, ε1), (x2, ε2), ..., (xk, εk), (x, ε))

where x1 ∈ U(ag1), ..., xk ∈ U(agk) being non-standard objects from
children of ag and x ∈ U(ag) a non-standard object of ag. ε1, ε2, ..., εk ∈
[0, 1] are rough mereological distances (similarity measures, uncer-
tainty degrees) calculated based on the rough inclusions
µ0(ag1), µ0(ag2), ..., µ0(agk), µ0(agk) as εk = µ0(xk, st(agk)) for the
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children of ag and ε = µ0(x, st(ag)) at ag. εk = µ0(xk, st(agk)) there-
fore expresses the similarity of the non-standard object xk and the
standard object st(agk) at agent agk.
An uncertainty relation unc_reli relates the distances of non-standard
objects to standard objects at children of ag to a standard and a
non-standard object of ag using a specific operation oi. Uncertainty
relations are needed for deriving uncertainty rules which are defined
next.

• Unc_rule(ag) is the set of uncertainty rules. A specific uncertainty
rule unc_rulej ∈ Unc_rule(ag) is defined as
(oj , fj ,
µ0(ag1), st(ag1), µ0(ag2), st(ag2), ..., µ0(agk), st(agk), µ0(ag), st(ag))

where ag1, ..., agk are children of ag and fj is a function (rough mere-
ological connective) with the property:
if objects x1 ∈ U(ag1), ..., xk ∈ U(agk) satisfy the conditions µ0(xi, st(agi)) ≥
ε(agi) for i = 1, 2, ..., k then µ0(x, st(ag)) ≥ fj(ε(ag1), ε(ag2), ..., ε(agk))

where x = oj(x1, x2, ..., xk) is the non-standard object at ag produced
from non-standard objects of children of ag using operation oj .
Hence, a specific uncertainty rule unc_rulej states to which degree
non-standard objects at children of ag need to be similar to according
standards, so that st(ag) and x are sufficiently similar to the degree
ε = µ0(x, st(ag)).

• H(ag) is the agent’s strategy how to derive uncertainty rules from un-
certainty relations. H(ag) can for example be an algorithm as defined
in [31] which will be applied in an example later in this chapter. Figure
5.7 illustrates the concept of extracting uncertainty relations.

• Dec_rule(ag) is the set of decomposition rules. A specific decompo-
sition rule dec_rulej ∈ Dec_rule(ag) is defined as

(oj ,Φ(ag1), st(ag1),Φ(ag2), st(ag2), ...,Φ(agk), st(agk),Φ(ag), st(ag)

where Φ(ag1) ∈ L(ag1), ...,Φ(agk) ∈ L(agk),Φ(ag) ∈ L(ag). Each
Φ(agk) therefore represents a specification (requirement, set of proper-
ties / features) which a certain standard st(agk) at agk fulfills. Again,
ag, ag1, ..., agk are children of ag. Each Φ(agk) is expressed in the
language L(agk) understandable for the agent agk for which attribute
values from the agent’s information system A(agk) can be used for
example. At the agent ag accordingly st(ag) needs to fulfill Φ(ag)
where st(ag) is being produced using operation oj so that st(ag) =
oj(st(ag1), ..., st(ag1))
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Figure 5.7: Extracting uncertainty relations and uncertainty rules from in-
formation systems

Figure 5.8: Applying uncertainty rules during object synthesis

Additionally, there are agents which contain objects that can not be de-
composed any further. Those agents are called leaf agents denoted Leaf(Ag).
The union of all universes of leaf agents is called inventory Inv = ∪{U(ag) :
ag ∈ Leaf(Ag)} and makes up the basic ingredients on which the reason-
ing is based. The inventory Inv can be considered as the set of resources
available for producing complex objects. The inventory can also have differ-
ent abstraction levels at different leaf agents. E.g., in case of a real world
production, objects at certain leaf agents could correspond to raw material
while other leaf agents deliver pre-produced parts.

The label of an leaf agent can then be defined as:

lab_leaf(ag) = (A(ag),M(ag), L(ag), St(ag))

In this section, the constituents of the reasoning scheme have been intro-
duced in a formal way. As reasoning scheme can be considered as a static
skeleton on which the reasoning is organized, the next section will describe
the different phases of the reasoning approach. Describing the different
phases allows for a better understanding about how the constituents of the
scheme are linked to each other.
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5.4.3 Phases in the Approximate Reasoning Scheme

Design phase

The first phase in rough mereology for approximate reasoning is the design
process of the reasoning scheme. One part of the design phase is the defi-
nition of agents and their according information systems. This includes the
definition of the attribute set A as well as the objects in the agent’s universe.
Within the universe, standard objects need to be marked and non-standard
objects can be considered as training data for the following learning phase.
Along with the information system the rough mereological model of the
agent is also defined which includes the rough inclusion function the agent
uses for calculating closeness (uncertainty) measures between standard and
non-standard objects. For expressing requirements on objects to be assem-
bled by the agent, the agent’s language L(ag) is defined as well. As already
stated, L(ag) can for example be based on the agent’s attribute set.

The design phase also includes the definition of the agent’s operations
for assembling its objects from simpler constructs sent by its children. The
agent’s children can be explicitly defined as Link(ag) or Link(ag) can be
derived implicitly from the agent’s operations and agents used therein. In
order to decompose specifications, a set of decomposition rules is defined,
which link features of standards of the agent to corresponding standards at
the agent’s children using one of the agent’s operations. Another part of the
design phase is the definition of a strategy H(ag) for calculating uncertainty
rules from uncertainty relations in the learning phase.

Summing up, the design phase results in the definition of the following
constituents of the above defined scheme for each non-leaf agent

A(ag),M(ag), L(ag), St(ag), Link(ag), O(ag),H(ag), Dec_rule(ag)

and
A(ag),M(ag), L(ag), St(ag)

for each leaf agent as a part of the agent’s label lab(ag).
Generally, the reasoning scheme is assumed to be designed by an expert

or knowledge engineer, however there are approaches for deriving some of
the scheme’s constituents from background knowledge and data [35].

Learning Phase

The first step of the learning phase is setting up uncertainty relations. For
each standard and each operation which assembles the standard, closeness
measures concerning standards used for the assembly are related to closeness
measures of the assembled standard. This is done by calculating rough
mereological closeness measures using the rough inclusion function defined
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in the design phase for each standard and according non-standard objects
at the agent and the agent’s children.

The strategy H(ag) defined in the design phase is then applied to the
calculated uncertainty relations. This results in a set of uncertainty rules
which define the minimum closeness measures to be satisfied at children
of ag to assemble an object at ag satisfying properties or features up to a
certain degree.

The learning phase therefore delivers the missing parts of the agent’s
label for non-leaf agents:

Unc_rel(ag), Unc_rule(ag)

After the calculation of uncertainty rules, uncertainty relations are not
needed anymore as they only make up the input data for the strategy H(ag).

The success of the learning phase is determined by a train and test
scenario. As already mentioned, non-standard objects can be considered
training data for the scheme as they are used for calculating uncertainty
rules. For testing the scheme and its learned rules, the customer agent issues
specifications accompanied with an according fulfillment degree, for which
it has the knowledge to assess the objects synthesized by the scheme. E.g.,
issuing a requirement with a fulfillment degree of 0.8, the costumer agent
can decide whether the assembled objects delivered by the scheme really
fulfills the specification with a degree of at least 0.8. The success of the
learning phase and implicitly also the success of the designed scheme, can
the be determined by the costumer agent by setting thresholds e.g. based
on frequency count, meaning that a certain percentage of the tested objects
need to be successful.

If the scheme is not deemed successful, possible ways for improvement
are redesigning (parts of) the scheme or improving the quality of the training
data.

Reasoning phase

Finally, after a successful learning phase, the scheme is used for assembling
objects based on a specification and a fulfillment degree. The procedure
described in this section is of course also used during the testing of the
scheme in the learning phase.

The reasoning phase is divided into two distinct stages - the decom-
position of specifications which is performed top-down in the scheme and
the synthesis of objects which is a bottom-up process starting from the leaf
agents.

Once the customer agent has issued a specification accompanied with a
corresponding fulfillment degree to an agent, the agent checks its information
system whether it can fulfill the specification exactly, meaning that there is
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a standard in the agents universe that fulfills the issued specification com-
pletely (in a degree of 1). Theoretically the specification can be accepted by
multiple agents if it is issued in a language understandable for the according
agents. This can result in more than one solution of the issued specifica-
tion. For the sake of simplicity it is assumed that the costumer agent can
only communicate with a single agent, called root agent. If there is at least
one standard in the root agent’s universe fulfilling the issued specification
exactly, the root agent checks whether for those standards and the issued
specification there are any decomposition rules defined that allow for decom-
posing (formulating) the issued specification into a language understandable
for the root agent’s children. If this step terminates successfully, the set of
uncertainty rules is checked whether there exist uncertainty measures satis-
fying the fulfillment degree of the customer and according measures for the
children of the root agent. If there are uncertainty measures satisfying the
fulfillment degree of the customer, meaning that there are non-standard ob-
jects having a satisfactory mereological closeness to standard objects, then
the according uncertainty measures will be used for requesting correspond-
ing objects from the root agent’s children. So the root agent will send a
message to its children consisting of a part of the decomposed specifica-
tion derived from the selected decomposition rule as well as the uncertainty
measure from the selected uncertainty rule.

The above described procedure is executed at each agent within the de-
composition scheme that is determined by the agents’ decomposition rules.
Whenever one of the steps does not terminate successfully, e.g. there is no
decomposition rule enabling the decomposition of the specification or there
are no uncertainty measures with the needed fulfillment degree, the proce-
dure halts and a failure message is propagated to the root agent which tells
the costumer that no objects satisfying the requirement can be assembled. If
there are alternative operations and decomposition rules for certain objects
along the decomposition of a specification, these alternatives can be chosen
before sending failure messages.

The complete process terminates successfully when the overall specifi-
cation can be decomposed to specifications for leaf agents and each leaf
agent can deliver an inventory object with the required rough mereological
closeness. Figure 5.9 illustrates the process in a graphical way.

At this point, the bottom-up process for synthesizing objects starts.
Each leaf agent selects non-standard objects satisfying the specification up
to the required fulfillment degree and sends those objects along with the
closeness (uncertainty) measure to its parent which assembles more com-
plex constructs using the objects sent by its children. Whether a leaf agent
just sends a single object or a set of objects is not defined formally. By send-
ing sets of objects, alternative solutions with different fulfillment degrees can
be assembled.

Each non-leaf agent applies the operation selected during the require-
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Figure 5.9: Requirement decomposition process at non-leaf agents

ment decomposition process to the objects sent by its children. Based on
the uncertainty measures sent along with the objects coming from the chil-
dren, the rough mereological connective f of the according uncertainty rule
is applied in order to calculate the uncertainty measure of the synthesized
object from the respective standard. In case that uncertainty rules have been
derived by the algorithm defined in [31] where uncertainty rules represent
an approximation of f , uncertainty rules can directly be used for calculating
the uncertainty measure of the produced object.

The reasoning phase ends when the synthesis process arrives at the root
agent which delivers the final object to the costumer agent.

5.4.4 Rough inclusions

Rough inclusion functions have already been mentioned as functions used for
calculating the similarity or closeness of objects in the information system
of an agent. This section will define the basic properties of rough inclusions
and give a link to the underlying model of mereology.

Rough inclusions are based on the mereology of Lésniewski [18]. Detailed
discussions on Lésniewski’s mereology and its extension to rough mereology
can be found in [30], [31], [32], [33] and [35]. In this work only the basic
notions necessary for rough inclusions will be presented.

Mereology is the theory of parts and wholes and provides the foundations
of part-whole reasoning. Lésniewski has been one of the first authors of
mereology whose work has been extended by several authors introducing
additional axioms.

The basic notion of mereology is that of a part. Lésniewski introduced



5.4 Rough Mereology 70

the relation of being a part, denoted π and read "being a part of", defined as

P(1) : xπy ∧ yπz → xπz
P(2) : xπy → ¬(yπx)

P(1) states the transitivity property of the part relation, meaning that if
x is a part of y and y is a part of z then x is a part of z as well. P(2) states
antisymmetry meaning that if x is a part of y then it is not true that y is a
part of x. From this follows that x can not be a part of itself, xπx for no x.

Furthermore, Lésniewski introduced the relation of being an element, de-
noted el and read "being an element of", defined as:

El : xely ↔ xπy ∨ x = y

From El, P(1) and P(2) the following properties of the element relation
are obtained:
El(1) : xelx
El(2) : xely ∧ yelx→ x = y
El(3) : xely ∧ yelz → xelz

These basic relations of being a part and being an element allow for the
definition of requirements for rough inclusions which introduce the notion
of being a part in a degree. A rough inclusion µ is defined on an universe U
with values in the interval [0,1] satisfying the following requirements:

RI(1) : µ(x, x) = 1 for each x ∈ U
RI(2) : µ(x, y) = 1 ↔ xely for each pair x ∈ U and y ∈ U
RI(3) : µ(x, y) = 1 → (µ(z, x) = r → µ(z, y) = r) for each z ∈ U and each
r ∈ [0, 1]
RI(3) : if µ(x, y) = r and s < r then µ(x, y) = s

A simple example of a rough inclusion over a universe U can be defined
as follows where ⊂ is the relation π of being a part and ⊆ the relation el of
being an element:

µ(X,Y ) =
|X ∩ Y |
|X|

with X ⊆ U and Y ⊆ U and |A| denoting the cardinality of A.
In rough mereology as an approximate reasoning scheme where rough

inclusion values need to be calculated from attribute values of objects in
their according information systems, a rough inclusion is defined as follows:

For a partition P = {A1, ..., Ak} of the attribute set A into non-empty
sets A1, ..., Ak and a set of weights W = {w1, ..., wk} where all weights sum
up to 1 and i = 1, 2, .., k:
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U web asyn state gnu
st1(aggui) = x1 1 0 0 1
st2(aggui) = x2 0 0 1 0

x3 0 1 0 1
x4 1 1 0 0

Table 5.3: Information system of the GUI agent aggui

µ(x, y) =
k∑
i=1

wi ·
|INDi(x, y)|

|Ai|

where the indiscernibility relation is defined as INDi(x, y) = {a ∈ Ai :
a(x) = a(y)}. The indiscernibility relation introduced in rough set theory
therefore is the foundation of rough inclusion functions defined for informa-
tion systems.

For the example following in the next section, a simplified version of
the above defined rough inclusion function is given. For a non-partitioned
attribute set A and a single weight w = 1 the rough inclusion is defined as

µ0(x, y) =
|IND(x, y)|

|A|

with the indiscernibility relation IND(x, y) = {a ∈ A : a(x) = a(y)}.
Further ideas on rough inclusions based on information systems have

been studied in [33] among them rough inclusions based on functions known
from fuzzy set theory like the Lukasiewicz and Menger rough inclusions. In
[33] it is also shown that symmetry and transitivity generally do not hold
for rough inclusions.

5.4.5 Example

In order to illustrate the reasoning scheme and its according phases, this
section presents a simple example making use of rough mereology as an
approximate reasoning approach.

The set of agents Ag = {aggui, agsrv, agsys} consists of three agents of
which aggui delivers graphical user interface (GUI) software components,
agsrv delivers server software components and agsys assembles them to fi-
nal software systems. The set of leaf agents is defined as Leaf(Ag) =
{aggui, agsrv}. Accordingly the inventory is made up of the objects in the
information systems of agents aggui and agsrv. Tables 5.3 and 5.4 show the
information systems of the according agents. The sets of standard objects
at leaf agents are given as St(aggui) = {x1, x2} and St(agsrv) = {y1, y3},
respectively.
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U soa trans multi high cra
st1(agsrv) = y1 1 1 1 1 1

y2 1 0 0 0 0
st2(agsrv) = y3 0 0 1 0 1

y4 1 1 1 0 0

Table 5.4: Information system of the server agent agsrv

For the system agent which assembles software components into a final
system, the information table is given in Table 5.5. The label lab(agsys) of
the system agent defines a single operation oo ∈ O(agsys) which takes objects
from the GUI and server agent and produces a final system. Formally the
operation is given by xy = oo(x, y) where xy ∈ U(agsys), and x ∈ U(aggui)
and y ∈ U(agsrv) respectively. Accordingly the set of standards at agsys is
given as St(agsys) = {x1y1, x1y3, x2y1, x2y3}. lab(agsys) of the system agent
also defines a set of decomposition rules given in Table 5.6 and H(agsys) as
an algorithm. Note, that the decomposition rules as given in Table 5.6 are
defined for operation oo and are not derived from the attribute values of the
according object. Also, it is generally not necessary to give specifications
for standards of leaf agents, as leaf agents do not decompose specifications
any further.

After the scheme has been set up as described above, the learning pro-
cess starts by extracting uncertainty relations from information systems and
obtaining uncertainty rules by applying the strategy H(agsys). In order to
extract uncertainty relations from information systems, for each agent rough
inclusion measures are calculated. The scheme has been designed in such a
way that the rough mereological models M(aggui), M(agsrv) and M(agsys)
all provide the same rough inclusion function µ0 as given in section 5.4.4.
The results of applying µ0 to the informations systems of aggui and agsrv
are given in Tables 5.7 and 5.8. For readability reasons the rough inclusion
measures of agsys can be found in the Appendix in Tables B.2 and B.3.

Next, for each standard at agent agsys, uncertainty relations are be-
ing extracted. Table 5.9 shows the uncertainty relations for operation oo,
st1(aggui) = x1, st1(agsrv) = y1 and st1(agsys) = x1y1. Table 5.9 illustrates
the intended meaning of uncertainty relations: The rough inclusion values
of standards at child agents aggui and agsrv are being related to rough in-
clusion values to standards at parent agent agsys. As rough inclusion values
are interpreted as uncertainty measures, the uncertainty of child agents is
related to the uncertainty at the according parent agent.

The next step is applying the strategy H(agsys) which has been defined
in lab(agsys) as the algorithm introduced in [31]. The algorithm extracts
for each value of ε = µ(xy, x1y1) at agsys those values of ε1 = µ(x, x1) and
ε2 = µ(y, y1) at aggui and agsrv, so that ε is preserved with minimum values
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U scale reuse plat mon lin
st1(agsys) = x1y1 1 0 1 0 1

x1y2 0 1 0 0 1
st2(agsys) = x1y3 0 1 0 0 1

x1y4 0 1 0 0 1
st3(agsys) = x2y1 1 0 0 0 1

x2y2 1 0 0 0 1
st4(agsys) = x2y3 0 1 0 1 0

x2y4 1 0 0 1 1
x3y1 1 0 0 0 0
x3y2 0 1 0 0 0
x3y3 0 1 0 0 0
x3y4 1 0 0 0 0
x4y1 1 0 1 0 0
x4y2 0 1 1 0 0
x4y3 0 1 0 0 0
x4y4 1 0 1 0 1

Table 5.5: Information system of the system agent agsys

rule Φ(agsys), st(agsys) Φ(aggui), st(aggui) Φ(agsrv), st(agsrv)
...

...
...

...
i scale ∧ plat, x1y1 jav ∨ web, x1 j2ee, y1

i+ 1 te ∧ de ∧ eg, x1y1 jam, x1 fra, y1

i+ 2 reuse ∧mon, x2y3 comp ∧ tom, x2 ham ∧ lis, y3

i+ 3 bli ∧ soo, x2y1 lan, x2 ace, y1
...

...
...

...

Table 5.6: Subset of decomposition rules Dec_rule(agsys) of system agent
for operation oo
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x1 x2 x3 x4

x1 1 0.25 0.5 0.5
x2 0.25 1 0.25 0
x3 0.5 0.25 1 0.5
x4 0.5 0 0.5 1

Table 5.7: Rough inclusion values of the GUI agent aggui

y1 y2 y3 y4

y1 1 0.2 0.6 0.6
y2 0.2 1 0.4 0.6
y3 0.6 0.4 1 0.4
y4 0.6 0.6 0.4 1

Table 5.8: Rough inclusion values of the server agent agsrv

of ε1 and ε2
3 . Details on the algorithm are given in [31].

Using Table 5.10 the algorithm will be explained by an example for ε = 1.
Table 5.10 therefore contains only relevant objects from Table 5.9. For ε = 1,
there are three objects at agsys, obviously the standard x1y1 itself, as well
as the assembled objects x1y4 and x4y4. Comparing objects x1y1 and x1y4

one can see that ε1 = 1 and ε2 = 0.6 is sufficient for ε = 1, so that thresholds
for ε = 1 are set to ε1 = 1 and ε2 = 0.6. Comparing objects x1y4 and x4y4

it can be concluded that ε1 = 0.5 may also be sufficient for ε = 1. However,
there exists another object x3y4 with ε1 = 0.5 and ε2 = 0.6 which yields only
ε = 0.6. This means that ε1 = 0.5 and ε2 = 0.6 are not sufficient for ε = 1.
So the result of the algorithm is the vector (ε1 = 1, ε2 = 0.6, ε = 1) which
expresses the minimum uncertainty measures that have to be satisfied by
objects at agent aggui and agsrv, so that the produced object at agsys has an
uncertainty measure of 1. The final result of uncertainty rules for standard
x1y1 is given in Table 5.11. Note that in some cases, certain values of ε may
not be fulfilled. E.g., applying H(ag) may result in fewer values for ε than
given in the corresponding uncertainty relations4.

The results given in Table 5.11 can be interpreted as inference rules. As
an example, row r3 from Table 5.11 can be formulated as an inference rule
as follows:

If an object xi at aggui has a rough inclusion measure with standard x1

3Note that in [32] this step is not presented which reduces the traceability of the
approach presented therein.

4In [31], e.g., the set of values of ε originating from uncertainty relations is
{1, 0.75, 0.5, 0.25, 0} whereas set of values of ε in according uncertainty rules is
{1, 0.5, 0.25, 0}. Additionally, note that in Table 5 of [31] ε for x2y1 needs to be 0.75
instead of 0.5 which can simply be seen from Table 4 in the same publication. This typing
mistake however does not affect the final result.
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x ε1 = µ(x, x1) y ε2 = µ(y, y1) ε = µ(xy, x1y1)
x1 1 y1 1 1
x1 1 y2 0.2 0.6
x1 1 y3 0.4 0.4
x1 1 y4 0.6 1
x2 0.25 y1 1 0.8
x2 0.25 y2 0.2 0.4
x2 0.25 y3 0.4 0
x2 0.25 y4 0.6 0.6
x3 0.5 y1 1 0.6
x3 0.5 y2 0.2 0.2
x3 0.5 y3 0.4 0.2
x3 0.5 y4 0.6 0.6
x4 0.5 y1 1 0.8
x4 0.5 y2 0.2 0.4
x4 0.5 y3 0.4 0.1
x4 0.5 y4 0.6 1

Table 5.9: Uncertainty relations for operation oo, st1(aggui) = x1,
st1(agsrv) = y1 and st1(agsys) = x1y1.

x ε1 = µ(x, x1) y ε2 = µ(y, y1) ε = µ(xy, x1y1)
x1 1 y1 1 1
x1 1 y4 0.6 1
x4 0.5 y4 0.6 1
x3 0.5 y4 0.6 0.6

Table 5.10: Applying H(agsys) for extracting an uncertainty rule for ε = 1

row ε1 ε2 ε

r1 1 0.6 1
r2 0.25 1 0.8
r3 0.25 0.6 0.6
r4 1 0.4 0.4
r5 0.5 0.2 0.2
r6 0.25 0.4 0

Table 5.11: Uncertainty rules for operation oo, st1(aggui) = x1, st1(agsrv) =
y1 and st1(agsys) = x1y1.
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of at least 0.25 and an object yi at agsrv has a rough inclusion measure with
standard y1 of at least 0.6 then the object xiyi assembled at agsys using
operation oo has a rough inclusion measure with standard x1y1 of at least
0.6.

This can also be regarded in such a way that object xiyi satisfies the
properties or features of standard x1y1 with a degree of at least 0.6.

Note that the values presented in Table 5.11 are actually input and
output values of the rough mereological connective function f defined in the
according uncertainty rule. The values in Table 5.11 are therefore considered
as an approximation of f as ε = f(ε1, ε2) which is highly non-linear. In some
rows of Table 5.11 the t-norm min or the t-conorm max can be used for f ,
however there is no generic function valid for all rows of Table 5.11 even in
this simple example.

Note also that uncertainty rules need to be extracted on a per standard
and per operation basis. With a single operation oo ∈ O(agsys), similar rules
for standards x1y3 , x2y1 and x2y3 at agsys need to be extracted during the
learning phase. The example only presented the calculation for the standard
x1y1.

Reasoning phase

What has been presented in the example so far has covered the design and
learning phase of rough mereology as an approximate reasoning approach.
For an example of the reasoning phase, assume that the costumer agent
issues a specification Φ = plat ∧ scale and a fulfillment degree ε = 0.4. The
server agent agsys accepts the specification and using the decomposition rules
of Table 5.6 finds standards at aggui and agsrv that can be used to assemble
standard x1y1 by applying operation oo. Note, that the specification can
also be decomposed for agents aggui and agsrv in case they would not be
leaf agents. The top-down process of the reasoning phase ends by selecting
standards x1 and y1 at the corresponding agents and the operation oo at
agsys. Next, the required fulfillment degrees for objects at aggui and agsrv
are derived from Table 5.11.

For ε = 0.4 it can be seen from row r4 that the closeness measures for
objects regarding x1 at aggui need to have a minimum value of ε1 = 1 and
ε2 = 0.4 for objects regarding y1 at agsrv, respectively. Using those values
in Tables 5.7 and 5.8 showing the rough inclusion values of agent aggui and
agsrv, selected objects fulfilling the closeness measures are x1 at aggui and
y1, y3 and y4 at agsrv. Applying operation oo to the selected objects, agsys
assembles objects x1y1, x1y3 and x1y4 and delivers them to the costumer
agent. Using this approach, the delivered objects satisfy the specification
Φ = plat ∧ scale with a fulfillment degree of at least ε = 0.4.

Note that the set of assembled objects includes the standard x1y1 at agsys
as well as objects that are using standard x1 of aggui. If the scheme had been
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designed in such a way that only non-standard objects are to be delivered,
the given specification could not be satisfied with ε = 0.4. Reducing ε to
0.2, the set of delivered objects at agsys would also include objects x3y2

and x3y4 which are assembled using non-standard objects. This example
also shows that the uncertainty rules are to be considered as the minimum
requirement to be fulfilled. Given a specification and ε = 0.2, the scheme
delivers all objects satisfying the specification with at least 0.2 including
objects with ε = 1. In the case more than one object is delivered to the
customer agent, the customer agent may select one of the assembled objects
based on external criteria.

5.4.6 Summary

The previous sections presented rough mereology as an approximate reason-
ing approach. The approach was first introduced in a non-formal way in
order to get a first overview about the approach and to get familiar with
the terminology. Afterwards, the approach was formalized and all of the
constituents of the reasoning approach were defined. Furthermore, rough
inclusions have been introduced as a means to express the closeness of ob-
jects. Those closeness measures are used for expressing uncertainty along
the reasoning scheme. Finally an example has been given that presented the
approach on a step by step basis.

As with other reasoning approaches presented in this work, the success
of rough mereology depends on the design of the scheme as well as the
selection of standard and non-standard objects. The underlying semantics
of this approach is that of being a part in a degree. This has been extended to
objects in information systems by defining rough inclusion functions which
express the similarity of objects within the same universe. The similarity or
closeness of objects is then used in a synthesis process which is also a part
of the reasoning semantics.

5.5 Summary and Discussion
In this chapter three different approaches to approximate reasoning have
been presented. Each of these approaches can be used by an intelligent
agent in order to cope with uncertain or inexact information. However, each
approach covers a different sort of approximate reasoning which in the cases
of reasoning with fuzzy sets and bayesian reasoning has been motivated
by the way humans reason under uncertainty. The motivation of rough
mereology does not come from human reasoning but extending the notion
of being a part to being a part in a degree and setting up a reasoning scheme
with various constituents around it.

Fuzzy set theory allows for dealing with the graduality of the human
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language5 which is also often referred to as vagueness. The vagueness is
handled by means of fuzzy data, e.g., information to reason on, and fuzzy
rules representing fuzzy knowledge about a certain domain. Compared to
probability theory, the vagueness as a specific form of uncertainty does not
change during the reasoning process. In fuzzy set theory vagueness is seen
as a property of the domain or the world in general, independent from what
an agent knows or beliefs. In bayesian reasoning however, the agent’s beliefs
about the world are expressed. This also results in a change of the degree
of belief in a specific event whenever new evidence is known. For example,
knowing that one arrived at work in time, increases the agent’s belief in
the battery being ok, as discussed earlier in this chapter. The dependen-
cies of events are expressed by a network which covers some of the agents
knowledge about the world. While graduality is the main aspect for fuzzy
set theory, in bayesian reasoning or probability theory in general, laziness
and ignorance are covered by degrees of belief. Expressing the agent’s be-
lief in a certain event, given some evidence or not, implicitly expresses the
uncertainty of the belief coming from ignorance and laziness. In a bayesian
network, causes for events that are not denoted by a node in the network
are included in according probability measures representing the ignorance
and laziness about such causes.

In rough mereology as another approximate reasoning approach, the rea-
soning process is divided into two stages. In the top-down process, a specifi-
cation is decomposed into specifications for reasoning agents at lower levels
in the scheme. The decomposition with according decomposition rules can
be performed by classical logic or boolean reasoning [36]. In the bottom-up
process, solutions are constructed such that they satisfy the specification up
to a given degree. Compared to graduality in fuzzy sets or ignorance, laziness
and degrees of belief in bayesian reasoning, in rough mereology similarities
of objects are expressed by the notion of being a part in a degree. Along with
the similarity measures which express the uncertainty of an agent towards
an object’s properties regarding a specific standard, a construction process
delivers a final solution. The final solution is made up of constructions at
different levels in the scheme while preserving an overall uncertainty bound
during the construction process.

In all three approaches, knowledge representation is realized in a differ-
ent manner. In reasoning with fuzzy sets, rules are used to represent the
knowledge about the world. The antecedent of a rule consists of fuzzy sets
representing facts about the domain that can be combined by logical con-
nectives. Accordingly, the consequent of a rule represents the fuzzy result
obtained from the given the antecedent of the rule. Several fuzzy rules are
combined to fuzzy rule bases which represent the agent’s knowledge about
the world or a given domain. Once set up, a fuzzy rule base can be used to

5For a discussion on the interpretation of fuzzy set as possibility distribution see [10]
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reason on input information given as crisp or fuzzy data. A closer look at a
fuzzy rule base shows that knowledge is represented in two ways. Each rule
states the knowledge about the relations of a specific rule’s antecedent and
consequent. Furthermore, knowledge is also represented in the definition of
the fuzzy membership functions used in the antecedents and consequents of
the rule. For example, representing the linguistic label fast by means of a
fuzzy membership function over the velocity of an object, is also a form of
knowledge representation.

In bayesian reasoning, knowledge is represented in two ways as well. The
structure or topology of a bayesian network represents the causes and effects
of events. The network therefore represents the agent’s knowledge about de-
pendencies and influences of events. It is also assumed that the nodes in
the network are the most important causes and effects of the domain in
consideration and that less important events are reflected in the probability
measures only. Apart from the topology, the probability measures are also
a form of knowledge representation. By defining the degrees of belief the
knowledge or experience of an agent about events is given as a numerical
measure. While prior probabilities reflect the agent’s degrees of belief with-
out any other information given, the conditional probability tables strongly
depend on the topology of the network. Yet, the numerical measures express
the importance of a specific event as influences on other events, especially
when a node has more than one parent node.

In rough mereology several constituents of the approach participate in
the knowledge representation. Considering the reasoning scheme only, each
reasoning agent is a knowledge representation unit itself. For a single rea-
soning agent, the set of operations is the agent’s knowledge how to construct
objects based on objects sent by other agents. Accordingly, decomposition
rules represent the agent’s knowledge of decomposing specifications for its
children. Furthermore, the attribute set of the agent’s information system
can be regarded as a way of perceiving the objects in the agent’s universe,
which also is a form of knowledge. Regarding all agents together, the possi-
bility of communication between specific agents can also be seen as a kind
of knowledge representation. Apart from the reasoning scheme, the objects
in the agent’s unverse are considered training data from which knowledge is
extracted by means of uncertainty relations and uncertainty rules. In this
context, the agent’s rough inclusion function for computing similarity mea-
sures as well as the selection of standards and training data have a great
impact on the extracted knowledge. Especially standards as predefined ob-
jects for which features and properties are known, constitute some of the
domain knowledge.

Applying one of the approaches for implementing an intelligent agent or
a practical reasoning system, it first needs to be assured that the chosen ap-
proach suits the domain and data to be reasoned about. An important ques-
tion considering the three approaches presented in this work is whether the
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domain is predominantly gradual in case of fuzzy sets, whether uncertainty
needs to represented by degrees of belief or whether similarity towards stan-
dards and a construction process meets the reasoning requirements. Also
hybridization of formalisms is possible as presented in [13] where fuzzy sets
and probabilities are used in combination to allow for linguistic probabili-
ties. Linguistic probabilities enable the definition of probability measures
which are given as linguistic labels represented by fuzzy sets. Furthermore,
it is also possible to see one approach as a generalization of another. In [31]
an example is given where rough mereology is used to implement a fuzzy
controller where standards are defined as fuzzy sets and operations perform
the tasks of implication functions.

Still, after choosing an approach (or a combination of approaches), the
success of an application will strongly depend on the design of the system.
This includes the definition of fuzzy rules and the according constituents, the
design of a causal network and the definition of probabilities or setting up
a reasoning scheme based on rough mereology. When designing the system,
the data to reason on and the reasoning semantics of the domain need to be
taken into account. For example, for a fuzzy reasoning system, the choices
of an implication function needs to reflect the intended way of reasoning
in the domain under consideration. As a further challenge the availability
of required domain knowledge can be identified which is necessary for the
definition of fuzzy membership functions and probability measures as well
as well-defined standards and sufficiently good training data in the case of
rough mereology.



Chapter 6

Conclusion and Future Work

The first part of this work covered a possible application of rough set theory
in the image understanding process. The approach developed in this work
offers a goal directed search of high level concepts for which it is probable
that the abduction inference service succeeds. The approach presented is
seen as a blueprint that describes in detail how rough set theory for knowl-
edge discovery from databases can be exploited for the image understanding
process. What remains an open issue are experiments as a proof of concept.
As soon as real training data in form of annotated images and correspond-
ing MLC instances detected by low level image analysis becomes available
in future phases of the BOEMIE project, the approach presented in this
work can be applied to investigate the practicability of the solution. This
includes fine-tuning various parameters along the approach including several
reduct calculation and rule application options as well as different kinds of
rule quality measure computations. Also, the integration of the confidence
measure coming from low level image analysis needs to be adapted to the
according semantics of the value. Furthermore, it might also be necessary
to develop strategies for preprocessing data coming from low level image
analysis before applying rough set theory to it.

For conducting experiments, software applications based on open source
programming libraries such as ROSETTA [24] and RSES [37] are available
that already offer standard implementations of several rough set theory re-
lated algorithms for reduct calculation and rule application. While some of
the functionality can be used directly to apply rough set theory to training
data of the image understanding process, other parts need to be extended by
the concepts presented in this work. The computation of rule quality mea-
sures adapted to the image understanding process and the integration of the
confidence measures coming from low level image analysis can be identified
as major parts for which an extension is necessary.

Further research also needs to be directed towards alternative solutions
to rough set theory in the image understanding process. This can include



82

different machine learning approaches such as decision tree learning, neural
networks or support vector machines. Also layered learning for concept
synthesis [4, 5, 23] as an extension of rough set theory might be a suitable
solution. In the mentioned approach concepts are approximated by rough set
theory at different levels in a hierarchy which suits ontologies as knowledge
representation within the high level reasoning module.

Rough mereology in image understanding

While rough set theory has been studied in great detail over the last decades,
rough mereology as a novel methodology for approximate reasoning offers
various research directions. In this work, the main ideas of numerous theo-
retical publications about rough mereology have been presented in a concise
and coherent manner. Additionally, well-known formalisms for approximate
reasoning such as fuzzy set theory and bayesian reasoning have been com-
pared to rough mereology. Therefore this work is assumed to be the basis
for further works on rough mereology including practical applications. Ac-
cording to [31], rough mereology will allow advances in distinct application
fields such as computer aided design, medicine, economics and software en-
gineering. Yet, generic and practical applications of rough mereology for
approximate reasoning need to be developed in order to show the practi-
cability of the approach. The process of image understanding can also be
identified as a possible field for the application of rough mereology. Fur-
ther research needs to be conducted in this direction developing a reasoning
scheme that suits the requirements of the image understanding process.

A first idea in this direction developed during this work defines a rea-
soning agent for each HLC and MLC. HLC agents construct HLC instances
from MLC instances using according operations and MLC instances sent by
MLC agents. Given a set of MLC instances from low level image analy-
sis, MLC agents compute mereological distances from respective standards
and send the detected MLC instances along with similarity measures of re-
spective standards to their parents. HLC agents then use the sent MLC
instances to construct HLC instances within a certain similarity bound to
according HLC standards. The approach only uses the bottom up process
as the decomposition of specifications is not needed. The final constructed
HLC instance can be delivered with several respective HLC standards of the
same agent and according similarity measures. The synthesized solution can
be interpreted in such a way that the constructed HLC instance satisfies the
properties of the respective standard HLC instances up to a certain degree.
This also results in different solutions at various HLC agents constructed
from the same set of MLC instances. For example, there could be several
constructed pole vault and high jump HLC instances, each having different
properties and features. The selection of a final solution is then based on the
highest similarity measure in combination with external criteria specifying
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features of the constructed HLC.
The approach sketched here is at a very early stage and is not yet imple-

mented. However it can serve as a starting point for further research in the
field of approximate reasoning and image understanding. Especially the de-
sign of a reasoning scheme for image understanding remains as a challenging
task. One important solution to be found in first steps is the definition of
information systems of HLC and MLC agents. While for MLC agents low
level features can be used as attributes and therefore the basis for similarity
calculation, such information is not available for HLC instances. Further-
more it is necessary to investigate whether rough mereology should cover
the complete image understanding process, including reasoning based on
low level features and high level concepts or whether it can be used as an
alternative or additional approach. For example, rough mereology can be
used as an additional approach for low level image analysis only, where MLC
instances are detected based on similarity measures calculated from low level
features.

Also, formalisms that allow for integrating uncertainty handling mecha-
nisms directly within the high level reasoning module such as probabilistic
extensions to description logic [16, 11] or fuzzy descriptions logics [42] are
promising approaches for the image understanding problem. Both concepts
are based on approximate reasoning approaches also presented in this work.
Within this context, it needs to be considered whether uncertainty in the
reasoning process suits the ideas of graduality, degrees of belief or similarity
of objects.



Appendix A

Example pictures

Figure A.1: Representative High Jump image for images in class c1
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Figure A.2: Representative Pole Vault image for images in class c2

Figure A.3: Representative Pole Vault image for images in class c3
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Figure A.4: Representative Pole Vault image for images in class c4

Figure A.5: Representative High Jump image for images in class c5

Figure A.6: Representative Pole Vault image for images in class c6
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Figure A.7: Representative Pole Vault image for images in class c7

Figure A.8: Representative HIgh Jump image for images in class c8



Appendix B

Additional Tables

No. rule antecedent rule consequent support
r1 if (Wind=onshore) and (Tide=low) then (Condition=good) 1
r2 if (Wind=onshore) and (Tide=low) then (Condition=bad) 1
r3 if (Weather=cloudy) and (Tide=low) then (Condition=good) 1
r4 if (Weather=cloudy) and (Tide=low) then (Condition=bad) 1
r5 if (Tide=low) and (Swell=1m) then (Condition=good) 1
r6 if (Tide=low) and (Swell=1m) then (Condition=bad) 1
r7 if (Wind=onshore) and (Swell=1m) then (Condition=good) 1
r8 if (Wind=onshore) and (Swell=1m) then (Condition=bad) 1
r9 if (Weather=cloudy) and (Swell=1m) then (Condition=good) 1
r10 if (Weather=cloudy) and (Swell=1m) then (Condition=bad) 1
r11 if (Swell=2m) then (Condition=good) 2
r12 if (Swell=0m) then (Condition=bad) 2
r13 if (Wind=offshore) and (Swell=1m) then (Condition=good) 1
r14 if (Weather=sunny) and (Swell=1m) then (Condition=good) 1
r15 if (Tide=high) and (Swell=1m) then (Condition=good) 1
r16 if (Wind=onshore) and (Tide=high) then (Condition=good) 1
r17 if (Weather=cloudy) and (Tide=high) then (Condition=good) 1
r18 if (Wind=offshore) and (Tide=low) then (Condition=bad) 1
r19 if (Weather=sunny) and (Tide=low) then (Condition=bad) 1

Table B.1: Rules generated from Table 3.2
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x1y1 x1y2 x1y3 x1y4 x2y1 x2y2 x2y3 x2y4

x1y1 1 0.6 0.4 1 0.8 0.4 0 0.6
x1y2 0.6 1 0.8 0.6 0.4 0.8 0.4 0.2
x1y3 0.4 0.8 1 0.4 0.6 1 0.6 0.4
x1y4 1 0.6 0.4 1 0.8 0.4 0 0.6
x2y1 0.8 0.4 0.6 0.8 1 0.6 0.2 0.8
x2y2 0.4 0.8 1 0.4 0.6 1 0.6 0.4
x2y3 0 0.4 0.6 0 0.2 0.6 1 0.4
x2y4 0.6 0.2 0.4 0.6 0.8 0.4 0.4 1
x3y1 0.6 0.2 0.4 0.6 0.8 0.4 0.4 0.6
x3y2 0.2 0.6 0.8 0.2 0.4 0.8 0.8 0.2
x3y3 0.2 0.6 0.8 0.2 0.4 0.8 0.8 0.2
x3y4 0.6 0.2 0.4 0.6 0.8 0.4 0.4 0.6
x4y1 0.8 0.4 0.2 0.8 0.6 0.2 0.2 0.4
x4y2 0.4 0.8 0.6 0.4 0.2 0.6 0.6 0
x4y3 0.2 0.6 0.8 0.2 0.4 0.8 0.8 0.2
x4y4 1 0.6 0.4 1 0.8 0.4 0 0.6

Table B.2: Rough inclusion values of system agent, part 1

x3y1 x3y2 x3y3 x3y4 x4y1 x4y2 x4y3 x4y4

x1y1 0.6 0.2 0.2 0.6 0.8 0.4 0.2 1
x1y2 0.2 0.6 0.6 0.2 0.4 0.8 0.6 0.6
x1y3 0.4 0.8 0.8 0.4 0.2 0.6 0.8 0.4
x1y4 0.6 0.2 0.2 0.6 0.8 0.4 0.2 1
x2y1 0.8 0.4 0.4 0.8 0.6 0.2 0.4 0.8
x2y2 0.4 0.8 0.8 0.4 0.2 0.6 0.8 0.4
x2y3 0.4 0.8 0.8 0.4 0.2 0.6 0.8 0
x2y4 0.6 0.2 0.2 0.6 0.4 0 0.2 0.6
x3y1 1 0.6 0.6 1 0.8 0.4 0.6 0.6
x3y2 0.6 1 1 0.6 0.4 0.8 1 0.2
x3y3 0.6 1 1 0.6 0.4 0.8 1 0.2
x3y4 1 0.6 0.6 1 0.8 0.4 0.6 0.6
x4y1 0.8 0.4 0.4 0.8 1 0.6 0.4 0.8
x4y2 0.4 0.8 0.8 0.4 0.6 1 0.8 0.4
x4y3 0.6 1 1 0.6 0.4 0.8 1 0.2
x4y4 0.6 0.2 0.2 0.6 0.8 0.4 0.2 1

Table B.3: Rough inclusion values of system agent, part 2
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Rough and Fuzzy
membership function

In order to understand the differences between the rough membership func-
tion and the fuzzy membership function, a short comparison of both concepts
will be presented in the following. This chapter makes use of the notions
introduced in chapter 3.

C.1 Fuzzy set theory
In fuzzy set theory [44] the membership of an element to a certain concept
is given by its fuzzy membership function. As an example Figure C.1 shows
the membership functions µSafe and µChallenging of the linguistic labels safe
and challenging depending on the swell size in a graph. Both correspond
to the definition of a fuzzy set. As an example, an object for which the
swell size of 2 m is known belongs to concept safe with a degree of 1 and to
concept challenging with a degree of 0.1. This brings up the question, how
a value for the concept safe and challenging can be calculated which would
result in a set theoretic intersection of the both concepts.

For calculating the intersection of two fuzzy sets µ ∩ µ′it is assumed

Figure C.1: Fuzzy Membership Function
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that the intersection is calculated per element. This results in a function
u : [0, 1]2 → [0, 1] in such a way that

(µ ∩ µ′)(x) = u(µ(x), µ′(x))

In order to accept a function u as an operator for set theoretic intersection
it has to hold for axioms given as boundary condition, monotonicity, com-
mutativity, associativity, continuity and subidempotency. Such a function
> is called a t-norm [29]. Some prominent t-norms are defined as:

>min(a, b) =def min{a, b}
>Luka(a, b) =def max{0, a+ b− 1}
>prod(a, b) =def a · b

Accordingly the definition for functions ⊥ called t-conorms are used for
the union of fuzzy sets:

⊥max(a, b) =def max{a, b}
⊥Luka(a, b) =def min{a+ b, 1}
⊥prod(a, b) =def a+ b− ab

As a result intersection and union of fuzzy sets can now be calculated
by applying an according t-norm or t-conorm.

(µ ∩> µ′)(x) = >(µ(x), µ′(x))

(µ ∩⊥ µ′)(x) = ⊥(µ(x), µ′(x))

De Morgan’s laws
µ ∩ µ′ = µ ∪ µ′

µ ∪ µ′ = µ ∩ µ′

hold for all pairs of t-norms and t-conorms. However, they do not form a
boolean algebra, because there is no complement operator for which µ∩µ = 0
and µ ∪ µ = 1 always holds.

It has been found [17] that the pair {min, max} is the only pair of t-
norms and t-conorms that preserve the property of distributivity. If the
property µ ∩ µ = µ and µ ∪ µ = µ is needed for fuzzy sets, the pair {min,
max} has to be used.

Accordingly in [44] the pair {min, max} has been used for calculation
with fuzzy sets in the following way:

(µ ∩ µ′)(x) = min{µ(x), µ′(x)}

(µ ∪ µ′)(x) = max{(µ(x), µ′(x)}

µ(x) = 1− µ(x)
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Example C.1.1. Using the pair of {min, max}, the linguistic label of "safe
and challenging" is calculated by means of fuzzy set theory. The solid line
in the figure denotes the application of the min operator.

For an object for which the swell size of 2 m is known, the membership
to concept safe and challenging results in a degree of 0.1. Accordingly an
an object for which the swell size of 3 m is known belongs to concept safe
and challenging with a degree of 0.5.
Example C.1.2. As stated above, an object for which the swell size of 2
m is known, the membership to the single concept safe has a degree of 0.1.
Using µ(x) = 1 − µ(x) to calculate the complement concept not safe, the
membership results in a degree of 0.9. Calculating the concept safe and not
safe results in min{0.1, 0.9} = 0.1 instead of 0 in case of a boolean algebra.

C.2 Calculating composite concepts using Rough
Sets

For showing the differences between the fuzzy membership function and the
rough membership function, the calculation of composite concepts will be
considered in rough set theory . In rough sets, composite concepts can for
example be found when for each object in the universe there is more than
one decision attribute. Combinations of such decision concepts can then
also be calculated using set theoretic operators.
Example C.2.1. In the following table an information system is presented
with the attribute set A = Swell and two different decision concepts X :
Safe and Y : Challenging. The third decision concept Z = Safe ∩
Challenging is calculated under set theoretic intersection. Horizontal lines
are demarcations of equivalence classes created by A = Swell.

U Swell Safe Challenging Safe ∩ Challenging
...

...
...

...
...

xi 3 m yes no no
xi+1 3 m no yes no
xi+2 3 m yes yes yes
xi+3 3 m no yes no
...

...
...

...
...
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Using the rough membership function defined above, the following results
for an object xk with Swell = 3m are obtained.

µ
{Swell}
X (xk) = 1/2

µ
{Swell}
Y (xk) = 3/4

µ
{Swell}
Z=X∩Y (xk) = 1/4

The example above shows the fact, that in rough set theory the member-
ship of an object to a composite concept is calculated using background data
as already defined in chapter 3. It has been found [28] that there is no func-
tion u independent from background data which allows for the calculation
of the membership based on its constituents in the form of

(µ ∩ µ′)(x) = u(µ(x), µ′(x)).

In the same work it has been stated that the following properties of the
rough membership function are valid:

µBX∩Y (x) ≤ min{µBX(x), µBY (x)}

µBX∪Y (x) ≥ max{µBX(x), µBY (x)}

C.3 Rough-Fuzzy hybridization
Despite the differences in rough and fuzzy set theory, there are several at-
tempts in literature for combining both approaches. Such a combination
of approaches or theories is also reffered to as hybridization. One way of
hybridization are rough-fuzzy sets [41], where equivalence classes are being
defined using fuzzy membership functions. In that case an object does not
belong to a single equivalence class but may belong to several equivalence
classes to a certain degree. Equivalence classes in the basic rough set ap-
proach may then be considered as a general case where each object belongs
to an equivalence class to the degree 0 or 1.

Further approaches for combining fuzzy and rough sets interpret at-
tribute values of conditional and decision attributes as membership values
of predefined fuzzy sets [14]. Using the fuzzy sets defined in Figure C.1,
an attribute a would be defined by the fuzzy sets safe and challenging.
An object for which the swell size of 2 m is known, would then result in
attribute values for a in the form of membership of degree 1 to the con-
cept safe and a membership of degree 0.1 to the concept challenging:
a(xi) = {µsafe(2m), µchallenging(2m)} = {1, 0.1}
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Learning of defaults

D.1 Learning of defaults for probabilistic default
reasoning with conditional constraints

In [20] it is assumed that there is some statistical knowledge about a set of
individuals in the form of "all penguins are birds" or "between 90% and 95%
of all birds can fly". In the following an approach is presented in order to
derive such knowledge (defaults) from data by means of rough set theory.

Assume there exists statistical knowledge about a set of 100 patients that
classifies each patient into a certain decision class disease = yes or disease
= no. The following table represents that knowledge.

disease support
yes 30
no 70

From the knowledge represented in the table, one can derive the following
statement:

• 30% of all patients have a disease

However, there might be some additional knowledge in the form of con-
ditional attributes that describe properties of individuals. In the following
we assume that we know the tempretature of the set of patients. Horizontal
lines denote equivalence classes.

temperature disease support
40 yes 10
38 yes 20
38 no 70

Considering the knowledge about the patients temperature, the following
statement can be derived:
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• At least 10% of all patients have a disease

Alhough data actually tells us that 30% of all patients have a disease, per-
cepting individuals by means of their properties (e.g. temperature) increases
uncertainty.

Now the knowledge about patients is increased by means of a second
attribute telling whether a patient feels sick.

sickness temperature disease support
yes 40 yes 10
yes 38 yes 20
yes 38 no 20
no 38 no 50

Including the knowledge about sickness, the following statement can be
derived:

• Between 10% and 50% of all patients have a disease.

In a next step, the knowledge about patients is increased by means of a
third attribute telling whether a patient feels pain.

pain sickness temperature disease support
yes yes 40 yes 10
yes yes 38 yes 15
no yes 38 yes 5
no yes 38 no 20
no no 38 no 50

Including the knowledge about sickness, the following statement can be
derived:

• Between 25% and 50% of all patients have a disease.

By increasing the knowledge about patients, the concept of having a
disease is being approximated. However percentages are not given purely
based on statistics but also consider the knowlegde about individuals.

Interchanging attributes

In the examples above, disease has always been considered the attribute of
interest. However, it is possible to make statements about every attribute.
Assume that the decision attribute now is pain and the set of conditional
attributes is A = {sickness, temperature, disease}.
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pain sickness temperature disease support
yes yes 40 yes 10
yes yes 38 yes 15
no yes 38 yes 5
no yes 38 no 20
no no 38 no 50

This allows for deriving the following statement:

• Between 10% and 30% of all patients feel pain.

Using available knowledge

Furthermore, one can also derive statements for individuals for which certain
knowledge is available. For example, we would like to gain knowledge about
patients with a temperature of 38. This reduces the number of patients to
90 for which the following statement can be derived:

• Between 17% and 44% of all patients with a temperature of 38 have a
disease (between 15/90 and 40/90).

or for A = {sickness, temperature, disease}:

• At most 22% of all patients with a temperature of 38 feel pain (between
0/90 and 20/90).
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