

Hamburg University of Technology

”Model-Driven Development of a
Collaborative Web Application”

Master’s Thesis
by Rizki Nugraha Pratama ICS / 31461
Software, Technology & Systems Group (STS) - TUHH

Supervisor:
Prof. Ralf Möller
Prof. Friedrich Mayer-Lindenberg
Adviser:
Miguel Garcia

May 2007

i

ABSTRACT II

1 INTRODUCTION 1

2 FUNDAMENTALS 2
2.1 MODEL-DRIVEN DEVELOPMENT 2
2.2 J2EE 2
2.3 OCL 3
2.4 RBAC 4
2.5 SECUREUML 5
2.6 WEBML 6
2.7 WEBML-OQL 17
2.8 WEBRATIO 18

3 MODEL-DRIVEN DEVELOPMENT OF A COLLABORATIVE WEB APPLICATION:
CASE STUDY 23

3.1 BUSINESS AND SYSTEM REQUIREMENTS 24
3.2 USE CASE LIST 24
3.3 DESIGNING WITH WEBRATIO 24

3.3.1 Data model 25
3.3.2 Web model 25
3.3.3 Presentation model 29

4 AREAS OF IMPROVEMENT IN WEBML 30

5 PROPOSED EXTENSION TO WEBML 35
5.1 MAPPING OF ROLES WITHIN ROLES 35
5.2 EXTENDING WEBML WITH AUTHORIZATION CONSTRAINTS 39
5.3 ROLE-BASED ACCESS CONTROL AUGMENTED BY AUTHORIZATION CONSTRAINTS 43

6 RELATED WORK 50
6.1 MODEL-BASED TOOLS 50
6.2 EXTENSIONS TO WEBML 50

7 FUTURE WORK AND CONCLUSION 52
7.1 CONCLUSION 52
7.2 FUTURE WORK 52

REFERENCES 54

APPENDIX A: WEBML-OQL SYNTAX 58

APPENDIX B: USE CASE LIST FOR THE CASE STUDY 59

APPENDIX C: WEBML DATA MODEL FOR THE CASE STUDY 61

APPENDIX D-1: WEBML HYPERTEXT MODEL FOR THE CASE STUDY – PUBLIC SITE
VIEW 62

APPENDIX D-2: WEBML DATA MODEL FOR THE CASE STUDY – STUDENT SITE VIEW
 63

APPENDIX D-3: WEBML HYPERTEXT MODEL FOR THE CASE STUDY –
BOARDMEMBER SITE VIEW 64

APPENDIX D-4: WEBML HYPERTEXT MODEL FOR THE CASE STUDY –
INSTITUTIONALADMINISTRATOR SITE VIEW 65

ii

Abstract

The project aims at building up know-how on the upcoming “model compilers”, i.e.

software engineering tools that generate (most of) a software application taking high-

level, yet precise, specifications of behavior as input. In order to validate the approach,

the development of a collaborative web application is taken as case study. The web

application is developed with a model-driven tool called WebRatio which is based on

WebML (Web Modelling Language). While developing the web application this

project aims to explore the capabilities of WebML and WebRatio in designing a

collaborative web application, and discover areas for improvement. It is found that the

current specification of WebML has limited expressiveness for access control policies,

which is evident in an environment of fine-grained sub-roles typically existing in social

networking applications. An improvement to WebML is proposed in the form of

adding authorization constraints to WebML units in the hypertext model using the

WebML-OQL query language. This approach follows a similar approach taken in the

UML-based SecureUML (another domain-specific language also exhibiting a model

compiler). In order to incorporate the proposed authorization constraints into WebML,

the WebML metamodel is extended with additional language constructs. The concrete

syntax of WebML is also augmented to support authorization constraints, both in the

graphical and textual representations. The addition of authorization constraints enables

developers to specify arbitrary levels and constellation of sub-roles according to the

business logic of the application.

1

1 Introduction

The project aims at building up know-how on the upcoming “model compilers”, i.e.

software engineering tools that generate (most of) a software application taking high-

level, yet precise, specifications of behavior as input. Model compilers targeting the

platform Java Enterprise Edition (Java EE, defined in JSR-220) are very popular and

include: DASL [Gol05], SecureUML [BDW06], and WebML [Cer06].

In order to validate the approach, the development of a collaborative web application is

taken as case study, which will allow drawing comparisons with established

development processes followed by practitioners. A collaborative web application is a

data-intensive social networking application, with which users can communicate,

exchange data and form virtual social groups. The target audience for this

collaboration platform is an alumni network, as for example the graduates of a

university. The web application is developed with a model-driven tool which uses

WebML (Web Modeling Language) [CFBBCM03], a conceptual language designed

for building data-intensive web applications that originated in academia. WebML

provides graphical yet formal specifications in the framework of a complete design

process. The tool supporting such language is WebRatio [WR]. While developing the

web application this project aims to explore the capabilities of WebML and WebRatio

in designing a web application, and discover areas for improvement. An extension or

enhancement is then proposed to improve WebML in the discussed areas.

The report is organized as follows. Chapter 2 gives an overview of the technologies

used by this project. The third chapter describes a case study in model-driven

development of a collaborative web application. Chapter 4 describes the areas of

improvements of WebML. The chapter afterwards discusses a proposed extension to

WebML in order to improve it in the areas discussed. In Chapter 6, an overview of

other work related to this project is given. The last chapter concludes the report and

summarizes the achievements of this project.

2

2 Fundamentals

This chapter gives all necessary definitions and describes all technical terms and

concepts used in the project.

2.1 Model-driven development

In [KW05] six Modelling Maturity Levels (MMLs) in software development are

described. MML 0 denotes no software specification, only source code, and MML 5

means that the software is specified purely by models. Model-driven software

development is targeted to reach the level 4 (MML 4) of this definition.

At MML 4, the specification of the software is described in one or more models. The

models are precise enough to have direct link to the actual source code. Changes are

done to the models and they are directly reflected in the regenerated source code. This

in effect keeps the models up to date with the actual source code and allows agile,

incremental development.

2.2 J2EE

The Java 2 Platform, Enterprise Edition (J2EE) Specification [J2EE] is designed as an

extension to the Java 2 Platform, Standard Edition (J2SE) Specification [J2SE] to

incorporate the needs of software applications deployed in enterprises. Such

applications typically require among others platform-independent portability, high

availability, scalability, reusability and modularity [JS05]. The architecture of the J2EE

Specification is shown in Fig. 1.

The J2EE architecture uses a four-tier approach, consisting of Client, Web, Business,

and Enterprise Information tiers. The Client Tier provides support for a large

number of client types and allows access to other server-based tiers. The Web Tier and

the Business Tier, collectively known as the Middle Tier, provide a set of services to

help the rapid deployment of enterprise applications. The Enterprise Information

Tier comprises the databases, ERP applications and file systems.

3

Fig. 1. J2EE Architecture

2.3 OCL

The Object Constraint Language (OCL) is a textual modeling language based on a

mathematical (logical) syntax for object-oriented models. OCL adds information

involving among others the constraints of objects which otherwise cannot be expressed

within UML diagrams. [WK03] Its standard is published by the Object Management

Group (OMG) as an add-on to UML. The current version, OCL 2.0 conforms to UML

2.0 [OCL2].

Examples of OCL can be shown in the following simple scenario: in a university, a

Student can participate in one or more Classes. The UML class diagram representing

this scenario is shown in Fig. 2. The UML diagram itself is not enough to describe

some constraints that apply for such a scenario. These constraints may include:

• A Student must have a minimum total of 30 ECTSpoints from all the Classes

he or she participates in

• A Class can only be attended by a maximum of 20 Students.

Fig. 2. Student-Classes scenario

OCL can be used to define those constraints, as shown in the example Fig. 3. They are

described in the form of invariants, or conditions that are persistent and must be

fulfilled throughout the lifetime of the objects. Invariants may also state rules for

associated objects. Besides stating invariants, OCL can also be used to describe: initial

4

values, derivation rules, query operations, and definitions of new attributes, operations,

as well as pre- and post-conditions for operations [WK03].

/* A Student must have a minimum total of 30 ECTS points from all

Classes participated */

context: Student

inv minPoints: classes.ECTSpoints->sum() >= 30

/* A Class may only be attended by a maximum of 20 Students */

context: Class

inv maxParticipants: self.participants-> size() <= 20

Fig. 3. OCL Expressions

2.4 RBAC

Role-based access control (RBAC) is described in [FK92]. It is argued that RBAC

fulfills the access control requirements of commercial and industry applications better

than the current standard at that time, the Discretionary Access Control (DAC). While

DAC works by giving rights to individual users to grant and revoke access privileges

to objects assigned to them, RBAC defines access rights according to the roles an

individual user take in an organization. In commercial and industry applications,

information belongs to the organization and functions are performed by individuals

belonging to roles, rather than to single users. A role is viewed as a set of operations or

transactions that is performed by a group of individuals. Since commercial and

industry organizations typically consist of functions or hierarchical lines performing

exclusive tasks, RBAC is more appropriate for this purpose.

A formal definition of RBAC consisting of four declarations and three basic rules

[FK92] is shown in Fig. 4. The first three declarations are as follows: for each subject,

the active role is the one that the subject is currently using; each subject may be

assigned to one or more roles; and each role may be granted performing one or more

transactions. The fourth declaration states that the predicate),(tsexec is true if subject

s can execute transaction t at the current time, otherwise it is false.

The first basic rule states that a subject can execute a transaction only if the subject has

been assigned a role. While authorization and identification processes such as login do

not constitute a transaction, for others a subject must have an active role. The second

Formatted: Bullets and Numbering

5

rule requires that the active role assigned to a subject must belong to its authorized

roles. Both rules combined warrant that users can only take roles for which they are

authorized. The third rule mentions that a subject can only execute a transaction only if

the transaction is authorized for the subject’s active role. All three rules in combination

guarantee that a subject can only execute transactions for which they are authorized.

Declarations:

AR(s:subject) = {the active role for subject s}

RA(s:subject) = {authorized roles for subject s}

TA({r:role}) = {transactions authorized for role r}

exec(s:subject, t:tran) = true iff subject s can execute transaction t

Rules:

1. Role assignment: 0)()),((:,: ≠⇒∀ sARtsexectrantsubjects

2. Role authorization:))()((: sRAsARsubjects ⊆∀

3. Transaction authorization:)))((),((:,: sRATAttsexectrantsubjects ∈⇒∀

Fig. 4. Formal definition of RBAC

2.5 SecureUML

SecureUML is a modeling language designed for model-driven development of secure

distributed systems. SecureUML defines a set of vocabulary relevant to access control

to annotate UML-based models. The vocabulary is based on the RBAC model, thus

specifying roles, role permissions and user-role assignments, and in addition to the

RBAC model it also specifies authorization constraints [LBD02]. The authorization

constraints include information relevant for access control such as the state of a

protected resource, current system time and parameter values, which are not described

in the UML diagram. The authorization constraints are expressed in OCL and

annotated into an extended UML diagram as shown in the SecureUML metamodel of

Fig. 5.

The SecureUML metamodel introduces RBAC concepts to the UML metamodel,

represented as metamodel types User, Role, and Permission. Some elements

represented with UML can be given the status protected objects. The ResourceSet

type is additionally introduced to represent a user-defined set of model elements used

to define permissions or authorization constraints.

Formatted: Bullets and Numbering

6

A Permission is a relation which connects a Role to a ModelElement or a

ResourceSet. Permissions are classified by ActionType elements, which in turn

define the semantics of a Permission. Every ActionType represents a class of

security-relevant operations on a certain protected resource. The set of ActionTypes

available can be freely specified using ResourceType elements. A ResourceType

defines all the ActionTypes available for a specific metamodel type, whose name is

identified in the baseClass attribute of the ResourceType.

Fig. 5. SecureUML Metamodel

An AuthorizationConstraint expresses a precondition imposed on every call to an

operation of a particular resource. The preconditions usually depend on the dynamic

state of the resource, the current call, or the environment. AuthorizationConstraint

is derived from the core UML type Constraint, and can be attached directly to a

model element or indirectly via a Permission.

2.6 WebML

The Web Modeling Language (WebML) is a modeling language which describes the

composition, navigation, and content of hypertext applications. The language is geared

towards providing a high-level specification of web applications, which can then be

transformed into executable code by means of a CASE tool. The specifications are

textual and can be visualized in diagrams, drawing from the concepts of Entity

Relationship Diagrams and UML.

7

The following models are defined in WebML: the data model, hypertext model, and

content management model [CFBBCM03]. These models correspond to elements of

the WebML development model which is based on Boehm’s spiral model [Boe88],

shown in Fig. 6. The self-explanatory diagram shows the incremental spirals of

development leading to the completion of the application development. With respect to

this diagram, the data model conforms to the Data Design element while the

hypertext model and the content management model are used in the Hypertext

Design element.

Fig. 6. The WebML Development Model

The data model consists of entities, which are containers of data elements, and

relationships, which describe semantic relations between elements. Entities may

have properties called attributes which are associated to a data type and may inherit

another (parent) entity’s properties through generalization. Relationships can be

constrained by means of cardinalities. Derivation of attributes is made possible by

exploiting relationship traversal and manipulation of existing attributes, and the

derivation rules are expressed in a syntax drawing from OCL, called WebML Object

Query Language (WebML-OQL). The model draws from and as a result is compatible

8

to Entity Relationship Diagrams and UML Class diagrams. An example of a data

model is shown in Fig. 7.

Fig. 7. WebML Data Model example

The data model is based on the scenario of Student-Classes mentioned in Section 2.3.

There are two entities, Student and Class, linked by a relationship named

Participation which effectively represents two relationships, StudentToClass and

ClassToStudent. The cardinality of both relationships represented are 0:N, which

means that a Student can participate in multiple classes or no classes at all, and a

Class can be attended by zero or more Students. The Class entity has three

attributes, namely ClassID, ClassName and ECTSPoints, while the Student entity has

attributes named StudentID and Name as well as a derived attribute called

TotalPoints. Each attribute is typed according to the WebML primitive types [WR-

WMLg] shown after the colon in the name. The derivation rule for TotalPoints is the

sum of all ECTSPoints of the Classes the Student is attending, whose link is

represented by the Participation relationship, as shown by the WebML-OQL

expression in curly brackets. WebML-OQL is elaborated in Section 2.7.

The hypertext model describes the composition and navigation of pages within a

hypertext application. The core elements of the hypertext model are: units, which are

atomic elements of information that can be published; pages, which are containers of

units; and links, which are navigational paths connecting pages and units. Pages

with similar purpose may be grouped into areas, while a wider set of coherent pages

and areas serving to a well-defined set of requirements such as a the needs of a

specific group of users are grouped into a site view. Units display data drawn from

a data source described in an entity in the Data Model, and the computation of data

source can be constrained using selectors.

Several types of units are supported in WebML: data units, which display

information of a single object; multi-data units, which display information of a set

9

of objects; index units, which lists the descriptive properties of a set of objects;

scroller units, which enable browsing through an ordered collection of objects and

give direct access to the previous, next, first and last object; and entry units, which

enable input of a set of parameter to the hypertext application. Two varieties of index

units are also specified in WebML: hierarchical index units, which allow

nesting of indexes; and multi-choice index units, which enable selection of

multiple index entries. Each unit that displays content may use Selectors in order to

filter the object(s) displayed. Table 1 lists the WebML elements with their graphical

and textual notations.

Element Diagram Sample Textual Notation Description

DataUnit Student

(source Student;

selector LastName=”Pratama”;

attributes FirstName, LastName,

StudentID)

Displays information of

a single object of an

entity. May use

Selectors to filter the

displayed object.

MultidataUnit MultiStudent

(source Student;

selector Age=”27”;

attributes FirstName, LastName,

StudentID;

orderBy StudentID)

Displays information of

multiple objects of an

entity. May be ordered

by Attributes and use

Selectors.

IndexUnit StudentList

(source Student;

selector Age=”27”;

attributes LastName;

orderBy LastName)

Lists objects of an

entity according to the

selected Attributes.

May use Selectors

and orderBy clause.

IndexUnit StudentList multi-choice

(source Student;

selector Age=”27”;

attributes LastName;

orderBy LastName)

Enables selection of

multiple objects of an

entity through

checkboxes. May use

Selectors and

orderBy clause.

Table 1. Elements in the WebML Hypertext Model

10

IndexUnit StudentList hierarchical

(source Student;

selector Class=”06”;

attributes LastName; orderBy LastName

 NEST Class

 selector StudentToClass;

 attributes Name;

 orderBy Name)

Enables indefinite

nested indexing of

linked entities. May use

Selectors and each an

orderBy clause.

ScrollerUnit StudentScroll

(source Student;

selector Age=”27”;

blockFactor 1;

orderBy LastName)

Enables scrolling

through object list of an

entity. BlockFactor

determines the number

of units scrolled by one

click.

EntryUnit StudentInput

(fields

FirstNameField String;

LastNameField String;

StudentIDField Integer)

Enables user input.

Fields can be

specified according to

WebML primitives.

Page StudentDetail default

(units StudentList, StudentDetail)
Container of units. May

have home, landmark,

or default keyword.

Area StudentAdministration landmark

(pages StudentDetail, InputStudent)
Container of pages.

May have landmark

or default keyword.

Siteview Student

(areas StudentAdministration, Scheduling;

pages StudentHome)

Container of areas and

pages.

Table 1 (continued). Elements in the WebML Hypertext Model

The navigation of the hypertext model involves links, link parameters and link

selectors. Links are navigational paths that connect units and pages. Link

parameters are information passed along in links. Link selectors are unit

selectors with reference to a link parameter.

11

Links are grouped into normal, automatic and transport links. Normal links are

initiated by user interaction; automatic links do not require user interaction and

automatically directs navigation to the destination page or unit; transport links do

not direct navigation but merely passes link parameters. Links may connect unit to

unit, unit to page, page to unit or page to page. Links between pages which do not

necessarily contain parameters are called non-contextual links, while links

between units which pass on parameters required for computing are called contextual

links. Table 2 lists the types of link in WebML along with their graphical and textual

notations.

Link Diagram Sample Textual Notation Description

Link StudentListToStudent

(from StudentList to Student;

parameters StudentID:{OID})

Normal link which is

activated by user

navigation. May pass

parameters.

Link StudentListToStudent automatic

(from StudentList to Student;

parameters StudentID:{OID})

Link which

automatically directs

navigation. May pass

parameters.

Link StudentListToStudent transport

(from StudentList to Student;

parameters StudentID:{OID})

Link which passes

parameters but does not

direct navigation.
Table 2. Links in the WebML Hypertext Model

The notion of user sessions is supported by means of global parameters, which are

persistent parameters stored during a user’s session in the application, valid within the

scope of a site view. Access to the global parameters is enabled by a get unit, which

retrieves the value stored, and a set unit, which stores the selected value into the

global parameter. Table 3 lists the WebML global parameter unit and its access units

along with their graphical and textual notations.

An example of a WebML Hypertext model is shown in Fig. 8. The model consists of

one site view, named Student. The Student site view consists only of one page

named StudentHome which has the home keyword, meaning that users navigating to

this site view are directed to the StudentHome home page. The StudentHome page

12

contains two units, the StudentList index unit and the Student data unit. Both units

have the source entity Student (not shown). The StudentList index unit displays all

Students whose age is 27, as described by the selector expression. If a user clicks on

one of the Student entries in the index list, the link StudentListToStudent is

followed. This normal link propagates along a parameter named SelectedID whose

value is taken from the selected entry’s StudentID. The Student data unit has a

selector which takes the propagated parameter and matches it with the StudentID in

the database. This hypertext model enables users to view a list of Students whose age

are 27, and select a particular Student in the list to view his or her detailed data.

Unit Diagram Sample Textual Notation Description

(none) globalParameter CurrentUser

(type OID;

entity User)

globalParameter CurrentUserName

(type string;

InitialValue „Pratama”)

Global parameter

declaration consists of

user-defined name,

type, and default initial

value.

getUnit getUser

(parameter CurrentUser)
Retrieves value stored

in the indicated global

parameter.

setUnit setUser

(parameter CurrentUser)
Stores value to the

indicated global

parameter.

Table 3. WebML global parameter unit and its access units

The content management model is an extension to the hypertext model which enables

handling of data supplied by user input to the hypertext application. The model is

based on operations, which are processes involving manipulation of data initiated

through a navigational link, and outgoing links from the result of an operation

which can either be successful (OK) or failed (KO).

13

Fig. 8. WebML Hypertext Model example

The operations are modeled by operation units, describing either a database

manipulation process or a generic process involving external services, and the outgoing

links are modeled by OK- and KO-links originating from operation units. The OK-link

is followed if the operation performed by the operation unit is successful; else the KO-

link is followed. The introduction of operation units implies categorizing the units

described in the hypertext models as content units, meaning units that display

content, in order to distinguish between them. Table 4 lists the operation units and

outgoing links of the WebML Content Management Model.

Unit Diagram Sample Textual Notation Description

CreateUnit CreateStudent

(source Student;

FirstName:=”Rizki”, LastName:=”Pratama”)

Creates an instance of

the sourced entity.

Assignment to the new

instance’s attributes

may be directly defined

or taken from incoming

link parameters.

DeleteUnit DeleteStudent

(source Student;

selector LastName=”Pratama”)

Deletes an instance of

the sourced entity.

Selectors may be

directly defined or

taken from incoming

link parameters.
Table 4. WebML operation units and outgoing links

14

ModifyUnit ModifyStudent

(source Student;

selector LastName=”Pratama”;

Age:=”26”)

Modifies an instance

of the sourced entity.

Selectors and

Assignments may be

directly defined or

taken from incoming

link parameters.

ConnectUnit AssignClass

(source StudentToClass;

[Student.OID=”1”];

[Class.OID=”5”])

Creates a
Relationship
instance based on the

source. Selectors

may be directly

defined or taken from

incoming link

parameters.

DisconnectUnit CancelClass

(source StudentToClass;

[Student.OID=”1”];

[Class.OID=”5”])

Deletes an instance

of a Relationship.

Selectors may be

directly defined or

taken from incoming

link parameters.

External ChargeCreditCard

(parameters Amount:=”100.00”,

Number=”4990”)

Invokes a generic

operation, which may

be a service hosted

by another system.

OKLink CreateStudentOKLink

(from CreateStudent to ConnectToClass;

parameters StdID:StudentID)

Followed upon

successful execution

of the originating

operation.

KOLink CreateStudentKOLink

(from CreateStudent to ErrorPage)
Followed upon

unsuccessful

execution of the

originating operation.

Table 4 (continued). WebML operation units and outgoing links

Predefined operations for commonly occurring processes in hypertext applications

exist in WebML; these include data manipulation, access control and sending

15

email operations. Data manipulation operations consist of: create operation, which

initiates the creation of an entity’s instance using parameters supplied; the delete

operation, which removes the instance of an entity; the modify operation, which

modifies the parameters of an entity’s instance; the connect operation, which creates an

instance of a relationship; the disconnect operation, which deletes an instance of a

relationship. Access control operations include the login operation, which directs

access to a specific site view in a multiple site-view application according to business

requirements based on user credentials supplied, and the logout operation, which

returns the user to a non-protected site view. More on the implementation of access

control in WebML is elaborated in Chapter 5. The send mail operation enables

sending an SMTP-based electronic message. Table 5 lists the WebML access control

and send mail units.

Unit Diagram Sample Textual Notation Description

login LoginOperation

(parameters UserName:=UName, Password:=Pwd)
Matches the supplied

credentials to the

User/Module tables.

logout LogoutOperation

Directs user to a

public site view from

a protected site

view..

sendmail SendMailOperation

(parameters Sender:=Sender,

Recipients:=Recipients, Subject:=Title,

Body:= Text, Attachments:=Attachments)

Sends an SMTP-

based message using

the supplied

parameters.
Table 5. WebML access control and send mail units

Several WebML operation units representing a sequence of coherent processes may be

grouped into transactions. By grouping into transactions the atomicity of the whole

sequence of processes is ensured, meaning that a failure in any of the component

operation units does not affect the state of the database.

A hypertext model incorporating content management units is depicted in Fig. 9. This

example extends the hypertext model described in Fig. 8. The Student site view now

16

contains an additional page, the ErrorPage page. The StudentHome page also contains

a third unit, the CreateStudent entry unit. By filling the form and hitting the submit

button on the entry unit, users initiate the CreateStudentTransaction transaction.

This atomic transaction begins with a CreateStudent create unit, which takes the

parameters FName and LName from the entry fields, creates a new Student instance and

stores it in the database. Upon successful instance creation the OK-link is followed,

which leads to the ConnectToClass connect unit, the second operation in the

transaction. The ConnectToClass connects the newly created Student instance to a

Class instance also given as a parameter carried from the entry unit. If the execution

of any of the two operations fails, the respective KO-link is followed, thus directing the

user to the ErrorPage. Upon successful execution of the connect operation the user is

directed back to the StudentHome page.

Fig. 9. WebML Hypertext Model with content management example

17

The data model and hypertext model enable a working, high-level specification of a

read-only hypertext application, such as a plain website consisting of a navigable set of

pages. For hypertext applications involving user interaction, the content management

model is required to handle input, processing of parameters, manipulation of the

database, and interaction with external (Web) services.

2.7 WebML-OQL
WebML-Objective Query Language (WebML-OQL) [WR-WMLg] is a query

language derived from OCL used in WebML. The language is not defined in the core

version of WebML [CFBBCM03] but it is first introduced by WebRatio [WR-WMLg].

WebML-OQL specifies derivation query for entities, relationships, and attributes. The

complete syntax of WebML-OQL can be found in Appendix A.

This language is used in several occasions in WebML models: in the data model,

WebML-OQL is used to define the derivation rules of an entity’s derived attribute; in

the hypertext model, WebML-OQL is the language used to write selector constraints

and to express validation rule constraints in entry unit fields. An example of WebML-

OQL expressions for each type of derivation query is shown in Fig.10.

/* EntityQuery: deriving a Student with the last name containing the

string “Prata” */

Student AS s WHERE s.LastName contains “Prata”

/* AttributeQuery: deriving a Student’s total ECTSPoints from all

Classes participated (see Fig. 7.) */

Sum (Student.StudentToClass.ECTSPoints)

/* RelationshipQuery: deriving classmates of a Student with the same

age */

Self.StudentToClass.ClassToStudent AS mates WHERE Self.Age =

mates.Age

/* RelationshipQuery: deriving a User’s favourite articles */

Self TO Article AS A WHERE A.categoryName in

Self.UserToPreference.Name

Fig. 10. Example WebML-OQL expressions.

18

The EntityQuery enables selecting particular instances of an entity using the

specified conditions, in this example to select Students with the last name containing

the word “Prata”. This type of query is used in the hypertext model. The

AttributeQuery is used to derive attributes of an entity in the data model, as shown

in the previous example in Section 2.6 Fig. 7. The RelationshipQuery derives

relationships in two ways: the first example shows concatenation of relationships,

shown as StudentToClass and ClassToStudent, which enables selecting all

Students having the same age; and the second example determines pairs of related

object by evaluating a condition, shown as the entities User and Article with the

condition that the category of the Article is contained in the User’s preferred

categories in the Preference entity, linked by the relationship UserToPreference.

2.8 WebRatio

WebRatio is a CASE tool which is based on and extends WebML. The tool enables

automatic generation of executable code and synchronization with the database from a

set of input consisting of WebML data model, hypertext model and an additionally

introduced presentation model.

The data model used in WebRatio includes all the entity relationship concept of

WebML data model. The tool enables mapping and synchronization of the data model

to a database system, which means changes to the data model are reflected in changes

of the database tables and records. The databases supported by the current version are

among others the proprietary Oracle [Orcl], MS SQL [MSSQL], MS Access [MSA]

and DB2 [DB2] as well as the open source PostGreSQL [PGSQL] and MySQL

[MySQL].

The hypertext model in WebRatio uses the concepts specified in WebML and

introduces extending units and pages. Extensions to content units include: sortable

index units, which allow index entries to be sorted according to one of their

properties; event calendar units, which allow display and browsing of entries in a

calendar-based browser; and field types for the entry unit, which include: long-text

field, date field, Boolean field, and selection field.

19

Extensions to operation units include: bulk create units, which allow creating

multiple instances in a single step; bulk modify units, which allow simultaneous

modification of multiple instances of an entity; change group units, which enable

users to change groups or access levels on the fly, allowing them to switch to different

site views without needing to log out of the current site view; an improvement over

send mail unit which enable among other sending messages with multi-part

attachments and including link parameters in the messages; selector units, which

enable selection of an instance of an entity according to selector constraints; math

units, returning mathematical values based on (link parameter) operands and operator

specified; and time units, returning system timestamps as link parameters.

WebRatio also introduces the concept of navigation units to WebML, which direct the

path of navigation in case of conditional paths. These include the “is not null”

units, which return KO if the supplied link parameter has a value of null and otherwise

OK; and switch units, which apply the classic switch-case statement logic based on

link parameter input.

Unit Diagram Description

Creates multiple instances of an entity according to the

specified Assignment.

Modifies multiple instances of an entity according to the

specified Assignment and Selector.

Enables switching user Groups on the fly, allowing Users

with multiple Group identities (e.g. an administrator) to

switch to different site views without needing to log out.

Table 6. Additional units introduced in WebRatio

20

An improvement over the SendMail unit which enables

inclusion of link parameters as part of subject and body

entries, file attachments, and multi-part messaging.

Enables selection of instances of an entity using the specified

Selector without publishing the content. May be used inside

pages or outside for directing navigation.

Parses mathematical expressions, either statically or

dynamically using input parameters. Propagates the result as

output parameter. May be used inside pages as content unit or

outside pages as operation units.

Specifies current system time, date, or timestamp. Can be

used as content or operation units, therefore both inside and

outside pages.

Checks the value of its input parameter. If the value is null,

the KO link is followed, else the OK link.

Checks the value of its input parameter to a set of given case

values. The unit has multiple OK links, each corresponding to

a case. A matching value of an input parameter to a specified

case value entails following this case’s OK link.
Table 6 (continued). Additional units introduced in WebRatio.

WebRatio also provides built-in validation rules used to validate single fields in the

entry unit. The built-in validation rule can match input strings to patterns defined in

WebML data types or perform Boolean operation with an input parameter in a single

entry field. The predicates already predefined in WebML are: Equal, NotEqual,
LessThan, LessOrEqual, GreaterThan, GreaterOrEqual,

MatchForRegularExpression, BeginsWith, EndsWith, Contains,

NotContains, In, NotIn, IsNull, IsNotNull, EqualToField,

NotEqualToField, MinLength, MaxLength, CreditCard, @-Mail, Time,

TimeStamp, Date, Boolean, Byte, Short, Integer, Long, Float, Number,

IntRange, FloatRange.

21

In order to validate an entry field with a predicate not natively defined in WebML and

WebRatio, and also to validate a set of input spanning multiple entry fields in a single

entry unit, WebRatio allows extension to the validation rule using custom validation

rules [WR-AFT06]. Specifying a custom validation rule entails implementing a

validate() method for the validation rule object with the desired input-checking

procedure. The custom validation rule created can be assigned to individual entry

fields to validate them or to an entry unit to validate multiple entry fields. A complete

description and example of building custom validation rules are described in [WR-

AFT06].

WebRatio acknowledges the need of developers to define custom units to include

business cases which are not covered by the WebML units already given in [WR-

CUG06], since WebML units are designed to cover the most commonly occurring

business cases of designing a data-intensive Web application. These custom units are

created as plug-in units to WebRatio, can be modeled directly in the hypertext models,

interact with other units through links and generate executable codes as well.

Specifying a custom unit in WebRatio require the following:

• Adding a unit definition to the unit library

• Adding a set of XSLT rules for validating the usage of the custom unit in the

hypertext diagram, and for producing error and warning reports

• Adding a set of XSLT rules for documenting the usage of the custom unit in the

WebMLDoc project documentation

• Adding a set of XSLT rules for producing the runtime XML descriptors

associated with the custom unit

• If the custom unit is a content unit, adding one or more XSLT rules for

producing the server-side tags or scripting to be inserted in the page templates

• Implementing a runtime class, which actually performs the business service for

which the unit is designed

In designing a web application using WebRatio, a developer follows the following

simplified steps:

1. Gather the system and business requirements, and create a use case list.

22

2. Based on the use case list’s actors and objects, create Entities and connect them

with Relationships in the Data View. Synchronize the model to a database

system and populate the database tables with trial or setup values.

3. Based on the use case actors, determine the division of site views according to

the actors’ roles; a site view should accommodate the use cases of an actor.

4. Based on the use cases, create pages in the Hypertext View and populate them

with units and links to facilitate each use case.

5. Generate executable code by compiling the models into classes and then

building the codes, done automatically with a build command.

An example of model-driven development using WebRatio is described in Chapter 3.

23

3 Model-driven development of a collaborative web

application: case study

WebML and the CASE tool implementing it, WebRatio, offer the possibility of model-

driven development of web applications that directly result in executable code. While a

wealth of UML-based tools [Gol05, EMF, TOG] also aim at that goal, none

implements the full set of abstractions encoded in WebML [WR-WMLg, WebSI].

WebRatio 4.3 is the latest version of an advanced CASE tool based on WebML for

developing web applications. WebML, as a domain-specific language geared towards

designing data-intensive web applications, has the advantage of simpler models

compared to UML, resulting in fewer diagrams and faster design time. A comparison

of modelling the same web page in UML 2.0 and WebML is discussed in [MFV06].

The term collaborative web application discussed in [MMCF03] is defined as an

application serving the business requirements of an organization or group of persons

comprising of several different roles, all working towards the same goal. The example

of collaborative application discussed in [MMCF03] is a conference management

system, which enables participants and organizers to work together in creating a

scientific conference.

This project broadens the definition of collaborative web application, to encompass

also community portals or better known as social networking applications, to which an

alumni networking platform such as an alumni community’s platform belongs. These

social networking applications also comprise different roles (mostly users and

administrators) and work toward similar goals, not necessarily the same one shared by

all users, namely information and data sharing across the community.

The development of an alumni networking platform or web application is chosen as a

case study for WebML, because as a social networking application the alumni

networking application has a rich collection of functionalities to practice the

development of a data-intensive web application.

Formatted: Bullets and Numbering

24

3.1 Business and system requirements

Reproduced from the alumni network website project documentation:

The alumni network currently uses multiple channels to communicate to its members,

including: newsletter, Yahoo!Groups, alumni homepage and individual emails. These

channels are independent of each other, therefore monitoring of activities is difficult if

not impossible. Furthermore, the degree of participation in each channel differs,

hindering effective communication. Additionally, the current channels do not address

requirements from the alumni, for instance a marketplace forum which can facilitate

the transfer and exchange of ideas, goods, and services among members, and also

employment bourses.

The aim of this project is to consolidate the communication channels of the alumni

network by creating a platform which serves the existing requirements as well as

requirements that have not been served by existing channels. With a consolidated

channel, monitoring of activities is made possible. Furthermore, internal marketing

activities can be focused on the channel, thus enabling high participation rate and

ultimately achieving effective communication to alumni network members.

3.2 Use case list

The alumni networking application has several actors and use cases derived from the

business requirements. The actors in the use case list are: students, who are users

exchanging data and information; alumni board members, who are themselves students

but in addition possess administrative rights over the students and the alumni

network’s formal activities; institution administrators, who are cooperating with the

alumni network in exchange of alumni data and facilitating alumni network events; and

visitors who may view publicly available information about the alumni network. A

complete use case list can be found in Appendix B.

3.3 Designing with WebRatio

Designing a web application using WebRatio is straightforward when referring to the

simplified designing steps discussed in Section 2.8.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

25

3.3.1 Data model

The data model consists of the actors and objects specified in the use case list, along

with their respective attributes and the relationships linking them. All actors except the

visitor belong to a super entity named User, and each is specialized in the sub entities

Student and InstitutionalAdministrator. The alumni board member, who is also a

Student, is identified by an attribute in the Student entity. This is due to the

constraint that a Student does not hold an alumni board member post indefinitely,

therefore the role is not permanent and modeling the alumni board member as a

separate entity does not fit this requirement. The visitor is not represented in the data

model because it does not possess any attributes.

The model for roles concerned with access control, in the data model represented by

the AccessLevel entity, defines the roles corresponding to the actors in the use case

list with the exception of the visitor. The roles defined are Students,

AlumniBoardMembers, and InstitutionalAdministrators. Each of these roles is

associated to a protected module in the Module entity containing the pages fulfilling

the set of requirements of each role. The complete data model for the case study is

given in Appendix C.

3.3.2 Web model

The web model consists of four site views for each of the roles (or actors) specified in

the use case list. Each site view contains pages and areas which serve the use cases

listed for each role. The Public site view, intended for the role of visitor, is the home

site view and includes pages for login, registration, and publication of general

information. By performing a login, the user supplying the right credentials is directed

to one of the three remaining protected site views.

The first protected site view is Student, which contains pages serving use cases

related to the role of Students such as viewing and updating profiles, creating groups

and events, initiating polls and discussions, sending messages, and uploading files. A

Student may only update her own profile, but may view the profile of other

Students. The amount of data in the profile of other students one can view depends on

the preference set by the Student owning the profile. Students may also join existing

groups by submitting a membership request or create a new group based on a category

26

she determines. A Student creating a group is then granted the group moderator

privileges, which means she can change the group description, upload group pictures,

accept or decline membership requests from other users, remove postings and kick a

member out of a group. A Student can be granted or removed from group moderator

privileges by other moderators in a group. Within groups, Students can post topics,

upload files, create polls and events. Students may also send messages to other

Students using a two-step approach: the first step is assigning addressees by

populating a list of addressees, and the second step is to determine the subject and

body content of the message. Files are uploaded into Albums, which Students create

within a Group or in his own profile as a private folder. Access to Group Albums and

private Albums are limited to group members and personal settings, accordingly.

Finally, Students may update the account data such as password, email and

preferences.

The second protected site view is BoardMember, intended for alumni board members

who hold administrative rights, which serves use cases such as user management, data

management, event management, board management, announcements, newsletters and

approving registration requests. A BoardMember can approve a registration request,

automatically creating a Student instance and sending the credentials to the requesting

user. BoardMembers can also edit and delete existing user data. Event management

allows a BoardMember to monitor participation and fee payment of a particular type of

Event and generate status report on the participation status of an Event. In data

management, a BoardMember can manage the instances of various category entities,

and manage the configuration of default class groups. A BoardMember is able to create

Announcements visible to all Students and visitors to the public site. A BoardMember

responsible for newsletter publications can upload Newsletters for public view.

BoardMembers ultimately appoint and discharge among Students, practically

assigning and de-assigning BoardMember roles to a Student, using the board

management functions.

The third protected site view named InstitutionalAdministrator serves the use

cases related to the role of institutional administrators such as announcements and

reporting of student activities. Like BoardMembers, InstitutionalAdministrators

27

share the use case of creating Announcements intended for Students and the public

alike. The InstitutionalAdministrator may view a report summarizing the

Student activities within the alumni network. InstitutionalAdministrators may

also view selected Student profiles and send messages to Students according to the

two-step approach.

Since the alumni board member is also a Student it is also required to enable him to

access both site views. Therefore the ChangeGroup unit is provided in each protected

site view, and the Student instances holding alumni board member posts are given the

necessary access rights. The complete web model for the case study can be viewed in

Appendices D-1 until D-4.

Due to the current implementation of WebML in WebRatio, a workaround is required

to fulfill the requirements of sub-roles within user-defined groups. According to the

use case list, Students may create their own groups, and each group’s activities,

discussion as well as group data is shared only by its members. Students then take

additional sub-roles as group moderator or group member for a Group, with other

Students not registered in that Group taking the role of guest. In order to reflect the

different requirements of each sub-role, within the same Student site view the pages

for each sub-role are defined. Navigation is then directed by querying attributes

characterizing each sub-role using Selector units and passing the parameter to a

conditional unit, the IsNotNull unit. By cascading combinations of Selector and

IsNotNull units it is possible to direct navigation to one of the three sub-role pages of

a Group (moderator, member, or guest). The workaround is shown in a simplified

hypertext model reproduced in Fig. 24.

In the example shown in Fig. 24, a Student clicks on an entry in a list of available

Groups (not depicted) in the Group Home page. The link navigates to the

LookupTransaction transaction and carries the GroupOID as a parameter. The

LookupTransaction functions as follows: first the GroupOID is entered as input

parameter to a Selector unit named MemberLookup and along with the parameter

CurrentUserOID supplied from the GetUserOIDGlobalParameter unit is computed

using the following selector condition: Group.GroupOID WHERE Group.GroupOID =

X AND Y in Group.GroupMembers.

28

Fig. 24. Workaround for group membership requirements

The GroupMembers is the name of a relationship between the entities Group and

Student in the data model representing Students who are members of a Group

instance. The selector condition outputs a GroupOID stored in a parameter according to

the given parameters to an IsNotNull unit named User_Is_Member. This unit checks

whether the current user, represented with the OID parameter Y, is a member of the

current Group, represented by the OID parameter X. If the current user is not a member

of the selected Group, the MemberLookup selector unit would have produced null,

therefore the KO-link is followed and the user is directed to the GroupVisitorPage.

The GroupOID is carried along so that units in the GroupVisitorPage can load the

appropriate Group instances. If the current user is a member, then the OK-link is

followed and directs navigation to a second Selector unit named ModeratorLookup.

This unit does a similar function to the MemberLookup, the only difference is that the

relationship in check is the GroupModerators. The computed GroupOID is then

directed to a second IsNotNull unit named User_Is_Moderator, which checks if the

current user is a moderator for the specified Group. If the user is not a moderator of the

Group, then the user is directed to the GroupMemberPage carrying the GroupOID

parameter. If the user is a moderator of the Group, then the user gains access to the

29

GroupModeratorPage. This LookupTransaction navigation-directing transaction

applies the pseudo-code shown in Fig. 25.

Select Group

Lookup User in GroupMembers

If User is GroupMember then

Lookup User in GroupModerators

If User is GroupModerator then

Goto GroupModeratorPage

Else Goto GroupMemberPage

EndIf

Else Goto GroupVisitorPage

EndIf

Fig. 25. Pseudo-code for the LookupTransaction transaction

A crucial second type of requirements concerning sub-roles cannot be addressed using

this workaround. The requirements specify limiting access to each block of personal,

professional and academic data of a Student in the ViewProfile page. The access

level for each block is set independently for any of the required sub-role (only the

owner, only the owner and other Students, and the general public). Since these sub-

roles are characterized by one or more attributes in the Student or User entity, a

similar workaround mechanism needs to be designed. However, since each block is

independently set, the implementation using one page for each sub-role implies

creating pages for all possible combinations of blocks and access levels, in our case it

would amount to 24. Furthermore, the combination of navigation-directing units would

be too complex to model. In the end the workaround has to resort to manual coding.

3.3.3 Presentation model

The presentation model specifies a common style sheet for all of the pages. The layout

of each page is then specified according to the requirements and aesthetics. The

presentation model places units of a page in grids; the developer can choose where to

display which units or not to display a unit at all. For the case study a layout template

provided by WebRatio is used. Layout in the Student site view is differentiated from

the other site views, because in the Student site view a side panel is required to hold

links to pages for the current user at all times, even while browsing in other Students’

profiles.

30

4 Areas of improvement in WebML

In Chapter 3 it is shown that an alumni networking platform can be considered a data-

intensive web application. As a domain-specific language (DSL), WebML is designed

to handle the design of data-intensive Web applications. In effect, its semantics, along

with the concepts of pages, areas and site views as well as set of data and operation

units are able to represent most of the logic in designing Web applications. Some

shortcomings of WebML with respect to other model-driven technology are discussed,

such as limited expressiveness about access control policies. These shortcomings are

especially relevant to the development of collaborative, social-networking Web

applications. These suggestions could be integrated in a future version of the language.

The notion of access control for information security has been in discussion for more

than two decades. The current access control method widely used in business

applications is the role-based access control (RBAC) [FK92]. RBAC is designed as a

solution to meet industry and commercial application security requirements which

were otherwise not fulfilled by Mandatory Access Control (MAC) and Discretionary

Access Control (DAC). WebML adopts role-based access control in its inherent

concept of site views. Site views are defined as a collection of pages serving the

requirements of a specific group of users, which in turn means that each site view is

geared to a specific role. For example, the alumni network application has different site

views for students (users), alumni board member (administrator), and the public.

WebML also supports the process of authorization of access credentials by means of

the Login operation, in which username and password are supplied to perform login to

the website [CFBBCM03].

Fig.11 depicts how access control is implemented in WebML. Users are grouped into

specific roles, and then using the set of requirements for each role a site view is

designed for each role. If a site view is protected it can only be accessed by authorized

users, for instance only users having the access rights for Role1 can access the

protected site view Siteview1. Assignment of multiple roles to a user is also possible.

31

Fig. 11. Role-based access control in WebML

Further detailing into access control is done in WebRatio, the CASE tool implementing

WebML. WebRatio details the concept of WebML access control by introducing the

notion of modules. Modules are essentially site views, but an area or a page may also

be defined as a module according to role definitions. The modules are then designated

as private or public. The modules which are designated as public may be accessed by

any visitor to the application’s website, while in order to access the protected ones,

access credentials need to be supplied [WR-ART06].

Fig. 12. Implementation of WebML access control in WebRatio

The concept of role-based access control in WebML is implemented in the User-

Group-Module data model depicted in Fig. 12. The data model shows that each User

belongs to one (or more) Group, which is an equivalent of role. The

User2DefaultGroup relationship, represented by a derived attribute in the User entity,

indicates to which Group a User mainly belongs. This is often the only user-to-group

relationship that is defined for most users of an application. Users with more

privileges such as administrators may have additional groups assigned to them; this is

32

made possible by the User2Group relationship. Each Group entity contains a

DefaultModule derived attribute, which represents the Group2DefaultModule

relationship and defines which default module a Group is associated with. Again, for a

Group having reasons to access other modules than its default, the Group2Module

relationship is available for that purpose. The Login operation serves as the

authorization process for access credentials supplied by the user; this operation directs

the user to the default protected module corresponding to her Group or role. The

Logout operation returns the user from a role-specific module to the public, non-role-

specific module. The ChangeGroup operation enables users with multiple Group

associations defined in the User2Group relationship to change groups on the fly. This

means such users can switch to different site views without needing to logout and

login. With this implementation, the formal definition of RBAC as described in

Chapter 2.4 is fulfilled.

In a nutshell, the implementation of access control in WebRatio can be simplified as

follows: a user has access credentials of username and password, each user is

associated to a specific role, and by logging in a user accesses the module relevant to

her role in the application. This implementation is also applied in more advanced

access control features of WebML such as visibility control policies and protected

alternative pages [WR-ART06].

The implementation of access control in WebRatio, as well as the advanced features of

visibility control policies and protected alternative pages all rely on the static

assignment of roles defined in the User-Group-Module data model. While this

implementation is fine for industrial and commercial applications, in which roles can

be defined on business units or functions in the organization, it does not fit perfectly

with collaborative, social-networking applications. In social networking applications,

users still have clearly defined roles, for example in the alumni network application’s

definition of students and administrators. However in addition to that users may form

groups within themselves, thereby creating sub-roles. For instance, in an alumni

network, students may form groups of students belonging to a certain previous study

program, a certain nationality, or a certain career interest. Further example can be

found in popular social networking applications such as MySpace [MySp], Orkut

[Orkt], and XING (formerly OpenBC) [Xing], where it is possible for users to create,

33

manage and subscribe to an arbitrary number of groups. Even data-sharing platforms

have group functions, for instance the popular photo-sharing website Flickr [Flkr] and

the video-sharing website YouTube [YouT], designed to help their users maintain a

degree of access control over the content they posted on the websites.

Each (sub) group has its own set of requirements which is a subset of the student

requirements, but contains also common group functions such as group meetings,

group postings and data storage which is accessible only by group members. The

groups represent sub-roles of users which have similar sets of requirements but still

need access control to prevent unauthorized viewing or modification of group data.

This “fine-graining” of user roles makes it almost impossible, if feasible at all, to

define modules for each sub-role according to the implementation of WebML access

control. Furthermore, in a social networking environment users may create new

groups, cease subscription to a group, or join another group anytime, as well as post or

take off content from group data storage as often as they like. Fig. 13 illustrates

possible sub-roles of the role of user, and shows the interconnection between them.

Fig 13. Roles-within-roles

Roles within a group also require access control. Owners or moderators of groups have

high access rights within the groups they control: they are able to approve a

membership request, cease a user’s membership, change the description of groups, and

34

delete a member’s posting, among others. Members, on the other hand, only have

“basic” group access rights such as posting text and discussion to the group, as well as

viewing the group’s shared data. A non-member has then only very limited access

rights in a group she visits, namely for viewing the group’s description and requesting

a membership.

In Fig. 13 the role of user is subdivided into group moderator, group member and

group guest with regard to a particular user group. Outside the context of user groups,

the social networking applications mentioned also implement the notion of “friends” or

trusted circle of users relative to the current user, also depicted in Fig. 13. Users within

this trusted circle may have more privileges such as sending messages, viewing

personal data or content that is otherwise not meant for non-trusted users. A user may

designate another user as trusted by essentially flagging her, and remove another user

from her list of trusted users by changing the appropriate flag. This is done in practice

by “adding” a contact to a user’s friend list or “removing” a contact from a user’s

friend list, respectively. Again, this is a dynamic user role situation that needs attention

when designing social networking applications.

Each subdivision in a generic role adds a layer to the sub-role-mapping, therefore

increasing the complexity of the models needed to represent them. With the current

specification in WebML, the sub-roles are not visible in the models and have to be

manually implemented using the available units. The case study in Chapter 3 even

shows that for data privacy issue manual coding in the executable code has to be done

because the current WebRatio implementation does not support such use case. On the

other hand, the invisibility of sub-role mapping decreases the accuracy of the models

and implies additional editing work upon every change done to the application through

the model.

35

5 Proposed extension to WebML

Chapter 4 discusses the shortcomings or limitations of WebML in the context of

model-driven development of collaborative web applications. To overcome the

limitation of access control in a dynamic, multi-group environment this project

proposes the mapping of roles within roles in WebML. Afterwards an improvement to

WebML is presented, in which authorization constraints are added to the WebML

semantics as a complement to role-based access control using site views. An

implementation of this concept is then described, namely in the form of an additional

type of constraint introduced to existing WebML units.

5.1 Mapping of roles within roles

As shown in Chapter 4, there are two general types of user roles in software

applications. The first type is the large, static user roles which are normally mirrored to

the user’s corresponding function or role in the organization. These roles clearly divide

the users into groups each having a distinct set of requirements. Access control is

therefore strict, and mobility among these groups is limited. An example of such type

of roles would be the users and administrators of an application. The set of

requirements of users are different than administrators, because users mainly perform

productive tasks within the application while administrators manage the application’s

users and database. These roles do not change easily as they represent different

positions in the organization.

The second type of roles is more fine granular and is not closely mirrored to the user’s

corresponding function. These roles do not divide users into groups of distinct sets of

requirements; rather they divide users into groups defined by specific parameters. The

parameters may be taken from the user’s set of preferences, or state of the application

system itself. The role configuration is more unstable and dynamic, reflecting the high

user mobility among these roles. Access control is therefore relatively weaker in this

type of roles. An example of such type of roles would be group moderators, group

members and group visitors of a user-defined group (e.g. Indonesian Students in

TUHH). These roles are adopted by a limited amount of users, and vary from one user-

defined group to another. Mobility within and among the group is high, and users can

36

change roles without necessarily changing the position in the organization (i.e. they are

still Students). Table 7 gives a comparison between these types of roles as discussed.

Static roles Dynamic roles

• Rigid, fixed user constellation

• Larger group of users

• Defined on distinct sets of

requirements

• Mirrored to user’s corresponding

function in organization

• Low or no mobility among roles

• Strict access control

• Dynamic user constellation

• Smaller group of users

• Defined on parameters

• Not mirrored to user’s corresponding

function in organization

• High mobility among roles

• Weak access control

Table 7. Comparison of static and dynamic roles in an application

A user may possess both types of static and dynamic roles simultaneously, for instance

in the alumni network application a Student (static role) may be a member of the ICS

group (dynamic role). The same student may also be a member of many other groups

and moderator of the Asian Students group. Once the student joins a new group or

leaves one of his groups, his set of dynamic roles changes immediately. Thus the

dynamic roles are essentially contained within the static role and their existence is

dependent on the static role, effectively “fine-graining” the larger, static role into

smaller, more dynamic roles.

On defining the mapping and access control of static roles within commercial and

industrial applications, role-based access control [FK92] is the current standard widely

employed. For the much newer dynamic roles, becoming popular with the proliferation

of social-networking applications, no general standard for mapping has been defined.

Access control for the dynamic roles is therefore implemented in the programming,

using if-clauses checking the parameters defining each role.

This project proposes a mapping of dynamic roles in social networking applications in

a three-dimensional plane, shown in Fig. 20. The “user” axis represents users already

in the designated static role, and the “role” axis represents the dynamic roles a user can

possess, while the “context” axis represents in which setting (e.g. user-defined group)

37

the user-role definition is relevant. The number of roles represented does not change,

but the users and context can vary from changes to the application data. This mapping

is contained within the mapping of static roles in the application.

Fig. 20. Mapping of dynamic roles

The most common dynamic roles in social networking applications are the ones

concerning “friends” or trusted circle of users, and the ones concerning group

membership and moderation. These roles can be mapped in the three-dimensional map

depicted in Fig. 20. For the “circle of trusted users” type of dynamic roles, the roles are

defined as “friend” and “stranger”, using an attribute in the user’s class as a parameter,

and the context is the current user, i.e. for each user there is (possibly) a different set of

friends and strangers. For the type of dynamic roles concerning group membership and

moderation, the roles can be defined as “moderator”, “member”, and “visitor”, while

the context is each group. If an application supports both types of dynamic roles, a

separate mapping for each type must be present in the application’s model.

In WebML, the mapping of dynamic roles can be done in the data model using

relationships. In the data model, a relationship between two entities connects instances

among the two entities and maps them in pairs. The two entities represent two axes,

while the relationship represents the third axis. Using this mapping, the application can

determine which dynamic role a user possesses in the current context. An example of

the data model mapping for the “friends” and group membership types of dynamic

roles is shown in Fig. 21.

38

Fig. 21. Mapping of dynamic roles in the WebML data model

For the group membership type of dynamic roles, the entities involved in the example

are Student and Group, each mapped to the user and context axis of the proposed

mapping in Fig. 20, and the relationships between Student and Group represent the

possible roles. In this case the role axis only has two positions (“moderator” and

“member” – “visitor” does not need to be modelled since all other users are considered

visitors) and the roles themselves are fixed, but not the users and the context, i.e. users

can change group allegiance and new groups may be created at any time. For the

“friends” type, both the user and context axis are represented by the User entity,

because the context is the current user and other users are paired with the current user

in a relationship to form the third axis. In this case, only friends need to be modelled in

a role, all other users are automatically considered strangers.

The mapping of the more complex type of dynamic roles, the variable access level

settings on different groups of data as described in the case study in Chapter 3, can also

be done in WebML. In the requirements described, the roles for this case are

OwnerOnly, OwnerAndOtherStudentsOnly, and Everyone. Only the roles OwnerOnly

and OwnerAndOtherStudentsOnly have to be modelled, as shown in the previous

example. Each of these roles is modelled using a relationship originating from and

going to the User entity, similar to the “friends” type of dynamic roles. In order to

model the different access level settings for each block an additional entity is required,

i.e. a SpecialAccessLevel entity. This solution is not efficient, because the size of the

OwnerAndOtherStudents table implemented in the database will scale exponentially

with the increase of Student instances. Moreover, the current standard of WebML and

implementation of WebRatio do not support an If unit which is required to handle the

variable access level settings for each group of data.

39

5.2 Extending WebML with Authorization Constraints

In [LBD02] access control decisions are differentiated into two types: the first is

declarative access control decisions, which depend on static information, namely the

assignment of users and permissions to roles; the second is programmatic access

control decisions that depend on dynamic information, namely the satisfaction of

authorization constraints in the current system state. The declarative access control

decisions are designated as role-based access control configurations, to which static

roles fall into, while the programmatic access control decisions are able to handle the

configuration of dynamic roles. A combination of both access control decisions can be

enforced to complete the access control requirements of social networking web

applications. Therefore the incorporation of authorization constraints from SecureUML

for programmatic access control decisions into the role-based access control already

present in WebML is necessary to fulfil these requirements.

According to [BDL05] in order to combine a design modelling language such as

WebML with SecureUML, three formal prerequisites are required: a concrete syntax

based on UML; an abstract syntax based on MOF; and a semantics with a first-order

signature that includes a sort Users, a constant symbol caller, and a function symbol

UserName mapping users to unique strings; and a transition system semantics where

states are first-order structures over the signature. In this project the actual combination

of WebML with SecureUML as suggested in [BDL05] is not performed, since WebML

itself already describe security models using protected modules. Rather, the WebML

language model is extended using authorization constraints similar to [LBD02] in

order to fulfil the programmatic access control decision requirements.

An MOF-based metamodel for WebML is described in [WS-WMM]. The WebML

Metamodel 0.1.1 describes WebML as consisting of the packages Localization,

Mapping, Navigation, Structure and Auxiliary, as well as the elements WebML,

Property and Comment. The WebML element is the root element of a WebML model

instance which contains all other elements of the model. The Property element

represents a property as a pair of name and value, while the Comment element provides

additional information on an element. The Localization package provides classes for

representing possible settings according to a geographical location.

40

The Mapping package contains classes for mapping entities to relational database

management systems. The Navigation package contains sub-packages each

responsible for the presentation, navigation, modification, and access of content. The

Structure package contains classes for representing the organization and

specification of data. The Auxiliary package is specific to the WebRatio

implementation and contains entities used within for auxiliary purposes. Fig. 22 shows

the WebML Metamodel 0.1.1 with second-level elements and sub-packages of the

Navigation package.

Fig. 22. WebML Metamodel 0.1.1

In the Navigation package, the content units of the hypertext model are contained

within the Hypertext sub-package, while the operation units are defined in

ContentManagement, HypertextOrganization, and AccessControl sub-packages.

The Hypertext sub-package also contains elements supporting the content units, such

as Selector and ValidationRule. To extend the WebML metamodel to support

authorization constraints, an element Authorization in introduced to the Hypertext

sub-package. The Authorization element selects instances due to conditions, much

like the Selector element. Therefore it also contains the attributes

AuthorizationCondition derived from SelectorCondition, BooleanOperator to

handle the operation of multiple AuthorizationConditions, and DefaultPolicy to

define default behaviour if no input parameters are available for all

AuthorizationConditions. The proposed extension to the Hypertext sub-package is

shown in Fig. 23.

41

Fig. 23. Extension to the Hypertext sub-package of the WebML Metamodel 0.1.1

In order to merge the authorization constraints of SecureUML to the concrete syntax of

WebML, a profile of WebML in the native language of SecureUML, which is UML,

needs to be presented. Since WebML is based on UML, a profiling of WebML models

in UML is possible. A UML 2.0 profile for WebML exists in [MFV06]. OCL 2.0,

which is the constraint language used in SecureUML is also part of the UML 2.0

Specification [UMLs, UMLi]. A comparison of a WebML native diagram and its UML

2.0 profile for a running example is reproduced in Fig.14. As discussed in [MFV06],

the UML 2.0 profile of a WebML diagram contains more models and instances of

models compared to its native WebML. This is due to the fact that WebML models

represent software artefacts which in reality stand apart and reside in different tiers.

The WebML diagram shown in Fig. 14 represents a ClassPage page containing two

units: the AllClasses index unit and the ClassDetails data unit, both sourcing from

the entity Class. An automatic link navigates from AllClasses to ClassDetails

carrying the parameter X containing the selected class’s OID. ClassDetails has a

Selector taking the link parameter X to specify which instance of Class is displayed.

This result in the automatic display of the first Class on the list in the ClassDetails

upon navigation to the ClassPage, and by clicking an index entry in AllClasses the

user can select which class’s details are to be displayed.

42

Fig. 14. Comparison of a WebML diagram and its UML 2.0 profile

In the UML 2.0 Profile depicted, the ClassPage, represented as a classifier, contains

an index unit component and a data unit component, linked by an assembly connector

with the <<AutomaticLink>> stereotype. The internal structure of the index unit is

realized by a focus class, comprising methods for sorting the index instances and for

selecting one instance. The focus class is connected by a one-to-many part-of

association to class ClassView1, which represents a view over the data model entity

Class. Instances of class ClassView1 contain the Name attribute, necessary to build the

index, and the hidden attribute OID, necessary for parameter passing. A delegation

connector links the output port of the focus class to the outport port of the component,

and specifies that the output value of the select() method is emitted by the index unit

43

component's output port. The parameter associated with the <<AutomaticLink>>

connector is received at the input port of the data unit component, which delegates its

treatment to an inner focus class. The focus class contains on instance of class

ClassView2, which represents another view over the data model entity Class. An OCL

invariant in the focus class enforces the contained instance of class ClassView2 to have

the value of the OID attribute equal to the parameter value received at the input port.

5.3 Role-Based Access Control Augmented by Authorization Constraints

The concept of SecureUML is described in Chapter 2.6. In SecureUML, role-based

access control for UML diagrams is strengthened with authorization constraints to

capture business logic which is otherwise not possible to describe in the diagrams. As

described in Chapter 4, WebML already possesses role-based access control in the

form of site views or modules. In order to capture the “fine-graining” of roles within

roles, a similar augmentation with constraints is proposed.

According to the SecureUML metamodel, for each UML model element there are

permissions linked to user role and action type, and authorization constraints are

attached to the model element to capture business logic. An example can be viewed in

[LBD02]. In [MFV06], each WebML unit concerned with extracting and publishing

data consists of two auxiliary classes: one for defining core logic or control behaviour

of the unit, and another one for selecting content from the data model.

Selection constraints already exist in WebML using the constraint language WebML-

OQL [WR-WMLg], derived from OCL. By applying a selection constraint to the core

logic class the data set displayed by a WebML content unit can be specified.

Authorization constraints can additionally be applied to determine whether a user has

rights to access the particular unit. Fig. 15 shows an example of selection and

authorization constraint each written in OCL and its equivalent notation in WebML-

OQL. As previously explained, the selection constraint enforces the contained instance

in the focus class to have the same OID attribute value as the one supplied in the input

port.

44

/* Selection constraint from Fig. 14. */

context: ClassFound

inv: self.ClassView2->select(class|class.OID = self.PortIn.OID)

/* WebML-OQL equivalent */

Class WHERE Class.OID = X

/* Authorization constraint to allow viewing if User’s total

ECTSPoints from Classes participated <= 30 */

context: ClassFound

inv: self.PortIn2.value <= 30

/* WebML-OQL equivalent */

Class WHERE sum(CurrentUser.UserToClass.ECTSPoints) <= 30

Fig. 15. Selection and authorization constraints example in OCL and WebML-OQL.

The authorization constraint takes a second input port from a CurrentUser focus class

linked to a class representing a view over the data model entity User with the focus on

the current user. This constraint requires that the CurrentUser’s total ECTSPoints

from the Classes participated is less than 30. By combining both constraints using the

AND logical operator, the Class instance will be selected according to the specified

OID and if the total ECTSPoints of the CurrentUser is less than 30. The combined

constraints written in OCL and the equivalent WebML-OQL expression are shown in

Fig. 16. In the selection constraints, the context is limited to the entity in question.

Therefore a selection constraint may only constrain attributes belonging to the entity

referenced by the content unit, as well as relationships involving the entity.

/* In OCL */

context: ClassFound

inv: self.ClassView2->select(class|class.OID = self.PortIn.OID) and

self.PortIn2.ECTSPoints <= 30

/* In WebML-OQL */

Class WHERE Class.OID = X AND sum(CurrentUser.UserToClass.ECTSPoints)

<= 30

Fig. 16. Combined selection and authorization constraints in OCL and WebML-OQL

For the authorization constraints, however, additional information regarding the state

of the current user or current time is added to the context. The authorization constraints

45

may therefore constrain attributes or relationships not directly related to the entity in

question, but related to the sub-role defining attributes or relationships. These

attributes and relationships in turn are limited to the User entity, as the logic for

determining the sub-roles of each user is described by an attribute belonging to or a

relationship involving the User entity. Fig. 17 shows the UML 2.0 Profile of the

WebML model in Fig. 14 with the addition of an authorization constraint described in

Fig. 15.

Fig. 17. Authorization constraint in the UML 2.0 Profile of a WebML model

Returning to the WebML models, selector constraints are modelled in the textual

notation using the “selector” keyword, while in the graphical representation they are

shown under each data source using square brackets, as can be seen in the previous

example in Figure. The authorization constraints also follow similar modelling: in the

textual notation a keyword such as “authorization” can be used, whereas in the

graphical representation a similar square-bracket notation is possible. Fig. 18 shows

the WebML model transformed from the UML 2.0 Profile of Fig. 17.

In the example in Fig. 18, the authorization constraint is described in the graphical

representation by adding a constraint line to the ClassDetails data unit. The

authorization constraint is distinguished from the selection constraint by the keyword

AUTH.

46

Fig. 18. Example of authorization constraint in a WebML model

This representation follows that of pre-selectors in the multichoice index unit

implemented in WebRatio using the keyword PRE in order to distinguish the pre-

selectors from selectors [WR-WRg]. Fig. 19 shows a possible textual representation to

the WebML model described in the example in Fig. 18.

Page ClassPage

(units AllClasses, ClassDetails)

IndexUnit AllClasses

(source Class;

attributes Name;

orderBy Name)

Link AllClassesToClassDetails automatic

(from AllClasses to ClassDetails;

parameters X:OID)

DataUnit ClassDetails

(source Class;

selector OID = X;

authorization sum(CurrentUser.UserToClass.ECTSPoints) <= 30;

attributes Name, ECTSPoints, Room, Lecturer)

Fig. 19. The textual representation of the WebML model described in Fig. 18

Using the authorization constraints, a solution for the group membership issue of the

case study discussed in Chapter 3 can be realised. By adding the respective

authorization constraints to units only authorized for group members and group

moderators, the modelling of the group pages can be reduced to one page, also

47

eliminating the navigation-directing queries depicted in Fig. 24 previously needed. The

proposed solution for this issue is shown in Fig. 25.

Fig. 25. Proposed solution for the group membership requirement in the case study

This proposed solution is presented in a simplified WebML hypertext model. In the

solution, the Group Area only consists of two pages, the GroupsHome page and the

GroupDetail page. The GroupsHome page contains an index unit listing all available

Groups. When a user clicks on one of the entries in this list, the navigation is directed

to the GroupDetail page with the GroupOID carried as a parameter. Within the

GroupDetail page the current user’s OID, provided by a Get unit, is used to compute

all of the protected units in the page according to each authorization constraint. The

constraints are formulated so that it reflects the access control requirement for group

membership. The constraint for Group Member units is CurrentUserOID IN

GroupMembers AND CurrentUserOID NOT IN GroupModerators, while the

constraint for Group Moderator units is CurrentUserOID IN GroupModerators. The

Group Visitor units are not constrained; therefore it is always visible and available

regardless to the state of the current user. This means that a visitor not belonging to

any of the two relationships can only access units which are categorized in the Group

Visitor units, a group member can additionally access units designated by Group

Member units, and a group moderator can furthermore use the Group Moderator units.

48

Authorization constraints can also be used to fulfil the requirement of variable access

level settings for different groups of data in one viewing page described in Chapter 3.

The proposed solution is depicted in Fig. 26.

Fig. 26. Proposed solution for the variable access levels settings of multiple data groups requirement in

the case study

In this proposed solution, a page serving the requirement of viewing a Student’s

profile is presented. The Student profile data is divided into three groups: the

PublicData, the PrivateData1 and the PrivateData2. Each of this group of data is

sourced from the Student entity; additionally an attribute each in the Student entity

also determines the setting of access level for PrivateData1 and PrivateData2.

Access to any of the two groups of private data can be set independently according to

the roles already described in Chapter 5.1 (OwnerOnly, OwnerAndOtherStudentsOnly,

Everyone).

The solution works as follows: first, an incoming link directs navigation to the View

Data page, carrying the selected StudentOID as a parameter. The first stop is the

PublicData data unit, which is not constrained and displays the group of data deemed

public. Next, two automatic links lead to similar paths for each of the private data

49

blocks. The automatic links ensure that the navigation path is automatically initiated.

Taking the path to PrivateData1, the link reaches a Selector unit named

Setting_for_Private_Data_1, which selects the preference of the profile owner

concerning the access level for the PrivateData1 block and outputs it as a parameter.

The output of this Selector unit is fed to a Switch unit named

Switch_Setting_for_Private_Data_1. This Switch unit determines the OK-link to

follow on the basis of the input parameter from the Selector unit. There are three OK-

links originating from the Switch unit to an alternative page defined in

Alternative_Private_Data_1, each corresponding to the possible access level

settings. If the profile owner has set the access level for PrivateData1 block as

OwnerOnly, the OK-link with the label Case OwnerOnly is followed. Inside each of

the alternative pages there is a data unit named PrivateData1 displaying the data

block for PrivateData1. An authorization constraint is assigned to each data unit

according to the alternative’s purpose. For instance, the alternative

OwnerAndOtherStudentsOnly has the authorization constraint Y IN

OwnerAndStudentsOnly, meaning that the StudentOID of the current user accessing

the page is computed as Y and looked up in the OwnerAndStudentsOnly relationship

for the selected Student profile. The usage of alternatives ensures that only one of the

three possible data units is shown at one time. During the propagation along the path,

the selected StudentOID is always carried as a parameter in the links. A similar path is

followed for PrivateData2, resulting in independent switching of access levels for

each private data block according to the profile owner’s preferences.

Considering the fact that the mapping of roles in this case leads to scalability problems

as described in Chapter 5.1, this solution is also not efficient. On the other hand this

solution already enables mapping of such type of dynamic roles within the WebML

models, providing a high-level view to the business logic of variable access level

settings in multiple groups of data and bringing the model closer to the implemented

code.

50

6 Related work

6.1 Model-based Tools

Some CASE tools implementing UML are described in [Gol05], [EMF], and [TOG].

These tools do not support the implementation of WebML, therefore they are not

considered competitors of WebRatio. A UML-based tool implementing the security

designs of SecureUML is also presented in [BDW06]. This tool also does not support

WebML.

WebML is proposed in several projects and planned to be implemented in tools as part

of these projects. The WebSI project [WebSI] aims to develop three suites of tools for

designing data-intensive web applications in the ASP framework. The Multi-channel

Adaptive Information System project [MAIS] was targeted to develop reference

models, architectures and prototypes to provide a flexible environment to adapt the

interaction and provided interaction according to the changing requirements, execution

contexts, and user needs of various kinds of interaction devices (PC, laptop, palmtop,

cellular phone, TV sets and others). The Collaborative Open Environment for Project-

Centered Learning project [COOPER] is dedicated to support long-distance

cooperation of students working on projects. As part of this project the usage of

WebML in process modeling is proposed [BCFM06]. The W3I3 tool suite [W3I3] and

its project aim to propose a model-driven approach to Web site design especially suited

for multi-device, mobile e-commerce applications. These projects are either still in

development or already ceased, and the tools resulting from them are not readily

available. This strengthens the reason for selecting WebRatio as the most advanced

and market-ready tool implementing WebML. Moreover, none of these tools support

the J2EE framework as WebRatio does.

6.2 Extensions to WebML

Extensions to WebML can be found in several stages of development. The first and

most-researched is in extending WebML to support workflow-driven web applications,

for which a collection of work is available in [WWF]. In [BCCF02] a workflow model

is introduced to WebML, along with additional supporting units in order to accurately

model workflow-driven hypertexts. In [BT05], the workflow data model is extended

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

51

and some other units are added to support exception handling within workflow-based

web applications. [Bra06] proposes a visual editing tool, based on BPMN notations,

that allows modeling of workflow models which is integrated to WebRatio to enable

seamless design of data and hypertext models. A demonstration of WebML with

workflow- and Web services-extensions is described in [BCCDFM04].

Another area of development is in the supporting of Web services in WebML. A

collection of papers in this area is available in [WWS]. In [BCCFM02] a data model to

support the definition of Web services in WebML along with some units is discussed.

This work also extends the workflow model described in [BCCF02] to support

workflow-driven Web services. [BCCFM03] provides an overview of some

architectural issues raising form the integration of data-intensive web applications and

web services by examples.

Other relatively new development areas include modeling context-aware web

applications in WebML. In the proposal of [CDMF07], an extension to WebML with

context-aware data model and units is introduced. This proposal is applied within the

MAIS project [MAIS] in a location-aware tourist information system.

The extensions to WebML concern areas of development other than access control.

Especially limited is the amount of related work on defining dynamic roles in social

networking applications in any modeling language, let alone WebML. Therefore this

project considers related work on access control in UML-based modeling languages,

such as [LBD02].

52

7 Future Work and Conclusion

7.1 Conclusion

The practical part of this master thesis has demonstrated the capabilities of WebML,

combined with the supporting CASE tool WebRatio, in creating a collaborative, social-

networking web-based application from the design phase up to the executable code,

and thus making a strong argument in favor of model compilers technology in general.

Some workaround involving a navigation-directing combination of units in the

hypertext model and in the end manual coding is necessary in order to satisfy the

requirements of access control. The introduction of authorization constraints in the

hypertext model allows developers to solve this type of workaround, simplifying the

model and enabling the business logic describing fine-graining of user roles such as

groups-within-groups to be specified directly within the models.

In addition to presenting solutions to the problems discussed in the case study, so-

called dynamic roles have been proposed in this thesis, as a useful addition to the well-

known static roles. A conceptual mapping of dynamic roles and its implementation in

WebML are also presented. Furthermore, the extension of the WebML metamodel in

incorporating authorization constraints has also been described. Finally, the concrete

syntax of WebML has been extended to support the notation of authorization

constraints.

7.2 Future Work

Further work stemming from this project involves exploring the addition of

authorization constraints in the WebML data model. Specification of authorization

constraints in the data model enables automatic assignment of authorization constraints

in the hypertext model with the help of appropriate transformation rules (a task to be

supported by the model compiler). Therefore specifying the relationship between the

data model and the hypertext model in the context of access control policies is also a

focus for further research.

As discussed in the related work on extensions section of Chapter 6, the amount of

work done in defining and mapping dynamic roles is still limited. Therefore mapping

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

53

of such roles in other modeling language can be a starting point for future work. The

definition of dynamic roles in this project may be improved to yield more efficient

implementations, particularly in complex dynamic role scenarios such as the variable

access levels for multiple data-groups case.

In [LBD02] authorization constraints are not only used to facilitate programmatic

access control decisions, but also to enforce business rules which are difficult or

impossible to model in the application model. Future work can then be done in

exploring the possibilities of applying authorization constraints to incorporate business

rules in WebML models.

On the implementation side, further work can be done in incorporating the

authorization constraints into existing and future WebRatio units. The authorization

constraints can even be assigned to unit containers such as pages and areas in order to

serve a broader set of requirements concerning access control in sub-roles. An

authorization wizard with similar interface to the wizards available in WebRatio may

also be developed to aid developers in designing access control policies to their

applications.

54

References

[BCCDFM04] Brambilla, M.; Ceri, S.; Comai, S.; Dario, M.; Fraternali, P.;
Manolescu, I.: Designing Data-Intensive Web Applications. Institute for Computer
Science, University of Freiburg, Germany, 2002.

[BCCF02] Brambilla, M.; Ceri, S.; Comai, S.; Fraternali, P.: Specification and Design
of Workflow-Driven Hypertexts. Journal of Web Engineering (JWE) Vol. 1 Number 1,
2002.

[BCCFM02] Brambilla, M.; Ceri, S.; Comai, S.; Fraternali, P.; Manolescu, I.: Model-
driven Specification of Web Services Composition and Integration with Data-intensive
Web Applications. IEEE Bulletin of Data Engineering, December 2002.

[BCCFM03] Brambilla, M.; Ceri, S.; Comai, S.; Fraternali, P.; Manolescu, I.: Model-
driven Development of Web Services and Hypertext Applications. SCI2003, Orlando,
Fla., USA, 2003.

[BCFM06] Brambilla, M.; Ceri, S.; Fraternali, P.; Manolescu, I.: Process Modelling in
Web Applications. ACM-TOSEM, October 2006.

[BDL05] Basin, D.; Doser, J.; Lodderstedt, T.: Model-Driven Security: From UML
Models to Access Control Infrastructures. ETH Zürich / Interactive Objects Software
GmbH Freiburg, 2005.

[BDW06] Brucker, A. D.; Doser, J.; Wolff, B.: A Model Transformation Semantics
and Analysis Methodology for SecureUML. Tech. Report 524, ETH Zürich, 2006.

[Boe88] Boehm, B.: A Spiral Model of Software Development and Enhancement.
IEEE, 1988.

[Bra06] Brambilla, M.: Generation of WebML Web Application Models from
Business Process Specifications. ICWE2006, Menlo Park, CA, USA, 2006.

[BT05] Brambilla, M.; Tziviskou, C.: Fundamentals of Exception Handling within
Workflow-based Web Applications. Journal of Web Engineering (JWE) Vol. 4 Issue 1,
March 2005.

[CDMF07] Ceri, S.; Daniel, F.; Matera, M.; Facca, F.: Model-Driven Development of
Context-aware Web Applications. ACM Transactions on Internet Technology (TOIT),
Volume 7, Number 2, May 2007.

[Cer06] Ceri, S.: Process Modeling in Web Applications. ACM Trans. on Softw.
Eng. and Methodology, 15(4):360–409, 2006.

[CF01] Comai, S.; Fraternali, P.: A Semantic Model for Specifying Data-Intensive
Web Applications using WebML. Semantic Web Workshop, Stanford, US, July 2001.

55

[CFBBCM03] Ceri, S.; Fraternali, P.; Bongio, A.; Brambilla, M.; Comai, S.; Matera,
M.: Declarative Specification of Web Applications Exploiting Web Services and
Workflows. ACM SIGMOD/PODS 2004 Conference, Paris, France, 2004.

[COOPER] Collaborative Open Environment for Project-Centered Learning
(COOPER) EU-Initiative, http://cooper-project.org/index.html. Last accessed: 2 May
2007.

[DB2] IBM Software –DB2 Product Family – Family Overview,
http://www.ibm.com/db2. Last accessed: 2 May 2007.

[DoD85] U.S. Department of Defense: Trusted Computer System Evaluation Criteria,
DOD 5200.28-STD. U.S. Department of Defense, 1992.

[EMF] Eclipse Modeling Framework Project,
http://www.eclipse.org/modeling/emf/?project=emf. Last accessed: 16 April 2007.

[FK92] Ferraiolo, D.; Kuhn, R.: Role-Based Access Control. Proceedings of 15th
National Computer Security Conference, 1992.

[Flkr] Flickr – Photo Sharing, http://www.flickr.com. Last accessed: 15 April 2007.

[Gol05] Goldberg, B.: The DASL Language: Programmer’s Guide and Reference
Manual. Tech. Report TR- 2005-128, Sun Microsystems Research Labs, 2005.

[JS05] Judd, C.; Shitu, H.: Pro Eclipse JST: Plug-ins for J2EE Development. Springer-
Verlag New York, 2005.

[J2EE] Sun Developer Network: Java EE at a Glance. Sun Microsystems,
http://java.sun.com/javaee/ (Last accessed: 22 April 2007)

[J2SE] Sun Developer Network: Java SE at a Glance. Sun Microsystems,
http://java.sun.com/javase/ (Last accessed: 22 April 2007)

[KW05] Klepke, A; Warmer, J: Getting Started with Modeling Maturity Levels.
Jupitermedia Corporation, 2005. http://www.devx.com/enterprise/Article/26664 (Last
accessed: 19 April 2007).

[LBD02] Lodderstedt, T.; Basin, D.; Doser, J.: SecureUML: A UML-Based Modeling
Language for Model-Driven Security. Morgan Kaufmann Publishers, USA, 2003.

[MAIS] Multi-channel Adaptive Information Systems project page,
http://black.elet.polimi.it/mais/index.php. Last accessed: 2 May 2007.

[MFV06] Moreno, N.; Fraternali, P.; Vallecillo, A.: A UML 2.0 Profile for WebML
Modeling. Model-Driven Web Engineering Workshop, Palo Alto, California, July 11,
2006.

[MMCF03] Matera, M.; Maurino, A.; Ceri, S.; Fraternali, P.: Model-driven design of
collaborative web applications. Software – Practice & Experience, 2003: 33: 1 - 32.

56

[MSA] Microsoft Access Homepage – Microsoft Office Online,
http://office.microsoft.com/access/default.aspx. Last accessed: 2 May 2007.

[MSSQL] Microsoft SQL Server 2005 Home,
http://www.microsoft.com/sql/default.mspx. Last accessed: 2 May 2007.

[MySp] MySpace, http://www.myspace.com. Last accessed: 15 April 2007.

[MySQL] MySQL AB: Developer Zone, http://www.mysql.org/. Last accessed: 2 May
2007.

[OCL2] Object Management Group: OCL 2.0, OMG Final Adopted Specification
ptc/03-10-14. Object Management Group, 2003.

[Orcl] Oracle Home, http://www.oracle.com/index.html. Last accessed: 2 May 2007.

[Orkt] Orkut, http://www.orkut.com. Last accessed: 15 April 2007.

[PGSQL] PostgreSQL: the world’s most advanced open source database,
http://www.postgresql.org/. Last accessed: 2 May 2007.

[TOG] Borland Together Visual Modeling Tool for Software Design,
http://www.borland.com/us/products/together/index.html. Last accessed: 16 April
2007.

[UML2i] Object Management Group: Unified Modeling Language Infrastructure,
version 2.0. formal/05-07-05. Object Management Group, March 2006.

[UML2s] Object Management Group: Unified Modeling Language Superstructure,
version 2.0. formal/05-07-04. Object Management Group, August 2005.

[WebSI] WebSI: Data-centric Web Services Integrator, http://www.ib-
ia.com/websi/html/home.htm. Last accessed: 2 May 2007.

[WK03] Warmer, J.; Klepke, A.: The Object Constraint Language: Getting Your
Models Ready for MDA. 2nd Edition. Addison-Wesley, 2003.

[WR] WebRatio Home. http://www.webratio.com (Last accessed: 23 April 2007)

[WR-AFT06] The Web Ratio Team: Advanced Features Tutorial for Web Ratio 4.3.
Web Models s.r.l., 7th November 2006.

[WR-ART06] The Web Ratio Team: Access Rights Tutorial for Web Ratio 4.3. Web
Models s.r.l., 7th November 2006.

[WR-CUG06] The Web Ratio Team: Custom Units Tutorial and Reference Guide for
Web Ratio 4.3. Web Models s.r.l., 7th November 2006.

[WR-WMLg] The WebRatio Team: WebML Guide for WebRatio 4.3. Web Models
s.r.l., 7th November 2006.

57

[WR-WRg] The WebRatio Team: WebRatio 4.3 User Guide. Web Models s.r.l., 7th
November 2006.

[WS-WMM] Wimmer, M.; Schauerhuber A.: A Metamodel for Modelling Web
Applications. Technical University of Vienna.
http://www.big.tuwien.ac.at/projects/webml/ (Last accessed: 2 May 2007)

[WWF] WebML Papers on Workflow-Driven Web Applications. WebML.org.
http://www.webml.org/webml/page41.do?dau47.oid=13&UserCtxParam=0&GroupCt
xParam=0&ctx1=EN (Last accessed: 23 April 2007)

[WWS] WebML Papers on Web Services. WebML.org.
http://www.webml.org/webml/page41.do?dau47.oid=11&UserCtxParam=0&GroupCt
xParam=0&ctx1=EN (Last accessed: 2 May 2007)

[W3I3] Bonifati, A.; Ceri, S.; Fraternali, P.; Maurino, A.: Building Multi-device,
Content-centric Applications using WebML and the W3I3 Tool Suite. Proceedings
from Conceptual Modeling for E-Business and the Web: ER 2000 Workshops on
Conceptual Modeling Approaches for E-Business and The World Wide Web and
Conceptual Modeling, Salt Lake City, Utah, USA, October 2000.

[Xing] XING, https://www.xing.com/. Last accessed: 15 April 2007.

[YouT] YouTube, http://youtube.com. Last accessed: 15 April 2007.

58

Appendix A: WebML-OQL Syntax

<DIGIT: ["0"-"9"]>
<LETTER:
["\u0024", "\u0041"-"\u005a", "\u005f", "\u0061"-"\u007a",
"\u00c0"-"\u00d6", "\u00d8"-"\u00f6", "\u00f8"-"\u00ff",
"\u0100"-"\u1fff", "\u3040"-"\u318f", "\u3300"-"\u337f",
"\u3400"-"\u3d2d", "\u4e00"-"\u9fff", "\uf900"-"\ufaff"]>
<STRING: "\’" (<LETTER> | <DIGIT> |
"@" | " " | "!" | "?" | "#" | "$" | "£" | "%" | "/" | "^" |
"|" | "[" | "]" | "," | ";" | "." | ":" | "_" | "-" | "+" |
"*" | "§" | "´Y")+ "\’">
<NUMBER: (<DIGIT>)+ ("." (<DIGIT>)+)?>
<IDENTIFIER: (<LETTER>)+ ("_" | ":" | <DIGIT> | <LETTER>)*>
<OPERATOR: "+" | "-" | "/" | "*">
<COMPARATOR: "<" | "<=" | "=" | "!=" | "<>" | ">=" | ">" |
"contains" | "beginswith" | "endswith">
<AGGRFUNCTION: "min" | "max" | "avg" | "sum" | "count">
<SELF: "Self">
<AND: "AND">
<OR: "OR">
<WHERE: "WHERE">
<ISA: "ISA">
<NOT: "NOT">
<IN: "IN">
<TO: "TO">
<IS: "IS">
<AS: "AS">
<NULL: "NULL">
<TRUE: "TRUE">
<FALSE: "FALSE">
<LEFTBRACKET: "(">
<RIGHTBRACKET: ")">
<DOT: ".">

<EntityQuery : Step <WHERE> Condition (";" | <EOF>)>
<RelationshipQuery : (<SELF> <TO> Step | PathExpression) (<WHERE>
Condition)? (";" | <EOF>)>
<AttributeQuery : AttributeValue (<WHERE> Condition)? (";" | <EOF>)>
<Step : <IDENTIFIER> (<LEFTBRACKET> <AS> <IDENTIFIER> <RIGHTBRACKET>)?>
<PathExpression : (<SELF> | <IDENTIFIER>) (<DOT> Step)*>
<AttributeValue : (AttributeExpression | <LEFTBRACKET> AttributeValue
<RIGHTBRACKET>)
(<OPERATOR> (AttributeExpression | <LEFTBRACKET> AttributeValue
<RIGHTBRACKET>))*>
<AttributeExpression : (<STRING> | <NUMBER> | PathExpression |
<AGGRFUNCTION> <LEFTBRACKET> PathExpression <RIGHTBRACKET>)>
<Member : (<NOT>)? <IN> PathExpression>
<IsNull : <IS> (<NOT>)? <NULL>>
<WhereExpression : ((<IDENTIFIER> | <SELF>) <ISA> <IDENTIFIER> |
AttributeExpression (Member | IsNull |
<COMPARATOR> (AttributeExpression | <TRUE> | <FALSE>)) |
(<LEFTBRACKET> Condition <RIGHTBRACKET>))>
<LogicalTerm : WhereExpression (<AND> WhereExpression)*>
<Condition : LogicalTerm (<OR> LogicalTerm)*>

59

Appendix B: Use Case List for the Case Study

User registers
A visitor submits a RegistrationRequest containing her personal data to the website.

User donates Money
A User donates some amount of money to the alumni network through the website.

User views public content
A User views the publicly available content of the alumni website.

Student updates Profile
A Student updates her preloaded profile in the alumni network database.

User searches Profile
A User searches the profile database of Students according to search criteria and picks out
selected profiles

User views Profile
A User views the profile of a selected Student. Depending on access level and settings given
by the profile’s owner, NITAdministrator or NITSponsor may not be able o see some data.

Student enters Job
A Student enters a description of her Job which includes chronological as well as
geographical information.

Student enters Address
A Student enters a description of her Address which includes chronological and geographical
information.

User sends Message
A User sends a Message which includes title and body to one or multiple recipients.

Student creates Group
 A Student creates her own Group inside the alumni network which can be categorized, set as
private or open groups as well as a marketplace model.

Student becomes a private Group member
A Student submits a GroupMembershipRequest to a private Group she intends to join.
Upon approval from the Group owner, Student becomes a member of the Group.

Student creates Topic
Within a specific Group a Student creates a Topic to be discussed and which is visible to all
group members.

Student adds Posting to a Topic
A Student posts a Posting to a Topic discussion within a Group.

Student creates Album
A Student creates an Album which can be categorized and may contain media Files.

60

Student adds File to Album
A Student uploads a File to a specific Album.

Student uploads Resume
A Student uploads her Resume to the alumni network database.

Student answers Poll
A Student chooses the relevant PollOption for a specific Poll.

Student views PollResult
A Student views the results of a concluded Poll.

Student creates Poll
A Student creates a Poll in a Group to be answered.

AlumniBoardMember approves RegistrationRequest
An AlumniBoardMember approves a RegistrationRequest submitted by a User.

Student creates Event
A Student creates an Event description which includes chronological and geographical
information.

AlumniBoardMember uploads Newsletter
An AlumniBoardMember uploads an alumni Newsletter for public downloading.

AlumniBoardMember creates Announcement
An AlumniBoardMember creates an Announcement for public viewing.

AlumniBoardMember exports search result to Excel
An AlumniBoardMember exports a search result into an Excel file.

AlumniBoardMember performs backup
An AlumniBoardMember performs backup to the alumni network database.

User views Statistics
A User views the usage statistics of the website.

AlumniBoardMember deletes User
An AlumniBoardMember deletes the profile of a User with notification through the email
address of the User.

61

Appendix C: WebML Data Model for the Case Study

62

Appendix D-1: WebML Hypertext Model for the Case Study – Public site view

63

Appendix D-2: WebML Data Model for the Case Study – Student site view

64

Appendix D-3: WebML Hypertext Model for the Case Study – BoardMember site view

65

Appendix D-4: WebML Hypertext Model for the Case Study

– InstitutionalAdministrator site view

