
Translation of Model-based Behavioral
Specifications into TLA+

Diplomarbeit

Submitted by:

Shan Huang

Informatik-Ingenieurwesen

Matriculation Number: 15277

Supervised by:

Prof. Dr. Ralf Möller (STS)
Prof. Dr. Siegfried M. Rump(TI3)

M.Sc. Miguel Garcia (STS)

Hamburg, Germany
15th April 2007

1

Declaration:

I declare that:

this work has been prepared by myself, all literally or content-related quotations from
other sources are clearly pointed out, and no other sources or aids than the ones that
are declared are used.

Hamburg, 15.04.2007

Shan Huang

2

Acknowledgment:

My deepest thanks to Prof. Dr. Ralf Möller and Prof. Dr. Siegfried M.Rump for
giving me the opportunity to work on this thesis project under their supervision.

I would also like to express my appreciation to M. Sc. Miguel Garcia, who was very
helpful in providing advice and direction on this thesis.

This project could not have been as fruitful as it was, without the support, interest and
inputs from individuals and their willingness to share their experience and knowledge,
and the time given to discuss related topics.

3

Abstract:

This paper presents an implementation approach to convert UML statechart diagram,
which represents the model-based behaviour specifications, into the TLA+ language.
An automatic transformation procedures is introduced which handles all of the
components in the statechart diagram. The produced specifications will be checked
afterwards with the Model-Checker TLC. Two examples, microwave oven system and
trailway gateway system will be introduced. They correspond respectively to the flat
and hierarchical statechart diagram.

4

Table of Contents

Chapter 1. Introduction..7
1.1. Why do We need this Transformation?..7
1.2. Basic Transformation Idea..8
1.3. Structure of this Thesis...8

Chapter 2. Statecharts Metamodel..10
2.1. Statecharts Introduction...10
2.2. Statecharts Components..10

Chapter 3. Generate Statecharts Instance..16
3.1. Eclipse Modelling Framework Introduction..16
3.2. Emfatic Introduction..17
3.3. How to define the Instance of Metamodel..20

Chapter 4. TLA+ Specification..25
4.1. Microwave oven..25
4.2. Trailway Gateway System..28

Chapter 5. Transformation Algorithms..35
5.1. Visitor Pattern...35
5.2. Transformation Algorithms..38

5.2.1. Handling State..38
5.2.2. Handling Attribute..39
5.2.3. Handling Event..40
5.2.4. Handling Action..41

5.2.4.1. Executable UML Introduction..41
5.2.4.2. Handling Reference Action..41

5.2.5. Handling Guard...42
5.2.6. Other Statecharts Components and TLA+ Statements.....................43

5.3. Plugin for the Generation of Target File...44
Chapter 6. TLC model checker..46

6.1. Why model check...46
6.2. How TLC works?..47

Chapter 7. Future Work...52
Chapter 8. Conclusion...53
Appendix 1...55
Appendix 2...60
Appendix 3...63
Appendix 4...89
Reference ..92

5

List of Figures

Fig 2.1 Class Diagram of Statecharts Metamodel..11
Fig 2.2 Detailed Metamodel of Action Component..14
Fig 2.3 Detailed Metamodel of Guard Component..15

Fig 3.1 Working Theory of EMF...16
Fig 3.2 EMF Code Generation Structure...20
Fig 3.3 Statecharts of TrailObserver..21
Fig 3.4 Instance Structure of TrailObserver...22
Fig 3.5 Properties View of State Component..23
Fig 3.6 Properties View of Guard Component...23
Fig 3.7 Properties View of Reference Action...24

Fig 4.1 Statecharts of Microwave Oven System..25
Fig 4.2 Trailway Gateway System...29
Fig 4.3 Statecharts of Trail-Light..30
Fig 4.4 Statecharts of Trail-Gate..32
Fig 4.5 Instance Structure of Complete Trailway Gateway System................33
Fig 4.6 Statecharts of Complete Trailway Gateway System...........................34

Fig 5.1 TLA+ Specification Generation Plugin...35
Fig 5.2 Working Theory of Visitor Pattern ...36
Fig 5.3 State Cooking with Action..41

Fig 6.1 Structure of TLC Model Checker...47

6

Chapter 1. Introduction

1.1. Why do We need this Transformation?

Model-based behavioural specifications offer intuitive, accessible overviews of
complex systems. Each system model can contain different states. Each state
represents different context of the behaviour. Statechart diagram, originally designed
for modeling reactive systems, is used by most of the current object-oriented
methodologies to describe the dynamic behaviors of a system. It consists of discrete
components such as states, transitions, events, actions and so on.

The user can specify a system by describing its allowed behaviours. It will lighten the
future work if the user can understand a system before building it and they can write a
specification of a system before implementing it, which means a written description
of what a system is supposed to do. For this purpose, Leslie Lamport has invented
TLA, the Temporal Logic of Actions, in the late 1980s. It is logic for specifying and
reasoning about concurrent systems. TLA makes it practical to describe a system by a
single formula. It provides a mathematical foundation for describing systems. Most of
a TLA specification consists of ordinary, nontemporal mathematics. Temporal logic
plays a significant role in describing those properties that it's good at describing. TLA
also provides a nice way to formalize the style of reasoning about systems that has
proved to be most effective in practice — a style known as assertional reasoning. [7]

To write the specifications, Leslie Lamport has developed a corresponding
specification language. The language is called TLA+. Temporal Logic of Actions Plus
(TLA+) is a formal notation for specifying the valid states of a system. It is a
specification language for concurrent and reactive systems that combines the temporal
logic TLA with full first-order logic and ZF set theory. In the last years, TLA+ has
been refined for specifying a wide class of systems — from program interfaces (APIs)
to distributed systems. It can be used to write a precise, formal description of almost
any sorts of discrete system. It's especially well suited to describing asynchronous
systems. [1]

The combined use of UML and TLA+ for software specification is a recent research
topic. So far, the user accomplishes normally the specification of system manual, but
after having UML statecharts and TLA+ language in our hands, we might need a
method, with it we can automatically translate a statechart diagram to TLA+
specification. How to create a transformation between UML statechart diagram and
TLA+ specifications and how to check the “correctness” of the generated TLA+ file,
which is the aim of this project.

7

1.2. Basic Transformation Idea

The transformation is aimed to build a bridge to establish the connection between
UML statecharts and TLA+ via a transformation algorithm.

1. To complete this purpose, I must first find out an appropriate metamodel of the
source statechart diagram. MDA infrastructure Java codes can be generated
with EMF automatically. After having the whole metamodel implementation
in hand, I can define an arbitrary statecharts, i.e. an arbitrary instance of the
statechart metamodel.

2. Afterwards, I must implement the transformation algorithm to determine how
to generate the target specialization according to the defined instances. This
algorithm must map both source metamodel and target language. Since the
TLA+ statements should be generated according to the types of components
defined in the metamodel and every component has its own implementation,
thus visitor pattern is here a good choice to accomplish this purpose.

3. Once source metamodel, source instance and transformation algorithm are
determined in this way, a TLA+ code generator could be created. The “top”
state of the source statecharts must be “passed” in the generator, the generator
will traverse through all of the components in the object structure with visitor
and generate the corresponding specification.

1.3. Structure of this Thesis

Chapter 2
gives the reader an introduction of statecharts metamodel. All components needed for
the transformation will be declared in detail.

Chapter 3
gives a basic introduction of Eclipse Modelling Framework (EMF). The keystone in
this chapter is how to define the need instance of metamodel. The instances of two
system models are declared as example, microwave oven system and trailway
gateway system, which correspond respectively the flat and hierarchical statecharts.

Chapter 4
the above defined system models have been specified with TLA+ in this chapter. It
presents a detailed description of the specification.

Chapter 5
a brief description of the TLA+ generating process is declared in this chapter. The

8

basic working theory of used visitor pattern is shown firstly. Various TLA+ statements
can be generated according to the statecharts components through this design pattern.
The main transformation algorithm is presented afterwards. It is interpreted according
to the types of statecharts components. A Java plugin implemented for saving and
generating .tla file of the produced TLA+ specification is declared lastly.

Chapter 6
this chapter introduces briefly the working theory of the model checker TLC. The
generated TLA+ specialization is inputed in the model checker as source file and the
checking result is analyzed as well.

Chapter 7
gives introduction of possible developments and improvements in this researching
area.

Chapter 8
Conclusions gained from this work.

9

Chapter 2. Statecharts Metamodel

2.1. Statecharts Introduction

A statechart diagram depicts all possible dynamic behaviours which describe an entity
to respond according to the affairs and showed how that entity does a reaction
according to the current state in different time. Usually we create a statechart diagram
for the purpose: To describe the complex behaviours among the states, submachines,
or statemachines.

UML statechart diagram is an important aid as part of the OMG UML specification in
order to model the dynamic behaviours of system or subsystem. It is a visual
representation of the UML specification containing various statemachines. Preferred
use-area of UML statechart diagram is the modelling of discrete condition transitions
in reactive system such as embedded system and process-automation-system.
However statechart diagram is also suitable to model the behaviours of static elements
within a static model, for example UML class or UML use-case.

UML statechart diagram makes both semi-formal and formal specification of the
system performance possible, which in connection with an implementation model,
enable the automatic code generation of real system. However the statecharts
specification leaves also many questions of the notation, syntax and semantics of
statemachines open so that the corresponding metamodel must be extended for a
complete formal description of real system.

2.2. Statecharts Components

Since the UML statechart diagram is the source model in our transformation, to let the
transformation works, a metamodel of it is necessary. The statecharts metamodel (i.e.
the definition about the statechart diagram) can be represented by the UML class
diagram. Figure 2.1 shows the basic components of statechart diagram such as
statemachine, transition, event, attribute, action and a variety of different states. It
defines the abstract syntax of UML statemachine. If a component describes the
behaviour with another model component, it must has an appropriate association with
it. In the following sections, I will shortly introduce the main components in this
diagram.

10

State Machine is represented by the class statemachine which possesses a name as
specialization of model element. It is the top component of system. Statemachine is
composed of a finite number of various states, transitions between those states,
events, actions and some other components. State is the condition that the object
carries out a certain activity or waits for a certain event. State uses usually transition
to connect together. In this case, transition represents the relation among the states. It
is triggered by a certain event and carries out a particular action or causes a particular
end state.

A class named PredefinedClass is used to define some necessary objects in the TLA+
specification, which are not integral parts of any statecharts components. In this
project, I have defined the following three subclasses of PredefinedClass:

● Timer
Timer is a very common component appeared in many models based on
behavioral system. Thus we need a class named timer to implement it.

● Standard Module
Some modules like arithmetic operators, sequence are not built into TLA+.
Certainly I won't want to write a specification in which + means addition of
matrices rather than numbers. We should be able to declare the needed
standard modules of TLA+ specification when we define the statecharts
instance. Therefore, the corresponding component definition is necessary in
the statecharts metamodel. In this way, the standard module declaration will be
incorporated into the statements of TLA+.

● QueueEmulate
we need also a help object named QueueEmulate, which is used to save the

11

Fig 2.1 Class Diagram of Statecharts Metamodel

call events and dispatch it at another time when needed. The detail of the
implementation will be declared in the following chapter.

State is a period of time during which an object is waiting for an event to occur. State
can be divided into two subclasses, simple state and composite state. Simple state
contains following two various subclasses.

● initial state means the default state assumed upon entering a state context.
The initial state looks like a transition but has a ball at the origination end in
the diagram.

● final state is shown by a circumscribed “T” (alternative notation is a dot
within a circle). This means that the object no longer accepts events and will
be destroyed. It represents the completion of activity in the enclosing state and
it triggers a transition on the enclosing state labelled by the implicit activity
completion event (usually displayed as an unlabelled transition), if such a
transition is defined.

Composite State means the states which contains the other normal states. A
composite state is divided into two or more concurrent substates which called regions,
or into both exclusive disjoint substates. A given state may be refined only in one of
these two ways. Naturally each substate of a composite state can also be a composite
state of the either types. Each region of a state has perhaps its own initial pseudostate
and final state. A transition to the including state represents a transition to the initial
pseudostate. A transition to a final state represents the completion of the activity in the
including region.

State can be associated with its entry and exit action sequence, which denotes the
actions that have to be performed as soon as the state is entered or exited.
doEntry/doExit statement in TLA+ denotes the local internal activities that must be
executed as long as the state is active.

Event is a one-way (asynchronous) communication from one component to another. It
has following two characters. First, it is atomic (non-interruptible) and second it may
cause a transition between states. As soon as a state becomes active, a doEntry event
generated, which is visible only for internal transitions of the state. If a state becomes
inactive, then doExit event generated, which is visible only for internal transitions
likewise. If these do-Activity procedures of a state are terminated, then the event
completion is generated. This event is visible within the state as well as for all
transitions, which depart from this state.

Transition defines the relationship between two states. It indicates that the first state
enters the second state and carries out specific actions if a specified event occurs or a
specified conditions is filled. Transition is a response to an external event received by

12

a component. It may invoke an action and cause the component to change. It may also
send an event to an external component. The trigger of a transition is the appearance
of the corresponding event which is labelled on this transition. The event can have
parameters which are accessible through the corresponding actions specified on the
transition or the exit and entry actions associated with the source and target states.

A transition occurs, if the following conditions filled:

● The source state is active.
● The trigger event is released.
● The guard, which is defined by the state, is fulfilled.

Action Sequence is the action expressions, which may be composed of a number of
distinct actions that explicitly generate events, such as sending signals or invoking
operations. Action sequence can be associated with state and transition between states
and it has the following various types:

● Entry Action Sequence
This label identifies an action sequence specified by the corresponding action
expression that is performed by entering the state.

● Exit Action Sequence
This label identifies an action sequence specified by the corresponding action
expression that is performed by exiting a state.

● Transition Action Sequence
This label identifies an action sequence, specified by the corresponding action
expression that is performed between the states.

Figure 2.2 below shows the detailed structure of the action components in the
statecharts metamodel.

Action is small atomic behaviour executed at specified points in a statemachine. They
are assumed to take an insignificant amount of time to execute and are non-
interruptible. Action is invoked by a transition. It is executed if and when the
transition fires. Action will be associated with the corresponding action sequence.
Three various actions are defined in the statecharts metamodel according to the type
of object which the action deals with. [5]

13

● Time Action
In general, a time action defines the behaviors of system timer.

● Attribute Action
Attribute action is the activity defined for the changing of attribute. When
executed, the action takes some initial values of attributes, performs
processing and produces the set of output values.

● Reference Action
A reference action defines the behaviours occurred between the source state
and the target state. It will be associated with the corresponding entry or exit
action sequence defined with a state. If such a reference action occurs, any
nested attributes or timer actions are forcibly performed, then the transition
occurs and the new state is established.

Guard is a boolean expression written in terms of the object which the guard
component guards. It returns a TRUE or FALSE value that controls whether or not a
transition has taken place. Figure 2.3 below shows the detailed structure of the guard
component. According to the type of the guarded object, guard component can be
divided in the following four types:

● Constant Guard
System model needs sometimes constants as parameters to specify the initial
values of variables or describe system constraints. Constant guard is used to
determine whether a transition satisfies a certain constant limit before the
transition sends out .

14

Fig 2.2 Detailed Metamodel of Action Component

● Attribute Guard
Some systems need to judge before the transition sends out whether a certain
system attribute is satisfied or not. Thus we need attribute guard to estimate if
the value of attribute is true. Attribute guard is associated with a particular
attribute of the system. It will be true when the value of attribute is true.

● Event Guard
Some events can be used as judgment condition for transition sending. The
system needs to judge before the transition sends out whether a certain event
has already been triggered or not.

● State Guard
Some system states can also be used as judgment condition. The system needs
to judge whether the system has already been placed in a certain state before
the transition sends out. State guard is associated with a particular state, i.e. if
and only if the actual state equals the needed state, then the transition will be
sent out.

15

Fig 2.3 Detailed Metamodel of Guard Component

Chapter 3. Generate Statecharts Instance

3.1. Eclipse Modelling Framework Introduction

According to the above generated statecharts metamodel, we can complete a Java
infrastructure to implement all components defined in it. Afterwards we can instance
the metamodel. With Eclipse Modelling Framework (EMF), all needed Java
implementations can be generated automatically. Figure 3.1 below shows the basic
working theory of EMF and followed with a brief introduction:

EMF follows a model driven approach targeting software development.
Transformations taken during a classical MDA (Model Driven Architecture) process
are addressed by EMF. EMF consists of three main parts:

● EMF.Core comprises model description complying ECore, model persistence,
change notification and reflective API.

● EMF.Edit supports the creation of EMF model editors, by including content
and label provider classes and command framework.

● EMF.Codegen provides the infrastructure for generating all the needed
artifacts for an EMF model editor. [4]

There are two models defined in EMF, Ecore model and Genmodel. Ecore model

16

Fig 3.1 Working Theory of EMF [4]

represents the Platform Independent Model (PIM) and Genmodel represents the
Platform Specific Model (PSM). The transformation with EMF is normally composed
of two steps:

● Ecore model (PIM) must be first transformed to Genmodel (PSM). Genmodel
includes additional informations about the structure and organization of future
code to be generated.

● Second, the in last step generated Genmodel (PSM) could be automatically
transformed to the actual code with the transformation chain support that
EMF provides.

As shown in figure 3.1, the input model of EMF generator should be the Genmodel.
The Genmodel is transformed from the PIM Ecore model. The user can either manual
or use other language to implement Ecore model. For example, we can use UML
tool, XML schema or directly Java interfaces to generate Ecore model.

3.2. Emfatic Introduction

In this project, the definition for statechart metamodel will be accomplished using
Emfatic syntax. Emfatic is a language designed to represent EMF Ecore model in a
textual form. The examples below introduce briefly the syntax of Emfatic and the
mapping between Emfatic declarations and the corresponding Ecore constructs.

The first component that must be declared in an Emfatic file is package declaration.
This necessary component is called main-package-declaration and it contains all other
components of the generated Ecore file. The package declaration corresponds to the
EPackage in a Ecore file.

package statecharts;

Since I have defined three packages which correspond respectively to the basic
components of statechart diagram, the action components and the guard components.
Thus I must import the statements defined in external Ecore models as reference. The
example below demonstrates the basic syntax of import statements.

import "platform:/resource/statecharts/model/statechartsAction.ecore";
import "platform:/resource/statecharts/model/statechartsGuard.ecore";

The following example containing class declarations demonstrates how to use
keywords ref and val to define the association and aggregation respectively among
statecharts components.

17

class State extends NamedElement {
 !ordered ref CompositeState #substates parent;
 !ordered ref Transition[0..*] #target incoming;
 !ordered ref StateMachine[1] statemachine;
 !ordered ref statechartsGuard.StateGuard[0..*] guards;
 !ordered val Transition[0..*] #source outgoing;
 !ordered val statechartsAction.ActionSequence[*] actionsequences;
}

Emfatic use keyword attr and op to define the class attributes and operations which
correspond respectively the EAttribute and EOperation of Ecore file.

class Timer extends PredefinedClass {
 attr boolean running;
 attr int timer;
 attr int minTimerValue;
 attr int maxTimerValue;
 op void clearTime();
 op void addTime();
 !ordered val statechartsAction.TimerAction[*] timeractions;
 !ordered val statechartsGuard.TimeGuard[*] timerguards;
}

I give here partial Emfatic code of important components in statechart metamodel. A
full version of the Emfatic model is given in Appendix 1.

class StateMachine extends NamedElement{
 !ordered val AttributeDef[0..*] attributes;
 !ordered val EventDef[0..*] events;
 !ordered val State[*] states;
 !ordered val PredefinedClass[0..*] predefinedclasses;
 !ordered val Submachine[*] submachines;
 !ordered val statechartsAction.Action[*] actions;
 !ordered val statechartsAction.ActionSequence[*] actionsequences;
}

class State extends NamedElement {
 !ordered ref CompositeState #substates parent;
 !ordered ref Transition[0..*] #target incoming;
 !ordered ref StateMachine[1] statemachine;
 !ordered ref statechartsGuard.StateGuard[0..*] guards;
 !ordered val Transition[0..*] #source outgoing;
 !ordered val statechartsAction.ActionSequence[*] actionsequences;
}

18

class Transition {
 attr String label;
 !ordered ref EventDef[0..*] triggers;
 !ordered ref State #outgoing source;
 !ordered ref State #incoming target;
 !ordered val statechartsGuard.Guard[0..1] guard;
 !ordered val statechartsAction.ActionSequence[0..1] actionsequence;
}

class EventDef extends NamedElement {
 !ordered ref Transition[0..*] transitions;
 !ordered ref StateMachine statemachine;
 !ordered ref statechartsAction.Action[0..*] actions;
 !ordered ref statechartsGuard.EventGuard[0..*] guards;
}

class AttributeDef extends NamedElement {
 attr AttributeType attrType;
 attr String attrValue;
 !ordered ref StateMachine statemachine;
 !ordered ref statechartsGuard.AttributeGuard[0..*] guards;
 !ordered val statechartsAction.AttrAction[0..*] attractions;
 !ordered val statechartsAction.RefAction[0..*] refactions;
}

class ActionSequence extends statecharts.NamedElement {
attr ActionSequenceType type;

 !ordered ref statecharts.State[0..1] State;
 !ordered ref statecharts.Transition[0..*] transitions;
 !ordered ref statecharts.StateMachine statemachine;
 !ordered val Action[*] actions;
}

class Action extends statecharts.NamedElement {
attr ActionType type;
!ordered ref ActionSequence[*] actionsequences;
!ordered ref statecharts.StateMachine statemachine;
!ordered ref statecharts.EventDef event;

}

class Guard extends statecharts.NamedElement {
 attr String gdExpression;
 attr GuardLogicType logicRelation;

19

 !ordered ref statecharts.Transition[0..1] transition;
 !ordered ref CompositeGuard #subguards parentguard;
}

EMF provides tools and runtime support to produce a set of Java classes for the
model, a set of adapter classes that enable viewing and command-based editing of the
model, and a basic editor. According to the written Emfatic model, we can convert the
Emfatic model to Ecore model with the translator provided by Emfatic plugin and
create the Genmodel based on the Ecore model afterwards. With the code generator
from EMF, we can generate the model, edit, editor and test plugins in a single step.

3.3. How to define the Instance of Metamodel

After we launch a second instance of Eclipse called a runtime workbench, we can
create the instance of statecharts metamodel using the new created EMF Editor
plugin.

Figure 3.3 below shows an example statechart diagram of trail-observer. Trail-
observer is a component of the trailway gateway system introduced by Max Göbel in
his paper UML Statecharts. It is a component that observes the procedures on its

20

Fig 3.2 EMF Code Generation Structure

assigned track. After the activation, the track-observer is in the state Idle. If the signal
trainApproaching is received by the sensor before the train passes, so it changes to the
state trainPassing. But if a signal trainPassed is received at this time, then it is
obviously an error (since the train is not yet here) and the observer will change to state
faulty. If the signal trainPassed is received in the state trainPassing, so it will come
back into the state Idle. However, if another train is coming or time exceeds the
maximum duration (MAX_PASSING_DURATION) in the state trainPassing, the
observer will also change to the state faulty.

According to the system behaviors occurred in trailway gateway system, we define a
statecharts instance named TrailwayMachine.statecharts for the complete system. The
root component in this statecharts file is the statemachine TrailwayMachine.
TrailObserver is a submachine of the root component. Under it we should also define
some child nodes. Figure 3.4 shows the complete structure of the TrailObserver
instance.

Some basic components have direct aggregation-associations with the submachine,
such as Constants, Timers, Events and Attributes. They should be firstly instanced
during the instancing process. Then all of the existing states should be instanced. The
associated transitions and action sequences should be added in every state afterwards.
According to the defined association in the metamodel, the target state has an
aggregation association with the outgoing transition, thus the outgoing transition can
be defined as the child node of state. As shown in the red part of Figure 3.4, the state
trainPassing owns two outgoing transitions. Since the relation between source state
and incoming transition is a normal association, after the defining of all outgoing

21

Fig 3.3 Statecharts of TrailObserver

transitions, the incoming transitions will be automatically shown in the state's
properties view. Figure 3.5 below shows the properties view of state.

Each transition owns its guard. For example, the state trainPassing in above figure
sends out two transitions, T04 and T05. Transition T04 owns a composite guard,
which consists of a constant guard MAX_PASSING_DURATION and an event guard
trainapproaching. As shown in figure 3.3 we know that these two guards are
concurrent. Therefore, it is necessary to declare this relation. We can accomplish the
definition of logic relation in the properties view of guard component. According to
the defined logic relation, the corresponding TLA+ specification will be generated.
Figure 3.6 below shows the properties view of guard component.

22

Fig 3.4 Instance Structure of TrailObserver

According to the metamodel, each state should own its entry and exit action sequence.
Therefore, action sequences have to be declared in the child nodes of state. Action
sequence has mainly the following two functions:

1. Since the defined aggregation association between action sequence and action,
the corresponding state changes described through attribute actions or time
actions have to be defined as child nodes under action sequence.

2. Action sequence can be also used as ''carrier'' of reference action to connect
reference action and its belonged state, since there is not direct connection
between state and action. For the generation of TLA+ specification, we must
build the link between action and state through action sequence. Therefore, we
have to declare the corresponding action sequence in the properties view of the
reference action.

The attribute action or time action belongs normally to an entry or exit action
sequence, thus it should be declared as child nodes of action sequence. But reference
action should be defined direct under the submachine, because it doesn't belong to any
entry or exit action sequence of a particular state. Figure 3.7 shows the properties

23

Fig 3.5 Properties View of State Component

Fig 3.6 Properties View of Guard Component

view of the reference action openDoor of the microwave oven system. Noticed that
the belonged action sequences have been already declared here.

24

Fig 3.7 Properties View of Reference Action

Chapter 4. TLA+ Specification

4.1. Microwave oven

We use a microwave oven system as first example to demonstrate the TLA+
specification. Figure 4.1 shows its structure, which has one button and a light bulb
inside. It defines six states to describe the behaviors of the system. If the door is
closed and the button is pressed once, the oven starts cooking for 1 minute. Cooking
time can be extended by pressing the button while cooking. The oven is controlled by
a timer. Cooking is done using the power tube. If the door is opened, cooking is
interrupted. Initially, the door is closed and the oven is not cooking.

Fig 4.1 Statecharts of Microwave Oven System

The microwave can be energized or deenergized, has a door and an indicator light that
shows if the microwave is currently running or not. Since the system has also some
time functions, thus a timer named microwaveOvenTimer has to be implemented,
which should be also included in the variable declaration. Besides, a variable named
current indicates the current state of the system.

This introduces in total five variables, as shown below.

VARIABLE current,

 tube,

 light,
 door,

25

 microwaveOvenTimer

The statement TypeInvariant defines the allowable initial types of these variables.
For example, three of the above mentioned variables are always boolean variables.
The timer has a restriction from -1 to 60 and the variable current has a type State. The
TLA+ statement to express this is shown here:

TypeInvariant == /\tube \in BOOLEAN
 /\current \in State
 /\light \in BOOLEAN
 /\door \in BOOLEAN
 /\microwaveOvenTimer \in -1..60

Note that in this statement, the /\ symbols must line up precisely underneath one
another. Also, any text that follows the conjunct must appear to the right. The text can
cross multiple lines if need be, but it must always appear to the right of the position of
the symbol.

The Init statement defines the acceptable initial values of the variables. For example,
in this case, current state of the system is ReadyToCook. The initial values of the
microwave oven power, the indicator light and the door are off and the initial value of
the microwaveOvenTimer is -1.

Init == /\tube = FALSE
 /\current = ReadyToCook
 /\light = FALSE
 /\door = FALSE
 /\microwaveOvenTimer = -1

In the metamodel, the action component have three different types, Entry-Action,
Exit-Action and Transition-Action. Entry-Action/Exit-Action means the entry or exit
action of the target or source state. Transition-Action is the action occurred between
states during the transition takes place.

According to the object which the action deals with, the action components can be
divided in various groups, Attribute-Action, Time-Action and Reference-Action.
Attribute-Action is usually an entry of exit action. It is defined for the changing of
attributes and associated with a particular attribute. For example the actions
turnOnLight, energizePowerTube are associated with corresponding attributes light
and power. The specification of a local entry or exit action in TLA+ begins normally
with the definition of the target state, and it will be followed with the changing of
attributes. Following code shows an example for the local entry actions of state
CookingComplete and Cooking:

26

LOCAL doEntry_CookingComplete ==
 /\current' = CookingComplete
 /\light' = FALSE
 /\tube' = FALSE
 /\clearTimer

LOCAL doEntry_Cooking ==
 /\current' = Cooking
 /\light' = TRUE
 /\tube' = TRUE
 /\setTimerForOneMinute

Time-Action is always associated with the defined timer of the system. Through the
initialization of the timer in the properties view, some basic time functions can be
implemented. Some implemented time actions of microwave oven is shown below:

LOCAL clearTimer ==
 microwaveOvenTimer' = -1

LOCAL setTimerForOneMinute ==
 microwaveOvenTimer' = 60

LOCAL addOneMinuteToTimer ==
 microwaveOvenTimer' = microwaveOvenTimer + 60

Reference-Action exists normally between two through transition joined states. It has
always the type Transition-Action. It defines the operations that must be occurred in
order to enter the state. The possible Reference-Action include e.g. openDoor,
closeDoor, and pressButton. Reference-Action in TLA+ begins normally with the
validation of the current state and followed with the entry actions of the target state.
Variables that are not changed during an action must be listed and indicated in
UNCHANGED statement. The operation which adds the corresponding event into
queue as transition trigger should be declared lastly. All same Reference-Actions
should be summarized as combination of logic statements in the body of the
declaration. Following code is the example code of the Reference-Action openDoor.

openDoor ==
 /\\//\current = Cooking
 /\doEntry_CookingInterrupted
 /\UNCHANGED << microwaveOvenTimer, tube, light >>
 \//\current = CookingExtended
 /\doEntry_CookingInterrupted
 /\UNCHANGED << microwaveOvenTimer, tube, light >>
 \//\current = ReadyToCook

27

 /\doEntry_DoorOpen
 /\UNCHANGED << microwaveOvenTimer, tube, light >>
 \//\current = CookingComplete
 /\doEntry_DoorOpen
 /\UNCHANGED << microwaveOvenTimer, tube, light >>
 /\door' = TRUE
 /\Enqueue('od')

The statement for Next state is defined as combination from any of the above
mentioned Reference-Actions (using the disjunction symbol \/), as shown here:

Next == \/openDoor
 \/closeDoor
 \/pressButton

This model allows stuttering steps where all variables remain unchanged. The full
specification, which includes stuttering steps, is given as the following combination of
the initial state and the possible next states:

Spec == Init /\ [][Next]_vars

A full version of the TLA+ specification is shown in Appendix 4.

4.2. Trailway Gateway System

The second example is about a trailway gateway system, which represents a
hierarchical statecharts. The trailway gateway system is crossings on the railway and
road. A trailway gateway system consists of following subsystems:

● Railway platform: the trailway gateway overpasses two railway platforms. We
assume that the train comes always from the right side. A sensor will be put on
the rail in a distance before the gateway depending on the maximum route-
speed. It sends out a signal (trainApproaching) if a train comes. Another
sensor is likewise put on the rail in a distance behind the railway platform,
which will send out a signal (trainPassed) when the train left the critical range.

● Gate: which possesses an engine, with it the gate can be opened
(startEngineUp) or closed (startEngineDown). As soon as the gate achieved
the highest or lowest point, an appropriate sensor sends out a signal
(gateOpened or gateClosed).

● Traffic light, which is posed either on red (on) or off.

28

If a sensor announces that a train is approaching, then the traffic lights will be
switched to red and after a constant time interval (MAX_CAR_STOP_DURATION)
the gate will be driven down. If the appropriate sensor behind the gateway sends out
a signal, which means the train has left the critical range, the gate will be driven up
and afterwards the traffic lights will be switched off (if no other train is still in the
critical range).

It is noticed that all existing sensors (on the rails, at the gate) can fail or send out
wrong signals. Also the gate engine or traffic light can fail. If an unexpected
behaviour of a component is determined, it is perhaps due to an error of external
systems (e.g. two trains come one after the other with a distance for only a few
meters) or the failure of the actuator or sensor. For these cases, the trailway gateway
system must be equipped with a train control system. If an inconsistent state is
determined, all trains within the range of gateway system must be stopped with the
help of the train control system and the traffic lights will be switched to red and the
gate will be driven down. Figure 4.2 below gives a graphical show of the behaviours
of this system.

The complete trailway gateway system consists of various individual components.
The individual component should be modelled same as the microwave oven system.
Then the model for the complete system should be presented as a combination of the
individual components.

The statechart diagram of individual components is shown below. The trail-observer
has been already declared as example in the chapter 3. The only component should be
declared is the state Faulty. It has altogether three entry action sequences coming from
two various source states. Each transition has its guard, the specialization should be
implemented as following:

29

Fig 4.2 Trailway Gateway System

TrailObserver_1_defect ==
 \//\current = TrailObserver_1_idle
 /\doEntry_TrailObserver_1_faulty
 /\TrailObserver_1_trainPassed
 /\UNCHANGED << TrailObserver_1_Timer >>
 \//\current = TrailObserver_1_trainPassing
 /\doEntry_TrailObserver_1_faulty
 /\\/TrailObserver_1_Timer > TrailObserver_1_MAX_PASSING_DURATION
 \/TrailObserver_1_trainApproaching
 /\UNCHANGED << TrailObserver_1_Timer >>

The traffic light shown in Figure 4.3 is simple to implement. It has a composite state
Activated and a normal state Deactivated. Composite state Activated has two
substates On and Off. Two reference actions switchLightOn and switchLightOff and
their corresponding events switchOn and switchOff have to be implemented.

TrafficLight_1_switchLightOn ==
 /\/\current = TrafficLight_1_OFF
 /\doEntry_TrafficLight_1_ON
 /\TrafficLight_1_light' = TRUE
 /\Enqueue('switchOn')

TrafficLight_1_switchLightOff ==
 /\/\current = TrafficLight_1_ON
 /\doEntry_TrafficLight_1_OFF
 /\TrafficLight_1_light' = FALSE
 /\Enqueue('switchOff')

30

Fig 4.3 Statecharts of Trail-Light

The TLA+ specification for Trail-Gate shown in figure 4.4 is something similar. It has
also a composite state Activated and a normal state Deactivated. Activated has
altogether five states. The states Opening and Closing have their own entry and exit
action sequence, every has only one attribute action. I have defined here two attributes
named gate and running. Gate indicates whether the gate is driven up and running
indicates the status of the engine. The corresponding do-Activity is shown below.

LOCAL doEntry_Gate_1_opening ==
 /\current' = Gate_1_opening
 /\Gate_1_gate' = TRUE

LOCAL doExit_Gate_1_opening ==
 /\current' = Gate_1_opening
 /\Gate_1_running' = FALSE

LOCAL doEntry_Gate_1_closing ==
 /\current' = Gate_1_closing
 /\Gate_1_gate' = FALSE

LOCAL doExit_Gate_1_closing ==
 /\current' = Gate_1_closing
 /\Gate_1_running' = FALSE

What should be noticed is the state Faulty which has two entry action sequences and
one exit action sequence. Every transition where the action sequence lays has a
constant guard which defines the maximal opening or closing time interval
(MAX_OPENING /CLOSING_DURATION) what the gate should abide by. After
the time interval, an error will arise and the gate changes into the state Faulty. I have
defined a reference action named defect belonging to the above entry action sequence.
The following code shows the specification of defect.

Gate_1_defect ==
 \//\current = Gate_1_closing
 /\doEntry_Gate_1_faulty
 /\Gate_1_Timer > Gate_1_MAX_CLOSING_DURATION
 /\UNCHANGED << Gate_1_Timer, Gate_1_gate, Gate_1_running >>
 \//\current = Gate_1_opening
 /\doEntry_Gate_1_faulty
 /\Gate_1_Timer < Gate_1_MIN_OPENING_DURATION
 /\UNCHANGED << Gate_1_Timer, Gate_1_gate, Gate_1_running >>

31

The instance of the complete gateway system is shown in figure 4.5, which contains
two traffic lights, two trail observers, two gates, as well as a submachine for a
CONTROLLER, which these components synchronizes and controls. All components
are in one concurrent composite state, since they are all active processes. The
CONTROLLER must be explicitly implemented here, since it must know other
referenced components and synchronizes them.

Figure 4.6 shows the complete statechart diagram. Some changes have been made
comparing with the simple statecharts. We use Reference-Action-Sequence replaceing
the simple Reference-Action. As shown in the figure 4.6, as soon as some components
change into the state Faulty, a ChangeEvent will be produced which intercepts the
CONTROLLER and brings the state from Activated to Deactivated. As result, the gate
will be driven down and the traffic lights will be switched to red. What should be
noticed here is that the guards and actions, both are composite components. The
Reference-Action-Sequence deactivate is composed of various Reference-Actions
from various submachines. It is guarded by a composite guard. The corresponding
specialization is shown below: the guard definition has been declared in chapter 3, we
use a variable named logic relation to indicate the relation between various individual
guards.

32

Fig 4.4 Statecharts of Trail-Gate

TrailwayMachine_deactivate ==
 /\\/\/TrailObserver_1_faulty
 \/TrailObserver_2_faulty
 \/\/Gate_1_faulty
 \/Gate_2_faulty
 /\TrafficLight_1_switchLightOff
 /\TrafficLight_2_switchLightOff
 /\Gate_1_closeGate
 /\Gate_2_closeGate

Some other specifications of Reference-Action-Sequence are similar. For example, at
the beginning of system's activation the CONTROLLER is in the state Idle. As soon
as the sensor announces the coming of a train, a transition will be sent out from Idle to
preparingToClose, as result the traffic lights will be switched to red. The
corresponding specialization shows below:

TrailwayMachine_prepare ==
 /\\/TrailObserver_1_trainPassing
 \/TrailObserver_2_trainPassing
 /\TrafficLight_1_switchLightOn
 /\TrafficLight_2_switchLightOn

33

Fig 4.5 Instance Structure of Complete Trailway Gateway System

34

Fig 4.6 Statecharts of Complete Trailway Gateway System

Chapter 5. Transformation Algorithms

After having the instance of statecharts metamodel in hand, we can launch the
transformation plugin to generate the required TLA+ specification. Figure 5.1 shows
the process of code generation.

5.1. Visitor Pattern

In the full processing life cycle, transformation is the most important part. It directly
influences the correctness of final codes. I have chosen the visitor pattern to generate
the corresponding TLA+ document. In this section, visitor pattern will be explained
briefly.

The purpose of using visitor pattern is to encapsulate an operation that you want to
perform on the elements of a data structure. In this way, you can change the operation
being performed on a structure without the need of changing the classes of the
elements that you are operating on. Using a visitor pattern allows you to decouple the
classes for the data structure and the algorithms used upon them. Since there are
various components in the UML statechart metamodel and we must generate the

35

Fig 5.1 Generation of TLA+ Specification

corresponding statements for each of them, thus visitor pattern is here the suited
choice for our purpose.

This process of visitor pattern is known as "Double Dispatching." As showing in the
figure 5.2, each element in the data structure will accept a visitor, which sends a
message to the visitor which includes the node's class. The visitor will then execute its
visitElement method for that element. The accept method in the ConcreteElement
classes realize the double dispatching call, where the visitor is passed in to the accept
method, and that visitor is told to execute its visit method, and is handed the node by
the node itself. Every visitor has a method for every data structure element type. The
data structure elements however, only deal with the abstract Visitor, and hence only
have one accept method that deals with it. That method is overridden in each concrete
element, which only calls its respective method in the visitor.

Fig 5.2 Working Theory of Visitor Pattern

Practically in this case, each component such as state, transition or event all contains
an accept method that takes a visitor object as an argument. This accept method calls
back the visit method for its class. As an example, the accept method of the
component statemachine is shown in following code.

public void accept(IStatechartsVisitor visitor) {
if (beingVisited) {

return;
}
beingVisited = true;
visitor.visitStateMachine(this);
Iterator it = getStates().iterator();
while (it.hasNext()) {

36

State elem = (State) it.next();
elem.accept(visitor);

}
it = getEvents().iterator();
while (it.hasNext()) {

EventDef elem = (EventDef) it.next();
elem.accept(visitor);

}
it = getAttributes().iterator();
while (it.hasNext()) {

AttributeDef elem = (AttributeDef) it.next();
elem.accept(visitor);

}
it = getPredefinedclasses().iterator();
while (it.hasNext()) {

PredefinedClass elem = (PredefinedClass) it.next();
elem.accept(visitor);

}
it = getSubmachines().iterator();
while (it.hasNext()) {

SubmachineImpl elem = (SubmachineImpl) it.next();
elem.accept(visitor);

}
it = getActionsequences().iterator();
while (it.hasNext()) {

ActionSequenceImpl elem = (ActionSequenceImpl) it.next();
elem.accept(visitor);

}
it = getActions().iterator();
try {

while (it.hasNext()) {
Action elem = (Action) it.next();
if (elem.getClass().getName().equals("statechartsAction
.impl.RefActionImpl")){

RefActionImpl elem_ref = (RefActionImpl) elem;
elem_ref.accept(visitor);

}
else if (elem.getClass().getName().equals
("statechartsAction.impl.TimerActionImpl")) {

TimerAction elem_time = (TimerAction) elem;
elem_time.accept(visitor);

}
}

}

37

catch (Exception e){}
}

As shown in the above code, we can define the ''traverse rule'' among the basic
components in the accept method according to the associations defined in statecharts
metamodel. The visitor can therefore know how to traverse these components and
apply the correct visitElement to generate TLA+ specification. The concrete
generation of TLA+ statements should be detailedly defined in the visitElement
method in the implementation of the interface. A full version of the visitor
implementation named StatechartsVisitorImpl is listed in the Appendix 3.

5.2. Transformation Algorithms

The goal of transformation is to get TLA+ specification from a statechart instance.
After having a source instance and explaining the target TLA+ specification, we need
to define some rules in between to let the transformation work. This section will talk
about how to build the bridge between source and target language and connect them
together. I must determine the corresponding relations between statechart metamodel
and TLA+ statements. The TLA+ specification should be generated by handling the
corresponding components. As mentioned in chapter 5.1, the visitor will execute
visitElement methods for each component by implementing.

5.2.1. Handling State

I define a constant for each state occurred in the input statechart instance. They should
be summarized under the TLA+ statement CONSTANTS. A TLA+ statement named
STATE whose value is a set should be defined. Each state has a corresponding
element in that set.

public Object visitState(State in) {
...
constantSpaces += "" + in.getName() + ",";
stateSpaces += "" + in.getName() + ",";
...

All local actions named doEntry or doExit should be implemented in each state. Since
the entry and exit action sequences are always associated with the states, therefore
they should also be declared by handling state.

...
Iterator it_actseq = in.getActionsequences().iterator();
while (it_actseq.hasNext()){

ActionSequence elem_as = (ActionSequence) it_actseq.next();

38

ActionSequenceType type = elem_as.getType();
if(type.toString().equals("doEntryActionSequence")){

if(!doEntrySpaces_tmp.contains("LOCAL doEntry_" + in.getName())){
doEntrySpaces_tmp += "\r\n" + "LOCAL doEntry_" + in.getName() + "
==" + "\r\n";
doEntrySpaces_tmp += " " + "/\\" + "current'" + " = " +
in.getName() + "\r\n";

}
...

The change of the corresponding variables should be described as combination of
logic statements /\ at the end of local action declaration.

...
AttrAction elem_attr = (AttrAction) elem_ac;
if (doEntrySpaces_tmp.contains(elem_attr.getAttribute().getName())) {
} else {

doEntrySpaces_tmp += " " + "/\\" + elem_attr.getAttribute().getName()
+ "'" + " = " + elem_attr.getNewAttrValue() + "\r\n";

}
...

5.2.2. Handling Attribute

Some attributes such as light, tube, door etc. in the microwave oven should be
declared as boolean variables in the TLA+ specification. The variables should be
summarized under the TLA+ statement VARIABLE. We should also define a TLA+
statement named VARS, whose value is also a set, each variable should have a
corresponding element in it.

public Object visitAttributeDef(AttributeDef in) {
if(varSpaces.contains(in.getName())){
} else {

varSpaces += "" + in.getName() + ",";
}
if(variableSpaces.contains(in.getName())){
} else {

variableSpaces += "" + in.getName() + "," + "\r\n" + " ";
}
if(initSpaces.contains(in.getName())){} else {

initSpaces += "" + "/\\" + in.getName() + " = " + in.getAttrValue()
+ "\r\n";

}
if(typeInvariantSpaces.contains(in.getName())){} else {

39

typeInvariantSpaces += "" + "/\\" + in.getName() + "\\in" +
in.getAttrType() + "\r\n";

}
return null;

}

5.2.3. Handling Event

Event is normally used as trigger of transition. It has usually connection with the
reference action. By implementing the reference action, the corresponding event
should be saved and dispatched again at another time when needed.

Queue is needed for achieving the storing and dispatching functions of event. The
methods enqueue and dequeue should be implemented. The method will be called at
the end of the processing by every action declaration, so that the corresponding event
will be added in the queue.

Java 1.5 adds a new Queue interface to the java.util package. The Queue interface
gives you the new offer and poll methods. The poll method will return a null (i.e., not
throw an exception) if there are no elements in the queue. In some cases, you might
not want to extract the element at the head of the queue, but rather just take a peek at
it. The Queue interface provides us with a peek method to do just that. If you're
dealing with an empty queue, peek returns a null. As in the add-offer and remove-poll
relationship, there is a peek-element relationship. In the case of an empty queue, the
element method throws an unchecked exception. But if there are elements in the
queue, the peek method allows you to take a gander at the first element without
actually pulling it from the queue. Usage of the peek method is demonstrated in the
SimpleQueueUsageExamplePreferred class and the code below shows the
implementation of enqueue() and dequeue() methods.

public String enqueue(EventDef event) {
eventQueue.offer(event.getName());
return null;

}
public String dequeue(RefAction refaction) {

String enqueued = "";
Object pull = eventQueue.peek();
if (pull!=null) enqueued = eventQueue.poll();
return enqueued;

}

40

5.2.4. Handling Action

5.2.4.1. Executable UML Introduction

According to the description in the book "Executable UML: A Foundation for Model-
Driven Architecture", Executable UML is a single language in the UML family,
designed for a single purpose: to define the semantics of subject matters precisely.
Executable UML is a particular usage, or profile, the formal manner in which we
specify a set of rules for how particular elements in UML fit together for a particular
purpose. It is designed to produce a comprehensive and understandable model of a
solution independent of the organization of the software implementation. It is a highly
abstract thinking tool that aids in the formalization of knowledge and is also a way of
describing the concepts that make up abstract solutions to software development
problems. Physically, an executable UML specification comprises a set of models
represented as diagrams that describe and define the conceptualization and behavior
of the real or hypothetical world under study. [6]

In statechart diagram, each state has local action sequence that is executed upon entry
or exit of that state. The procedure is composed of actions, which are specified in an
action language. The action is performed when the state is occupied and the event
occurs. An entry action is performed whenever the state is entered. It is specified
inside the state by the entry keyword, followed by a slash (/), followed by the action
name. An exit action is performed whenever the state is exited. It is specified inside
the state as the exit keyword, followed by a slash (/), followed by the action name. An
Example of microwave oven is given below:

5.2.4.2. Handling Reference Action

Transition-Action such as openDoor, closeDoor or pressButton etc., which are
occurred between the states, should be declared as action statements in the TLA+
specification. The preconditions for the Transition-Action should be checked firstly
before the processing. For example, the current state/event must accord with the
declared state/event. The attributes changed in this transition-action should be listed at

41

Fig 5.3 State Cooking with Action

the end of the declaration. It is possible that a same transition-action is happened on
different transitions. In this case, different transitions should be summarized as
combination of logic statements /\ or \/ in the action declaration.

public Object visitRefAction(RefAction in){
...
actionSpaces += "\r\n" + in.getName() + " == " + "\r\n";
...
Iterator noattr_it_actseq = in.getActionsequences().iterator();

if(noattr_it_actseq.hasNext()){
ActionSequence noattr_as1 = (ActionSequence)noattr_it_actseq
.next();
if(noattr_it_actseq.hasNext()){

 Iterator noattr_it_tr1 = noattr_as1.getTransitions()
.iterator();

 if(noattr_it_tr1.hasNext()){
Transition noattr_transition1 = (Transition)noattr_it_tr1
.next();
actionSpaces += " " + "\\/" + "/\\" + "current = " +
noattr_transition1.getSource().getName() + "\r\n";

 actionSpaces += " " + " " + "/\\" + "doEntry_" +
noattr_transition1.getTarget().getName() + "\r\n";
...

Lastly a TLA+ statement named UNCHANGED is used for all variables, which are
not changed after the processing. Therefore, all of the unchanged variables should be
summarized an the end of the action declaration.

unchangedSpace_tmp = printUnchangedAttr(in, unchangedSpace_current);
 unchangedSpace_current = "";
 if(unchangedSpace_tmp == null || unchangedSpace_tmp.equals("")){
 } else {
 actionSpaces += " " + " " + "/\\" + "UNCHANGED" + " << " +

unchangedSpace_tmp + " >>" + "\r\n";
 }

...

5.2.5. Handling Guard

Guards or conditions which are required in the input statecharts could be declared as
single assumptions in TLA+. What should be noticed is that Guard must be lastly
announced in the TLA+ statement THEOREM.

A guard condition is a boolean expression that may be attached to a transition in order

42

to determine whether that transition is enabled or not. The transition is fired only
when the guard is true at the time the trigger event occurs. The boolean expression is
written in terms of parameters of triggering event, timer, attributes of the components
or occurrence of the state. There are various methods to implement a transition with
guard condition. A simple transition can be extended to a tree structure of branches.
Each branch has it own guard condition. When the trigger event occurs, if a branch
has its guard condition true, it is fired. If no branch has a true condition, the event is
ignored. [2]

To implement a transition with guard condition, we must put the guard in the TLA+
statement. The visitRefAction method in the visitor will be called whenever the
corresponding reference action occurs while the source state is active and actual
transitions will be called afterwards. A method name generateGuard(transition)
will be used to generate guard statements in the generated TLA+ file and the result
must be outputted line by line (following code shows the implementation). It must
deal with the complex guards as described in last section. The concrete Java
implementation of this method is shown in Appendix 3:

...
guardSpaces_tmp = generateGuard(noattr_transition2);
if(guardSpaces_tmp == null || guardSpaces_tmp.equals("")){
} else {
try {

String guardSpaces_line = "";
StringReader sr= new StringReader(guardSpaces_tmp); // wrap String
BufferedReader br= new BufferedReader(sr); // wrap StringReader
actionSpaces += " " + " " + "/\\" + br.readLine() + "\r\n";
while((guardSpaces_line = br.readLine()) != null){

actionSpaces += " " + " " + " " + guardSpaces_line + "\r\n";
}

} catch (Exception e) {}
}
...

5.2.6. Other Statecharts Components and TLA+ Statements

A state named currentState will be defined for the current state in the statechart
diagram. Each state declared in the TLA+ constant ALL_STATES can be chosen as
the value of currentState. An event named currentEvent will be defined for the current
event. Similar to variable currentState, it can be assigned from any events that we
have defined.

All Transition-Actions, which can change in any steps, should be summarized as
combination of logic statement \/ in the statement NEXT.

43

The statement TypeInvariant in TLA+ will be used to explicitly describe the types of
variables. Therefore, we should summarize all of the types of variables in it.

A statement named Spec will be declared at the end of TLA+ document for
correctness checking. It is comprised normally of the statements INIT, NEXT and
liveness condition.

Lastly, statement THEOREM should be declared. It asserts that Spec can be proved
from the TypeInvariant and other assumptions, which we have already declared.

5.3. Plugin for the Generation of Target File

After having the above mentioned transformation algorithm, actual question is how to
save the generated TLA+ specification? Therefore, we need also define a new project
besides the Java project implementing the statecharts metamodel to accomplish the
saving work. The Java package named s2t.action contains three files named
TLAPlusGenerator, GenerateTLAPlus and tlaFileWriter which separately
implements the following functions.:

● A TLA+ code generator should be created. The “top” state of the statecharts
must be “passed” in the generator, the generator will traverse through all of the
models in the object structure with the visitor from this point and generate the
corresponding specification. A Java file named TLAPlusGenerator.java
implements this function, which contains two methods: The method
getResource returns the defined statecharts instance as the operation object of
the method generate. The method generate gets first the top state of the
statecharts and instances a new StatechartsVisitor, then traverses through all
components in the statecharts and generate TLA+ specification.

String scFilePath = scFile.getFullPath().toString();
Resource ecoreResource = getResource(_resourceSet, scFilePath);
statemachine = (StateMachineImpl)ecoreResource.getContents().get(0);
StatechartsVisitorImpl v = new StatechartsVisitorImpl();
statemachine.accept(v);

● A second class named GenerateTLAPlus is used to handle the change of
startcharts instance such as, add new model, delete new model or change the
selection area. It extends org.eclipse.ui.IObjectActionDelegate, an
Interface for an object action that is contributed into a popup menu for a view
or editor. The following three methods must be implemented.

run(IAction)

44

This method is called by the proxy action when the action has been
triggered. Implement this method to do the actual work.

selectionChanged(IAction, ISelection)
Notifies this action delegate that the selection in the workbench has
changed.

setActivePart(IAction,IWorkbenchPart)
Sets the active part for the delegate.

A class named GenerateTLAPlusJob extending the
org.eclipse.core.runtime.jobs.Job has to be created within this class.
It is used to instance the TLA+ generator class and call its generate method
through implementation of the run method.

private class GenerateTLAPlusJob extends Job {
 protected IStatus run(IProgressMonitor monitor) {
 TLAPlusGenerator generator = new TLAPlusGenerator();
 generator.generate(_file, monitor);

...
 }

...
 }

● Lastly, a class named tlaFileWriter has to be implemented to save the
generated TLA+ code into a tla file. The key of this class is the
implementation of the writeFile method.

For the full version of the package s2t.action please check the corresponding method
in Appendix 2.

45

Chapter 6. TLC model checker

I describe in this section TLC model checker, how TLC works, and the experiences to
use it.

6.1. Why model check

With TLA+, we can specify and verify any properties of a system. But the systems are
probably too large and complicated to be completely verified by model checking. In
spite of TLA+ consists of formal notations, but they may contain errors which can not
be found only by formal reasoning. Therefore we need an external model checker to
help us debug / verify our formal models. The model checker should be applied
normally in a system with finite-state. It can both catch simple design errors and
create an error report. Experiences tell us that using a model checker to debug formal
models can speed the proof process. Checking the actual specification of a system
with model checker can also improve the entire design process of a complicated
system. It can eliminate the effort of debugging during the designing.

TLC is a new model checker for debugging a TLA+ specification by checking
invariance properties of a finite-state model of the specification. It accepts a subclass
of TLA+ specifications that should include most descriptions of real system designs.
It has been used by engineers to find errors in the cache coherence protocol for a new
Compaq multiprocessor. [3] Experiences tell us that the most effective way to find
errors in a specification is by trying to verify that it satisfies properties that it should.
TLC can check that the specification satisfies (implies) a large class of TLA formulas.
Normally, there are two kinds of error that can be checked by TLC.

“Silliness" errors. a silly expression is one like 3 + < 1,2 >, whose meaning is not
determined by the semantics of TLA+. A specification is incorrect if whether or not
some particular behaviour satisfies it depends on the meaning of a silly expression.

Deadlock. The absence of deadlock is a particular property that we often want a
specification to satisfy; it is expressed by the invariance property [](enabled Next). A
counterexample to this property is a behaviour exhibiting deadlock - that is, reaching
a state in which Next is not enabled, so no further step is possible. TLC normally
checks for deadlock, but this checking can be disabled since, for some systems,
deadlock may just indicate successful termination. [9]

Most TLA system specifications have the form Init ∧[][Next]v ∧ Liveness,
where Init means the initial conditions, Next specifies the next-state relation, v means
all of the variables in the specification and Liveness is a liveness property written as
the conjunction of fairness conditions on actions. TLC does not support liveness

46

properties checking now, so Init and Next assertion checking are all that we concern.

6.2. How TLC works?

The input of TLC is specification of the system and a configuration file. The
configuration file gives values to the constants and states the properties to be checked.
The configuration file tells for example the names of the initial condition (Init), the
next-state relation (Next), and some other constraint. For example, the configuration
file for microwave oven system contains firstly the declaration

SPECIFICATION Spec

This statement tells TLC that Spec is the specification to be checked. The
INVARIANT statement tells TLC to check that TypeInvariant is an invariant of the
specification.

INVARIANT TypeInvariant

The configuration file also declares some values for the constants. TLC requires also
that every declared constant in the specification be assigned a value by a CONSTANT
statement in the configuration. Besides this, it should also contain the names of one or
more invariants.

All above mentioned declarations define the model that TLC should check. Following
figure 6.1 shows the structure of TLC model checker.

Fig 6.1 Structure of TLC Model Checker

As mentioned above, TLC explores reachable states, that is all states that can occur in
behaviors satisfying the formula Init ^ [][Next]vars , and looks for two kinds of

47

errors.

1. an invariant is not satisfied
2. deadlock

The error report includes a minimal length trace that leads from an initial state to the
bad state. TLC stops when it has examined all states reachable by traces that contain
only states satisfying the constraint. (TLC may never terminate if this set of reachable
states is not finite. In practice, it is easy to choose the constraint to ensure that the set
is finite.)

TLC maintains two data structures: a set seen of all states known to be reachable and
a FIFO queue sq containing elements of seen whose successor states have not been
examined. The elements of sq are actual states, while seen contains only the
fingerprints of its states. TLC’s fingerprints are 64-bit, probabilistically unique
checksums. For error reporting, an entry in seen also has a pointer to a predecessor
state in seen. (The pointer is null for an initial state.) TLC begins by generating and
checking all possible states satisfying the initial predicate and setting seen and sq to
contain exactly those states. TLC next rewrites the next-state relation as a disjunction
of as many simple subactions as possible.

TLC then launches a set of worker threads, each of which repeatedly does the
following. It removes the state s from the front of sq. For each subaction A, the
worker generates every possible next state t such that the pair of states s, t satisfies A.
If there is no possible next state t for any subaction, a deadlock is reported. For each
next state t that it generates, the worker does the following:

● Check if t is in seen.
● If it isn’t, check if t satisfies the invariant.
● If it does, add t to seen (with a pointer to s).
● If t satisfies the constraint, add it to the end of sq.

An error is reported if a next state t is found that does not satisfy the invariant, or if s
has no next state. In this case, TLC generates a trace ending in t, or in s if there is no
next state t. Using the pointers in seen, TLC can generate a sequence of fingerprints of
states. To generate the actual trace, TLC reruns the algorithm in the obvious goal-
directed way. [8]

In our microwave oven system, TLC checks firstly all possible states according to the
defined initial predicate:

Init = /\ light = false
 /\ tube = false
 /\ current = ReadyToCook

48

 /\ open = false

and then it sets seen and sq to contain exactly those states satisfying the predicate.
And then it decomposes the next-state relation

Next == /\ \/ openDoor
 \/ closeDoor
 \/ pressButton

as a disjunction of simple subactions. Here, the next state relation will be divided in
three independent subactions. Each working thread launched from TLC will take a
state from the front of sq, for example ReadyToCook. For each subaction, the worker
thread looks for every possible next state that the pair satisfies it. For example, the
states DoorOpen and ReadyToCook satisfying the action openDoor and the states
Cooking and ReadyToCook satisfying the action pressButton. After the thoroughly
checking through all subactions and states, a deadlock will be reported if there is no
possible next state for any subaction. After that, the working thread will analyse each
next state t according to the following mentioned method. First, it checks whether t is
in seen. If it isn’t, it will check whether t satisfies the invariant. If it does, t will be
added to set seen (with a pointer to s). If t satisfies any constraint, it will be also added
to the end of sq.

After the brief introduce of TLC model checking method, I would like to test the TLC
with some given errors for the performance. I made some errors myself and let TLC
test it. TLC eventually detects and reports all errors made from me.

First, I have defined some syntactic error in it. I write vars == < light, tube,
door, current >> instead of the correct syntax of TLA+ code. The syntactic
analyser detects immediately the error and gives out the following report. In this case,
TLC will be not called.

Parsing file E:\Java\workspace_3.2.0\myTLA\src\micro.tla
Parse Error
 Encountered infix op < in block line 14, col 9 to line 14, col 9 of
 module micro on empty stack.
Residual stack trace follows:
Definition starting at line 14, column 1.
Module body starting at line 5, column 1.
Module definition starting at line 1, column 1.
Fatal errors while parsing TLA+ spec in file micro.tla
*** Errors: 1
Unknown location
Could not parse module micro from file E:/Java/workspace_3.2.0/myTLA/src/micro.tla
tlasany.parser.ParseException

49

at org.zambrovski.tla.tlasany.TLASyntaxParser.parse(TLASyntaxParser.java:184)
at org.zambrovski.tla.tlasany.TLASyntaxParser.parse(TLASyntaxParser.java:64)
at de.techjava.tla.core.parser.TLCParserRuntime.parse(TLCParserRuntime.java:47)
at de.techjava.tla.ui.builders.TLABuildVisitor.visit(TLABuildVisitor.java:149)
at org.eclipse.core.internal.resources.Resource$2.visit(Resource.java:105)
at org.eclipse.core.internal.resources.Resource$1.visitElement(Resource.java:57)
at

org.eclipse.core.internal.watson.ElementTreeIterator.doIteration(ElementTreeIterator.java:81)
at

org.eclipse.core.internal.watson.ElementTreeIterator.iterate(ElementTreeIterator.java:126)
at org.eclipse.core.internal.resources.Resource.accept(Resource.java:67)
at org.eclipse.core.internal.resources.Resource.accept(Resource.java:103)
at org.eclipse.core.internal.resources.Resource.accept(Resource.java:87)
at de.techjava.tla.ui.builders.TLABuilder.runBuild(TLABuilder.java:57)
at de.techjava.tla.ui.builders.TLABuilder.build(TLABuilder.java:33)
at org.eclipse.core.internal.events.BuildManager$2.run(BuildManager.java:603)
at org.eclipse.core.runtime.SafeRunner.run(SafeRunner.java:37)
at org.eclipse.core.internal.events.BuildManager.basicBuild(BuildManager.java:167)
at org.eclipse.core.internal.events.BuildManager.basicBuild(BuildManager.java:201)
at org.eclipse.core.internal.events.BuildManager$1.run(BuildManager.java:230)
at org.eclipse.core.runtime.SafeRunner.run(SafeRunner.java:37)
at org.eclipse.core.internal.events.BuildManager.basicBuild(BuildManager.java:233)
at org.eclipse.core.internal.events.BuildManager.basicBuildLoop(BuildManager.java:252)
at org.eclipse.core.internal.events.BuildManager.build(BuildManager.java:285)
at org.eclipse.core.internal.events.AutoBuildJob.doBuild(AutoBuildJob.java:145)
at org.eclipse.core.internal.events.AutoBuildJob.run(AutoBuildJob.java:208)
at org.eclipse.core.internal.jobs.Worker.run(Worker.java:58)

And then I corrected the syntactic error and set some relational errors in the
specification. I deleted some statements for the unchanged variables in Transition-
Action.

pressButton ==
 \//\ current = ReadyToCook
 /\ doEntryCooking
 \//\ current = CookingComplete
 /\ doEntryCooking
 \//\ current = Cooking
 /\ doEntryCookingExtended
 \//\ current = CookingExtended
 /\ doEntryCookingExtended

TLC detected and gave out the following report after a very short temporal interval

50

Starting...

Main file : micro
Config file : micro
Dump file : no set

Root Dir : E:\Java\workspace_3.2.0\myTLA\src\
Config Dir : E:\Java\workspace_3.2.0\myTLA\config\
Work Dir : E:\Java\workspace_3.2.0\myTLA\work\

Parsing file E:\Java\workspace_3.2.0\myTLA\src\micro.tla
Parsing file E:\eclipse_3.2.0\plugins\de.techjava.tla.modules_0.0.1\modules\TLC.tla
Parsing file E:\eclipse_3.2.0\plugins\de.techjava.tla.modules_0.0.1\modules\Integers.tla
Parsing file E:\eclipse_3.2.0\plugins\de.techjava.tla.modules_0.0.1\modules\Sequences.tla
Parsing file E:\eclipse_3.2.0\plugins\de.techjava.tla.modules_0.0.1\modules\Naturals.tla
Semantic processing of module Naturals
Semantic processing of module Sequences
Semantic processing of module TLC
Semantic processing of module Integers
Semantic processing of module micro
Finished computing initial states: 1 distinct state generated.
Error: Successor state is not completely specified by the next-state action.
The behavior up to this point is:
STATE 1: <Initial predicate>
/\ tube = FALSE
/\ light = FALSE
/\ door = FALSE
/\ current = ReadyToCook

STATE 2: <Action line 69, col 6 to line 70, col 29 of module micro>
/\ tube = TRUE
/\ light = TRUE
/\ door = null
/\ current = Cooking

2 states generated, 1 distinct states found, 0 states left on queue.
The depth of the complete state graph search is 1.

51

Chapter 7. Future Work

The specification of TLA+ contains some complicated statements or properties, which
is not implemented in this project. I finish this project by choosing some parts of
them, which I considered necessary. It makes my statecharts metamodel not too
complex to understand and implement. Similarly, the statecharts metamodel I defined
contains just the most important components. One can not instance arbitrarily
complex behavioural system with it. Further extension or improvements can be done
in these area. Some possible development such as:

1. the current work implements just part of the existing statements of the
language TLA+. Additional features should be incorporated. For example, the
current timer can only specify some simplest functions such as the minimum
and maximum elapsed time, initial value of timer and some regular changing.
This can be extended to more accurately specified real-time systems, pointing
to the interesting topic of modeling real time systems with UML and TLA+.

2. Another possible direction is to extend the scalability of the UML statecharts.
Some more complicated components should be concerned such as the more
complex tree transition, which brings more particularly guard conditions and
more precise delineation of actions. For these larger models, the
communication and synchronization among these components is more
complicated than the current version. Therefore, a more complicate and
efficient transformation algorithms should be developed to deal with the above
mentioned instance.

3. The transformation algorithm should be developed to generate more precise
specification for the action components defined with the Executable UML,
which has a much more complex syntax structure.

4. For the implementation of guard components exist also other solution. For
example, it can be implemented with OCL expressions, which can provide
implicitly more concrete describing about the constraint.

5. Another interesting topic is to investigate the mappings from other UML
diagram to TLA+ specification. For example, UML Class Diagram, which
contains more complicated components as statechart diagram. Future work
with more complicated diagram will generate more precise and efficient
specialization, which builds a relationship between these two modeling
system.

52

Chapter 8. Conclusion

This paper describes an implementation of transformation from UML statechart
diagram to language TLA+. Two examples have been declared, which represent
respectively the flat and hierarchical statecharts.

During the development of this project, i must first find out an appropriate metamodel
to represent the different behaviours which may occur in the statecharts. I must
continuously adjust the structure of the metamodel which guarantees that it can be
suited with various presentations of statecharts and at the same time corresponds to
the basic syntax structure of the language TLA+.

Eclipse Modelling Framework has been used to generate the MDA infrastructure Java
codes and instance the given statecharts according to the defined metamodel. Since
various TLA+ statements must be generated according to the components defined in
metamodel, the use of visitor pattern can greatly simplify the difficulty of
transformation of multi-components statecharts.

By generating the TLA+ specification, I must also develop a transformation algorithm
to deal with different components of the statecharts. Flat or hierarchical statechart
diagram should be transformed into appropriate TLA+ specification based on it. The
developed transformation algorithm can successfully deal with almost all basic
statecharts components, which include such as states, transitions, action events and so
on.

Lastly, the generated TLA+ specification would be checked with TLC, which is a new
model checker for debugging a TLA+ specification by checking invariance properties
of a finite-state model of the specification.

Until here, I have finished the complete project. Since the time limit of this project, I
have only transformed the main components of the statecharts and accordingly only
the most important statements of TLA+ has been implemented. Further developments
and improvements are possible such as

1. modeling more complicated UML statecharts.

2. incorporating more TLA+ notations.

3. handling the dynamic action components (Executable UML) with more
complicated syntax.

4. handling the guard components with other implementation solution with more
precision, such as OCL expressions.

53

5. transforming other UML diagram to TLA+

This project is an initial research in the area which transforms UML behavioral
diagram to the language TLA+ and checks the correctness afterwards. I hope that this
project can be used as a basis for automatic code generation from a model-based
behavioral diagram to TLA+ and some different transforming solutions for different
UML behavioral diagrams can be achieved along this idea in the future.

54

Appendix 1

Statechart.emf

@namespace(uri="http:///example/statecharts",prefix="statecharts")
package statecharts;

import "platform:/resource/statecharts/model/statechartsAction.ecore";
import "platform:/resource/statecharts/model/statechartsGuard.ecore";

class NamedElement {
 attr String name;
}

class StateMachine extends NamedElement{
 !ordered val AttributeDef[0..*] attributes;
 !ordered val EventDef[0..*] events;
 !ordered val State[*] states;
 !ordered val PredefinedClass[0..*] predefinedclasses;
 !ordered val Submachine[*] submachines;
 !ordered val statechartsAction.Action[*] actions;
 !ordered val statechartsAction.ActionSequence[*] actionsequences;
}

class Submachine extends StateMachine{
 !ordered ref StateMachine[1] statemachine;
}

class State extends NamedElement {
 !ordered ref CompositeState #substates parent;
 !ordered ref Transition[0..*] #target incoming;
 !ordered ref StateMachine[1] statemachine;
 !ordered ref statechartsGuard.StateGuard[0..*] guards;
 !ordered val Transition[0..*] #source outgoing;
 !ordered val statechartsAction.ActionSequence[*] actionsequences;

}

class SimpleState extends State {
 attr SimpleStateType type;
}

class CompositeState extends State {

55

 !ordered val State[0..*] #parent substates;
}

class Transition {
 attr String label;
 !ordered ref EventDef[0..*] triggers;
 !ordered ref State #outgoing source;
 !ordered ref State #incoming target;
 !ordered val statechartsGuard.Guard[0..1] guard;
 !ordered val statechartsAction.ActionSequence[0..1] actionsequence;
}

class EventDef extends NamedElement {
 !ordered ref Transition[0..*] transitions;
 !ordered ref StateMachine statemachine;
 !ordered ref statechartsAction.Action[0..*] actions;
 !ordered ref statechartsGuard.EventGuard[0..*] guards;
}

class AttributeDef extends NamedElement {
 attr AttributeType attrType;
 attr String attrValue;
 !ordered ref StateMachine statemachine;
 !ordered ref statechartsGuard.AttributeGuard[0..*] guards;
 !ordered val statechartsAction.AttrAction[0..*] attractions;
 !ordered val statechartsAction.RefAction[0..*] refactions;
}

class PredefinedClass extends NamedElement{
 !ordered ref StateMachine statemachine;
}

class Timer extends PredefinedClass {
 attr boolean running;
 attr int timer;
 attr int minTimerValue;
 attr int maxTimerValue;
 op void clearTime();
 op void addTime();
 !ordered val statechartsAction.TimerAction[*] timeractions;
 !ordered val statechartsGuard.TimeGuard[*] timerguards;
}

class QueueEmulate extends PredefinedClass {

56

 op String enqueue(EventDef event);
 op String dequeue(statechartsAction.RefAction refaction);
 op boolean containsItem(String ItemName);
}

class StandardModule extends PredefinedClass {

}

class Constant extends PredefinedClass {
attr String constantValue;

}

enum SimpleStateType {
 initialState = 0;
 endState = 1;
 normalState = 2;
}

enum AttributeType {
 STRING = 0;
 BOOLEAN = 1;
 State = 2;
}

statechartsAction.emf

@namespace(uri="http:///example/statechartsAction",prefix="statechartsAction
")
package statechartsAction;

import "platform:/resource/statecharts/model/statecharts.ecore";
import "platform:/resource/statecharts/model/statechartsGuard.ecore";

class ActionSequence extends statecharts.NamedElement {
attr ActionSequenceType type;

 !ordered ref statecharts.State[0..1] State;
 !ordered ref statecharts.Transition[0..*] transitions;
 !ordered ref statecharts.StateMachine statemachine;
 !ordered val Action[*] actions;
}

class Action extends statecharts.NamedElement {
attr ActionType type;

57

!ordered ref ActionSequence[*] actionsequences;
!ordered ref statecharts.StateMachine statemachine;
!ordered ref statecharts.EventDef event;

}

class AttrAction extends Action {
attr String newAttrValue;
!ordered ref statecharts.AttributeDef[1] attribute;

}

class RefAction extends Action {
attr String newAttrValue;
!ordered ref statecharts.AttributeDef[1] attribute;

}

class TimerAction extends Action {
attr String newTime;
!ordered ref statecharts.Timer[1] timer;

}

enum ActionSequenceType {
 doEntryActionSequence = 0;
 doExitActionSequence = 1;
 tranActionSequence = 2;
}

enum ActionType {
 doEntryAction = 0;
 doExitAction = 1;
 tranAction = 2;
}

statechartsGuard.emf

@namespace(uri="http:///example/statechartsGuard",prefix="statechartsGuard")
package statechartsGuard;

import "platform:/resource/statecharts/model/statecharts.ecore";
import "platform:/resource/statecharts/model/statechartsAction.ecore";

class Guard extends statecharts.NamedElement {
 attr String gdExpression;
 attr GuardLogicType logicRelation;
 !ordered ref statecharts.Transition[0..1] transition;

58

 !ordered ref CompositeGuard #subguards parentguard;
}

class SimpleGuard extends Guard {

}

class TimeGuard extends SimpleGuard {
 attr String MAX;
 attr String MIN;
 !ordered ref statecharts.Timer[1] timer;
}

class AttributeGuard extends SimpleGuard {
 attr String MAX;
 attr String MIN;
 !ordered ref statecharts.AttributeDef[0..1] attribute;
}

class EventGuard extends SimpleGuard {
!ordered ref statecharts.EventDef[0..1] event;

}

class StateGuard extends SimpleGuard {
!ordered ref statecharts.State[0..1] state;

}

class CompositeGuard extends Guard {
!ordered val Guard[0..*] #parentguard subguards;

}

enum GuardLogicType {
 POSITIVE = 0;
 NEGATIVE = 1;
 CONJUNCTION = 2;
 DISJUNCTION = 3;
}

59

Appendix 2

GenerateTLAPlus.java

public class GenerateTLAPlus implements IObjectActionDelegate {
 private IFile _file;
 private GenerateTLAPlusJob _job;

 public GenerateTLAPlus() {}
 private class GenerateTLAPlusJob extends Job {
 protected IStatus run(IProgressMonitor monitor) {
 TLAPlusGenerator generator = new TLAPlusGenerator();
 generator.generate(_file, monitor);
 _job = null;
 return Status.OK_STATUS;
 }
 GenerateTLAPlusJob(){
 super("Generating TLA+ Source for " + _file.getName());
 }
 }
 public void run(IAction action) {
 if(_file != null && _job == null) {
 _job = new GenerateTLAPlusJob();
 _job.schedule();
 }
 }
 public void selectionChanged(IAction action, ISelection selection) {
 _file = null;
 if(selection instanceof IStructuredSelection) {
 IStructuredSelection sel = (IStructuredSelection)selection;
 Object selElem = sel.getFirstElement();
 if(selElem instanceof IFile)
 _file = (IFile)selElem;
 }
 }
 public void setActivePart(IAction iaction, IWorkbenchPart iworkbenchpart)

{}
}

TLAPlusGenerator.java

public class TLAPlusGenerator {
 private ResourceSet _resourceSet;

60

 private static EClassImpl eclass = null;

 public TLAPlusGenerator() {
_resourceSet = new ResourceSetImpl();

 }
 public void generate(IFile scFile, IProgressMonitor monitor) {
 try {

String scFilePath = scFile.getFullPath().toString();
Resource ecoreResource = getResource(_resourceSet, scFilePath);
eclass = (EClassImpl)ecoreResource.getContents().get(0);
StatechartsVisitorImpl v = new StatechartsVisitorImpl();
eclass.accept(v);
StringBuffer sb = StatechartsVisitorImpl.generateTLA();
tlaFileWriter efw = new tlaFileWriter();
efw.write(scFile.getProject(), sb);

 }
 catch(Exception ex) {

ex.printStackTrace();
 }
 }
 private Resource getResource(ResourceSet resourceSet, String filePath) {
 URI uri = URI.createPlatformResourceURI(filePath);
 Resource resource = resourceSet.getResource(uri, true);
 return resource;
 }
}

tlaFileWriter.java

public void write(IProject project, StringBuffer sb) {
this.project = project;
String fileName = project.getName() ;
writeFile(sb, fileName);

}
private void writeFile(StringBuffer myResult, String name) {

IPath filePath = null;
try {

filePath = buildFileNameFor(name, "tla");
IFile file = OctopusPlugin.getWorkspace().getRoot().getFile(

filePath);
if (file != null) {

if (file.exists()) {
if (file.isDerived()) {

createFile(file, myResult, null, true);

61

}
} else {

createFile(file, myResult, null, true);
}

}
} catch (CoreException e) {

OctopusPlugin.getDefault().logError(this.getClass().getName(),e);
} catch (IOException e) {

OctopusPlugin.getDefault().logError(this.getClass().getName(),e);
}

}

62

Appendix 3

package statecharts.visitor;

import java.io.BufferedReader;
import java.io.StringReader;
import java.util.Iterator;
import statecharts.AttributeDef;
import statecharts.CompositeState;
import statecharts.Constant;
import statecharts.EventDef;
import statecharts.NamedElement;
import statecharts.PredefinedClass;
import statecharts.QueueEmulate;
import statecharts.SimpleState;
import statecharts.StandardModule;
import statecharts.StateMachine;
import statecharts.Submachine;
import statecharts.State;
import statecharts.Timer;
import statecharts.Transition;
import statecharts.impl.QueueEmulateImpl;
import statechartsAction.ActionSequenceType;
import statechartsAction.ActionSequence;
import statechartsAction.Action;
import statechartsAction.AttrAction;
import statechartsAction.RefAction;
import statechartsAction.TimerAction;
import statechartsAction.impl.RefActionImpl;
import statechartsGuard.AttributeGuard;
import statechartsGuard.CompositeGuard;
import statechartsGuard.EventGuard;
import statechartsGuard.Guard;
import statechartsGuard.SimpleGuard;
import statechartsGuard.StateGuard;
import statechartsGuard.TimeGuard;
import statechartsGuard.impl.AttributeGuardImpl;
import statechartsGuard.impl.CompositeGuardImpl;
import statechartsGuard.impl.EventGuardImpl;
import statechartsGuard.impl.StateGuardImpl;
import statechartsGuard.impl.TimeGuardImpl;

public class StatechartsVisitorImpl implements IStatechartsVisitor {

63

public static String constantSpaces = "";
public static String stateSpaces = "";
public static String doEntrySpaces = "";
public static String doExitSpaces = "";
public static String nextSpaces = "";
public static String varSpaces = "";
public static String variableSpaces = "";
public static String initSpaces = "";
public static String unchangedSpace_tmp;
public static String unchangedSpace_current;
public static String typeInvariantSpaces = "";
public static String actionSpaces = "";
public static String timeactionSpaces = "";
public static String refseqSpaces = "";
public static String moduleName = "";
public static String neededModule = "";
public static String guardSpaces_tmp = "";

QueueEmulate evQueue = new QueueEmulateImpl();
public Submachine submachine = null;

public Object visitNamedElement(NamedElement in) {
return null;

}

public Object visitStateMachine(StateMachine in) {
if(in.getClass().getName().equals("statecharts.impl.StateMachineImpl")){

moduleName = in.getName();
}
return null;

}

public Object visitSubmachine(Submachine in){
submachine = in;
return null;

}

public Object visitState(State in) {
String doEntrySpaces_tmp = "";
String doExitSpaces_tmp = "";
if(in.getName() == null){

return null;
}

64

constantSpaces += "" + in.getName() + ",";
stateSpaces += "" + in.getName() + ",";

// attribute added here
Iterator it_actseq = in.getActionsequences().iterator();
while (it_actseq.hasNext()){

ActionSequence elem_as = (ActionSequence) it_actseq.next();
ActionSequenceType type = elem_as.getType();
if(type.toString().equals("doEntryActionSequence")){

// it ensures that the doEntry statement appears only one time.
if(!doEntrySpaces_tmp.contains("LOCAL doEntry_" + in.getName())){

doEntrySpaces_tmp += "\r\n" + "LOCAL doEntry_" + in.getName() + " ==" +
"\r\n";
doEntrySpaces_tmp += " " + "/\\" + "current'" + " = " + in.getName() +
"\r\n";

}
Iterator it_ac = elem_as.getActions().iterator();
try {

while (it_ac.hasNext()) {
Action elem_ac = (Action) it_ac.next();

if (elem_ac.getClass().getName().equals("statechartsAction.impl.
TimerActionImpl")) {

TimerAction elem_time = (TimerAction) elem_ac;
if (doEntrySpaces_tmp.contains(elem_time.getName())) {

//do nothing
} else {

doEntrySpaces_tmp += " " + "/\\" + elem_time.getName() +
"\r\n";

}

if (timeactionSpaces.contains(elem_time.getName())) {
//do nothing

} else {
timeactionSpaces += "LOCAL " + elem_time.getName() + " == " +
"\r\n";
timeactionSpaces += " " + elem_time.getTimer().getName() +
"'" + " = " + elem_time.getNewTime() + "\r\n\r\n";

}
}
else if (elem_ac.getClass().getName().equals("statechartsAction
.impl.AttrActionImpl")){

AttrAction elem_attr = (AttrAction) elem_ac;
if (doEntrySpaces_tmp.contains(elem_attr.getAttribute()

65

.getName())) {
//do nothing

} else {
doEntrySpaces_tmp += " " + "/\\" + elem_attr.getAttribute()
.getName() + "'" + " = "+elem_attr.getNewAttrValue() + "\r\n";

}
}

}
}
catch (Exception e){}

}
else {

if(!doExitSpaces_tmp.contains("LOCAL doExit_" + in.getName())){
doExitSpaces_tmp += "\r\n" + "LOCAL doExit_" + in.getName() + " ==" +
"\r\n";
doExitSpaces_tmp += " " + "/\\" + "current'" + " = " + in.getName() +
"\r\n";

}
Iterator it_ac = elem_as.getActions().iterator();
try {

while (it_ac.hasNext()) {
Action elem_ac = (Action) it_ac.next();

if (elem_ac.getClass().getName().equals("statechartsAction
.impl.TimerActionImpl")) {

TimerAction elem_time = (TimerAction) elem_ac;
if (doExitSpaces_tmp.contains(elem_time.getName())) {

//do nothing
} else {

doExitSpaces_tmp += " " + "/\\" + elem_time.getName() +
"\r\n";

}

if (timeactionSpaces.contains(elem_time.getName())) {
//do nothing

} else {
timeactionSpaces += "LOCAL " + elem_time.getName() + " == " +
"\r\n";
timeactionSpaces += " " + elem_time.getTimer().getName() +
"'" + " = " + elem_time.getNewTime() + "\r\n\r\n";

}
}
else if (elem_ac.getClass().getName().equals("statechartsAction
.impl.AttrActionImpl")){

66

AttrAction elem_attr = (AttrAction) elem_ac;
if(doExitSpaces_tmp.contains(elem_attr.getAttribute().getName())){

//do nothing
} else {

doExitSpaces_tmp += " " + "/\\" + elem_attr.getAttribute()
.getName() + "'"+" = " + elem_attr.getNewAttrValue() + "\r\n";

}
}

}
}
catch (Exception e){}

}
}
doEntrySpaces += doEntrySpaces_tmp + "\r\n";
doEntrySpaces += doExitSpaces_tmp + "\r\n";
return null;

}

public Object visitSimpleState(SimpleState in) {
return null;

}

public Object visitCompositeState(CompositeState in) {

return null;
}

public Object visitTransition(Transition in) {
return null;

}

public Object visitEventDef(EventDef in) {
return null;

}

public Object visitAttributeDef(AttributeDef in) {
if(varSpaces.contains(in.getName())){

/* do nothing */
} else {

varSpaces += "" + in.getName() + ",";
}
if(variableSpaces.contains(in.getName())){

/* do nothing */
} else {

67

variableSpaces += "" + in.getName() + "," + "\r\n" + " ";
}
if(initSpaces.contains(in.getName())){

/* do nothing */
} else {

initSpaces += "" + "/\\" + in.getName() + " = " + in.getAttrValue()+ "\r\n" +" ";
}
if(typeInvariantSpaces.contains(in.getName())){

/* do nothing */
} else {

typeInvariantSpaces += "" + "/\\" + in.getName() + " \\in " + in.getAttrType() +
"\r\n" + " ";

}
return null;

}

// visit PredefinedClass
public Object visitPredefinedClass(PredefinedClass in) {

return null;
}

public Object visitTimer(Timer in) {
varSpaces += "" + in.getName() + ",";
variableSpaces += "" + in.getName() + "," + "\r\n" + " ";
initSpaces += "" + "/\\" + in.getName() + " = " + "-1" + "\r\n" + " ";
typeInvariantSpaces += "" + "/\\" + in.getName() + " \\in " + in.getMinTimerValue() +
".." + in.getMaxTimerValue() + "\r\n" + " ";
return null;

}

public Object visitQueue(QueueEmulate in) {
return null;

}

public Object visitStandardModule(StandardModule in) {
neededModule += in.getName() + ",";
return null;

}

public Object visitConstant(Constant in) {
constantSpaces += in.getName() + ",";
return null;

}

68

/* statechartsAction */

public Object visitActionSequence(ActionSequence in){
String refseqSpaces_tmp = "";
refseqSpaces += "\r\n\r\n" + in.getName() + " == " + "\r\n";
if (in.getType().toString().equals("tranActionSequence")) {

Iterator it = in.getTransitions().iterator();
while (it.hasNext()) {

Transition elem_tr = (Transition) it.next();
refseqSpaces_tmp = generateGuard(elem_tr);
if(refseqSpaces_tmp == null || refseqSpaces_tmp.equals("")){

/* do nothing */
} else {

try {
String refactionseqSpaces_line = "";
StringReader sr= new StringReader(refseqSpaces_tmp); // wrap String
BufferedReader br= new BufferedReader(sr); // wrap StringReader
refseqSpaces += " " + "/\\" + br.readLine() + "\r\n";
while((refactionseqSpaces_line = br.readLine()) != null){

refseqSpaces += " " + " " + refactionseqSpaces_line + "\r\n";
}

} catch (Exception e) {}
}

}
it = in.getActions().iterator();
while (it.hasNext()) {

Action elem = (Action) it.next();
if (elem.getClass().getName().equals("statechartsAction.impl.RefActionImpl")){

RefActionImpl elem_ra = (RefActionImpl) elem;
refseqSpaces += " " + "/\\" + elem_ra.getName() + "\r\n";

}
}

}
return null;

}

public Object visitAction(Action in){
return null;

}

public Object visitRefAction(RefAction in){

unchangedSpace_current = "";
nextSpaces += "\\/" + in.getName() + "\r\n" + " ";

69

// get attribute
AttributeDef attr = null;
try {

attr = in.getAttribute();
} catch (Exception e) {}

// test if the transition has a trigger
boolean existTrigger = false;
if(in.getEvent() != null){

existTrigger = true;
// add the trigger to queue
addToQueue(in);

}

actionSpaces += "\r\n" + in.getName() + " == " + "\r\n";

// no attribute, no trigger
if (attr == null && existTrigger == false){

Iterator noattr_it_actseq = in.getActionsequences().iterator();
if(noattr_it_actseq.hasNext()){

ActionSequence noattr_as1 = (ActionSequence) noattr_it_actseq.next();
 // exist many actionsequence
 if(noattr_it_actseq.hasNext()){
 // first actionsequence
 Iterator noattr_it_tr1 = noattr_as1.getTransitions().iterator();
 if(noattr_it_tr1.hasNext()){
 Transition noattr_transition1 = (Transition) noattr_it_tr1.next();
 // first transition
 actionSpaces += " " + "\\/" + "/\\" + "current = " +

noattr_transition1.getSource().getName() + "\r\n";
 actionSpaces += " " + " " + "/\\" + "doEntry_" +

noattr_transition1.getTarget().getName() + "\r\n";
 guardSpaces_tmp = generateGuard(noattr_transition1);
 if(guardSpaces_tmp == null || guardSpaces_tmp.equals("")){
 /* do nothing */
 } else {
 // output the guard row by row
 try {
 String guardSpaces_line = "";
 StringReader sr= new StringReader(guardSpaces_tmp);
 BufferedReader br= new BufferedReader(sr);
 actionSpaces += " " + " " + "/\\" + br.readLine() + "\r\n";
 while((guardSpaces_line = br.readLine()) != null){
 actionSpaces += " " + " " + " " + guardSpaces_line +

70

"\r\n";
 }
 } catch (Exception e) {}
 }
 // decide if current state exists
 if (noattr_transition1.getSource().getName().equals

(noattr_transition1.getTarget().getName())){
 unchangedSpace_current = "current, ";
 }
 unchangedSpace_tmp = printUnchangedAttr(in, unchangedSpace_current);
 unchangedSpace_current = "";
 if(unchangedSpace_tmp == null || unchangedSpace_tmp.equals("")){
 /* do nothing */
 } else {
 actionSpaces += " " + " " + "/\\" + "UNCHANGED" + " << " +

unchangedSpace_tmp + " >>" + "\r\n";
 }

 // other transitions
 while(noattr_it_tr1.hasNext()){
 Transition noattr_transition2 = (Transition) noattr_it_tr1.next();
 actionSpaces += " " + "\\/" + "/\\" + "current = " +

noattr_transition2.getSource().getName() + "\r\n";
 actionSpaces += " " + " " + "/\\" + "doEntry_" +

noattr_transition2.getTarget().getName() + "\r\n";
 guardSpaces_tmp = generateGuard(noattr_transition2);
 if(guardSpaces_tmp == null || guardSpaces_tmp.equals("")){
 /* do nothing */
 } else {
 // output the guard row by row
 try {
 String guardSpaces_line = "";
 StringReader sr= new StringReader(guardSpaces_tmp);
 BufferedReader br= new BufferedReader(sr);
 actionSpaces += " " + " " + "/\\" + br.readLine() +

"\r\n";
 while((guardSpaces_line = br.readLine()) != null){
 actionSpaces += " " + " " + " " + guardSpaces_line

+ "\r\n";
 }
 } catch (Exception e) {}
 }
 if (noattr_transition2.getSource().getName().equals

(noattr_transition2.getTarget().getName())){
 unchangedSpace_current = "current, ";

71

 }
 unchangedSpace_tmp = printUnchangedAttr(in,

unchangedSpace_current);
 unchangedSpace_current = "";
 if(unchangedSpace_tmp == null || unchangedSpace_tmp.equals("")){
 /* do nothing */
 } else {
 actionSpaces += " " + " " + "/\\" + "UNCHANGED" + " << " +

unchangedSpace_tmp + " >>" + "\r\n";
 }
 }
 }
 }

 // exist only one actionsequence
 else{
 Iterator noattr_it_tr2 = noattr_as1.getTransitions().iterator();
 if(noattr_it_tr2.hasNext()){
 Transition noattr_transition3 = (Transition) noattr_it_tr2.next();
 // exist many transitions, first transition
 if(noattr_it_tr2.hasNext()){
 actionSpaces += " " + "\\/" + "/\\" + "current = " +

noattr_transition3.getSource().getName() + "\r\n";
 actionSpaces += " " + " " + "/\\" + "doEntry_" +

noattr_transition3.getTarget().getName() + "\r\n";
 guardSpaces_tmp = generateGuard(noattr_transition3);
 if(guardSpaces_tmp == null || guardSpaces_tmp.equals("")){
 /* do nothing */
 } else {
 // output the guard row by row
 try {
 String guardSpaces_line = "";
 StringReader sr= new StringReader(guardSpaces_tmp);
 BufferedReader br= new BufferedReader(sr);
 actionSpaces += " " + " " + "/\\" + br.readLine() +

"\r\n";
 while((guardSpaces_line = br.readLine()) != null){
 actionSpaces += " " + " " + " " + guardSpaces_line

+ "\r\n";
 }
 } catch (Exception e) {}
 }
 if (noattr_transition3.getSource().getName().equals

(noattr_transition3.getTarget().getName())){

72

 unchangedSpace_current = "current, ";
 }
 unchangedSpace_tmp = printUnchangedAttr(in,

unchangedSpace_current);
 unchangedSpace_current = "";
 if(unchangedSpace_tmp == null || unchangedSpace_tmp.equals("")){
 /* do nothing */
 } else {
 actionSpaces += " " + " " + "/\\" + "UNCHANGED" + " << " +

unchangedSpace_tmp + " >>" + "\r\n";
 }
 }
 // exist only one transition, one actionsequence
 else{
 actionSpaces += " " + "/\\" + "current = " +

noattr_transition3.getSource().getName() + "\r\n";
 actionSpaces += " " + "/\\" + "doEntry_" +

noattr_transition3.getTarget().getName() + "\r\n";
 guardSpaces_tmp = generateGuard(noattr_transition3);
 if(guardSpaces_tmp == null || guardSpaces_tmp.equals("")){
 /* do nothing */
 } else {
 // output the guard row by row
 try {
 String guardSpaces_line = "";
 StringReader sr= new StringReader(guardSpaces_tmp);
 BufferedReader br= new BufferedReader(sr);
 actionSpaces += " " + "/\\" + br.readLine() + "\r\n";
 while((guardSpaces_line = br.readLine()) != null){
 actionSpaces += " " + " " + guardSpaces_line +

"\r\n";
 }
 } catch (Exception e) {}
 }
 if (noattr_transition3.getSource().getName().equals

(noattr_transition3.getTarget().getName())){
 unchangedSpace_current = "current, ";
 }
 unchangedSpace_tmp = printUnchangedAttr(in,

unchangedSpace_current);
 unchangedSpace_current = "";
 if(unchangedSpace_tmp == null || unchangedSpace_tmp.equals("")){
 /* do nothing */
 } else {

73

 actionSpaces += " " + "/\\" + "UNCHANGED" + " << " +
unchangedSpace_tmp + " >>" + "\r\n";

 }
 }

 // other transitions, if there are many transitions
 while(noattr_it_tr2.hasNext()){
 Transition noattr_transition4 = (Transition) noattr_it_tr2.next();
 actionSpaces += " " + "\\/" + "/\\" + "current = " +

noattr_transition4.getSource().getName() + "\r\n";
 actionSpaces += " " + " " + "/\\" + "doEntry_" +

noattr_transition4.getTarget().getName() + "\r\n";
 guardSpaces_tmp = generateGuard(noattr_transition4);
 if(guardSpaces_tmp == null || guardSpaces_tmp.equals("")){
 /* do nothing */
 } else {
 // output the guard row by row
 try {
 String guardSpaces_line = "";
 StringReader sr= new StringReader(guardSpaces_tmp);
 BufferedReader br= new BufferedReader(sr);
 actionSpaces += " " + " " + "/\\" + br.readLine() +

"\r\n";
 while((guardSpaces_line = br.readLine()) != null){
 actionSpaces += " " + " " + " " + guardSpaces_line

+ "\r\n";
 }
 } catch (Exception e) {}
 }
 if (noattr_transition4.getSource().getName().equals

(noattr_transition4.getTarget().getName())){
 unchangedSpace_current = "current, ";
 }
 unchangedSpace_tmp = printUnchangedAttr(in,

unchangedSpace_current);
 unchangedSpace_current = "";
 if(unchangedSpace_tmp == null || unchangedSpace_tmp.equals("")){
 /* do nothing */
 } else {
 actionSpaces += " " + " " + "/\\" + "UNCHANGED" + " << " +

unchangedSpace_tmp + " >>" + "\r\n";
 }
 }
 }//if

74

 }//else
 // other actionsequences, if there are many actionsequence
 while(noattr_it_actseq.hasNext()){
 ActionSequence noattr_as2 = (ActionSequence) noattr_it_actseq.next();

 Iterator noattr_it_tr3 = noattr_as2.getTransitions().iterator();
 while(noattr_it_tr3.hasNext()){
 Transition noattr_transition5 = (Transition) noattr_it_tr3.next();
 actionSpaces += " " + "\\/" + "/\\" + "current = " +

noattr_transition5.getSource().getName() + "\r\n";
 actionSpaces += " " + " " + "/\\" + "doEntry_" +

noattr_transition5.getTarget().getName() + "\r\n";
 guardSpaces_tmp = generateGuard(noattr_transition5);
 if(guardSpaces_tmp == null || guardSpaces_tmp.equals("")){
 /* do nothing */
 } else {
 // output the guard row by row
 try {
 String guardSpaces_line = "";
 StringReader sr= new StringReader(guardSpaces_tmp);
 BufferedReader br= new BufferedReader(sr);
 actionSpaces += " " + " " + "/\\" + br.readLine() + "\r\n";
 while((guardSpaces_line = br.readLine()) != null){
 actionSpaces += " " + " " + " " + guardSpaces_line +

"\r\n";
 }
 } catch (Exception e) {}
 }
 if (noattr_transition5.getSource().getName().equals

(noattr_transition5.getTarget().getName())){
 unchangedSpace_current = "current, ";
 }
 unchangedSpace_tmp = printUnchangedAttr(in, unchangedSpace_current);
 unchangedSpace_current = "";
 if(unchangedSpace_tmp == null || unchangedSpace_tmp.equals("")){
 /* do nothing */
 } else {

 actionSpaces += " " + " " + "/\\" + "UNCHANGED" + " << " +
unchangedSpace_tmp + " >>" + "\r\n";

 }
 }
 }//while

}//if(noattr_it_actseq.hasNext())
}
// with attribute or queue

75

else {
Iterator it_actseq = in.getActionsequences().iterator();
if(it_actseq.hasNext()){

ActionSequence as1 = (ActionSequence) it_actseq.next();
 // exist many actionsequence
 if(it_actseq.hasNext()){
 // first actionsequence
 Iterator it_tr1 = as1.getTransitions().iterator();
 if(it_tr1.hasNext()){
 Transition transition1 = (Transition) it_tr1.next();
 // first transition
 actionSpaces += " " + "/\\" + "\\/" + "/\\" + "current = " +

transition1.getSource().getName() + "\r\n";
 actionSpaces += " " + " " + " " + "/\\" + "doEntry_" +

transition1.getTarget().getName() + "\r\n";
 guardSpaces_tmp = generateGuard(transition1);
 if(guardSpaces_tmp == null || guardSpaces_tmp.equals("")){
 /* do nothing */
 } else {
 // output the guard row by row
 try {
 String guardSpaces_line = "";
 StringReader sr= new StringReader(guardSpaces_tmp);
 BufferedReader br= new BufferedReader(sr);
 actionSpaces += " " + " " + " " + "/\\" + br.readLine() +

"\r\n";
 while((guardSpaces_line = br.readLine()) != null){
 actionSpaces += " " + " " + " " + " " +

guardSpaces_line + "\r\n";
 }
 } catch (Exception e) {}
 }
 if (transition1.getSource().getName().equals

(transition1.getTarget().getName())){
 unchangedSpace_current = "current, ";
 }
 unchangedSpace_tmp = printUnchangedAttr(in, unchangedSpace_current);
 unchangedSpace_current = "";
 if(unchangedSpace_tmp == null || unchangedSpace_tmp.equals("")){
 /* do nothing */
 } else {
 actionSpaces += " " + " " + " " + "/\\" + "UNCHANGED" + " << "

+ unchangedSpace_tmp + " >>" + "\r\n";
 }

76

 // other transitions
 while(it_tr1.hasNext()){
 Transition transition2 = (Transition) it_tr1.next();
 actionSpaces += " " + " " + "\\/" + "/\\" + "current = " +

transition2.getSource().getName() + "\r\n";
 actionSpaces += " " + " " + " " + "/\\" + "doEntry_" +

transition2.getTarget().getName() + "\r\n";
 guardSpaces_tmp = generateGuard(transition2);
 if(guardSpaces_tmp == null || guardSpaces_tmp.equals("")){
 /* do nothing */
 } else {
 // output the guard row by row
 try {
 String guardSpaces_line = "";
 StringReader sr= new StringReader(guardSpaces_tmp);
 BufferedReader br= new BufferedReader(sr);
 actionSpaces += " " + " " + " " + "/\\" +

br.readLine() + "\r\n";
 while((guardSpaces_line = br.readLine()) != null){
 actionSpaces += " " + " " + " " + " " +

guardSpaces_line + "\r\n";
 }
 } catch (Exception e) {}
 }
 if (transition2.getSource().getName().equals

(transition2.getTarget().getName())){
 unchangedSpace_current = "current, ";
 }
 unchangedSpace_tmp = printUnchangedAttr(in,

unchangedSpace_current);
 unchangedSpace_current = "";
 if(unchangedSpace_tmp == null || unchangedSpace_tmp.equals("")){
 /* do nothing */
 } else {
 actionSpaces += " " + " " + " " + "/\\" + "UNCHANGED" + "

<< " + unchangedSpace_tmp + " >>" + "\r\n";
 }
 }
 }
 }

 // exist only one actionsequence
 else{
 Iterator it_tr2 = as1.getTransitions().iterator();

77

 if(it_tr2.hasNext()){
 Transition transition3 = (Transition) it_tr2.next();
 // exist many transitions, first transition
 if(it_tr2.hasNext()){
 actionSpaces += " " + "/\\" + "\\/" + "/\\" + "current = " +

transition3.getSource().getName() + "\r\n";
 actionSpaces += " " + " " + " " + "/\\" + "doEntry_" +

transition3.getTarget().getName() + "\r\n";
 guardSpaces_tmp = generateGuard(transition3);
 if(guardSpaces_tmp == null || guardSpaces_tmp.equals("")){
 /* do nothing */
 } else {
 // output the guard row by row
 try {
 String guardSpaces_line = "";
 StringReader sr= new StringReader(guardSpaces_tmp);
 BufferedReader br= new BufferedReader(sr);
 actionSpaces += " " + " " + " " + "/\\" +

br.readLine() + "\r\n";
 while((guardSpaces_line = br.readLine()) != null){
 actionSpaces += " " + " " + " " + " " +

guardSpaces_line + "\r\n";
 }
 } catch (Exception e) {}
 }
 if (transition3.getSource().getName().equals

(transition3.getTarget().getName())){
 unchangedSpace_current = "current, ";
 }
 unchangedSpace_tmp = printUnchangedAttr(in,

unchangedSpace_current);
 unchangedSpace_current = "";
 if(unchangedSpace_tmp == null || unchangedSpace_tmp.equals("")){
 /* do nothing */
 } else {
 actionSpaces += " " + " " + " " + "/\\" + "UNCHANGED" + "

<< " + unchangedSpace_tmp + " >>" + "\r\n";
 }
 }
 // exist only one transition, one actionsequence
 else{
 actionSpaces += " " + "/\\" + "/\\" + "current = " +

transition3.getSource().getName() + "\r\n";
 actionSpaces += " " + " " + "/\\" + "doEntry_" +

78

transition3.getTarget().getName() + "\r\n";
 guardSpaces_tmp = generateGuard(transition3);
 if(guardSpaces_tmp == null || guardSpaces_tmp.equals("")){
 /* do nothing */
 } else {
 // output the guard row by row
 try {
 String guardSpaces_line = "";
 StringReader sr= new StringReader(guardSpaces_tmp);
 BufferedReader br= new BufferedReader(sr);
 actionSpaces += " " + " " + "/\\" + br.readLine() +

"\r\n";
 while((guardSpaces_line = br.readLine()) != null){
 actionSpaces += " " + " " + " " + guardSpaces_line

+ "\r\n";
 }
 } catch (Exception e) {}
 }
 if (transition3.getSource().getName().equals

(transition3.getTarget().getName())){
 unchangedSpace_current = "current, ";
 }
 unchangedSpace_tmp = printUnchangedAttr(in,

unchangedSpace_current);
 unchangedSpace_current = "";
 if(unchangedSpace_tmp == null || unchangedSpace_tmp.equals("")){
 /* do nothing */
 } else {
 actionSpaces += " " + " " + "/\\" + "UNCHANGED" + " << " +

unchangedSpace_tmp + " >>" + "\r\n";
 }
 }

 // other transitions, if there are many transitions
 while(it_tr2.hasNext()){
 Transition transition4 = (Transition) it_tr2.next();
 actionSpaces += " " + " " + "\\/" + "/\\" + "current = " +

transition4.getSource().getName() + "\r\n";
 actionSpaces += " " + " " + " " + "/\\" + "doEntry_" +

transition4.getTarget().getName() + "\r\n";
 guardSpaces_tmp = generateGuard(transition4);
 if(guardSpaces_tmp == null || guardSpaces_tmp.equals("")){
 /* do nothing */
 } else {

79

 // output the guard row by row
 try {
 String guardSpaces_line = "";
 StringReader sr= new StringReader(guardSpaces_tmp);
 BufferedReader br= new BufferedReader(sr);
 actionSpaces += " " + " " + " " + "/\\" +

br.readLine() + "\r\n";
 while((guardSpaces_line = br.readLine()) != null){
 actionSpaces += " " + " " + " " + " " +

guardSpaces_line + "\r\n";
 }
 } catch (Exception e) {}
 }
 if (transition4.getSource().getName().equals

(transition4.getTarget().getName())){
 unchangedSpace_current = "current, ";
 }
 unchangedSpace_tmp = printUnchangedAttr(in,

unchangedSpace_current);
 unchangedSpace_current = "";
 if(unchangedSpace_tmp == null || unchangedSpace_tmp.equals("")){
 /* do nothing */
 } else {
 actionSpaces += " " + " " + " " + "/\\" + "UNCHANGED" + "

<< " + unchangedSpace_tmp + " >>" + "\r\n";
 }
 }
 }
 }
 // other actionsequences, if there are many actionsequence
 while(it_actseq.hasNext()){
 ActionSequence as2 = (ActionSequence) it_actseq.next();

 Iterator it_tr3 = as2.getTransitions().iterator();
 while(it_tr3.hasNext()){
 Transition transition5 = (Transition) it_tr3.next();
 actionSpaces += " " + " " + "\\/" + "/\\" + "current = " +

transition5.getSource().getName() + "\r\n";
 actionSpaces += " " + " " + " " + "/\\" + "doEntry_" +

transition5.getTarget().getName() + "\r\n";
 guardSpaces_tmp = generateGuard(transition5);

 if(guardSpaces_tmp == null || guardSpaces_tmp.equals("")){
 /* do nothing */
 } else {
 // output the guard row by row

80

 try {
 String guardSpaces_line = "";
 StringReader sr= new StringReader(guardSpaces_tmp);
 BufferedReader br= new BufferedReader(sr);
 actionSpaces += " " + " " + " " + "/\\" + br.readLine() +

"\r\n";
 while((guardSpaces_line = br.readLine()) != null){
 actionSpaces += " " + " " + " " + " " +

guardSpaces_line + "\r\n";
 }
 } catch (Exception e) {}
 }
 if (transition5.getSource().getName().equals

(transition5.getTarget().getName())){
 unchangedSpace_current = "current, ";
 }
 unchangedSpace_tmp = printUnchangedAttr(in, unchangedSpace_current);
 unchangedSpace_current = "";
 if(unchangedSpace_tmp == null || unchangedSpace_tmp.equals("")){
 /* do nothing */
 } else {

 actionSpaces += " " + " " + " " + "/\\" + "UNCHANGED" + "
<< " + unchangedSpace_tmp + " >>" + "\r\n";

 }
 }
 }

/* list attribute */
 if (attr != null) {
 actionSpaces += " " + "/\\" + in.getAttribute().getName() + "'" + " = "

+ in.getNewAttrValue() + "\r\n";
 }
 //add the statement enqueue.

String evName = evQueue.dequeue(in);
if(evName.equals("")){
} else {

actionSpaces += " " + "/\\" + "Enqueue('" + evName + "')" + "\r\n";
}

 }
}
return null;

}

public Object visitAttrAction(AttrAction in){
return null;

81

}

public Object visitTimerAction(TimerAction in){
return null;

}

// Guard
public Object visitGuard(Guard in) {

return null;
}

public Object visitSimpleGuard(SimpleGuard in) {
return null;

}

public Object visitTimeGuard(TimeGuard in) {
return null;

}

public Object visitAttributeGuard(AttributeGuard in) {
return null;

}

public Object visitEventGuard(EventGuard in) {
return null;

}

public Object visitStateGuard(StateGuard in) {
return null;

}

public Object visitCompositeGuard(CompositeGuard in) {
return null;

}

public static StringBuffer generateTLA(){

StringBuffer sb = new StringBuffer();
sb.append("-------------------- MODULE " + moduleName + " --------------------");
sb.append("\r\n\r\n");

neededModule = neededModule.substring(0, neededModule.length()-1);
sb.append("EXTENDS " + neededModule);
sb.append("\r\n\r\n");

82

/* delete the last character */
if(stateSpaces.endsWith(",")){

stateSpaces = stateSpaces.substring(0, stateSpaces.length()-1);
}
if(constantSpaces.endsWith(",")){

constantSpaces = constantSpaces.substring(0, constantSpaces.length()-1);
}
if(varSpaces.endsWith(",")){

varSpaces = varSpaces.substring(0, varSpaces.length()-1);
}
variableSpaces = variableSpaces.substring(0, variableSpaces.length()-12);

sb.append("CONSTANTS " + constantSpaces);
sb.append("\r\n\r\n");
sb.append("State == " + "{" + stateSpaces + "}");
sb.append("\r\n\r\n");
sb.append("VARIABLE " + variableSpaces);
sb.append("\r\n\r\n");
sb.append("vars == " + "<< " + varSpaces + " >>");
sb.append("\r\n\r\n");
sb.append("Init == " + initSpaces);
sb.append("\r\n\r\n");
sb.append(timeactionSpaces);
sb.append(doEntrySpaces);
sb.append("\r\n\r\n");
sb.append(doExitSpaces);
sb.append("\r\n\r\n");
sb.append(actionSpaces);
sb.append("\r\n\r\n");
sb.append(refseqSpaces);
sb.append("\r\n\r\n");
sb.append("Next == " + nextSpaces);
sb.append("\r\n\r\n");
sb.append("TypeInvariant == " + typeInvariantSpaces);
sb.append("\r\n\r\n");
sb.append("Spec == Init /\\ [][Next]_vars");
sb.append("\r\n\r\n");
sb.append("--");
sb.append("\r\n\r\n");
sb.append("THEOREM Spec => [](TypeInvariant)");
sb.append("\r\n\r\n");
sb.append("==");
sb.append("\r\n\r\n");

83

return sb;
}

/* find the unchanged attributes */
public String printUnchangedAttr(RefAction in, String unchangedState){

String unchangedSpace = "";
Iterator it = submachine.getPredefinedclasses().iterator();
try {

while (it.hasNext()) {
PredefinedClass elem = (PredefinedClass) it.next();
if (elem.getClass().getName().equals("statecharts.impl.TimerImpl")){

unchangedSpace = elem.getName() + ", ";
break;

}
unchangedSpace = "";

}
}
catch (Exception e){}

// add unchanged attributes
String attrname = "";
try {

attrname = in.getAttribute().getName();
} catch(java.lang.NullPointerException e) {}

Iterator it_attr = submachine.getAttributes().iterator();
while(it_attr.hasNext()){

AttributeDef elem = (AttributeDef) it_attr.next();
String name = elem.getName();
if (name.equals("current")){

// if current, add the unchangedState to unchangedSpace
unchangedSpace += unchangedState;

} else if (name.equals(attrname)){
// do nothing, if a same attribute exists

} else {
// add the other attributes to unchangedSpace
unchangedSpace += name + ", ";

}
}

if(unchangedSpace.endsWith(", ")){
unchangedSpace = unchangedSpace.substring(0, unchangedSpace.length() - 2);

}
return unchangedSpace;

84

}

public void addToQueue(Action action){
try{

if (evQueue.containsItem(action.getEvent().getName())){
// do nothing

} else {
evQueue.enqueue(action.getEvent());

}
} catch(Exception e){}

}

public String generateGuard(Transition tran){
String guard_tmp = "";
try {

if (tran.getGuard().getClass().getName().equals("statechartsGuard.impl
.TimeGuardImpl")){

TimeGuardImpl elem_tg = (TimeGuardImpl) tran.getGuard();
if (elem_tg.getMAX() != null) {

guard_tmp += elem_tg.getTimer().getName() + " < " + elem_tg.getMAX();
} else if (elem_tg.getMIN() != null) {

guard_tmp += elem_tg.getTimer().getName() + " > " + elem_tg.getMIN();
} else if (elem_tg.getGdExpression() != null) {

guard_tmp += elem_tg.getTimer().getName() + "" + elem_tg
.getGdExpression();

}
} else if (tran.getGuard().getClass().getName().equals("statechartsGuard.impl
.AttributeGuardImpl")){

AttributeGuardImpl elem_ag = (AttributeGuardImpl) tran.getGuard();
guard_tmp += elem_ag.getAttribute().getName();

} else if (tran.getGuard().getClass().getName().equals("statechartsGuard.impl
.EventGuardImpl")){

EventGuardImpl elem_eg = (EventGuardImpl) tran.getGuard();
guard_tmp += elem_eg.getEvent().getName();

} else if (tran.getGuard().getClass().getName().equals("statechartsGuard.impl
.StateGuardImpl")){

StateGuardImpl elem_sg = (StateGuardImpl) tran.getGuard();
guard_tmp += elem_sg.getState().getName();

} else if (tran.getGuard().getClass().getName().equals("statechartsGuard.impl
.CompositeGuardImpl")){

CompositeGuardImpl cg = (CompositeGuardImpl)tran.getGuard();
guard_tmp += generateCompositeGuard(cg);

}
} catch (Exception e) {}

85

return guard_tmp;
}

public String generateCompositeGuard(CompositeGuardImpl guard){
String guard_comp = "";
if(guard.getLogicRelation().toString().equals("DISJUNCTION")){

Iterator it = guard.getSubguards().iterator();
while (it.hasNext()) {

Guard elem = (Guard) it.next();
if (elem.getClass().getName().equals("statechartsGuard.impl.TimeGuardImpl")){

TimeGuardImpl elem_tg = (TimeGuardImpl) elem;
if (!elem_tg.getMAX().equals("")) {

guard_comp += "\\/" + elem_tg.getTimer().getName() + " < " +
elem_tg.getMAX() + "\r\n";

} else if (!elem_tg.getMIN().equals("")) {
guard_comp += "\\/" + elem_tg.getTimer().getName() + " > " +
elem_tg.getMIN() + "\r\n";

} else if (!elem_tg.getGdExpression().equals("")) {
guard_comp += "\\/" + elem_tg.getTimer().getName() + "" +
elem_tg.getGdExpression() + "\r\n";

}
} else if (elem.getClass().getName().equals("statechartsGuard.impl
.AttributeGuardImpl")){

AttributeGuardImpl elem_ag = (AttributeGuardImpl) elem;
guard_comp += "\\/" + elem_ag.getAttribute().getName() + "\r\n";

} else if (elem.getClass().getName().equals("statechartsGuard.impl
.EventGuardImpl")){

EventGuardImpl elem_eg = (EventGuardImpl) elem;
guard_comp += "\\/" + elem_eg.getEvent().getName() + "\r\n";

} else if (elem.getClass().getName().equals("statechartsGuard.impl
.StateGuardImpl")){

StateGuardImpl elem_sg = (StateGuardImpl) elem;
guard_comp += "\\/" + elem_sg.getState().getName() + "\r\n";

} else if (elem.getClass().getName().equals("statechartsGuard.impl
.CompositeGuardImpl")){

CompositeGuardImpl cg = (CompositeGuardImpl)elem;
String guard_cg = generateCompositeGuard(cg);
try {

String guardSpaces_line = "";
 StringReader sr= new StringReader(guard_cg); // wrap String
 BufferedReader br= new BufferedReader(sr); // wrap StringReader
 guard_comp += "\\/" + br.readLine() + "\r\n";
 while((guardSpaces_line = br.readLine()) != null){
 guard_comp += " " + guardSpaces_line + "\r\n";

86

 }
} catch (Exception e) {}

}
}

} else if (guard.getLogicRelation().toString().equals("CONJUNCTION")) {
Iterator it = guard.getSubguards().iterator();
while (it.hasNext()) {

Guard elem = (Guard) it.next();
if (elem.getClass().getName().equals("statechartsGuard.impl.TimeGuardImpl")){

TimeGuardImpl elem_tg = (TimeGuardImpl) elem;
if (!elem_tg.getMAX().equals("")) {

guard_comp += "/\\" + elem_tg.getTimer().getName() + " < " +
elem_tg.getMAX() + "\r\n";

} else if (!elem_tg.getMIN().equals("")) {
guard_comp += "/\\" + elem_tg.getTimer().getName() + " > " +
elem_tg.getMIN() + "\r\n";

} else if (!elem_tg.getGdExpression().equals("")) {
guard_comp += "/\\" + elem_tg.getTimer().getName() + "" +
elem_tg.getGdExpression() + "\r\n";

}
} else if (elem.getClass().getName().equals("statechartsGuard.impl
.AttributeGuardImpl")){

AttributeGuardImpl elem_ag = (AttributeGuardImpl) elem;
guard_comp += "/\\" + elem_ag.getAttribute().getName() + "\r\n";

} else if (elem.getClass().getName().equals("statechartsGuard.impl
.EventGuardImpl")){

EventGuardImpl elem_eg = (EventGuardImpl) elem;
guard_comp += "/\\" + elem_eg.getEvent().getName() + "\r\n";

} else if (elem.getClass().getName().equals("statechartsGuard.impl
.StateGuardImpl")){

StateGuardImpl elem_sg = (StateGuardImpl) elem;
guard_comp += "/\\" + elem_sg.getState().getName() + "\r\n";

} else if (elem.getClass().getName().equals("statechartsGuard.impl
.CompositeGuardImpl")){

CompositeGuardImpl cg = (CompositeGuardImpl)elem;
String guard_cg = generateCompositeGuard(cg);
try {

String guardSpaces_line = "";
 StringReader sr= new StringReader(guard_cg); // wrap String
 BufferedReader br= new BufferedReader(sr); // wrap StringReader
 guard_comp += "/\\" + br.readLine() + "\r\n";
 while((guardSpaces_line = br.readLine()) != null){
 guard_comp += " " + guardSpaces_line + "\r\n";
 }

87

} catch (Exception e) {}
}

}
}
return guard_comp;

}

}

88

Appendix 4

-------------------- MODULE micro --------------------

EXTENDS TLC,Integers,Sequences

CONSTANTS ReadyToCook,DoorOpen,CookingComplete,Cooking,CookingInterrupted,CookingExtended

State == {ReadyToCook,DoorOpen,CookingComplete,Cooking,CookingInterrupted,CookingExtended}

VARIABLE tube,
 current,
 light,
 door,
 microwaveOvenTimer

vars == << tube,current,light,door,microwaveOvenTimer >>

Init == /\tube = FALSE
 /\current = ReadyToCook
 /\light = FALSE
 /\door = FALSE
 /\microwaveOvenTimer = -1

LOCAL clearTimer ==
 microwaveOvenTimer' = -1

LOCAL setTimerForOneMinute ==
 microwaveOvenTimer' = 60

LOCAL addOneMinuteToTimer ==
 microwaveOvenTimer' = microwaveOvenTimer + 60

LOCAL doEntry_ReadyToCook ==
 /\current' = ReadyToCook
 /\light' = FALSE

LOCAL doEntry_DoorOpen ==
 /\current' = DoorOpen
 /\light' = TRUE

LOCAL doEntry_CookingComplete ==
 /\current' = CookingComplete

89

 /\light' = FALSE
 /\tube' = FALSE
 /\clearTimer

LOCAL doEntry_Cooking ==
 /\current' = Cooking
 /\light' = TRUE
 /\tube' = TRUE
 /\setTimerForOneMinute

LOCAL doEntry_CookingInterrupted ==
 /\current' = CookingInterrupted
 /\light' = FALSE
 /\tube' = FALSE
 /\clearTimer

LOCAL doEntry_CookingExtended ==
 /\current' = CookingExtended
 /\addOneMinuteToTimer

openDoor ==
 /\\//\current = Cooking
 /\doEntry_CookingInterrupted
 /\UNCHANGED << microwaveOvenTimer, tube, light >>
 \//\current = CookingExtended
 /\doEntry_CookingInterrupted
 /\UNCHANGED << microwaveOvenTimer, tube, light >>
 \//\current = ReadyToCook
 /\doEntry_DoorOpen
 /\UNCHANGED << microwaveOvenTimer, tube, light >>
 \//\current = CookingComplete
 /\doEntry_DoorOpen
 /\UNCHANGED << microwaveOvenTimer, tube, light >>
 /\door' = TRUE
 /\Enqueue('od')

closeDoor ==
 /\\//\current = CookingInterrupted
 /\doEntry_ReadyToCook
 /\UNCHANGED << microwaveOvenTimer, tube, light >>
 \//\current = DoorOpen
 /\doEntry_ReadyToCook
 /\UNCHANGED << microwaveOvenTimer, tube, light >>
 /\door' = FALSE

90

 /\Enqueue('cd')

pressButton ==
 /\\//\current = ReadyToCook
 /\doEntry_Cooking
 /\UNCHANGED << microwaveOvenTimer, tube, light, door >>
 \//\current = CookingComplete
 /\doEntry_Cooking
 /\UNCHANGED << microwaveOvenTimer, tube, light, door >>
 \//\current = Cooking
 /\doEntry_CookingExtended
 /\UNCHANGED << microwaveOvenTimer, tube, light, door >>
 \//\current = CookingExtended
 /\doEntry_CookingExtended
 /\UNCHANGED << microwaveOvenTimer, tube, current, light, door >>
 /\Enqueue('pb')

Next == \/openDoor
 \/closeDoor
 \/pressButton

TypeInvariant == /\tube \in BOOLEAN
 /\current \in State
 /\light \in BOOLEAN
 /\door \in BOOLEAN
 /\microwaveOvenTimer \in -1..60

Spec == Init /\ [][Next]_vars

THEOREM Spec => [](TypeInvariant)
===

91

Reference

[1] The TLA Web Page:
http://research.microsoft.com/users/lamport/tla/tla.html

[2] Lamport, L., Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers, Addison-Wesley, 2003.

[3] Yuan Yu, Panagiotis Manolios, Leslie Lamport: Model Checking TLA+
Specifications, Compaq Systems Research Center,

[4] Frank B., David S., Ed M., Raymond E., Timothy J. G.: Eclipse Modeling
Framework: A Developer's Guide, Addison Wesley, 2003

[5] Thomas Santen Dirk Seifert: Executing UML State Machines, TU-Berlin,
2003

[6] Stephen J. Mellor, Marc J. Balcer: Executable UML: A Foundation for
Model-Driven Architecture, Addison Wesley, 2002

[7] Carol Lisa Freinkel: An Approach to Combining UML and TLA+ in Software
Specification, 2003

[8] Leslie Lamport: Specifying Systems, 2002

[9] Zs. Pap, I. Majzik1, A. Pataricza and A. Szegi: Completeness and Consistency
Analysis of UML Statechart Specifications

92

	Chapter 1. Introduction
	1.1. Why do We need this Transformation?
	1.2. Basic Transformation Idea
	1.3. Structure of this Thesis

	Chapter 2. Statecharts Metamodel
	2.1. Statecharts Introduction
	2.2. Statecharts Components

	Chapter 3. Generate Statecharts Instance
	3.1. Eclipse Modelling Framework Introduction
	3.2. Emfatic Introduction
	3.3. How to define the Instance of Metamodel

	Chapter 4. TLA+ Specification
	4.1. Microwave oven
	4.2. Trailway Gateway System

	Chapter 5. Transformation Algorithms
	5.1. Visitor Pattern
	5.2. Transformation Algorithms
	5.2.1. Handling State
	5.2.2. Handling Attribute
	5.2.3. Handling Event
	5.2.4. Handling Action
	5.2.4.1. Executable UML Introduction
	5.2.4.2. Handling Reference Action

	5.2.5. Handling Guard
	5.2.6. Other Statecharts Components and TLA+ Statements

	5.3. Plugin for the Generation of Target File

	Chapter 6. TLC model checker
	6.1. Why model check
	6.2. How TLC works?

	Chapter 7. Future Work
	Chapter 8. Conclusion
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Reference

