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Chapter 1  
 
Introduction 
 
 
In this student work we define the automatic layout problem for EMF diagrams and propose 
an algorithm based on the Topology-Shape-Metrics approach to solve it. The Topology-
Shape-Metrics approach has been intensively studied in the last years in the area of graph 
drawing and has been used successfully in application areas like visualization of UML class 
diagram or database schema. We will see how this graph drawing paradigm can be 
promisingly used for the visualization of EMF diagrams. 
 
 

1.1 Motivation 
 
The Eclipse Modeling Framework EMF is a powerful open-source JAVA/XML framework 
and code-generation facility, which already widely adopted, for generating tools and building 
Java applications based on a structured data model. EMF helps rapidly turn models into 
efficient, correct, and easily customizable Java code. It is intended to provide the benefits of 
formal modeling, but with a very low cost of entry. In addition to code generation, it provides 
the ability to save objects as XML documents for interchange with other tools and 
applications. EMF provides its own meta-model, called Ecore model for describing 
application data models, which called core models; an XMI serializer for persisting models; 
tools for transforming model forms like UML, XML Schema and simple annotated Java 
interfaces into Ecore; and powerful code generator tools, which are used to produce high-
quality Java code from Ecore model descriptions. 
 
Emfatic language for EMF Development is a language for creating, editing and representing 
EMF Ecore models in textual form. Emfatic comprises several Eclipse plug-ins, which 
provide a parser for the language and a basic text editor based on the Eclipse development 
platform, which also add two actions to allow Emfatic source code to be complied into an 
Ecore model and allow Ecore models to be decompiled back to Emfatic source code. The 
advantages of Emfatic in comparison with other EMF tools including annotated Java, XML 
Schema, Unified Modeling Language (UML) tools and the EMF model editor are that 
Emfatic represents the entire EMF Ecore model in a single source file, uses a Java-Like 
syntax familiar to many programmers, and it closely combined with the Eclipse IDE. 
 
Unfortunately there is no visualization tool for EMF, which representing EMF Ecore models 
in visual form, which we called EMF diagrams. In this case a visualization tool embedding in 
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Emfatic for EMF diagram drawing is desirable and the placement of the diagram elements is 
determined automatically, because the diagram elements are generated automatically. Figure 
1.1 shows an Example for a manually drawn EMF diagram. 
 
 

 
Figure 1.1: An EMF Diagram 

 
 
 
There is no mathematical definition of aesthetics for graph drawing. It can be defined 
informally that a drawing of graph is more aesthetic than another if it looks “nicer” or it is 
“more readable”. Thus the concept aesthetic criterion is used to mathematically describe 
aesthetics of graph drawing [Sec. 2.2]. 
 
Current automatic orthogonal layout algorithms for diagram drawing are based on the 
hierarchic graph drawing paradigm and focus on the direction of �����aesthetic criterion. 
Applied to diagram drawing this aesthetic criterion says that all edges of some type should 
point in a common direction, i.e., all edges representing generalizations point upward. These 
algorithms produce good results with large and deep structural information, i.e., diagrams 
with a large and deep inheritance hierarchy.  However, they do not perform satisfactorily in 
absence of this information. We propose in this work a new algorithm for automatic layout of 
diagram drawing which is based on the topology-shape-metrics approach. The algorithm is an 
adaptation of sophisticated graph drawing algorithms which have proven their effectiveness in 
many applications. The algorithm works as well for diagrams with rich structural information 
as for diagrams with few or no structural information. It improves therefore the existing 
algorithms significantly.  
 

����	
��������

����������
����

�����������	�

����������� ���
�����

���
���������

�������
����

�����
�

����	
�������
�

�������
����

�������
����

�����
�����

����	
��������

 �
�� ��	��� !������ "������ #������

����
���

���������

����
��

!������
�������

���������

#���������

��������

�����

����

���������

�������

���
������
��

���
������
��

�
�����(��

#���������

)���
��

����

#��������

�����
��

#���������

�*
��

)�����)����

)����

"�����

��
��

���
������
�

)����

���
������
��

�����
��



 - 7 - 

1.2 Overview 
 
This document is organized in to five chapters: 
 
In Chapter 2 we will review the main mathematical concepts that we will use in the remainder 
of this work: graph and graph drawing, planarity, planar representation, embedding, 
orthogonal shape, aesthetic criterion and the Min-Cost-Flow problem. 
 
In Chapter 3 we discuss the EMF diagram model in detail and present a graph based model 
for it. 
  
In Chapter 4 we present the Topology-Shape-Metrics approach for automatic orthogonal 
diagram drawing. The three phases, planarization, orthogonalization and compaction will be 
discussed deeply. 
 
We finish with Chapter 5, which contains a conclusion of the presented work and show same 
sample diagram layout using the Topology-Shape-Metrics approach. 
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Chapter 2  
 
Preliminaries 
 
 
In this chapter we will review the main mathematical concepts that we will use in the 
remainder of this work: graph and graph drawing, planarity, planar representation, 
embedding, orthogonal shape, aesthetic criterion and the Min-Cost-Flow problem. 

 
2.1 Graph Theory 
 
2.1.1 Graphs 
 
In this section we introduce basic concepts from graph theory, mainly based on [5]. For a 
comprehensive overview of graph theory we refer to [20] [21]. 
 
A graph G is denoted by a pair G=(V,E), where V is the set of vertices and E �  V × V is the 
set of edges. We denote with adj(�) the set of edges adjacent a vertex � �  V. The degree �G(�) 
of a vertex � �  V is the number of edges in E adjacent to �. A graph is called 4-graph if each 
vertex has degree maximal possible 4. We say that G� = (V�,E�) is a subgraph of G = (V,E) if V� 

�  V and E� �  E. In this case we write G� �  G. A graph isomorphism f: V (G) � V (H) is a 
bijection between the vertices of two graphs G and H with the property that any two vertices u 
and � from G are adjacent if and only if f (u) and f(�) are adjacent in H. If an isomorphism 
can be constructed between two graphs, then we say those graphs are isomorphic. 
      
We call a graph directed if all pairs in E are ordered and undirected if all pairs in E are 
unordered. We call the first entry in a directed edge the source and the second target. Ignoring 
for every directed edge the order of its vertices, we get an undirected graph, which is called 
the underlying graph. For a vertex � �  V, we denote with in(�) the set of edges in E which 
have target �, and with out(�) the set of edges with source �. The in-degree �G

¯ (�) denotes the 
number of edges in in(�), and the out-degree �G

+(�) the number of edges in out(�). We call a 
vertex with in-degree 0 a source, and a vertex with out-degree 0 a sink. A directed acyclic 
graph is called a st-graph if it has exactly one sink and one source. 
 
If a graph contains both, directed and undirected edges, we call it a mixed graph. In this case 
we denote the set of directed edges with Ed(G) and the set of undirected edges with Eu(G). 
Often the shorter terms digraph, resp. migraph, are employed instead of the terms directed 
graph, resp. mixed graph. 
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2.1.2 Graph Drawing 
 
A point drawing � of a graph G = (V,E) maps each vertex � �  V to a point p(�) in the plane 
and each edge e = (�,�) �  E to an open Jordan curve c(e) such that c(e) connects p(�) with 
p(�). A rectangle drawing � of a graph G = (V,E) maps each vertex � �  V to a rectangle r(v) 
in the plane and each edge e = (�,�) �  E to an open Jordan curve c(e) such that c(e) connects 
r(�) with r(�). An orthogonal drawing of a graph is a point drawing in which the curve for 
each edge is a sequence of horizontal and vertical segments. Note that a graph admits an 
orthogonal drawing if and only if it is a 4-graph. An orthogonal rectangle drawing of a graph 
is a rectangle drawing in which the curve for each edge is a sequence of horizontal and 
vertical segments. For an illustration see Figure 2.1. 
 

 
 (a) Point drawing             (b) Orthogonal point drawing             (c) Orthogonal rectangle drawing 
 

Figure 2.1: Example for different types of graph drawings. 
 
 
 
 
 
2.1.3 Planar 
 
A point drawing � of a graph G = (V,E) is planar if no two edges in the drawing intersect 
except at common points. A graph is planar if it has a planar point drawing. A combinatorial 
description of planar graphs will be defined: 
 

“A graph G is planar if and only if it contains no subgraph that is isomorphic to or 
is a subdivision of K5 (the complete graph with 5 vertices) or K3,3 (the complete 
bipartite graph with 3 vertices in each side).” 

 

 
 

Figure 2.2: The two minimal non-planar graphs K5 and K3,3[5]. 
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2.1.4 Upward Planar 
 
An upward drawing of a directed graph is a drawing in which each edge is represented by a 
curve monotonically increasing in the vertical direction. A drawing of a directed graph is 
upward planar if it has an upward planar drawing. 
 

 
        (a)                                                             (b)                                                         (c) 
 

Figure 2.3: Upward planar drawing (a). Upward non-planar drawing (b). Non-upward planar drawing (c). 
 
 
2.1.5 Mixed Upward Planar 
 
A mixed upward drawing of a mixed graph G is a drawing in which each directed edge of G is 
represented by a curve monotonically increasing in the vertical direction. A mixed graph G is 
called mixed upward planar if it has a planar mixed upward drawing. 
 
 
2.1.6 Face, Planar Representation and Embedding 
 
If � is a planar drawing, the set IR2 \ � is open and its regions are called the faces of �. Since 
� is bounded, exactly one of the faces is unbounded. This face is called the outer face of �. 
The boundary of each face is a cycle in the graph. 
 
A convenient encoding of a planar drawing is a planar representation. A planar 
representation F of a planar graph G = (V,E) defines for each edge (�,�) �  E, which might be 
directed or undirected, two darts e = (�,�) and eR = (�,�). We say that eR is the reverse of e 
and vice versa. We denote with e  the reverse of a dart e. We denote with E  the set of darts 
defined by E. The planar representation F contains one cyclic list for each face, which 
contains the darts encountered by walking in clockwise ordering around the face. The first 
face in F is by convention the outer face and is denoted by fout. When we use the term face in 
the remainder of this work, we refer to the list of darts describing the face. For a dart e we 
denote with face(e) the face which contains e. 
      
An embedding � of a graph is defined as the counter-clockwise cyclic ordering � (�) of the 
adjacent edges of each vertex v of the graph. Each edge e = (�,�) � E appears twice in �, 
namely as (�,�) in � (�) and as (�,�) in � (�). An embedding is planar if there is a planar 
drawing of the graph which preserves this ordering. 
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It is easy to obtain the planar representation from an embedding and vice versa, since planar 
representation and embedding are dual problems in discrete mathematics. Given an 
embedding � we denote the planar representation induced by � with F� , and given a planar 
representation F we denote the embedding induced by F with �F . A graph with a given planar 
representation F is called a plane graph and is denoted with G = (V,E,F). We will omit the 
index F in �F and write just � if it is clear to which planar representation we refer. 
 

 
 

Figure 2.4: An example of planar embedding, taken from [6]. 
 
      
Figure 2.4 illustrates the definition of planar representation on an example. The plane graph is 
defined by the planar representation G = (V,E,F) and F = (f0, f1, f2) where 
 
f0 = {(1, 3), (3, 5), (5, 6), (6, 2), (2, 1)}, 
f1 = {(1, 2), (2, 3), (3, 1)}, 
f2 = {(5, 3), (3, 4), (4, 3), (3, 2), (2, 6), (6, 5)}. 
 
In Figure 2.4 (b) the face f0 is denoted by the solid darts, the face f1 by the dashed darts and 
the face f2 by the pointed darts. The corresponding embedding � is: 
 
�(1) = {(1, 2), (1, 3)}, 
�(2) = {(2, 1), (2, 3), (2, 6)}, 
�(3) = {(3, 2), (3, 1), (3, 5) , (3, 4)}, 
�(4) = {(4, 3)}, 
�(5) = {(5, 6), (5, 3)}, 
�(6) = {(6, 2), (6, 5)}. 
 
 
2.1.7 Orthogonal Shape 
 
An orthogonal shape H for G is an extension of planar representation and describes, in 
addition to the topology, the shape of a drawing for G by specifying the bends in the edges 
and angles inside the faces. Let G = (V,E,F) be a place 4-graph. An orthogonal shape H is a 
mapping from the set of faces in F to clockwise ordered lists of tuples (e,b,a). The first entry 
in the tuple corresponds to the dart in the face. The second entry is a bit string denoting the 
bends of the dart. A 0 in the bit string denotes a convex bend (90°), while a 1 denotes a 
concave bend (270°), with � denotes no bends in the dart. The third entry is the angle formed 
with the preceding dart in the face. 
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Figure 2.5: An example of orthogonal shape, taken from [13]. 

 
Orthogonal shape of the graph depicted in Figure 2.5: 
H(f1) = {( e2,11, 180°), ( e3, �, 0°), ( e5, �, 0°), ( e6, �, 90°), ( e7, �, 90°)} outer face,  
H(f2) = {( e6, �, 90°), ( e5, �, 90°), ( e4, �, 90°), ( e7, �, 90°)}, 
H(f3) = {( e1, �, 90°), ( e1, �, 180°), ( e2,00, 270°), ( e4, �, 90°), ( e3, �, 90°)}. 
 
 

2.2 Aesthetic Criterion  
 
There is no mathematical definition of aesthetics for graph drawing. It can be defined 
informally that a drawing of graph is more aesthetic than another if it looks “ nicer”  or it is 
“ more readable” . Thus the concept aesthetic criterion is used to mathematically describe 
aesthetics of graph drawing. One aesthetic criterion measures one isolated mathematically 
defined property of the drawing and defines rules for the values of this property [5]. 
 
The important aesthetic criteria for diagram drawing are: 
 

� Minimize number of edge crossings $�����%&!' 
� Minimize number bends $#"& ' 
� Minimize number of node and edge overlap $�("����' 
� Maximize number of orthogonal edges $���)�!�&��' 
� Minimize edge length $" !"�"&!�)' 
� Minimize area $��"�' 
� Maximize number of edges respecting flow $����' 

These aesthetic criteria will guide the design of the automatic layout algorithm. 
 
Some of the above criteria can be contradicting, e.g., �����%&! and ��"�. Therefore 
finding an aesthetic for graph drawing can be seen as solving a multi-objective problem, the 
objective function is the set of aesthetic criteria [12]. 
The on Topology-Shape-Metrics approach based orthogonal layout algorithm presents in this 
work tries to optimize all the aesthetic criteria above. 
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2.3 The Min-Cost-Flow Problem 
 
Graph orthogonalization will be treated as solving a minimum cost maximum flow problem; 
we present here the Min-Cost-Flow problem and its variation. 
 
The Min-Cost-Flow problem is defined as following: 
 
Given a flow network G=(V,E) with source s �  V and sink t �  V, where edge (u,v) �  E hast 
capacity c(u,v), flow f(u,v), and the cost of sending this flow is f(u,v)� a(u,v). An amount of 
flow d is required. 
 
The definition of the problem is to minimize the total cost of the flow: 
 
Min: � f(u,v)� a(u,v) 
Where: 
 Capacity constraints: f(u,v) � a(u,v). 
 Skew symmetry: f(u,v) = -f(v,u). 
 Flow conservation: � f(u,w) = 0, for all u � s, t. 
 Required flow: � f(s,w) = d. 
 
A variation of this problem is to find a flow which is maximum, but has the lowest cost 
among the maximums. This could be called a minimum cost maximum flow problem. In 
this work, the algorithm to find an orthogonal shape of an input embedded graph is to solve a 
minimum cost maximum flow problem [sec 4.3].  
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Chapter 3  
 
Graph Based Model 
 
 
In this chapter we discuss the EMF diagram model in detail and present a graph based model 
for it. 
 
 

3.1 A Graph Based Model for EMF Diagram 
 
There are no formal specifications for EMF diagram; there is also no representing of EMF 
Ecore models in visual form. Since EMF diagrams are similar to UML class diagrams in the 
visualization, we discuss the EMF models, give a definition of EMF diagram and present a 
graph based model to form the problem as in [5]. 
 
EMF diagrams are graphs containing nodes connected by edges. The information is mostly in 
topology, not in the size or placement of the symbols.  
 
The EMF diagram graph is defined as follows: 
 

� A mixed graph G=(V,E) 
� A vertex mapping V � {EClass, EDataType, EEnum} 
� An edge mapping E � {ESuperType, EReference} 
� A size mapping V � IN2 

 
A drawing of EMF diagram graph defines a drawing for EMF diagram. 
 
The EMF diagram layout is defined as follows: 
 
A layout of a EMF diagram graph G is defined as a mapping �(G) of the vertices to rectangles 
of size as defined by the mapping size and the edges to open jordan curves. 
 
In the following we will discuss the visual notation of EMF diagrams and define the mapping 
of the diagram elements to graph elements in the EMF diagram graph.  
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Figure 3.1:  complete class hierarchy of the Ecore model [16]. 
 
 
3.1.1 Semantic Entities Mapping to a Vertex 
 
The diagram elements EClass, EDataType, and EEnum correspond directly to a vertex in the 
graph. Figure 3.1 is the complete class hierarchy of the EMF Ecore model, in the EMF 
diagram only the partial top-levels leaves will be represented. 
 
EClass 
EClass is represented by round rectangle consisting of multiple compartments. Each 
compartment contains different features of the EClass including EAttribute, EOperation. 
 

 
 

Figure 3.2:  An EClass presents in Emfatic editor and the representation of it in EMF diagram. 
 
 
EEnum 
EEnum is also represented by round rectangle consisting of only one compartment, namely 
EEnumLiteral. 

                                       
 

Figure 3.3:  An EEnum presents in Emfatic editor and the representation of it in EMF diagram. 
 
The same for EDataType etc. 
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3.1.2 Semantic Entities Mapping to an Edge 
 
The diagram elements ESuperType and EReference correspond directly to an edge in the 
graph. The type of the edge is the type of the diagram element. See also [Figure 3.1]. 
 
ESuperType 
ESuperType is rendered as a solid line with an arrow pointing to the target. 
 
 

                      
 

Figure 3.4:  An ESuperType presents in Emfatic editor and the representation of it in EMF diagram. 
 

 
EReference 
EReference is rendered also as dashed line with an arrow pointing to the target. 
 

 
 

Figure 3.5:  An EReference presents in Emfatic editor and the representation of it in EMF diagram. 
 
 
Interestingly there are two-way EReference between two EClass, this is already a circle 
between two adjacent vertices in the EMF diagram graph. In this case, we draw only one edge 
which with two arrows in both direction between the vertices and denote the edge as an 
undirected edge for the orthogonal layout algorithm presents later in this work. 
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Label Placement 
Labelling of edges, such as association multiplicities, role names, is treated separately as 
additional nodes in [5], in this work it will not be coved. 
 

 
 

Figure 3.6:  Labelling of edges (A part of Figure 1.1). 
 

 
 
3.2 The Interface to the Algorithm 
 
Thus we have the input for the orthogonal layout algorithm. The algorithm assumes as input 
an EMF diagram graph which consists of a graph G = (V,E), a mapping S: V � IN2 denoting 
the size of the nodes in the drawing. To each node, edge a type is assigned denoting its 
semantics in the EMF diagram: 
 

Node types "�	���*�" �
�����*�""����
Edge types "���������*�"��+�������

 
 
The graph based model for EMF diagrams will be obtained by using visitors, which parse a 
textual EMF expression to evaluating expression on object population. 
 

 
 

Figure 3.7:  A sample EClass visitor class. 
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Chapter 4  
 
The Topology-Shape-Metrics 
Approach 
 
 
In this Chapter we present the Topology-Shape-Metrics approach for automatic orthogonal 
diagram drawing. The three significant phases, planarization, orthogonalization and 
compaction will be discussed. For more detailed information on the algorithms here described 
refer to [5][6][10][12][13]. 
 
 

4.1 The Algorithmic Framework Overview 
 
The Topology-Shape-Metrics approach origins from the seminal paper of Tamassia (1987).  
The Topology-Shape-Metrics approach is one of the most popular graph drawing methods, it 
has been applied successfully to application domains like the visualization of data flow 
diagrams, database schemas and industrial plant schemas. In a comparison of four graph 
drawing algorithms for orthogonal drawings, the one following the Topology-Shape-Metrics 
approach was the clear winner [22]. We now outline the complete algorithm.  
 
We assume that the input graph is connected, if this assumption is violated, the input graph 
should be divided into its connected components and each connected component will be 
processed separately. The whole diagram of the connected components can then be arranged 
by a floor planning algorithm [14].  We assume furthermore that the directed subgraph of the 
input graph is acyclic. If the directed subgraph D contains cycles, only a subset of the edges 
will be drawn, which induces an acyclic upward subgraph, the remainder directed edges will 
be handled as undirected edges. 
 
Like other former orthogonal layout algorithms such as the hierarchical approach the 
Topology-Shape-Metrics approach is divided into several steps [5]: 
 
Preprocessing: 

(a) Divide the graph into its connected components. Each connected component will be 
processed separately by the algorithm. Thus we can assume that the input graph is 
connected. 

(b) Remove edges from D until the directed edges induce an acyclic subgraph of G. 
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(c) If the edges in D do not induce a connected subgraph some edges are added 
temporarily to D to make this subgraph connected by using a minimum spanning tree 
algorithm. 

 
Planarization: This step determines the topology of the drawing, which is described by a 
planar embedding. If a graph has a drawing in the plane without any edge crossings, it is 
planar. Such a drawing divides the graph plane into faces. A planar embedding is a 
combinatorial description of the faces and contains for each face the sequence of edges 
contouring it. For graphs which are not planar dummy vertices are introduced which represent 
crossings to make the resulting graph planar. The algorithm tries to minimize the number of 
crossings $�����,������%&!'.  
 
Orthogonalization: This step determines the angles and the bends in the drawing. Only 
multiples of 90° are assigned as angles which ensure that the drawing is orthogonal. The 
algorithm tries to minimize the number of bends in this step. $���)�!�&���,�#"& ' 
 
Compaction: In this step the final coordinates are assigned to the nodes and to the edge 
bends. The dummy vertices introduced in the planarization phase are removed. In this phase 
the main goal is to minimize the sum of the length of all edges and/or the area of the drawing 
$" !"�"&!�)�,���"�'. 
 
Postprocessing: 

(a) All dummy vertices are removed from the graph such as crossings. 
(b) The connected components of the graph after layout process are arranged by a floor 

planning algorithm. 
 
 

4.2 Mixed Upward Planarization 
 
In this section we consider the problem of finding a planarization of a mixed graph for which 
a drawing exists in which all directed edges are represented by monotonically increasing 
curves and which has a low number of crossings at the same time $�����,������%&!'. 
 
The algorithm is based on a heuristic which is a popular technique for the planarization of 
undirected graphs: 
 

1. Construct an upward planar subgraph. 
2. Determine an upward embedding of this subgraph. 
3. Insert the edges not contained in the subgraph, one by one. 

 
 
4.2.1 Maximum Upward Planar Subgraph 
 
The maximum upward planar subgraph problem can be stated as follows: Given a directed 
graph G=(V,E), find E� �  E such that the directed graph G=(V,E) is upward planar with 
maximum number of edges. 
 
The Mixed Vertex Ordering algorithm is a variant for mixed graph of the 
Goldschmidt/Takvorian [6] algorithm, which makes an undirected graph planar and be 
divided into two phases. The first phase of GT consists of devising an ordering � of the set of 
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vertices V of the input graph G, such that as many edges as possible between adjacent vertices 
can also be placed on the line. The second phase of GT partitions the edge set E of G into 
subsets L (left of the line), R (right of the line) and B (the remainder) in such a way that |L+R| 
is large as maximal possible an that no two edges both in L or both in R cross with respect to 
the sequence � devised in the first phase. 
 
 

 
 

Figure 4.1: Mixed Vertex Ordering Algorithm, taken from [6]. 
 
 
With the algorithm of Asano, Imai and Mukaiyama [5] a maximum independent set of an 
overlap graph can be calculated in time O(NM),  where N is the number of different interval 
endpoints and M is the number of edges in the overlap graph. In our setting, N � n and M � m, 
which leads to a running time of O(nm). Since this algorithm computed the maximum 
independent set, the algorithm proposed in this section can compute planar subgraph. 
 
In Figure 4.2 we show a run of the mixed vertex order algorithm. As input graph we take the 
minimal non-planar graph K5, in order to make the problem trivial we add a new vertex 6 and 
a directed edge from vertex 4 point to the new vertex 6. 
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Figure 4.2: A run of the mixed vertex ordering algorithm. 
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6 

v1 = {3}  
��= {1, 2, 4, 5, 6} 

1 

2 

4 
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6 

G1 = 

� �� �{2, 4} 
v2 = {2} 
 ��= {1, 4, 5, 6} 

1 

4 

5 

6 

G2 = 

� �� �{1, 4} 
v3 = {1} 
 ��= {4, 5, 6} 

4 

5 

6 

G3 = 

� �� �{4} 
v4 = {4} 
 ��= {5, 6} 

5 

6 

G4 = 

� �� �{5, 6} 
v5 = {5} 
 ��= {6} 

6 

G5 = 

� �� �{6} 
v6 = {6} 
 ��= �  
 
Ordering � = (3, 2, 1, 4, 5, 6) 

G = 

3 2 1 4 5 6 

L= {(3, 5), (2, 5), (1, 5), (3, 2), (2, 1), (1, 4), (4, 5)}  
R= {(3, 1), (3, 4), (4, 6)} 
B= {(2, 4)} 

1 
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3 4 

5 

6 

A planar drawing of the input graph G by 
introducing a dummy vertex red depicted. 
See section Edge Insertion. 
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2 
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6 

Maximum Upward Planar Subgraph 
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From the set L and R and the ordering �, we can now easily obtain the mixed upward 
embedding: For each vertex � �  V we sort the edges with source � in R decreasing according 
to � and the edges with source � in L increasing according to �, and concatenate these two 
ordered lists to one. For the incoming edges, we first sort the edges with target � in L 
increasing according to � and the edges with source � in R decreasing according to � and 
append the result to the list of outgoing edges. 
 

 
 

Figure 4.3: The order of the edges at a vertex can be derived directly from � and the sets L and R [5]. 
 
 
The embedding � of the example runs in figure 4.2: 
 

 
 
 
4.2.2 Edge Insertion 
 
Insertion of Undirected Edges 
In this section we consider the problem of inserting an undirected edge into an embedded 
graph. An algorithm for insertion of undirected edges is based on the dual graph of the plane 
graph. The dual graph G* of plane graph G = (V,E,F) has a vertex for each face of G, and an 
edge d(e) = (f,g) between two faces f and g for each edge e that is shared by f and g. To insert 
an edge (a,b), the extended dual graph G(a,b)

* will be constructed from G* by adding two 
vertices a’ and b’ to G* and inserting an edge from (a’, f), resp. (b’, f), into G* for each f 
which contains an edge adjacent to a’, resp. b’ according to a, b. From each path e0,  . . .  , ek 
from a’ to b’ in G(a,b)

* we can obtain a planarization of G by subdividing the edges in G 
corresponding to e1,  . .  . , ek-1 and adding a path from a to b which uses the vertices 

� (3) = {(3, 4), (3, 1), (3, 2), (3, 5)} 
� (2) = {(2, 1), (2, 5), (2, 3)} 
� (1) = {(1, 4), (1, 5), (1, 2), (1, 3)} 
� (4) = {(4, 6), (4, 5), (4, 1), (4, 3)} 
� (5) = {(5, 3), (5, 2), (5, 1), (5, 4)} 
� (6) = {(6, 4)} 
 
 

3 2 1 4 5 6 

L= {(3, 5), (2, 5), (1, 5), (3, 2), (2, 1), (1, 4), (4, 5)}  
R= {(3, 1), (3, 4), (4, 6)} 

1 

2 

3 4 

5 

6 

Maximum Upward Planar Subgraph 
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introduced by the subdivision. A shortest path from a’ to b’ induces therefore a planarization 
of G � (a, b) with minimal crossing number without changing the embedding of G. The 
algorithm is illustrated in Figure 4.4. 

 
Figure 4.4: Insertion of edge (1,3) into the plane graph shown in upper left. The dual graph G* is depicted in 
upper right and the extended dual graph G(1,3)

*  in under left. The shortest path from vertex 1 to vertex 3 
illustrated by the thick dashed red edges. The resulting planarization is shown in under right. 
 
Insertion of directed edges 
Inserting directed edges into an upward embedded directed graph can be much more complex 
than inserting undirected edges in a embedded graph. Since we cannot easily insert edge into 
the drawing without considering the remaining edges which will be inserted later. The reason 
for this is that the dummy vertices added to the graph in a planarization step introduce 
changes in the ordering of the vertices of the graph. Although the graph remains acyclic, this 
may introduce a directed cycle with an edge which will be added later. Then this edge can no 
longer be inserted. We show here an example to illustrate this critical configuration. 
 
In Figure 4.5(a) the dashed edges will be inserted into the drawing, and we first insert edge (5, 
6). If we insert edge (5, 6) as in Figure 4.5(b), we produce a dummy vertex in edge (1,3). 
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Then, it is no longer possible to introduce edge (3, 2) without destroying the upward property 
because of the new directed cycle (5, Dummy, 3, 2, 5). 
  
 

 
(a)                                                                                 (b)     

 
Figure 4.5: A critical configuration. 

 
 
As shown above cycles must be avoided when inserting directed edges. This will be achieved 
by layering the graph. A valid layering l is defined as a mapping of V to integers such that l(v) 
> l(u) for each edge (u,v) 	  E. Computing a layering for a directed acyclic graph has been 
studied extensively, for more details refer to [5]. An longest path layering method, which 
calculates a layering of minimal height in time O(n+m) is used. 
 
From the layered graph we construct the routing graph R(a,b) for the insertion of a directed 
edge (a, b). The routing graph contains, for each face f and for each layer i that f spans, a 
vertex �(f, i). Two vertices lying in neighbouring layers and representing the same face are 
connected by a directed edge of weight 0 in increasing layer order. Additionally, two vertices 
at the same layer i of adjacent faces are connected by an edge if the source vertex of an edge 
separating these two faces is less than or equal to i and the layer of the target vertex is greater 
than i. We assign to this edge the product of the weight of the edge separating the faces and 
the weight of edge (a, b). 
      
In this graph, there are no edges in decreasing layer order, in other words for each edge (�(f, 
i), �(g, j)) holds i � j. Each edge of positive weight represents one crossing. A shortest path in 
the routing graph represents, therefore, an insertion of an edge with minimal weighted 
crossing number with respect to the given layering. 
      
We add a vertex �(a) to the routing graph and connect it to faces which are adjacent to 
outgoing edges of a. Analogously we add a vertex �(b) to the routing graph and connect it to 
faces which are adjacent to incoming edges of b. A path from �(a) to �(b) corresponds to a 
valid routing of the edge (a, b). Figure 4.6(b) shows an example for a routing graph. 
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Figure 4.6:  Example for algorithm directed edge insertion. Figure (b) shows a valid layering of the input graph 
(a), taken from [5]. 
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4.3 Orthogonalization 
 
This section describes orthogonalization algorithms which try to minimize the number of 
bends, notably which vertices have prescribed size and directed edges point upward. The 
result of the algorithm is an orthogonal shape which is computed from a mixed upward 
planarization. The KANDINSKY algorithm is an extension of Tamassia’ s algorithm that 
computes bend-minimal point drawings of plane 4-graphs. The KANDINSKY algorithm 
overcomes the severe restriction of Tamassia’ s algorithm that it is restricted to point drawing 
which means available only for 4-graphs. The KANDINSKY algorithm is also the only one 
that guarantees prescribed vertex sizes. We review the Tamassia’s Algorithm in detail, for 
further reading of the KANDINSKY algorithm, we refer to [6].  
 
 
4.3.1 Tamassia’s Algorithm 
 
Tamassia’ s algorithm computes an orthogonal shape of a plane 4-graph with respect to an 
input embedding with a minimal number of bends. Calculating a drawing from an orthogonal 
shape is called compaction and it will be discussed in [sec 4.4]. 
 
This problem can be solved using Min-Cost-Flow [sec 2.3] network algorithm: 
 
For each plane graph G there is a minimum cost flow network NG in which there is a one-to-
one correspondence between valid flows in the network and valid orthogonal shapes of G. 
The cost of a network flow corresponds to the number of bends in the induced orthogonal 
shape, and there fore a bend-minimal orthogonal shape can be computed with a Min-Cost-
Flow solving algorithm. 
 
The minimum cost flow network NG=(N,A) for a plane 4-graph G=(V,E,F) is a minimum cost 
flow network and is defined as follows: 
 

� The set of nodes N is defined as N=NV 



 NF with  
1. The set NV contains a node for each vertex in V. 
2. The set NF contains a node for each face in F. 
 

� The set of arcs A is defined as: 
1. The set (s, nv), where nv � NV, connects source s with every �; this set of arcs have 

cost zero and capacity 4-� (nv). (Compare Figure 4.7(b)) 
2. The set (s, nf), where nf � NF , f is an inner face with � (nf) � 3; this set of arcs have 

cost zero and capacity 4-� (f). (Compare Figure 4.7(c)) 
3. The set (nf, t), where nf � NF, f is either the outer face or an inner face with � (nf) 	 

5; this set of arcs have cost zero and capacity � (f)+4 for outer face or � (f)-4 else. 
(Compare Figure 4.7(d)) 

4. The set (nv, nf), where nv � NV, nf � NF; this set of arcs have cost zero and capacity 

. (Compare Figure 4.7(e)) 

5. The set (nf, ng), where nf,ng � NF, and the face f and g have at least one common 
edge; this set of arcs have cost one and capacity 
. (Compare Figure 4.7(e)) 

 
Flow | f | =  � cap(s,nv) = � cap(nt,t). 

 
A proof of the above equation is the Euler’ s formula, see [21]. 
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Figure 4.7: Min-Cost-Flow st-settings. (a) is the input graph. 
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We can solve this simple Min-Cost-Flow problem with inspection: 

 
 

Figure 4.8: Min-Cost- Flow of the input graph. 
 
A feasible flow f = 7 and cost = 1 are foreseeable. For more complex Min-Cost-Flow 
problems there are different algorithms with best running time O(n2logn) [13]. 
 
The flow f and the cost can be interpreted as: 

� Each flow value over an edge (nf, ng) represent a bend in an arbitrary edge, which 
connects the two faces f and g.  

� A flow value x over an edge (nv, nf) defined an angle with (x+1) � 90° between the both 
edges incident by node v. 

 
 

 
Figure 4.9: The input graph (a) and its orthogonal shape (b) 

 
 
 
We summarize the above discussion as follows: Given a plane graph G and a feasible flow x 
in the bend-minimization network, we can define an orthogonal shape H(G) for G. In this 
phrase, we calculate an orthogonal shape for an input planar graph. 
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4.3.2 Generalizations of Tamassia’s Algorithm Using Reduction 
 
One possibility to generalize Tamassia’ s Algorithm to orthogonal rectangle drawing of graphs 
with arbitrarily degree is the reduction approach. The idea behind this approach is not to 
change the algorithm, rather change the input to accommodate the restriction of Tamassia’ s 
Algorithm with 4-graph. The reduction approach is based on the observation, that we can 
often overcome the limitations of an algorithm which requires a special type of input by 
transforming the input, so that it fulfils these requirements, and then perform the algorithm on 
the transformed input. We can then obtain a solution for the original input by interpreting the 
algorithms result. In an object-oriented sense this is captured by the Algorithmic Reduction 
design pattern. 
 

 
Figure 4.10: Transformation of a high-degree vertex into a face, taken from [6]. 

 
 

 
4.4 Compaction 
 
In this section we briefly introduce the compaction algorithm. We first describe the 
constructive techniques which produce a drawing for a given orthogonal shape H. The key 
idea behind these methods is to transform H into an auxiliary representation H’  by introducing 
artificial edges and vertices and to find a drawing for H’  in polynomial time. Removing the 
artificial vertices and edges in the auxiliary drawing leads to a drawing for H. 
 
By the computation of edge length the following points must be considered: 

� Length of all line segments must be positive integer. 
� Each cycle of the graph will be mapped as a polygon. 
� There are no segments, which overlaps with themselves, unless they have common 

end points. 
 
For more details on compaction of orthogonal drawing see [6] [22]. 
 
4.4.1 Constructive Heuristic  
 
Tamassia mentions the first and still most common method to produce an auxiliary 
representation H’ . He introduces the dissection method which consists of decomposing each 
internal face of the given simple orthogonal shape H into to a set of faces each of which has 
rectangular shape by introducing artificial vertices and edges. Figure 4.11 illustrates this 
method with an example. Please note that the method works at representation level, the 
coordinates have not yet been assigned. This process can be done in O(n) time where n 
denotes the number of vertices in H. In the resulting orthogonal shape H’ , all interior faces 
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have rectangular shape. Of course, the artificial vertices and edges impose additional 
constraints on the geometry which may lead to suboptimal total edge length and are in the 
resulting drawing.  
 
With the help of decomposing the faces into rectangles we can describe the set of orthogonal 
shapes, for which optimal compactions can be calculated in polynomial time. 
 

 
 

Figure 4.11: The dissection method. On the left is the original orthogonal shape H. On the right is the 
transformed auxiliary representation H’ . Dashed lines and empty vertices represent artificial edges and vertices. 
Taken from [22]. 
 
There are also other effective heuristics for construct an auxiliary representation, for further 
reading we refer to [22]. 
 
 
4.4.2 Optimal Compaction 
 
An ILP-based approach is used to solve instances of the two-dimensional compaction 
problem to optimality. It is based on a characterisation of the set of feasible solutions in terms 
of paths in the pair of constraint graphs. Given a pair of constraint graphs in which only the 
relative positions known from the shape H are present, the compaction problem can be seen as 
optimising over the set of certain extensions of these graphs.  
 
The complete compaction algorithms for prescribed vertex-size KANDINSKY shape see also 
[6][22]. 
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Chapter 5  
 
Conclusion 
 
 
In this last Chapter we draw a conclusion of the presented work and show same sample 
diagram layout using the Topology-Shape-Metrics approach. 

 
5.1 Conclusions 
 
In this work we presented state-of-the-art techniques for the automatic layout of graphs using 
the topology-shape-metrics approach which yield automatic layout for EMF diagrams. 
 
Orthogonal graph drawing is getting increasing attention from industry because of its 
numerous applications, e.g., in database design, software engineering and many more. For 
many of these applications, the Topology-Shape-Metrics approach leads to the best results. In 
this approach, a first phase (planarization) determines the topology of the drawing. The aim is 
to generate a drawing with a small number of edge crossings, e.g., by computing a large 
planar subgraph and carefully reinserting the removed edges. Then, the crossings are replaced 
by artificial vertices resulting in a planar graph. A second phase determines the shape of the 
final layout. This phase is often restricted to planar orthogonal drawings (orthogonalization). 
A widely accepted optimization criterion is to minimize the number of bends without 
changing the topology. Finally, the third phase (compaction) deals with computing the metrics 
of the layout. Here, the optimization problem is to compute a layout of minimum area with 
minimum total edge length. 
 
Although the Topology-Shape-Metrics approach was suggested already in 1984, it took some 
years until the approach was getting popular. The reason for this is that it is time consuming 
to implement the approach, since many different kinds of algorithms are needed. Recently, a 
lot of research has been done to solve many of the upcoming problems. Major improvements 
have been made concerning various aspects of the three phases of the Topology-Shape-
Metrics approach. Moreover, today there exist some software libraries containing the 
Topology-Shape-Metrics approach [18]. 
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5.2 Sample Diagram Layout Using Topology-Shape-
Metrics Approach 
 

 
 

Figure 5.1: The Royal and Loyal EMF Diagram see also [Figure 1.1]. 
 
 

 
 

Figure 5.2: An UML class diagram depicted using JarInspector, which also based on the Topology-Shape-
Metrics Approach, screenshot taken from [12]. 
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Figure 5.3: “yEd”, a Java graph editor (http://www.yworks.com). 
 
 
 

 
 

5.3 Issues Not Concerned in This work 
 
Some themes were not coved in this work, such as prescribed size orthogonalization, 
hyperedges, label placement, etc. For detailed information about these issues we recommend 
[5][6][12][13]. 
 

 
Figure 5.1: Generalization with distinct paths and hyperedge notation, taken from [6]. 
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