
X
	
ML-Schema for Query Answering Interface

in DIG 2.0

Santy Sari Sugianto

Matriculation Number 31661

Student Project

Supervised by

Prof. Dr. Ralf Möller

Alissa Kaplunova

Software, Technology and Systems (STS)

Hamburg University of Technology

January 2007

Contents

1 Introduction 5

1.1 Background . 5

1.2 DIG Interface . 7

1.2.1 DIG 2.0 . 7

1.2.2 DIG Extensions . 9

1.3 Structure of Work . 10

2 Query Answering Schema 12

2.1 Motivation . 12

2.2 XML Schema . 12

2.2.1 XML Schema Types 13

2.2.2 Occurrence Constraints 15

2.2.3 Global Groups, Elements, and Attributes 15

2.3 Query Answering for DIG 2.0 16

2.3.1 DIGDescription . 16

2.3.2 Retrieve Language . 18

2.3.3 Tell Language . 21

2.3.4 Response Language . 21

2.4 XML Schema for Query Answering Interface 22

2.4.1 Design . 22

2.4.2 XMLBeans . 24

3 Translation of OWL-QL to/from DIG 2.0 27

3.1 Motivation . 27

2

3.2 XSLT . 27

3.3 OWL-QL . 28

3.4 Translation Rules . 30

3.5 Limitation Of The Translation Rules 36

4 Conclusion 38

4.1 Summary . 38

4.2 Further Work . 39

A Query Answering Schema 40

A.1 Rede�nition (Extension) of Core DIG Schema 40

A.2 XML Schema of Query Answering 41

B XSLT Rules for OWL-QL and DIG 2.0 49

B.1 Request . 49

B.2 Response . 52

Bibliography 54

3

ACKNOWLEDGEMENTS

I take this opportunity to thank all those persons who rendered their full

services to my project work.

First of all, I would like to thank Prof. Dr. Ralf Möller from Software,

Technology, and Systems (STS), Technical University of Hamburg-Harburg,

for providing this topic of Student Project and thus, giving me a chance

to further discover about Description Logics, DIG Interface, RacerManager,

and go deeply into XML Schema, XSLT and XPath.

I would like also to express gratitude to my supervisor Alissa Kaplunova,

for timely and kind help, guidance and valuable suggestions, and giving me

the idea and suggestion to solve the problem that I encounter during the

process work. And not forgetting those great moments where she always

encourage me. This inspiration really help me to accomplish my project on

time.

I would like also to thank the almighty God for His blessing and guidance

during the making of this project work.

4

Chapter 1

Introduction

1.1 Background

World Wide Web (WWW) is a medium that was designed to be read by

people. It means that a computer can not accomplish the tasks without

human direction. The Semantic Web was developed to overcome this issue.

A Semantic Web is a vision of web pages which allowed machines to process

and perform actions automatically. To represent the knowledge based on

formal semantics, we need some logics, one of them is Description Logics (DL)

[11]. DL is very useful for de�ning, integrating, and maintaining ontologies,

which provide the Semantic Web with a common understanding of the basic

semantic concepts used to annotate Web pages.

Description Logic reasoners are needed to process Knowledge Base(s)

(KBs) and make the implicit information explicit. There are many reasoners

available on the market, each of them has their own interface. The Descrip-

tion Logic Implementation Group, known as DIG [7], proposed a speci�cation

of a standardized interface for DL reasoners.

This Description Logic Interface (also known as DIG) provides uniform

access to Description Logic reasoners. The interface de�nes a simple proto-

col (based on HTTP PUT/GET) along with XML Schema that describes a

concept language and accompanying operations.

5

The DIG interface is not intended as a heavyweight speci�cation of a

reasoning service. Rather, it provides a minimal set of operations (e.g., sat-

is�ability and subsumption checking and classi�cation reasoning) that have

been shown to be useful in applications.

The proposed DIG version that is in our subject is DIG 2.0 [16]. The

older version, DIG 1.1 has some limitations. Its expressivity is not su�cient

to capture general OWL-DL ontologies - in particular datatype support is

lacking in DIG 1.1 and there is a poor �t between DIG's notion of relations

and OWL properties.

DIG 2.0 draws on experiences gained from earlier DIG speci�cations (1.0

and 1.1). However, the version 2.0 is not intended to be backwards compat-

ible with existing DIG 1.1 implementations.

DIG 2.0 uses the OWL 1.1 (The Web Ontology Language) speci�cation

[8] for the de�nition of the language describing ontologies. It means, that

any DIG 2.0 implementation is guaranteed to be compatible with OWL 1.1.

Furthermore, this is expected to reduce the burden on the implementors of

DL reasoners and ontology management systems.

Querying in DL is not the same as querying in database. The way DL sys-

tems process the query and the result of query answering are di�erent from

database query processing. The database query will return the result that

explicitly available in the database. In the contrary if reasoning involved, we

can get not only explicit data but also the implicit one. In order to query

DL-based systems, we need a standard query language. Query Answering

Interface is proposed to be used as a part of DIG 2.0. The previous versions

of DIG already support query answering in a simple manner. E.g., we can

ask for all individuals of the given concept or whether the concept is satis�-

able. But these querying facilities are not expressive enough for modern DL

reasoners.

Since the Query Answering Interface as part of DIG 2.0 is intended to

become standard, we want to make it compatible also with other standard

query languages, e.g., with OWL-QL. To achieve that, we propose XML

6

based translation rules from DIG 2.0 to OWL-QL and vice versa. These

rules intended to be used by servers that support OWL-QL in order to com-

municate with DL reasoners that support DIG 2.0.

1.2 DIG Interface

DIG provides a basic API to a DL system that can be adopted by any parties.

The interface that o�ered by DIG is relatively lightweight and provides just

enough basic functionality to allow tools such as ontology editors to make

use of a DL reasoner. DIG provides primitives for manipulation of DL on-

tologies, such as asserting and retracting axioms, as well as primitives for

asking questions about ontology entities.

The core DIG speci�cation is an XML Schema [9] for a DL concept lan-

guage, ask/tell functionality and a description of a protocol used to commu-

nicate these operations. At the moment, DIG uses HTTP as its underlying

protocol for communicating with a reasoner. The reasoner accepts HTTP

POST/GET requests and responds as appropriate.

Any applications making use of DL reasoning may bene�t from DIG. DIG

does not intend to provide what we might truly call a reasoning service, but

rather helps to insulate applications from the location and implementation

language of a DL reasoner. The speci�cation does not address issues such as

stateful connections, transactions, concurrency, multiple clients and so on.

That is why it is expected to be part of the larger architecture.

1.2.1 DIG 2.0

DIG 2.0 [6] is speci�ed by means of class diagrams expressed in the Uni�ed

Modeling Language (UML) . This style allows for an unambiguous speci�-

cation of the API primitives at a conceptual level. The conceptual aspects

of API primitives, such as the types of arguments and the semantics, are

thus decoupled from a concrete protocol and syntax used to actually access

DIG 2.0 implementations. Hence, the same primitives can be realized using

7

di�erent access protocols.

DIG 2.0 is a client-server protocol. The protocol is speci�ed in two parts:

the �rst part de�nes the abstract protocol, and the second part de�nes the

binding of the protocol into a concrete transport mechanism.

Figure 1.1: UML Diagram of Request-Response

The basic interaction pattern of this protocol (The correspondence class

diagram is shown in Figure 1.1) is realized as request-response message:

• Each request is de�ned by its type and the (possibly empty) set of para-

meters. To request a service from a DIG 2.0 server, a client constructs

a request of the appropriate type and sends it to the server.

• After receiving a request and processing it, a DIG 2.0 server constructs

an appropriate response object and sends it to the client. Depending

on the type of the request, the server should select the appropriate

subclass of the Response UML class.

Each request is paired with exactly one response. The way in which

requests are matched with their respective responses depends on the binding

of the DIG protocol into a transport mechanism. A way to match requests

8

with responses is to use messages, which means each request message must

correspond to exactly one response message.

A DIG reasoner may be used to implement services that provide concur-

rent access, transactions etc. Such functionality is not inherently supported

by DIG 2.0.

1.2.2 DIG Extensions

Di�erent Description Logic reasoners implement di�erent DL sublanguages

and di�erent reasoning facilities. To partly support these di�erences, DIG

2.0 provides an extensibility mechanism. Implementations that o�er func-

tionality beyond this speci�cation are free to provide their own primitives

and use them simultaneously with the core DIG 2.0 primitives.

Each DL Reasoner has the freedom to extend the base interface schema

that o�ered by DIG to adjust with their own logical environment. Tech-

nically an extension consists of two documents, namely an XML Schema

document de�ning the syntax of messages and an associated HTML docu-

ment providing the remainder of the syntax and su�cient information about

the meaning of these messages for support implementation and usage of the

extension. The �rst speci�es the o�ered service syntactically. The latter

should, at a minimum, describe the service results as well as error messages

of the extension. Both documents should be available on the Web, and, by

convention, their URIs must di�er only in their extension (i.e. XSD resp.

HTML extension).

The DL Implementation Group has developed a selection of extensions,

which provide interfaces to some functionality the DL community. Some of

those extensions are:

• Accessing Told Information [17]: In many applications (for example for

debugging a knowledge base created by several clients) it is useful to

be able to access the unprocessed information sent to a DL reasoner.

To this end, a DIG 2.0 extensions provides the ability to retrieve the

9

information that has been explicitly given to the reasoner (�told�) as

axioms.

• Non Standard Inferences [18]: NSIs are increasingly recognized as a

useful means to realize applications. For example, Least Common Sub-

sumer provides a concept description that subsumes all input concepts

and is the least speci�c (w.r.t. subsumption) to do so. A DIG 2.0 pro-

vides a proposal for an extension supporting a particular set of NSIs.

• Concrete Domain Interface [12]: In many practical applications, rea-

soning over speci�c domains with �xed (concrete) semantics such as

integers, reals and strings is required. For this propose, modern DL

reasoners provide for a so-called concrete domain support, such that

constraints over values from concrete domains referred to by multiple

individuals can be postulated (e.g., linear inequations over polynomials

or equations over strings).

• Query Answering Interface [3]: We will describe this extension further

more in the next chapter.

1.3 Structure of Work

The main objective of this student project is to develop an XML Schema

as a frame rules for Query Answering Interface in DIG 2.0, and to do the

translation from OWL-QL to DIG 2.0 and vice versa. So we divided this

work into 4 chapters.

In the next chapter, we will discuss about XML Schema for Query An-

swering Interface. It consists of the description of the XML Schema in gen-

eral, syntax of Query Answering Interface, and the XML Schema for Query

Answering Interface.

Chapter 3 describes how to do the translation from OWL-QL to DIG 2.0

and vice versa using XSLT. It also discusses about the reason using XSLT

in this project, and mentions RacerManager as one of the OWL-QL server

10

which can be used in future as reference implementation using our translation

schema.

The last chapter presents conclusion of this student project as well as

gives the summary and suggestions for possible future work.

11

Chapter 2

Query Answering Schema

2.1 Motivation

There are some expressive and decidable query languages supported by mod-

ern DL reasoners (like RacerPro [2]), e.g., nRQL [1] which is a native query

language of RacerPro. But these query languages are not standardized. Since

the DIG 2.0 intended to provide a standardized access interface for DL rea-

soners, it needs a standardized query language. Therefore, Query Answering

Interface is proposed to be used as a standard query language. In order to

validate XML documents containing queries and answers, we need to de�ne

a Query Answering XML Schema.

2.2 XML Schema

The purpose of the XML Schema is to de�ne a class of XML documents,

and so the term �instance document� is often used to describe an XML doc-

ument that conforms to a particular schema. XML Schemas express shared

vocabularies and allow machines to carry out rules made by people. They

provide a means for de�ning the structure, content and semantics of XML

documents. This de�nition includes what elements are (and are not) allowed

at any point; what the attributes for any element may be; the number of

12

occurrences of elements; etc.

The majority of XML documents are �well formed� rather than �valid�.

The former means that there is exactly one root element, and every sub-

element (and recursive sub-elements) have delimiting start- and end-tags,

and that they are properly nested within each other. A document is called

valid if it is �well-formed� and conforms to a speci�ed set of production rules.

To validate an XML document, some form of validating rules need to be

provided. This can be done by any Document Type Declaration (DTD). An

XML Schema sounds look like a DTD, however there are some critical di�er-

ences. The most notable being that XML Schema can deal with namespaces,

and DTD's can not. Moreover, XML Schema can mix namespaces. It must

be mentioned that XML Schema is very dependent on namespace.

An XML namespace is a collection of names, identi�ed by a URI reference,

which are used in XML documents as element types and attribute names.

The namespace does not need to refer to a valid location. Namespace support

in XML Schema is �exible yet straightforward. It is not only allows the use

of any pre�x in instance documents but also lets us open our schemas to ac-

cept unknown elements and attributes from known or unknown namespaces.

Each XML Schema document is bound to a speci�c namespace through the

targetNamespace attribute, or to the absence of namespace through the lack

of such an attribute. We need at least one schema document per namespace

we want to de�ne (elements and attributes without namespace can be de�ned

in any schema, though).

2.2.1 XML Schema Types

There are two types of XML Schema:

• Simple Type : Elements that do not have other subelements are cate-

gorized as this type. Attributes are also included into this type. In the

example below, we de�ne the tag predicate taken from Query Answer-

ing proposal schema to be of simple type because it is intended to not

have subelements.

13

<xs:element name="predicate" type="Variable"/>

• Complex Type : Elements that contain other subelements or attributes

are categorized as this type. The following example taken from QueryAn-

swering schema shows thatPredicateQueryAtom categorized as complex

type because it has subelements (e.g., ConcreteDomainQueryVariable,

predicate, etc)

<xs:element name="PredicateQueryAtom">

<xs:complexType>

<xs:sequence>

<xs:element ref ="ConcreteDomainQueryVariable"/>

<xs:element ref ="owl11xml:Constant"/>

<xs:element ref="predicate" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element ref="lambda" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element ref="op" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Besides those two types, XML Schema also provides group tag that allows

for grouping elements, and attributegroup tag for grouping attributes. Using

these tags the readability of schemas can be improved and updating schemas

can be facilitated easier. In fact, a group can be de�ned and edited in one

place and referenced in multiple de�nitions and declarations.

In the following example, we declared a group BooleanConstructGroup

consisting of three elements of choices, that are QueryObjectIntersectionOf ,

QueryObjectUnionOf , and QueryObjectComplementOf .

<xs:group name="BooleanConstructGroup">

<xs:choice>

<xs:element name="QueryObjectIntersectionOf"/>

14

<xs:element name="QueryObjectUnionOf"/>

<xs:element name="QueryObjectComplementOf"/>

</xs:choice>

</xs:group>

2.2.2 Occurrence Constraints

The occurrence constraints in XML Schema are de�ned by minOccurs for

minimal occurrence and maxOccurs for maximal occurrence of elements or

attributes. The default value for both the minOccurs and the maxOccurs

attributes is 1. Thus, when an element is declared without a maxOccurs

attribute, the element may not occur more than once. Similarly, when the

element is declared without a minOccurs attribute, the element must occur

at least 1. If both attributes are omitted, the element must appear exactly

once.

<xs:element name="SupportedRequest" minOccurs="0" maxOccurs="unbounded">

The example shows that the element SupportedRequest is optional and

can be used unrestricted times.

2.2.3 Global Groups, Elements, and Attributes

Global groups, global elements, and global attributes are created by dec-

larations that appear as the children of the schema element. Once de-

clared, they can be referenced in one or more declarations using the ref

attribute as described below. In the following example, we refer to the group

BooleanConstructGroup mentioned before (see Section 2.2.1).

<xs:complexType name ="QueryBodyType">

<xs:sequence>

<xs:group ref="BooleanConstructGroup" minOccurs="0"

maxOccurs="unbounded"/>

<xs:group ref="QueryAtomsGroup" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

15

2.3 Query Answering for DIG 2.0

Query Answering schema is divided in two parts, the Request part and the

Response part. In the Request part, the syntax of the requests send from

clients to DL reasoners is de�ned. The tell language is also a part of the

request. In the Response part, the syntax of the answers send from DL

reasoners to clients is described. In the next subsections, we will discuss

more deeply the mentioned main parts of the Query Answering Interface, in

particular, DIGDescription, Retrieve, and QueryAnswers constructs.

2.3.1 DIGDescription

DIGDescription response is an answer from the DL server as a reply to

DIGDescribe request. One of elements the DIGDescription constists of is

supportedRequest . It describes which functionality is supported by the DL

reasoner, such as Retrieve for query answering procedure.

Below is the example of the DIGDescription construct.

<DIGDescription

name="Racer"

version="1.9.5"

message="Racer running on localhost"

supportsLanguage="SHIQ(D)"

supportsAnnotations="true"

supportsImports="true"

supportsQueryLanguage="ugcq">

<SupportedRequest requestName="Retrieve"/>

<SupportedRequest requestName="..."/>

...

</DIGDescription>

The core DIG 2.0 schema [10] already has the DIGDescription tag. But

it does not contain attribute supportsQueryLanguage. Since we want to have

this attribute for identifying fragment of query languages that supported by

the DL reasoner, we have to add this attribute inside of the DIGDescription

16

tag. Due to the structure of the DIG 2.0 core schema, we can not extend

the DIGDescription tag inside of the original DIG 2.0 core schema to have

additional attribute.

To solve this problem, we can:

1. De�ne a new DIGDescriptionExtension tag that has exactly the same

attributes as DIGDescription but with additional supportsQueryLan-

guage attribute.

2. Change the original core DIG 2.0 XML Schema as following below:

<xs:group name="Response">

<xs:choice>

...

<xs:element name="DIGDescription">

<xs:complexType>

<xs:sequence>

<xs:element name="SupportedRequest"

minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="requestName"

type="xs:anyURI"/>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="version" type="xs:string"/>

<xs:attribute name="message" type="xs:string"/>

<xs:attribute name="supportedLanguage" type="xs:string"/>

<xs:attribute name="supportsAnnotations" type="xs:boolean"/>

<xs:attribute name="supportsImports" type="xs:boolean"/>

<xs:attribute name="supportsQueryLanguage" type="xs:string"/>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:group>

17

2.3.2 Retrieve Language

Retrieve language provides constructs to form requests to DL reasoners. The

Retrieve request which is proposed in Query Answering Interface is derived

from the core class RequestToOntology (see Figure 1.1). Multiple requests

can be bundled into one RequestMessage. Retrieve has ontologyURI, queryID

and asID as attributes. The ontologyURI is used to de�ne the location of the

ontology that is going to be used during the query answering process. The

optional attribute queryID as unique query identi�cation for query manage-

ment. The asID is used by the client as an ID for iterative query answering

that will be generated by the DL reasoner.

In the Retrieve statement, we can also use two more attributes, which are

ntuples and mode. The attribute ntuples is used when the reasoner has to

deal with large answer sets of tuples. The process which normally takes long

time can be accelerated helps iterative query answering. For that, maximum

number of tuples which are assumed to be returned can be speci�ed.

In addition, DIG 2.0 Query Interface supports instructions to let a query

answering engine compute results �proactively� to provide faster retrieval of

subsequent chunks of tuples. This can be achieved by setting the optional

mode attribute.

Retrieve statement consists of two parts, QueryHead and QueryBody.

Within the QueryHead tag individuals and variables (denoted as QueryVari-

able) can be used. Variables are bound to those individuals which satisfy the

query. When the query result is boolean, the QueryHead would be empty.

Complex queries are built from query atoms using boolean constructs for

conjunction (QueryObjectIntersectionOf), union (QueryObjectUnionOf) and

negation (QueryObjectComplementOf) (for the latter, for instance, negation

as failure semantics is assumed). ConceptQueryAtoms consists of variables

(or individuals) and complex concept expressions. RoleQueryAtoms consists

of at least two identi�ers for variables (or individuals) followed by a role

expression.

The following conjunctive query asks for all individuals of the concept

18

woman which have female children. The requested knowledge base is identi-

�ed by means of a URI.

<?xml version="1.0" encoding="UTF-8"?>

<RequestMessage xmlns="http://dl.kr.org/dig2.0#"

xmlns:owl11xml="http://www.w3.org/2006/12/owl11-xml#"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://dl.kr.org/dig2.0# dig2.0-ext.xsd

http://www.w3.org/2006/12/owl11-xml# owl1.1.xsd ">

<Retrieve queryID="q1" ontologyURI="www.ontologyURI" >

<QueryHead>

<QueryVariable URI="#x"/>

</QueryHead>

<QueryBody>

<QueryObjectIntersectionOf>

<ConceptQueryAtom>

<QueryVariable URI="#x"/>

<owl11xml:ObjectIntersectionOf>

<owl11xml:OWLClass owl11xml:URI="#woman"/>

<owl11xml:ObjectSomeValuesFrom>

<owl11xml:ObjectProperty owl11xml:URI="#hasChild"/>

<owl11xml:OWLClass owl11xml:URI="#female"/>

</owl11xml:ObjectSomeValuesFrom>

</owl11xml:ObjectIntersectionOf>

</ConceptQueryAtom>

</QueryObjectIntersectionOf>

</QueryBody>

</Retrieve>

</RequestMessage>

We use DIG namespace as default namespace in our schema. If in the

future the Query Answering Interface will be part of DIG 2.0 core schema,

then we do not have to use other namespaces for our extension.

Based on the assumption and for simpli�cation, we eliminate all namespace

and its pre�x from all examples presented in this report. However, since

Query Answering Interface is actually still an extension of DIG 2.0, we have

19

to add the appropriate namespace. We use qai (as abbreviation from Query

Answering Interface) as pre�x.

<?xml version="1.0" encoding="UTF-8"?>

<RequestMessage

xmlns="http://dl.kr.org/dig2.0#"

xmlns:qai="http://extension/QueryAnswers"

xmlns:owl11xml="http://www.w3.org/2006/12/owl11-xml#"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://dl.kr.org/dig2.0# dig2.0-ext.xsd

http://www.w3.org/2006/12/owl11-xml# owl1.1.xsd

http://extension/QueryAnswers ExtensionQueryAnswers.xsd">

<Retrieve qai:queryID="q1" qai:ontologyURI="www.ontologyURI" >

<qai:QueryHead>

<qai:QueryVariable qai:URI="#x"/>

</qai:QueryHead>

<qai:QueryBody>

<qai:QueryObjectIntersectionOf>

<qai:ConceptQueryAtom>

<qai:QueryVariable qai:URI="#x"/>

<owl11xml:ObjectIntersectionOf>

<owl11xml:OWLClass owl11xml:URI="#woman"/>

<owl11xml:ObjectSomeValuesFrom>

<owl11xml:ObjectProperty owl11xml:URI="#hasChild"/>

<owl11xml:OWLClass owl11xml:URI="#female"/>

</owl11xml:ObjectSomeValuesFrom>

</owl11xml:ObjectIntersectionOf>

</qai:ConceptQueryAtom>

</qai:QueryObjectIntersectionOf>

</qai:QueryBody>

</qai:Retrieve>

</qai:RequestMessage>

In the XML document above, the client send a Retrieve request to the

DL reasoner. The Retrieve request is encapsulated inside the RequestMessage

element.

Since we are using some of the elements that located in others XML

20

schemas, we have to include their namespaces too. The declaration of namespaces

is located in the root element (RequestMessage).

These namespaces refer to the appropriate datatypes. Each of the namespace

has its own pre�x (e.g. owl11xml, qai, xsi). This pre�x makes the syntax in

the XML document more readable.

E.g., we can just write owl11xml:URI=�#female� in a short way.

2.3.3 Tell Language

In order to tell the reasoner that no more tuples will be requested, the state-

ment ReleaseQuery, which has an attribute queryID is send. The reasoner

should respond with the Con�rmation response.

<ReleaseQuery queryID="q1"/>

2.3.4 Response Language

The QueryAnswers response to a Retrieve request has an attribute queryID

which corresponds with the id of the submitted query. The answer set id

asID will be generated by the reasoner. The response contains tuples of

bindings for variables mentioned in the QueryHead. The response head is

the same as the head of the corresponding query. The head is inserted just

for convenience; the reasoner may not reorder components of bindings. For

example, below we can see the response to the query posed above (see Section

2.3.2):

<QueryAnswers queryID="q1" asID="asid1000">

<QueryHead>

<QueryVariable URI="#x"/>

</QueryHead>

<Binding>

<owl11xml:Individual owl11xml:URI="#mary"/>

</Binding>

<Binding>

<owl11xml:Individual owl11xml:URI="#susan"/>

21

</Binding>

</QueryAnswers>

2.4 XML Schema for Query Answering Inter-

face

In this section, we discuss the design and application scenarios of the pro-

posed XML Schema for the Query Answering Interface in DIG 2.0.

2.4.1 Design

As the DIG interface is considered as a standard interface for accessing DL

reasoning systems, it is a desirable goal not only to standardize the core DIG

but also its extensions. However, it is not possible to put all kinds of useful

extensions and operators into the DIG speci�cation in advance because of

evolving and upcoming work in the context of non-standard inference services

and reasoning related services.

Therefore to enable the embedding of new requests and responses into

XML messages, implementors should use the rede�nition mechanism of XML

Schema and extend the Request and Response element groups from the core

DIG 2.0 schema.

The XML schema we designed for Query Answering Interface is distrib-

uted over following �les:

• DIG2.0-ext.xsd (aka Rede�neDIGSchema): This is the �le where we

extend the core schema of DIG 2.0 (see Appendix A.1).

• ExtensionQueryAnswers.xsd (aka ExtensionSchema): This is the core

schema of Query Answering Interface.

Besides those �les, we also used some of standard XML Schemas below:

• DIG2.0.xsd (aka DIGSchema): This is the core schema of DIG 2.0.

22

• OWL1.1.xsd (aka OWLSchema): This is the core schema of OWL 1.1.

• XML.xsd (aka XMLSchema): This is the schema of XML namespace.

First of all we need to extend the core of DIG 2.0 Schema. This rede-

�nition is located in the Rede�neDIGSchema �le. We rede�ne the group

named Request from DIGSchema and extend them with two new elements:

Retrieve and ReleaseQuery. In this way, we can use besides other elements

also Retrieve and ReleaseQuery tags inside of the RequestMessage tag.

This �le Rede�neDIGSchema has the same namespace as the DIGSchema.

This is due to the rede�nition mechanism of XML Schema: the namespace

of the rede�ning schema must be the same as the namespace of the rede�ned

schema.

To rede�ne the DIGSchema, we use a rede�ne element. The rede�ne

element allows for rede�nition of simple and complex types, groups, and

attribute groups from an external schema.

<xs:redefine schemaLocation="dig2.0.xsd">

<xs:group name="Request">

<xs:choice>

<xs:group ref="Request"/>

<xs:element name="Retrieve" type="RetrieveType"/>

<xs:element name="ReleaseQuery" type="ReleaseType"/>

</xs:choice>

</xs:group>

</xs:redefine>

To make use of some of tags (e.g., OWLClass) that already exist in other

schemas, we need the import tag, which allows us to add multiple schemas

with di�erent target namespace to a document. In our work, we imported

OWLSchema, XMLSchema and DIGSchema.

<xs:import namespace="http://www.w3.org/2006/12/owl11-xml#"

schemaLocation="owl1.1.xsd"/>

<xs:import namespace="http://www.w3.org/XML/1998/namespace"

schemaLocation="http://www.w3.org/2001/xml.xsd"/>

23

<xs:import namespace="http://dl.kr.org/dig2.0#"

schemaLocation="dig2.0.xsd"/>

The ExtensionSchema consists of several parts. We de�ned several com-

plex types, which are e.g., RetrieveType for specifying the Retrieve element,

ReleaseType for Release element, QueryAnswerType for QueryAnswers ele-

ment, etc.

The code below de�nes the complex type RetrieveType which has four

attributes: queryID, ntuples, asID and mode.

<xs:complexType name="RetrieveType">

<xs:complexContent>

<xs:extension base="RequestToOntology"/>

<xs:attribute name="queryID" type="xs:string" use="required"/>

<xs:attribute name="ntuples" type="xs:string" use="optional"/>

<xs:attribute name="asID" type="xs:string" use="optional"/>

<xs:attribute name="mode" type="xs:string" use="optional"/>

<xs:sequence>

<xs:group ref="RetrieveGroup" minOccurs="1"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

After the XML Schema is de�ned, we can proceed with the next step,

the validation of XML documents against the schema. For this, we tried

di�erent validation methods. To do the validation programmatically, we

used XMLBeans. We can use XMLBeans not only to validate the XML

documents against the XML Schema, but also to modify the XML data by

means of programms.

2.4.2 XMLBeans

XMLBeans [21] developed by Apache Software allows us to access the full

power of XML in a Java friendly way. The behind idea of this technology

is that we can get the features of XML and XML Schema and have these

24

features mapped as naturally as possible to the equivalent Java language and

typing constructs.

XMLBeans uses XML Schema to compile Java interfaces and classes that

can be used to access and modify XML instance data. Using XMLBeans is

similar to using any other Java interface/class. While a major use of XML-

Beans is to access our XML instance data with strongly typed Java classes

there are also API's that allow access to the full XML infoset (XMLBeans

keeps XML infoset �delity) as well as to allow re�ecting into the XML Schema

itself through an XML Schema Object model.

XMLBeans was chosen because it supports full XML Schema, which is

critical if we want to have control over the features of the XML Schema when

working with Java environment. After installing XMLBeans we can just use

command �validate� that has two input parameters: the XML document to

be validated and the XML Schema.

validate XMLSchema.xsd FileToValidate.xml

The result of validation procedure is printed to the standard output.

Besides XMLBeans, there are also others online and o�ine tools for val-

idating the XML Schema. One of them we have used is the online validator

of DecisionSoft [19].

With XMLBeans, not only we can do validation, but we can also manipu-

late objects of the XML Schema Object model through the Java classes. We

can generate Java types using XMLBeans that represent schema types. In

this way, we can access instances of the schema through JavaBeans-style ac-

cessors. The XMLBeans API also allows us to re�ect into the XML Schema

itself through an XML Schema Object model. To make use of this object

model, we have to generate the jar �le from our XML Schema. This can be

done by applying the compilation command �scomp� to the schema.

scomp -out file.jar XMLSchema.xsd

After that, we can extend the generated Java code if required. In order

to do this, we have to import several packages �rst (including the jar of our

schema denoted below as extension.*):

25

// The jar file of all our extended schema including the imported file

import extension.*;

import org.apache.xmlbeans.XmlException;

import org.apache.xmlbeans.impl.regex.REUtil;

After that we can use classes and methods generated by the XMLBeans

for parsing a XML document and manipulating data provided by the parsed

XML document. In the following example, we created the class QueryAn-

swering for parsing the XML document located in c:/workspace/Rede�ne.xml,

adding a new query variable to the query head and printing out the modi�ed

XML document.

public class QueryAnswering {

public static void main(String[] args) {

File xmlFile = new File("c:\\workspace\\Redefine.xml");

// Bind the instance to the generated XMLBeans types.

try {

RequestMessageDocument requestMessageDocument =

RequestMessageDocument.Factory.parse(xmlFile);

RequestMessageDocument.RequestMessage requestMessage =

requestMessageDocument.getRequestMessage();

RetrieveType retrieve = requestMessage.getRetrieveArray(0);

QueryHeadType queryHead = retrieve.getQueryHead();

Variable variable = queryHead.addNewQueryVariable();

variable.setURI("#y"); //adding new variable

System.out.println(requestMessageDocument);

...}

The proposed XML Schema for Query Answering Interface has been

tested using the online XML Schema validator from DecisionSoft, and also

using XMLBeans. This schema has been also tested by one of the Rika

Project groups from STS department of Hamburg University of Technology.

26

Chapter 3

Translation of OWL-QL to/from

DIG 2.0

3.1 Motivation

At the moment, there is any server that supports DIG 2.0 protocol. The

development is still work on progress. But there are already existing servers

that support other standard query languages. One of such query languages

is OWL-QL [14], a candidate standard language for DL. To make use the

existing OWL-QL server compatible with the DIG 2.0 Query Answering In-

terface, we propose translation rules to transform OWL-QL queries into DIG

2.0 queries using some translation module that have to be implemented. The

translation is possible, since both query languages have an overlap consider-

ing their semantics.

3.2 XSLT

XSLT (eXtensible Stylesheet Language Transformation) is a mechanism that

is used for transforming document in XML format into other useful formats

(e.g., into HTML or XHTML) or between di�erent XML schemas [13]. XSLT

does not change the original document, the one that used as input document;

27

rather, a new document as output is created based on the existing one. To do

the translation, an XSLT processor is needed. There are several processors

that can be used. Xalan [20] and Saxon [15] are two of the widely used

XSLT processors at the moment. The XSLT processor takes two input �les

- an XML source document, and an XSLT stylesheet - and produces an

output document. The XSLT stylesheet contains collection of template rules

that the processor applies to the input document during the transformation

procedure.

Two main aspects in the transformation process are:

• The �rst stage is a structural transformation, in which the data is con-

verted from the structure of the incoming XML document to a structure

that re�ects the desired output.

• The second stage is formatting, in which the new structure is outputed

in the required format such as HTML or PDF.

XSLT makes use of XPath [5]. XPath is a non-XML language used to

identify particular parts of XML document. XPath can be described in its

three crucial roles. First, it is used within the XSLT stylesheet for addressing

parts of the input document. Second, XPath is used as a pattern language in

the matching rules inside of the stylesheet. Third, it is used to perform simple

math and string manipulations via built-in XPath operators and functions.

In the next sections, we �rst give a short overview of OWL-QL and then

present translation rules.

3.3 OWL-QL

OWL-QL [14] is a formal language and protocol for a querying knowledge

bases represented in OWL. OWL-QL speci�es the semantic relationships

among a query, a query answer, and the KBs used to produce the answer.

OWL-QL supports query-answering dialogues in which the answering agent

may use automated reasoning methods to derive answers to queries, as well

28

as scenarios in which the knowledge to be used in answering a query may

be in multiple knowledge bases on the Semantic Web, and/or where those

knowledge bases are not speci�ed by the client.

An OWL-QL query-answering dialogue is initiated by a client sending a

query to an OWL-QL server. An OWL-QL query is an object necessarily

containing a query pattern that speci�es a collection of OWL sentences in

which some URIrefs are considered to be variables.

A query may have zero or more answers, each of which provides bindings

of URIrefs or literals to some of the variables in the query pattern. Each

request from a client to a server for answers to a query can include an answer

bundle size bound, and the server is required to respond by delivering an

answer bundle containing at most the number of query answers given by the

answer bundle size bound.

The set of OWL sentences that are used by the server in answering a query

is referred to as the answer KB. An OWL-QL query contains an answer KB

pattern that is a KB, a list of KB references, or a variable.

In what follows, we give an example of OWL-QL query, that requests to

��nd 4 individuals (bindings of the variable x) that are of type GraduateS-

tudent and takes GraduateCourse0 as course�.

<?xml version="1.0" encoding="UTF-8"?>

<owl-ql:query xmlns:owl-ql="http://www.w3.org/2003/10/owl-ql-syntax#"

xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:uni="http://www.uni.edu/univ-bench.owl#">

<owl-ql:queryPattern>

<rdf:RDF>

<rdf:Description

rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">

<rdf:type

rdf:resource="http://www.uni.edu/univ-bench.owl#GraduateStudent"/>

</rdf:Description>

<rdf:Description

rdf:about="http://www.w3.org/2003/10/owl-ql-variables#x">

29

<uni:takesCourse

rdf:resource="http://www.Department0.edu/GraduateCourse0"/>

</rdf:Description>

</rdf:RDF>

</owl-ql:queryPattern>

<owl-ql:mustBindVars>

<var:x/>

</owl-ql:mustBindVars>

<owl-ql:answerKBPattern>

<owl-ql:kbRef rdf:resource=

"file://localhost/c:/Programme/RacerPro/university0.owl"/>

</owl-ql:answerKBPattern>

<owl-ql:answerSizeBound> 4 </owl-ql:answerSizeBound>

</owl-ql:query>

3.4 Translation Rules

To do the translation between OWL-QL and DIG 2.0, XSLT translation

rules are required. The translation procedure can be performed by some

translation module that will be integrated into an OWL-QL server (e.g.,

RacerManager) or can be used as stand alone application.

In this context, we refer to RacerManager [4] as one of OWL-QL sever.

RacerManager is an open-source Semantic Web middleware that serves as a

scalable front-end for applications to e�ciently query OWL ontologies. Rac-

erManager has been developed to serve as an OWL-QL application server

for the DL reasoner RacerPro. The RacerManager delegates queries to Rac-

erPro servers that manage the KBs mentioned in the query and load KBs

on demand. The system focuses on techniques which allow to achieve better

scalability, high availability and the required quality of service by imple-

menting such techniques as query dispatching, load balancing and caching of

query answers. To improve usability of RacerManager we can equip it with

the translation module mentioned above which would transform OWL-QL

queries sent to the DL reasoner into DIG 2.0 queries and answers sent from

30

DL reasoner into OWL-QL variable bindings.

The XSLT stylesheet for OWL-QL to/from DIG 2.0 schema translation

is divided into two parts: request rules and response rules. We start with

request rules, which are used to translate OWL-QL query into DIG 2.0 query.

According to the OWL-QL syntax, the query body has to be formed inside

of the queryPattern tag. In the query head, the tag mustBindVars is used to

specify variables that must be bound to available answers. The URL of the

KB to be used for answering the query is speci�ed in the answerKBPattern

tag. The answerSizeBound de�nes the maximum number of results the client

wants to get for this query.

We refer to example in the Section 3.3 to show some of de�ned translation

rules de�ned in this work. Below is the snippet of the stylesheet �le de�ning

the translation rule for the element mustBindVars. Here we postulate that

every variable mentioned inside of mustBindVars tag has to be transformed

into the variable with the same name inside of the QueryHead tag in DIG 2.0.

The queryPattern tag in OWL-QL will be translated to the QueryBody tag

in DIG 2.0. We translate subelements of queryPattern tag (e.g., Description)

to subelements of the QueryBody tag in DIG 2.0 (e.g., ConceptQueryAtom),

etc.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns="http://dl.kr.org/dig2.0#"

xmlns:owl11xml="http://www.w3.org/2006/12/owl11-xml#"

xmlns:qai="http://extension/QueryAnswers"

exclude-result-prefixes="var owl-ql rdf ">

//We define the namespaces that we are going to use

<xsl:output method="xml" indent="yes" encoding="utf-8"/>

//The output method type

<xsl:template match="owl-ql:mustBindVars">

<QueryHead>

<xsl:element name="QueryVariable">

<xsl:attribute name="URI">

<xsl:value-of select="concat('#',local-name(*))"/>

</xsl:attribute>

31

</xsl:element>

</QueryHead>

</xsl:template>

<xsl:template match="owl-ql:queryPattern">

<QueryBody>

<xsl:for-each select="//rdf:Description/@rdf:about">

<ConceptQueryAtom>

<QueryVariable>

<xsl:attribute name="URI" >

<xsl:copy-of select="."/>

</xsl:attribute>

</QueryVariable>

<owl11xml:OWLClass>

<xsl:attribute name="owl11xml:URI">

<xsl:value-of select="//rdf:type/@rdf:resource"/>

</xsl:attribute>

</owl11xml:OWLClass>

</ConceptQueryAtom>

</xsl:for-each>

...

</QueryBody>

</xsl:template>

As mentioned before, the XSLT processor translates queries from OWL-

QL to DIG 2.0 using translation rules, e.g., one de�ned above. The result

of the translation can be seen below. The translated query is now encapsu-

lated in RequestMessage tag. It has QueryHead consisting of zero or more

QueryVariable tags. The query body de�ned before inside of mustBindVars

(OWL-QL) now translated into QueryBody (DIG 2.0).

<?xml version="1.0" encoding="utf-8"?>

<RequestMessage xmlns="http://dl.kr.org/dig2.0#"

xmlns:owl11xml="http://www.w3.org/2006/12/owl11-xml#"

xmlns="http://extension/QueryAnswers"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<Retrieve queryID="223"

ontologyURI="file://localhost/c:/Programme/RacerPro/university0.owl"

32

ntuples="4">

<QueryHead>

<QueryVariable URI="#x"/>

</QueryHead>

<QueryBody>

<ConceptQueryAtom>

<QueryVariable

URI="http://www.w3.org/2003/10/owl-ql-variables#x"/>

<owl11xml:OWLClass

owl11xml:URI="http://www.uni.edu/univ-bench.owl#GraduateStudent"/>

</ConceptQueryAtom>

...

</QueryBody>

</Retrieve>

</RequestMessage>

After the DL Reasoner received the query, it will send its response to the

client in DIG 2.0.

<ResponseMessage xmlns="http://dl.kr.org/dig2.0#"

xmlns:="http://extension/QueryAnswers"

xmlns:owl11xml="http://www.w3.org/2006/12/owl11-xml#"

xmlns:uni="http://www.uni.edu/univ-bench.owl#">

<QueryAnswers queryID="223" asID="abc123">

<QueryHead>

<QueryVariable URI="#x"/>

</QueryHead>

<Binding >

<owl11xml:Individual

owl11xml:URI="http://www.Department0.edu/GraduateStudent44"/>

</Binding>

</QueryAnswers>

...

</ResponseMessage>

To translate the response from DIG 2.0 into the OWL-QL, we proposed

response translation rules. In the following example for response rules we

declare that every QueryAnswers element found in the input �le will be

33

translated into the answerBundle element of OWL-QL. For that, we also use

templates Binding and noti�er presented below. The Binding tag itself will

be translated into the answer tag, and every answer tuple will be translated

into the corresponding binding-set of elements. We obtain names of elements

from the QueryHead.

<xsl:template match="QueryAnswers">

<owl-ql:answerBundle>

<xsl:apply-templates select="Binding"/>

<xsl:apply-templates select="notifier"/>

</owl-ql:answerBundle>

</xsl:template>

<xsl:variable name="var1"

select="substring-after

(//qai:QueryHead/qai:QueryVariable/qai:@URI,'#')"/>

<xsl:variable name="var2" select="concat('var:',$var1)"/>

<xsl:template match="Binding">

<owl-ql:answer>

<owl-ql:binding-set>

<xsl:element name="{$var2}">

<xsl:attribute name="rdf:resource" >

<xsl:value-of

select="//owl11xml:Individual/@owl11xml:URI"/>

</xsl:attribute>

</xsl:element>

</owl-ql:binding-set>

</xsl:template>

<xsl:template match="notifier">

<owl-ql:continuation>

<xsl:choose>

<xsl:when test="@message='last'">

<owl-ql:termination-token>

<xsl:choose>

<owl-ql:end/>

</xsl:choose>

</owl-ql:termination-token>

</xsl:when>

<xsl:otherwise>

34

<owl-ql:continuation-token>

<owl-ql:processHandle>

<xsl:value-of select="//QueryAnswers/@asID"/>

</owl-ql:processHandle>

<owl-ql:answerBundleSize>

<xsl:value-of select="//notifier/@message"/>

</owl-ql:answerBundleSize>

</owl-ql:continuation-token>

</xsl:otherwise>

</xsl:choose>

</owl-ql:continuation>

</xsl:template>

After performing translation we receive e.g. the following output:

<owl-ql:answer>

<owl-ql:binding-set>

<var:x rdf:resource="http://www.Department0.edu/GraduateStudent44"/>

</owl-ql:binding-set>

<owl-ql:answerPatternInstance>

<rdf:RDF xmlns:uni="http://www.uni.edu/univ-bench.owl#"

xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#">

<rdf:Description

rdf:about="http://www.Department0.edu/GraduateStudent44">

<rdf:type

rdf:resource="http://www.uni.edu/univ-bench.owl#GraduateStudent"/>

<uni:takesCourse

rdf:resource="http://www.Department0.edu/GraduateCourse0"/>

</rdf:Description>

</rdf:RDF>

</owl-ql:answerPatternInstance>

</owl-ql:answer>

We have tested presented rules using XSLT processors from Saxon and

Xalan.

35

3.5 Limitation Of The Translation Rules

The problem that we are facing during de�ning translation rules is that not

all elements are described in both XML schemas (OWL-QL and DIG 2.0)

(see 3.4). To overcome this limitation, we made several assumptions:

• The queryID attribute used in the Retrieve tag of DIG 2.0 is not avail-

able in OWL-QL. We proposed to obtain the value of the queryID to

uniquely generated by the client sent the OWL-QL query.

• The asID attribute (Answer Set ID) is proposed to be used as substi-

tution of the processHandler in OWL-QL response. This attribute is

essential for the iterative query answering. asID is generated by DL

reasoners and can be used by OWL-QL clients for subsequent queries.

Using asID, the DL reasoner will send the rest of the response accord-

ing to the client request (e.g., the client can ask for n more tuples or

the rest of the response).

• The continuation tag in OWL-QL has two possible values:

� termination-token tag can be: none or end. The tag none means

that the server already sent all the answers that known. And the

end tag means that the server had gave all the answers. Since DIG

does not have the appropriate tag to perform the substitution, we

propose to use the message attribute of the noti�er tag. The value

of the message can be restricted to some meaningful de�nitions.

For example, when the value is last, than it will be considered as

end or none tag in OWL-QL.

� inside of the continuation-token tag the answerBundleSize has to

be speci�ed. Since DIG 2.0 does not have an equal tag for ade-

quate translation, we assume that the value of answerBundleSize

will be sent by DL reasoner within the noti�er message.

To support this, the messaging/noti�er mechanism of DIG 2.0 has to

be extended. We have to declare some constraints for the value of

36

noti�er message. At the moment, last can be used for declaring end

and none value of the termination-token. Omitting this message or

having other values for message means continuation-token.

37

Chapter 4

Conclusion

4.1 Summary

DIG 2.0 extension for Query Answering is currently of much interest in the

DL community. To apply this extension, we proposed the XML Schema that

can be used for validating and parsing XML documents containing queries

and answers to the queries. To use the Query Answering XML schema, we

need to declare the namespace of the schema that we are referring to and its

physical location.

The schema is needed as a frame to be used to validate the XML doc-

ument. But the schema itself is not enough. There are constraints which

cannot or are to complicated to be expressed (e.g., for de�ning complex

value of the noti�er message) with XML Schemas. We can overcome those

problems with writing some additional Java, Perl, C++, etc code to check

additional constraints. We can use the Java classes that generated by the

XMLBeans and add some constraints to the schema.

We also made translation rules, that can help the existing OWL-QL im-

plementations to support communication with DIG 2.0 reasoners. When

de�ning translation rules, we had to make some assumptions to overcome

the problem, that a number of constructs in OWL-QL lacks of suitable sub-

stitution in DIG 2.0. Since we only do the translation of query answers from

38

DIG to OWL-QL, the only workaround we had to propose was considering

the query id and answer set id.

4.2 Further Work

The Query Answering XML schema that we proposed here is still an ex-

tension of the core DIG 2.0 schema. This results in a number of schemas

that we have to use (e.g., the core DIG 2.0 schema, the extension schema

for Query Answering, and the rede�nition schema). When our proposal is

already integrated into the core DIG 2.0 schema, it will be possible to reduce

the number of namespace that have to be referred in DIG documents.

We already have de�ned translation rules that can be used in the future

to build some translation module. With this module, an OWL-QL server

will translate OWL-QL to DIG 2.0 and vice versa. The translation can be

very useful if there is already DL reasoner that supports DIG 2.0.

39

Appendix A

Query Answering Schema

A.1 Rede�nition (Extension) of Core DIG Schema

<?xml version="1.0" encoding="ISO-8859-1"?>

<xs:schema targetNamespace="http://dl.kr.org/dig2.0#"

xmlns="http://dl.kr.org/dig2.0#"

xmlns:qai="http://extension/QueryAnswers"

xmlns:owl11xml="http://www.w3.org/2006/12/owl11-xml#"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="qualified">

<xs:import namespace="http://extension/QueryAnswers"

schemaLocation="ExtensionQueryAnswers.xsd"/>

<xs:import namespace="http://www.w3.org/2006/12/owl11-xml#"

schemaLocation="owl1.1.xsd"/>

<xs:redefine schemaLocation="dig2.0.xsd">

<!-- Redefine REQUEST -->

<xs:group name="Request">

<xs:choice>

<xs:group ref="Request"/>

<xs:element name="Retrieve" type="qai:RetrieveType"/>

<xs:element name="ReleaseQuery" type="qai:ReleaseType" />

</xs:choice>

40

</xs:group>

<!-- Redefine Response -->

<xs:group name="Response">

<xs:choice>

<xs:group ref="Response"/>

<xs:element name="QueryAnswers"

type="qai:QueryAnswersType"/>

<xs:element name="DIGDescriptionExtension"

type=qait:DIGDescriptionExtensionType"/>

</xs:choice>

</xs:group>

</xs:redefine>

</xs:schema>

A.2 XML Schema of Query Answering

<?xml version="1.0" encoding="ISO-8859-1"?>

<xs:schema targetNamespace="http://extension/QueryAnswers"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://extension/QueryAnswers"

xmlns:owl11xml="http://www.w3.org/2006/12/owl11-xml#"

xmlns:dig="http://dl.kr.org/dig2.0#"

elementFormDefault="qualified"

attributeFormDefault="qualified">

<xs:import namespace="http://www.w3.org/2006/12/owl11-xml#"

schemaLocation="owl1.1.xsd"/>

<xs:import namespace="http://www.w3.org/XML/1998/namespace"

schemaLocation="http://www.w3.org/2001/xml.xsd"/>

<xs:import namespace="http://dl.kr.org/dig2.0#"

schemaLocation="dig2.0.xsd"/>

<xs:complexType name="RetrieveType">

<xs:complexContent>

<xs:extension base="dig:RequestToOntology">

<xs:attribute name="queryID" type="xs:string"

41

use="required"/>

<xs:attribute name="ntuples" type="xs:string"

use="optional"/>

<xs:attribute name="mode" type="xs:string"

use="optional"/>

<xs:attribute name="asID" type="xs:string"

use="optional"/>

<xs:sequence>

<xs:group ref="RetrieveGroup" minOccurs="1"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:group name="RetrieveGroup">

<xs:sequence>

<xs:element name="QueryHead" type="QueryHeadType"

minOccurs="0"/>

<xs:element name="QueryBody" type="QueryBodyType"

minOccurs="0"/>

</xs:sequence>

</xs:group>

<xs:complexType name ="QueryHeadType">

<xs:sequence>

<xs:element ref ="QueryVariable" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element ref ="ConcreteDomainQueryVariable"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name ="QueryBodyType">

<xs:sequence>

<xs:group ref="BooleanConstructGroup" minOccurs="0"

maxOccurs="unbounded"/>

<xs:group ref="QueryAtomsGroup" maxOccurs="unbounded"/>

</xs:sequence>

42

</xs:complexType>

<xs:group name="BooleanConstructGroup">

<xs:choice>

<xs:element name="QueryObjectIntersectionOf"/>

<xs:element name="QueryObjectUnionOf"/>

<xs:element name="QueryObjectComplementOf" />

</xs:choice>

</xs:group>

<xs:group name="QueryAtomsGroup">

<xs:choice>

<xs:element ref="ConceptQueryAtom" minOccurs="0"/>

<xs:element ref="RoleQueryAtom" minOccurs="0"/>

<xs:element ref="ConcreteDomainQueryAtom" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element ref="PredicateQueryAtom" minOccurs="0"/>

<xs:element ref="SameAsQueryAtom" minOccurs="0"/>

<xs:element ref="DifferentFromQueryAtom" minOccurs="0"/>

<xs:element ref="QueryProject" minOccurs="0"/>

</xs:choice>

</xs:group>

<xs:element name="ConceptQueryAtom">

<xs:complexType>

<xs:sequence>

<xs:group ref="VarIndv" />

<xs:group ref="owl11xml:Description" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="RoleQueryAtom">

<xs:complexType>

<xs:sequence>

<xs:element ref="owl11xml:ObjectProperty"/>

<xs:group ref="VarIndv" minOccurs="2"

maxOccurs="unbounded"/>

43

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ConcreteDomainQueryAtom">

<xs:complexType>

<xs:sequence>

<xs:group ref="VarIndv"/>

<xs:element ref ="ConcreteDomainQueryVariable"/>

<xs:element ref="owl11xml:DataProperty"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="PredicateQueryAtom">

<xs:complexType>

<xs:sequence>

<xs:element ref ="ConcreteDomainQueryVariable"/>

<xs:element ref ="owl11xml:Constant"/>

<xs:element ref="predicate" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element ref="lambda" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element ref="op" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="QueryProject">

<xs:complexType>

<xs:choice>

<xs:group ref="RetrieveGroup"/>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="SameAsQueryAtom">

44

<xs:complexType>

<xs:choice>

<xs:element ref="QueryVariable" minOccurs="2"

maxOccurs="unbounded"/>

<xs:element ref="owl11xml:Individual" minOccurs="2"

maxOccurs="unbounded"/>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="DifferentFromQueryAtom">

<xs:complexType>

<xs:choice>

<xs:element ref="QueryVariable" minOccurs="2"

maxOccurs="unbounded"/>

<xs:element ref="owl11xml:Individual" minOccurs="2"

maxOccurs="unbounded"/>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="op">

<xs:complexType>

<xs:simpleContent>

<xs:extension base ="xs:string">

<xs:attribute name="name" use="required"

type="opAttributes"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:simpleType name = "opAttributes">

<xs:restriction base = "xs:string">

<xs:enumeration value=">"/>

<xs:enumeration value="<"/>

<xs:enumeration value="="/>

</xs:restriction>

45

</xs:simpleType>

<xs:complexType name="Variable">

<xs:attribute name="URI" type="xs:anyURI" use="required"/>

<xs:attributeGroup ref="xml:specialAttrs"/>

</xs:complexType>

<xs:group name="VarIndv">

<xs:choice>

<xs:element ref="QueryVariable" minOccurs="0"/>

<xs:element ref="owl11xml:Individual" minOccurs="0"/>

</xs:choice>

</xs:group>

<xs:complexType name="BooleanConstructType">

<xs:choice>

<xs:group ref="BooleanConstructGroup" minOccurs="0"/>

</xs:choice>

</xs:complexType>

<xs:element name="predicate" type="Variable"/>

<xs:element name="lambda" type="Variable"/>

<xs:element name="QueryVariable" type="Variable"/>

<xs:element name="ConcreteDomainQueryVariable" type="Variable"/>

<!-- QueryAnswers start -->

<xs:complexType name="QueryAnswersType">

<xs:sequence>

<xs:element name="QueryHead" type="QueryHeadType" minOccurs="0"/>

<xs:element ref="Binding" minOccurs="0"/>

<xs:element name="notifier" type="notifierType" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="queryID" type="xs:string" use="required"/>

<xs:attribute name="asID" type="xs:string" use="optional"/>

</xs:complexType>

<xs:element name="Binding">

<xs:complexType>

46

<xs:choice>

<xs:group ref="QueryVariableGroup"/>

<xs:group ref="ConcreteDomainQueryVariableGroup"/>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:group name="QueryVariableGroup">

<xs:sequence>

<xs:element name="QueryVariable" type="Variable"

minOccurs="0"/>

<xs:element ref="owl11xml:Individual" minOccurs="0"/>

</xs:sequence>

</xs:group>

<xs:group name="ConcreteDomainQueryVariableGroup">

<xs:sequence>

<xs:element ref="ConcreteDomainQueryVariable"

minOccurs="0"/>

<xs:element ref="ConcreteDomainBinding"

minOccurs="0"/>

</xs:sequence>

</xs:group>

<xs:element name="ConcreteDomainBinding">

<xs:complexType>

<xs:sequence>

<xs:element name="cdvar" type="Variable"/>

<xs:element ref="owl11xml:Constant" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name="notifierType">

<xs:attribute name="message" type="xs:string"/>

</xs:complexType>

<!-- Release Begin -->

47

<xs:complexType name="ReleaseType" >

<xs:attribute name="queryID" type="xs:int" use="optional"/>

</xs:complexType>

<xs:complexType name="DIGDescriptionExtensionType">

<xs:sequence>

<xs:element name="SupportedRequest" minOccurs="0"

maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="requestName" type="xs:anyURI"/>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="dig:name" type="xs:string"/>

<xs:attribute name="dig:version" type="xs:string"/>

<xs:attribute name="dig:message" type="xs:string"/>

<xs:attribute name="supportedLanguage" type="xs:string"/>

<xs:attribute name="supportsAnnotations" type="xs:boolean"/>

<xs:attribute name="supportsImports" type="xs:boolean"/>

<xs:attribute name="supportsQueryLanguage" type="xs:string"/>

</xs:complexType>

</xs:schema>

48

Appendix B

XSLT Rules for OWL-QL and

DIG 2.0

B.1 Request

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"

xmlns:owl-ql="http://www.w3.org/2003/10/owl-ql-syntax#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://dl.kr.org/dig2.0#"

xmlns:owl11xml="http://www.w3.org/2006/12/owl11-xml#"

xmlns:qai="http://extension/QueryAnswers"

<exclude-result-prefixes="var owl11xml-ql rdf ">

<xsl:output method="xml" indent="yes" encoding="utf-8"/>

<xsl:template match="owl-ql:query" >

<RequestMessage>

<xsl:variable name="x" select="." />

<!-- create namespace declarations -->

<xsl:for-each select="in-scope-prefixes($x)">

<xsl:namespace name="{.}">

49

<xsl:value-of

select="namespace-uri-for-prefix(., $x)" />

</xsl:namespace>

</xsl:for-each>

<qai:Retrieve>

<xsl:attribute name="qai:queryID">

</xsl:attribute>

<xsl:attribute name="dig:ontologyURI">

<xsl:value-of select="*/owl-ql:kbRef/@rdf:resource"/>

</xsl:attribute>

<xsl:for-each select="owl-ql:answerSizeBound">

<xsl:attribute name="qai:ntuples">

<xsl:value-of select="."/>

</xsl:attribute>

</xsl:for-each>

<xsl:for-each select="/*/owl-ql:serverContinuation">

<!-- Assumed as proactive value if the element exists -->

<xsl:attribute name="mode">proactive</xsl:attribute>

</xsl:for-each>

<xsl:apply-templates select="owl-ql:mustBindVars"/>

<xsl:apply-templates select="owl-ql:queryPattern"/>

<xsl:apply-templates select="owl-ql:ServerContinuation"/>

<xsl:apply-templates select="owl-ql:ServerTermination"/>

</qai:Retrieve>

</qai:RequestMessage>

</xsl:template>

<xsl:template match="owl-ql:mustBindVars">

<qai:QueryHead>

<xsl:element name="QueryVariable">

<xsl:attribute name="URI">

<xsl:value-of select="concat ('#',local-name(*))"/>

</xsl:attribute>

</xsl:element>

</qai:QueryHead>

</xsl:template>

50

<xsl:template match="owl-ql:queryPattern">

<QueryBody>

<xsl:for-each select="//rdf:Description[1]/@rdf:about">

<qai:ConceptQueryAtom>

<qai:QueryVariable>

<xsl:attribute name="URI" >

<xsl:copy-of select="."/>

</xsl:attribute>

</qai:QueryVariable>

<owl11xml:OWLClass>

<xsl:attribute name="owl11xml:URI">

<xsl:value-of select="//rdf:type/@rdf:resource"/>

</xsl:attribute>

</owl11xml:OWLClass>

</qai:ConceptQueryAtom>

</xsl:for-each>

<xsl:for-each select="//rdf:Description[2]/@rdf:about">

<RoleQueryAtom>

<qai:QueryVariable>

<xsl:attribute name="qai:URI" >

<xsl:value-of select="."/>

</xsl:attribute>

</qai:QueryVariable>

<qai:QueryVariable>

<xsl:attribute name="qai:URI" >

<xsl:copy-of

select="//rdf:Description/*/@rdf:resource"/>

</xsl:attribute>

</qai:QueryVariable>

<xsl:for-each select="(//rdf:RDF/rdf:Description/*)">

<owl11xml:ObjectProperty>

<xsl:attribute name="owl11xml:URI" >

<xsl:value-of select="local-name()"/>

</xsl:attribute>

</owl11xml:ObjectProperty>

</xsl:for-each>

</qai:RoleQueryAtom>

</xsl:for-each>

51

</qai:QueryBody>

</xsl:template>

<xsl:template match="//rdf:RDF/rdf:Description">

<qai:ConceptQueryAtom>

<qai:QueryVariable>

<xsl:attribute name="URI" >

<xsl:value-of select="//rdf:Description/@rdf:about"/>

</xsl:attribute>

</qai:QueryVariable>

<owl11xml:OWLClass>

<xsl:attribute name="owl11xml:URI" >

<xsl:value-of select="//rdf:type/@rdf:resource"/>

</xsl:attribute>

</owl11xml:OWLClass>

</qai:ConceptQueryAtom>

</xsl:template>

<xsl:template match="owl-ql:serverTermination">

<dig:Release/>

<!-- No queryID -->

</xsl:template>

</xsl:stylesheet>

B.2 Response

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="2.0"

xmlns:owl-ql="http://www.w3.org/2003/10/owl-ql-syntax#"

xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://dl.kr.org/dig2.0#"

xmlns:owl11xml="http://www.w3.org/2006/12/owl11-xml#"

xmlns:qai="http://extension/QueryAnswers"

exclude-result-prefixes="owl11xml qai xsl">

52

<xsl:output method="xml" indent="yes" encoding="ISO-8859-1"/>

<xsl:strip-space elements="*"/>

<xsl:template match="qai:ResponseMessage">

<xsl:apply-templates select="qai:QueryAnswers"/>

</xsl:template>

<xsl:template match="qai:QueryAnswers">

<owl-ql:answerBundle>

<xsl:apply-templates select="qai:Binding"/>

<xsl:apply-templates select="qai:notifier"/>

</owl-ql:answerBundle>

</xsl:template>

<xsl:variable name="var1" select=

"substring-after(//qai:QueryHead/qai:QueryVariable/qai:@URI,'#')"/>

<xsl:variable name="var2" select="concat('var:',$var1)"/>

<xsl:template match="qai:Binding">

<owl-ql:answer>

<owl-ql:binding-set>

<xsl:element name="{$var2}">

<xsl:attribute name="rdf:resource" >

<xsl:value-of

select="//owl11xml:Individual/@owl11xml:URI"/>

</xsl:attribute>

</xsl:element>

</owl-ql:binding-set>

<owl-ql:answerPatternInstance>

<rdf:RDF

xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#">

<rdf:Description>

<xsl:attribute name="rdf:about">

<xsl:value-of select=

"//owl11xml:Individual/@owl11xml:URI"/>

</xsl:attribute>

53

</rdf:Description>

</rdf:RDF>

</owl-ql:answerPatternInstance>

</owl-ql:answer>

</xsl:template>

<xsl:template match="qai:notifier">

<owl-ql:continuation>

<xsl:choose>

<xsl:when test="@qai:message='last'">

<owl-ql:termination-token>

<xsl:choose>

<xsl:when test="@qai:message='last'">

<owl-ql:end/>

</xsl:when>

</xsl:choose>

</owl-ql:termination-token>

</xsl:when>

<xsl:otherwise>

<owl-ql:continuation-token>

<owl-ql:processHandle>

<xsl:value-of select="//qai:QueryAnswers/@qai:asID"/>

</owl-ql:processHandle>

<owl-ql:answerBundleSize>

<xsl:value-of select="//qai:notifier/@qai:message"/>

</owl-ql:answerBundleSize>

</owl-ql:continuation-token>

</xsl:otherwise>

</xsl:choose>

</owl-ql:continuation>

</xsl:template>

</xsl:stylesheet>

54

Bibliography

[1] New Racer Query Language.

http://users.encs.concordia.ca/~haarslev/racer/racer-queries.pdf.

[2] RacerPro, an OWL reasoner and inference server for the Semantic Web.

http://www.racer-systems.com/.

[3] Alissa Kaplunova and Ralf Möller, DIG 2.0 Proposal for a Query Interface (2006).

http://www.sts.tu-harburg.de/~al.kaplunova/dig2-query-interface.html.

[4] Alissa Kaplunova, Atila Kaya and Ralf Möller, First Experiences with Load

Balancing and Caching for Semantic Web Applications, Institute for Software

Systems (STS), Hamburg University of Technology, Germany, 2006.

http://www.sts.tu-harburg.de/tech-reports/papers.html.

[5] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernàndez, Michael Kay,

Jonathan Robie and Jèrôme Simèon, XML Path Language 2.0 (2007).

http://www.w3.org/TR/xpath20/.

[6] Sean Bechhofer and Boris Motik, DIG 2.0 Speci�cation Editor's Draft (2006).

http://www.cs.man.ac.uk/~bmotik/dig/dig_specification.html.

[7] Sean Bechhofer, DL Interface (2006). http://dl.kr.org/dig/interface.html.

[8] Bernardo Cuenca Grau, Boris Motik, and Peter Patel-Schneider, OWL1.1 (2006).

http://owl1_1.cs.manchester.ac.uk/xml_syntax.html.

[9] David C. Fallside and Priscilla Walmsley, XML Schema Part 0: Primer Second

Edition (2004). http://www.w3.org/TR/xmlschema-0.

[10] DIG 2.0 Schema. http://www.cs.man.ac.uk/~bmotik/dig/schema/dig2.0.xsd/.

[11] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi and Peter F.

Patel-Schneider (ed.), The description logic handbook: Theory, implementation and

applications, Cambridge University Press, 2003.

55

[12] Alissa Kaplunova and Ralf Möller, DIG 2.0 Concrete Domain Interface Proposal

(2006).

http://www.sts.tu-harburg.de/~al.kaplunova/dig-cd-interface.html.

[13] Michael Kay, XSL Transformations 2.0 (2007). http://www.w3.org/TR/xslth20/.

[14] R. Fikes, P. Hayes and I. Horrocks, OWL-QL - A Language for Deductive Query

Answering on the Semantic Web, Technical Report KSL-03-14, Knowledge Systems

Lab, Stanford University, CA, USA, 2003.

[15] Saxon 8, The XSLT and XQuery Processor, Saxonica.

http://saxon.sourceforge.net/.

[16] Sean Bechhofer, DIG 2.0: The DIG Description Logic Interface (2006).

http://dig.cs.manchester.ac.uk.

[17] Thorsten Liebig, Anni-Yasmin Turhan, Olaf Noppens and Timo Weithöner, DIG 2.0

Proposal for Accessing Told Data (2006).

http://www.informatik.uni-ulm.de/ki/Liebig/told-access.html.

[18] Anni-Yasmin Turhan and Yusri Bong, DIG 2.0 Proposal for The Standard

Extension: Non-standard Inferences (2006).

http://lat.inf.tu-dresden.de/~turhan/NSI.html.

[19] XML Schema Validator tool, DecisionSoft Limited.

http://tools.decisionsoft.com/schemaValidate.

[20] Xalan-Java Version 2.7.0, Apache. http://xml.apache.org/xalan-j/.

[21] XMLBeans, Apache. http://xmlbeans.apache.org/.

56

