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Chapter 1

Introduction

How to introduce an abstract topic to a reader so that he or she is captured easily? You

start with telling a story or two.

As good stories always start:

1.1 Contra Bovem Rufum

Once upon a time there was a computer scientist who wanted to capture the world of

birds in a knowledge base. In a knowledge base he stores statements about the world.

Afterwards he wants to apply reasoning techniques onto his knowledge base in order to

access knowledge which is implied within the statements stored.

So our scientist starts out to model the world of

birds. He stores the statements:

birds fly ( bird v fly) and birds have wings

( bird v wings).

After a while he wants to model penguins in his

knowledge base. So he starts by adding pen-

guins are birds (penguin v bird). Then he

adds penguins do not fly (penguin v ¬fly).

In adding this statement our scientist realises

that his knowledge base just became inconsis-

tent. Out of an inconsistent knowledge base any-

thing may be inferred.

His knowledge base now entails the contradiction penguins fly (KB |= penguins v fly)
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and penguins do not fly (KB |= penguin v ¬fly). So he calls it a day and goes

home.

Watching television commercials at home

he is inspired how to solve the problem at

hand. His idea is to ship lots of energy

drinks to the south pole and distribute it

to the penguins. And voila, all penguins

gain the ability to fly as suggested by a

commercial.

He would be able to remove the statement,

that penguins do not fly and regain a

consistent knowledge base.

The problem solved he is now ready to go to bed. He has an untroubled sleep.

But next morning he gets his doubts. His

solution has three major drawbacks:

First, it will be very expensive to purchase

all these energy drinks and ship them to the

south pole.

Second, penguins do not dig energy

drinks.

Third, at the south pole there are no re-

cycling centres to get rid of all the empty

cans.

Back at work the scientist thinks about a better so-

lution. How about changing the entailment relation

in such a way, that the knowledge base only entails

penguins do not fly (KB |=lex penguin v ¬fly).

How to achieve such an entailment is one of the ideas

presented in this thesis.

But lets continue with a second story:
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1.2 Bird Statistics 07

Once upon another time

there was a computer sci-

entist who laid his hands

on the brand new book

”Bird Statistics 07”.

He previously worked on

a knowledge base which

was capturing all knowl-

edge about birds.

So he thought there are

new statements to be fed

into his knowledge base.

But he realised that he got a

problem.

His modelling language would

only allow to express state-

ments in the following fashion:

100% of all birds fly

or

0% of all birds fly.

He was not able to specify some

degree of overlap.
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But the knowledge avail-

able in his new book was

stated in this way:

90% to 95% of all

birds fly.

So he was thinking about

ways for extending his

knowledge base in order

to capture the type of

statements contained in

his book.

The construct he finally came up with is called conditional constraint and written as

follows (fly|bird)[0.9, 0.95].

This construct is tightly re-

lated to conditional probabili-

ties. Therefore we call the first

concept, here fly, conclusion

and the second, here bird, ev-

idence.

In order to draw inferences from

this kind of knowledge he came

up with the idea of tight logi-

cal entailment. This entailment

computes the tightest probabil-

ity bounds on given evidence

and conclusion. For example he could be interested in knowing the tightest probabil-

ity bounds for geese to fly (PKB |=tight (fly|goose)[?, ?]).

This thesis deals with the combination of the views presented here and in the previous

section 1.1.

Hopefully you eagerly want to read this thesis now. But you might argue: ”What about

the computer scientist?” I tell you: ”He lived happily ever after.”
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1.3 Thesis Statement

The objective of this thesis is to investigate an extension of Description Logics with

probabilistic lexicographic entailment proposed by Giugno and Lukasiewicz [24].

To achieve this objective, a prototypical implementation in software of the proposed

algorithm for this extension will be attempted. This is done in order to show that the

approach proposed can be implemented. Using the implementation of the algorithm an

average case analysis is performed for proving its usability.

The implementation of the algorithm requires the integration of a reasoner for expressive

description logics and of a linear program solver.

1.4 Overview

In Chapter 2 the preliminaries for this thesis are given. The reader will find short intro-

ductions to topics which build the base of the theories presented in Chapter 3. He or she

will also find hints for further reading.

Chapter 3 presents an overview of related research and the theory behind probabilistic

lexicographic entailment. In addition elaborate examples should guide the reader.

The analysis of the prototypical requirements, its architecture, design and implementation

are laid out in Chapter 4.

Chapter 5 is dedicated to the average case analysis of the proposed inference algorithm.

Results of the analysis and ideas on how to improve the algorithms performance will be

shown.

In Chapter 6 the achievements of this thesis are summarised, conclusions are drawn and

recommendations for future research and development are provided.





Chapter 2

Preliminaries

Here the foundations of the theory, presented in Chapter 3, are introduced. It is not

intended to do complete and comprehensive discussions of these topics.

2.1 Introduction to Linear Programming

Linear Programming in a ”mathematical nutshell” is the solution of finite systems of

linear equations and inequalities in a finite number of variables [46].

A linear program is defined as follows:

maximize
n∑

j=1

cjxj (2.1a)

subject to
n∑

j=1

ai
jxj ≥ bi for i = 1, . . . ,m (2.1b)

xj ≥ 0 for j = 1, . . . ,m (2.1c)

Formula 2.1a is called the objective function of the linear program. The goal is to compute

its maximum (respectively minimum) with respect to the set of linear constraints given

in 2.1b. Usually the considered variables xj have to be non-negative (2.1c).

There are three possible solutions to a linear program:

1. the solution is unfeasible, meaning the linear program has no solution at all

2. the solution is unbounded, meaning the solution goes to infinity

3. the solution is the optimal one.
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Linear programs may be applied to a wide range of problems in planning and scheduling,

e.g. in business and economics.

2.1.1 Solving linear programs

In the late 1940’s, George B. Dantzig [2], a mathematician at the US Air Force, invented

the so called simplex method [16]. This invention started off research in linear program-

ming and its applications, which ignited the field of operations research. In 1972 the

worst case behaviour of the algorithm was shown by Klee and Minty to have exponential

complexity. Ten years later Borgwardt was able to proof that its average case behaviour

is of polynomial complexity [13]. In recent years, the simplex method performance has

been still a matter of research interest [58].

A new algorithm was proposed in 1979, which owns polynomial worst case behaviour [46].

It is called the ellipsoid algorithm. However, this algorithm has convergence problems due

to numerical computation.

The interior point algorithm was devised in 1984, providing both polynominal complexity

and numerical stability. Nevertheless improved simplex algorithms remain used widely in

practical applications.

Software packages implementing algorithms to solve linear programs are called linear

program solver (see also subsection 4.1.3).

2.1.2 Further Reading

There are numerous textbooks available on linear programming. The author had had a

look at [46, 13, 20].

2.2 Introduction to Description Logics

Description logics in a mathematical nutshell are proven computable subsets of first order

logic. Previously this field of research was known under the terms Concept Languages

and Terminological Systems. Today Description Logics is the term most commonly used.

Description Logics are a family of languages, which are used to model a certain application

domain. All family members are based on the two central ideas of atomic concepts and

roles. Looking from first-order logic point of view, concepts are unary and roles are binary

predicates to represent relations between concepts.
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For example bird, fly, wings and penguins are atomic concepts and hasChild is an

atomic role.

The languages differ by their constructors, which are provided to construct complex con-

cepts and roles out of atomic ones. This is also true for extensions, which may introduce

notions of time or notions of uncertainty into the given logic.

2.2.1 Knowledge Representation

A Description Logic Language may be used for representing statements which are stored

into and retrieved from a knowledge base. Generally a knowledge base is a storage for

knowledge.

You have already seen one of these language constructs (see section 1.1) in the introduc-

tion, for example: bird v fly.

It is called inclusion axiom and states that the concept bird is a subset of the concept

fly.

Further it is allowed to state concept definitions in order to construct more complex

concepts, for example: hen ≡ bird u female.

Concept definitions and inclusion axioms naturally form a hierarchy of concepts, the so

called terminology or TBox. There exists a highest concept in any given hierarchy called

top concept or short top, denoted >. All other concepts are subsumed by >; this means

that all other concepts are subsets of >.

Correspondingly there is a lowest concept in any given hierarchy called bottom concept

or bottom, it is denoted by the character ⊥. This concept is equal to the empty set,

commonly denoted {} or ∅. Concepts subsumed by bottom are equally empty.

There exists a second part of description logic knowledge base, the ABox, which stores

so called assertional knowledge. This is knowledge about the elements contained in the

concepts. The elements are also called individuals.

Statements stored in an ABox are called membership assertions. An example for such a

membership assertion would be: female u penguin(GLORIA).

The unique name assumption is commonly applied to ABoxes. With the assumption it is

expressed that each individual has a unique name.

TBox and ABox constitute the knowledge base for reasoning systems based on description

logics.
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2.2.2 Inference

The purpose of a knowledge base is not only to retrieve the stored knowledge, but also to

draw conclusions out of it. For example we would like to compute, if our knowledge base

entails that:

1. penguins have wings (KB |= penguins v wings)

2. Gloria is a hen (KB |= hen(Gloria))

The main reasoning services with respect to a TBox are subsumption and satisfiability.

Subsumption is a test for a subset relationship between two concepts (see 1. example

above). Satisfiability computes if a concept contains possible individuals and therefore is

not equal to ⊥

With respect to an ABox the main reasoning service is instance checking (see 2. example

above).

Research on Description Logics has provided us with algorithms to carry out these in-

ferences. It has been shown, that computational complexity of the inferences depend on

the expressiveness of the selected Description Logic. Several algorithms have been imple-

mented in Systems called Description Logic Reasoner, which are presented in subsection

4.1.2.

Usually inferences are carried out under the open-world assumption. The assumption says

that an algorithm finds a prove for the reasoning task at hand or it concludes that the

knowledge in the knowledge base is insufficient. This does not mean that the statement

requested is false.

2.2.3 Further Reading

If the reader is relatively new to the topic of Description Logics, the author would like

to refer him to the comprehensive Description Logic Handbook [11] and recommends to

have a look at formal introduction to a description logic language (like subsection 2.2.1

in [11]) before resuming this thesis. Readers interested in SHOQ(D) should have a look

at [29].



Chapter 3

Probabilistic Description Logics

This Chapter gives an overview over the research related and presents two theories. The

theory of Lexicographic entailment, presented in section 3.2, provides the background to

the ”Contra Bovem Rufum” story in the introduction. Section 3.3 combines the back-

ground of both stories presented into one theory called Probabilistic Lexicographic Entail-

ment for Description Logics.

3.1 Related Research

The research related to the theories under investigation may be divided into two categories:

probability logics on one hand and non-monotonic logics on the other. The first category

deals with the combination of probability theory and logic, the second with exceptions in

the logic.

3.1.1 Logics & Probabilities

In ”Boole’s Logic and Probability”, Halperin [28] investigates the research George

Boole(1815-1864) did on the combination of probability theory and logic. He also de-

scribes, how Boole’s work may be applied to the subject of linear programming. Thus we

may state that combining logics and probability is rather an old field of research.

Probabilistic Reasoning

Several probabilistic reasoning methods for knowledge based systems have been discussed

in books by Pearl[48], Paass [45], Bacchus [12], and Russel and Norvig[55]. In the literature
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two approaches can be found in order to perform inferences with probabilities. The first

approach uses Bayesian or believe networks to determine the inferred probabilities [48, 55],

the second makes use of linear programming for this task [45].

Probabilistic extensions for Description Logics

Both approaches previously mentioned have been tried to be combined with description

logics. The usage of Bayesian networks has been applied in [33, 17] in order to achieve

the probabilistic extension. In [32] the inference could possibly be made by linear pro-

gramming. The paper under investigation [24] and its follow up [39] are using linear

programming for probabilistic inference.

3.1.2 Non-monotonic Logics

Both theories, which will be introduced in the next sections, may be categorised as non-

monotonic logics. The difference between monotonic and non-monotonic reasoning is

summarised below.

Monotonic Reasoning

Reasoning in Predicate or First Order Logic is monotone with respect to the available

knowledge. More precisely adding new statements to the knowledge base ”can only in-

crease the set of entailed sentences” [55] or in other words ”if something is known to be

true (false), it will never become false (true)” [27]. In [55]]this is formally stated as:

If KB |= φ then KB ∧ ψ |= φ (3.1)

Non-monotonic Reasoning

By the observation of human reasoning one recognises that it is not monotone at all. This

can be informally described as ”changing one’s mind”. Humans allow exceptions in their

knowledge which can not be resembled neither in Predicate nor in First Order Logic. To

address these shortcomings several non-monotonic reasoning methods [52, 42, 43] have

been developed.

Default Logic is a non-monotonic reasoning method developed by Reiter [52]. It is

also discussed in [22, 48, 55]. In this approach one differentiates between hard facts about

a world and default rules. ”Since the set of all hard facts cannot completely specify the
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world, we are left with gaps in our knowledge; the purpose of the default rules is to help

fill in those gaps with plausible conclusions” [48].

Further research in default logic developed several different kinds of entailments, e.g.

0-entailment, 1-entailment, z-entailment, lexicographic entailment and me-entailment to

name a few (see [15] for an overview).

Lexicographic entailment[35] and its probabilistic successors[40, 37, 25, 39] will be the

object of theory investigation in this thesis.

3.2 Lexicographic Entailment

The notion of lexicographic entailment was first proposed by Lehmann [35] for sets of

defaults. As an extension of Pearls System Z [49] it allows for inheritance to exceptional

”subclasses”.

To get a better understanding of the discussed topic let us reintroduce the example of

story 1.1, which is called ”Winged Penguins” in literature [35, 15]. It is also used to

illustrate the terms needed. The syntax is the one used by Lehmann.

Consider the following set of defaults D:

D = {(b : f), (b : w), (p : b), (p : ¬f)} (3.2)

This set of defaults D may be interpreted as follows:

birds(b)fly(f), birds have wings(w), penguins(p) are birds but penguins do

not fly.

Defaults represent knowledge about how things generally are, i.e birds fly. Lehmann

chooses the presumptive reading of a default to give its meaning: ”Birds are presumed to

fly unless there is evidence to the contrary.” He denotes defaults as (φ : ψ) where φ and ψ

are formulae in propositional logic. The meaning of a default (φ : ψ) is closely related to

the implication φ⇒ ψ, also called the defaults material counterpart. The interpretation

is given as statements of high conditional probability P (ψ|φ) ≥ 1− ε [49].

If we would have used a propositional knowledge base in our example instead of defaults it

would be inconsistent and therefore entail anything, e.g. penguins fly and penguins don’t

fly. The goal of the definition of the lexicographic entailment is to regain a consistent

knowledge base, a knowledge base where we only are able to conclude that penguins

don’t fly.

We achieve this goal by applying a lexicographic ordering onto our models in order to
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m b f p w b⇒ f b⇒ w p⇒ b p⇒ ¬f D0 D1 p ∧ w p ∧ ¬w
m1 0 0 0 0 1 1 1 1 2 2 0 0

m2 0 0 0 1 1 1 1 1 2 2 0 0

m3 0 0 1 0 1 1 0 1 2 1 0 1

m4 0 0 1 1 1 1 0 1 2 1 1 0

m5 0 1 0 0 1 1 1 1 2 2 0 0

m6 0 1 0 1 1 1 1 1 2 2 0 0

m7 0 1 1 0 1 1 0 0 2 0 0 1

m8 0 1 1 1 1 1 0 0 2 0 1 0

m9 1 0 0 0 0 0 1 1 0 2 0 0

m10 1 0 0 1 0 1 1 1 1 2 0 0

m11 1 0 1 0 0 0 1 1 0 2 0 1

m12 1 0 1 1 0 1 1 1 1 2 1 0

m13 1 1 0 0 1 0 1 1 1 2 0 0

m14 1 1 0 1 1 1 1 1 2 2 0 0

m15 1 1 1 0 1 0 1 0 1 1 0 1

m16 1 1 1 1 1 1 1 0 2 1 1 0

Table 3.1: Winged Penguins

consider only preferred or more natural models. We give reasons for doing so shortly, but

for now let’s return to the ”Winged Penguins” example.

In propositional logic a truth assignment to a primitive proposition is called a model (or

world). As our example shows we have four primitive propositions b, f , p and w. Because

of that there are 24 possible models denoted mi with i ∈ {1, . . . , 16}. See table 3.11 for

further insight.

A model m satisfies a propositional formula φ if and only if m(φ) = true. This is

represented by m |= φ. A default (φ : ψ) is satisfied by a model, denoted m |= (φ : ψ), if

and only if m |= φ⇒ ψ.

Further a model is said to verify (or as the opposite falsify) a default (φ : ψ) if and only

if m |= φ ∧ ψ (or m |= φ ∧ ¬ψ). One default is tolerated by a set of defaults D iff there

exists a model which verifies it and simultaneously satisfies the others. If no such model

exists, the default is said to be in conflict with the other defaults.

In the example one can see that the default (b : f) is tolerated by D. For that purpose we

first have a look at the models m13 −m16 which verify the default. Afterwards m14 can

1In this table 0 represents false and 1 represents true; except for the columns D0 and D1, they
represent the count of satisfied defaults in the subset Di of the z-partition.
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be identified to satisfy all remaining defaults. m14 also shows that the default (b : w) is

tolerated by D. If we inspect the models m11,m12,m15,m16, which are the ones verifying

the default (p : b), then none of them satisfies all other three defaults at the same time.

Therefore (p : b) is in conflict with D. Similarly the reader may show the conflict of

(p : ¬f).

The z-partition of the set of defaults D is defined as the unique ordered partition

(D0, . . . ,Dk) such that each Di with i ∈ {0, . . . , k} contains the set of all defaults that are

tolerated under D \ (D0 ∪ · · · ∪Di−1).

Above we did the first step for computing the z-partition of our example. Only the

defaults (b : f) and (b : w) were tolerated by all other defaults. Thus they build D0. D0

is then removed from D. The remaining two defaults tolerate each other. Hence they are

contained in D1. We now have the following z-partition (D0,D1) where:

D0 = {(b : f), (b : w)} and D1 = {(p : b), (p : ¬f)} (3.3)

If the unique z-partition can be build the set of defaults D is said to be consistent.

The z-partition groups the defaults by specificity. A part of the z-partition is more specific

than another if its index is higher. For example the defaults (p : b), (p : ¬f) in part D1

are the most specific ones.

With possible conflicting defaults and the inability to find a model that tolerates all of

them, the goal is to select a preferred model to draw the conclusion from. Because of this

two criteria have to be taken into account:

1. A model is preferred to another model if it satisfies more defaults.

2. Satisfying a more specific default is preferred to a less specific one.

Both criteria allow us to order the models according to them. Both orderings should be

combined into one, in order to determine the preferred model. A lexicographic ordering

provides such an integration of orderings. The second criterion is chosen as the major

criterion, since it is preferred to satisfy a more specific default than to satisfy less specific

ones.

Using the z-partition as a degree of specificity the lexicographic order for the models is

defined as follows:

A model m is called lexicographical preferred to a model m′ if and only if some i ∈
{0, . . . , k} can be found that |{d ∈ Di | m |= d}| > |{d ∈ Di | m′ |= d}| and |{d ∈ Dj |
m |= d}| = |{d ∈ Dj | m′ |= d}| for all i < j ≤ k.
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Or in other words we are counting the defaults satisfied in each part of the z-partition for

every model. Then starting with the k th subset of the z-partition and comparing which

model satisfies more defaults d in that subset. If there can not be made a decision we

have to look at the k − 1 subset and make the comparison and so on.

In the example we have the following lexicographic order on the models:

m1,m2,m5,m6,m14 > m10,m12,m13 > m9,m11 > m3,m4,m16 > m15 > m7,m8.

m is said to be the lexicographically minimal model if and only if no other models are

lexicographically preferable to m. Lexicographic entailment is defined by comparing the

minimal verifying and falsifying models of a default (φ : ψ).

In order to determine if the default (p : w), which can be interpreted as penguins have

wings, is lexicographically entailed in D, one has to look at the models that verify or

falsify the default (p : w) and therefore have to satisfy p ∧ w and do not satisfy p ∧ ¬w
or vice versa, here the models m3,m4,m7,m8,m11,m12,m15,m16. The lexicographically

minimal model is m12. This model verifies the default (p : w) and therefore penguins

have wings is lexicographically entailed in D.

3.3 Probabilistic Lexicographic Entailment for De-

scription Logics

In order to extend a Description Logic for dealing with probabilistic knowledge an addi-

tional syntactical and semantical construct is needed. This additional construct is called

a conditional constraint. It is an extension of defaults, introduced in the previous section,

which represent knowledge that is generally true.

This extension of description logics has been first formalized by Giugno and Lukasiewicz

in 2002 [24, 25]. All following definitions are given in accordance to their paper.

A conditional constraint consists of a statement of conditional probability for two concepts

C,D as well as a lower bound l and an upper bound u constraint on that probability. It

is written as follows:

(D|C)[l, u] (3.4)

Where C can be called the evidence and D the hypothesis

To gain the ability to store such statements in a knowledge base it has to be extended to a

probabilistic knowledge base PKB here named probabilistic terminology P . Additionally

to the TBox T here classical terminology Tg of a description logic knowledge base we

introduce the PTBox PT here generic probabilistic terminology Pg, which consists of
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Tg and a set of conditional constraints Dg, and a PABox Po or assertional probabilistic

terminology Po holding conditional constraints for every probabilistic individual o. In [25]

there is no ABox declared, knowledge about so called classical individuals is also stored

inside the TBox abusing nominals.

Dg therefore represents statistical knowledge about concepts and Po represents degrees of

belief about the individuals o.

To be able to define the semantics for a Description Logic with probabilistic extension the

interpretation I = (∆I , ·) has to be extended by a probability function µ on the domain

of interpretation ∆I . The extended interpretation is called the probabilistic interpretation

Pr = (I, µ). Each individual o in the domain ∆I is mapped by the probability function

µ to a value in the interval [0,1] and the values of all µ(o) have to sum up to 1 for any

probabilistic interpretation Pr .

With the probabilistic interpretation Pr at hand the probability of a concept C, repre-

sented by Pr(C), is defined as sum of all µ(o) where o ∈ CI .

The probabilistic interpretation of a conditional probability Pr(D|C) is given as

Pr(C uD)

Pr(C)
(3.5)

where Pr(C) > 0.

In order to achieve a probabilistic lexicographic entailment all the terms known from the

previous section 3.2 have to be redefined for the context of Description Logics.

A conditional constraint (D|C)[l, u] is satisfied by Pr or Pr models (D|C)[l, u] if and only

if Pr(D|C) ∈ [l, u]. We will write this as Pr |= (D|C)[l, u]. A probabilistic interpretation

Pr is said to satisfy or model a terminology axiom T , written Pr |= T , if and only if

I |= T . A set F consisting of terminological axioms and conditional constraints, where

F denotes the elements of F , is satisfied or modeled by Pr if and only if Pr |= F for all

F ∈ F .

The verification of a conditional constraint (D|C)[l, u] is defined as Pr(C) = 1 and Pr

has to be a model of (D|C)[l, u]. We also may say Pr verifies the conditional constraint

(D|C)[l, u]. On the contrary the falsification of a conditional constraint (D|C)[l, u] is

given if and only if Pr(C) = 1 and Pr does not satisfy (D|C)[l, u]. It is also said that

Pr falsifies (D|C)[l, u].

Further a conditional constraint F is said to be tolerated under a Terminology T and a

set of conditional constraints D if and only if a probabilistic interpretation Pr can be

found that verifies F and Pr |= T ∪ D.

With all these definitions at hand we are now prepared to define the z-partition of a
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set of generic conditional constraints Dg. The z-partition is build as ordered partition

(D0, . . . ,Dk) of Dg, where each part Di with i ∈ {0, . . . , k} is the set of all conditional

constraints F ∈ Dg \ (D0 ∪ · · · ∪ Di−1), that are tolerated under the generic terminology

Tg and Dg \ (D0 ∪ · · · ∪ Di−1).

If the z-partition can be build from a generic probabilistic terminology Pg = (Tg,Dg),

it is said to be generically consistent or g-consistent. A probabilistic terminology P =

(Pg, (Po)o∈Ip) is consistent if and only if Pg is g-consistent and Pr |= Tg ∪ To ∪ Do ∪
{({o}|>)[1, 1]} for all o ∈ Ip.

Once more we use the z-partition for the definition of the lexicographic order on the

probabilistic interpretations Pr as follows:

A probabilistic interpretation Pr is called lexicographical preferred to a probabilistic in-

terpretation Pr ′ if and only if some i ∈ {0, . . . , k} can be found, that |{F ∈ Di | Pr |=
F}| > |{F ∈ Di | Pr ′ |= F}| and |{F ∈ Dj | Pr |= F}| = |{F ∈ Dj | Pr ′ |= F}| for all

i < j ≤ k.

We say a probabilistic interpretation Pr of a set F of terminological axioms and condi-

tional constraints is a lexicographically minimal model of F if and only if no probabilistic

interpretation Pr ′ is lexicographical preferred to Pr .

By now the meaning of lexicographic entailment for conditional constraints from a set F
of terminological axioms and conditional constraints under a generic probabilistic termi-

nology Pg is given as:

A conditional constraint (D|C)[l, u] is a lexicographic consequence of a set F of termino-

logical axioms and conditional constraints under a generic probabilistic terminology Pg,

written as F ‖∼ (D|C)[l, u] under Pg , if and only if Pr(D) ∈ [l, u] for every lexicographi-

cally minimal model Pr of F ∪{(C|>)[1, 1]}. Tight lexicographic consequence of F under

Pg is defined as F ‖∼tight (D|C)[l, u] if and only if l is the infimum and u is the supremum

of Pr(D). We define l = 1 and u = 0 if no such probabilistic interpretation Pr exists.

Finally we define lexicographic entailment using a probabilistic terminology P for generic

and assertional conditional constraints F .

If F is a generic conditional constraint, then it is said to be a lexicographic consequence of

P , written P ‖∼ F if and only if ∅ ‖∼ F under Pg and a tight lexicographic consequence

of P , written P ‖∼tight F if and only if ∅ ‖∼tight F under Pg.

If F is an assertional conditional constraint for o ∈ IP , then it is said to be a lexicographic

consequence of P , written P ‖∼ F , if and only if To ∪ Do ‖∼ F under Pg and a tight

lexicographic consequence of P , written P ‖∼tight F if and only if To ∪Do ‖∼tight F under

Pg.
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3.3.1 Computing tight lexicographic consequence

Now we will introduce the techniques required to compute g-consistency and tight lexi-

cographic consequence by means of an example. The general approach in solving these

two problems is to use standard reasoning provided by a description logic reasoner in

order to build linear programs which may be handed over to a solver in order to decide

the solvability of the programs. Let us consider the following Terminology Tg and set of

conditional constraints Dg:

Tg = {P v B} Dg = {(W |B)[.95, 1]; (F |B)[.9, .95]; (F |P )[0, .05]} (3.6)

Again we may interpret the concepts as follows: P stands for penguins, B for birds, F

for flying objects and W for winged objects.

Deciding satisfiability

The first objective is to build a set RT (F). It contains the mappings r, which map

conditional constraints Fi = (Di|Ci)[li, ui] elements of a set of conditional constraints F
onto one of the following terms Di u Ci, ¬Di u Ci or ¬Ci under the condition that the

intersection of our mappings r is not equal to the bottom concept given the terminology

T , written T 6|= r(F1) u · · · u r(Fn) v ⊥.

All possible mappings of our example are displayed in Table 3.2, columns 2 to 4. In the

first column the intersection of the mappings r is build. As an abbreviation we will write

ur instead of r(F1)u· · ·ur(Fn). The rows of the first column contain a bottom concept ⊥
incase the intersections of r are empty. Also the concepts causing the bottom concept are

given. In the fifth column the ur are tested against the terminology. If the intersections

of r are not the same as the bottom concept ⊥, this is denoted by |=, else it is denoted

by ⊥.

Our set RT (F) contains the following nine mappings r,

RT (F) = {
{W uB,F uB,F u P}, {¬W uB,F uB,F u P},
{W uB,¬F uB,¬F u P}, {¬W uB,¬F uB,¬F u P},
{W uB,F uB,¬P}, {¬W uB,F uB,¬P},
{W uB,¬F uB,¬P}, {¬W uB,¬F uB,¬P},
{¬B,¬B,¬P}
}

With the set RT (F) at hand we are able to set up linear programs to decide the satis-

fiability of the terminology T and a finite set of conditional constraints F . We say that
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T ∪F is satisfiable if and only if the linear program 3.7 is solvable for variables yr, where

r ∈ RT (F). This means, that in the objective function all coefficients preceding the

variables yr are set to 1.

∑
r∈R,r|=¬DuC

−lyr +
∑

r∈R,r|=DuC

(1− l)yr ≥ 0 (for all (D|C)[l, u] ∈ F) (3.7a)

∑
r∈R,r|=¬DuC

uyr +
∑

r∈R,r|=DuC

(u− 1)yr ≥ 0 (for all (D|C)[l, u] ∈ F) (3.7b)

∑
r∈R

yr = 1 (3.7c)

yr ≥ 0 (for all r ∈ R) (3.7d)

To be able to set up linear programs we further need to introduce the meaning of r |= C

which is used as index of the summation in 3.7a and 3.7b. It is an abbreviation for

∅ |= ur v C. So the coefficient preceding the variables yr is set in linear constraints 3.7a

and 3.7b if either r |= ¬D u C or r |= D u C may be proven.

computing g-conscistency

With the tool at hand to decide satisfiability, we may also decide, if a conditional con-

straint may be tolerated by a set of conditional constraints F . To verify a constraint

we add a conditional constraint (C|>)[1, 1]. With the extended set the linear program is

generated and solved. If an unfeasible solution is computed the conditional constraint is

conflicting. If an optimal solution is found, the conditional constraint is tolerated.

Now the z-partition of a set of conditional constraints is computable. For the example

we would have to set up four linear programs to compute part D0 and two for D1. See

appendix D for the linear programs of part D0.

computing tight logical entailment

How to compute tightest probability bounds for given evidence C and conclusion D in

respect to a set of conditional constraints F under a terminology T is explained in the

following text. The task is named tight logical entailment and denoted T ∪ F |=tight

(D|C)[l, u].

Given that T ∪F is satisfiable, a linear program is set up for F ∪ (C|>)[1, 1]∪ (D|>)[0, 1].

The objective function is set to
∑

r∈R,r|=D

yr. So the coefficient in front of the variables yr

are set 1 if r |= D.
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The tight logical entailed lower bound l is computed by minimising respectively the upper

bound u by maximising the linear program.

computing probabilistic lexicographic entailment

In order to compute tight probabilistic lexicographic entailment for given evidence C and

conclusion D under a generic probabilistic terminology P} and a set F of terminological

axioms and conditional constraints the following steps have to be taken:

1. Compute the z-partition of Dg in order to be able to generate a lexicographic or-

dering

2. Compute lexicographic minimal sets D′ of conditional constraints of Dg as elements

of D.

3. Compute the tight logical entailment T ∪ F ∪ D′ |=tight (D|C)[l, u] for all D′ ∈ D.

4. Select the minimum of all computed lower bounds and the maximum of all upper

bounds.

The 2. step needs some explanation since a new task ”compute lexicographic minimal

sets” is introduced. In order to define a lexicographic minimal set D′, a preparatory

definition is required.

A set D′ ⊂ Dg lexicographic preferable to D′′ ⊂ Dg if and only if some i ∈ {0, . . . , k} exists

such that |D′ ∩ Di| > |D′′ ∩ Di| and |D′ ∩ Di| > |D′′ ∩ Di| for all i < j ≤ k.

With the lexicographic order introduced onto the sets D′ the definition of lexicographic

minimal is given as:

D′ is lexicographic minimal in S ⊆ {S|S ⊆ Dg} if and only if D′ ∈ S and no D′′ ∈ S is

lexicographic preferable to D′.

Note that equivalence of using lexicographic minimal sets instead of lexicographically

minimal models is not proven in [24]. A prove is given in the follow up [39].

3.3.2 Using probabilistic lexicographic entailment

The probabilistic lexicographic entailment may be used to decide the following two inter-

esting probabilistic inference problems:
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probabilistic subsumption

To compute a probabilistic subsumption for the concepts D, C the tight probabilistic

lexicographic entailment is determined with respect to Pg and F = ∅.

probabilistic instance checking

Probabilistic instance checking for an individual o and a concept E is done by computing

the tight probabilistic lexicographic entailment with E set as conclusion and > as evidence

and with respect to Pg and F = Po.



3 Probabilistic Description Logics 23

ur r((W |B)[.95, 1]) r((F |B)[.9, .95]) r((F |P )[0, .05]) T 6|= ur v ⊥
B u P uW u F W uB F uB F u P |=
B u P u ¬W u F ¬W uB F uB F u P |=
⊥,¬B uB ¬B F uB F u P
⊥,¬F u F W uB ¬F uB F u P
⊥,¬F u F ¬W uB ¬F uB F u P
⊥,¬B uB ¬B ¬F uB F u P
⊥,¬B uB W uB ¬B F u P
⊥,¬B uB ¬W uB ¬B F u P
¬B u P u F ¬B ¬B F u P ⊥
⊥,¬F u F W uB F uB ¬F u P
⊥,¬F u F ¬W uB F uB ¬F u P
⊥,¬B uB ¬B F uB ¬F u P
B u P uW u ¬F W uB ¬F uB ¬F u P |=
B u P u ¬W u ¬F ¬W uB ¬F uB ¬F u P |=
⊥,¬B uB ¬B ¬F uB ¬F u P
⊥,¬B uB W uB ¬B ¬F u P
⊥,¬B uB ¬W uB ¬B ¬F u P
¬B u P u ¬F ¬B ¬B ¬F u P
B u ¬P uW u F W uB F uB ¬P |=
B u ¬P u ¬W u F ¬W uB F uB ¬P |=
⊥,¬B uB ¬B F uB ¬P
B u ¬P uW u ¬F W uB ¬F uB ¬P |=
B u ¬P u ¬W u ¬F ¬W uB ¬F uB ¬P |=
⊥,¬B uB ¬B ¬F uB ¬P
⊥,¬B uB W uB ¬B ¬P
⊥,¬B uB ¬W uB ¬B ¬P
¬B u ¬P ¬B ¬B ¬P |=

Table 3.2: DL-Winged Penguins





Chapter 4

The ContraBovemRufum Prototype

Based on the defined and discussed theories, this chapter deals with the requirements

analysis, architecture, design and implementation of the prototype. The resulting software

implementation is attached on CD in appendix E.

4.1 Analysis

This section presents the gathered functional and non-functional requirements, short anal-

yses of the required technologies description logic reasoner and linear program solver and

a short presentation of the related nmproblog system.

4.1.1 Prototype Requirements

Functional Requirements

In order to capture the functional requirements of the intended system, the technique of

Use Cases [54, 34, 21] will be applied. As the result of the analysis four Use Cases Manage

Probabilistic Knowledge Base, Compute Tight Lexicographic Entailment, Compute Proba-

bilistic Knowledge Base Consistency and Compute Probabilistic Terminology Consistency

(see figure 4.1) are imposed on the prototype. They are presented in detail within tables

4.1, 4.2, 4.3 and 4.4.
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ContraBovemRufum

Compute Tight 
Lexicographic 

Entailment

Compute 
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Compute
Probabilistic 

Knowledge Base 
Consistency

<uses>

<uses>

Knowledge 
based

Application

Manage 
Probabilistic 

Knowledge Base

Figure 4.1: Use Case Diagram: ContraBovemRufum
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Use Case: Manage Probabilistic Knowledge Base

Summary: A knowledge based application needs management functionality on

a probabilistic knowledge base which includes creation, loading,

storing and manipulation.

Actors: Knowledge based Application

Preconditions: The system is connected to a description logic reasoner.

Description:

1. A knowledge based application requests the creation of new

probabilistic knowledge base. The system asks for a name

and creates an empty probabilistic knowledge base with this

name. Afterwards the knowledge base is ready to use.

2. The system is told to open a probabilistic knowledge base

with a given name. If a knowledge base with the name

is found, it will be loaded from persistent storage into the

system and is then ready for use. [Exception: Unable to

open/find probabilistic knowledge base.]

3. A request is made to save a probabilistic knowledge base with

a given name. The system writes it to persistent storage.

[Exception: Overwrite existing probabilistic knowledge base.]

4. A knowledge based application wants to manipulate (set, re-

set) the TBox or ABox of a probabilistic terminology. The

system sets the desired changes. [Exception: Reasoner is not

able/reachable to perform the change.]

5. The system is told to manipulate the PTBox and PABox.

This means to add or remove probabilistic inclusion axioms

and concept assertions.[Exception: Change could not be per-

formed.]

Exceptions: Unable to open/find probabilistic knowledge base: The application

is informed that the requested probabilistic knowledge base can not

be opened.

Overwrite existing probabilistic knowledge base: The application is

asked if it wishes to overwrite the probabilistic knowledge base.

Reasoner is not able/reachable to perform the change: The appli-

cation is informed why the requested action can not be performed.
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Change could not be performed : The application gets a reason for

the failure

Postconditions: none

Table 4.1: Manage Probabilistic Knowledge Base

Use Case: Compute Tight Lexicographic Entailment

Summary: A knowledge based Application requests the tightest lexicographic

bounds on a probabilistic inclusion axiom or concept assertion with

respect to a probabilistic knowledge base.

Actors: Knowledge based Application

Preconditions: The application provides valid evidence and conclusion concepts or

as the case may be a valid concept assertion. The system is con-

nected to a linear program solver and a description logic reasoner.

Description:

1. If the application requests to compute the tightest bounds on

a probabilistic inclusion axiom, the system computes them by

using evidence, conclusion, Tbox and the PTBox. [Exception:

The tight lexicographic entailment fails to compute.]

2. If the tightest bounds on a probabilistic concept assertion is

requested, the system computes the bounds using asserted

concept, individual, TBox, ABox, PTBox and PABox. [Ex-

ception: The tight lexicographic entailment fails to compute.]

Exceptions: The tight lexicographic entailment fails to compute: This may be

for one of the following reasons - the request is not entailed, the

system is unable to reach the solver, the system is unable to reach

the reasoner. The reason is told to the application.

Postconditions: none

Table 4.2: Compute Tight Lexicographic Entailment
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Use Case: Compute Probabilistic Knowledge Base Consistency

Summary: On request the system checks if the probabilistic knowledge base is

consistent

Actors: Knowledge based Application

Preconditions: The system is connected to a linear program solver and a descrip-

tion logic reasoner.

Description: If the system is asked for the consistency of the probabilistic knowl-

edge base, it first executes the Use Case Compute Probabilistic

Terminology Consistency. By success of the previous task the sys-

tems checks ABox and PABox for consistency. The result is then

returned to the knowledge based application.[Exception: Compu-

tation of the consistency fails.]

Exceptions: Computation of the consistency fails : The application is told which

part of the consistency check failed or if it failed for connectivity

reasons with solver or reasoner.

Postconditions: none

Table 4.3: Compute Probabilistic Knowledge Base Con-

sistency

Use Case: Compute Probabilistic Terminology Consistency

Summary: A knowledge based application demands the PTBox consistency to

be checked

Actors: Knowledge based Application

Preconditions: The system is connected to a linear program solver and a descrip-

tion logic reasoner

Description: The system checks the PTBox for consistency after it has checked

the TBox consistency before. If both tests are successful, the result

is returned to the application. [Exception: Computation of the

consistency fails.]

Exceptions: Computation of the consistency fails : The application is told which

part of the consistency check failed or if it failed for connectivity

reasons with solver or reasoner.

Postconditions: none

Table 4.4: Compute Probabilistic Terminology Consis-

tency
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Non-functional Requirements

The non-functional requirements imposed on the intended system are presented in the

following short list, bullet 2� represents must-haves and bullet 2 nice-to-haves.

1. Support RacerPro as description logic reasoner 2�(NF 1)

2. Support for further description logic reasoner2(NF 2)

3. Support for one linear program solver2� (NF 3)

4. Support for further linear program solver 2(NF 4)

5. Change linear program solver during runtime2(NF 5)

6. Support for multiple platforms 2�(NF 6)

7. Provide a basic graphical user interface2(NF 7)

8. Support for other probabilistic entailments2(NF 8)

9. Change entailment algorithm during runtime 2(NF 9)

4.1.2 Description Logic Reasoner

A description logic reasoner is the kernel software providing reasoning services to

knowledge-based applications using an interface (see figure 4.2). The main reasoning

task regarding the TBox are satisfiability and subsumption of concepts. ABox reasoning

services are checking consistency against a TBox and instance retrieval.

At the time of writing this thesis some of the reasoners have made the transition from

research system to commercial product [10, 5, 6]. This indicates there is a market de-

veloping for these systems. An overview of description logic reasoners is available on the

website of Ulrike Sattler [56]. Distinguishing features of the reasoners are the expressive-

ness of the underlying description logic, used inference algorithms, support for ABoxes

and supported API’s. For reasoners, which turned into commercial products, free research

licences may be obtained.

In the following paragraphs a selection of description logic reasoners is presented in short.

For detailed information please visit the reasoners websites and have a look at their

manuals.
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Knowledge Base

Interface

Description Logic 
Reasoner

TBox ABox

Figure 4.2: Description Logic Reasoner Architecture

RacerPro

The description logic reasoner RacerPro1 is a product offered by Racer Systems GmbH

& Co. KG [10]. This software has its roots in fundamental research by the University of

Hamburg (Hamburg, Germany). Current research and development for Racer is under-

taken by Ralf Möller at Technische Universität Hamburg-Harburg (Hamburg, Germany)

and by Volker Haarslev at Concordia University (Quebec, Canada).

RacerPro is implemented using the Common Lisp programming language. Its supported

underlying description logic is ALCQHIR+ also known as SHIQ. This reasoner provides

reasoning services for several TBoxes and ABoxes. The implemented inference algorithm

is based on a highly optimised tableau calculus.

In order to build a knowledge based system on top of RacerPro one may run it as a server

and has the choice between the following interfaces:

DIG over HTTP, a Java API over TCP/IP or a Lisp API over TCP/IP.

It may also be setup as a batch system using file I/O.

Together with this reasoner a graphical user interface client, called Racer Porter, is de-

livered. This client supplies management and manipulation capabilities for one or more

RacerPro Servers.

1RACER stands for Renamed ABox and Concept Expression Reasoner.
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RacerPro comes with a user’s guide [51] and a reference handbook [50].

FaCT++

FaCT++ [3] description logic reasoner is the successor of the FaCT2 system [30], developed

by Ian Horrocks at the University of Manchester (England, United Kingdom). It is

released under a GNU General Public License. Further research and development is

carried out in Manchester by Ian Horroks and Dimitry Tsarkov.

The system is implemented in the C++ programming language, supports the underlying

description logic SROIQ and uses a tableau based inference algorithm.

Knowledge based systems may access FaCT++ stand alone using a Lisp-like interface as

well as a server using the DIG Interface over HTTP.

KAON2

The KAON23 [6] description logic reasoner is commercially available through ontoprise

GmbH [9]. It has been developed by Boris Motik in order to validate the algorithms, he

developed for his PhD Thesis at the Research Center for Information Technologies (FZI)

(Karlsruhe, Baden-Württemberg, Germany). Contributing research efforts have been

made at the University of Karlsruhe (Germany) and University of Manchester (United

Kingdom).

The system is implemented in the Java programming language. As underlying description

logic it supports SHIQ. For the inference KAON2 uses algorithms which reduce the

problem to a disjunctive datalog program.

A knowledge based application may access this reasoner using either RMI or the DIG

interface.

4.1.3 Linear Program Solver

The first linear program solvers were provided by companies like IBM in order to solve

their clients problems and sell their computers [46].

The file format developed for IBM’s MPS4 became the de facto standard for the description

of linear programs [26]. This format, which was developed in a time when computers

2FaCT stands for Fast Classification of Terminologies
3KAON stands for Karlsruhe Ontology
4MPS stands for Mathematical Programming System
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were programmed by punched cards, is still usable together with most linear program

solvers existing today. IBM’s MPSX-System, where X stands for extended and which

had replaced MPS, was pulled off the market in 2005 [31].

An overview for available linear programming software may be found in the 2005 Linear

Programming Software Survey [19].

In the following paragraphs a selection of linear program solvers is presented. For detailed

information please visit the solvers websites and have a look at their manuals.

OR-Objects

OR-Objects is a Java framework for rapid development of applications in operations

research, science and engineering, developed by DRA Systems [1]. It comes as a jar-file

under a freeware licence.

The framework provides packages for mathematical programming, numerical problems,

graphs and geometry. The package drasys.or.mp.lp contains a solver for linear programs

using the simplex algorithm.

Knitro

Knitro [7] is a commercial software package designed to find solutions to numerous optimi-

sation problems, one of these is linear programming. It is offered by Ziena Optimization

Inc.

The software package provides APIs to C/C++, Fortran, Java and is available for several

computing platforms. Optimal solutions are found using variants of the interior-point

algorithm.

mosek

The mosek optimisation software[4] by MOSEK ApS is designed for large scale mathe-

matical optimisation problems.

In order to interface with mosek one may use a MPS file interface or APIs for several

programming languages (C, Fortran, Java, C#). Mosek implements both simplex and

interior-point based algorithms for the solution of linear programs. The software suite is

available for several computing platforms.
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4.1.4 Related Systems

In 2005, Thomas Lukasiewicz made the nmproblog system[41, 38] available as a practical

result of his research. The system computes entailment in variable strength nonmonotonic

probabilistic logics (System P, System Z, lexicographic). The underlying logic is predicate

logic.

nmproblog may be downloaded as an executable for the Linux operating system on x86

machines. It needs the linear programm solver lpsolve[8] be installed.
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4.2 Architecture & Design

In this section the architecture and design of the prototype is described.

4.2.1 Architecture

The architecture for the ContraBovemRufum prototype (see figure 4.3) will extend the

layered architecture, we have seen for description logic reasoner in figure 4.2. One may in-

terpret the prototype as another layer on top. It provides the services, which are described

in the Use Cases in subsection 4.1.1, through an interface.

Knowledge Base

TBox ABox PTBox PABox

ContraBovemRufum

Interface

Description 
Logic Reasoner

Linear Program 
Solver

Interface

Interface

Probabilistic Knowledge Base

Figure 4.3: ContraBovemRufum Architecture

The bottom Knowledge Base Layer is expanded to a Probabilistic Knowledge Base by

adding the PTBox as well as the PABox. Access to TBox and ABox remains exclusive to

the description logic reasoner. If the prototype has to access the Probabilistic Knowledge

Base it will do so via an interface to the description logic reasoner to its exclusive part or
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directly to the probabilistic part.

In order to provide the reasoning services a linear program solver is placed in the inter-

mediate layer in addition to the description logic reasoner. It will be used by the system

through one of its interfaces.

All described reasoners in subsection 4.1.2 are equipped with a ”remote” interface and

run as servers; therefore it is possible to distribute this component over a network.

The examined solvers in subsection 4.1.3 all own interfaces which are linked as libraries

into the application. If the solver should be run as a server connected over a network,

more development effort is required or another solver, which provides such functionality,

has to be chosen. Sending linear programs over a network is feasible due to the fact that

they typically may be represented as sparse matrices [53].

Conclusive one can state that the proposed architecture is highly flexible and allows for

easy distribution. With the possibility of distribution one can fall back onto an additional

pool of performance if need be.

4.2.2 Design

The design of the core package (see figure 4.4) of ContraBovemRufum prototype has to

solve the following difficult problem:

Achieve all functionality stated in the use cases while having the intended flexibility and

extensibility in mind which derives especially from the non-functional requirements NF

2, NF 4, NF 5, NF 8 and NF 9.

The proposed solution rests upon the GoF Design Patterns[23] Abstract Factory and

Builder.

One factory produces all the description logic reasoner related products. It is called Rea-

sonerFactory and creates the two abstract products Reasoner and ConditionalConstraint.

In order to satisfy NF 2, one has to create subclasses of the factory and its products and

has to do minimal local amendments to the classes ReasonerFactory and CorePreferences

to be able to choose the new reasoner by preference. Already implemented and tested

ReasonerFactories and products remain untouched and therefore they do not have to be

tested again and do not need to be recompiled.

Another factory produces the linear program solver related products. Naturally it is called

SolverFactory and produces Solver. To satisfy NF4 and NF 5, an analogous approach as

described above for the new reasoner is available.
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The ProbabilisticKnowledgeBase implements both the ProbabilisticKBInterface and the

ProbabilisticEntailmentInterface. Because of that it acts as a data container object holding

the PTBox and PABox and references on TBox and ABox, a manager for its data and

director for all operations on the ProbabilisticEntailmentInterface.

A PTBox is designed as a SetOfConditionalConstraints which is a normal set with the

additional functionality of checking its own satisfiability with respect to a Probabilistic-

KnowledgeBase.

A PABox represents a standard map containing names of individuals as keys and SetOf-

ConditionalConstraints as values.

Computation of the entailment is carried out by the abstract builder class TightEntail-

ment and its concrete children TightLexEntailment and TightLogEntailment. The build is

initiated by the ProbabilisticKnowledgeBase as director. The employment of the builder

pattern enables us to choose the entailment by preference at runtime (NF 9). Also further

entailments may be integrated easily by subclassing TightEntailment (NF 8) and minimal

amendmends to the director and CorePreferences class.

At this time we gained TightLogEntailment as further entailment for free since it is needed

by TightLexEntailment. This is also the way to go if a new improved algorithm for an

already existing entailment has to be implemented. The advantage is that an already

tested and working algorithm needs not to be touched.

Overall the design facilitates the extensibility of the system into directions lined out in

the nonfunctional requirements NF 2, NF 4 and NF 8. Further it allows for run time

flexibility in the choice of algorithm and solver(NF 9, NF 5).
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Figure 4.4: ContraBovemRufum Design
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4.3 Implementation

Here some remarks regarding the prototypical implementation are stated.

4.3.1 Choice of programming language

Java�1.5 is the chosen implementation language for the ContraBovemRufum prototype.

In the following text reasons for this decision are presented along some categories from

[36].

With the nonfunctional requirement NF 6 in mind the choice of Java delivers a lot of

advantages since a Java virtual machine is available for several hardware platforms and

operation systems.

Also Java allows the use of natural API’s provided by reasoner and solver. Further on

this enables the use of powerful frameworks like the Java collection framework[59] and its

extensions [57].

4.3.2 Choice of Description Logic Reasoner

Since the support of the RacerPro reasoner was a requirement, the development of the

prototype started with this reasoner. The use of RacerPro turned out to be fairly easy

due to its good documentation and JRacerAPI.

The prototype is capable to manage probabilistic knowledge bases, using the Racer lan-

guage for concepts, and compute their entailment.

Support for further reasoners has not been implemented so far.

4.3.3 Choice of Linear Program Solver

As one can see in Linear Programming Software Survey [19] there are many linear pro-

gramming software packages to choose from and there is no claim for being complete.

The choice of Java as implementation language for the prototype provoked some solvers

being more preferable for integrating in a Java environment.

The results of this search are the three solvers presented in subsection 4.1.3. For now the

prototype uses the pure Java solver out of OR-Objects.

Support for further solvers has not been implemented so far.
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4.3.4 Computation of the variables yr

The way how the variables yr are computed in table 3.2 is rather inefficient. Therefore

the method computeYr() on Solver objects does the computation using a tree-structure

with a depth-first search. Each node has three branches Di u Ci, ¬Di u Ci or ¬Ci were i

is the node layer and the number of the selected conditional constraint. Branches of the

tree that can not contain a variable are cut out.

In order to improve the performance, the search algorithm could be parallelised , but

this requires that the description logic reasoner selected is capable of handling several

requests simultaneously. At the moment RacerPro is not able to handle parallel requests;

one could use the software RacerManager in combination with several RacerPro instances

to achieve this behaviour .
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Average Case Analysis

After a successful implementation of the algorithm proposed in [24] (see appendix A for

a copy of the algorithm) a further objective of this thesis was the analysis of its average

case behaviour.

Already during the implementation of the class TightLexEntailment it became obvious,

that this algorithm will perform in the average case like O(2n), where n is the number of

conditional constraints within the ith part of the z-Partition.

In order to explain this conclusion, one has to take a closer look at the algorithm. The

algorithm may be divided into three parts:

Part 1 (Line 1 - 2) tests, if the evidence concept is satisfiable against the TBox(Tg)

and a set F of all ABox and PABox axioms bound to a certain individual. F is

only relevant, if probabilistic concept membership is computed.

Part 2 (Line 3 - 13) computes lexicographic minimal sets of conditional constraints

that are not in conflict with the verified evidence.

Part 3 (Line 14 - 19) computes the tightest entailed bounds using the previously com-

puted sets and the conclusion concept.

The reason for poor average case performance is within the second part in line 7. Here

the computation of the power set for each part Di of the z-partition is required in order

to iterate through all possible subsets G. A power set has 2n elements (see proof in [60])

and the algorithm visits all of them. Therefore the average complexity is determined to

be O(2n) and it has been shown that the algorithm is intractable.

Here are some ideas on how to modify the algorithm to improve its average case perfor-

mance:
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As the first idea ”lazy power set computation” is introduced. By this is meant, that one

starts with G as the set containing all elements and then with all subsets, where we have

(n − 1) elements and so on. The cardinality of these sets of subsets is given by
(

n
n−i

)
,

where n is the number of elements and i the number of omitted elements.

If a set of subsets is found, where some sets are satisfiable, the process may be stopped

since we are interested only in those kind of sets which satisfy as many conditional con-

straints as possible. Still for the worst case all subsets down to the level where the subsets

only contain one element have to be computed. But on average the algorithm has to visit

less subsets G than the implemented algorithm.

The second idea is to combine ”lazy power set computation” with binary search. This

works as follows:

We start with the set of subsets containing
(

n
n−dn

2
e

)
and test its elements for satisfiability.

If at least one set is satisfied, the search continues within the upper half between n and

dn
2
e; otherwise the search continues in the lower half in the same manner.

These two ideas have been already applied to the algorithm in [39].

A third idea is to introduce some heuristic method before performing binary search in

order to reduce the search space. For example we could pick a random subset G of Dj

and test it for satisfiability. If G is indeed satsfiable the cardinality of G is set as new

lower bound for the binary search. This makes sense because computing the satisfiability

of a random subset is relativly cheap compared to computing set of subsets with n − i

elements.

All ideas presented are definitely fields of interest for future research. The ContraBovem-

Rufum Prototype is prepared for easy integration of these ideas (see subsection 4.2.2).
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Summary

This chapter will provide a summary of the thesis, give final conclusions and recommen-

dations for future research and development topics.

6.1 Summary & Conclusion

A prototypical implementation of the inference algorithm for probabilistic description

logics proposed by Giugno and Lukasiewicz in [24] has been realised. Afterwards the

average case behaviour of the implemented algorithm was evaluated analytically.

6.1.1 Prototype

The ContraBovemRufum Prototype may be seen as a basic software framework that is

capable of easily integrating further description logic reasoners , linear program solver

and probabilistic entailment algorithms. Within the scope of this thesis the description

logic reasoner RacerPro was integrated together with the linear program solver from

OpsResearch in order to provide the new probabilistic reasoning services probabilistic

subsumption and probabilistic instance checking.

For determining the probabilistic lexicographic entailment, papers [25, 24] have been

discussed and the proposed algorithm has been implemented.

As a freebie the prototype is able to handle tight probabilistic logical entailment. This

entailment does not allow exceptions in the Probabilistic Knowledge Base.
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6.1.2 Average case analysis

The average case analysis concluded analytically that the implemented algorithm is in-

tractable. But that does not mean that there is no room for improvement of the average

case behaviour, since the algorithm uses a brute force approach to compute the lexico-

graphic minimal set.

6.2 Recommendations

Here some ideas for further research and development of the implemented ContraBovem-

Rufum System are given:

� Integration of further solvers, description logic reasoners and of general description

logic interfaces DIG and DIG 2.0, enabling a broader application of the system and

selection of the user-preferred subsystems.

� Research and development of new tractable algorithms by applying different search

strategies to determine lexicographic minimal sets.

� Development of an analysis package to evaluate new algorithms.

� Optimisation of the new algorithms by threaded computation of the variables yr, of

the parts of the z-partition and of lexicographic minimal sets.

� Improvement of the management functionality for Probabilistic Knowledge Bases

by implementation of a PKB Broker, which allows to save a PKB using XML and

convert it from one reasoner language to another.

� Research and development of applications which can be realised on top of the Con-

traBovemRufum System
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Appendix A

Algorithm

This algorithm was proposed in [24] and has been implemented in the ContraBovemRufum

prototype.

Input: Consistent generic probabilistic terminology Pg, set of terminological axioms and

conditional constraints F , and two concepts C and D .

Output: Pair of real numbers (l, u) ∈ [0, 1] such that F ‖∼tight (D|C)[l, u] under Pg.

Notation: (D0, . . . ,Dk) denotes the z-partition of Pg .

1. R := Tg ∪ F ∪ {(C|>)[1, 1]};
2. if R is unsatisfiable then return(1, 0);

3. H := {∅};
4. for j := k downto 0 do

5. n := 0;

6. H′
:= ∅;

7. for each G ⊆ Dj and H ∈ H do

8. if R∪ G ∪H is satisfiable then

9. if n = |G| then H′
:= H′ ∪ {G ∪ H};

10. else if n < |G| then H′
:= {G ∪ H}; n := |G|;

11. end

12. H := H′

13. end

14. (l, u) := (1, 0)

15. for each H ∈ H do

16. compute c, d ∈ [0, 1] such that R∪H |=tight (D|>)[c, d]

17. (l, u) := (min(l, c),max(u, d))

18. end

19. return (l, u)





Appendix B

Nomenclature

B.1 Logical Symbols

a, b, c primitive propositions

φ, ψ propositional formulae

¬φ negation or not

φ ∧ ψ conjunction or and

φ ∨ ψ disjunction or or

|= entails, satisfies, models

|=lex lexicographic entails

(φ : ψ) default

D set of defaults

Di ith part of the z-partition of D

B.2 Description Logic Identifiers

Identifiers used to indicate the expressiveness of description logics.

AL attributive language, containing atomic concept,

universal concept, bottom concept, atomic negation,

intersection, value restriction and limited existential quantification

C negation

R+ transitive roles

I inverse roles
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N number restriction

Q qualified number restriction

O nominals

H role hierarchies

S short for ALCR+

B.3 Symbols of Description Logic

B.3.1 Description Logic AL

C,D concepts

R,S roles

A atomic concept

> universal concept

⊥ bottom concept

¬A atomic negation

C uD intersection

∀R.C value restriction

∃R.> limited existential quantification

C v D inclusion axiom

C ≡ D equality axiom

I interpretation

∆I domain of interpretation

· interpretation function

B.3.2 Further constructors C,R+, I,N ,Q,O and H

¬C negation

C tD union

∃R.C full existential quantification

R+ transitive role

R− inverse role

≤ nR or ≥ nR number restriction

≤ nR.C or ≥ nR.C qualified number restriction
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{o} nominals

R v S inclusion axioms (role hierarchies)

B.3.3 Probabilistic lexicographic extension

l lower bound

u upper bound

(C|D)[l, u] conditional constraint

B.4 Math Terms

B.4.1 Partition of a Set

”A partition of a set X is a family {Xi|i ∈ I} of non-empty subsets of X such that

(i) X is the union of the sets Xi (i ∈ I),

(ii) each pair Xi, Xj (i 6= j) is disjoint.

The subsets Xi are called the parts of the partition.”[14]





Appendix C

Tools & Support

This appendix lists all support and tools used.

C.1 Support

The stories 1.1 and 1.2 have been illustrated by Christina Wenterodt. This thesis has

been proof read by Volker G. Näth for typing errors. The graphical user interface has

been programmed by Martin Malzahn.

C.2 Tools

The thesis was written using an Apple Powerbook G4 @ 1.25Ghz, 1.25GB running OS

X 10.4.8. It has been typeset using teTex 7.9.0 and TexShop 2. The bibliography was

managed by JabRef 2.1. As references for LATEX[44] and [47] have been used.

All graphics have been created with OmniGraffle Pro 3.2.4.

The ContraBovemRufum system was developed in Java 1.5 with Eclipse 3.2 on the same

system. As references for Java [61] and [18] have been used. All tests have been made with

JUnit 3.8. The system uses the OpResearch solver [1] and MathCollection [57]. RacerPro

Version 1.9.0 has been used as description logic reasoner [10].





Appendix D

Winged Penguins Example

D.1 TBox

1 ( in−tbox wingedpenguins )

( imp l i e s penguin b i rd )

D.2 Linear program concept bird verified

var Ybpwf >=0;

2 var YbpWf >=0;

var YbpwF>=0;

4 var YbpWF>=0;

var YbPwf>=0;

6 var YbPWf>=0;

var YbPwF >=0;

8 var YbPWF>=0;

var YBP>=0;

10

maximize co s t :

12 Ybpwf + YbpWf + YbpwF+ YbpWF + YbPwf + YbPWf + YbPwF + YbPWF + YBP;

14

sub j e c t tolWB :

16 0 .05*Ybpwf + (−0.95)*YbpWf+ 0.05*YbpwF+ (−0.95)*YbpWF + 0.05*YbPwf +

(−0.95)*YbPWf + 0.05*YbPwF + (−0.95)*YbPWF + 0*YBP >= 0 ;

18 sub j e c t to lFB :
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0 .1*Ybpwf + 0.1*YbpWf + (−0.9)*YbpwF+ (−0.9)*YbpWF+ 0.1*YbPwf+ 0.1*

YbPWf+ (−0.9)*YbPwF + (−0.9)*YbPWF + 0*YBP >= 0 ;

20

sub j e c t tolFP :

22 1*Ybpwf + 1*YbpWf + 0*YbpwF+ 0*YbpWF+ 0*YbPwf + 0*YbPWf + 0*YbPwF +

0*YbPWF + 0*YBP>= 0 ;

24 sub j e c t tolBT :

0*Ybpwf + 0*YbpWf + 0*YbpwF+ 0*YbpWF+ 0*YbPwf + 0*YbPWf + 0*YbPwF +

0*YbPWF + (−1)*YBP>= 0 ;

26

sub j e c t touWB:

28 0*Ybpwf + 1*YbpWf+ 0*YbpwF+ 1*YbpWF + 0*YbPwf + 1*YbPWf + 0*YbPwF +

1*YbPWF + 0*YBP >= 0 ;

30 sub j e c t to uFB:

(−0.05)*Ybpwf+ (−0.05)*YbpWf + 0.95*YbpwF+ 0.95*YbpWF+ (−0.05)*YbPwf+

(−0.05)*YbPWf+ 0.95*YbPwF + 0.95*YbPWF + 0*YBP >= 0 ;

32

sub j e c t touFP :

34 (−0.95)*Ybpwf + (−0.95)*YbpWf + 0.05*YbpwF+ 0.05*YbpWF+ 0*YbPwf + 0*

YbPWf + 0*YbPwF + 0*YbPWF + 0*YBP>= 0 ;

36 sub j e c t touBT :

0*Ybpwf + 0*YbpWf + 0*YbpwF+ 0*YbpWF+ 0*YbPwf + 0*YbPWf + 0*YbPwF +

0*YbPWF + 1*YBP>= 0 ;

38

sub j e c t to One :

40 Ybpwf + YbpWf + YbpwF+ YbpWF + YbPwf + YbPWf + YbPwF + YbPWF + YBP =

1 ;

D.3 Linear program concept penguin verified

2 var Ybpwf>=0;

var YbpWf>=0;

4 var YbpwF>=0;

var YbpWF>=0;

6 var YbPwf>=0;

var YbPWf>=0;



D Winged Penguins Example 61

8 var YbPwF>=0;

var YbPWF>=0;

10 var YBP>=0;

12 maximize co s t :

Ybpwf + YbpWf + YbpwF+ YbpWF + YbPwf + YbPWf + YbPwF + YbPWF + YBP;

14

16 sub j e c t tolWB :

0 .05*Ybpwf + (−0.95)*YbpWf+ 0.05*YbpwF+ (−0.95)*YbpWF + 0.05*YbPwf +

(−0.95)*YbPWf + 0.05*YbPwF + (−0.95)*YbPWF + 0*YBP >= 0 ;

18

sub j e c t to lFB :

20 0 .1*Ybpwf + 0.1*YbpWf + (−0.9)*YbpwF+ (−0.9)*YbpWF+ 0.1*YbPwf+ 0.1*

YbPWf+ (−0.9)*YbPwF + (−0.9)*YbPWF + 0*YBP >= 0 ;

22 sub j e c t tolFP :

1*Ybpwf + 1*YbpWf + 0*YbpwF+ 0*YbpWF+ 0*YbPwf + 0*YbPWf + 0*YbPwF +

0*YbPWF + 0*YBP>= 0 ;

24

sub j e c t tolPT :

26 0*Ybpwf + 0*YbpWf + 0*YbpwF+ 0*YbpWF+ (−1)*YbPwf + (−1)*YbPWf + (−1)*

YbPwF + (−1)*YbPWF + (−1)*YBP>= 0 ;

28 sub j e c t touWB:

0*Ybpwf + 1*YbpWf+ 0*YbpwF+ 1*YbpWF + 0*YbPwf + 1*YbPWf + 0*YbPwF +

1*YbPWF + 0*YBP >= 0 ;

30

sub j e c t to uFB:

32 (−0.05)*Ybpwf+ (−0.05)*YbpWf + 0.95*YbpwF+ 0.95*YbpWF+ (−0.05)*YbPwf+

(−0.05)*YbPWf+ 0.95*YbPwF + 0.95*YbPWF + 0*YBP >= 0 ;

34 sub j e c t touFP :

(−0.95)*Ybpwf + (−0.95)*YbpWf + 0.05*YbpwF+ 0.05*YbpWF+ 0*YbPwf + 0*

YbPWf + 0*YbPwF + 0*YbPWF + 0*YBP>= 0 ;

36

sub j e c t touPT :

38 0*Ybpwf + 0*YbpWf + 0*YbpwF+ 0*YbpWF+ 1*YbPwf + 1*YbPWf + 1*YbPwF +

1*YbPWF + 1*YBP>= 0 ;
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40

sub j e c t to One :

42 Ybpwf + YbpWf + YbpwF+ YbpWF + YbPwf + YbPWf + YbPwF + YbPWF + YBP =

1 ;
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