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Abstract

The advent of the information (or knowledge) society has brought new prob-
lems and challenges. There is a kind of information overflow as information
gets accessible by more and more people. Since the invention of the inter-
net it is as easy as never before to make one’s knowledge available to other
people.

Knowledge representation systems take over the responsibility to store
these huge amounts of knowledge and present ways to access and retrieve
them. Those systems work, but only under certain conditions. The biggest
problem is actually not storing information but accessing it in an effective
and efficient way. Thus without appropriate ways to search and retrieve
information the usefulness of these systems is questionable.

One way to address this problem is to look at how content is classified
when it is stored in the knowledge representation system. This master thesis
presents signature matching as and efficient and effective way to classify
medial content. The aim is to look at what kind of matches are usually
required by users of these systems and then develop a method to foster this
approach already during the classification process.

This said during searching activities it is often required from search
algorithms, that not only perfect but relaxed ( meaning not 100% fitting)
matches are returned. This master thesis takes a description logic system as
the basic content classification system and extends it with means to achieve
this goal. The advanced inferencing services ”Concept Contraction” and
”Concept Abduction” are employed to find relaxed matches and also give a
ranking of the returned results.
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Chapter 1. Introduction

1.1. Motivation

In our society knowledge has become one of the most important resources. A
whole “knowledge economy” has developed around the fact that knowledge
has become tradable, because a) the storage facilities have improved and
b) the distribution has become very easy and cheap through the advent of
the Internet. But with a wealth of knowledge and new ways to handle it
also new problems arise. The amount of knowledge is overwhelming and it
can be hard to utilize it efficiently. Search and retrieval of knowledge are
especially sensitive topics, because these directly contribute to the value of
the newly available knowledge.

Search and retrieval functionality can be approached upon from two
sides: Top-down, where one builds upon existing databases (or other means
of storing knowledge) and tries to find efficient ways to access the available
data by developing efficient algorithms. Though it is quite easy to experi-
ment in this area and results come fast, it does not go to the roots of the
problem. The alternative is a bottom-up approach where one examines the
way knowledge is stored and organized in the first place. The structuring
of knowledge is an important criteria for efficient access. In this case struc-
ture of knowledge means powerful mechanisms to classify knowledge. Only
through a thorough classification, possibly in a (semi-)automated way, the
full power of storable knowledge can be exploited.

One imminent area of concern is the publication of content via the inter-
net. People are now able to become their own content producers and these
possibilities are used by many. “Content” in this context means multime-
dial content, like pictures, texts, videos, music, etc. or more specifically it
means digital representations of all these types of content. It is as easy as
never before to create a digital representation of the medial content one has
produced and to publish it in the internet. This process is of only limited
value if no effective and efficient means to search and retrieve are available.
The interesting point here is that storing content and storing knowledge are
interrelated. Any means of retrieving medial content requires the storage of
knowledge about the content beforehand.

The goal of this classification is to use information gained in previous
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instances of classification (i.e. context knowledge) to a) classify correctly
and b) classify efficiently. One can find this approach also in the principle of
reuse of software components in the object orientation paradigm of computer
science. The basic idea is to reuse components so that software becomes
cheaper to develop, is of higher quality and is more flexible to use. This is
only made possible because of means to find the right component for the
right task.

One solution to this categorization problem is signature matching. In
the area of software development, signature matching compares signatures
(the structure) of software modules (or the methods of modules) to find the
most appropriate counterpart. This means search is not done as usual by
only comparing names, but by taking context knowledge into account.

If one wants to utilize signature matching for the classification of arbi-
trary medial content, the first problem is the translation of content into a
signature. This is where description logics excel as means to model infor-
mation domains and store both syntactic and semantic information. De-
scription logics are well-known and wide-spread systems to model and store
knowledge. They also allow (somewhat limited) reasoning over the stored
explicit knowledge to gain additional implicit knowledge.

Examples where these technologies are already employed are E-market-
places. Here signature matching is used to find negotiation spaces for sup-
pliers and consumers. Signature matching helps in providing means to find
a common ground even if the things searched for and the things provided
do not match exactly. Other example are applications which work with user
profiles like pages offering job exchanges or dating services. They use the
information gathered about a user to find appropriate matches. User pro-
files then work as a kind of signature and signature matching algorithms are
employed to find the best matches.

All these approaches work well in their own domain, but they have a
common limitation. Standard signature matching works well where exact
matches are the goal, but when dealing with arbitrary types of content
the limited number of results is unsatisfiable. With the help of description
logics and advanced matching algorithms for relaxed or fuzzy matching this
problem can be solved.

This master thesis takes the approach of signature matching a step
further and extends it with advanced functionality for relaxed matching.
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Through this it is possible to utilize the power of signature matching in the
fuzzy world of knowledge management.

1.2. Structure Of This Thesis

This thesis presents the results of developing a signature matching algo-
rithm that employs concept contraction and concept abduction for relaxed
matching. It can be roughly divided into three parts.

The first part explains the problem at hand. In chapter 2 the problem
is specified and the objectives of the thesis are explained. It also gives an
introduction into the problem domain used for the implementation of a proof
of concept application. Chapter 3 relates the thesis to other work done in
this area and points out similar approaches to the problem. As the thesis
should be complete in itself chapter 4 gives an introduction into all relevant
topics and concepts used throughout the rest of the thesis.

The second part is the core part. Chapter 5 explains the solution to the
problem. The solution consists of two main ideas: A signature model for
modeling content signatures and a matching algorithm that employs concept
contraction and concept abduction to rank possible results. To prove the
viability of the algorithm a prototype application was developed. Chapters
6 gives detailed information about the decisions made during design and
implementation of the sample application. Chapter 7 contains an evaluation
of the developed prototype.

The master thesis is concluded with chapter 8, which shows the conclu-
sions drawn from the whole work. It contains observations made throughout
the thesis and gives an outlook on future research directions and topics.
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Chapter 2. The Problem
Summary. This chapter elaborates some of the main

problems, that arise when one tries to match arbitrary types
of medial-content. It shows why the problems can be related to
matching signatures and why signature matching can be applied
to more than just matching function signatures of software com-
ponents. It explains the objectives of the thesis as well as the
application domain used for the reference implementation of the
algorithm.

2.1. Problem Description

As mentioned before search and retrieval are very important topics when
talking about the efficient use of stored knowledge. Among systems that are
able to store knowledge, description logic (DL) systems are very popular.
They are very flexible, customizable and allow to discover information that
is not visible in the first place, with the help of so called inferencing services.
After one such system has stored all the important knowledge, the question
arises of how to retrieve exactly that information that one needs right now.
This is where signature matching comes into play.

One can differentiate two types of signature matching: exact matching
and relaxed matching. The first can be very well executed by DL systems,
but it only delivers 100% perfect matches (meaning that the matches equal
every aspect specified in the search). This is how most matching procedures
operate until now. The second one offers ways to get not so perfect matches
as possible matching candidates. This is necessary because when managing
knowledge one has to take two important things into account: 1. Users
are humans who make mistakes and 2. a lot of knowledge is dependent on
contextual information (of the user or another person). Thus finding not so
perfect matches is preferred to just finding exact matches.

A problem arises here, because the standard services provided by DLs
(namely satisfiability and subsumption, see chapter 4) are not enough to
reach this goal. They allow for basic relaxation (for example subsumption
allows to find results which are not exact, but which are more general than
the searched result), but they fail when the relaxed search needs to be more
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complex. What if a result contains everything searched for except one lit-
tle part? Or what if it fits otherwise perfectly but there exists a single
contradiction between one component?

Finding more matches through relaxed matching does not solve the prob-
lem alone. What is also needed are means to evaluate the results. This
means that the results should be sorted in a way which expresses the degree
to which they fit. This requires also that the measurements are transparent
to the user, so that he can make an optimal decision.

2.2. Objectives Of The Master Thesis

This master thesis has the goal to develop and implement a signature match-
ing algorithm for matching arbitrary types of content. The algorithm will
contain two different approaches: Firstly ”exact matching”, which is used
to identify perfectly matching counterparts and secondly ”relaxed match-
ing”, which is employed to find and rank matches that do not fit perfectly.
The latter part uses ”Concept Contraction” (CC) and ”Concept Abduction”
(CA) as means to identify these relaxed matches.

The algorithm will be developed as generic as possible, to allow it to be
used in as many application contexts as possible. The main objective can
be divided into three sub-objectives:

Development Of A Signature Matching Algorithm

This sub-goal consists of the basic implementation of the signature matching
algorithm. It includes the development of a signature model, which is then
used by the algorithm. In the first instance this algorithm will only support
exact matching of demand and supply signatures, and will only use the
standard inferencing services of the used DL system.

Relaxed Matching By Concept Abduction And Concept Con-

traction

In this step the signature matching algorithm is extended with relaxed
matching functionality. Based on CC and CA partial matches are iden-
tified. This means that this step includes the development of CC and CA
as extensions for the DL system.
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Ranking Of Results With Transparent Penalty Functions

To increase the use of the relaxed result sets, a ranking function is imple-
mented. It is based on a penalty function, which assigns penalties for the
transformations made during CA and CC. The ranked result set shows how
close a relaxed match is to the original query. In this step several penalty
functions will be implemented and evaluated to see how they influence the
results.

2.3. The Example Domain

To be able to make a real-world verification and evaluation of the devel-
oped algorithm a concrete example domain is used. This section introduces
the domain and explains the signature problem inherent to its classification
schema.

Figure 2.1: Venia-Legendi example classification (from [Boßung, 2007])

The Technical University of Hamburg Harburg is developing together
with the art art history departments of the universities of Berlin, Bonn,
Munich and Hamburg a networking infrastructure for data about historical
art. It is based on the “Warburg Electronic Library” (WEL, see [wel]). The
users of the WEL have access to multimedia documents and are able to
configure their use individually for their needs. Example projects include



8 Chapter 2. The Problem

a digital library for political iconography and the “Geschichte der Kunst-
geschichte im Nationalsozialismus” (GKNS, see [gkn]). GKNS is dealing
with the creation of a thematic network, about the history of art in the
national-socialist era. Thus the type of content that the GKNS busies itself
with, are reproductions of all kinds of artworks.

Content is described by means of an “Asset Expression Model”. Asset
expressions are based on the λ-calculus and allow for a typed classification
of components of content. Figure 2.1 shows an example classification of a
government document. The problem with classification of historical content
stems from the necessity of contextual knowledge. Different people possess
different contextual knowledge. This also includes a lack in some specific
area or contradicting knowledge.

As with software components, the real value created by the GKNS comes
from the search and retrieval functionality. While the GKNS helps with
features for content classification, this process is still done manually and
offers no functionality for automated classification. The problem is inherent
to data requiring contextual knowledge. While it may be easy and obvious
to classify a portrait or a passport, complex medial content (like the one
shown in the example above) have a context dependent meaning. One way
to approach this problem, is to see it as a signature matching problem within
the GKNS. Whenever new content is added to an already existing database,
what is the best possible classification done before, that identifies the new
piece of art?
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Chapter 3. Related Work
Summary. Signature matching has its origins in the field

of computer science and is related to the object-oriented program-
ming paradigm. This chapter shows alternatives for its use and
relates them to the thesis. In addition, alternative approaches to
the problem of content matching are highlighted and commented.
Finally alternative uses for signature matching are discussed.

3.1. Description Logics And Signature Matching

One area where matching of signatures is very important, is in applications
where data about users and their behavior is collected and stored. Ex-
amples come from many different application domains: Online-stores use
behavioral data about their users for personalized advertising; dating sys-
tems offer users advanced searching algorithms to find the “perfect” match
to their own profile; job recruitment pages offer companies as well as people
who search a job possibilities to create, maintain and match job profiles.
The difficult task in all these systems is finding and matching user-profiles
to a given query profile. This problem becomes worse as in all these appli-
cations a perfect match is almost impossible, because the possibilities for
profiles are almost endless. The core problem is that profiles are often in-
complete or incompatible with other profiles. These are common problems
when matching user profiles and have to be taken into account. Thus one
needs to alter the search such that the “best possible” match is searched for.

Cali, Calvanese, Colucci, Di Noia and Donini approach this problem in
[Cal̀ı et al., 2004] and propose a description logic system specifically tai-
lored to representing user profiles. It makes use of the advanced inferencing
services concept contraction and concept abduction to offer the users trans-
parent criteria for the ranking of a result set. Their basic idea is that in
the presence of missing and conflicting information concept contraction and
concept abduction are the solution to both – finding fuzzy matches and
assigning proper rankings. Their description logic system is a basic AL de-
scription logic, with the extensions:
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• Full existential qualification:

This extension allows for existential restrictions on profile data and is
used to express whether a user has interest in a specific topic.

• Predicate restriction:

This allows the assignment of concrete values (called levels) to specific
concepts and is used to express the level of interest a user has in a
specific topic.

User profiles are then represented in the system as a conjunction of the
following:

• Atomic concepts, representing atomic properties about the user, like
gender.

• A conjunction of predicate restrictions representing physical charac-
teristics, like age or height.

• A conjunction of concepts of the form hasInterest showing the least
and the most interest a user has in a specific area.

An example profile of a 25 year old man, with strong interests in Japanese
comics, fantasy novels and politics but absolutely no interest in soccer is
shown here:

male� =25 (age)� =1.96 (height)�
∃hasInterest. (fantasyNovels� ≥0.9 (level))�
∃hasInterest. (japaneseComics� ≥0.9 (level))�
∃hasInterest. (politics� ≥0.9 (level))�
∀hasInterest. (¬soccer� ≤0 (level))

The proposed matching algorithm takes a demand profile and searches through
all available supply profiles. It uses concept contraction to filter out contra-
dicting concepts. A contradiction would for example appear if a profile which
states an interest in politics with a level of “at least 0.5” is compared with
the example profile above. After all contradictions are filtered out, concept
abduction is used to find out which interests the supply requires but which
the demand cannot deliver. This would be the case if for example a profile
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which states an interest in German culture of “at least 0.5” is compared with
the example profile above. Both, contradictions and missing information,
are penalized through penalty functions, which calculate penalties for the
changes made during the contraction and abduction phases. Based on these
penalties a ranking of the profiles that were compared is created.

This approach is similar to the one taken in this thesis because the same
advanced inferencing services are used to match the profiles. Through the
use of a proprietary description logic though, the algorithm for matching
the user profiles is not very flexible. In addition no analysis regarding the
effectiveness of their chosen penalty function was done.

In [Colucci et al., 2004b] almost the same team of scientists addresses the
problem of negotiation spaces in e-marketplaces. The problems of matching
offers and requests in this domain are similar to the one mentioned above,
but differ in one important aspect. In this area perfect matches almost never
happen, because of requirements that are not negotiable for one party or the
other. This means the parameters of an offer/a request have to be classi-
fied into different categories. Thus a very interesting part of the proposed
description logic design is the distinction of “strict” (ST) and “negotiable”
(NG) requirements. This is what opens up negotiation spaces, as it is now
possible to distinguish an offer that does not match at all (ST requirements
are not fulfilled) from one that matches partially (ST requirements are ful-
filled, but the NG requirements are not). Through the distinction of the two
types of requirements requests and offers get an inner structure. It is thus
no longer necessary that the offer and the request match perfectly.

The proposed algorithm is based on description logics, which allow for
an “open world assumption” (which means, that one accepts that knowledge
in the world is incomplete and thus that absence of information does not
necessarily mean wrong information). This has two distinctive advantages:
Firstly, incomplete information is allowed and secondly, absence of informa-
tion can be distinguished from negative information. The algorithm is based
on a standard ALN description logic and it makes also use of the advanced
inferencing services concept contraction and concept abduction.

A second interesting point is the rankPotential method which is used to
create a ranking of the results. This method is a kind of penalty function.
It assesses how “close” two concept descriptions are, and quantifies this
closeness as a number. The algorithm compares two concepts (C and D)
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and analyzes three differences:

1. How many concepts appear in D, that do not appear in C?

2. Are all number restrictions of D represented in C?

3. If universal role qualifications are given by D, are they mirrored by C?
If not how close are the qualifications from C to the ones from D?

These considerations are similar to the ones made throughout the develop-
ment process of the penalty functions proposed by this thesis. Basically the
algorithm analyzes which restrictions are demanded by D that are not met
by C. However the algorithm is using fixed weights for every portion of the
assessment and no investigation regarding the accuracy of the penalties has
been made.

In [Di Noia et al., 2003] Di Noia, Di Sciascio, Donini and Mongiello
propose the use of concept abduction for several recent matchmaking prob-
lems. Their major example is human matchmaking in the form of apartment
ads in newspapers that are matched against user preferences for a new flat.
Other quoted examples that could benefit are software agent matchmaking,
matchmaking in e-marketplaces and service discovery.

They base their work on four principles for matchmaking, which are also
relevant for this thesis:

Open World Descriptions

Open world descriptions come with the use of description logics, and are
based on the open world assumption. This makes it possible to distinguish
absence of information from negation of information. Absent information
should then be interpreted as either something that has to be refined later,
or something that is of no importance.

Non-symmetric Evaluation

Non-symmetric evaluation relates to the fact that it is possible that a supply
S is a perfect match for a demand D, while D is no match at all for S. This
should be mirrored in the ranking D and S get respectively to each other.

Syntax Independence In Ranking

This is made possible through the use of a description logic. As concepts are
related to each other it is possible to create syntax independence of ranking
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results. If for example one supply specifies the months “June-July-August”
it should be equally ranked to a supply that specifies “Summer”, if these
supplies are otherwise equal. This property is a very strong claim, which
depends heavily on the semantic meaning of the defined concepts. Though
implication and subsumption guarantee a certain relationship between con-
cepts it is foremost of syntactic and not semantic character.

Monotonicity In Ranking Over Subsumption

The subsumption relationship also directly translates to the ranking of two
supplies S1 and S2. If S1 subsumes S2, S2 should get better ranking, because
it is more specific and thus fits the demand better. This again is a very strong
claim, which may not be true always. A counterexample is if S2 introduces
a contradiction with the specified demand.

The algorithm proposed is based solely on concept abduction. The rank-
ing of the returned results is thus only based on the length of hypothesis
created through concept abduction. This is a very shallow approach as the
“types” of concepts in the hypothesis are not taken into account (which
could then lead to the mentioned contradictions).

3.2. Advanced Inferencing For Signature Matching

Concept abduction and concept contraction are only two possible enhance-
ments for description logics with regards to the “distance” measurement of
concepts. Several other advanced inferencing services have been developed
(see [Brandt and Turhan, 2001]) and this section introduces two alternatives
which could be used to solve the problem at hand.

3.2.1 Concept Difference

Teege introduced in [Teege, 1994] the “difference” operation for description
logics. The goal was simple: compare two concept descriptions and remove
as much as possible of the information contained in one description from the
other description. Informally this means that a new description is created,
which contains all info that is part of one and not the other description. As
this method can also be used to remove unnecessary information it is also
called “subtraction”. Teege takes three types of expressions into account for
his calculations. Concepts (descriptions of objects), roles (descriptions of re-
lationships between objects) and features (descriptions of functions between
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objects). The result is a new expression, but it is important to state, that it
does not extend the description logic in any way with expressions not covered
by the three types mentioned above. The difference operation is based on
concept conjunction and the basic inferencing service subsumption, which
makes it independent of the specific type of description logic used (though
some description logics require special rules). The formal definition of the
difference operation is:

Definition 1 Let L be a description logic. Let � denote the conjunction
operation in L, let � denote the subsumption relation in L and let ≡ denote
semantic equivalence in L. max� denotes the maximal concept w.r.t. sub-
sumption. Let A,B ∈ L be two descriptions in the logic with A � B. Then
the difference B – A of A and B is defined by

B − A := max� {C ∈ L : A � C ≡ B} .

The set {C ∈ L : A � C ≡ B} is called the difference candidates and
is denoted by B 
 A.

Every description C in the result contains enough information to yield the
information in B, if added to A i.e. it contains all information of B which
is missing in A. In addition every C is maximally general, meaning it does
not contain any unnecessary information. Semantically this means that C

contains every individual of B and no individual of A \ B. Two extreme
cases exist, which are shown in figure 3.1. a) is the case if C = B and b) if
C = B � (D \ A), where D represents the domain knowledge.

Figure 3.2 shows a simple example, where B consists of the atomic con-
cepts x,y and z and A is the single atom x. The difference is the conjunct
of y and z.

Concept difference is another approach to measure the distinction or
commonality between different concepts. Teege shows that it is possible to
find the (semantic) maximum if the description logic used meets specific
conditions.

A second approach to concept difference is presented in [Brandt et al.,
2002]. The goal was to “translate” concepts from one DL to another. This is
done by creating an approximation of the concept in the new DL. In contrast
to Teeges approach not the semantic maximum is searched but the syntactic
minimum.
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(a) (b)

Figure 3.1: Extreme cases of the difference operation. (from [Teege, 1994])

Figure 3.2: Example difference of concept atoms. (from [Teege, 1994])

Both approaches also work toward solving the problem presented in this
thesis, though they have no means to actually measure the result. The new
concept created describes the difference between two concepts perfectly well,
but there is no way to actually qualify the results. Some method to measure
the results of several queries against each other is missing.

3.2.2 Least Common Subsumer

Another inferencing service which could be employed to measure the differ-
ence of concepts is the “least common subsumer” (LCS) operation. This
service finds the maximum description that all descriptions of a given col-
lection have in common. Formally this is the most specific concept that
subsumes all the descriptions of the collection. What this description looks
like and whether it exists depends strongly on the description logic under
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consideration. The formal definition of the LCS is:

Definition 2 Let L be a DL. A concept description E of L is a least common
subsumer (LCS) of the concept descriptions C1, ..., Cn in L ((LCSL(C1, ..., Cn)
for short) iff it satisfies

1. C1 � E for all i = 1,...,n, and

2. E is the least L concept description with this property, i.e. if E’ is an
L concept description satisfying 1., then E � E′.

The LCS – if it exists – is always unique and it is sufficient to define a
binary LCS of two descriptions, because n-ary LCS can be defined recur-
sively. In [Baader et al., 2005] it is shown that the LCS does not always
exist. More specifically it does not exist if one of the following scenarios is
true:

1. There may not exist a concept description, that satisfies 1. of the
definition.

2. There my be several subsumption incomparable minimal concept de-
scriptions satisfying 1. of the definition.

3. An infinite chain of more and more specific concepts can exist, that
all satisfy 1. of the definition.

The first scenario can not happen if the top concept is part of the de-
scription logic. The second cannot occur if conjunction is available as a
constructor in the description logic. The last one can happen in a TBox
with cyclic concept definitions.

The LCS was topic of many researchers in the last years (refer to [Baader
and Küsters, 1998], [Dean, 1999], [Baader et al., 2005], [Mantay, 1999] and
[Brandt et al., 2002]), and it was shown, that the LCS not only exists for
expressive description logics up to ALEN , but that it can be effectively
calculated. In [Baader and Küsters, 2000] Baader and Küsters analyze the
matching potential of the LCS operation and explore the complexity if ap-
plied to expressive description logics. In [Möller et al., 1998] the LCS is
successfully used to measure the difference between two concepts.

This thesis requires a description logic of at-least the complexity of an
ALEN , which means the LCS can be used to replace concept contraction
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and concept abduction, but it requires a quite complex operation. In addi-
tion the LCS has also the problem of not being able to qualify the results.
This is because finding the LCS does in itself not yield a measure for the
difference of two concepts. It is still necessary to compare the found LCS
with the existing concepts, and apply some sort of difference operation. An-
other solution might be to create a ranking solely on the LCS found during
the algorithm, but that again would require some means to measure the
difference of different LCS.

3.3. Other Applications For Signature Matching

In [Zaremski, 1996] several other applications for signature matching are
proposed. Namely content browsing, content indexing and content substi-
tution. Although only applications in the context of software libraries are
discussed, it is not hard to think of similar applications for other types of
contents.

One can for example imagine browsing in an art library where one can
add/remove specific requirements through the creation of a signature. Users
of this library could create personal profiles, containing specifications about
the type of art they like. The application would then create their own
exhibition based on the profile.

Another example where this is already done but with different methods
(mostly manually), is the creation of catalogs in libraries. Users of a library
can already use catalogs based on the title of the book, the name of the
author or sometimes even the content of the book. Based on signatures and
profiles users could create their very own catalog according to their specific
needs.

An example where substitution could be helpfully implemented through
signature matching is if an art gallery wants to make an exhibition about a
specific topic. Now one piece of art is not available and the gallery has to
search for a substitute. The algorithm would search through all available
art catalogs and present a ranking of possible alternatives.

All these examples show that signature matching has its relevance out-
side of matching function signatures of software component libraries.
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Chapter 4. Background
Summary. The algorithm presented builds upon two main

concepts: signature matching and description logics. In addition
the example domain uses the “Asset Expression Model”, which is
based on the λ-Calculus. To be self-contained, this chapter gives
an introduction to the used concepts and provides the reader with
background information for the rest of the thesis.

4.1. Signature Matching

“Signature matching is a way to use built-in information of software com-
ponents to organize them, navigate through them and retrieve them” (from
[Zaremski and Wing, 1995]).

The traditional way to structure software libraries and search through
them relies on the distinction of components solely by their name and the
directory they are contained in. Though this approach was sufficient for a
long time, it no longer is because of the amount of available high quality
reusable software components. Thus to yield extra productivity and quality
the existence of such a library is not enough anymore. The problem that
arises is that programmers often do not find what they need, because the
name of a component is not a sufficient means to characterize it. Given the
fact that the components over which the searches are done are programming
units (like classes, modules, packages, procedures, etc.), additional informa-
tion is available and can be used to solve this problem.

Signature matching uses specific information about the structure of a
software component, namely type information. When looking at a function,
rather than trying to guess about its use via its name, one could use the
type of function (meaning the list of all the types of its input and output
parameters). Signature matching is then the process of determining which
library components “match” a query signature. Formally general signature
matching can be defined as (according to [Zaremski and Wing, 1995]):

Definition 3 Signature Match: Query Signature q, Match Predicate M,
Component Library C → Set of Components

Signature Match(q, M, C) = {c ∈ C : M (c, q)}
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This means that the signature (type list) of a function and a component
library, which contains a set of software components together with the cor-
responding signatures, are matched according to a specified matching predi-
cate. The result is a subset of the components contained in C, which “match”
(what exactly this means is specified later in this section) the query signa-
ture.

Depending on the unit of search Zaresmki distinguishes between func-
tion matching and module matching. Module matching is an extension of
function matching, as here all functions of a module (i.e. the interface of the
module) are matched. As this thesis focuses solely on function matching,
only this will be explained further. More information on module/interface
matching can be found in [Zaremski and Wing, 1993] and [Zaremski and
Wing, 1995].

Function Matching

In function signature matching the search query is based on the function’s
type and not just its name. This can be seen as a way of using domain-
specific knowledge to aid in the search process by exploiting the structure of
a function. A type is defined to be either a type variable or a type operator
applied to other types. Type operators are either built-in operators or user-
defined operators. Each operator has an arity indicating the number of type
arguments. Examples for 0-arity operators are the base types like int or bool.
The function parameter, indicated by →, is an example of an operator with
2-arity. A user-defined type, αT , represents a type operator T with arity 1,
where the type of the argument is α.

Two types τ and τ ′ are equal (τ = τ ′) if either they are the same
type variable or τ = typeOperator(τ1, ..., τn),τ ′ = typeOperator′(τ ′

1, ..., τ
′
n),

typeOperator = typeOperator′, and ∀1 ≤ i ≤ n, τi = τ ′
i .

Given the type of a query τq and the type of a function from a library
τl, the generic form of function matching M (τl, τq) is defined as (according
to [Zaremski and Wing, 1995]):

Definition 4 (Generic Function Match)

M: Library Type, Query Type → Boolean
M (τl, τq) = Tl (τl)RTq (τq)

where Tl and Tq are transformations (e.g. reordering or renaming) applied
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to the library and query types respectively. R is some relationship defined
between types (e.g. equality).

Different types of matching can now be defined through the use of dif-
ferent transformations and relationships. Typically matching is divided into
exact matching and relaxed matching. Both can be used as matching pred-
icates in the definition of general signature matching and both consider
different transformations and relationships.

4.1.1 Exact Matching

“Two function types match exactly if they match modulo variable renaming”
(from [Zaremski and Wing, 1995]). The formal definition of exact matching
is (according to [Zaremski and Wing, 1995]):

Definition 5 (Exact Match)

matchE (τl, τq) = ∃ a sequence of variable renamings, V,
such that V τl = τq

Variable renaming means either the renaming of type variables or of user-
defined type operators. This definition shows, that variable names are of no
importance regarding signature matching. It shows also that exact match
is a very strong limitation, because only renaming is allowed as a transfor-
mation.

In Computer Science exact match has its uses, but often does not find
all possible answers. This is due to the nature of software, which can some-
times be changed to fit new circumstances. “Relaxed matching” covers this
problem and is used to identify possible – but on the first look not perfect
– matches.

4.1.2 Relaxed Matching

As said previously exact matching often poses too strong limitations on the
result set. It may miss useful functions whose signature are close to the
query signature, but that do not exactly match. Slight modifications can be
applied to the query signature to yield more matches. These modifications
can be classified into two categories: “partial relaxations”, which vary the
relationship between the types and “transformation relaxations”, which vary
the transformations applied to the types prior to matching.
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Partial Relaxations

Often a more specific query type can replace a very general function type.
This is due to the hierarchical nature of types, which are often arranged in
a strict hierarchical structure (e.g. classes in C++ or Java). Or it may be
difficult for a user to describe the most general type of a function parameter,
but a concrete example can be given. Conversely there exist situations in
which the user makes queries with a very general type but the library does
not contain such a function. It could be possible though, that a function
with a more specific type exists, which would be sufficient or could be easily
adapted to the needs of the user.

Referring back to the definition of generic function matching, the rela-
tionship R between types is equality for exact matching. For partial matches,
this relation is relaxed to a partial ordering of the types, based on the gen-
erality of types. A type τ is more general than a type τ ′ (τ ≥ τ ′) if τ ′ is
the result of a sequence of variable substitutions applied to type τ . Equiva-
lently, one says τ ′ is an instance of τ (τ ′ ≤ τ). One would typically expect
functions in a library to be of general a type as possible.

The solution to these problems are “Generalized Match” and “Special-
ized Match”. The formal definitions according to [Zaremski and Wing, 1995]
are:

Definition 6 (Generalized Match)

matchgen (τl, τq) = τl ≥ τq

A library type matches a query type if the library type is more general
than the query type. Exact match with variable renaming is actually just
a special case of generalize match, where all the substitutions are variables,
so matchE ⇒ matchgen. This kind of match and the returned results are
of special interest, because the user does not need to make any changes to
used the functions returned.

Definition 7 (Specialized Match)

matchspec (τl, τq) = τl ≤ τq

This is the converse of generalized match. In fact one can define specialized
match by swapping the order of the parameters:

matchspec(τl, τq) = matchgen(τq, τl)
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In addition exact match is also a special case of specialized match, so
matchE ⇒ matchspec

Transformation Relaxations

These types of relaxed matches transform the order or form of parts of the
query expression to achieve a match. Examples for these transformations
include changing whether a function is curried or uncurried, changing the
order of types in a tuple and changing the order of arguments of functions
(for functions that take more than one argument).

Uncurrying Functions

Uncurrying is a method from functional programming, where functions with
multiple parameters can be described as a series of functions with one pa-
rameter each. The complete definition of currying/uncurrying is beyond the
scope of this thesis and can be found in [Zaremski and Wing, 1995], page
185, figure 2.

In signature matching uncurrying means the disassembly of the query
into its pieces to find a match. Often it is of no importance for the user
whether the function is uncurried or curried, because the result of the func-
tion application(s) is the same. For example, the uncurried version of a
function with three parameters has the type (τ1, τ2, τ3) → τ , while the cor-
responding curried version has the type τ1 → τ2 → τ3 → τ .

The formal definition according to [Zaremski and Wing, 1995] is:

Definition 8 (Uncurry Match, Recursive Uncurry Match)

matchuncurry (τl, τq) = matchE (uncurry (τl) , uncurry (τq))

matchuncurry∗ (τl, τq) = matchE (uncurry∗ (τl) , uncurry∗ (τq))

Uncurry Match takes two uncurried function types and determines whether
their corresponding argument types match. Recursive Uncurry Match works
similar but allows for recursive uncurrying of the functional arguments of
τl and τq. By applying this transformation to both arguments, the types
are transformed into a canonical form. It is not necessary to define a curry
match, because the uncurry transformation is applied to both the query and
library types.
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Reordering Types

Oftentimes the order in which the parameters occur is of no importance to
the user. One common use of tuples is to group the arguments to a function,
where the order is not important. In these cases it can be helpful to change
the order to find matches in the supply library. In [Zaremski and Wing,
1995] reordering is defined in terms of permutations. When a function type
is given with a tuple as the first argument (e.g., τ = (τ1, ..., τn−1) → τn), a
permutation σ is a one-to-one mapping with domain and range 1, ..., n − 1
such that σ (τ) = (σ (τ1) , ..., σ (τn−1)) → τn.

The formal definition is:

Definition 9 (Reorder Match)

matchreorder (τl, τq) = ∃ a permutation σ such that matchE (σ (τl) , τq)

This means a library type τl matches a query type τq if the argument types
of τl can be reordered so that the types match exactly. This is only possible
if both τl and τq are function types with tuples as first arguments. Applying
the inverse permutation σ−1 to τq would lead to the same result.

These are the concepts of signature matching that are used by this the-
sis. Further information can be found in [Zaremski and Wing, 1993] and
[Zaremski and Wing, 1995].

4.2. Description Logics

Description Logics (DLs) are a family of formalisms for knowledge repre-
sentation. They are typically used to represent the knowledge of a specific
application domain in a structured and well-known way. DLs are thoroughly
covered in the “Description Logic Handbook” [McGuinness et al., 2003], this
chapter only gives a short introduction to the concepts and theories used in
this master thesis.

DLs consist of two parts. A knowledge base and reasoning services. The
knowledge base is structured through a description logic language. The basic
syntax elements of every description logic language are:

• Concept names:

These denote atomic “concepts”, which describe a subset of the indi-
viduals of the used domain.
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• Role names:

These denote atomic “roles”, which are used to connect individuals
belonging to different concepts. They describe relations between the
individuals.

In addition, complex concept descriptions (expressions) can be built from
these basic elements inductively with the help of constructors. Construc-
tors for defining concept expressions are specific to each DL. Examples for
common constructors are:

• Concept intersection (conjunction): C � D

• Concept union (disjunction): C � D

• Concept complement (negation): ¬C

Different description logic languages expand on these standard construc-
tors and add more sophisticated ones. The availability of specific construc-
tors characterizes a specific set of DLs. A very short and often used example
is the knowledge base, which consists of the concepts: male, female and
person. With these expression “all women” could be defined as person �
female. An equivalent definition would be person � ¬male.

One of the most basic and most used description languages is the family
of AL languages. These allow for the negation of atomic concepts, conjunc-
tion of concepts, value/type restrictions and limited existential quantifica-
tion. The latter two constructs ares used together with concept roles. Roles
link two concepts, or more specifically the individuals of two concepts. The
example knowledge base might have a hasChild role. This role would link
parents and their children. Thus the concept defined by ∀hasChild.male

denotes all individuals who have only male children.
This thesis uses some advanced concepts and constructs and thus a more

expressive DL is needed. The DL used belongs to the familiy of ALEN DLs.
This is the standard AL DL extended with Full existential quantification
(denoted by the letter E) and Number Restrictions (denoted by the letter
N ). This means roles can be combined with concepts using existential role
quantifiers (∃nR.C) or universal role quantifiers (∀R.C). The former de-
notes the existence of n roles R where the filler belongs to the set of C and
the latter, that every filler for role R belongs to the set denoted by concept
C.
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The semantics of a description logic is defined by interpreting concepts
as sets of individuals and roles as sets of pairs of individuals. Formally the
semantic interpretation of a description logic is a pair I =

(
∆, ·I

)
, where ∆

is the domain and ·I the interpretation function. Elements of ∆ are called
individuals, and ·I maps every concept to a subset of ∆ and every role to a
subset of ∆ × ∆.

The internal structure of a description logic as described above is called
a TBox or taxonomy. It is also possible to specify extensional knowledge
within a description logic. In an ABox one can define restrictions on the
individuals by using definitions and inclusion assertions. An example of a
definition is women ≡ person � female, which denotes that a woman is
defined as a female person. An inclusion assertion states to which concept
an individual belongs.

A model of a TBox is an interpretation satisfying all inclusions and
definitions of a TBox.

4.2.1 Inferencing Services

Another important feature of description logics is the ability to perform so
called reasoning or inferencing services over the concepts in a TBox. This
enables the description logic to make implicit knowledge visible, that can be
extracted from the explicit knowledge introduced into the system.

Two basic reasoning services are offered by most description logic sys-
tems, concept subsumption and concept satisfiability.

Subsumption is typically written as C � D and answers the question
whether, when a TBox T and two concepts C and D are given, D (the
subsumer) is more general than C (the subsumee) in any model of T . In
other words if C always denotes a subset of the set denoted by D.

Satisfiability captures the problem of checking whether, when a TBox T
and a concept C is given, at least one model of T exists, where C does not
subsume the empty concept. In other words, does an interpretation of T
exist in which the set denoted by C is not empty.

4.3. Advanced Inferencing Services

The proposed algorithm for signature matching offers relaxed matching
in addition to exact matching, thus non-standard inferencing services are
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needed. Concept contraction and concept abduction are used by the al-
gorithm and are introduced here. One of the advantages of both services
is that they track the changes that are needed to find a solution for the
problem.

To illustrate these concepts the example of an electronic marketplace is
used. Here buyers have specific demands, while sellers offer their supplies.
The “simple” goal is to find a supply which satisfies the users demand. We
assume that no supply perfectly fits the demand.

4.3.1 Concept Contraction

The basic idea of concept contraction is to filter out contradicting expres-
sions. If for example the buyer has a maximum limit of money he wants
to pay for a specific service, but the supplier only offers this service for a
higher amount, the buyer has to loosen his requirements. He has to give up
something. This is represented by the concept G while the concepts he can
keep are represented by the concept K. Formally one takes the supply S

and the demand D and checks the satisfiability of their conjunction D � S

w.r.t. the TBox T . The goal is then to retract requirements from D to
obtain a concept K such that K � S are satisfiable w.r.t. T .

The formal definition of a concept contraction Problem (CCP) is defined
as (taken from [Colucci et al., 2004b]):

Definition 10 Let L be a description logic, S, D, be two concepts in L,
and T be a set of axioms in L, where both S and D are satisfiable in T . A
Concept Contraction Problem (CCP), denoted as 〈L, S, D, T 〉, is finding a
pair of concepts 〈G, K〉 ∈ L × L such that T |= D ≡ G � K, and K � S is
satisfiable in T . K is called a contraction of D according to S and T .

There exists always the trivial solution 〈G, K〉 = 〈D,�〉 to a CCP. This is
the extreme case, that we give up everything of D.

4.3.2 Concept Abduction

After having filtered out all contradictions, it can still happen that a supply
does not subsume the demand. This is for example the case if the seller offer
includes extra services, which the buyer did not mention in the first place.
The solution is to hypothesize these additional concepts to the keep.
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The formal definition of a Concept Abduction Problem (CAP) is defined
as (taken from [Colucci et al., 2004b]):

Definition 11 Let L be a DL, S, D, be two concepts in L, and T be a set of
axioms in L, where both S and D are satisfiable in T . A Concept Abduction
Problem (CAP), denoted as 〈L, S, D, T 〉, is finding a concept H ∈ L such
that T |= D � H � S and moreover that D � H is satisfiable in T . We call
H a hypothesis about D according to S and T .

4.4. The RacerPro Reasoner

Racer stands for Renamed ABox and Concept Expression Reasoner. Rac-
erPro is a full-fledged knowledge representation system, which allows rea-
soning over multiple TBoxes. It implements the description logic
ALCQHIR+, also known as SHIQ (see [Horrocks et al., 2000]). This is the
basic AL logic augmented with qualifying number restrictions, role hierar-
chies, inverse roles, and transitive roles. RacerPro provides basic reasoning
services, which include checking concept satisfiability and concept consump-
tion.

In addition to being a description logic system, RacerPro is also a seman-
tic web reasoning system and information repository. It can manage seman-
tic web ontologies, based on OWL (Web Ontology Language, see [W3C]),
and provides sophisticated services like checking the consistency of an OWL
ontology or finding synonyms for resources.

RacerPro is available at [rac] including free licenses for research purposes.
A Java library for easy access to the systems is available as well, which will
be used in the example implementation of the proposed algorithm of this
thesis.

The thesis uses RacerPro exclusivly as an example for a description
logic system. It uses its basic services for the sample implementation of the
algorithm, but will also expand on them with the concepts introduced in
this chapter.

4.5. λ Calculus

The λ calculus is a formal system which is related to functional programming
languages and is used to analyze function definition, function application and
function composition. It was invented in the 1930s by Alonzo Church and
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Stephen Cole Kleene and is in itself a programming language.

λ-calculi express both computational and logical information. In λ cal-
culus the basic syntactic element are functions. Every expression stands for
a function with a single argument, while an argument itself can be a func-
tion with a single argument. The value of the function is also a function.
Formally, the λ calculus consists of three elements:

• Variable definition:

< expr >::=< identifier >

• Function abstraction:

< expr >::= λ < identifier > . < expr >

• Function application:

< expr >::= (< expr >) < expr >

Another common way is to define the λ calculus through a grammar. When
T is the set of terms and V the set of variables the following grammar
describes the set of terms:

T := V|(T )T |λV.T

The λ calculus is important for this thesis because the “Asset Expression
Model”, which will be explained in the next section, is based on it.

Simply Typed λ-calculi

The λ calculus in its original form does not know additional restrictions
for expression building besides the ones mentioned above. In programming
languages it is common to employ a type system to constrain the use of
functions. This leads to better efficiency in programming and helps finding
some types of programming errors.

The simplest example of a typed λ calculus is the “Simply typed λ-
calculus” (λ→). It knows only base types for variables and function types.
If G is the the set of base types, types are given by the following grammar:

τ := G|τ → τ

Church was the first to develop this explicit type system for lambda calculi.
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All variables which appear in λ expressions are assigned to types. Every λ

term is annotated with a type. The formal definitions are:

x ∈ V ⇒ x ∈ ΛT Variable
E1, E2 ∈ ΛT ⇒ (E1)E2 ∈ ΛT Application

x ∈ V, σ ∈ T , E ∈ ΛT ⇒ (λx : σ.E) ∈ ΛT Abstraction

where V is the set of variables, ΛT is the set of types, E1 and E2 are expres-
sions and T is the set of terms.

4.6. The Asset Expression Model

This section is based on [Boßung, 2007] and gives a short introduction into
the Asset Expression Model and the corresponding concepts that are used
by the thesis.

The core of the Asset Expression Model is the “Asset Expression Lan-
guage” (AEL). It describes pieces of arbitrary medial content through con-
ceptual abstractions. The basic idea is to help to overcome the problems
that show up, when people have different contextual knowledge. Through-
out our whole life everyone of us gains a unique set of knowledge. When
we are confronted with new situations we utilize that knowledge and try to
analyze the objects and events at hand. The problem is that some things
can be interpreted differently depending on the context knowledge one has.
Take for example the painting of a historical battle. An art historian may
recognize the depicted scene immediately while a person without such back-
ground knowledge sees only people occupied with fighting each other. What
the second person now does is to divide the picture into smaller parts. She
might for example identify a flag, showing the sign of a specific nation, or
recognize the leader of one of the armies depicted. Through this process,
of giving individual subcomponents of the picture a meaning, the person fi-
nally may be able to identify the picture as a whole. This divide-and-conquer
strategy is not uncommon and can be repeated infinitely, until components
are identified that are small enough to understand.

The AEL allows to describe arbitrary types of content by identifying
subcomponents which are needed to understand the content as a whole and
allows to give a meaning to them. These conceptual abstractions are called
“Asset Expressions”.



4.6. The Asset Expression Model 31

4.6.1 Asset Expression Syntax

As mentioned before the AEL borrows the concepts of abstraction and ap-
plication from the λ-calculus. Indeed a similar syntax is used for the AEs.
The only difference is how AEs deal with content, which is shown directly
in the expression. Thus the syntactic elements of an AE are:

Content

Any multimedial type of content can in principle be used in AEs. More
precisely any representation of medial content. The only limitation is the
the medium that is used to present the expression. Paper is for example not
very capable of showing videos or playing music (at least not at the time
this thesis was written).

Naming Expression

Expressions can be bound to a name. This name can be used in other
expressions to refer to the named expression. The syntax for binding an
expression to a name is:

name := expression

Abstraction

The syntax of abstractions is directly borrowed from the λ-calculus.

λvariable.expression

This term means that an explanation is required to understand this expres-
sion. The name of this required explanation is “variable”. The abstraction
(as in the λ-calculus) creates a function with one parameter. For example it
could be necessary to identify a person in a painting. Multiple abstractions
can be used on the same content.

Application

When one has found requirements to identify a piece of content, these can
be met by means of application.

(expression1) expression2
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expression2 (the operator) is applied to expression1 (the operand). expression1

can be an abstraction but it does not have to be. It is said that expression2

meets expression1, while the latter is filled by the former.

Lists

A list of AEs is enclosed in { and }.

{e1, ..., en}

Lists can be used anywhere a simple expression is possible. This is useful
for example if the content consists of several expressions (like the scanned
pages of a book). Lists can be used as operands as well as operators.

An Example Asset Expression

Figure 4.1 shows an example expression. The content is depicted as a picture
and two abstractions are made. “Baum” and “Apfel” are expressions which
have been defined before, and which are now applied to the two abstractions.

(λdepicted.(λcarrying. )apple)tree)

Figure 4.1: Sample asset expression

4.6.2 Visual Notation of asset expressions

The visual notation of AEs has illustrational character. As medial content is
often not representable in textform a visual notation is helpful . All syntactic
elements of AEs can be expressed though visual counterparts. Figure 4.2
shows an example expression. The square boxes in red are abstractions,
while medial content is directly shown as the picture. Applications are
indicated with greens arrows.
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Figure 4.2: Venia-Legendi example classification. (from [Boßung, 2007])

4.6.3 Identifying Content Components

The divide-and-conquer approach of AEs means to identify individual parts
of a piece of content. This is not an easy part as medial content can be
of many different types. The Asset Expression Model introduces several
different selectors for different types of content. These allow for example to
specify a region in a picture, or a time sequence in a video. The creation of
Asset Expressions is no part of this thesis, thus content components won’t
be explained in detail here. Further information can be found in [Boßung,
2007].

4.6.4 Typed Asset Expressions

The most important part of AEs for this thesis is its type system. This is
because signatures created from AEs will be based on the individual types
of every abstraction.

The type system of Asset Expression is based on so called “Semantic
Types”. Semantic types are motivated by the application domain. They are
no technical indicators, like types in a programming language, but directly
describe semantics of the content. When identifying contents or parts of
content the goal is to give a meaning to the analyzed piece. Or in other



34 Chapter 4. Background

words add semantic information to the description about the content.

“Semantic types” are structured in a taxonomy. The most general type
– the root – is named the “Any” type. All other semantic types are ordered
with the help of a super-type relationship. Every taxonomy is located within
a namespace, which acts as the prefix for a type and is used to make type
names unique. The local namespace can in addition always be expressed by
an empty prefix.

Semantic types are similar to classes in object-oriented programming
languages in that they also describe a set of individuals rather than only
one instance. It is important to mention that although semantic types are
disjunct, content can be classified to be of more than one semantic type.
This expresses the view of individual users.

Type Construction

Semantic types can be simple types, function types or list types. The first
ones are embedded in the type hierarchy, the second ones are constructed
from two semantic types by using the → type constructor. This construction
can be applied repeatedly:

T1 → T2

or
(T1 → T2) → T3 = T1 → T2 → T3

Types are separated by a colon from an expression:

e1 : T

As said before types are ordered by a super-type relationship. Every type
except the “Any” type have a single super-type. This relationship is written
as <:, e.g.:

T <: S

where T is more specific than S.

Expression Typing

Expressions are typed by adding types to variables and multimedial content.
The new syntax of abstraction and content are:

λv : Type.e
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for a variable v and an expression e and

C : Type

for a content C.
Figure 4.3 shows an example typed expression. The fruit carried by the

tree is an apple. Thus the picture depicts an appletree. The abstraction has
the function type: Fruit → Appletree. It is also possible for the user to

Apple:= :fruit

(λcarrying:Fruit. :Appletree)Apple

Figure 4.3: A types asset expression

change the type of an expression to a more specific one. This is called lifting
and has several applications. One being the import from a more general
domain, which was not modeled as specifically as the new one.

The main goals achieved through the typing system are:

• Filter out non-sensical expressions:

Applications are only allowed if the type of the abstraction and the
type of the expression applied match.

• Capturing the nature of large expressions as a whole:

This allows for a classification of content, because the type of the
content is independent of the number of explanations employed.

• Relate expression which describe similar real-world entities:

This also helps in building a classification system for content, as similar
real-world entities are described by the same semantic type.
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Typing Rules

The typing rules follow examples from functional programming lan-
guages an can be found in detail in [Boßung, 2007].
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Chapter 5. The Solution
Summary. This chapter describes the developed signature

model and the signature matching algorithm. It gives an overview
over how concept contraction and concept abduction are employed
to find relaxed matches. In addition different classes of penalty
functions are analyzed.

5.1. Development Of A Signature Model

The basic idea behind a signature model is to make the inner structure and
semantics of a piece of medial content visible. Thus its core function is to
represent the structure of a signature in a machine readable (and under-
standable) way. To reach this goal a description logic system is used. The
signature model developed in this thesis is based on the considerations made
in [Boßung, 2007].

Description logics allow to manage and manipulate a knowledge base. As
described in detail in the introductory chapters, this knowledge base usually
consists of a terminology (TBox) and assertions (ABox). When dealing with
the storage of signatures an ABox is not necessary and thus not used. In
fact signatures resemble concepts of a TBox, as they also describe sets of
individuals, rather than one specific individual.

The first step to create the signature model is to introduce the types of
the used context into the TBox. This is done by creating a subsumption
hierarchy over the types. Every type A has a relationship to its super-type
S:

A � S

No two semantic types are identical, which means appropriate disjointness
rules have to be applied to each type A:

A � ¬Ti

where Ti are all the siblings of A.

Figure 5.1 shows a part of such a hierarchy. In this taxonomy “Fisch” and
“Fleisch” are sub-types of the “Nahrungsmittel” type and thus are disjoint.
When developing a signature model several other things have to be taken
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Figure 5.1: The first levels of the food taxonomy

into account. The domain of object oriented programming is used as a
starking point, because signature matching is already successfully employed
there. A look at how a (function-) signature is designed there helps to
identify the basic needs (a Java function signature is taken as an example,
but the result would be the same for any programming language).

String aFunction(int parameter1,

int parameter2, boolean parameter3)

Looking at this signature one can identify several characteristics about a
signature:

• There are two types of parameters: input (parameter1-3 in the exam-
ple) and output (of type “String” in the example; also called return-
type in Java) parameters.

• The total number of parameters a signature has (including (four) or
excluding (three) the return-type).

• The number of parameters of different types (three in the example,
because parameter1 and parameter2 are of the same type).

• As parameter names are irrelevant and only parameter types are ana-
lyzed, parameter1 and parameter2 can be summed up. This is done by
introducing a type’s cardinality, meaning the number of occurrences
of a signature.

The goal is to identify and define the structure of an arbitrary piece of
content through the signature. Taking the characteristics identified above
into account, the following aspects are of special importance to the signature
model:
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• Cardinality:

Because types are organized in a type hierarchy, it is necessary to
think about what it means for the cardinality of a type, if some of
its sub-types are part of the same signature. The super-type relation-
ship expresses that the set of individuals depicted by the super-type
includes every individual of the set depicted by its sub-types. This
means a sub-type always fulfills the requirements of its super-type.
Thus the calculation of the cardinality of a type has to take all its
subtypes into account. Formally the cardinality of a type T is defined
as cardT = cd + cs, where cd is the number of parameters of T in the
signature and cs is the number of parameters in the signature which
are of the (transitive) sub-types of T.

• Restrictions on the return-type:

The return-type expresses the actual classification of the piece of con-
tent, which means that every piece of content needs to have a return-
type. As semantic types are disjunct it is not allowed that a piece of
content which is described by only one signature has more than one
return-type. Thus every signature contains exactly one return-type.

• Restrictions on the number of parameters:

The signature matching algorithm matches input types. It does thus
not make sense to take pieces of content into account which are de-
scribed by a signature that contains no parameters, i.e., which have
no inner structure. This is why the model requires that at least one
parameter is present in each signature.

Taking these points into consideration a general signature concept can be
developed, which is valid for every signature:

sig ≡ ∃≥1hasParameter.Any � ∃=1hasReturnType.Any

Concrete signatures are then modeled as specializations of this concept.
Each parameter T is represented in the signature by two conjuncts:

∃hasParameter.T � ∃=nhasParameter.T
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The first conjunct describes the type of the parameter and the second the
cardinality of the parameter.

Signatures can also be described as compact graphs. Nodes represent
the types of the parameters, which are annotated with the cardinality. The
connections between the nodes describe the subsumption relationship of the
type hierarchy. Figure 5.2 shows the graph of a signature containing two
parameters in total, one being of type “Pork” and one of type “Fruit”. One

Figure 5.2: Example signature graph

can see in this example, that the supertype of the type “Pork” – which
is “Meat” – is also present. As it has the same cardinality as “Pork” no
parameters of the type “Meat” are part of the signature. It represents the
fact, that a parameter of type “Pork” can also be used as parameters of type
“Meat”.

The last important point is related to the semantics of a “content-
signature”. The signature over a content expresses the things necessary
to understand this specific piece of content, but this does not mean, that
other information is contained within the content. This means there can
be additional information contained in the content which is not part of the
signature. Thus in addition to the direct model for a signature, a “callabil-
ity model” has to be defined. This is necessary, because to call signature
with n parameters of type T , a calling signature needs “at least” n param-
eters of type T. Additional parameters of that type or parameters of a type
that is not (yet) present in the signature do not matter. The callability is
represented in laxer restrictions on the cardinalities of the signature.

∃hasParameter.T � ∃≥nhasParameter.T

are thus the conjuncts for a parameter of type T in the callibility model of
a signature.



5.2. The Matching Algorithm 41

5.2. The Matching Algorithm

The second part of the solution is the signature matching algorithm for
relaxed signature matching. The following sections give detailed information
about the decisions made throughout development.

5.2.1 The Signature Matching Facility

Figure 5.3: The signature matcher class model

Next to the signature model, the biggest achievement of the thesis is the
functionality to match these signatures. This part is again based on the con-
siderations on signature matching in [Boßung, 2007]. The signature match-
ing facility consists of three parts. Importer functionality to load signatures
from a description logic system. Signature matchers, who perform the actual
matching and penalty functions, which are used by the signature matchers to
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assign a ranking to the available supply signatures. Figure 6.3 shows the gen-
eral class diagram of the facility. ISignatureImporter is the interface of the
signature matching facility. The only method getAllSupplySignatures()

is used to import the supply signatures into the system. The
ISignatureMatcher interface describes the basic methods for matching sig-
natures. The penalty functions for CC and CA have their individual inter-
faces to account for specific differences in the way they calculate the penal-
ties. They inherit though from the same basic penalty function interface,
which specifies the calculatePenalty function.

5.2.2 The Signature Matcher

The signature matcher matches demand signatures with the callibity models
of a set of supply signatures. It offers three different matching methodolo-
gies. Exact-Matching, Generalized-Matching and Relaxed-Matching.

Exact- and Generalized-Matching

Two signatures match exactly, if all their parameters are pairwise equal (see
section 4.1 for the definition of equality of types). This standard approach
to exact matching was not sufficient for the used signature model. Due to
the callability model for supply signatures, exact matching does not deliver
all “exact” matches. As explained previously, the callability model refers
to the fact that additional information does not matter and is not taken
into account when searching for a perfect match. In terms of a description
logic this means, that not only exact matches are perfect matches, but also
specializations of the supply. To take this into account generalized matching
is also part of the design. Generalized matching requires to check whether a
demand signature is subsumed by a supply signature. This is a case where
the optimized uses the subsumption relationship for matching signatures.

Relaxed-Matching

The relaxed matching algorithm is more complex than one for exact match-
ing for two reasons: Firstly the algorithm consists of three different steps
that have to be done and secondly different penalty functions can be applied
throughout the algorithm. The algorithm utilizes both concept contraction
and concept abduction to identify missing and contradicting information in
the demand. To make the evaluation of different penalty functions possi-
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ble the corresponding interfaces that were introduced previously are used to
allow for the easy exchange of the penalty functions. For contraction and
abduction different penalty functions are used, which allows for a greater
flexibility when trying to achieve better(meaning more realistic) ranking
results.

5.2.3 The Running Example

To clarify the algorithm a running example is used in the following chapters.
Figure 5.4, 5.5 and 5.6 show a demand and two supply signatures which are
compared against each other. The demand signature has two parameters,

Figure 5.4: An example demand

Figure 5.5: Example supply S1

Figure 5.6: Example supply S2
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while supply S1 has four and supply S2 has three. What can be seen on the
pictures is that both supply signatures do not match the demand perfectly.
For example supply S1 requires two parameters of type “Meat”, while the
demand only offers one. Supply S2 on the other hand requires only one
parameter of type “Meat” but it further specifies the parameter to be of
type “Pork”, which does not exist at all in the demand. The following two
sections show how concept contraction and concept abduction filter these
inconsistencies out and assign corresponding penalties.

5.2.4 Concept Contraction (Inconsistency)

Concept contraction for this scenario is very restricted because of the chosen
signature model. Contradicting information is only present in the cardinality
of parameters. In addition due to the callability model, it is only possible
that the demand contains not enough parameters of a certain type and not
too many. Thus the core mechanics for concept contraction are rather simple
and are shown in the following pseudo-code excerpt:

FOR each parameter in demand signature except Any parameter

IF demand parameter type exists in supply parameter list

IF supply parameter cardinality>demand parameter cardinality

calculate penalty

ENDIF

ENDIF

Calculate penalty for Any parameter

Each parameter pair is checked for inconsistencies, which means in this case
that the demand offers a lower number of parameters of a specific type than
then supply needs. This is then corrected and a penalty according to a
penalty function is added.

A unique case is the “Any” parameter. This is the topmost parameter
in any given type-hierarchy. It is the only parameter that has no parent and
only children. The “Any” parameter does not only represent the number
of parameters of the type “Any” but also the number of parameters of the
whole signature. A problem arises here because of the additional informa-
tion that is not taken into account when using the callability model. Thus
if the “Any” parameter would be compared just as it is, it would lead to
an unsatisfiable result which might also lead into an unsolvable contraction.
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The solution used is to take only the relevant parameters of the demand
into account, meaning only those parameters whose types are reflected in
the supply. This makes sense because although additional parameters do not
count toward penalties, they count toward the satisfiability of a signature in
the TBox. Figure 5.7 shows the contractions done for the sample signatures.
Supply S1 requires two parameters of type “Meat” and at least four param-
eters altogether. Supply S2 requires two parameters of type “Vegetables”
and three parameters altogether. In both cases the “Keep” of the contrac-
tion process is created by copying the demand signature and changing the
cardinalities accordingly. In addition penalties are calculated based on the
changes made (see section 5.2.6).

5.2.5 Concept Abduction (Incompleteness)

After concept contraction is applied there is still the chance, that the de-
mand is not able to “call” a supply signature. This is because of missing
information in the demand, rather than contradicting information. When
one looks at the example signatures one can see for example that supply S1

requires one parameter of type “Spices” which the demand does not contain.
Concept abduction covers this problem.

Because of the used signature model missing information only relates
to missing parameter types in the demand. Cardinality conflicts were de-
tected and fixed during the contraction phase and thus do not play a role
anymore. Concept abduction creates a hypothesis which has to be added to
the demand so that it is subsumed by the supply. This also adds flexibil-
ity regarding penalties and means only new parameters are added and the
penalty is calculated according to a penalty function.

The following pseudo-code excerpt shows the basic flow of the abduction
algorithm.

FOR each parameter in supply signature

IF supply parameter type does not exist in Keep’s parameter list

Add parameter to Keep

Calculate corresponding penalty

ENDIF

Special attention has been paid to the step where the parameter is added
to the Keep’s parameter list due to the used signature model. Parents
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(a) Demand

(b) Keep and Supply S1

(c) Keep and Supply S2

Figure 5.7: Two examples of concept contraction. In both examples the
demand does not have enough parameters of one category and the total
number of parameters is wrong

and/or children of the parameter type to be added have to be taken into
account. Section 6.2.7 gives detailed information on this. Figure 5.8 shows
the hypothesis generated for the two example supplies. In case of supply S1

parameters of type “Garlic”, “Potatoes” and “Pork” are added, each with
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(a) Keep and hypothesis of supply S1

(b) Keep and hypothesis of supply S2

Figure 5.8: Two examples of concept abduction. The missing concepts are
added and the cardinalities are propagated up to the Any concept.

cardinality one. For supply S2 parameters of type “Pork”, “Potatoes” and
“Carrots” have to be added. What is important here, is that the cardinality
of the parameters for “Vegetables” and “Any” have to be fixed to match the
total number of parameters of the signature. This is because the demand
contains parameters, which are not required by the supply.

5.2.6 Penalty Functions

Penalty functions have the task to quantify the differences found between a
demand and a supply signature. During both phases – contraction and ab-
duction – these penalty functions are used to assign a ranking to the found
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alternative. To be as flexible as possible, and to be able to evaluate the
effectiveness of different penalty functions, a set of interfaces for these func-
tions has been designed. A sub interface for each class of penalty functions
was added and is used by the corresponding part of the algorithm. The
single method calculate() is defined in the super-interface and calculates
the penalty of an action according to the given method-parameters.

The penalty functions can be roughly classified according to the type of
information they take into account. The first class just looks at the cardi-
nality, both the cardinality of the added/modified parameter and the whole
demand-signature. The second class takes also specialization into account.
This refers to the fact that an added parameter with a very specific type
restrains the signature much more, than an added parameter with a very
generic type. The third class looks at the number of different parameter
types contained within a signature. This is different to looking at cardi-
nalities, because the information added by a parameter of a new type to a
signature is different from the information added by a parameter of a type,
which is already contained in the signature.

The signature matching algorithm is tested with all three classes and a
fourth class, which combines all properties of the other three classes.

1. Class: Cardinality

This type of penalty functions can be applied to both contraction and ab-
duction. In contraction simply the difference between the cardinality of the
specific type in the demand and supply signature are calculated. In ab-
duction the cardinality of the parameter added and the cardinality of the
whole demand signature are compared. Both calculations can be configured
through the application of weights. The following formulas show possible
implementations of penalty functions of this class.

Πc = cc ∗ (cards − cardd)

Πa = ca ∗ cardnp

where cc and ca are constants, cards and cardd are the cardinality of the
specific type in the supply and the demand signature respectivly and where
cardnp is the cardinality of the type hypothesized during the abduction
phase.
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2. Class: Specialization

The second type of penalty functions, checks the depth of a type in the
semantic type hierarchy. The assumption made is that a more specific type
results in a smaller set of individuals contained in the resulting concept.
This may not always be true, because it is dependent on the design of the
domain. Some parts of the hierarchy may be designed much more detailed
than others, which can break this assumption. Nonetheless these penalty
functions assign a penalty depending on the depth of the parameter added.
A slight modification is to take the maximum depth of a signature into
account. The following formula shows how the penalties are calculated.

Πa = depthnp

Πa1 = depthnp/depthd

depthnp is the depth of the new parameter type in the type hierarchy and
depthd is the maximum depth of all parameters of the demand signature.

3. Class: Semantic-type

This type of penalty functions only looks at the semantic type of a parameter
added. It can not be applied to concept contraction, because here only the
cardinality of parameters is changed. The underlying assumption of these
penalty functions is that with the addition of new type restrictions one
restricts the number of individuals specified by the signature. The algorithm
compares the number of parameter types of a signature with the types added
through abduction.

Πa = 1/number of typesd

4. Class: Mixing

The fourth and final class analyzed is a mixture of all classes mentioned
above. The idea is to take as much information as possible into account
when calculating the results. This formula can be modified by changing
the weights of the different parts. The formula takes the variable from the
classes above and composes them to a complex total.

Πc = (cards − cardd)/2 + depths ∗ (cards − cardd)/2

Πa = cardnp/2 + depthnp/depthd
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Chapter 6. The Prototype
Summary. To test the algorithm a proof of concept appli-

cation was developed. This chapter gives insight into the deci-
sions made during the development. It also highlights problems
related to the chosen description logic system and solutions used
to overcome these.

6.1. Design

The design of the prototype is straightforward. According to the chosen
sample domain a signature model based on the general model developed
in the last chapter (see 5.1) was created. Based on this model a signature
matching framework was then designed and implemented using the Rac-
erPro description logic system. It employs the contraction and abduction
algorithms presented in the previous chapter. The following chapters give
insight into the decisions that had to be made throughout the design process.

6.1.1 The Asset Expression Signature Model

Asset Expressions (AEs) describe content with the help of abstractions (see
chapter 4). The combination of abstractions and applications are seen as
explanations of specific parts of the content, which are needed to understand
the content. The signature model described in the previous chapter only uses
type information of parameters and thus variable naming and the ordering
are not taken into account. This means that the signature model based on
AEs uses only the type information of abstractions. The signature model
used is identical to the one developed in the last chapter.

Figure 6.1 shows an example AE, the hierarchy of parameter types and
the signature concept according to the signature model. The signature ex-
pands on the general concept and adds two parameters, one of type “Apple”
and one of type “Tree”.

6.1.2 Description Logic System Or Object Model?

It was decided to use an object-oriented approach for the sample imple-
mentation. This was done mainly for two reasons. Firstly a Java library
to access the RacerPro reasoner is available and secondly object-orientation
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(a) Asset expression (b) Type hierarchy

sigA ≡ sig�
∃=2hasParameter.Any�
∃=1hasParameter.Fruit�
∃=1hasParameter.Apple�
∃=1hasParameter.Tree

(c) Signature concept

Figure 6.1: Example of an Asset Expression modeled in a description logic
concept

offers several comfortable features which help when implementing the algo-
rithm. The type tree for example can be very well modeled through classes
and by using a hashmap for storage the access is also very efficient.

One important question is then when to use services of the description
logic system and when to work only with the object representation of a sig-
nature and the type tree. Some functionality is only available through the
description logic system, like checking the subsumption relationship, while
some is not supported by it. One example where working with the descrip-
tion logic system is faster, is when the equality of two signatures is checked.
Per definition two signatures are equivalent, if their parameters are pairwise
equal (meaning having the same type and cardinality). Implementing this
with the object model would result in a lot of unnecessary comparisons. The
description logic system is optimized for these types of queries and works
very efficiently. On the other hand, if only semantic types are to be com-
pared (eg. during contraction and abduction), working on the object model
proves to be more efficient. As the names of semantic types are unique it
is not necessary to call the description logic system (which would include
setting up sockets, transmitting the date, calculation of the result by the
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description logic system, and transmission of the result). It is sufficient to
check for string equality of the type representations in the model.

6.1.3 Modeling The Type Hierarchy

Figure 6.2: The modeled type hierarchy and the employed decorator pat-
tern for cardinalities

The type hierarchy of the semantic types can be quite big, thus efficient
means are needed to store and access it. As the whole hierarchy is often
needed during several parts of the algorithm, an object representation of
the type hierarchy was designed. When deciding on the structure of the
representation two things about the hierarchy were the most important.
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Firstly it is often necessary to find the parents and/or children of a type,
meaning the object representation had to mirror these relationships. This
is mostly necessary due to the subsumption relationship, which makes types
representable by others. Secondly it has to be easy to manage the types of a
signature and annotate them with cardinalities. This led to the decision to
represent the types in a tree-like structure and at the same time store every
type in a hashmap. The string representation (or name) of the type is used
as the key (because of its uniqueness), while the object representation of the
type is the value. The hashmap brings two distinct advantages. Naturally
it is very fast to access an arbitrary type. In addition the value objects of
a hashmap can be accessed as a Java collection. This makes it possible to
use iterators instead of recursive methods, which speeds up the algorithm
considerably.

In addition to the representation of the type hierarchy it is also necessary
to represent the parameter lists of signatures. This was designed by applying
the decorator pattern to create a cardinality decorator for each type. Figure
6.2 shows the corresponding interfaces and classes.

Types are represented through the TypeHierarchyNode class. For every
parameter of a signature is then decorator object created, which adds the
cardinality to the type. Both, the semantic types of the type hierarchy as
well as the types of the parameters of a signature are stored in a hashmap.
Through the decorator it is always possible to get the original type object
and thus the corresponding parent/child relationships. This design has also
a very low memory consumption, because the original type tree exists only
once and only lightweight decorator objects are created for each signature.

6.1.4 The Signature Matching Facility

The signature matching facility consists of three parts. 1. Importer func-
tionality to load signatures from a description logic system. 2. Signature
matchers, who perform the actual matching and 3. penalty functions, which
are used by the signature matchers to assign a ranking to the available supply
signatures. Figure 6.3 shows the class diagram of the facility. The importer
and penalty function interfaces have already been described in the precious
chapter (see section 5.2). The signature matcher interface is described in
detail in the following section.
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Figure 6.3: The signature matcher class model

The Signature Matchers

The signature matchers are described by the ISignatureMatcher interface.
It contains five functions:

• exactMatch(Signature, Signature)

Matches the two given signatures. Returns true or false.

• exactMatchSupply(Signature)

Matches the given signature with all available supply signatures. Re-
turns a list of signatures that match the given signature.

• generalizedMatch(Signature, Signature)

Matches the two given signatures using the subsumption relationship.
Returns true or false.
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• generalizedMatchSupply(Signature)

Matches the given signature with all available supply signatures. It
employs the subsumption relationship and returns a list of signatures
that match the given signature.

• relaxMatchSupply(Signature)

Matches the given signature with all available supply signatures. Re-
turns a list of ranking entries, which contain the return-type (the clas-
sification) of each supply signature and the assigned penalty.

The general matcher interface should be as generic as possible, to allow for
a broad range of implementations. Together with the IDLHelper and ISig-
natureImporter interfaces it offers a great flexibility regarding the decisions
that can be made for the actual implementation.

6.2. Implementation

The implementation of the prototype was done in Java, using a proprietary
Java API to access the description logic system. The following sections give
a short overview over the implementation and the working algorithm.

6.2.1 The Object Model For Signatures

After the signature model was developed the next step was to translate it
into the object world. The model developed states, that every signature
consists of at least one parameter and a return-type. Figure 6.4 shows the
corresponding class diagram. As mentioned previously, the actual parame-
ters of a signature are stored as decorated type objects in a hashmap.

6.2.2 Creation Of The Type Hierarchy

The type hierarchy has to be created during the initialization phase of the
algorithm. The class responsible for this is the description logic helper.
Upon the creation of the class the createTypeTree method is called. It
creates the “Any”-Type as this type is part of every type hierarchy, and
then calls the initializeHashMap method, which recursively adds all other
types to the hierarchy. This is the first and only time that the RacerPro
system is called to access the type hierarchy. As said before the types are
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Figure 6.4: The signature class

created with parent and children relationships properly set up and are then
added to a hashmap.

6.2.3 The Signature Importer

The signature importer loads signatures from the description logic system.
As the signatures are stored as concept definitions in the description logic
system, the return values from the system are strings. These strings are
composed of conjuncts of parameter definitions and their corresponding car-
dinality definitions. The task of the signature importer is to convert these
strings into object representations. It does so by filtering the parameter
types and cardinalities out of the concept string. With the help of the
CardinalityDecorator class an object representation of each parameter is
then created. The CardinalityDecorator contains a reference to the type
object in the type hierarchy as well as the cardinality of this parameter in
the signature.

The signature importer is also used to get the library of supply signa-
tures. Because of this the main method described by the ISignatureImporter
interface is getAllSupplySignatures(). It gets the list of names of all sup-
ply signatures by utilizing the fact, that all supply signatures are subsumed
by the general signature concept. This allows to easily identify all supply
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signatures, without knowing each specific name.

6.2.4 The Description Logic Helper

Figure 6.5: Description logic system helper class

The signature matcher uses the description logic system on several occa-
sions. A description logic helper class was created, which encapsulates all
advanced functionality related to the description logic system. It also holds
the reference to the hashmap containing the type hierarchy and thus is a
central access point for the algorithm. Figure 6.5 shows the interface and
the corresponding RacerPro implementation class. The helper class offers
the following functionality:

• “contains”: This method checks whether a parameter is contained in
a signature or not.

• “depth”: This method calculates the depth-level of the type of the
given parameter in the type hierarchy.

• “getChildren”: Retrieves the list of all children of a given concept.

• “sigToDLString”: Helper method to generate a description logic sys-
tem compatible concept definition from a signature object
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• “getTypeTree”: Returns the hashmap, which contains the type tree.
This is initialized in the constructor of the class.

6.2.5 The Signature Matching Algorithm

The signature matching algorithm is based on [Boßung, 2007] and [Zaremski
and Wing, 1993]. As explained in the precious section it offers two “flavours”
of signature matching: exact matching and relaxed matching. While the
overall structure of the algorithm is based on the algorithm by Zaremski,
the actual comparison methods are – where possible – directly taken from
the RacerPro system. The following sections give a detailed insight into the
two developed algorithms.

Exact Matching

The task of the exact matching algorithm is to find perfect matches to a
given signature. The algorithm algorithm offers two methods for this:

exactMatch(Signature, Signature)

exactMatchSupply(Signature)

The first method compares two signatures and returns true or false accord-
ingly. The algorithm uses a helper method to create a valid concept string
out of each signature and then uses the RacerPro functionality to compare
the two signatures. The second method compares the given signature to all
supply signatures present in the system. The following pseudo code shows
the basic implementation of these methods:

Retrieve all supply signatures

IF number of parameters of signatures are different THEN

RETURN false

ENDIF ELSE

Create description logic conform signature strings

Call equivalence functionality of description logic system

RETURN evaluation of result

While this method yields exact matches in terms of concept comparisons,
it does not yield all exact matches for the proposed signature model (see
section 5.1). This is because the callability model allows for a perfect match
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for every signature, which is subsumed by the supply signature. To ensure
that all matching signature are found, a generalized matching algorithm
was developed. Instead of trying to match signatures exactly, it uses the
subsumption service of RacerPro to find possible matches. This leads to
a much larger result set, but nonetheless only to signatures which fit the
demand perfectly.

The generalized matching facility offers also two methods: One for com-
paring two signatures and one for comparing a signature to the whole supply.

generalizedMatch(Signature, Signature)

generalizedMatchSupply(Signature)

Relaxed Matching

The relaxed matching algorithm is implemented similar to the exact match-
ing algorithm. The employed description logic system is used for every log-
ical comparison possible, with exceptions to improve the performance. As
explained in earlier sections the call of the RacerPro system is very complex
and not very performant. Figure 6.6 shows the activity diagram and thus
the overall programming flow of the algorithm. It consists of three parts:

Figure 6.6: The flow of the relaxed matching algorithm

1. Finding exact matches
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2. Using contraction to filter out contradictions and generate the keep

3. Using abduction to hypothesize missing information

Exact matching has already been described. The other two parts are ex-
plained in detail in the next sections.

6.2.6 Concept Contraction

The concept contraction algorithm is based on the definition presented in
chapter 4, but several adjustments had to be made, so that it fit the signature

Concept contraction is used to filter out contradicting requirements of
demand and supply. As mentioned in section 5.2.4 the “Any” parameter
takes a special role. The algorithm needs to account for the fact that also
the parameters of the demand, that are not relevant for the supply, are
reflected in the cardinality of the “Any” parameter. This is done by taking
only the parameters into account that appear also in the supply. This is
done via the getUnrelevantParameters method, which returns the number
of parameters that appear in the demand, but not in the supply.

After this the rest of the parameters are checked for contradictions. The
following pseudo-code shows the operation of the algorithm.

Create copy of demand signature parameters

Calculate penalty for Any parameter

FOR each parameter in demand signature except Any parameter

IF demand parameter type exists in supply parameter list

IF supply parameter cardinality > demand parameter cardinality

demand parameter cardinality = supply parameter cardinality

calculate penalty

ENDIF

ENDIF

The algorithm first creates a copy from the demand signature to be used
as the keep. It then takes every parameter from the keep, that is relevant
for the supply, and checks whether the keep parameter has at least the
cardinality of the corresponding supply parameter. If this is not the case,
the cardinality of the parameter in the keep is set to the cardinality of
the supply parameter. A penalty is then calculated according to the given
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penalty function, based on the old and new cardinalities. This is done until
all contradictions are solved.

6.2.7 Concept Abduction

After concept contraction it can still be the case that the demand is not
able to “call” a supply signature. This is due to missing information in the
demand, rather than contradicting information.

The algorithm takes every parameter from the supply and checks whether
the demand contains it. If not it is hypothesized to the demand, meaning
it is added with the appropriate cardinality to a hypothesis list. There are
several critical steps partly due to the way the signature model is designed.
The inclusion of a parameter in a signature means also that the (transitive)
super-types (even if no parameters directly of this type are present in the
signature) are also present. This menas one has to carefully check if the
cardinality of the parameter was already included or not. There are three
possibilities:

1. The type and all transitive parents are not yet part of the hypothesis
list:

Add it and add corresponding penalty. Also add all transitive parents,
with the types cardinality.

2. The type is already part of the hypothesis (because of 1.):

If the cardinality is greater than the one in the hypothesis list, it means
that the type was only added as a (transitive) parent. Thus one needs
to change the cardinality accordingly and add a penalty for difference.

3. A transitive parent of the type is already included:

This means the penalty for the parent already included the penalty
from this type. The type is added to the hypothesis but no additional
penalty is calculated.

Once the algorithm is finished, it returns a list, which contains the return
types of the supply signatures and the corresponding penalties.
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Chapter 7. Evaluation Of The

Prototype
Summary. The previous chapter has shown that concept

contraction and concept abduction can find fuzzy matches and
lead to a ranking of results. This chapter looks at two things: how
effective is the algorithm and how efficient is it. The effectiveness
is tested through a series of manually conducted studies, while the
efficiency is tested through a series of performance tests.

7.1. Effectivness

The previous chapter has shown a sample implementation of the proposed
algorithm. To validate the proof of concept a series of tests have been
conducted. The testing procedure consisted of two parts.

First the effectiveness of the algorithm was tested by a comparison of
rankings done by human users and by the algorithm. The test users had
to rank sample supply signatures according to a given demand signature.
This was done for three different demand signatures. The results are com-
pared with the rankings done by the algorithm, based on the three classes
of penalty functions discussed before. The full test details can be found in
the appendix.

Figures 7.1 through 7.3 show the results of these tests. Each graph shows
the ranking done by human users, compared to the ranking achieved by
applying all three types of penalty functions. The graphs show three things.
First the algorithm works (within some boundaries). Second the results
heavily depend on the choice of penalty function – which was expected –
and thirdly the most simply penalty function is the most accurate one –
which was not expected. Figure 7.4 shows the mean deviation. The penalty
functions of class A have in all three test cases the lowest deviation from the
human input.

7.2. Efficiency

The second part of tests conducted are related to the performance of the
algorithm. This is not so easy, because most of the parts of the algorithm rely
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Figure 7.1: Test results for demand 1

Figure 7.2: Test results for demand 2
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Figure 7.3: Test results for demand 3

Figure 7.4: Mean deviation of penalty functions from human input
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on the employed description logic system. For the example implementation
the RacerPro system was used. The interface is based on sockets and text
strings that are sent/received to/from the RacerPro system. This in itself is
a very costly operation, because every query consists of the following steps:

1. The connection to the RacerPro server has to be openend. This means
the socket has to be opened and the input/output streams to be cre-
ated.

2. The message has to be send to the server. This consists of sending the
message via the open socket and parsing the result returned.

3. The connection has to be closed finally, which means the open streams
and sockets have to be closed.

Figure 7.5: Seconds needed for calculation over relative number of supply
signatures.

Figure 7.5 shows the results of the test. It shows the relative number
of supply signatures in contrast to the seconds taken for the calculation.
Although this chart shows a non-linear progression, several factors indicate
that this is still the case for the algorithm. Firstly for a demand signature
with n parameters and a supply signature with m parameters n + m compar-
isons have to be done. In addition the RacerPro server is called two times.
Once to load the supply signature and once to calculate the subsumption
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relationship for these two signatures. For each additional signature in the
supply, this cycle is done again, so there is no hint, that the performance
scales non-linearly.

A sound explanation for the slow performance is the high memory use
of the RacerPro server. The tests were conducted on laptop with a 1.3 Ghz
processor and 512 MB RAM. The processor is not used at its full capacity,
but memory requirements of the server scale exponentially with the number
of supply signatures. This is due to the fact that all inferences that are
made are stored in memory. Due to this the runtime of the algorithm is cut
by a factor of around 50, if the same queries are done repeatedly, because
the inferences are then taken from the cache. Though these are nice results,
they don’t reflect a normal situation, because usually a query will not have
been done beforehand.
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Chapter 8. Summary and

Conclusion
Summary. The previous chapters have shown that concept

contraction and concept abduction are valid solutions to finding
relaxed matches. This chapter gives a conclusive review of the
whole thesis. Observations made during the development of the
thesis are discussed. The thesis is concluded with an outlook at
future research topics.

8.1. Contributions

Content or knowledge management is an imminent problem of our society.
While (almost) everyone has gained access to new and – especially – cheap
means to make his knowledge available to others, means to manage this
wealth of knowledge have yet to be developed. This thesis has highlighted
some of the main areas of concern associated with this and has shown solu-
tions to some of them.

Content classification is one of the starting points when searching for
means of structuring arbitrary types of content. This first step was to decide
on a system to represent knowledge. It was shown that description logic
systems are very well equipped for this task. The approach taken was to
develop a signature model that is very general and can be used very flexibly
for arbitrary types of content. Signature matching was then discussed as
the solution for the search and retrieval of content. The focus was not
on finding exact matches, but relaxed matches which take inconsistencies
and incompleteness into account. Many different studies are currently done
in this field and this thesis relates signature matching to some of the major
problems of knowledge management. It was shown that content classification
with the help of matching algorithms is a viable method that leads to a useful
ranking of alternatives.

In addition, this thesis proved that concept contraction as well as concept
abduction can be successfully used to tackle the problems of inconsistent and
incomplete information. These concepts are able to find contradictions and
missing information in signatures. They are also well equipped to qualify
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the inconsistencies found. Based on these advanced inferencing services a
signature matching algorithm was developed and tested in a specific appli-
cation domain. It was shown that it compares well to human input if the
right penalty functions are used.

8.2. Observations

The implemented prototype has shown that the proposed algorithm works.
Signature matching by concept contraction and concept abduction helps to
rank relaxed matching results and gain sufficiently adequate results. It was
shown that the results of the prototype are very close to the decisions made
by human users, but that the results depend heavily on the used penalty
function. It is necessary to highlight, that the simplest penalty function was
the most accurate.

The prototype has also shown that the algorithm depends heavily on
the used description logic system for its inferencing system. The algorithm
in itself works very efficiently and especially a clever implementation of the
object representation of the signatures has proved to be very useful. The
dependence on the description logic system makes it necessary tough to
conduct further research with different description logic systems.

The biggest surprise was the difficulty in finding correct values for the
parameters of the penalty functions. Seemingly endless possibilities regard-
ing constants and weights make extensive testing and evaluation necessary.
The tested values show that the results depend heavily on the used penalty
algorithms and the applied weights.

8.3. Future Directions

The proposed signature model is quite flexible, as it allows users to develop
mappings from arbitrary descriptions schemes. Asset Expressions are one
example, but as long as some piece of content is described via a constant
set of types or attributes, a mapping can be created. The signature model
though has the problem, that it only captures a very small amount of the
information made available through descriptions. Only parameter types and
their cardinality are examined. Several other types of information could be
incorporated into the signature model. Examples would be a differentiation
of different type classes, similar to the differentiation of strict and negotiable
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parameters done in [Colucci et al., 2004b]. It would also be possible to assign
a weight to each parameter indicating its importance for the understanding
of the piece of content.

A second interesting point is the application of the algorithm to areas
other than classification. The proof of concept has shown that concept con-
traction and concept abduction can successfully and efficiently be employed
to classify medial content. The first step would be to think of different types
of content, that could benefit from such a characterization. One idea is the
development of directory services. In our days users employ search engines
to manage the data on their home computers. Building a signature with hy-
potheses about the types of documents the user wants to find, would be an
interesting topic to follow. Other applications are the classification, search
and retrieval of web-services or the development of web search engines based
on contextual knowledge.

The proof of concept implementation has shown that the design of ef-
fective penalty functions is crucial for reliable and credible results. The
discussed classes of penalty functions have proved to be a sensible start, but
even in these (relatively restricted) examples small changes to the weights
can have severe impact on the results. Two paths for improvement can be
clearly derived from the experiences made in this thesis. Firstly it has to
be investigated if contraction and abduction are the only steps in the algo-
rithm that need to be penalized. As exact matches are found through gen-
eralization (employing the subsumption relationship of the description logic
system), it might be necessary to add penalties to generalization. Although
additional information does not interfere with the classification process, it
still says something about the content under consideration. One could ar-
gue for example, that the more specialized (meaning the more additional
information is present) a signature is, the farther away it is from a general
signature subsuming it (this would only hold true, if the modeling of the
application domain is equally detailed on every level of the subsumption
hierarchy).

A last point are improvements to the general performance of the algo-
rithm. The sample implementation has shown that the biggest bottleneck is
the communication with the description logic system. Right now the Java
socket implementation severely hampers the performance. Thus it would
be interesting to investigate alternatives. The obvious one is to integrate



72 Chapter 8. Summary and Conclusion

contraction and abduction into the description logic system. The advantage
is evident, but the problem lies in the “special” requirements of the signa-
ture model. As is it does not use standard contraction and abduction, but
a specialized version, this might require a special implementation, too. The
second problem with this approach is that it would still be necessary for the
signature matching algorithm to call these services in the description logic
system, meaning communication with the description logic system would
increase. A different approach to this problem would be to completely in-
tegrate the necessary description logic function into the signature matcher
and use the description logic system only as a kind of advanced data storage.
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Appendix A. The Effective-

ness Test

A.1. General information

To test the effectiveness of the algorithm a test suite was developed. It con-
sists of a base library of eight supply signatures. These supply signatures
are all classified according to a specific type hierarchy – the food type hier-
archy (which can be found on the attached data CD, see appendix B). The
signatures were presented to the users as pictures annotated with asses ex-
pressions. Thus the structure of each signature picture is as follows: In the
middle the classified content can be found, a picture of a specific meal. This
piece of content is annotated with abstractions. Where possible the corre-
sponding application to each abstraction (meaning a picture of the food type
used) were also added. The test users were given this library of signature
pictures and in addition three demand signature. These demand signatures
are pictured exactly like the supply signature, with the exception being the
missing classification of the central content. The task every user then had
to fulfill was to create a ranking of the eight supply signatures according to
how close they are to the demand signature.

Altogether 16 test users created sample rankings. The mean of these
rankings was then compared with several different instances of the developed
signature matching algorithm. The results are shown in chapter 7

A.2. The Sample Demand And Library Signatures

On the following pages the signature pictures, that were presented to the
test users are shown.
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Figure A.1: Sample library signature 1

Figure A.2: Sample library signature 2
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Figure A.3: Sample library signature 3

Figure A.4: Sample library signature 4
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Figure A.5: Sample library signature 5

Figure A.6: Sample library signature 6
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Figure A.7: Sample library signature 7

Figure A.8: Sample library signature 8
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Figure A.9: Sample demand signature 1

Figure A.10: Sample demand signature 2
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Figure A.11: Sample demand signature 3
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Appendix B. The CD

Attached you will find a data CD that contains files related to this the-
sis. The folders on the CD are structured as follows:

Literature - The references literature in PDF format, as far as it is
available publically.

Sourcecode - The whole sourcecode of the developed signature match-
ing algorithm.

Thesis - This thesis in PDF and Postscript format.
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