
Framework for Text Editors of

Domain Speci�c Languages in

Eclipse

submitted by

Paulus Sentosa
Matr. Nr.: 22946

supervised by

Prof. Dr. Ralf Möller
Miguel Garcia, M.Sc.

Hamburg University of Science and Technology
Software Systems Institute (STS)

Abstract

Gymnast is an Eclipse-based framework that provides supports as domain-speci�c
languages tooling. Using a grammar speci�cation of a language as input, Gym-
nast generates classes that represent the language's concrete syntax and some utility
classes. The generated classes can be used to build editors for the language. The long-
term goal of Gymnast is however to be a full-featured language-speci�c IDE generator.
This project work presents the framework in detail and some usage examples of the
framework for de�ning languages and implementing their tools.

Declaration

I declare that:
this work has been prepared by myself,
all literal or content based quotations are clearly pointed out,
and no other sources or aids than the declared ones have been used.

Hamburg, May 11th, 2007
Paulus Sentosa

I would like to thank Prof. Dr. Ralf Möller for providing a very interesting topic
and giving me the oppotunity to work on this topic as my project work. I would
also like to thank Miguel Garcia, M.Sc for his guidance, encouragement and endless
patience during this work, especially in every single discussion session.

Contents

1 Introduction 6

1.1 Background . 6
1.2 Objectives . 7
1.3 Document Structure . 8

2 Existing Prototypes 9

2.1 Gymnast . 9
2.1.1 Overview . 9
2.1.2 Information Flow in Gymnast 9
2.1.3 Rules . 10

2.2 SAFARI . 11
2.2.1 Overview . 11
2.2.2 Architecture . 12
2.2.3 IDE Development Process Using SAFARI 12

2.3 Textual Concrete Syntax (TCS) . 13
2.3.1 Overview . 13
2.3.2 Architecture of the Framework 13

2.4 Textual Concrete Syntax Speci�cation Language 14
2.4.1 Overview . 14
2.4.2 Concepts of TCSSL . 14
2.4.3 Architecture of The Tool Chain 14

3 Textual Editor of UML2 State Machine : Design Phase 16

3.1 Gymnast : Runtime and Generator . 16
3.1.1 Runtime - Core . 16
3.1.2 Runtime - User Interface . 19
3.1.3 Generator - Core . 22
3.1.4 Generator - UI . 24
3.1.5 Extension Point: astGenerator 25
3.1.6 Extension Point: parserGenerator 27

3.2 Design Patterns . 28
3.2.1 Template Pattern . 28
3.2.2 Visitor Pattern . 28
3.2.3 Decorator Pattern . 29
3.2.4 Factory Pattern . 29
3.2.5 Observer Pattern . 29

3

CONTENTS 4

4 Textual Editor of UML2 State Machine : Implementation Phase 31

4.1 Textual Notation of UML2 State Machine : The Grammar 31
4.2 An Example of State Machine . 33
4.3 Building the Abstract Syntax Tree . 36
4.4 Implementation of the Enhanced Features of Text Editor 39

5 Outlook 47

5.1 Summary . 47
5.2 Future Work . 48

List of Figures

2.1 Gymnast information �ow . 10
2.2 Gymnast example grammar . 11
2.3 High level architecture of SAFARI . 12
2.4 Relationship of user-visible language services to underlying analyses

and SAFARI features that aid in creation of these services 13
2.5 AMMA core DSLs . 14
2.6 Usage of a Formal Textual Concrte Syntax Speci�cation Example . . . 15
2.7 Main concept of TCSSL . 15

3.1 Component Diagram of Gymnast . 17
3.2 Classes of Runtime - Core . 18
3.3 Classes of Runtime - User Interface . 20
3.4 Classes of Generator - Core . 23
3.5 Classes of Generator - User Interface 25
3.6 Classes of ASTGenerator - Primordial 26
3.7 Classes of Parser Generator . 27
3.8 Visitor Pattern . 28
3.9 Decorator Pattern . 29
3.10 Observer Pattern . 30

4.1 Metamodel of State machine . 32
4.2 State Machine of Microwave . 34
4.3 Classes of Emfatic Core . 37
4.4 Packages of Emfatic User Interface . 40
4.5 Pro�le of EmfaticUIPlugin class . 41
4.6 Classes of emfatic.ui.editor . 42

5

Chapter 1

Introduction

1.1 Background

Nowadays language engineering plays an increasingly important role in computer sci-
ence. Generally the resulting languages can be classi�ed into two: General-Purpose
Language (GPL) and Domain-Speci�c Language (DSL). GPL has a wide spectrum of
usages and serves multi purposes for programming as well as for modeling tasks. Vi-
sual Basic, C, C#, C++, Java and UML are some examples of GPL. In contrast DSLs
are de�ned to be speci�c only on their certain domains, which gives the possibility
to cover every single aspect of the domains to be considered, in terms of presenta-
tion and implementation [Coo04][vDKJ00]. Moreover, DSLs are in certain ways more
concise and therefore readable and may even be understood by non-programmer do-
main experts [JBC+06]. Spreadsheet macros, Csound and GraphViz, and some other
languages are classi�ed into this group1.

Programmers are looking more and more into de�ning and using the latter because
they can be used speci�cally well to solve domain-speci�c problems which are within
their �eld of interests. A certain productivity improvement can be achieved in de�ning
speci�c solution using DSL, compared to using GPL. Each DSL provides built-in
abstractions and notations to specify concepts and semantics focused on, and usually
restricted to, a particular problem domain [WSTD05]. There are some works which
con�rm, that using DSLs is a main factor for gaining improvement in the productivity
level of domain speci�c softawre implementation [KT00][ea96]. Not only academic,
but also industrial and goverment communities make use of DSLs to describe, for
example, 3D animations [Ell97], business rules [WTH03], insurance business logic
[Weg04], software testing [Gro04] and military command and control [Wil03].

Despite all the advantages there are some issues that DSL designers are con-
frontated with. Prior to everything, methodologies are needed to derive a DSL from
domain knowledge as proposed in [TMC99]. But the main issue which is often en-
countered during designing DSLs is the lack of appropriate tooling to support the
process chain, which starts with de�ning the DSL itself up to providing usable tools
to make use of the language in form of editors as a minimal requirement. Some frame-
works which will be presented in the next chapters cope with this issue, including the
framework with which this project work deals.

1http://en.wikipedia.org/wiki/Domain-speci�c_language

6

CHAPTER 1. INTRODUCTION 7

The implementation of DSLs is moving toward the use of model-driven approaches;
that is, models are used as main artifacts (�rst class assets) in all stages of a develop-
ment process. In this kind of approach, a metamodel de�nes all possible concepts and
relations, which serve as basics for models to be de�ned. Having implemented this
idea, it will be easier to check the conformity and validity of the models which are
used to describe the domain-speci�c artifacts. In context of language engineering, the
metamodel can be used to de�ne the abstract syntax of the language; the concrete
syntax, which represents the grammar of the language, is described as the de�nition
of the association between the metamodel and syntactic elements [JB06].

While visual syntax �ts well to describe a metamodel, model-based textual nota-
tion, also known as declarative modeling, may be favoured for describing the concrete
syntax due to some considerations [Spi03]. Not only the high-level skills (the tex-
tual, abstract formalization of concrete concepts) but also the low-level skills (text
manipulation using text-based editors) are perfectly matched by the model compo-
sition mechanism. Being closer to the program's representation, such a declarative
notation also forces the designer to make di�erentiation between the model and the
corresponding implementation and between essential part of the systems and its ad-
ditional features. Visual syntax will also demand the capability of drawing the graphs
nicely, thus using the drawing tools correctly, in order to get more or less readable and
understandable description, which could be a tedious work. Furthermore, there are
di�erent tools available to support working with textual notation, starting from sim-
ple text processing editor, revisioning and versioning tools for management of source
code and team work, up to automatization of text generation from even higher-level
description using trivial scripts and tools operating on design process inputs. All ad-
vantages will sum up to provide higher overall productivity by using textual notation
to describe the concrete syntax of the language.

Existing frameworks make use of the textual concrete syntax to provide designer
with ready-to-use helper classes, such as parser and lexer, and classes representing
nodes of the concrete syntax tree. By utilizing this classes an editor for the language
can be built, whose input will serve in building abstract syntax tree out of the concrete
part. Taking this possibility a step further, a full-featured integrated development
environment (IDE) could also be generated automatically to help settling the newly
de�ned DSLs into the hands of potential users.

1.2 Objectives

This project work will present some already existing frameworks that deal with the
textual concrete syntax of DSLs. The main framework to be presented is however
the Gymnast framework, on which Emfatic, a textual representation of Eclipse EMF
Ecore model, is de�ned. Due to the lack of documentation about Gymanst and
Emfatic by the time this project work is being carried out, they will be presented
here in detail. Especially some improvements made on the graphical user interface
(GUI) of Emfatic will be of interest, as they make the cornerstones of a full-featured
IDE.

While Emfatic represents the Ecore Model of Eclipse EMF, another model-oriented
textual notation representing UML2 State Machine will be de�ned. Some enhanced
features that are developed for Emfatic GUI will be implemented for the new language
as well. For this project work, every feature related to the GUI is to be implemented

CHAPTER 1. INTRODUCTION 8

manually. However, as mentioned before, the work is moving toward the generation
of the complete IDE, to which this work is oriented.

1.3 Document Structure

Chapter 1 gives introductory explanation on the topic of the project, including back-
ground information and the main objectives.

Some prototypes are then introduced in Chapter 2, giving the overview of the
available tools at the moment of writing.

Entering the design phase of the development process of text editor for UML2
State machine in chapter 3 the main framework Gymnast is �rst introduced, by
giving explanation on its components and manually implemented design patterns.
This chapter also gives the overview of the Eclipse UML2 framework, using which the
new textual notation will be implemented.

The following implementation phase consists of de�ning the textual notation by
means of its grammar, generating and building the required classes for the implemen-
tation of editors and all its features. This will be given in Chapter 4.

Chapter 5 concludes and shows the possible future works.

Chapter 2

Existing Prototypes

This chapter gives an overview of available tools that support creation and use of
DSLs.

2.1 Gymnast

All information on Gymnast and �gures are cited and taken from [Dai05].

2.1.1 Overview

Gymnast is a framework for generating ASTNode class hierarchies similar to the JDT's
ASTNode and its subclasses in the package org.eclipse.jdt.core.dom. The idea
of generation is gained after examining the JDT's classes, which reveals that they
contain repeating patterns of boiler plate code (e.g. for parent/child navigation,
visitor pattern implementation, factory methods for parser tree construction) and
that the codes are strongly tied to generated Java parsers (for each Java grammar
rule an ASTNode class will be generated).

Based on a syntactic speci�cation of a language, i.e. grammar of the language,
Gymnast will generate the ASTNode classes, an ASTVisitor class and input to a
parser generator. The resulted parser will build the corresponding abstract syntax
tree using the generated ASTNode classes. Those classes inherit from common AST
oriented classes allowing generic UI components (such as a parse tree view) to work for
all languages generated by the framework. By processing the tree using the generated
ASTVisitor all other works (e.g. semantic analysis, code generation) can be done.

2.1.2 Information Flow in Gymnast

Figure 2.1 shows the information �ow in Gymnast by depicting the inputs, generated
intermediate and end outputs and shows how they are related wihtin the generation
process.

There are 3 kinds of inputs for Gymnast. The main input is the Gymnast grammar
�le with the .ast extension, in which the rules for a language are de�ned, whose
kinds are presented in the next subsection. A lexer �le for the parser generator is
a prerequisite for the parser generation. As usual in code generation framework,
Gymnast also needs prede�ned templates to de�ne how the generated code for the
ASTNode classes should look like.

9

CHAPTER 2. EXISTING PROTOTYPES 10

Figure 2.1: Gymnast information �ow

The default parser generator which is used by Gymnast is ANTLR1, as it can be
seen on the �gure. In later phase there will be more parser generators available to be
used with Gymnast in order to advance its usability. Besides the lexer �le, a parser
generator also makes use of the corresponding grammar �le for the parser generator
which is generated out of the .ast �le. Based on these inputs, a parser for the text
being typed using the editor can be generated.

Each rule that is de�ned in the Gymnast grammar �le has its corresponding
class(es) being generated by Gymnast. All of them are derived from a common class
called ASTNode, but only one class extends directly from it and represents the name of
the new language. The other classes represent rules and tokens. As mentioned before,
a visitor is also generated, which can be utilized to walk over and process the nodes of
the trees, e.g. the generated classes. The following �gure shows some excerpts from
both Gymnast and the resulted parser generator (in this case ANTLR) grammar �le
and a generated class with its content and a tree view showing the position of the
class in the hierarchy.

2.1.3 Rules

A syntactic speci�cation of a language is de�ned as a group of rules. Rules de�ne the
keywords and the order in which text (source code) can be written. Prede�ned token
are eventually used in rules. There are 4 kinds of rules de�ned in Gymnast:

• token

A token de�nes a string literal or references another lexer token, e.g.:
token modi�er : "public" |"private" |"protected" ;

• list

A list contains repetition of elements of same kind, e.g.:
list elements : element* ;

1http://www.antlr.org

CHAPTER 2. EXISTING PROTOTYPES 11

Figure 2.2: Gymnast example grammar

• sequence

A sequence de�nes the order in which the text (source code) is written. It may
contain keywords, lexer tokens and other sequence, e.g.:
sequence addition : number ADD number SEMI ;

• abstract

An abstract produces inheritance pattern, e.g.:
abstract type : class |interface ;

2.2 SAFARI

All information on SAFARI and �gures are cited and taken from [CFJL07] and the
o�cial SAFARI website ([Res]).

2.2.1 Overview

SAFARI is an Eclipse-based meta-tooling framework that is intended to speed the
creation of sophisticated development environments for new or existing programming
languages by generating language-speci�c IDEs. To realize state-of-the-art function-
ality of an IDE, Eclipse uses Java Development Toolkit (JDT). The goal of SAFARI
is to support all of the JDT's rich set of capabilities:

• editors with features like syntax highlighting, hover help, text folding, etc.

• di�erent kind of views

• content assist and completion

• navigation

• incremental project building and dependency tracking

• debugging and refactoring

CHAPTER 2. EXISTING PROTOTYPES 12

Figure 2.3: High level architecture of SAFARI

2.2.2 Architecture

Figure 2.3 depicts the high-level architecture of SAFARI. Extensibility of each com-
ponent assures a higher degree of reuse across languages.

In Figure 2.4 the relationship between the user-visible services and the underlying
analyses on which the services rely is shown. It can also be seen from the �gure how
SAFARI helps to accelerate the IDE development process. For example, the creation
of an indexed search facility which is based on the use of AST patterns to specify the
desired index entry types.

2.2.3 IDE Development Process Using SAFARI

Development of SAFARI IDE is an incremental process which is divided into several
parts and described as follows:

1. Language Descriptor. Creating a language descriptor, which associates the
language with unique identi�er, set of �le name extensions and a base language
from which the language is derived

2. Language Grammar and Parser. Creating a grammar �le which results in
the generation of parser implementation

3. IDE Appearance and Behavior. Using the di�erent implementation skele-
tons provided by the wizards, IDE developer can specify the implementation of
the appearance and behavior of the IDE

4. Project Building and Program Compilation. SAFARI provides builder
skeleton which can be implemented as a wrapper around existing compiler or
as a new compiler starting from the resolved AST

CHAPTER 2. EXISTING PROTOTYPES 13

Figure 2.4: Relationship of user-visible language services to underlying analyses and
SAFARI features that aid in creation of these services

5. Refactoring and Analysis. Refactoring is supported through the combi-
nation of a generic AST rewriting framework. The static analysis engine is
provided through an exisiting open-source scalable analysis framework.

2.3 Textual Concrete Syntax (TCS)

All information on TCS and �gures are cited and taken from [JBC+06] , [JB06] and
[JBK06].

2.3.1 Overview

TCS is a DSL for the context-free speci�cation of textual concrete syntaxes which
is developed as part of the model-based DSL building framework AMMA (ATLAS
Model Management Architecture)[JBKV06]. From the speci�cation, models can be
serialized into their textual equivalent and text can be parsed into models. In other
words, a TCS speci�cation de�nes a bidirectional translation between a textual rep-
resentation of a model and its internal representation. Such a feature is essential to
the development of tools for text-based DSLs.

2.3.2 Architecture of the Framework

The core of the framework are formed by several DSLs, each of which is perceived as
sets of models and used to de�ne the components of other DSLs. Each of DSL has its
abstract syntax, which is a conceptualization of a certain domain and captured in a
metamodel called Domain De�niton MetaModel (DDMM), its concrete syntaxes and
semantic de�nition. Some of the core DSLs are KM3 (Kernel MetaMetaModel) which
is a language for describing metamodels, ATL (ATLAS Transformation Language)
which is a model transformation language, and TCS itself. The abstract syntax of
the DSLs, i.e. the DDMM, is de�ned in KM3, the concrete syntax is implemented

CHAPTER 2. EXISTING PROTOTYPES 14

with TCS and the semantic is written in ATL. Figure 2.5 shows the architecture of
the framework.

Figure 2.5: AMMA core DSLs

2.4 Textual Concrete Syntax Speci�cation Language

All information on TCS and �gures are cited and taken from [FSGM05].

2.4.1 Overview

TCSSL is a DSL which speci�es bidirectional mapping, thus enables translation, be-
tween its concrete and abstract syntax via EBNF-like rules. Concrete syntaxes written
in TCSSL may be used by compiler compilers to generate text analyzers that produce
models as instances of metamodels, instead of merely concrete syntax trees. It should
also be possible to generate, again from that concrete syntax speci�cation, pretty
printers, IDEs, or even incremental synchronizers that update the textual views rep-
resenting a model, and symmetrically update a model when the textual representation
changes. Figure 2.6 summarizes an example of usage of such speci�cation.

2.4.2 Concepts of TCSSL

The main concept of TCSSL is presented in Figure 2.7.

2.4.3 Architecture of The Tool Chain

A prototype implementation of TCSSL has a tool chain that is divided into two main
parts: a parser and a text generator. The parser parses the TCSSL speci�cation, and
generates the parser for its textual notation. The code generator is being developed
to generate the TCSSL textual notation from the model repository.

CHAPTER 2. EXISTING PROTOTYPES 15

Figure 2.6: Usage of a Formal Textual Concrte Syntax Speci�cation Example

Figure 2.7: Main concept of TCSSL

For the parsing function, the content of the generic editor is used as input. The
parser creates the corresponding elements into the model repository. ANTLR is used
to simplify the parser generation. Rules in the ANLTR grammar are mapped one-to-
one to the TCSSL rules. The ANTLR grammar �le is the only element to produce for
the transformation from concrete to abstract syntax. This grammar �le embeds the
interactions with the model. This grammar �le produces the parser for the textual
notation. Code generation from model is done using the generic template engine
JET2, which is part of Eclipse EMF Project. A template �le is associated to each
rule in TCSSL.

2http://www.eclipse.org/emft/projects/jet/#jet

Chapter 3

Textual Editor of UML2 State

Machine : Design Phase

This chapter describes Gymnast, which serves as the core of the framework for DSL
Tooling presented in this project, from developer's view by showing all its components
and how they are related with each other, and gives a glance at the patterns that are
used for implementing this framework.

3.1 Gymnast : Runtime and Generator

Gymnast comprise 2 main parts, Runtime and Generator, each of which is divided
into 2 further parts, Core and User Interface. The Runtime part contains classes
which are the very basic components of Gymnast. The core package de�nes the
common shared classes and interfaces for all other generated classes, a class and an
interface which will be used for building the Outline View feature of the user interface,
classes providing facilities to de�ne code templates and some helper classes. The User
Interface related package is responsible for de�ning the basic editor and all its features
as part of an IDE.

The core part of Generator takes care of the generation functionality of Gymnast,
which result in generated DSL parser and the classes representing the nodes of the
DSL's concrete syntax tree. This ability for generating classes is provided by making
use of Eclipse extension-points mechanisms, through which a parser generator and a
so-called AST generator are attached. A simple Gymnast editor and the selectable
Generate AST function from context menu of the editor �le are implemented in
the User Interface package. Figure 3.1 shows the components of Gymnast and the
dependency between them.

The following subsections give a deeper look into Gymnast by pointing out every
component and how they are related.

3.1.1 Runtime - Core

The runtime.core package provides the base classes of Gymnast, from which classes
for DSLs (concrete sytnax tree, parser, user interface) are generated or derived. Figure
3.2 shows the content of the package.

16

CHAPTER 3. TEXTUAL EDITOROF UML2 STATEMACHINE : DESIGN PHASE17

Figure 3.1: Component Diagram of Gymnast

AST

The package org.eclipse.gymnast.runtime.core.ast contains the following classes:

• ASTNode

• ASTNodeImpl

• OutlineNode

• OutlineNodeImpl

• PropertySourceNodeImpl

• TokenInfo

The main parts in this package are the interface ASTNode and its implementa-
tion class ASTNodeImpl. Classes representing nodes of the concrete syntax tree of
languages, which are the core of every DSL, are derived from ASTNodeImpl. The
interface's methods are used to enquire about the node itself.

PropertySourceNodeImpl extends from ASTNodeImpl and implements IProper-
tySource of Eclipse, which is an interface to an object that provide the properties of
a selected element to be displayed in the standard Property View of Eclipse. A fur-
ther derivation is the class OutlineNodeImpl that implements the method for dealing
with outline nodes of an editor's content. Both PropertySourceNodeImpl and its
derivation haven't been used so far. Instead, another class from the Outline package
(see next subsection) is being used.

The class TokenInfo, as its name says, gives information about a token, i.e text,
o�set and type of the token. A token represents a word that is part of the grammar,
e.g. a keyword, or a prede�ned symbol which can be used within the grammar, e.g.
the word SEMI which represents the use of the symbol ";" in a syntax description.

CHAPTER 3. TEXTUAL EDITOROF UML2 STATEMACHINE : DESIGN PHASE18

Figure 3.2: Classes of Runtime - Core

Outline

The package org.eclipse.gymnast.runtime.core.outline contains the following
classes:

• IOutlineBuilder

• OutlineNode

An important feature of a DSL tool is an outline of the text content written in a
certain language to get a clear overview of content. OutlineNode is used to represent
nodes in an outline tree. IOutlineBuilder provides the buildOutline() method
which will be implemented by every class responsible for building the outline.

Parser

The package org.eclipse.gymnast.runtime.core.parser contains the following
classes:

• IParser

• ParseContext

• ParseError

• ParseMessage

• ParseWarning

CHAPTER 3. TEXTUAL EDITOROF UML2 STATEMACHINE : DESIGN PHASE19

ParserContext delivers all informations needed to do parsing, i.e. the root of trees
to be parsed, the parsed object any additional information (i.e. error and warning
information, if there is any, which are represented by the classes ParseError and
ParseWarning as derivation of ParseMessage). IParser gives the parse() method
which will be used by any parser driver, i.e. a class which executes the parsing.

Templates

The package org.eclipse.gymnast.runtime.core.templates.ext contains the fol-
lowing classes:

• ExtTemplateContext

• ExtTemplateContextType

• ExtTemplateTranslator

• ExtTemplateVariable

• ExtTemplateVariableResolver

This package contains classes that de�ne the template for code generation. This
includes the template context, context type, translator, variable and variable resolver
of the template. Template context is a context in which a certain template is being
resolved, e.g. during the code generation, and this must have a certain type, which
is de�ned as the context type. Templates translate its input string into a so-called
template bu�er. Content in the bu�er which is valued as a variable is de�ned as a
template variable using the template translator, which can later be resolved based on
the context within which the variable exists.

Utility

The package org.eclipse.gymnast.runtime.core.util contains the following classes:

• IReporter

• MarkerUtil

IReporter provides methods to deliver any (error or warning) messages which are
implemented by the class ReporterConsole from the package org.eclipse.gymnast.
generator.runtime.ui. MarkerUtil is used to put marker using the IMarker of
Eclipse on any warning or error on the parser context based on the message con-
tained in the context.

3.1.2 Runtime - User Interface

To implement the user interface of the DSL tool, Gymnast has provided several classes,
from which user-interface classes for the corresponding DSLs may be derived . Figure
3.3 shows the content of the package.

Action

This package contains one single class, FindInParseTreeView, which de�nes an action
that is chosenable from the context menu and executed from an active editor, and
whose result is shown in another view. The action de�ned by this class is showing a
chosen text from the editor (i.e. a chosen element) in a view called Parse Tree View.

CHAPTER 3. TEXTUAL EDITOROF UML2 STATEMACHINE : DESIGN PHASE20

Figure 3.3: Classes of Runtime - User Interface

Editors

The package org.eclipse.gymnast.runtime.ui.editor contains the following classes:

• LDTCodeScanner

• LDTEditor

• LDTEditorActionContributor

• LDTReconcilingStrategy

• LDTSourceViewerConfiguration

This package builds the core of the user interface by de�ning its main part, namely
an editor for writing text (codes) using the DSL and out of which further processing
can be made (executing code and building abstract syntx tree).

CHAPTER 3. TEXTUAL EDITOROF UML2 STATEMACHINE : DESIGN PHASE21

LDTEditor is the basis implementation of editor for every DSL developed using
this framework. It extends TextEditor class of Eclipse and implements the inter-
face IParseTreeViewInput from the package parsetree which provides method to
interact with the input of the Parse Tree View.

Reconciling is needed to have synchronized document (i.e. content of the text
viewer) and its resulted parsed tree of the document. This is an important issue if the
document is being edited/changed. LDTReconcilingStrategy implements IRecon-
cilingStrategy, an interface that provides methodes for reconciling, and does the
reconciling step by simply re-parsing the documents to get the latest version of parsed
tree and set this to the actual document. Further explanation on other classes of this
package and can its extension can be seen directly on the speci�c implementation of
each DSL tool (e.g. Emfatic User Interface).

Outline

The package org.eclipse.gymnast.runtime.ui.outline contains the following classes:

• LDTContentOutlinePage

• LDTOutlineConfiguration

• LDTOutlineContentProvider

• LDTOutlineLabelProvider

This package includes classes that are needed to build the outline view of an editor:
the content and label provider and the content outline page itself. LDTOutlineConfi-
guration collects this information in a single instance and can be extended by every
outline con�gurator of each DSL. More information on use of content-outline-page-
related classes can be found in [DFK+05].

Preference

The class LDTMainPreferencePage is used to de�ne the content of general preference
(Windows >Preferences ...) page of this tool.

Utility

As its name says, LDTColorProvider gives color to keywords of a DSL and is used
by classes that scan the text for these keywords and by class ReporterConsole.

Console

The class ReporterConsole used the above mentioned interface IReport to report
di�erent kind of messages (e.g. error message, warning message) by making use of
a MessageConsole instance of Eclipse. MessageConsole is a console that used in
Eclipse to display task-related messages.

Parse Tree

The package org.eclipse.gymnast.runtime.ui.views.parsetree contains the fol-
lowing classes:

• IParseTreeChangedListener

CHAPTER 3. TEXTUAL EDITOROF UML2 STATEMACHINE : DESIGN PHASE22

• IParseTreeViewInput

• ParseTreeLabelProvider

• ParseTreeView

• ParseTreeViewerContentProvider

ParseTreeView de�nes a view that is used to display the abstract syntax tree
which is resulted by parsing the text content of an editor. Other classes are imple-
mentation of the content and label provider, listener and input for this view. More
information on classes needed for de�ning a view can be found in [DFK+05].

3.1.3 Generator - Core

The generator.core package contains classes which provide the generation mechanisms
of Gymnast. Figure 3.4 shows the content of the package.

Figure 3.4: Classes of Generator - Core

CHAPTER 3. TEXTUAL EDITOROF UML2 STATEMACHINE : DESIGN PHASE23

AST

Content of this package is representing the nodes of the concrete syntax tree of the
DSL (i.e Gymnast) which are generated based on its grammar de�nition, a visitor
implementation for visiting those classes and a class representing tokens being used
in the grammar. As mentioned before, the classes are derived from the ASTNodeImpl
class. <LanguageName>ASTNode, which is directly derived from ASTNodeImpl, is
the base class of other classes representing the node classes. The hierarchy between
classes are formed in accordance with the de�ned grammar, e.g. the abstract rule of
Gymnast results in generation of an abstract parent class with its children class(es).

Generator

The package org.eclipse.gymnast.generator.core.generator contains the fol-
lowing classes:

• ASTUtil

• Generator

• GeneratorContext

• GeneratorUtil

• GrammarInfo

• LiteralCollector

• RuleRefCollector

• Util

ASTUtil provides methods to inspect rules and expressions that are de�ned as
Gymnast grammar (i.e. rules written in .ast �le). Inspection is done by checking
the name and the type of the rules.

Generator class plays the main role in generation mechanism. It has the method
generate(), which in turn uses an instance of GeneratorContext (de�ning the con-
text of generation, e.g. timestamp of generation, IDs of AST and parser generator
being used, packages' names to be used, lexer, visitor, token class to be used, etc.)
, GeneratorUtil (de�ning some helper methods to be used within the generation
process, e.g. name setter, package creator, string manipluation by using the class
Util, etc.) and GrammarInfo (an extension of GymnastASTNodeVisitor that pro-
vides some helper methods to process the Gymnast grammar) to execute the code
generation process.

Both classes, LiteralCollector and RuleRefCollector, are derivation of Gym-
nastASTNodeVisitor, which are used to collect keyword literals and rules respectively
that are de�ned within a grammar �le. Collected literals and rules are used in the
generation of node classes. Additionaly, generating parser also needs the knowledge
of the existing rules to correctly parse the text.

CHAPTER 3. TEXTUAL EDITOROF UML2 STATEMACHINE : DESIGN PHASE24

Parser

The package org.eclipse.gymnast.generator.core.parser contains the following
classes:

• GymnastLexer

• GymnastParser

• GymnastParserTokenTypes

• ParserDriver

This package contains the classes which are needed for the parsing. This includes
the grammar �le(s), generated parser, lexer and the list of useable tokens, and a parser
driver, which implements the parse()-method of interface IParser. Thus, a parse
driver is responsible for the activation of parsing-related classes, e.g. parser and lexer
class, and other actions, e.g. creating parse error messages. At this current stand,
the parser classes of Gymnast are generated by using ANTLR.

Registry

The package org.eclipse.gymnast.generator.core.registry contains the follow-
ing classes:

• ASTGenerator

• ASTGeneratorDescriptor

• GeneratorRegistry

• ParserGenerator

• ParserGeneratorDescriptor

The package Registry is responsible for the management of the AST generator(s)
and parser generator(s) being used. For this purpose, the class GeneratorRegistry
has the task to initialize the generators based on the IDs given to it, keep the in-
formation about existing generators and its descriptor using maps, and deliver the
information on enquiry. While each implementation of parser generator that is used
by Gymnast needs to extend the abstract class ParserGenerator, creating an AST
generator means extending ASTGenrator. Every generator owns a descriptor that
gives information (e.g. name, description) about the generator and through which
the generator can be fetched.

3.1.4 Generator - UI

Everything, which is related with the user interface of Gymnast, is implemented by
classes contained in this package. Figure 3.5 shows the content of the package.

Action

The class GenerateAST de�nes the context menu Generate AST, which is made
available and selectable on every Gymnast grammar �le. An activation of this menu
creates an instance of class Generator, which in turn triggers the initialization of
AST and parser generator through its generate() method.

CHAPTER 3. TEXTUAL EDITOROF UML2 STATEMACHINE : DESIGN PHASE25

Figure 3.5: Classes of Generator - User Interface

Editor

The package org.eclipse.gymnast.generator.ui.editor contains the following
classes:

• GymnastEditor

• GymnastEditorActionContributor

• GymnastSourceViewerConfiguration

This package contains the editor class, which is an extension of LDTEditor, and its
ActionContributor and SourceViewerConfiguration classes. These classes don't
de�ne any additional methods compared to the LDT-classes.

Syntax

GymnastCodeScanner is an extension of LDTCodeScanner, which adds the keywords
to be used in de�ning Gymnast grammar.

3.1.5 Extension Point: astGenerator

The plug-in org.eclipse.gymnast.generator.core provides 2 kinds of extension
points: parseGenerators and astGenerators. Through these extension points, de-
velopers can provide their own generators. At this point of development, the AST
Generator being used is shown in Figure 3.6.

The Package

The class PrimordialASTGenerator extends the abstract class ASTGenerator. It
makes use of an instance of BuildManager to do the building task1 by giving the ac-
tual context of generation. Through its method createBuilders(), a BuildManager
add builders for the base class (i.e. class that extends ASTNodeImpl directly, is gen-
erally named after the language name concatenated with ASTNode), token class, and
visitor class, each of which is kind of ASTCompUnitBuilder, a derivation of abstract
class JavaCompUnitBuilder. The latter provides the method build() that produces

1Code generation based on prede�ned templates

CHAPTER 3. TEXTUAL EDITOROF UML2 STATEMACHINE : DESIGN PHASE26

Figure 3.6: Classes of ASTGenerator - Primordial

the class �les. Another builder is the ASTRuleCompUnitBuilder, which extends AST-
CompUnitBuilder and is responsible for determining the kind of the rules de�ned in
grammar and building them (i.e. generating classes representing the rules. When the
Generate AST option is chosen, the builders start the generation process.

Templates

The pre-de�ned templates de�ne the structure of the generated codes. The main
classes in this package are GymnastTemplateContext and GymnastContextType, which
extends ExtTemplateContext and ExtContextType respectively from the template

package of Runtime - Core. GymnastTemplateContext provides some general name
resolvers, e.g. for package name, base class name, etc. This class is extended by
three other template context classes (JavaCompUnitTextualContext, JavaRuleCom-
pUnitTextualContent, JavaMethodTextualContent), each of which de�nes some
additional resolvers, e.g. for method name, type name, extension name, etc. All
resolvers are initialized at the time the base class is created and this is done by calling
addResolvers() method of GymnastContextType.

The Foreach-classes de�ne further resolvers. ForeachRule-class is used to resolve
the rules' name for the visiting purpose by the visitor class. Thus the visitor knows
what kind of rules (i.e. CST nodes) it has to expect. ForeachKeywordLiteral-class
is responsible for resolving the de�ne keywords within the rules and non-keyword
elements of a rule is resolved by ForeachChildElement-class.

CHAPTER 3. TEXTUAL EDITOROF UML2 STATEMACHINE : DESIGN PHASE27

3.1.6 Extension Point: parserGenerator

There are 3 parser generators provided to be used by Gymnast. For two of them,
ANTLR and JavaCC, supporting implementation are already provided. Another
parser generator in plan is LPG. Figure 3.7 shows the packages.

Figure 3.7: Classes of Parser Generator

Each parser generator supporting implementation, as it can be seen from Figure
3.7, has a parser generator class, e.g. AntlrParserGenerator which extends the class
ParserGenerator of package org.eclipse.gymnast.generator.core.registry. A
parser generator class makes use of a grammar writer class that outputs a grammar
�le, which in turn is used as an input for methods invoking the classes (i.e. part
of the original libraries)of the parser generator being used. The invocation is imple-
mented in e.g. AntlrDriver-class, or within the parser generator class itself (e.g.
JavaCCParserGenerator.

As in code generation of the concrete syntax tree classes, templates are also used

CHAPTER 3. TEXTUAL EDITOROF UML2 STATEMACHINE : DESIGN PHASE28

for the parser class, as well as for the parser driver class, as can be seen in package
javacc.templates Furthermore, there are also templates in form of JET templates,
which can be alternatively used for generating those classes. These can be found in
folder template.

3.2 Design Patterns

In implementing the framework, some design patterns are used to ease the devel-
opment process. Coming along those patterns, implementation of EMF classes also
occupies certain patterns. Some of them are explained below:

3.2.1 Template Pattern

By de�ning a parent class with some of its methods left unimplemented, the template
pattern is used. The parent class just provides the templates, which will be then used
by the derived classes through their implementation of the methods in a speci�c way
according to their needs. This is realized within the framework, as many classes are
declared as abstract with some of its methods left unimplemented and are extended
by several other classes, which then de�ne their own usage of the methods.

3.2.2 Visitor Pattern

One of the generated classes is a visitor class, which is used to do processing on
di�erent node classes by visiting them. On the nodes, the processing is done within
the visitor's method, e.g. beginVisit(), whose implementation depends on the kind
of the visited node. This method is called after a node accepts the visit of the visitor
through method accept(). Figure 3.8 shows the diagram of this pattern.

Figure 3.8: Visitor Pattern

3.2.3 Decorator Pattern

Using decorator pattern gives the �exibility to have additional functionalities only
on certain subclasses. An LDTEditor is such a decorator class, which extends Eclipse
TextEditor. It introduces some new methods, of which all its concrete derived classes
make use. Those derived classes represents the editors for the di�erent DSLs created
using this framework. Figure 3.9 shows the diagram of this pattern.

CHAPTER 3. TEXTUAL EDITOROF UML2 STATEMACHINE : DESIGN PHASE29

Figure 3.9: Decorator Pattern

3.2.4 Factory Pattern

Factory pattern provides an interface for creating instances. Classes needed to get
the instances call the interface method implementation provided by a concrete factory
class. Eclipse EMF (and thus Eclipse UML2 Implementation) make intensive use of
the factory pattern. It creates its model instances using factory instance, as shown in
following snippet:

Listing 3.1: Factory Pattern in EMF

1 private void bu i ldC la s s (ClassDec l c l a s sDec l , EPackage ePackage) {
2 f ina l EClass eClas s = EcoreFactory . eINSTANCE. createEClass () ;
3 . . .
4 . . .
5 EAttr ibute eAttr = EcoreFactory . eINSTANCE. createEAtt r ibute () ;
6 . . .
7 . . .
8 EReference eRef = EcoreFactory . eINSTANCE. createEReference () ;
9 . . .
10 . . .
11 }

3.2.5 Observer Pattern

The components that build the user interface of the framework rely on the imple-
mented observer pattern in Eclipse as well as own observer2. Observer pattern en-
capsulates the dependency between objects, so that a change happened on one object
can be known by another object, and this reacts correspondingly. Such a dependency
can be found often in the context of user interface, e.g. an editor, whose contents
should also be displayed in another view. When the content (i.e. text) of the editor is
changed, the content of the view should be changed as well. To be able to react on the
change, this view must register itself as an observer (i.e. implements the observer in-
terface) and the editor as event provider (i.e. add the corresponding listener). Eclipse
provides di�erent kinds of observers which are based on di�erent kinds of events.

2Observer is also known as listener

CHAPTER 3. TEXTUAL EDITOROF UML2 STATEMACHINE : DESIGN PHASE30

Figure 3.10: Observer Pattern

Chapter 4

Textual Editor of UML2 State

Machine : Implementation

Phase

After the basic framework is described in the previous chapter, this chapter introduces
an example of developing new DSL and its tool. Emfatic is the �rst DSL which has
been developed by using Gymnast. The new DSL will focus on describing one of the
UML2 subsets, namely State Machine.

4.1 Textual Notation of UML2 State Machine : The
Grammar

The very �rst step in developing a new DSL with its tooling by using Gymnast
is to de�ne the grammar of the language. A Gymnast grammar �le has an .ast

extension. There are some rules on how to de�ne such grammar, which have been
shortly introduced in Chapter 2.

While Emfatic is the textual representation EMF Metamodel Ecore, the new DSL
will describe a State Machine Metamodel of Eclipse UML2 Implementation. Accord-
ing to the explanation on Eclipse website, UML2 is an EMF-based implementation of
the UML metamodel for the Eclipse platform. The objectives of this subcomponent
are to provide a useable implementation of the metamodel to support the develop-
ment of modeling tools, a common XMI schema to facilitate interchange of semantic
models, test cases as a means of validating the speci�cation, and validation rules as
a means of de�ning and enforcing levels of compliance [Ecl07].

The base for de�ning grammar for language of State Machine is the State Machine
Metamodel of Object Management Group [Gro04]. Figure 4.1 shows the metamodel
which is taken from [Gro06]. A grammar �le which more or less covers the important
concepts of the State Machine is shown in Listing 4.1.

Listing 4.1: State Machine Grammar

1 language StateMachine ;
2

3 opt ions { k=3;

31

CHAPTER 4. TEXTUAL EDITOROF UML2 STATEMACHINE : IMPLEMENTATION PHASE32

Figure 4.1: Metamodel of State machine

4 parserPackageName="de . tuhh . s t s . s tatemachine . core . pa r s e r " ;
5 astPackageName="de . tuhh . s t s . statemachine . core . a s t " ;
6 astBaseClassName="StateMachineASTNode" ; }
7

8 sequence compUnit [entry] : modelDecl execut ionEventDec l s
9 stateMachineDec ls ;

10

11 sequence modelDecl : "model" name=qua l i f i e d ID SEMI ;
12

13 l i s t execut ionEventDec l s : execut ionEventDecl ∗ ;
14 sequence execut ionEventDecl : " execevent " name=ID SEMI ;
15

16 l i s t stateMachineDecls : stateMachineDecl ∗ ;
17 sequence stateMachineDecl : " statemachine " name=ID
18 LCURLY reg i onDec l s RCURLY;
19

20 l i s t r eg i onDec l s : r eg ionDec l ∗ ;
21 sequence reg ionDec l : " r eg i on " name=ID
22 LCURLY inRegionDec ls (f i n a l S t a t eDe c l)? RCURLY;
23

24 l i s t inRegionDec ls : inRegionDecl ∗ ;
25 abstract inRegionDecl : pseudoStateDecl | s t a t eDec l | t r a n s i t i o nDe c l ;
26

CHAPTER 4. TEXTUAL EDITOROF UML2 STATEMACHINE : IMPLEMENTATION PHASE33

27 sequence pseudoStateDecl : " pseudostate " kind=pseudoStateKind
28 name=ID SEMI ;
29

30 token pseudoStateKind : " i n i t i a l " | " deepHistory " | " sha l l owHis to ry " |
31 " j o i n " | " f o rk " | " junc t i on " | " cho i c e " |
32 " entryPoint " | " ex i tPo in t " | " terminate " ;
33

34 sequence s ta t eDec l : " s t a t e " name=ID LCURLY inStateDec l RCURLY;
35

36 sequence inStateDec l : (en t ryAct i v i t y=ent ryAct iv i tyDec l)?
37 (doAct iv i ty=doAct iv i tyDec l)?
38 (e x i tA c t i v i t y=ex i tAc t i v i t yDec l) ? ;
39

40 sequence t r an s i t i o nDe c l : " t r a n s i t i o n " name=ID
41 LCURLY inTrans i t i onDec l SEMI RCURLY ;
42

43

44 sequence inTrans i t i onDec l : t r i g g e rDe c l
45 " source " r e f e r encedSource=qua l i f i e d ID SEMI
46 " ta r g e t " r e f e r encedTarge t=qua l i f i e d ID ;
47

48 sequence t r i g g e rDe c l : " t r i g g e r " name=ID
49 LPAREN "event " re f e rencedEvent=qua l i f i e d ID
50 RPAREN SEMI ;
51

52 sequence f i n a l S t a t eDe c l : " f i n a l s t a t e " name=ID SEMI ;
53

54 sequence ent ryAct iv i tyDec l : " ent ryac t " a c t i v i t y=ID SEMI ;
55 sequence doAct iv i tyDec l : " doact " a c t i v i t y=ID SEMI ;
56 sequence ex i tAc t i v i t yDec l : " e x i t a c t " a c t i v i t y=ID SEMI ;
57

58

59 l i s t qua l i f i e d ID : id1=ID (q idSeparator idn=ID) ∗ ;
60 token q idSeparator : DOT | DOLLAR ;

4.2 An Example of State Machine

To make use of the grammar, a simple example describing the states of an operating
microwave will be implemented. The microwave and all its states and the transitions
between and operation within them are shown in Figure 4.2.

A textual representation of a state machine, which ful�lls the grammar described
above, has an .umlt extension. The textual representation of the microwave model
is shown in Listing 4.2.

Listing 4.2: Textual representation of the state machine model of a microwave

1 model Microwave ;
2

3 execevent doorOpened ;
4 execevent doorClosed ;
5 execevent buttonPressed ;
6 execevent timersTimesOut ;
7 execevent eventCome ;
8 execevent eventGo ;
9

CHAPTER 4. TEXTUAL EDITOROF UML2 STATEMACHINE : IMPLEMENTATION PHASE34

Figure 4.2: State Machine of Microwave

10 statemachine statesOfMicrowave {
11

12 r eg i on OperatingMicrowave {
13

14 pseudostate i n i t i a l s t a r t ;
15

16 s t a t e ReadyToCook_1 {
17 ent ryac t turnOf fL ight ;
18 }
19

20 s t a t e DoorOpen_2 {
21 ent ryac t turnOnLight ;
22 }
23

24 s t a t e Cooking_3 {
25 ent ryac t turnOnLight ;
26 doact energizePowerTube ;
27 }
28

29 s t a t e CookingInterrupted_4 {
30 ent ryac t turnOf fL ight ;
31 doact deenergizePowerTube ;
32 }
33

34 s t a t e CookingCompleted_5 {
35 ent ryac t turnOf fL ight ;

CHAPTER 4. TEXTUAL EDITOROF UML2 STATEMACHINE : IMPLEMENTATION PHASE35

36 doact deenergizePowerTube ;
37 }
38

39 s t a t e CookingExtended_6 {
40 ent ryac t addOneMinuteToTimer ;
41 }
42

43 t r a n s i t i o n doorOpened1_2 {
44 t r i g g e r pul lDoor (event doorOpened) ;
45 source ReadyToCook_1 ;
46 t a r g e t DoorOpen_2 ;
47 }
48

49 t r a n s i t i o n doorOpened5_2 {
50 t r i g g e r pul lDoor (event doorOpened) ;
51 source CookingCompleted_5 ;
52 t a r g e t DoorOpen_2 ;
53 }
54

55 t r a n s i t i o n doorOpened3_4 {
56 t r i g g e r pul lDoor (event doorOpened) ;
57 source Cooking_3 ;
58 t a r g e t CookingInterrupted_4 ;
59 }
60

61 t r a n s i t i o n doorOpened6_4 {
62 t r i g g e r pul lDoor (event doorOpened) ;
63 source CookingExtended_6 ;
64 t a r g e t CookingInterrupted_4 ;
65 }
66

67 t r a n s i t i o n doorClosed2_1 {
68 t r i g g e r pushDoor (event doorClosed) ;
69 source DoorOpen_2 ;
70 t a r g e t ReadyToCook_1 ;
71 }
72

73 t r a n s i t i o n doorClosed4_1 {
74 t r i g g e r pushDoor (event doorClosed) ;
75 source CookingInterrupted_4 ;
76 t a r g e t ReadyToCook_1 ;
77 }
78

79 t r a n s i t i o n buttonPressed1_3 {
80 t r i g g e r pressButton (event buttonPressed) ;
81 source ReadyToCook_1 ;
82 t a r g e t Cooking_3 ;
83 }
84

85 t r a n s i t i o n buttonPressed6_6 {
86 t r i g g e r pressButton (event buttonPressed) ;
87 source CookingExtended_6 ;
88 t a r g e t CookingExtended_6 ;
89 }
90

91 t r a n s i t i o n buttonPressed5_3 {

CHAPTER 4. TEXTUAL EDITOROF UML2 STATEMACHINE : IMPLEMENTATION PHASE36

92 t r i g g e r pressButton (event buttonPressed) ;
93 source CookingCompleted_5 ;
94 t a r g e t Cooking_3 ;
95 }
96 }
97 }

4.3 Building the Abstract Syntax Tree

Basically, classes used for implementing the framework for textual representation of
UML2 State Machine model are almost the same as the classes being used to imple-
ment Emfatic. Nevertherless, the concrete syntax tree of the languages are di�erent,
although the generated classes are of the same sorts: base classes representing the
nodes, visitor class, and token class. Because of the similarity, this section will present
a part of Emfatic documentation which covers the core implementation, which is in
fact a "superset" of the State Machine implementation.

This plug-in org.eclipse.emf.emfatic.core makes the core of Emfatic. It
mainly de�nes the generation process from text to model and vice versa. Figure
4.3 shows all the packages in the Package Explorer of Eclipse.

Ecore

The package org.eclipse.emf.emfatic.core.generator.ecore contains the fol-
lowing classes:

• Builder

• Connector

• EcoreGenerator

• EmfaticSemanticError

• EmfaticSemanticWarning

• GenerationPhase

• TokenText

• TokenTextBlankSep

Classes in this package are responsible for the generation of EMF Ecore model
out of its text representation (i.e. Emfatic). Builder and Connector are 2 classes
which instantiate the model and put the parts together based on the input text.
Both classes are derived from GenerationPhase that de�nes methods to deal with
the model being created. They are invoked through the class EcoreGenerator, which
is activated when the context menu Generate Ecore is chosen on an Emfatic �le,
and creates the corresponding resource.

EmfaticSemanticError and EmfaticSemanticWarning are derivation of the above
mentioned class ParseError and de�ne di�erent error and warning messages, which
will be output if the corresponding condition occures. TokenText and TokenText-

BlankSep are variations of the default visitor EmfaticASTNodeVisitor which special-
ize in getting certain part of text (token).

CHAPTER 4. TEXTUAL EDITOROF UML2 STATEMACHINE : IMPLEMENTATION PHASE37

Figure 4.3: Classes of Emfatic Core

Emfatic

The package org.eclipse.emf.emfatic.core.generator.emfatic contains the fol-
lowing classes:

• EmfaticGenerator

• Writer

The counter part of the Ecore package is Emfatic package, whose classes are
responsible for generating the textual representation of an Ecore model. Emfatic-

Generator uses the Writer class to generate the text out of an input model.

Generics Utility

The package org.eclipse.emf.emfatic.core.generics.util contains the follow-
ing classes:

• BiMultiMap

• EcoreWalker

CHAPTER 4. TEXTUAL EDITOROF UML2 STATEMACHINE : IMPLEMENTATION PHASE38

• GenericsUtil

• OneToManyMap

• OneToOneMap

GenericsUtil provides methods to support EMF Generics for both Ecore model
and textual representation generation. In order to keep the connection between model
declaration and its usages, two kinds of maps are de�ned: OneToManyMap, that maps
a model declaration and its usage(s), and OneToOneMap that maps a certain usage
of model its declaration. These maps are �lled in by the time of model building
and can be very useful for di�erent features of the user interface, such as hyperlink.
BiMultiMap combines both maps. An EcoreWalker navigates the full Ecore Abstract
Syntax Tree (AST). It implements the accept() method of the Visitor pattern for
an EModelElement object. In this way the accept() method need not be part of
EModelElement.

AST

The AST package contains classes that are generated from the language grammar and
represent the nodes of concrete syntax tree of the language.

Parser

The package org.eclipse.emf.emfatic.core.lang.gen.parser contains the fol-
lowing classes:

• EmfaticParser

• EmfaticParserConstants

• EmfaticParserDriver

• EmfaticParserTokenManager

• ExtEmfaticParserTokenManager

• ExtSimpleCharStream

• ExtToken

• ParseException

• SimpleCharStream

• Token

• TokenMgrError

All parsing-related classes in this package are generated by Gymnast using JavaCC
parser generator. The default ParserDriver is generated and has been extended to
do a pre-checking of errors on the abstract syntax tree. The generation of the classes
are based on available templates used by the parser generator.

CHAPTER 4. TEXTUAL EDITOROF UML2 STATEMACHINE : IMPLEMENTATION PHASE39

Utility

The package org.eclipse.emf.emfatic.core.util contains following classes:

• EmfaticAnnotationMap

• EmfaticBasisTypes

• EmfaticKeywords

• EmfaticOutlineBuilder

Some utility classes are de�ned, such as EmfaticAnnotationMap that keeps infor-
mation about the annotations of model, EmfaticBasicTypes and EmfaticKeyWords

which lists the basic types of Ecore and the usable Emfatic keywords respectively,
and EmfaticOutlineBuilder that implements the interface IOutlineBuilder.

4.4 Implementation of the Enhanced Features of Text
Editor

Just like the core implementation, the additional features of text editor for UML2
textual representation are also "subset" of the ones implemented for Emfatic editor.
Again, Emfatic documentation on User Interface improvements will be presented.

The main motivation behind the User Interface improvements was adding support
for EMF Generics to the original Emfatic [Gar07]. Some of these features are enhanced
outline view, mark occurrences, folding, hovers, live problem and warning markers,
navigable hyperlinks, new �le wizard, auto edits such as smart brace, user-provided
templates and syntax-aware content assist.

The plug-in that is responsible for the User Interface (editor and views) and all its
features is org.eclipse.emf.emfatic.ui. It contains classes, which are grouped by
their functions into packages. Figure 4.4 shows the complete packages of the plug-in.

One class is not included in any of those packages (it is placed in the base pack-
age org.eclipse.emf.emfatic.ui, which can be seen on the �gure), namely Em-

faticUIPlugin, which extends AbstractUIPlugin. In every plug-in project such a
class is created as default to allow every plug-in being integrated into Eclipse platform
UI. For Emfatic UI this class needed to be extended by following functionalities:

• Instantiating instance representing listener for text resource change which causes
error and is compensated by showing red squiggle for each error on the editor.
This is done by calling the constructor of EmfaticRedSquiggler.

• Getting the plug-in's Emfatic template store through getEmfaticTemplate-

Store() method.

• Getting the plug-in's Latex context type registry through getEmfaticContext-

TypeRegistry() method.

• Displaying error message in error log (also used by project creation wizard)
through log() method.

• Getting a(n) (cached) image for the plug-in from the icon-directory and its
descriptor through get(Cached)Image() and getImageDescriptor().

CHAPTER 4. TEXTUAL EDITOROF UML2 STATEMACHINE : IMPLEMENTATION PHASE40

Figure 4.4: Packages of Emfatic User Interface

The complete methods contained in EmfaticUIPlugin are shown in its outline page,
as seen in Figure 4.5.

Following are the explanation on each of the packages.

Action

The package org.eclipse.emf.emfatic.ui.actions contains following classes:

• GenerateEcore

• GenerateEmfatic

Both classes de�ne context menus, which are visible by clicking right on the corre-
sponding �les, in this case *.emf and *.ecore respectively. Both classes are de�ned
in plugin.xml as extension to ui.popupMenus-extension point.

The class GenerateEcore is left as its default implementation. In GenerateEm-

fatic there are some new methods introduced. ecoreValidate() uses the class Diag-
nostician as validity checker for basic EObject constraints. HandleDiagnostic(),
createMarkers(), getMarkerID(), deleteMarkers() are methods used to set or re-
move markers on or from an Emfatic �le, depending on how the validation's results
look like

Content Assist

The package org.eclipse.emf.emfatic.ui.contentassist contains following classes:

• CascadedContentAssistProcessor

CHAPTER 4. TEXTUAL EDITOROF UML2 STATEMACHINE : IMPLEMENTATION PHASE41

Figure 4.5: Pro�le of EmfaticUIPlugin class

• EmfaticContentAssistProcessor

• EmfaticKeywordContentAssistProcessor

• WordPartProcessor

• ProposalComparator

A content assist processor proposes completion and computes context informa-
tion for a particular context type. There are three classes of this kind, and each
of them has to implement the interface IContentAssistProcessor of JFace content
assist package. CascadedContentAssistProcessor includes both other processor (
EmfaticContentAssistProcessor and EmfaticKeywordContentAssistProcessor)
and computes the proposed completion. ProposalComparator and WordPartPro-

cessor are two helper classes which compare the completion proposal (used to de�ne
the order in sort() function of Array) and detect word parts needed to be completed
respectively.

CHAPTER 4. TEXTUAL EDITOROF UML2 STATEMACHINE : IMPLEMENTATION PHASE42

Figure 4.6: Classes of emfatic.ui.editor

Content assist is con�gured by overriding one of the methods in the source viewer
con�guration class of editor, namely the method getContentAssistant(). More
information on implementing content assist feature can be found on [Zoi06].

Editor

The package org.eclipse.emf.emfatic.ui.editor contains following classes:

• EmfaticAutoEditStrategy

• EmfaticCodeScanner

• EmfaticEditor

• EmfaticEditorActionContributor

• EmfaticEditorMessages

• EmfaticEditorSelectionListener

• EmfaticKeyListener

• EmfaticOutlineConfiguration

• EmfaticSourceViewerConfigurationtexttt

• EmfaticTextHover

Figure 4.6 shows the classes of the editor package shown in Package Explorer of
Eclipse.

The core of this package is the EmfaticEditor class, which extends LDTEdi-

tor of Gymnastic. This editor implements two interfaces, IShowInTargetList and
IShowInSource, which enable the Navigate >Show In option for an active docu-
ment. More information on this can be found in [DFK+05]. A target view, which
will show the location of this document after the Show-In choice, has to implement
the corresponding IShowInTarget interface or adapt to this interface by overriding
the getAdapter() method.

CHAPTER 4. TEXTUAL EDITOROF UML2 STATEMACHINE : IMPLEMENTATION PHASE43

Initiating an EmfaticEditor consists of adding listener for changes on a parsed
tree and document provider. Each editor must have a source viewer con�guration in
order to add customization, such as content assist, syntax highlighting, etc. Most of
value added features of the editor are introduced within the class EmfaticSource-

Viewerconfiguration. OutlineConfiguration class provides implementation to
deliver a content outline of an opened editor.

For supporting folding feature in the editor, the methods createPartControl()
of TextEditor and createSourceViewer() of AbstractTextEditor have to be over-
ridden, in which a ProjectionSupport instance is installed on a ProjectionViewer

and this viewer is de�ned as the source viewer respectively. De�ning collapsible
regions is done by the method updateFoldingStructure() which adds the Projec-
tionAnnotation instance to the ProjectionViewer . A more detailed explanation
on implementing folding feature can be found on [Dev05].

Further methods are de�ned to implement the hyperlink functionality within the
editor. For this purpose, two maps are de�ned: a one-to-many map to keep the
mapping between the declaration of an object (in its metamodel) and its concrete
usages, and a one-to-one map for the mapping between the concrete declaration and
its counterpart in the metamodel.

EmfaticCodeScanner is used for syntax highlighting. It de�nes di�erent color
application for di�erent kinds of keyword. De�ning syntax highlighting is enabled
through the getPresentationReconciler() method of the source viewer con�gura-
tion.

Hover popup will also appear over text. The class EmfaticHoverText is respon-
sible for this feature by implementing the interface ITextHover.

Editor Actions

The package org.eclipse.emf.emfatic.ui.editor.actions contains following classes:

• EmfaticEditorActionMessages

• OpenDeclarationAction

OpenDeclarationAction class is needed for the context menu Open Declara-

tion. Text, tool tip and declaration of this action are returned by class EmfaticEd-
itorActionMessages.

Hyperlinks

The package org.eclipse.emf.emfatic.ui.hyperlinks contains following classes:

• EmfaticHyperlink

• EmfaticHyperlinkDetector

Hyperlink in text viewer is represented by the class EmfaticHyperlink. In order
to �nd this hyperlink in a given region within the viewer, a hyperlink detector is
being used. During the detection process a method getLandingPlace() is used to
�nd out where the cursor should be moved to, based on the type of the CST node
being hyperlinked.

CHAPTER 4. TEXTUAL EDITOROF UML2 STATEMACHINE : IMPLEMENTATION PHASE44

Outline

The package org.eclipse.emf.emfatic.ui.outline contains following classes:

• AnnFilterAction

• AnnotationFilter

• AttrFilter

• AttrFilterAction

• EmfaticContentOutlinePage

• OpFilter

• OpFilterAction

• RefFilter

• RefFilterAction

• TypeParamFilter

• TypeParamFilterAction

EmfaticContentOutlinePage de�nes the outline page of a text viewer by ex-
tending the class org.eclipse.ui.views.contentoutline.ContentOutlinePage of
Eclipse. It consists of di�erent �lters, which determine which elements may be shown
in the outline viewer. Corresponding action classes are de�ned as well to toggle be-
tween activation and deactivation of the �lter and are shown as button on top of
the viewer. Context menu available to the outline page is for showing the type hi-
erarchy of element being selected on the outline viewer. This is de�ned within the
populateContextMenu() method. The selectFromEditor() method is responsible
for showing the element on the outline viewer, which is chosen from an editor. For
this purpose, a selection listener must be installed on the editor, that is, EmfaticEd-
itorSelectionListener (from editor package).

Partition

The package org.eclipse.emf.emfatic.ui.partition contains following classes:

• DebugPartitioner

• EmfaticDocumentProvider

• EmfaticPartitionScanner

• HTMLAnnotationHover

• HTMLPrinter

• NonMatchingRule

Every JFace Text based editor is partition-aware, that is, its text content can be
divided into non-overlapping regions of text. This is a feature which is important for
the editor for supporting other additional features, such as error marking, content
assist, etc. In EmfaticDocumentProvider, by extending FileDocumentProvider,
creating document instance and loading documents from the �le system abilities are
made available.

CHAPTER 4. TEXTUAL EDITOROF UML2 STATEMACHINE : IMPLEMENTATION PHASE45

To set the partition scheme for editor, the class DebugPartitioner is created, which
is an instance of IDocumentPartitioner needed for partitioning and in turn uses
an EmfaticPartitionScanner instance to de�ne word scanning rules based on the
di�erent content type (one of which is a NonMatchingRule for unde�ned words) and
�nd tokens corresponding to individual document partitions. More information on
implementing partitioning can be found on [Zoi06].

Preferences

The package org.eclipse.emf.emfatic.ui.preferences contains following classes:

• EmfaticPreferencePage

• EmfaticTemplatesPreferencePage

• PreferenceConstants

• PreferenceInitializer

All classes of this package are used to de�ne the preference page of Emfatic.
Both EmfaticPreferencePage and EmfaticTemplatePreferencePage are extension
to org.eclipse.ui.preferencePage-extension point. EmfaticPreferencePage is a
class representing a general preference page contributed to the Preferences dialog. Em-
faticTemplatePreferencePage is shown in the Preferences dialog as well, but used
for de�ning templates for editor. To de�ne the default value of the preference page at
run time an extension to org.eclipse.core.runtime.preference-extension point
must be made. And this is realized by PreferenceInitializer. PreferenceCon-

stants de�ne some constants for the plug-in preferences.

Red Squiggles

The package org.eclipse.emf.emfatic.ui.redsquiggles contains following classes:

• EmfaticCSTChangeListener

• EmfaticRedSquiggler

• EmfaticRedSquigglerDeltaVisitor

The main idea of these classes is to install resource change listener. This is done
by implementing the interface IResourceChangeListener. A resource change event
will be passed to the listener when a change occurs, and its delta (set of changes) is
visited by DeltaVisitor, which processes all the changes. EmfaticRedSquiggler is
a resource change listener and delta object of events passed to it will be visited by the
EmfaticRedSquigglerDeltaVisitor. More information on resource change listener
can be found on [Art02].

Templates

The package org.eclipse.emf.emfatic.ui.templates contains following classes:

• EmfaticContextType

• EmfaticTemplateCompletionProcessor

CHAPTER 4. TEXTUAL EDITOROF UML2 STATEMACHINE : IMPLEMENTATION PHASE46

EmfaticTemplateCompletionProcessor is a kind of content assist processor1

which takes a TemplateContextType class as its argument. A TemplateContext-

Type de�nes a context within which templates are resolved. EmfaticContextType is
derived from TemplateContextType and enables all possible variable resolvers de�ned
by Eclipse.

Views

The package org.eclipse.emf.emfatic.ui.views contains following classes:

• MethodsViewContentProvider

• MethodsViewLabelProvider

• TypeHierarchyMessages

• TypesView

• TypesViewContentProvider

• TypesViewDoubleClick

• TypesViewLabelProvider

In relation with the Show-In feature of the editor, TypesView is a target view
which can be chosen for the navigation purpose of a document. Moreover TypesView
is used to show the type hierarchy within a document through TypeViewer. Another
view (a table viewer) is used for showing the de�ned methods within a document,
which is called MethodViewer(). Both of the viewers have its own content and label
provider. An action class (TypesViewDoubleClick) is created to enable the double-
click action on certain text element which leads to its declaration within the same
document just as how the hyperlink feature works.

Wizards

The package org.eclipse.emf.emfatic.ui.wizards contains following classes:

• EmfaticNewFileCreationPage

• EmfaticNewWizard

In order to create new wizard, org.eclipse.jface.wizard.Wizard must be ex-
tended. Pages of the wizards, i.e. steps described in the wizard, are created by
extending org.eclipse.jface.wizard.WizardPage. In order to get the wizard run-
ning, some methods of both classes have to be implemented properly. Just like other
features, wizards are made available through extension point. The extension point
for de�ning wizard is org.eclipse.ui.newWizard.

1Please refer to package describing content assist for more information

Chapter 5

Outlook

5.1 Summary

The objectives of this project work were to present some frameworks that deal with
textual concrete syntax of DSLs, with the documentation of Gymnast as the main
purpose, and to describe the use of Gymnast to develop DSLs and its tool (i.e. text
editor) by representing Emfatic, a textual representation of EMF Ecore Model, and
developing a new DSL for Eclipse implementation of UML2 State Machine model.

After introduction to the topic in Chapter 1 is given, Chapter 2 provides the
overview of some frameworks that already exist at the time of writing. For each
framework, the main concept has been introcuded and the architecture is described
roughly to provide an insight into the framework. In Chapter 3, Gymnast framework
is explained in detail. All packages and the contained classes are introduced by
explaining their functionalities and how they are related to each other, to build the
base of Gymnast.

On top of Gymnast, Emfatic and the textual representation for UML2 State Ma-
chine model are developed. These are discussed in Chapter 4. For every DSL devel-
opment, a grammar must be de�ned based on the metamodel to be realized in textual
representation. The State Machine metamodel and its corresponding grammar are
introduced at the beginning of the chapter, before the implementation aspects of the
framework is shown in the following sections. As the end result, UML2 State Ma-
chine models can now be described textually using the speci�c editor with enhanced
features, whose implementation is derived from the Emfatic Editor.

At this phase, Gymnast only generates the classes which serve as infrastructure.
Further steps (i.e. classes) which are needed to build the tools must be manually
coded by DSL-developers. The manual coding demands additional knowledge from
developers beside the domain-speci�c knowledge already owned, e.g. knowledge about
EMF and UML2 in case of Emfatic and State Machine language, and knowledge about
Eclipse API to build the user interface elements of IDE. A more preferable condition
is to have a ready-to-use tool in hand, so that the developers can fully concentrate on
de�ning the DSL.

47

CHAPTER 5. OUTLOOK 48

5.2 Future Work

The idea for the future work, which was also mentioned in Chapter 1, is to fully develop
Gymnast into an IDE generator. This idea has been proposed and accepted as part of
Google Summer of Code (GSoC)1, so that the concrete work will be progressing very
soon. Technical aims of this work, as taken from the proposal for GSoc submitted by
Mr. Miguel Garcia, is to extend Gymnast for:

• generation of EMF-compliant classes for concrete syntax tree nodes that enables
well-formedness checking of CSTs at an earlier phase.

• generation of visitor for CST unparsing purpose which results in pretty-printed
grammar

• generation of a text editor with all the additional features already coded man-
ually

Bringing the ideas one step further, case studies will be undertaken to validate the
approach in developing the IDE generator by applying the IDE generation process
on further textual representation, e.g. an executable UML-style language but EMF-
based, EJB3QL for metamodel, a human-readable notation for UML.

1http://code.google.com/soc/

Bibliography

[Art02] John Arthorne. How You've Changed! Eclipse Corner Article, August
2002.

[CFJL07] Philippe Charles, Robert M. Fuhrer, Stanley M. Sutton Jr., and Chris
La�ra. SAFARI: A Meta-Tooling Platform for Creating Language-Speci�c
IDEs. 2007.

[Coo04] S. Cook. Domain-Speci�c Modeling and Model-driven Architecture. D.
Frankel and J.Parodi (ed.), The MDA Journal: Model Driven Architecture
Straight from The Masters, December 2004.

[Dai05] Chris Daily. AST Framework Generation with Gymnast. 2005.

[Dev05] Prashant Deva. Folding in Eclipse Text Editors. Eclipse Corner Article,
March 2005.

[DFK+05] Jim D'Anjou, Scott Fairbrother, Dan Kehn, John Kellerman, and Pat
McCarthy. The Java Developer's Guide to Eclipse. Addison Wesley, 2nd
edition, 2005.

[ea96] R. Kieburtz et al. A Software Engineering Experiment om Software Com-
ponent Generation. Proc. of 18th IEE International Conference on Soft-
ware Engineering, 1996.

[Ecl07] Eclipse. Model Development Tools, 2007. http://www.eclipse.org/uml2.

[Ell97] C. Elliot. Modeling Interactive 3D and Multimedia Animation with an
embedded Language. Proc. of First USENIX Conference on Domain-
speci�c Languages, October 1997.

[FSGM05] Frédéric Fondement, Rémi Schnekenburger, Sébastien Gérard, and Pierre-
Alain Muller. Metamodel-Aware textual Concrete Syntax Speci�cation.
2005.

[Gar07] Miguel Garcia. Improvements To The Emfatic Editor. February 2007.

[Gro04] Object Management Group. UML Testing Pro�le, 2004.
http://www.omg.org.

[Gro06] Object Management Group. Uni�ed Modeling Language : Superstructure,
April 2006.

[JB06] Frédéric Jouault and Jean Bézivin. On the Speci�cation of Textual Syn-
taxes for Models. 2006.

49

BIBLIOGRAPHY 50

[JBC+06] Frédéric Jouault, Jean Bézivin, Charles Consel, Ivan Kurtev, and Fabien
Latry. Building DSLs with AMMA/ATL, a Case Study on SPL and CPL
Telephony Languages. 2006.

[JBK06] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. TCS: a DSL for the
Speci�cation of Textual Concrete Syntaxes in Model Engineering. 2006.

[JBKV06] Frédéric Jouault, Jean Bézivin, Ivan Kurtev, and P. Valduriez. Model-
based DSL Frameworks. 2006. submitted for publication.

[KT00] S. Kelly and J. Tolvanen. Visual Domain-speci�c Modeling: Bene�ts and
Experiences of Using MetaCASE Tools. Proc. of International workshop
on Model Engineering, ECOOP 2000, 2000.

[Res] IBMWatson Research. http://domino.research.ibm.com/comm/research-
projects.nsf/pages/safari.Introduction.html.

[Spi03] Diomidis Spinellis. On the Declarative Speci�cation of Models. IEEE
Software, 20(2):94�96, March, April 2003.

[TMC99] S. Thibault, R. Marlet, and C. Consel. Domain-Speci�c Languages: From
Design to Implementation Application to Video Device Drivers Genera-
tion. Software Engineering, 25(3):363�377, 199.

[vDKJ00] A. van Deursen, P. Klint, and J.Visser. Domain-Speci�c Languages: An
Annotated Bibliography. ACM SIGPLAN Notices, 35(6):26�36, 2000.

[Weg04] H. Wegener. Balancing Simplicity and Expressiveness: Designing Domain-
speci�c Models for the Reinsurance Industry. Proc. of the 4th OOPSLA
Workshop on Domain-speci�c Modeling, October 2004.

[Wil03] D. Wile. Lessons Learned from Real DSL Experiments. Proc. of the 36th
Hawaii International Conference on System Sciences, 2003.

[WSTD05] H. Wada, J. Suzuki, S. Takada, and N. Doi. Leveraging Metamodeling and
Attribute-Oriented Programming to Build a Model-driven Framewrok for
Domain Speci�c Languages. 2005.

[WTH03] G. Wagner, S. Tabet, and H.Boley. MOF-RuleML: The Abstract Syntax
of RuleML as a MOF Model. Proc. of Integrate 2003, October 2003.

[Zoi06] Phil Zoio. Building an Eclipse Text Editor with JFace Text. April 2006.
http://www.realsolve.co.uk/site/tech/jface-text.php.

