
Generation of Text Editors
for Custom

Domain Specific Language
on the Eclipse Platform

Master Thesis
submitted by

Paulus Sentosa
Matr. Nr.: 22946

supervised by
Prof. Dr. Ralf Möller

Prof. Dr. Dieter Gollmann
Miguel Garcia, M.Sc.

Hamburg University of Technology

Abstract

IDEalize is the result of further development of Gymnast; from an Eclipse-
based framework that provides support for tooling of DSLs, mainly for grammar
specification and parsing, to become a framework for generating text editors with
several utility features. Further components have been implemented, each pro-
viding additional functionalities which together make up the extended framework.
This master thesis presents the framework in detail with main focus on the genera-
tor, a use case of the framework, and a comparison with other existing and under-
development prototypes of IDE generator.

Declaration

I declare that:
this work has been prepared by myself,
all literal or content based quotations are clearly pointed out,
and no other sources or aids than the declared ones have been used.

Hamburg, October 25, 2007
Paulus Sentosa

I would like to thank Prof. Dr. Ralf Möller for providing a very interesting topic
and giving me the oppotunity to work on this topic for my master thesis.

Further I would like to thank Prof. Dr. Dieter Gollmann for his willingness to be
the second assessor of this work.

I would also like to thank Miguel Garcia, M.Sc for his guidance, encouragement
and endless patience during this work, especially in every single discussion session.

And my thanks also goes to A. Jibran Shidqie, M.Sc, who has given me a lot of
useful ideas during my work.

Contents

1 Introduction 7
1.1 Background . 7
1.2 Objectives . 8
1.3 Document Structure . 9

2 IDEalize: Framework for Generating Eclipse-based Text Editors 10
2.1 Introduction . 10
2.2 Input Model for Generator . 13

2.2.1 Modifying Gymnast Metamodel 15
2.2.1.1 Partition . 15
2.2.1.2 Keyword Highlighting / Token Coloring Service . . . 15
2.2.1.3 Text Folding Service . 16
2.2.1.4 Range Highlighting Service 16

2.2.2 .idegemodel Editor . 17
2.3 The Generator . 18

2.3.1 New Project Creation Wizard . 18
2.3.2 Resource Generator . 20

2.3.2.1 Setting Up Information for Generator 21
2.3.2.2 Core Plugin Generator 21
2.3.2.3 .idegenmodel Generator 23
2.3.2.4 UI Generator . 24
2.3.2.5 The JET Templates . 25

2.4 Usage of IDEalize . 29
2.4.1 Using The Wizard . 29
2.4.2 Generating and Modifying .idegenmodel 31

2.4.2.1 Partitioning . 35
2.4.2.2 Token Coloring Service 35
2.4.2.3 Text Folding Service . 35
2.4.2.4 Range Highlighting Service 36

2.4.3 Generating User Interface plug-in 36

3 Use Case: Text Editor for State Chart Language 37
3.1 State Chart Language . 37

3.1.1 The Grammar . 37
3.1.2 The Constraint . 41

3.2 An Example : State Chart of Telephone Object 43
3.3 Generated Components for Supporting the Application of Constraint . 44
3.4 How to Progress . 46

3.4.1 Generating .ecore and the converter class 46

3

CONTENTS 4

3.4.2 Adding .ocl file using the same name as the model in the
same folder . 46

3.4.3 Compiling the OCL statements 46
3.4.4 Generating the model codes out of OCL-augmented model . . 47
3.4.5 Importing the OCL plug-in . 47

3.5 Some Screenshots . 49

4 Other IDE Generators 54
4.1 xText . 54

4.1.1 Introduction . 54
4.1.2 How It Works . 54
4.1.3 The Components . 56

4.2 Textual Editing Framework (TEF) . 56
4.2.1 Introduction . 56
4.2.2 How It Works . 57

5 Outlook 58
5.1 Summary . 58
5.2 Future Work . 59

A State Chart Language 63
A.1 Grammar . 63
A.2 Textual Ecore-based State Chart Grammar 64
A.3 Textual Representation of State Chart of Telephone Object 66

List of Figures

2.1 Components of IDEalize . 10
2.2 Plug-in org.eclipse.idealize.grammar2ecore 11
2.3 Gymnast Metamodel . 14
2.4 Additional Classes in Gymnast Metamodel 17
2.5 Gymnast Model Editor plug-ins . 18
2.6 Plug-in for IDE Generation Project . 18
2.7 Class Diagarm Showing the Main Components of Generator 19
2.8 Extension Point org.eclipse.ui.newWizards 19
2.9 Core Wizard Classes . 19
2.10 Code Generator for Core Plug-in, .idegenmodel and User Interface . 20
2.11 JET Template Translation Process . 20
2.12 ResourceGenerator-Class . 21
2.13 GenerationSetup-Class . 22
2.14 Templates Folder . 26
2.15 Wizard for Generating Core Plug-in Project of Custom DSL 30
2.16 Filling in The Form . 31
2.17 Resulting Core Plug-in . 31
2.18 Resulting .ast . 32
2.19 How to Associate Gymnast Model Editor to File with .idegenmodel

Extension . 33
2.20 Available Additional Features . 34
2.21 Partitioning . 35
2.22 Token Coloring Service . 35
2.23 Text Folding Service . 36
2.24 Range Highlighting Service . 36

3.1 UML2 State Chart (State Machine) . 38
3.2 Graphical Ecore-based State Chart Grammar 40
3.3 State Chart of Simple Telephone Object 43
3.4 Grammar Folder Structure and the OCL-Compiler Context Menu . . . 47
3.5 OCL Compiler Preference Page . 48
3.6 The Generated Plug-in Containing OCL-augmented Model Codes . . . 49
3.7 Main Editor with Custom Syntax Highlighting 49
3.8 Content Assist . 50
3.9 AutoEditStrategy : SmartBrace . 50
3.10 Folding . 50
3.11 Folded Text with Hover Showing The Content 51
3.12 Range Highlighting and Mark Occurences 51
3.13 Matching Brackets and The corresponding Preference Page 52
3.14 Syntax Error Marker and Message on Editor 52

5

LIST OF FIGURES 6

3.15 Validation Error Marker and Message on Editor 52
3.16 Outline View synchronized with Editor 53

4.1 Overview Diagram of oAW . 55
4.2 Reconciliation Process in TEF . 57
4.3 Template Classes in TEF . 57

Chapter 1

Introduction

1.1 Background

Domain-specific languages(DSL), which are specifically designed to be used in their
own domains, are gaining more and more preference in software development pro-
cess. Because of their higher abstraction level, which can be traced back to the fact
that DSLs follow the domain abstractions and semantic[Tol04], a DSL not only gives
the same experience of working directly with the domain concepts to developers,
but it also allows the rules of domain being applied into the language as constraints.
Having these constrains enhances the well-formedness level of the language. Fur-
thermore, the close alignment of language and problem domain, which contributes
to more readable and understable specifications, thus easier to communicate with,
results in better productivity.

The implementation of DSL has been mostly influenced by a kind of approach,
which many developers tend to use in recent days, namely the model-driven ap-
proach. Having models to define concepts of a certain domain, since this is what
model-driven is all about, the implementation will take advantages of the possibility
to have conformation and validation checking on the model-based concepts. Ab-
stract syntax of DSL can be defined in terms of metamodel, while its concrete syn-
tax is represented through the association between the metamodel and its syntactic
elements[JB06]. Both graphical and textual notation can be used in DSL. However
the preference for using the latter may find its own justification[Spi03], on which the
opt for considering the textual-based alternative for this project is based.

Despite the above-mentioned advantages of using DSLs, developers still have to
cope with certain issues that come with the DSL itself, such as defining methodolo-
gies to derive DSL from the domain knowledge[TMC99]. One of the most important
issues, which is the lack of appropriate supporting tools for DSL, has been partly
solved through the existence of Gymnast[Dai05]. This framework provide supports
for the definiton process of custom DSLs and the corresponding parsing infrastruc-
ture which applies to textual DSL. Moreover, Gymnast also provide an extension to
Eclipse JFace Text, a User-Interface(UI) toolkit that comprises helper class to im-
plement UI features, as part of the framework to help developers having a base for
implementing full-featured text editor for DSLs on top of Gymnast. This extension
is explained in Chapter 1 of [GS07] in detail.

However implementing a language-specific editor by providing specific exten-

7

CHAPTER 1. INTRODUCTION 8

sion to the framework for each DSL is nontrivial task. A solid know-how on the
APIs of the framework and of Eclipse JFace Text is an indispensable requirement
to be able to make progress. Given that some parts of the implementation are basi-
cally the same for every editor (e.g. base classes to be extended, interface methods to
be implemented), repetitive implementation tasks are rather inevitable, if developers
are to create editors for different languages. Still, certain adjustments are sometimes
necessary to those parts, because of specific behaviours that should be implemented
only in the editor for a specific DSL. These problems round up the other half of the
issue which is not completely solved by Gymnast yet.

A common proposal to avoid sophisticated but partly repetitive coding tasks is
to generate the codes automatically. A code generator would need an input (model),
from which it gathers the required information for the code generation. The use of
templates can be seen as an integral part of a generator. A generator should normally
use the information from the input to make up the templates, which are left "incom-
plete" intentionally, so that the generated codes are variably depending on the input,
thus universally applicable in the same context of usage.

Having the model-based specification of DSL as base for the generator, the model
concepts can be mapped to resulting codes[Tol04]. In the simplest case, each mod-
eling symbol produces certain fixed codes. But the generator is not restricted to
producing codes only based on the information from the model. Instead it also has
certain patterns of code generation which are preset in the templates. Combination
of both sources determines how the resulting codes should look like. The imple-
mented code generator for this project makes use of this characteristic exactly to
accomplish the generation of the language-specific text editor. Using the predefined
templates, information is extracted from the input, which is in this case the meta-
model of the language, and embedded into the code generation process to produce
the designated completely working codes.

1.2 Objectives

The project for this thesis is aiming at implementing a generator for Eclipse-based
language-specific text editors with utility features, which users may be acquainted
with from the default editor of Eclipse. Due to the fact that the generator should be
built upon Gymnast with the significance of determining additional required com-
ponents, the implementation steps should comprise configuring how the enhanced
framework should be designed, and eventually implementing those missing com-
ponents before merging them to a reliable framework.

Furthermore, a use case in generating text editor for State Chart Language will be
given to illustrate how to make use of the framework. Besides all the common utility
features, embedding the external OCL Compiler for model validation checking into
the generated text editor will be made part of the use case. This serves the purpose of
abiding the well-formedness of the language, the abstract syntax of which is defined
as a metamodel.

Finally, by making some comparisons with existing prototypes of code genera-
tion framework users get the possibility to have a clear overview on what kind of
tools are and will be on the market and how they differ from IDEalize.

CHAPTER 1. INTRODUCTION 9

This project has been carried out as part of Google Summer of Code 20071 under
the supervision of Eclipse Foundation.

1.3 Document Structure

Chapter 1 gives introductory explanation on the topic of the project, including back-
ground information and the main objectives.

The IDEalize framework will be explained in detail in Chapter 2, which in-
cludes the design and implementation of the framework, with some references to
other documents that cover certain parts of IDEalize.

Chapter 3 covers the complete use case of defining textual notation for State Chart
and generating its text editor. A step-by-step explanation comprises: defining the
grammar specification of the language, until getting the ready-to-use editor with all
its features.

Some overview comparison with other code generation framework will be given
in Chapter 4 which will be pointing out the main similarity and differences with
IDEalize.

Chapter 5 will round up the discussion with some points of conclusion and pos-
sible future work.

1http://code.google.com/soc/2007/

http://code.google.com/soc/2007/

Chapter 2

IDEalize: Framework for
Generating Eclipse-based Text
Editors

This chapter describes the IDEalize framework, which is based on further develop-
ment of Gymnast by putting additional components that contribute to the enhanced
functionality, such as generating EMF-based resources and User Interface-related
classes which make up the building blocks for a text editor. Having "implemented"
the editor, the first step for a prospective development of a language-specific In-
tegrated Development Environment(IDE) has been made. In further parts of this
paper, the term "IDE" will be used mostly for referring to "text editor".

2.1 Introduction

IDEalize comprises components which are grouped in 5 different plug-ins. These
are shown in Figure 2.1. Having a good understanding on how the underlying
framework Gymnast works, which is explained in chapter 1: Frameworks for text
editors: JFace Text and Gymnast Runtime of [GS07], gives a solid base to follow the
discussion on IDEalize. This chapter provides a deeper look into the infrastucture
of the IDE generation framework and how it works.

Figure 2.1: Components of IDEalize

The plug-in org.eclipse.idealize.grammar2ecore (Figure 2.2), which is
referred before as org.eclipse.idealize.generators.ast.ecore, is covered
in the chapter 2: Generation of Parsing Infrastructure from [GS07]. The following points
are the most important things to understand about the plug-in grammar2ecore, be-
fore further explanation is given in the rest of this chapter.

10

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS11

Figure 2.2: Plug-in org.eclipse.idealize.grammar2ecore

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS12

There are 2 basic steps which are inevitable for the IDE Generation. Firstly, the
Grammar-to-Ecore transformation of Gymnast which provides base model for fur-
ther customization needed to generate the IDE. And secondly, the generation of a
POJO-based to EMF-based CST converter that will come in handy for the custom
DSL-designers later to be able to specify how the IDE should be generated. Both
steps are covered by the action GenerateAST from the context menu1 of an .ast
file with the option in the grammar specification set to:

astGenerator="org.eclipse.idealize.grammar2ecore"

The generated .ecore represents the AST of the custom DSL completely. But
for generating a fully-featured IDE that supports the usage of this custom DSL, the
current .ecore does not contain enough information, e.g the information on what
keywords should have which coloring, which area within the editor showing certain
language constructs are foldable, i.e. can be hidden to get a better overview of whole
document, etc. are missing. And this is where the metamodel should be customized
by adding some additional models that represent all the information above, i.e. mod-
els of the IDE features. Having set up the model, the corresponding EMF codes can
now be generated; this comprises not only the codes of the model, but also of the
graphical editor, with which instances of the model can be modified to complete the
generated IDE with the desired features. Those instances are none other than the
EMF-based CST of the custom DSL with the possibility for adding the features and
they are serialized into a file with an extension .idegenmodel. The modification
involves creating instances of the additional models that represent the IDE features
and combining them with the existing instances of the language metamodel. The
plug-ins idegenmodel, edit and editor are responsible for this activity.

All the components mentioned above make up the base, on which the genera-
tion process relies. For the process itself, a couple of code generators with some
additional helpers are needed. Just like how an IDE is usually set up, the generated
IDE should comprises core and user interface part, each of which is an own plug-in
project. In between, another "generation" process is required, namely the generation
of .idegenmodel file with an .ast file as its input (i.e. conversion from POJO-
based to EMF-based CST of custom DSL). The .idegenmodel file will in turn serve
as input for the IDE generator which results in the generation of the user interface
part.

Throughout the different phases of generation process, IDEalize accomodates
Eclipse M2T-JET technology2 extensively, i.e. it makes use of JET code-templates
(and its code generator technology) for every single file to be generated. The tem-
plates are basically oriented on the implementation classes of JFace Text and Gym-
nast Runtime explained in [GS07]. Depending on how the current likely-customized
.idegenmodel of the custom DSL looks like, the templates use it as input model to
generate the corresponding classes and files. Such an approach resembles the EMF
code generation framework3. However, the requirement of such an input model ex-
ists only for the user interface part, since the core part has nothing to do with the
model directly.

1Eclipse Context Menu: a group of options, which is accessible by right-clicking on a certain file
2http://www.eclipse.org/modeling/m2t/?project=jet#jet
3http://www.eclipse.org/modeling/emf/

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS13

The core part, which is generated as result of using the IDEalize creation wiz-
ard, acts as an entry point to generation framework. By using the wizard the user is
led into the first step of using the framework, in the way that a skeleton for a gram-
mar file for the custom DSL is provided to be completed. This file is placed into a
newly created .core plugin project named after the custom DSL. After completing
the grammar, users should firstly progress just like they would when using Gymnast,
namely to generate the POJO-based CST and the primordial parsing infrastructure,
before they continue on executing further steps described above.

The IDE generation doesn’t only mean the generation of classes implementing
the editors and all its features, but it also involves the other parts of resource pro-
gramming, such as creation of projects, folders, and non-Java files. Setting up a well-
organized infrastructure of the generation process for different kind of resources
makes a good base for an efficient process, and all this is covered by the wizard
plug-in.

To summarize the steps required for providing infrastructure of IDE generator
(steps described here are provided by IDEalize and EMF Framework):

• Generate EMF-based metamodel of Gymnast and POJO-EMF CST Converter

• Add new models to the metamodel that represent additional features

• Generate EMF-based model and the corresponding model codes and codes im-
plementing the EMF editor

• Designer of custom DSL has to generate and customize .idegenmodel file as
the result of the conversion from the custom .ast file using the EMF editor
to provide an input and some additional information for IDE generator. The
intermediate step for creating the custom .ast is done by making use of the
provided creation wizard.

The next sections will give detail descriptions on the models and code generators
which are required for the IDE generation process as a whole.

2.2 Input Model for Generator

From the introduction it is known, that the transformation from Gymnast grammar
to its .ecore representation is necessary for IDE generation. Plug-in that is respon-
sible for the transformation, the recipe behind and everything around the process
are well documented in Chapter 2 of [GS07]. Using gymnast.ast as input, the
corresponding .ecore file and additionally the forementioned CST converter are
generated.

Figure 2.3 shows gymnast.ecore. Although TopLevelClass is not part of
the grammar, it is also generated because the option ecoreGenerateTopLevel-
ClassForEMFEditor is set to true due to the requirement explained before, namely
as a "container" for adding children to the entry production. In Part 2 only some of
the references contained in the container class TopLevelClass are shown due to
lack of space. Except for TopLevelClass, gymnast.ecore contains the very same
information as in the grammar file gymnast.ast itself.

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS14

(a)Part 1 (b)Part 2

Figure 2.3: Gymnast Metamodel

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS15

2.2.1 Modifying Gymnast Metamodel

Due to the limitation of the Gymnast metamodel, it still can’t be used to provide
additional information for generating IDE. Therefore, a further modification is re-
quired by adding certain classes to the model that should serve as "placeholders" for
the additional information. The number of such classes depends on what kind of
information should be augmented into the model.

In Chapter 1 of [GS07] there are some code snippets showing how LDT-based text
editor and its different features are implemented. The additional classes that will be
integrated into the metamodel basically cover some of those implementation-related
information, i.e. some features implementation can only be realized by fetching the
information provided through the instantiation of those additional classes (which
can be done by DSL designer by modifying the .idegenmodel file generated from
the DSL grammar file). Thus, the resulting implementation is language-specific. In
the next subsections, the classes are introduced in its Emfatic form, i.e. as snippets
of gymnast.emf and grouped by the kind of features.

2.2.1.1 Partition

The concept of document partition is needed to implement certain features of the
user interface. IDEalize provides implementation of the single default partition of
type IDocument.DEFAULT_CONTENT_TYPE. But users will have the possibility to
add custom partitions to meet their requirement on defining different areas within
the document with specific behaviors. In order to be able to define partitions, fol-
lowing classes are introduced:

Listing 2.1: Partition-related Classes
1 c l a s s P a r t i t i o n {
2 val P a r t i t i o n R u l e [+] r u l e s ;
3 } / / No same p a r t i t i o n r u l e s
4

5 c l a s s P a r t i t i o n R u l e {
6 a t t r S t r i n g partitionName ;
7 a t t r ScanningRule r u l e ;
8 a t t r S t r i n g s tar tSequence ;
9 a t t r S t r i n g endSequence ;

10 }
11

12 enum ScanningRule {
13 s i n g l e L i n e = 0 ;
14 multiLine = 1 ;
15 endOfLine = 2 ;
16 / / (e v e n t u a l l y s e l f −c r e a t e d r u l e type , e . g . NonMatching−Rule)
17 }

Partitions are defined based on result of text scanning process. There are several
scanning rules, each of which may have its start and end sequence. Completing the
different rules makes up the partitions of a certain document recognized within the
editor.

2.2.1.2 Keyword Highlighting / Token Coloring Service

An enumeration type holds the possible colors, which are already defined in class
LDTColorProvider of Gymnast. The main class TokenColoringService is
used to define the different coloring groups.

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS16

Listing 2.2: Token Coloring-related Classes
1

2 c l a s s TokenColoringService {
3 val TokenGroup [+] groups ;
4 }
5

6 c l a s s TokenGroup {
7 a t t r S t r i n g [1] name ;
8 a t t r Color c o l o r ;
9 r e f SimpleExpr [+] l i s tOfTokens ;

10 }

Tokens/Keywords are grouped using different group name and each group has
a certain color, e.g. normal keywords, special keywords, etc. Constraint that has to
be applied for this class is that the list of tokens only contains instances of the pro-
duction rule simpleExp, whose value starts with quotes ""̈ (every keyword starts
with quotes, thus only tokens representing keywords can be given colors).

If no token coloring service is defined, the class extending LDTCodeScanner
won’t be generated. The editor’s SourceViwerConfiguration that refers to the
code scanner through its method createCodeScanner() will return null instead
of instance of a code scanner. The Keyword class will simply contain the keywords,
without specifying certain groups to which the keywords belong.

2.2.1.3 Text Folding Service

Listing 2.3: Text Folding-related Classes
1

2 c l a s s TextFoldingService {
3 r e f Rule [+] r u l e s ;
4 }

Similar to partitioning, IDEalize also provides default implementation of text
folding feature, which is assigned to every single language construct. However users
may only want to fold certain areas. This can be done by defining the foldable areas.
Requirement for this service is that the "foldable rules" are neither list nor token
rules4. This user-defined text folding service is not additional to the default one, but
rather an alternative, since the default won’t be generated anymore as soon as class
TextFoldingService is instantiated.

2.2.1.4 Range Highlighting Service

Listing 2.4: Range Highlighting-related Classes
1 c l a s s RangeHighl ight ingService {
2 r e f Rule [+] r u l e s ;
3 }

4Rules are used in Gymnast for defining a grammar specification. More information on Gymnast rules
can be found in [Dai05]

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS17

Similiar to defining Text Folding Feature, user needs to choose some rules, whose
range (i.e. lines over which the texts are located) should be highlighted on the editor
side, when the cursor is currently placed within those area.

To implement the other features, such as Content Assist, Auto Edit, Annotation
Hover, etc. no additional classes in the metamodel are needed.

The modified gymnast.ecore is shown in Figure 2.4.

Figure 2.4: Additional Classes in Gymnast Metamodel

2.2.2 .idegemodel Editor

Having modified gymnast.ecore, the next steps will be generating the model
codes and its corresponding Edit and Editor plug-ins from the gymnast.genmodel.
The generated EMF editor, usable on the second instance of Eclipse, is meant to be
used for editing .idegenmodel of custom DSL. This is done by setting Gymnast
Model Editor as default editor for any files with .idegenmodel extension. The
plug-ins which are responsible for this Editor are shown in Figure 2.5. A further
explanation on working with the editor will be given in Section 2.4 of this chapter.

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS18

Figure 2.5: Gymnast Model Editor plug-ins

2.3 The Generator

This section deals with the classes which are responsible for the generation process.
Those classes are parts of plug-in org.eclipse.idealize.wizard shown in Fig-
ure 2.6. Besides the different generators, the plug-in also includes a wizard imple-
mentation as a starting point of using the framework, which will provide the pilot
project (i.e. core plug-in) for creating language-specific IDE. How the main com-
ponents are related, is shown in the class diagram depicted in Figure 2.7, and the
following subsections will give explanation on those classes shown in the diagram.

Figure 2.6: Plug-in for IDE Generation Project

2.3.1 New Project Creation Wizard

For the creation of wizard, the extension point org.eclipse.ui.newWizards
should be extended (Figure 2.8). A category of wizard and the wizard name itself
have to be defined. Figure 2.9 shows the package that is responsible for implement-
ing the wizard.

By extending org.eclipse.jface.wizard.Wizard, a class called NewCore-
PluginWizard is the main wizard class and it also implements INewWizard. For
the display of the wizard, an instance of NewCorePluginWizardPage is created,
which basically provides fields and options that will be later set as initial content

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS19

Figure 2.7: Class Diagarm Showing the Main Components of Generator

Figure 2.8: Extension Point org.eclipse.ui.newWizards

Figure 2.9: Core Wizard Classes

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS20

of the generated .ast file. ASTContentFromWizard serves as placeholder for the
values input through the wizard page. As a result of the wizard, i.e. what is executed
in the performFinish() method of NewCorePluginWizard when user activates
the FINISH button of the wizard, is the instantiation of the CorePluginGenerator
with the information kept by ASTContentFromWizard as arguments.

2.3.2 Resource Generator

Both packages .generator and .util are the core of this plug-in. They are shown
in Figure 2.10.

Figure 2.10: Code Generator for Core Plug-in, .idegenmodel and User Interface

The main technology behind the code generation framework used in IDEalize
is Eclipse JET Technology[Fou07]. Among the important classes of JET, JETEmit-
ter is the class, which the generator makes a direct use of. The idea is to use code
templates which will be processed by JETEmitter (and several other JET classes)
for each file or source code to be generated. Figure 2.11 shows a template translation
process (image reproduced from [Pop04]). Within the templates, different kinds of
JET tags should be used to dynamically generate codes in dependence on its input
model, i.e. Java Objects. To ease the access to this technology, there are two classes
that are introduced in [Pop04], which have been reused with slight modification to
fit in the framework. Those classes are Config and JETGateway, with the latter
calls the emitter class. Further explanation on JET technology, e.g. the translation
process and its most important classes, and on both above-mentioned classes can be
found in the article.

Figure 2.11: JET Template Translation Process

Using the generator framework, different kinds of resources are to be generated:
besides the template-based non-Java and Java files, project and folders are also gen-
erated, where the generated files will reside. Due to the repetitive task of generating

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS21

resources, a class called ResourceGenerator, shown in Figure 2.12 provides dif-
ferent methods that deal with the generation process. A generator should extend this
class and thereby override the method generate(). Depending on what the gener-
ator does, it may use the provided generateFile() for generating non-Java files,
generateJava for generating Java codes, createProject for generating a plug-
in project, and two helper methods, getFilePath() and createResources, that
can be used to find the exact location of an input file (might be used if a generated
file should be generated in the same location as its input) and to create a resource for
holding an EMF serialization result (needed for .idegenmodel) respectively.

Figure 2.12: ResourceGenerator-Class

2.3.2.1 Setting Up Information for Generator

GenerationSetup (class members are shown in Figure 2.13) serves as centre for
feeding the generators with the required information. Two constructors are de-
fined; the first constructor which takes the name of DSL as argument, Genera-
tionSetup(String languageName) is used by the Project Creation Wizard and
needs no file input, while the second constructor takes files as its argument. The lat-
ter is used for generating .idegenmodel with .ast file as its input, as well as for
generating the UI plug-in project with the .idegenmodel as information source.

As mentioned before, the code templates contain tags which will deliver con-
tent dynamically in dependence of the input. Those tags are basically referring to
methods defined in GenerationSetup. Most of those methods are getter methods
which returns some predefined names for packages and classes. By having them
available on hand, the templates can simply use the names to complete certain parts
of its codes, e.g. name of the generated class, imported classes with its qualified
name, name of the package, etc.

2.3.2.2 Core Plugin Generator

Generating a core plug-in of an IDE for a custom DSL makes the first step of IDE
generation. After getting the content from the wizard page, a CoreGenerator-

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS22

Figure 2.13: GenerationSetup-Class

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS23

FromWizard is instantiated. Consecutively a project, folders and some files are gen-
erated, having their names being set up within the GenerationSetup instance.
The main result of the wizard besides the project itself is however a grammar file
<customDSLname>.ast, with pre-filled options whose values come from the wiz-
ard page (i.e. instance of ASTContentFromWizard. User may now complete the
grammar file of his/her custom DSL.

2.3.2.3 .idegenmodel Generator

For the generation of .idegenmodel the second constructor of GenerationSetup
is used by passing the check on kind of the input file, i.e. extension of the file must
be .ast. This constructor is called by the generator class IDEGenModelGenerator
(Listing 2.6).

Listing 2.5: GenerationSetup for Generating .idegenmodel
1 public GenerationSetup (I F i l e f i l e , IProgressMonitor monitor , IReporter

r e p o r t e r) {
2

3 t r y {
4 / / Input i s . a s t f i l e
5 i f (f i l e . g e t F i l e E x t e n s i o n () . equalsIgnoreCase (" a s t ")) {
6 contex t = new GeneratorContext (f i l e , monitor , r e p o r t e r) ;
7

8 compUnit = parseAST (contex t) ;
9 contex t . initCompUnit (compUnit) ;

10

11 grammarInfo = new GrammarInfo (contex t) ;
12 contex t . initGrammarInfo (grammarInfo) ;
13

14 languageName = grammarInfo . getLanguageName () ;
15 languageExtension = grammarInfo . getOptionValue (" extens ion ") ;
16

17 }
18
19

20 }
21 }

Besides setting up some required information (e.g. language name, extension
name, etc) the grammar file is parsed to get its entry rule (in Listing 2.5 the entry rule
is CompUnit), which will be used by POJO-to-EMF-based-Converter as input for
the conversion. The conversion itself is executed within the generate() method of
IDEGenModelGenerator, as shown in following snippet:

Listing 2.6: IDEGenModelGenerator
1 public c l a s s IDEGenModelGenerator extends ResourceGenerator {
2

3 public void generate (I F i l e a s t F i l e , IProgressMonitor monitor , IReporter
r e p o r t e r) {

4

5 setup = new GenerationSetup (a s t F i l e , monitor , r e p o r t e r) ;
6 compUnit = setup . getCompUnit () ;
7

8 ExtendedGrammarInfo extGrammarInfo = new ExtendedGrammarInfo (setup .
getGrammarInfo ()) ;

9

10 GymnastAST2EMFConverter conv = new GymnastAST2EMFConverter () ;
11 Gymnast . Gymnast . CompUnit d = conv . convert (compUnit) ;
12

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS24

13 S t r i n g f i l e P a t h = g e t F i l e P a t h (a s t F i l e , " . idegenmodel ") ;
14 System . out . p r i n t l n (" F i l e p a t h : " + f i l e P a t h) ;
15 Resource convertedRes = createResource (f i l e P a t h) ;
16
17 }
18
19 }

As result of the conversion, EMF-based CST classes of the grammar are gained
(accessible through its entry rule Gymnast.Gymnast.CompUnit) and they are se-
rialized into the file <customDSLname>.idegenmodel.

2.3.2.4 UI Generator

The generated .idegenmodel, used as input for the generator of UI plug-in, plays
an important role in completing the generated code from the JET templates (Fig-
ure 2.14). In the constructor of GenerationSetup which is called by the class
IDEGenerator, the .idegenmodel will pass the second check on the kind of in-
put file. Then it will be parsed to get the root, i.e. entry point to the EMF-based
model. There are two possibilities of what kind the root belongs to: either it is the
TopLevelClass or the compilation unit CompUnit of the grammar, depending
on whether the option ecoreGenerateTopLevelClassForEMFEditor is set to
true or false. Afterwards, the entry rule of the grammar should be acquired, as
many implementation aspects will refer to the entry rule. This is done by fetching the
first rule from the list of grammar and checking the existence of an attribute called
entry. Listing 2.7 shows the snippet.

Listing 2.7: GenerationSetup for Generating UI
1 public GenerationSetup (I F i l e f i l e , IProgressMonitor monitor , IReporter

r e p o r t e r) {
2

3 t r y {
4 / / Input i s . a s t f i l e
5 i f (f i l e . g e t F i l e E x t e n s i o n () . equalsIgnoreCase (" a s t ")) {
6
7 }
8 e lse { / / Input i s . i d e g e n m o d e l f i l e
9

10 EObject root = parseIDEGenModel (f i l e) ;
11 i f (root instanceof Gymnast . Gymnast . TopLevelClass) {
12 topLevelClass = (Gymnast . Gymnast . TopLevelClass) root ;
13 emfCompUnit = topLevelClass . getCompUnits () . get (0) ;
14 }
15 e lse / / CompUnit i s r o o t ; no T o p L e v e l C l a s s
16 emfCompUnit = (Gymnast . Gymnast . CompUnit) root ;
17

18 Rule entryRule = emfCompUnit . getGrammar () . get (0) ;
19

20 Att rs a t t r = getAttributeFromRuleDecl (entryRule) ;
21 i f (a t t r != null && a t t r . g e t A t t r L i s t () . get (0) . equalsIgnoreCase (" entry "

)) {
22 customDSLEntry = entryRule ;
23 System . out . p r i n t l n (" Entry Rule : "+customDSLEntry . getName ()) ;
24 }
25 e lse {
26 System . out . p r i n t l n (" Error : No entry r u l e ! ") ;
27 }
28
29 }

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS25

30 }
31 }

After setting up some information, the constructor will also prepare a map called
parentChildrenTable, which is a BiMultiMap<Rule,String> (shown in List-
ing 2.8). This map will hold information on relationships between production rules,
i.e. a rule, whose definition contains further rules, thus a "parent-children" relation-
ship (for the children rule, only the names are kept in the map, therefore a "String"
value). EMFSimpleExprCollector, an extension of the generated EMF-based
Switcher, is responsible for collecting the children rules of a rule. Within the pro-
duction rule itself, the children are recognized as SimpleExpr, thus the collector
will keep all SimpleExpr instances in the map. This map helps in finding out the
"route" from the entry rule to a certain rule for the purpose of visiting the node rep-
resenting that certain rule. More explanation on this in the section explaining the
features.

Listing 2.8: BiMultiMap for Parent-Child Relationship between Rules
1

2 EList <Rule> r u l e s = getRules () ;
3 for (Rule r u l e : r u l e s) {
4 EList <SimpleExpr > simpleExprs = new EMFSimpleExprCollector (r u l e) .

getListOfSimpleExpr () ;
5 for (SimpleExpr simpleExpr : simpleExprs) {
6 parentChildrenTable . put (rule , simpleExpr . getValue ()) ;
7 }
8 }

In the generate() method of IDEGenerator, it progresses similarly to creat-
ing the core project: create the project, packages, and files. As the result, a new UI
plug-in project is created with some implementation classes for the editor and its
usability features.

2.3.2.5 The JET Templates

In order to understand the generated codes better, this subsection explains some
of the templates in connection with the input model for the templates. Figure 2.14
shows that the templates are grouped based on the project, and furthermore on the
kind of components or features of the UI they are implementing. In general, the
naming of the templates make the base for the naming of the generated classes,
e.g. from a template called Editor.javajet, a class with the name pattern <cus-
tomDSL>Editor.java can be generated.

In relationship with .idegenmodel, GenerationSetup plays the similar role
to GenModelImpl of Eclipse EMF in its relationship to a .genmodel file5. It pro-
vides numerous getter methods that deliver the required information, mostly (qual-
ified) names of classes. However, as mentioned before, GenerationSetup also
provides the additional information contained in .idegenmodel to generate the UI
features.

Partitioning By default, there will be only one document partition that covers the
entire document, which is of type IDocument.DEFAULT_CONTENT_TYPE. Having

5More information on EMF components can be found in [Fra07a]

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS26

Figure 2.14: Templates Folder

only a single partition means that any implemented feature, that depends on the
existence of document partition, will operate on the whole document too. To have
more flexibility on determining which feature should be available to which part of
the document, more specific partitions need to be defined.

The main class for the partitioning is the PartitionScanner. This is where
the different scanning rules for the purpose of document partitioning are defined
based on the information given by user through the PartitionRule instances of
.idegenmodel. PartitionRule, as part of the class Partition, are useful for
defining the partitions of a document precisely. Every partition which is defined
here can then be referred from other classes for the purpose of activating features for
the certain document partitions.

For every feature, GenerationSetup provides methods that check their exis-
tence. In this case, PartitionServiceActivated() is used for checking the ex-
istence of the additional partitions. Templates of classes whose generation directly
related on partitioning are kept in the folder templates.ui.partition.

Token Coloring Service Token Coloring Service is created after instantiation of
the TokenColoringService class with its TokenGroup’s (see class definition in
Listing 2.2). Two templates for this feature are CodeScanner.javajet and Key-
words.javajet.

The method TokenColoringServiceActivated() is uded to check whether
this feature is activated. Having confirmed the existence, following information may
be obtained: list of keywords that should be placed into group(s), where each group
has its own name and preferred color. Base on these groups, hashtables will be gen-
erated in Keywords class, each of which represents one keyword group. Within the
CodeScanner, each keyword group will be then associated with the preferred color.

Text Folding Service The template CSTChangeListener.javajet deals with
the implementation of this feature. Text Folding Service is implemented in two dif-
ferent ways. By default, i.e. when the class TextFoldingService isn’t instanti-
ated, folding is created by utilizing the AST2EMFConverter to get the EMF-based

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS27

CST which will be then traversed. Through each of the nodes, the corresponding
POJO-based CST nodes can be found through the AST2CST map of the converter,
and its positions can be determined, which are required to compute the folding
range.

For the second alternative, which automatically avoids the generation of the de-
fault implementation of folder feature, the following points are necessary. Recall the
class that models the text folding feature (shown in Listing 2.3). Just like for any other
features, firstly the existence of the feature in .idegenmodel is checked through the
method TextFoldingServiceActivated(). If it exist, it should contain the list
of collapsable rules defined by the user.

For each of collapsable rules, a path to the entry rule can be retrieved using the
method GenerationSetup.getPathToEntryRule(), which in turn traverses
the parentChildrenTable defined before. The implementation of the text fold-
ing feature uses visitor pattern, as can be seen in EmfaticCSTChangeListener.
The computed path is useful to determine the order of visiting the node hierarchy,
starting from the entry rule down to the node representing the collapsable rules.

It is important to notice how the visitor code should be generated, i.e. whether
visit() is required for getting the children node or it is enough to use the corre-
sponding getter method. In case that a node is representing a ListRule, its children
have to be visited. As the result, the code structure may show several level of visiting
pattern, with the main visit() method is applied on the collapsable rule.

Content Assist Content assist feature is enabled for every custom DSL by default.
The implementation is providing proposal for all defined keywords in the DSL,
which is activated through button "Ctrl + Space". Templates related to this feature are
placed in package .contentassist. In addition, the class EditorMessage and
its corresponding properties file EditorMessage.properties that defines the
activation short-cut, and implementation of some methods, e.g. getContentAs-
sist() of SourceViewerConfiguration and createActions of Editor have
to be generated as well. For code snippet refer to Chapter 1.3.9 of [GS07].

Auto Edit (Smart Brace, Automatic Closing Quote) A default implementation of
auto edit strategy for the custom DSL includes smart brace and automatic closing
quote. User can edit or add auto edit strategy by editing the method customize-
DocumentCommand() of the generated AutoEditStrategy class. For codes on
this and more information refer to Chapter 1.4.4 of [GS07].

Default Annotation Hover By implementing the method SourceViewerCon-
figuration.getAnnotationHover(), the information on errors and warnings
are shown directly at the squiggles in addition to the display on error panel.

Mark Occurences A simple "Mark Occurences" feature is implemented in a way
that the document is scanned for the same words, and these are highlighted, i.e.
create an Annotation instance for the words, as soon as one of them is selected.
Making use of existing components, this feature uses the Gymnast-generated To-
kenNode class to fetch the corresponding CST node of the selected text. The position
of every selected word as result of the scanning process will be then asssociated with
its Annotation instance to provide the highlighting.

The implementation of this feature in Emfatic Editor utilizes the existence of a
OneToManyMap<EObject, ASTNode> , that keeps the relationship between the

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS28

EMF-based and POJO-based CST nodes, i.e. a declaration part and its usage parts of
a certain rule. Hence a precise mark occurence can be achieved.

Range Highlighting, Current Line Highlighting and other General Features In
previous chapter, an additional class RangeHighlightingServiceis introduced,
which should be instantiated in order to provide the range highlighting service. This
contains the list of rules, by which the text area should be marked, i.e. the edge
of the editor on that certain range is highlighted. The resulting implementation of
the feature is placed in a SelectionListener class implementing the interface
ISelectionListener, whose method selectionChanged() is responsible for
giving a certain feedback in case of a selection is made on the editor. For this purpose,
the listener must have been installed to the editor (in its createPartControl()-
method.

The method highlightRange() is generated into this listener when the feature
is activated and it will be called each time selection is made on the editor. Depend-
ing on which rules are selected to be highlighted for the instantiation of Range-
HighlightingService, this method will contain several instanceOf checking
to check whether the selected text is representing parts of the selected rules. If it is
the case, the method setHighlightRange() of the editor will be called to provide
the highlighting within the range of the rules.

Because of the possibility of different rule selections, in which some of the se-
lected rules may be contained in the other selected rules, it is important to notice
that the checking process may be overlapping, i.e. a certain smaller range is high-
lighted by the highlighter of a wider range. This could result in unwanted highlight-
ing effect. Therefore, the user should be responsible to provide the correct order of
selected rules, whose checking methods will be generated in the same order as well.
Logically, the order should be in descending order of the scope size, so that smaller
range will not be overlapped by the wider range.

Together with "Current Line Highlighting", "Show Line Numbers" and some other
features, Range Highlighting can also be set, i.e. choose whether to turn the feature
on or of, through the General Preference (Preference > General > Editors > Text Ed-
itors). User should not set any preference store (IPreferenceStore) to the editor,
e.g. using the editor plug-in’s own preference store through the method setPref-
erenceStore() during editor initialization time, to let the default preference store
be used instead, i.e. EditorsUI.getPreferenceStore().

Matching Bracket "Matching Bracket" is not included in the General Preference.
Therefore, an additional preference page could be of use, where user can choose
whether to activate the feature or not, and to choose the color of the matching brack-
ets.

This feature is set by the SourceViewerDecorationSupport, which can be
configured through the method configureSourceViewerDecorationSupport
of AbstractDecoratedTextEditor. The support class will in turn activate the
feature by setting a certain character pair matcher and preference keys, i.e. literal, for
the feature itself and its color. A pair matcher, normally instance of DefaultChar-
acterPairMatcher, defines the characters for which its pair should be matched,
and the partition in which the characters may exist.

For defining the preference keys mentioned before, a PreferenceConstants
class containing those keys is created. Furthermore, a PreferencePage class is de-
fined, whose fields’ initial values e.g. a boolean field which activates the feature if it
is set to true and a modifiable color field are defined in a PreferenceInitial-

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS29

izer class. Now that there are two Preference Pages which should be connected
to the editor, the preference store of the editor needs to be set explicitly. This can be
done by setting ChainedPreferenceStore as the editor’s preference store, which
contains both the default and the plug-in’s own preference store.

Outline View Gymnast provides base classes for defining an outline view for the
editor6. They are configured through the class OutlineConfiguration, that de-
termines which OutlineBuilder and ContentOutlinePage to be used. An out-
line builder makes use of OutlineNode to define how each node of the (Tree-based)
Outline View should look like, and what content it should display. A content out-
line page is the standard class for implementing an outline view by extending the
org.eclipse.ui.views.contentoutline.ContentOutlinePage.

The implementation of Outline View also utilizes the AST2EMFConverter, just
like the default implementation of Folding feature does. Because this requires in-
stances of EMF EObjects, the OutlineNode, which by default consumes instances
of class ASTNode, should be modifed to use EObject instead. Hence the need of
EMFOutlineNode.

The main idea of having an Outline View is to simplify the navigation over the
content of the editor. Thus a connection between the editor and the view is needed,
i.e. selection in the outline view has to be mirrored in the editor as well, and vice
versa. For this purpose, a map which keeps the relationship between the ASTN-
ode’s and the OutlineNode’s is created. An ASTNode may give the information
about position of text in the editor, while an OutlineNode is representing a node
in the Outline View. Recall that the converter required for building the outline also
has a map for the EMF-POJO pairs, so that finding the relevant ASTNode from the
EObject of OutlineNode will not be a problem, and vice versa.

Both viewers, i.e. the editor and the Outline View, need to react based on the
selection within the counterpart. The editor has to install a selection listener that im-
plements the methods of interface ISelectionChangeListener, which in turn
calls the method selectInOutline() to find the corresponding part in the Out-
line View. A ContentOutlinePage also implements the same interface by default,
which then forwards the selection event through the method updateHighlight to
find the corresponding position within the editor.

2.4 Usage of IDEalize

Having seen the core of the framework, this section provides explanation on how to
use the framework step-by-step.

2.4.1 Using The Wizard

To ease the usage of the framework, a New Project Creation Wizard has been im-
plemented. This wizard is accessible through File > New > Other A selection
of wizards will be displayed, with Idealize IDE Generator being one of them, as
shown in Figure 2.15.

Selecting Core Plug-In for Custom DSL will deliver the wizard form shown in
Figure 2.16. The form provides fields, several of which, marked by "*", are compul-
sory fields. Values input by user into those fields will be set as the values of the

6See Gymnast documentation for more information

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS30

Figure 2.15: Wizard for Generating Core Plug-in Project of Custom DSL

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS31

options on the header of a grammar file. Two drop-down lists contain the prede-
fined usable parser generator and AST generator. More information on the available
options can be read in Chapter 2 of [GS07].

Figure 2.16: Filling in The Form

In the figure, an example of how to fill-in the form for a custom DSL called
StateMachine is shown. The resulting .ast file, put in the grammar folder of
the newly created core project (here statemachine.core, shown in Figure 2.17),
will be automatically opened using Gymnast Editor. This is shown in Figure 2.18.

Figure 2.17: Resulting Core Plug-in

2.4.2 Generating and Modifying .idegenmodel

The next step will be generating the POJO-based CST classes. Notice that this genera-
tion requires the option astGenerator set to primordial. Using org.eclipse.

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS32

Figure 2.18: Resulting .ast

idealize.grammar2ecore will activate the generation of .ecore of the gram-
mar and the corresponding CST converter. More on this can be found in Chapter 2
of [GS07].

To progress with the IDE generation, an .idegenmodel must be generated. The
option to activate the .idegenmodel Generator is integrated as part of the context
menu for files having the extension .ast. Right-clicking on the grammar file will
provide the menu Generate .idegenmodel. A file with the same name as the gram-
mar file with extension .idegenmodel will be generated and put into the same
folder. For editing the file, the EMF generated Graphical Editor (provided by plug-in
org.eclipse.idealize.ui.edit and org.eclipse.idealize.ui.editor)
can be used. For regular use, the editor should be associated with the file with the
extension .idegenmodel, and following steps are required, with the numbers cor-
responding to the numbers shown in Figure 2.19:

1. Open the Preference Page, choose the option General > Editors > File Associ-
ations.

2. Click the "Add" button besides the "File types" window, and add the extension
*.idegenmodel.

3. Click the "Add" button besides the "Associated editors" (which is still empty
by default).

4. Scroll down to choose "Gymnast Model Editor".

By now, every file which has .idegenmodel extension will be opened using the
Gymnast Model Editor by default.

The .idegenmodel contains the very same information as the grammar file
but it gives user the possibility to add certain modifications by creating instances
of the feature-classes. These classes are accessible through New Child option of
TopLevelClass as shown in Figure 2.20.

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS33

Figure 2.19: How to Associate Gymnast Model Editor to File with .idegenmodel
Extension

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS34

Figure 2.20: Available Additional Features

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS35

2.4.2.1 Partitioning

Document partitions are set by creating some partition rules under the Partition
class. For each rule, the attributes can be modified using the Properties View. The
field Rule contains some predefined kinds of Rule which are selectable from drop-
down list. The newly created partitions will act as additional partitions to the single
default partition.

Figure 2.21: Partitioning

2.4.2.2 Token Coloring Service

Under Token Coloring Service, user may create different token groups, where each
group should have its own name, color and list of tokens. The available colors are
predefined, and selectable from a drop-down list. Adding tokens to the list is done
by selecting the required tokens from a window that appear after clicking the button
on the right side.

Figure 2.22: Token Coloring Service

2.4.2.3 Text Folding Service

For defining own Text folding Service, i.e. not using the default implemenation of
Text Folding, user only has to choose the rules which are collapsable on the text
editor. The rules are available on a window as soon as the right-side button on the
field Rules is activated. Activating this feature makes the code generator skip the
generation of the default folding implementation, and vice versa.

CHAPTER 2. IDEALIZE: FRAMEWORK FOR GENERATING ECLIPSE-BASED TEXT EDITORS36

Figure 2.23: Text Folding Service

2.4.2.4 Range Highlighting Service

Similar to Text Folding, activating this feature requires the user to select the rules
to be highlighted. As explained in the previous section, the selected rules should
have descending order in the size of scope, so that the most inner rule still can be
highlighted correctly.

Figure 2.24: Range Highlighting Service

2.4.3 Generating User Interface plug-in

Without editing the generate .idegenmodel, user can already generate a standard
text editor for the language. It depends on the users themselves, whether the features
should be added, and which ones of them. Hence, the users have the full control on
how the IDE later should look like.

Continuing on the example provided above, a fully-featured IDE should now be
generated based on the modified .idegenmodel. Again, the IDE generator can be
activated from the context menu of files having certain extension, i.e. the extension
.idegenmodel. Depending on which features have been activated, correspond-
ing classes are generated into specific packages, whose names are indicating which
feature they are for. These classes are part of an own UI plug-in (here, statema-
chine.ui).

The Core and UI plug-in are related automatically as they are generated. A small
modification needed to be done on the core is to add the generated packages in its
list of runtime libraries in plugin.xml, i.e. .parser and .ast packages, and .util
packages that are generated later (not at the time of core plug-in generation) because
some of the classes are referred by classes of UI plug-in. Besides, additional plug-ins
have to be imported afterwards depending on which parser generator is used before.

On the side of the UI plug-in, user can add an image for the editor. This can
be put into the icons package. Afterwards, the icon entry in extension tab of
plugin.xml has to be modified accordingly. This entry shouldn’t be left empty,
otherwise the editor can’t be instantiated.

Chapter 3

Use Case: Text Editor for State
Chart Language

Having seen the functionality of IDEalize-generated IDE based on custom DSL
grammar specification, this chapter will show a use case of IDEalize by defining
language for describing UML2 State Chart in full detail. A worth-mentioned addi-
tion to the generated IDE is that OCL Compiler has been integrated into the frame-
work, so that the usablitiy of the IDE is enhanced by well-formedness constraint
checking feature at usage time, e.g. the correctness of applicable semantic.

3.1 State Chart Language

Figure 3.1 shows the metamodel of UML2 State Chart, out of which the grammar
specification for the State Chart Language is defined. The grammar itself covers
most of the classes introduced in this diagram.

3.1.1 The Grammar

The grammar specification of State Chart Language is written based on Gymnast
syntax, an EBNF-like syntax, using Gymnast Editor. Therefore, the file has the ex-
tension .ast. The snippet is shown in Listing 3.1. The complete grammar can be
found in Appendix A.1.

Listing 3.1: State Chart Grammar
1 sequence stateChartDecl : " statechart " name=ID LCURLY vertexDecls
2 (finalStateDecl)? RCURLY ;
3

4 abstract vertexDecl : pseudoStateDecl | stateDecl ;
5

6 sequence pseudoStateDecl : kind=pseudoStateKind name=ID
7 (LPAREN outgoing=transitionDecls RPAREN)? SEMI;
8

9 sequence stateDecl : " state " name=ID LCURLY inStateDecl
10 (transitionDecls)? RCURLY ;
11

12 sequence compositeState : (entry=pseudoStateDecl)? regionDecls
13 (exit=pseudoStateDecl)?;
14

15 sequence regionDecl : "region" name=ID LCURLY vertexDecls RCURLY ;
16

37

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 38

Figure 3.1: UML2 State Chart (State Machine)

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 39

17

18 sequence transitionDecl : " transition " kind=transitionKind
19 name=ID LCURLY inTransitionDecl SEMI RCURLY ;
20

Having set grammar2ecore as astGenerator for the grammar, an Ecore rep-
resentation of the grammar file can be generated. This is shown in Figure 3.2.

Using Emfatic, a further transformation can be done, namely from Ecore to its
Emfatic representation (i.e. .emf) that results in textual Ecore-based State Chart
Grammar shown in Listing 3.2. The complete result can be found in Appendix A.2.

Listing 3.2: Textual Ecore-based State Chart Grammar
1

2 package StateChart;
3

4 abstract interface StateChartEASTNode {
5 }
6

7 class CompUnit extends StateChartEASTNode {
8 val ModelDecl[1] modelDecl;
9 val StateChartDecl[∗] stateChartDecls;

10 }
11

12 class ModelDecl extends StateChartEASTNode {
13 attr String name;
14 }
15

16 class StateChartDecl extends StateChartEASTNode {
17 attr String name;
18 val VertexDecl[∗] vertexDecls;
19 val FinalStateDecl finalStateDecl ;
20 }
21

22 class PseudoStateDecl extends VertexDecl {
23 attr PseudoStateKind kind;
24 attr String name;
25 val TransitionDecl[∗] outgoing;
26 }
27

28 class StateDecl extends VertexDecl {
29 attr String name;
30 val InStateDecl[1] inStateDecl;
31 val TransitionDecl[∗] transitionDecls ;
32 }
33

34 class CompositeState extends InStateDecl {
35 val PseudoStateDecl entry;
36 val RegionDecl[∗] regionDecls;
37 val PseudoStateDecl exit;
38 }
39

40 class RegionDecl extends StateChartEASTNode {
41 attr String name;
42 val VertexDecl[∗] vertexDecls;
43 }
44

45

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 40

(a)Part 1 (b)Part 2

Figure 3.2: Graphical Ecore-based State Chart Grammar

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 41

3.1.2 The Constraint

In order to support textual description of model with higher precision and confor-
mity, there are several OCL constraints which have been defined for the State Chart
Metamodel. These are shown in Listing 3.3.

Listing 3.3: List of OCL Constraints
1

2 contex t PseudoStateDecl
3 inv s i n g l e O u t g o i n g F o r I n i t i a l : s e l f . kind = PseudoStateKind : : i n i t i a l impl ies

s e l f . outgoing−>s i z e () <=1
4

5 contex t RegionDecl
6 inv s i n g l e I n i t i a l W i t h i n R e g i o n : s e l f . vertexDecls−>s e l e c t (v | v . oclIsKindOf (

PseudoStateDecl))−>
7 s e l e c t (v| v . oclAsType (PseudoStateDecl) . kind = PseudoStateKind : : i n i t i a l)−>s i z e

() <= 1
8

9 contex t RegionDecl
10 inv uniqueNameOfStateWithinRegion : s e l f . vertexDecls−>s e l e c t (v | v . oclIsKindOf

(S ta t eD ec l))−>isUnique (name)
11

12 contex t CompositeState
13 inv uniqueNameOfRegionWithinState : s e l f . regionDecls−>isUnique (name)
14

15 contex t S ta te D ec l
16 inv s e l f T a r g e t F o r I n t e r n a l : s e l f . t r a n s i t i o n D e c l s <> null and s e l f .

t r a n s i t i o n D e c l s−>e x i s t s (t | t . kind = Transi t ionKind : : i n t e r n a l) impl ies
17 (s e l f . t r a n s i t i o n D e c l s−>s e l e c t (t | t . kind = Transi t ionKind : : i n t e r n a l)−>f o r A l l (

t | t . i n T r a n s i t i o n D e c l . re ferencedTarget = s e l f . name))
18

19 contex t CompositeState
20 inv entryOfComposite : s e l f . entry <> null impl ies s e l f . entry . kind =

PseudoStateKind : : entryPoint
21

22 contex t CompositeState
23 inv exitOfComposite : s e l f . e x i t <> null impl ies s e l f . e x i t . kind =

PseudoStateKind : : e x i t P o i n t

• singleOutgoingForInitial : a pseudostate of the kind "initial" can only
have one instance of an outgoing transition, namely to an initial state.

• singleInitialWithinRegion : a region can only have one pseudostate of
the kind "initial".

• uniqueNameOfStateWithinRegion : a region may have several states, each
of which must be unique.

• uniqueNameOfRegionWithinState : a composite state consists of at least
one region. In case that several regions exist, each of them must be unique.

• selfTargetForInternal : a transition of the kind "internal" must have it-
self as its transition target.

• entryOfComposite : an entry pseudostate of a composite state has to be an
"entryPoint" pseudostate.

• exitOfComposite : an exit pseudostate of a composite state has to be an
"exitPoint" pseudostate.

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 42

The OCL statements will be embedded into the corresponding model, which re-
sults in additional methods by the time the model codes are generated. Listings 3.4
and 3.5 show examples of those methods.

Listing 3.4: Constraint Checking Method for inv:singleOutgoingForInitial
1 public boolean s i n g l e O u t g o i n g F o r I n i t i a l (DiagnosticChain diagnos t i cs ,
2 Map<Object , Object > contex t) {
3 S t r i n g invName = " s i n g l e O u t g o i n g F o r I n i t i a l " ;
4 /∗
5 s e l f . k ind . = (S t a t e C h a r t : : P s e u d o S t a t e K i n d : : i n i t i a l) . i m p l i e s (s e l f . ou tgo ing

−>s i z e () . <=(1))
6 ∗ /
7 Boolean equal1 = Boolean . valueOf (org . e c l i p s e . o c l . u t i l . O b j e c t U t i l . equal (
8 t h i s . getKind () , S ta teChar t . PseudoStateKind . INITIAL)) ;
9 Boolean impl ies2 = equal1 ;

10 i f (! (impl ies2)) {
11 impl ies2 = Boolean .TRUE;
12 } e lse {
13 impl ies2 = ((new I n t e g e r (org . e c l i p s e . o c l . u t i l . C o l l e c t i o n U t i l
14 . asOrderedSet (t h i s . getOutgoing ()) . s i z e ())) <= 1) ;
15 }
16 i f (! (impl ies2)) {
17 i f (d i a g n o s t i c s != null) {
18

19 / / c a l l i n g t h e V a l i d a t o r and add t h e r e s u l t o f d i a g n o s e t o D i a g n o s t i c
c h a i n f o r r e p o r t i n g and marking p u r p o s e

20

21 }
22 return f a l s e ;
23 }
24 return true ;
25 }

Listing 3.5: Constraint Checking Method for inv:entryOfComposite
1 public boolean entryOfComposite (DiagnosticChain diagnos t i c s ,
2 Map<Object , Object > contex t) {
3 S t r i n g invName = " entryOfComposite " ;
4 /∗
5 s e l f . e n t r y . < >(n u l l) . i m p l i e s (s e l f . e n t r y . k ind . = (S t a t e C h a r t : :

P s e u d o S t a t e K i n d : : e n t r y P o i n t))
6 ∗ /
7 Boolean notEqual1 = ! Boolean . valueOf (org . e c l i p s e . o c l . u t i l . O b j e c t U t i l
8 . equal (t h i s . getEntry () , null)) ;
9 Boolean impl ies2 = notEqual1 ;

10 i f (! (impl ies2)) {
11 impl ies2 = Boolean .TRUE;
12 } e lse {
13 Boolean equal3 = Boolean . valueOf (org . e c l i p s e . o c l . u t i l . O b j e c t U t i l
14 . equal (t h i s . getEntry () . getKind () ,
15 Sta teChar t . PseudoStateKind . ENTRY_POINT)) ;
16 impl ies2 = equal3 ;
17 }
18 i f (! (impl ies2)) {
19 i f (d i a g n o s t i c s != null) {
20

21 / / c a l l i n g t h e V a l i d a t o r and add t h e r e s u l t o f d i a g n o s e t o D i a g n o s t i c
c h a i n f o r r e p o r t i n g and marking p u r p o s e

22

23 }
24 return f a l s e ;
25 }
26 return true ;
27

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 43

28 }

3.2 An Example : State Chart of Telephone Object

Figure 3.3: State Chart of Simple Telephone Object

A snippet showing parts of the textual representation of the telephone model is
shown in Listing 3.6. The complete textual representation of this model can be found
in Appendix A.3.

Listing 3.6: Textual Representation of State Chart of Telephone Object
1 model TelephoneObject ;
2

3 s t a t e c h a r t WorkingTelephone {
4

5 i n i t i a l t o I d l e (
6 t r a n s i t i o n e x t e r n a l t o I d l e {
7 t a r g e t i d l e ; }
8) ;
9

10 s t a t e i d l e {
11 t r a n s i t i o n e x t e r n a l toAct ive {
12 t r i g g e r l i f t R e c e i v e r _ g e t D i a l T o n e ;
13 t a r g e t a c t i v e ;
14 }
15 }
16

17 s t a t e a c t i v e {
18

19 entryPoint a c t i v e E n t r y ;
20

21 region a c t i v e {
22 i n i t i a l toDialTone (
23 t r a n s i t i o n l o c a l toDialTone {
24 t a r g e t d i a l t o n e ;
25 }

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 44

26) ;
27
28 }
29

30 e x i t P o i n t a c t i v e E x i t ;
31

32 t r a n s i t i o n e x t e r n a l t o I d l e {
33 t r i g g e r callerHangsUp_disconnect ;
34 t a r g e t i d l e ;
35 }
36
37 }
38

39 f i n a l s t a t e terminated ;
40 }

3.3 Generated Components for Supporting the Appli-
cation of Constraint

If there are some constraints defined on the metamodel (i.e. .ocl file is available),
the generator will generate slight different codes in class CSTChangeListener,
compared to its generated code by default. CSTChangeListener is the class which
is repsonsible for the validation of model described textually in the editor. Within its
method parseTreeChanged(), which will be called whenever the parsed tree has
changed (i.e. content of a document is modified), a validation method is executed on
the model. The validation message will then be displayed on corresponding position
in the text editor. Code snippet is shown in Listing 3.7.

This starts by getting the content of the actual document being edited, which
is then parsed to get the ParseContext1. Depending on the result of the parsing
process, the instance of ParseContext may contain information describing the sit-
uation (i.e. it should contain error messages or warning if something goes wrong
during the parsing, e.g. syntax error). Using the same context, the content will be
then checked based on the defined OCL constraints, before some markers are placed
where errors, if any, are found.

Listing 3.7: parseTreeChanged()-Method of CSTChangeListener
1

2 public void parseTreeChanged (ASTNode [] arg0) {
3

4 I F i l e f i l e = _ e d i t o r . g e t F i l e () ;
5 IDocument doc = _ e d i t o r . getDocument () ;
6 S t r i n g input = doc . get () ;
7 Str ingReader reader = new Str ingReader (input) ;
8 I P a r s e r parser = _ e d i t o r . ge tParser () ;
9 ParseContext parseContext = parser . parse (reader) ;

10 addErrorsFromAST (parseContext) ; / / v a l i d a t i o n h e r e
11 MarkerUtil . placeMarkers (f i l e , parseContext) ;
12

13 i f (parseContext . getMessageCount () == 0) {
14 System . out . p r i n t l n (" Val idat ing Text OK! ") ;
15 }
16 e lse {
17 ParseMessage [] msgs = parseContext . getMessages () ;
18 for (i n t i = 0 ; i < msgs . length ; i ++) {

1More on ParseContext can be read in the documentation of Gymnast

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 45

19 System . e r r . p r i n t l n (msgs [i] . getMessage ()) ;
20 }
21 }
22 }

In order for the validation process to be executable, the EMF-based CST classes
of the custom DSL have to be generated, because the EMF Validation Framework
is used for validating, which requires EMF-based objects as input. For this pur-
pose, IDEalize has provided the possibility to generate a class that can be used for
converting the POJO-based CST classes as result of parsing the input into its EMF
counterparts, namely <customDSL>AST2EMFConverter. Having initialized the
converter, the root of the parsed tree is used as input for the converter, the result of
which, will in turn be used as argument of the validate() method of a Diagnos-
tician object, a validity checker for EObject constraints.

It is important to notice, that the validation process done by Diagnostician
is not the same as the basic validation process it used to do anymore, because the
model has already been augmented with some constraints. Instead, the validation
process is now done by invoking the constraint checking method embedded into
the corresponding model codes, as the result of using OCL Compiler. Examples of
constraint checking method are shown in Listing 3.4 and 3.5 .More information on
OCL compiler can be read from its documentation.

Similar to the parsing process described above, Diagnostician will also pro-
vide information about the result from validating the model in form of instances of
Diagnostic. Recall that a converter provides a map Map _ast2cst that keeps the
relationship between EMF-based CST classes and the POJO-based ones during the
conversion process. This map is very useful to find the corresponding text and the
position in the editor. Having this information in hand, whenever a validation error
occurs, this can be marked on the related text in the editor with the corresponding
validation error message. The complete method is shown in Listing 3.8.

Listing 3.8: Code for Validating Model
1 private void addErrorsFromAST (ParseContext parseContext) {
2

3 / / warnings and e r r o r s computed not from t h e POJO−b a s e d CST but from t h e
EMF−b a s e d CST

4 StateChartAST2EMFConverter conv = new StateChartAST2EMFConverter () ;
5

6 Sta teChar t . CompUnit d = conv . convert ((CompUnit) parseContext . getParseRoot ()
) ;

7

8 i f (d != null) { / / t o a v o i d c h e c k i n g even i f t e x t i s n ’ t c o m p l e t e y e t
9 / / i n v o k e E c o r e V a l i d a t o r

10 Diagnost i c ian d i a g n o s t i c i a n = new Diagnost i c ian () ;
11 f i n a l Diagnost ic d i a g n o s t i c = d i a g n o s t i c i a n . v a l i d a t e (d) ;
12 i f (d i a g n o s t i c . g e t S e v e r i t y () == Diagnost ic .OK) {
13 System . out . p r i n t l n (" Diagnose Resul t i s OK! ") ; ;
14 }
15 for (Diagnost ic c h i l d D i a g n o s t i c : d i a g n o s t i c . getChi ldren ()) {
16 S t r i n g dMsg = c h i l d D i a g n o s t i c . getMessage () ;
17 i f (c h i l d D i a g n o s t i c . getData () . s i z e () > 0) {
18 Object primarySourceOfProblem = c h i l d D i a g n o s t i c . getData () . get (0)

;
19 i f (primarySourceOfProblem != null && primarySourceOfProblem

instanceof EObject) {

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 46

20 ASTNode node = conv . _ a s t 2 c s t . get ((EObject)
primarySourceOfProblem) ;

21 parseContext . addParseMessage (new ParseError (dMsg , node .
getRangeStart () , node . getRangeLength ())) ;

22 }
23 }
24 }
25 }
26 }

3.4 How to Progress

The previous section has described how the constraint checking feature is integrated
into the framework from the code perspective. This section will now give a short
guide for users on what to do first to activate the feature.

In the previous chapter on IDEalize, the steps in using IDEalize are explained
in detail, starting from making use the wizard up to generating the final IDE. Con-
straint checking feature is based on the model, which is "placed" in the core plug-in.
Therefore, the steps described here should be done before generating the IDE. But
it is not limited at this point of time, as the IDE can be regenerated after adding the
feature.

3.4.1 Generating .ecore and the converter class

The plug-in org.eclipse.idealize.grammar2ecore provides the functional-
ity of generating .ecore representation of the grammar and at the same time gen-
erating a converter class. Because the OCL compiler requires the existence of the
base model in order to be executable, using this generator must be the first task to
accomplish. The generated converter will possibly containing some class resolving
problems, due to the fact the converter refers to model codes for its conversion re-
sult, which are not there yet. These problems can be solved as soon as the model
codes are generated from the model.

3.4.2 Adding .ocl file using the same name as the model in the
same folder

OCL statements which are already prepared should be put in a text file with the
extension .ocl and is named after the model against which the constraints should
be checked, i.e. the .ecore file.

3.4.3 Compiling the OCL statements

Right-clicking on the file in the presence of the homonymous .ocl file will provide
the context menu OCLCompiler > Compile. If the compilation succeeds, a new
folder (again with the same name as the model) will be generated, and it contains
an .ecore file with its corresponding .genmodel file. The new .ecore file is
basically containing the very same information as the source .ecore, besides that
the OCL statements from the .ocl file are now integrated into the model. Figure 3.4
shows the structure of the folder and the context menu.

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 47

Figure 3.4: Grammar Folder Structure and the OCL-Compiler Context Menu

Important : to avoid that the result of OCL compilation is overriding any plug-in
configuration and classes, the options "Generate Java from GenModel" and "Gen-
erate Code for allInstances()" in the preference page of OCL Compiler should be
ticked-off. The option "Generate GenModel file" is the only one left as it is by de-
fault. The OCL Compiler Preference Page is shown in Figure 3.5.

3.4.4 Generating the model codes out of OCL-augmented model

This step is well-known from EMF tutorial on how to generate codes from an .ecore
file. However, it is best to generate the model codes into a stand-alone plug-in (i.e.
the model ID and the directories for the generated codes should be modified, e.g.
an statechart.ocl plug-in) in order to avoid overriding of the existing configu-
ration of the current plug-in (i.e. the core plug-in). This plug-in is shown in Figure
3.6. The additional codes (i.e. methods for constraint checking can be found on the
respective classes, some of which are shown in Listing 3.4 and 3.5. Due to the ex-
istence of such methods, there is also an additional class generated into the .util
package of the OCL Plug-in, which is called <customDSLname>Validator. This
class will be called by the EMF validation framework (i.e. by EcoreValidator) for the
validation process, which in turn call the corresponding constraint checking method
of the classes.

3.4.5 Importing the OCL plug-in

The last step to be done is to import the generated OCL plug-in from other plug-
ins needing this, i.e. the core plug-in (for the converter to clean the class resolving

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 48

Figure 3.5: OCL Compiler Preference Page

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 49

Figure 3.6: The Generated Plug-in Containing OCL-augmented Model Codes

problems) and the UI plug-in (to be able to refer to the conversion result). Every
code regeneration will require the user to re-import the required OCL plug-in.

3.5 Some Screenshots

Following the steps described in IDEalize documentation and in the previous sec-
tion, user may get the IDE for the custom DSL. The screenshots below shows the
resulting IDE with some of its features.

Figure 3.7: Main Editor with Custom Syntax Highlighting

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 50

Figure 3.8: Content Assist

Figure 3.9: AutoEditStrategy : SmartBrace

(a)Extended (b)Folded

Figure 3.10: Folding

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 51

Figure 3.11: Folded Text with Hover Showing The Content

Figure 3.12: Range Highlighting and Mark Occurences

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 52

(a)State Chart Preference Page (b)Matching Bracket

Figure 3.13: Matching Brackets and The corresponding Preference Page

Figure 3.14: Syntax Error Marker and Message on Editor

Figure 3.15: Validation Error Marker and Message on Editor

CHAPTER 3. USE CASE: TEXT EDITOR FOR STATE CHART LANGUAGE 53

Figure 3.16: Outline View synchronized with Editor

Chapter 4

Other IDE Generators

IDEalize is not the first and only attempt to implement IDE Generator. There has
been some prototypes exisiting on the market, each of which has its own advantages
and disadvantages. This chapter tries to point out some aspects of the prototypes,
which could be comparable to those of IDEalize.

4.1 xText

4.1.1 Introduction

xText is a textual DSL development framework, which is delivered as part of ope-
nArchitectureWare[War07], a supporting platform for model-driven software de-
velopment. oAW is a "tool for building MDSD/MDA tools". At the core there is
a workflow engine allowing the definition of transformation workflows as well as
a number of prebuilt workflow components that can be used for reading and in-
stantiating models, checking them for constraint violations, transforming them into
other models and then finally, for generating code. Figure 4.1 shows the struc-
ture overview of oAW. The following information is based on the official reference
documentation[EFH+07].

4.1.2 How It Works

Since xText is used for developing textual DSL, the first step of using xText is
to specify the grammar of the language, which at the same time defining both its
abstract syntax (i.e. metamodel) and its concrete syntax. The specification looks a
lot like an extended Backus-Naur-Form just like in Gymnast, and also consists of
different kind of Rules1 for defining the language. Additionally there are some built-
in lexer rules which can be used in the specification.

Based on the grammar, a so-called workflow file can now be executed, which
will generate the language metamodel (i.e. .ecore file), parser, and some artifacts
needed to implement and modify a text editor for the newly-defined DSL. At this
point, user may already start using the generic text editor (i.e. by running a second
instance of Eclipse) to describe models in the DSL. Having defined the DSL, a further
useful step can be taken, namely to generate executable java codes, e.g. JavaBeans
from the model entities. The codes are generated based on the defined model and

1More information on Gymnast can be found in [Dai05]

54

CHAPTER 4. OTHER IDE GENERATORS 55

Figure 4.1: Overview Diagram of oAW

CHAPTER 4. OTHER IDE GENERATORS 56

corresponding templates, that determines which information contained in the model
should be generated.

4.1.3 The Components

A wizard should give a jump start for user to use xText, where user may define the
name of the language, its extension, etc. This results in 3 different projects:

• Main Project: This project contains the main artifacts of the language, which in-
clude the grammar specification, the workflow file, generated check, extension
and linking file, the metamodel derived from the grammar and Antlr parser
artifacts[fLR07].

• Editor Project: Any text editor-specific information is contained in this project.

• Generator Project: The generator project is intended to contain the resources
needed by the generator, such as the templates, etc.

Workflow File The workflow file serves as configurator for generator engine. It
contains XML based configuration language which describes a number of so-called
workflow components.

Check File A check file is written in oAW Check Langauge and contains declarative
constraints for the model elements of a certain type. Having a check file, a validation
of model written in the DSL can be checked.

Extension and linking File Extension and linking files are written in XTend lan-
guage. XTend is mainly used for defining rich libraries of independent operations
and no-invasive metamodel extensions based on either Java methods or oAW expres-
sions. Those libraries can be referenced from all other textual languages, that are
based on the expressions framework. Such an extension file is used e.g. for making
customization on the implemented features of text editors and the linking file defines
the linking semantic of the language.

Templates Templates are written in the language called XPand. By having tem-
plates, one can control the output of the generator.

4.2 Textual Editing Framework (TEF)

4.2.1 Introduction

The Textual Editing Framework (TEF) is a framework, which provides model editors
based on a meta-model and a template based textual syntax description. TEF is
developed as part of model driven approach for language development by Lehr- und
Forschungseinheit Systemanalyse of Humboldt University of Berlin2. TEF comes as
an Eclipse plug-in and is designed to be used with Eclipse Modeling Framework
(EMF)[Fra07a], where the EMF models are accessed through an abstract interface.
Such an interface can be implemented for other technology as well. Information on
TEF is taken from the offical website[Fra07b].

2http://www2.informatik.hu-berlin.de/sam/meta-tools/index.html

http://www2.informatik.hu-berlin.de/sam/meta-tools/index.html

CHAPTER 4. OTHER IDE GENERATORS 57

4.2.2 How It Works

Unfortunately the documentation contains only information on certain aspects of
how TEF works and hardly on the implementation part. Nevertheless, it explains
about the so-called Reconciliation Process, which is principally similar to the concept
of background parsing for validation checking in IDEalize. This process is shown
in Figure 4.2. When user starts typing text, it will be parsed according to the defined
language, which results in the tree-based representation of the text. The next step
will be converting the tree into model conforming to the language metamodel, so
that it can be checked against the constraints in the metamodel. Any problem which
is encountered during the check will be reported back to user, i.e. red line with an
error message hover under the corresponding position on the editor.

Figure 4.2: Reconciliation Process in TEF

Another worth-mentioned aspect of TEF is that TEF editors are created by de-
scribing the model notation as a set of templates. The templates, which are classified
into different kinds of templates, define how model elements, their attributes, and
the values of the attributes are represented. Templates also define all the semantic
aspects that are necessary to create a semantic-rich editor. This means templates de-
scribe which items of the text will be highlighted, what proposals appear in a code
completion (code assist) , which parts can be folded, or how are the text indented.
Templates are nested in each other to create a complete notation. Figure 4.3 shows
the different classes of the templates.

Figure 4.3: Template Classes in TEF

Chapter 5

Outlook

5.1 Summary

The main objective of this thesis is to develop Gymnast into a generator of language
specific text-editors, based on the available infrastucture of Gymnast, i.e. for gram-
mar specification and parsing purpose. Furthermore, the resulting generator should
be directly applied in a case study for defining textual notation of UML2 State Chart
Language and generating the corresponding editor to prove the usability of the gen-
erator.

After the topic is introduced in Chapter 1, Chapter 2 provides a detail explana-
tion on IDEalize, the generator framework resulting from further development
of Gymnast. Many important references to other relevant documents are given, in
order for the reader not to miss the basic knowledge and follow the development
process from the beginning. Afterwards step-by-step tutorial on how to use the gen-
erator is given.

Following the explanation in the previous chapter, Chapter 3 describes a use case
of the framework in defining the textual notation of State Chart Language. Starting
from the specification of the grammar, this chapter covers up to the steps of gener-
ating the text editor and enhancing it with different features. In this use case, an ex-
ternal OCL-Compiler has been integrated for the validation checking purpose using
OCL which is embedded into the editor. Then some existing generator prototypes
are presented in Chapter 4, which are comparable in certain aspects to IDEalize.

Without doubt having such a framework will boost the development process of
a new DSL and help settling it into the hands of potential users, since the issue
of lack of supporting tools for DSL is now solved to certain extent. DSL design-
ers can now concentrate on defining a comprehensive DSL which should preferably
cover the whole relevant aspects of the corresponding domain, without concerning
about how the users should cope with the new language later. Furthermore, no ad-
ditional knowledge is needed to provide a ready-to-use language-specific text editor
by implementing it from the ground up since all this can be automatically generated,
which means a time saving in the development process.

However, despite all the above-mentioned advantages, there are some draw-
backs which can’t be avoided completely yet. Every framework is implemented in
a certain way, e.g. regarding the languages, workflow, requirements, etc. IDEal-

58

CHAPTER 5. OUTLOOK 59

ize assumes that the grammar specification is written in an EBNF-like syntax, in
order to be able to process it. Unfortunately not every existing domain of problems
has an EBNF-like description; instead they are described using other syntaxes, so
that an additional effort for the description in EBNF-like syntax is required, which
is not always a trivial task, especially for a complex domain. Moreover, learning the
framework-specific languages could be tedious, when they are completely different
from the one users are accustomed to. A solution would be to have a syntax con-
verter from alternative syntax to the required syntax, so that the additional effort of
rewriting sxntax can be omitted.

Another drawback, especially of IDEalize, is the absence of a DSL compiler.
Having a text editor on which user may textually describe models is of big advan-
tage, but the progress should not stop there. One could think of a simple compiler,
which generates executable Java codes out of the models, so that the models could
be in fact useful in the way they are planned to be.

5.2 Future Work

To minimize the drawbacks mentioned above, some possible future works can be
done following this project. One of the plans in using IDEalize is to apply the
generation process on other textual representations, e.g. Business Process Execu-
tion Language for Web Servicess (BPEL4WS), an XML-based language for the formal
specification of business processes and business interaction protocols[IBM07]. Just
like in other XML-based languages, the syntax of BPEL4WS is defined by using XML
Schema Definiton (XSD)[Con07].

Having mentioned about using a syntax converter before, a candidate to be con-
sidered is the technique applied by XSugar[fXL07] tool. As cited from its website,
"XSugar makes it possible to manage dual syntax for XML languages. An XSugar
specification is built around a context-free grammar that unifies the two syntaxes of
a language. Given such a specification, the XSugar tool can translate from XML to al-
ternative syntax and vice versa. Additionally, the tool statically checks that the trans-
formations are reversible (i.e. bidirectional) and that all XML documents generated
from the alternative syntax are valid according to a given XML schema". In [BMS07],
an example is given on how to translate XML-based language to EBNF-based alter-
native, which is exactly the one IDEalize could make use of. The following lists
reproduce the example by showing a DTD descripion and a corresponding valid
document, the counterpart in a non-XML syntax, i.e. EBNF syntax, and an XSugar
specification that specifies the connection between the two syntaxes concisely.

Listing 5.1: DTD
1 < !ELEMENT s tudents (student ∗)>
2 < !ELEMENT student (name , email) >
3 < ! ATTLIST student s id CDATA #REQUIRED>
4 < !ELEMENT name (#PCDATA) >
5 < !ELEMENT email (#PCDATA) >

Listing 5.2: A Valid Document based on 5.1
1 <students xmlns=" h t t p : //studentsRus . org/">
2 <student s id=" 19701234 ">
3 <name>John Doe</name>
4 <email>john_doe@notmail . org</email>

CHAPTER 5. OUTLOOK 60

5 </student>
6 <student s id=" 19785678 ">
7 <name>Jane Dow</name>
8 <email>dow@bmail . org</email>
9 </student>

10 </students>

Listing 5.3: An Alternative non-XML Syntax
1 John Doe (john_doe@notmail . org) 19701234
2 Jane Dow (dow@bmail . org) 19785678

Listing 5.4: XSugar Specification
1 xmlns = " ht tp :// studentsRus . org/"
2

3 Name = [a−zA−Z]+(\ [a−zA−Z] +) ∗
4 Email = [a−zA−Z . _]+\@[a−zA−Z . _]+
5 Id = [0−9] {8}
6 NL = \r\n|\r|\n
7

8 f i l e : [persons p] = <students > [persons p] </>
9

10 persons : [person p] [NL] [persons more] =
11 [person p] [persons more]
12 : =
13

14 person : [Name name] _ " (" [Email email] ") " _ [Id id] =
15 <student s id =[Id id] >
16 <name> [Name name] </>
17 <email > [Email email] </>
18 </>

One of the question left regarding XSugar is how to integrate XSugar and IDE-
alize, to achieve the best of both tools. However, the usage of XSugar is restricted
only to XML-based languages, so that a converter with a wider variety of inputs
would be even more useful.

In term of compilation, IDEalize could generate a language-specific compiler,
which in its simplest possibility produces JavaBeans codes of the model instances.
This compiler should also be generated in dependence of the input model. A good
approach in providing compiler has been introduced in xText of [War07], and a
similar approach should fit into IDEalize as well. For example, based on the model
defined in Appendix A.2, the Java class shown in Listing 5.6 could be generated from
the model presented in Listing 5.5, where every instance of the class represents the
instantiation of the model.

Listing 5.5: Textual Representation of A Model
1 class TransitionDecl extends StateChartEASTNode {
2 attr TransitionKind kind;
3 attr String name;
4 val InTransitionDecl[1] inTransitionDecl;
5 }

Listing 5.6: JavaBeans Code for Model
1 public c l a s s Trans i t ionDec l extends StateChartEASTNode {
2

3 private S t r i n g name ;

CHAPTER 5. OUTLOOK 61

4 private Transi t ionKind kind ;
5 private I n T r a n s i t i o n D e c l i n T r a n s i t i o n D e c l ;
6

7 public S t r i n g getName () {
8 return name ;
9 }

10 public void setName (S t r i n g name) {
11 t h i s . name = name ;
12 }
13 public Transi t ionKind getTransi t ionKind () {
14 return kind ;
15 }
16 public void se tTrans i t ionKind (Transi t ionKind kind) {
17 t h i s . kind = kind ;
18 }
19 public I n T r a n s i t i o n D e c l g e t I n T r a n s i t i o n D e c l () {
20 return i n T r a n s i t i o n D e c l ;
21 }
22 public void s e t I n T r a n s i t i o n D e c l (I n T r a n s i t i o n D e c l i n T r a n s i t i o n D e c l) {
23 t h i s . i n T r a n s i t i o n D e c l = i n T r a n s i t i o n D e c l ;
24 }
25

26 }

There is a relevant work conducted by Jeffery Gray from University of Alabama
at Birmingham, who introduces a DSL Debugger Framework called DSL Testing
Studio[Gra07]. According to the introduction on the website, "the DSL Testing Stu-
dio assists in debugging and testing a program written in a DSL. It uses a grammar-
driven automatic approach to generate the end-users DSL testing tools (e.g., debug-
ger, unit test engine, and profiler) for various categories of DSLs (e.g., imperative,
declarative, and hybrid DSL). It applies mapping technique for augmenting existing
DSL grammars to generate the hooks needed to interface with a supporting infras-
tructure written for Eclipse that assists in debugging and testing a program written
in a DSL". Combining IDEalize and DSL Testing Studio could boost the usability
level of the framework, since both tools provide the essential functionalities which
makes up a good and reliable IDE.

One of the common "problems" in using generator is the lack of possibility to
make customization on the generator by third party. However, there are some sug-
gestions made around this issue, e.g. in order to make the generator generating
different resources, additional generator modules can be integrated. One way to do
this is by providing open APIs through a comprehensive extension mechanism, e.g.
the concept of extension point in Eclipse. Alternatively, one can think of more ad-
vanced code templates which can be combined with some configuration files for the
generator to control the kinds of output to be generated. As a consequence of a better
customization level, the applicability of the generator could be raised up to a certain
extent.

Human-readability is also an important issue in language engineering. For ex-
ample XML, one of the most used format for machine processable data interchange,
is verbose, which makes it quite unsuitable for direct human-use. The Object Man-
agement Group (OMG)[Gro07] has tried to address this issue by introducing Human
Usable Textual Notation (HUTN)[Gro04], which is based on the Meta-Object Facility
(MOF), an OMG standard for the definition of information models and the subse-
quent mapping of these models to CORBA interfaces. HUTN specifices a generic
textual notation which can be customized for any metamodel conforming to the

CHAPTER 5. OUTLOOK 62

MOF[MH05]. An idea thereby is to apply the similar technique used in XSugar to
ease the effort of introducing the HUTN-based specification, by having this trans-
lated from any XML-based language using XSugar tool. Bringing this idea a step
forward, an extension for IDEalize to support HUTN could also be implemented
to enhance its usability even further.

Appendix A

State Chart Language

A.1 Grammar

Listing A.1: State Chart Grammar
1 language Sta teChar t ;
2 options {
3 extens ion=" s t c " ;
4 parserGenerator=" a n t l r " ;
5 parserPackageName=" s t a t e c h a r t . core . parser " ;
6 astPackageName=" s t a t e c h a r t . core . a s t " ;
7 astBaseClassName=" StateChartASTNode " ;
8 ecoreGenerateTopLevelClassForEMFEditor=" t rue " ;
9 ecoreCreateGenModel=" f a l s e " ;

10 ecoreJavaBasePackage=" " ;
11 astGenerator=" org . e c l i p s e . i d e a l i z e . grammar2ecore " ;
12 }
13

14 sequence compUnit [entry] : modelDecl s t a t e C h a r t D e c l s ;
15

16 sequence modelDecl : " model " name=ID SEMI ;
17

18 l i s t q u a l i f i e d I D : id1=ID (qidSeparator idn=ID)∗ ;
19 token qidSeparator : DOT | DOLLAR ;
20

21 l i s t s t a t e C h a r t D e c l s : s ta teChar tDec l∗ ;
22 sequence s ta teChar tDec l : " s t a t e c h a r t " name=ID LCURLY vertexDec ls
23 (f i n a l S t a t e D e c l) ? RCURLY ;
24

25 l i s t ver texDec ls : ver texDecl∗ ;
26 a b s t r a c t vertexDecl : pseudoStateDecl | s t a t e D e c l ;
27

28 sequence pseudoStateDecl : kind=pseudoStateKind name=ID
29 (LPAREN outgoing= t r a n s i t i o n D e c l s RPAREN) ? SEMI ;
30

31 token pseudoStateKind : " i n i t i a l " | " deepHistory " | " shal lowHistory " |
32 " j o i n " | " fork " | " j u n c t i o n " | " choice " |
33 " entryPoint " | " e x i t P o i n t " | " terminate " ;
34

35

36 sequence s t a t e D e c l : " s t a t e " name=ID LCURLY i n S t a t e D e c l
37 (t r a n s i t i o n D e c l s) ? RCURLY ;
38

39 a b s t r a c t i n S t a t e D e c l : composi teState | s impleSta te ;
40

41 sequence composi teState : (entry=pseudoStateDecl) ? regionDecls
42 (e x i t =pseudoStateDecl) ? ;

63

APPENDIX A. STATE CHART LANGUAGE 64

43

44 l i s t regionDecls : regionDecl∗ ;
45

46 sequence regionDecl : " region " name=ID LCURLY vertexDec ls RCURLY ;
47

48 sequence s impleSta te : (e n t r y A c t i v i t y D e c l) ?
49 (doAct ivi tyDecl) ?
50 (e x i t A c t i v i t y D e c l) ? ;
51

52 sequence e n t r y A c t i v i t y D e c l : " entryAct " a c t i v i t y =ID SEMI ;
53 sequence doAct ivi tyDecl : " doAct " a c t i v i t y =ID SEMI ;
54 sequence e x i t A c t i v i t y D e c l : " e x i t A c t " a c t i v i t y =ID SEMI ;
55

56 l i s t t r a n s i t i o n D e c l s : t r a n s i t i o n D e c l ∗ ;
57

58 sequence t r a n s i t i o n D e c l : " t r a n s i t i o n " DOT kind= t r a n s i t i o n K i n d
59 name=ID LCURLY i n T r a n s i t i o n D e c l SEMI RCURLY ;
60 token t r a n s i t i o n K i n d : " l o c a l " | " i n t e r n a l " | " e x t e r n a l " ;
61

62 sequence i n T r a n s i t i o n D e c l : (t r i g g e r D e c l) ?
63 " t a r g e t " re ferencedTarget=ID ;
64

65 sequence t r i g g e r D e c l : " t r i g g e r " name=ID
66 (LPAREN " event " event=ID RPAREN) ? SEMI ;
67

68 sequence f i n a l S t a t e D e c l : " f i n a l s t a t e " name=ID SEMI ;

A.2 Textual Ecore-based State Chart Grammar

Listing A.2: Textual Ecore-based Grammar
1

2 @namespace(uri="StateChart", prefix="StateChart")
3 package StateChart;
4

5 abstract interface StateChartEASTNode {
6 }
7

8 class CompUnit extends StateChartEASTNode {
9 val ModelDecl[1] modelDecl;

10 val StateChartDecl[∗] stateChartDecls;
11 }
12

13 class ModelDecl extends StateChartEASTNode {
14 attr String name;
15 }
16

17 class StateChartDecl extends StateChartEASTNode {
18 attr String name;
19 val VertexDecl[∗] vertexDecls;
20 val FinalStateDecl finalStateDecl ;
21 }
22

23 class PseudoStateDecl extends VertexDecl {
24 attr PseudoStateKind kind;
25 attr String name;
26 val TransitionDecl[∗] outgoing;
27 }
28

29 class StateDecl extends VertexDecl {
30 attr String name;
31 val InStateDecl[1] inStateDecl;

APPENDIX A. STATE CHART LANGUAGE 65

32 val TransitionDecl[∗] transitionDecls ;
33 }
34

35 class CompositeState extends InStateDecl {
36 val PseudoStateDecl entry;
37 val RegionDecl[∗] regionDecls;
38 val PseudoStateDecl exit;
39 }
40

41 class RegionDecl extends StateChartEASTNode {
42 attr String name;
43 val VertexDecl[∗] vertexDecls;
44 }
45

46 class SimpleState extends InStateDecl {
47 val EntryActivityDecl entryActivityDecl;
48 val DoActivityDecl doActivityDecl;
49 val ExitActivityDecl exitActivityDecl ;
50 }
51

52 class EntryActivityDecl extends StateChartEASTNode {
53 attr String activity ;
54 }
55

56 class DoActivityDecl extends StateChartEASTNode {
57 attr String activity ;
58 }
59

60 class ExitActivityDecl extends StateChartEASTNode {
61 attr String activity ;
62 }
63

64 class TransitionDecl extends StateChartEASTNode {
65 attr TransitionKind kind;
66 attr String name;
67 val InTransitionDecl[1] inTransitionDecl;
68 }
69

70 class InTransitionDecl extends StateChartEASTNode {
71 val TriggerDecl triggerDecl;
72 attr String referencedTarget;
73 }
74

75 class TriggerDecl extends StateChartEASTNode {
76 attr String name;
77 attr String event;
78 }
79

80 class FinalStateDecl extends StateChartEASTNode {
81 attr String name;
82 }
83

84 abstract interface VertexDecl extends StateChartEASTNode {
85 }
86

87 abstract interface InStateDecl extends StateChartEASTNode {
88 }
89

90 enum PseudoStateKind {
91 initial = 0;
92 deepHistory = 1;
93 shallowHistory = 2;
94 join = 3;
95 fork = 4;
96 junction = 5;

APPENDIX A. STATE CHART LANGUAGE 66

97 choice = 6;
98 entryPoint = 7;
99 exitPoint = 8;

100 terminate = 9;
101 }
102

103 enum TransitionKind {
104 local = 0;
105 internal = 1;
106 external = 2;}

A.3 Textual Representation of State Chart of Telephone
Object

Listing A.3: Telephone Object
1 model TelephoneObject ;
2

3 s t a t e c h a r t WorkingTelephone {
4

5 i n i t i a l t o I d l e (
6 t r a n s i t i o n e x t e r n a l t o I d l e {
7 t a r g e t i d l e ; }
8) ;
9

10 s t a t e i d l e {
11 t r a n s i t i o n e x t e r n a l toAct ive {
12 t r i g g e r l i f t R e c e i v e r _ g e t D i a l T o n e ;
13 t a r g e t a c t i v e ;
14 }
15 }
16

17 s t a t e a c t i v e {
18

19 entryPoint a c t i v e E n t r y ;
20

21 region a c t i v e {
22

23 i n i t i a l toDialTone (
24 t r a n s i t i o n l o c a l toDialTone {
25 t a r g e t d i a l t o n e ;
26 }
27) ;
28

29 s t a t e d i a l t o n e {
30 doAct p laydi a l tone ;
31 t r a n s i t i o n l o c a l toTimeOut {
32 t r i g g e r timeOut (event a f t e r 1 5 s e c) ;
33 t a r g e t timeout ;
34 }
35

36 t r a n s i t i o n l o c a l toDia l ing {
37 t r i g g e r d i a l D i g i t ;
38 t a r g e t d i a l i n g ;
39 }
40 }
41

42 s t a t e timeout {
43 doAct playMessage ;
44 }
45

APPENDIX A. STATE CHART LANGUAGE 67

46

47 s t a t e i n v a l i d {
48 doAct playmessage ;
49 }
50

51 s t a t e d i a l i n g {
52 t r a n s i t i o n i n t e r n a l toDia l ing {
53 t r i g g e r d i a l D i g i t (event incomplete) ;
54 t a r g e t d i a l i n g ;
55 }
56 t r a n s i t i o n l o c a l t o I n v a l i d {
57 t r i g g e r d i a l D i g i t (event i n v a l i d) ;
58 t a r g e t i n v a l i d ;
59 }
60 t r a n s i t i o n l o c a l toConnecting {
61 t r i g g e r d i a l D i g i t (event va l id) ;
62 t a r g e t connect ing ;
63 }
64 t r a n s i t i o n l o c a l toTimeOut {
65 t r i g g e r timeout (event a f t e r 1 5 s e c) ;
66 t a r g e t timeout ;
67 }
68 }
69

70 s t a t e connect ing {
71 t r a n s i t i o n l o c a l toBusy {
72 t r i g g e r busy ;
73 t a r g e t busy ;
74 }
75 t r a n s i t i o n l o c a l toRinging {
76 t r i g g e r connected ;
77 t a r g e t r inging ;
78 }
79 }
80

81 s t a t e busy {
82 doAct playbusytone ;
83 }
84

85 s t a t e r inging {
86 doAct playr ingingtone ;
87 }
88

89 s t a t e pinned {
90 t r a n s i t i o n l o c a l toTalking {
91 t r i g g e r calleeAnswers ;
92 t a r g e t t a l k i n g ;
93 }
94 }
95

96 s t a t e t a l k i n g {
97 t r a n s i t i o n l o c a l toPinned {
98 t r i g g e r calleeHangsUp ;
99 t a r g e t pinned ;

100 }
101 }
102 }
103

104 e x i t P o i n t a c t i v e E x i t ;
105

106 t r a n s i t i o n e x t e r n a l t o I d l e {
107 t r i g g e r callerHangsUp_disconnect ;
108 t a r g e t i d l e ;
109 }
110

APPENDIX A. STATE CHART LANGUAGE 68

111 t r a n s i t i o n e x t e r n a l toTerminated {
112 t r i g g e r terminated ;
113 t a r g e t terminated ;
114 }
115 }
116

117 f i n a l s t a t e terminated ;
118

119 }

Bibliography

[BMS07] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Dual Syn-
tax for XML Languages. 2007. http://www.brics.dk/~amoeller/
papers/xsugar/journal.pdf.

[Con07] World Wide Web Consortium. XML Schema. http://www.w3.org/
XML/Schema, last accessed September 2007.

[Dai05] Chris Daily. AST Framework Generation with Gymnast. 2005.

[EFH+07] Sven Efftinge, Peter Friese, Arno Haase, Clemens Kadura, Bernd Kolb,
Dieter Moroff, Karsten Thoms, and Markus Völter. openArchitectureWare
User Guide Version 4.2, September 2007. http://www.eclipse.org/
gmt/oaw/doc/4.2/html/contents/index.html.

[fLR07] ANTLR: ANother Tool for Language Recognition. http://www.
antlr.org, last accessed September 2007.

[Fou07] Eclipse Foundation. Model To Text (M2T). http://www.eclipse.
org/modeling/m2t/?project=jet#jet, last accessed September
2007.

[Fra07a] Eclipse Modeling Framework. http://www.eclipse.org/
modeling/emf/, last accessed September 2007.

[Fra07b] Textual Editing Framework. http://www2.informatik.
hu-berlin.de/sam/meta-tools/tef/index.html, last accessed
September 2007.

[fXL07] XSugar: Dual Syntax for XML Languages. http://www.brics.dk/
xsugar/, last accessed September 2007.

[Gra07] Jeffrey G. Gray. Domain-Specific Language Testing Studio. http://
www.cis.uab.edu/gray/, last accessed October 2007.

[Gro04] Object Management Group. Human-Usable Textual Notation (HUTN)
Specification. http://www.omg.org/docs/formal/04-08-01.
pdf, August 2004.

[Gro07] Object Management Group. http://www.omg.org, last accessed Octo-
ber 2007.

[GS07] Miguel Garcia and Paulus Sentosa. Generation of Eclipse-based IDEs for
Custom DSLs. Technical report, September 2007. http://www.sts.
tu-harburg.de/%7Emi.garcia/SoC2007/draftreport.pdf.

69

http://www.brics.dk/~amoeller/papers/xsugar/journal.pdf
http://www.brics.dk/~amoeller/papers/xsugar/journal.pdf
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.eclipse.org/gmt/oaw/doc/4.2/html/contents/index.html
http://www.eclipse.org/gmt/oaw/doc/4.2/html/contents/index.html
http://www.antlr.org
http://www.antlr.org
http://www.eclipse.org/modeling/m2t/?project=jet#jet
http://www.eclipse.org/modeling/m2t/?project=jet#jet
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/index.html
http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/index.html
http://www.brics.dk/xsugar/
http://www.brics.dk/xsugar/
http://www.cis.uab.edu/gray/
http://www.cis.uab.edu/gray/
http://www.omg.org/docs/formal/04-08-01.pdf
http://www.omg.org/docs/formal/04-08-01.pdf
http://www.omg.org
http://www.sts.tu-harburg.de/%7Emi.garcia/SoC2007/draftreport.pdf
http://www.sts.tu-harburg.de/%7Emi.garcia/SoC2007/draftreport.pdf

BIBLIOGRAPHY 70

[IBM07] IBM. Business Process Execution Language for Web Services
Version 1.1. http://www.ibm.com/developerworks/library/
specification/ws-bpel/, last accessed September 2007.

[JB06] Frédéric Jouault and Jean Bézivin. On the Specification of Textual Syn-
taxes for Models. 2006.

[MH05] Pierre-Alain Muller and Michel Hassenforder. HUTN as a Bridge
between ModelWare and GrammarWare - An Experience Report. Tech-
nical report, October 2005. http://planetmde.org/wisme-2005/
HUTNAsABridgeBetweenModelWareAndGrammarWareAnExperienceReport.
PDF.

[Pop04] Remko Popma. JET Tutorial Part 2 (Write Code that Writes Code). May
2004. http://www.eclipse.org/articles/Article-JET2/jet_
tutorial2.html.

[Spi03] Diomidis Spinellis. On the Declarative Specification of Models. IEEE
Software, 20(2):94–96, March, April 2003.

[TMC99] S. Thibault, R. Marlet, and C. Consel. Domain-Specific Languages: From
Design to Implementation Application to Video Device Drivers Genera-
tion. Software Engineering, 25(3):363–377, 199.

[Tol04] Juha-Pekka Tolvanen. Making Model-based Code Generation Work. Au-
gust/September, 2004.

[War07] Open Architecture Ware. http://www.openarchitectureware.
org, http://www.eclipse.org/gmt/oaw/, last accessed September
2007.

http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://planetmde.org/wisme-2005/HUTNAsABridgeBetweenModelWareAndGrammarWareAnExperienceReport.PDF
http://planetmde.org/wisme-2005/HUTNAsABridgeBetweenModelWareAndGrammarWareAnExperienceReport.PDF
http://planetmde.org/wisme-2005/HUTNAsABridgeBetweenModelWareAndGrammarWareAnExperienceReport.PDF
http://www.eclipse.org/articles/Article-JET2/jet_tutorial2.html
http://www.eclipse.org/articles/Article-JET2/jet_tutorial2.html
http://www.openarchitectureware.org
http://www.openarchitectureware.org
http://www.eclipse.org/gmt/oaw/

	Introduction
	Background
	Objectives
	Document Structure

	IDEalize: Framework for Generating Eclipse-based Text Editors
	Introduction
	Input Model for Generator
	Modifying Gymnast Metamodel
	Partition
	Keyword Highlighting / Token Coloring Service
	Text Folding Service
	Range Highlighting Service

	.idegemodel Editor

	The Generator
	New Project Creation Wizard
	Resource Generator
	Setting Up Information for Generator
	Core Plugin Generator
	.idegenmodel Generator
	UI Generator
	The JET Templates

	Usage of IDEalize
	Using The Wizard
	Generating and Modifying .idegenmodel
	Partitioning
	Token Coloring Service
	Text Folding Service
	Range Highlighting Service

	Generating User Interface plug-in

	Use Case: Text Editor for State Chart Language
	State Chart Language
	The Grammar
	The Constraint

	An Example : State Chart of Telephone Object
	Generated Components for Supporting the Application of Constraint
	How to Progress
	Generating .ecore and the converter class
	Adding .ocl file using the same name as the model in the same folder
	Compiling the OCL statements
	Generating the model codes out of OCL-augmented model
	Importing the OCL plug-in

	Some Screenshots

	Other IDE Generators
	xText
	Introduction
	How It Works
	The Components

	Textual Editing Framework (TEF)
	Introduction
	How It Works

	Outlook
	Summary
	Future Work

	State Chart Language
	Grammar
	Textual Ecore-based State Chart Grammar
	Textual Representation of State Chart of Telephone Object

