
�

�
�

�

�
�

�
��������	
��������������
������

�

�����������������
�����������������
�

�
�

�
�

�
�

�
�

�
�

�

�
���
�
����
�

�
�

�
������������

���� �!� �"����#$����
��� �#������������

�
�

� �
��
�%&&'�

 - 2 -

Declaration

Hereby, I declare that:

This student project, with the subject “Automatic Orthogonal Diagram Layout”, has
been prepared by me. All literal and content related quotations from other sources
are clearly pointed out, and no other sources or aids than the declared ones have
been used.

Jianing Sun
Hamburg, June 2007

 - 3 -

Acknowledgements

Hereby, I would like to thank Prof. Dr. R. Möller for finding this student project topic
and supervising it.

Furthermore, M. Sc. Miguel Garcia was very patient and helpful for answering my
questions and providing programming tools in order to develop the applications. His
advices directed the project progress for a better implementation.

Special thank to Dr. Markus Eiglsperger, Universität Tübingen, since this work chiefly
based on his doctoral thesis “Automatic Layout of UML Class Diagrams: A Topology-
Shape-Metrics Approach”.

 - 4 -

Contents

Declaration ..- 2 -
Acknowledgements ...- 3 -
Contents...- 4 -
Chapter 1 Introduction ..- 5 -

1.1 Motivation ...- 5 -
1.2 Overview ...- 7 -

Chapter 2 Preliminaries...- 8 -
2.1 Graph Theory ...- 8 -

2.1.1 Graphs ...- 8 -
2.1.2 Graph Drawing..- 9 -
2.1.3 Planar...- 9 -
2.1.4 Upward Planar...- 10 -
2.1.5 Mixed Upward Planar ...- 10 -
2.1.6 Face, Planar Representation and Embedding..- 10 -
2.1.7 Orthogonal Shape..- 11 -

2.2 Aesthetic Criterion ...- 12 -
2.3 The Min-Cost-Flow Problem...- 13 -

Chapter 3 Graph Based Model ...- 14 -
3.1 A Graph Based Model for EMF Diagram ...- 14 -

3.1.1 Semantic Entities Mapping to a Vertex...- 15 -
3.1.2 Semantic Entities Mapping to an Edge ...- 16 -

3.2 The Interface to the Algorithm ...- 17 -
Chapter 4 The Topology-Shape-Metrics Approach..- 18 -

4.1 The Algorithmic Framework Overview ...- 18 -
4.2 Mixed Upward Planarization ..- 19 -

4.2.1 Maximum Upward Planar Subgraph...- 19 -
4.2.2 Edge Insertion ...- 22 -

4.3 Orthogonalization...- 26 -
4.3.1 Tamassia’s Algorithm ...- 26 -
4.3.2 Generalizations of Tamassia’s Algorithm Using Reduction...............................- 29 -

4.4 Compaction ...- 29 -
4.4.1 Constructive Heuristic...- 29 -
4.4.2 Optimal Compaction ...- 30 -

Chapter 5 Conclusion...- 31 -
5.1 Conclusions ...- 31 -
5.2 Sample Diagram Layout Using Topology-Shape-Metrics Approach..................- 32 -
5.3 Issues Not Concerned in This work ..- 33 -

Bibliography ...- 34 -

 - 5 -

Chapter 1

Introduction

In this student work we define the automatic layout problem for EMF diagrams and propose
an algorithm based on the Topology-Shape-Metrics approach to solve it. The Topology-
Shape-Metrics approach has been intensively studied in the last years in the area of graph
drawing and has been used successfully in application areas like visualization of UML class
diagram or database schema. We will see how this graph drawing paradigm can be
promisingly used for the visualization of EMF diagrams.

1.1 Motivation

The Eclipse Modeling Framework EMF is a powerful open-source JAVA/XML framework
and code-generation facility, which already widely adopted, for generating tools and building
Java applications based on a structured data model. EMF helps rapidly turn models into
efficient, correct, and easily customizable Java code. It is intended to provide the benefits of
formal modeling, but with a very low cost of entry. In addition to code generation, it provides
the ability to save objects as XML documents for interchange with other tools and
applications. EMF provides its own meta-model, called Ecore model for describing
application data models, which called core models; an XMI serializer for persisting models;
tools for transforming model forms like UML, XML Schema and simple annotated Java
interfaces into Ecore; and powerful code generator tools, which are used to produce high-
quality Java code from Ecore model descriptions.

Emfatic language for EMF Development is a language for creating, editing and representing
EMF Ecore models in textual form. Emfatic comprises several Eclipse plug-ins, which
provide a parser for the language and a basic text editor based on the Eclipse development
platform, which also add two actions to allow Emfatic source code to be complied into an
Ecore model and allow Ecore models to be decompiled back to Emfatic source code. The
advantages of Emfatic in comparison with other EMF tools including annotated Java, XML
Schema, Unified Modeling Language (UML) tools and the EMF model editor are that
Emfatic represents the entire EMF Ecore model in a single source file, uses a Java-Like
syntax familiar to many programmers, and it closely combined with the Eclipse IDE.

Unfortunately there is no visualization tool for EMF, which representing EMF Ecore models
in visual form, which we called EMF diagrams. In this case a visualization tool embedding in

 - 6 -

Emfatic for EMF diagram drawing is desirable and the placement of the diagram elements is
determined automatically, because the diagram elements are generated automatically. Figure
1.1 shows an Example for a manually drawn EMF diagram.

Figure 1.1: An EMF Diagram

There is no mathematical definition of aesthetics for graph drawing. It can be defined
informally that a drawing of graph is more aesthetic than another if it looks “nicer” or it is
“more readable”. Thus the concept aesthetic criterion is used to mathematically describe
aesthetics of graph drawing [Sec. 2.2].

Current automatic orthogonal layout algorithms for diagram drawing are based on the
hierarchic graph drawing paradigm and focus on the direction of �����aesthetic criterion.
Applied to diagram drawing this aesthetic criterion says that all edges of some type should
point in a common direction, i.e., all edges representing generalizations point upward. These
algorithms produce good results with large and deep structural information, i.e., diagrams
with a large and deep inheritance hierarchy. However, they do not perform satisfactorily in
absence of this information. We propose in this work a new algorithm for automatic layout of
diagram drawing which is based on the topology-shape-metrics approach. The algorithm is an
adaptation of sophisticated graph drawing algorithms which have proven their effectiveness in
many applications. The algorithm works as well for diagrams with rich structural information
as for diagrams with few or no structural information. It improves therefore the existing
algorithms significantly.

����	
��������

����������
����

�����������	�

����������� ���
�����

���
���������

�������
����

�����
�

����	
�������
�

�������
����

�������
����

�����
�����

����	
��������

 �
�� ��	��� !������ "������ #������

����
���

���������

����
��

!������
�������

���������

#���������

��������

�����

����

���������

�������

���
������
��

���
������
��

�
�����(��

#���������

)���
��

����

#��������

�����
��

#���������

�*
��

)�����)����

)����

"�����

��
��

���
������
�

)����

���
������
��

�����
��

 - 7 -

1.2 Overview

This document is organized in to five chapters:

In Chapter 2 we will review the main mathematical concepts that we will use in the remainder
of this work: graph and graph drawing, planarity, planar representation, embedding,
orthogonal shape, aesthetic criterion and the Min-Cost-Flow problem.

In Chapter 3 we discuss the EMF diagram model in detail and present a graph based model
for it.

In Chapter 4 we present the Topology-Shape-Metrics approach for automatic orthogonal
diagram drawing. The three phases, planarization, orthogonalization and compaction will be
discussed deeply.

We finish with Chapter 5, which contains a conclusion of the presented work and show same
sample diagram layout using the Topology-Shape-Metrics approach.

 - 8 -

Chapter 2

Preliminaries

In this chapter we will review the main mathematical concepts that we will use in the
remainder of this work: graph and graph drawing, planarity, planar representation,
embedding, orthogonal shape, aesthetic criterion and the Min-Cost-Flow problem.

2.1 Graph Theory

2.1.1 Graphs

In this section we introduce basic concepts from graph theory, mainly based on [5]. For a
comprehensive overview of graph theory we refer to [20] [21].

A graph G is denoted by a pair G=(V,E), where V is the set of vertices and E � V × V is the
set of edges. We denote with adj(�) the set of edges adjacent a vertex � � V. The degree �G(�)
of a vertex � � V is the number of edges in E adjacent to �. A graph is called 4-graph if each
vertex has degree maximal possible 4. We say that G� = (V�,E�) is a subgraph of G = (V,E) if V�

� V and E� � E. In this case we write G� � G. A graph isomorphism f: V (G) � V (H) is a
bijection between the vertices of two graphs G and H with the property that any two vertices u
and � from G are adjacent if and only if f (u) and f(�) are adjacent in H. If an isomorphism
can be constructed between two graphs, then we say those graphs are isomorphic.

We call a graph directed if all pairs in E are ordered and undirected if all pairs in E are
unordered. We call the first entry in a directed edge the source and the second target. Ignoring
for every directed edge the order of its vertices, we get an undirected graph, which is called
the underlying graph. For a vertex � � V, we denote with in(�) the set of edges in E which
have target �, and with out(�) the set of edges with source �. The in-degree �G

¯ (�) denotes the
number of edges in in(�), and the out-degree �G

+(�) the number of edges in out(�). We call a
vertex with in-degree 0 a source, and a vertex with out-degree 0 a sink. A directed acyclic
graph is called a st-graph if it has exactly one sink and one source.

If a graph contains both, directed and undirected edges, we call it a mixed graph. In this case
we denote the set of directed edges with Ed(G) and the set of undirected edges with Eu(G).
Often the shorter terms digraph, resp. migraph, are employed instead of the terms directed
graph, resp. mixed graph.

 - 9 -

2.1.2 Graph Drawing

A point drawing � of a graph G = (V,E) maps each vertex � � V to a point p(�) in the plane
and each edge e = (�,�) � E to an open Jordan curve c(e) such that c(e) connects p(�) with
p(�). A rectangle drawing � of a graph G = (V,E) maps each vertex � � V to a rectangle r(v)
in the plane and each edge e = (�,�) � E to an open Jordan curve c(e) such that c(e) connects
r(�) with r(�). An orthogonal drawing of a graph is a point drawing in which the curve for
each edge is a sequence of horizontal and vertical segments. Note that a graph admits an
orthogonal drawing if and only if it is a 4-graph. An orthogonal rectangle drawing of a graph
is a rectangle drawing in which the curve for each edge is a sequence of horizontal and
vertical segments. For an illustration see Figure 2.1.

 (a) Point drawing (b) Orthogonal point drawing (c) Orthogonal rectangle drawing

Figure 2.1: Example for different types of graph drawings.

2.1.3 Planar

A point drawing � of a graph G = (V,E) is planar if no two edges in the drawing intersect
except at common points. A graph is planar if it has a planar point drawing. A combinatorial
description of planar graphs will be defined:

“A graph G is planar if and only if it contains no subgraph that is isomorphic to or
is a subdivision of K5 (the complete graph with 5 vertices) or K3,3 (the complete
bipartite graph with 3 vertices in each side).”

Figure 2.2: The two minimal non-planar graphs K5 and K3,3[5].

 - 10 -

2.1.4 Upward Planar

An upward drawing of a directed graph is a drawing in which each edge is represented by a
curve monotonically increasing in the vertical direction. A drawing of a directed graph is
upward planar if it has an upward planar drawing.

 (a) (b) (c)

Figure 2.3: Upward planar drawing (a). Upward non-planar drawing (b). Non-upward planar drawing (c).

2.1.5 Mixed Upward Planar

A mixed upward drawing of a mixed graph G is a drawing in which each directed edge of G is
represented by a curve monotonically increasing in the vertical direction. A mixed graph G is
called mixed upward planar if it has a planar mixed upward drawing.

2.1.6 Face, Planar Representation and Embedding

If � is a planar drawing, the set IR2 \ � is open and its regions are called the faces of �. Since
� is bounded, exactly one of the faces is unbounded. This face is called the outer face of �.
The boundary of each face is a cycle in the graph.

A convenient encoding of a planar drawing is a planar representation. A planar
representation F of a planar graph G = (V,E) defines for each edge (�,�) � E, which might be
directed or undirected, two darts e = (�,�) and eR = (�,�). We say that eR is the reverse of e
and vice versa. We denote with e the reverse of a dart e. We denote with E the set of darts
defined by E. The planar representation F contains one cyclic list for each face, which
contains the darts encountered by walking in clockwise ordering around the face. The first
face in F is by convention the outer face and is denoted by fout. When we use the term face in
the remainder of this work, we refer to the list of darts describing the face. For a dart e we
denote with face(e) the face which contains e.

An embedding � of a graph is defined as the counter-clockwise cyclic ordering � (�) of the
adjacent edges of each vertex v of the graph. Each edge e = (�,�) � E appears twice in �,
namely as (�,�) in � (�) and as (�,�) in � (�). An embedding is planar if there is a planar
drawing of the graph which preserves this ordering.

 - 11 -

It is easy to obtain the planar representation from an embedding and vice versa, since planar
representation and embedding are dual problems in discrete mathematics. Given an
embedding � we denote the planar representation induced by � with F� , and given a planar
representation F we denote the embedding induced by F with �F . A graph with a given planar
representation F is called a plane graph and is denoted with G = (V,E,F). We will omit the
index F in �F and write just � if it is clear to which planar representation we refer.

Figure 2.4: An example of planar embedding, taken from [6].

Figure 2.4 illustrates the definition of planar representation on an example. The plane graph is
defined by the planar representation G = (V,E,F) and F = (f0, f1, f2) where

f0 = {(1, 3), (3, 5), (5, 6), (6, 2), (2, 1)},
f1 = {(1, 2), (2, 3), (3, 1)},
f2 = {(5, 3), (3, 4), (4, 3), (3, 2), (2, 6), (6, 5)}.

In Figure 2.4 (b) the face f0 is denoted by the solid darts, the face f1 by the dashed darts and
the face f2 by the pointed darts. The corresponding embedding � is:

�(1) = {(1, 2), (1, 3)},
�(2) = {(2, 1), (2, 3), (2, 6)},
�(3) = {(3, 2), (3, 1), (3, 5) , (3, 4)},
�(4) = {(4, 3)},
�(5) = {(5, 6), (5, 3)},
�(6) = {(6, 2), (6, 5)}.

2.1.7 Orthogonal Shape

An orthogonal shape H for G is an extension of planar representation and describes, in
addition to the topology, the shape of a drawing for G by specifying the bends in the edges
and angles inside the faces. Let G = (V,E,F) be a place 4-graph. An orthogonal shape H is a
mapping from the set of faces in F to clockwise ordered lists of tuples (e,b,a). The first entry
in the tuple corresponds to the dart in the face. The second entry is a bit string denoting the
bends of the dart. A 0 in the bit string denotes a convex bend (90°), while a 1 denotes a
concave bend (270°), with � denotes no bends in the dart. The third entry is the angle formed
with the preceding dart in the face.

 - 12 -

Figure 2.5: An example of orthogonal shape, taken from [13].

Orthogonal shape of the graph depicted in Figure 2.5:
H(f1) = {(e2,11, 180°), (e3, �, 0°), (e5, �, 0°), (e6, �, 90°), (e7, �, 90°)} outer face,
H(f2) = {(e6, �, 90°), (e5, �, 90°), (e4, �, 90°), (e7, �, 90°)},
H(f3) = {(e1, �, 90°), (e1, �, 180°), (e2,00, 270°), (e4, �, 90°), (e3, �, 90°)}.

2.2 Aesthetic Criterion

There is no mathematical definition of aesthetics for graph drawing. It can be defined
informally that a drawing of graph is more aesthetic than another if it looks “ nicer” or it is
“ more readable” . Thus the concept aesthetic criterion is used to mathematically describe
aesthetics of graph drawing. One aesthetic criterion measures one isolated mathematically
defined property of the drawing and defines rules for the values of this property [5].

The important aesthetic criteria for diagram drawing are:

� Minimize number of edge crossings $�����%&!'
� Minimize number bends $#"& '
� Minimize number of node and edge overlap $�("����'
� Maximize number of orthogonal edges $���)�!�&��'
� Minimize edge length $" !"�"&!�)'
� Minimize area $��"�'
� Maximize number of edges respecting flow $����'

These aesthetic criteria will guide the design of the automatic layout algorithm.

Some of the above criteria can be contradicting, e.g., �����%&! and ��"�. Therefore
finding an aesthetic for graph drawing can be seen as solving a multi-objective problem, the
objective function is the set of aesthetic criteria [12].
The on Topology-Shape-Metrics approach based orthogonal layout algorithm presents in this
work tries to optimize all the aesthetic criteria above.

 - 13 -

2.3 The Min-Cost-Flow Problem

Graph orthogonalization will be treated as solving a minimum cost maximum flow problem;
we present here the Min-Cost-Flow problem and its variation.

The Min-Cost-Flow problem is defined as following:

Given a flow network G=(V,E) with source s � V and sink t � V, where edge (u,v) � E hast
capacity c(u,v), flow f(u,v), and the cost of sending this flow is f(u,v)� a(u,v). An amount of
flow d is required.

The definition of the problem is to minimize the total cost of the flow:

Min: � f(u,v)� a(u,v)
Where:
 Capacity constraints: f(u,v) � a(u,v).
 Skew symmetry: f(u,v) = -f(v,u).
 Flow conservation: � f(u,w) = 0, for all u � s, t.
 Required flow: � f(s,w) = d.

A variation of this problem is to find a flow which is maximum, but has the lowest cost
among the maximums. This could be called a minimum cost maximum flow problem. In
this work, the algorithm to find an orthogonal shape of an input embedded graph is to solve a
minimum cost maximum flow problem [sec 4.3].

 - 14 -

Chapter 3

Graph Based Model

In this chapter we discuss the EMF diagram model in detail and present a graph based model
for it.

3.1 A Graph Based Model for EMF Diagram

There are no formal specifications for EMF diagram; there is also no representing of EMF
Ecore models in visual form. Since EMF diagrams are similar to UML class diagrams in the
visualization, we discuss the EMF models, give a definition of EMF diagram and present a
graph based model to form the problem as in [5].

EMF diagrams are graphs containing nodes connected by edges. The information is mostly in
topology, not in the size or placement of the symbols.

The EMF diagram graph is defined as follows:

� A mixed graph G=(V,E)
� A vertex mapping V � {EClass, EDataType, EEnum}
� An edge mapping E � {ESuperType, EReference}
� A size mapping V � IN2

A drawing of EMF diagram graph defines a drawing for EMF diagram.

The EMF diagram layout is defined as follows:

A layout of a EMF diagram graph G is defined as a mapping �(G) of the vertices to rectangles
of size as defined by the mapping size and the edges to open jordan curves.

In the following we will discuss the visual notation of EMF diagrams and define the mapping
of the diagram elements to graph elements in the EMF diagram graph.

 - 15 -

Figure 3.1: complete class hierarchy of the Ecore model [16].

3.1.1 Semantic Entities Mapping to a Vertex

The diagram elements EClass, EDataType, and EEnum correspond directly to a vertex in the
graph. Figure 3.1 is the complete class hierarchy of the EMF Ecore model, in the EMF
diagram only the partial top-levels leaves will be represented.

EClass
EClass is represented by round rectangle consisting of multiple compartments. Each
compartment contains different features of the EClass including EAttribute, EOperation.

Figure 3.2: An EClass presents in Emfatic editor and the representation of it in EMF diagram.

EEnum
EEnum is also represented by round rectangle consisting of only one compartment, namely
EEnumLiteral.

Figure 3.3: An EEnum presents in Emfatic editor and the representation of it in EMF diagram.

The same for EDataType etc.

 - 16 -

3.1.2 Semantic Entities Mapping to an Edge

The diagram elements ESuperType and EReference correspond directly to an edge in the
graph. The type of the edge is the type of the diagram element. See also [Figure 3.1].

ESuperType
ESuperType is rendered as a solid line with an arrow pointing to the target.

Figure 3.4: An ESuperType presents in Emfatic editor and the representation of it in EMF diagram.

EReference
EReference is rendered also as dashed line with an arrow pointing to the target.

Figure 3.5: An EReference presents in Emfatic editor and the representation of it in EMF diagram.

Interestingly there are two-way EReference between two EClass, this is already a circle
between two adjacent vertices in the EMF diagram graph. In this case, we draw only one edge
which with two arrows in both direction between the vertices and denote the edge as an
undirected edge for the orthogonal layout algorithm presents later in this work.

 - 17 -

Label Placement
Labelling of edges, such as association multiplicities, role names, is treated separately as
additional nodes in [5], in this work it will not be coved.

Figure 3.6: Labelling of edges (A part of Figure 1.1).

3.2 The Interface to the Algorithm

Thus we have the input for the orthogonal layout algorithm. The algorithm assumes as input
an EMF diagram graph which consists of a graph G = (V,E), a mapping S: V � IN2 denoting
the size of the nodes in the drawing. To each node, edge a type is assigned denoting its
semantics in the EMF diagram:

Node types "�	���*�" �
�����*�""����
Edge types "���������*�"��+�������

The graph based model for EMF diagrams will be obtained by using visitors, which parse a
textual EMF expression to evaluating expression on object population.

Figure 3.7: A sample EClass visitor class.

 - 18 -

Chapter 4

The Topology-Shape-Metrics
Approach

In this Chapter we present the Topology-Shape-Metrics approach for automatic orthogonal
diagram drawing. The three significant phases, planarization, orthogonalization and
compaction will be discussed. For more detailed information on the algorithms here described
refer to [5][6][10][12][13].

4.1 The Algorithmic Framework Overview

The Topology-Shape-Metrics approach origins from the seminal paper of Tamassia (1987).
The Topology-Shape-Metrics approach is one of the most popular graph drawing methods, it
has been applied successfully to application domains like the visualization of data flow
diagrams, database schemas and industrial plant schemas. In a comparison of four graph
drawing algorithms for orthogonal drawings, the one following the Topology-Shape-Metrics
approach was the clear winner [22]. We now outline the complete algorithm.

We assume that the input graph is connected, if this assumption is violated, the input graph
should be divided into its connected components and each connected component will be
processed separately. The whole diagram of the connected components can then be arranged
by a floor planning algorithm [14]. We assume furthermore that the directed subgraph of the
input graph is acyclic. If the directed subgraph D contains cycles, only a subset of the edges
will be drawn, which induces an acyclic upward subgraph, the remainder directed edges will
be handled as undirected edges.

Like other former orthogonal layout algorithms such as the hierarchical approach the
Topology-Shape-Metrics approach is divided into several steps [5]:

Preprocessing:

(a) Divide the graph into its connected components. Each connected component will be
processed separately by the algorithm. Thus we can assume that the input graph is
connected.

(b) Remove edges from D until the directed edges induce an acyclic subgraph of G.

 - 19 -

(c) If the edges in D do not induce a connected subgraph some edges are added
temporarily to D to make this subgraph connected by using a minimum spanning tree
algorithm.

Planarization: This step determines the topology of the drawing, which is described by a
planar embedding. If a graph has a drawing in the plane without any edge crossings, it is
planar. Such a drawing divides the graph plane into faces. A planar embedding is a
combinatorial description of the faces and contains for each face the sequence of edges
contouring it. For graphs which are not planar dummy vertices are introduced which represent
crossings to make the resulting graph planar. The algorithm tries to minimize the number of
crossings $�����,������%&!'.

Orthogonalization: This step determines the angles and the bends in the drawing. Only
multiples of 90° are assigned as angles which ensure that the drawing is orthogonal. The
algorithm tries to minimize the number of bends in this step. $���)�!�&���,�#"& '

Compaction: In this step the final coordinates are assigned to the nodes and to the edge
bends. The dummy vertices introduced in the planarization phase are removed. In this phase
the main goal is to minimize the sum of the length of all edges and/or the area of the drawing
$" !"�"&!�)�,���"�'.

Postprocessing:

(a) All dummy vertices are removed from the graph such as crossings.
(b) The connected components of the graph after layout process are arranged by a floor

planning algorithm.

4.2 Mixed Upward Planarization

In this section we consider the problem of finding a planarization of a mixed graph for which
a drawing exists in which all directed edges are represented by monotonically increasing
curves and which has a low number of crossings at the same time $�����,������%&!'.

The algorithm is based on a heuristic which is a popular technique for the planarization of
undirected graphs:

1. Construct an upward planar subgraph.
2. Determine an upward embedding of this subgraph.
3. Insert the edges not contained in the subgraph, one by one.

4.2.1 Maximum Upward Planar Subgraph

The maximum upward planar subgraph problem can be stated as follows: Given a directed
graph G=(V,E), find E� � E such that the directed graph G=(V,E) is upward planar with
maximum number of edges.

The Mixed Vertex Ordering algorithm is a variant for mixed graph of the
Goldschmidt/Takvorian [6] algorithm, which makes an undirected graph planar and be
divided into two phases. The first phase of GT consists of devising an ordering � of the set of

 - 20 -

vertices V of the input graph G, such that as many edges as possible between adjacent vertices
can also be placed on the line. The second phase of GT partitions the edge set E of G into
subsets L (left of the line), R (right of the line) and B (the remainder) in such a way that |L+R|
is large as maximal possible an that no two edges both in L or both in R cross with respect to
the sequence � devised in the first phase.

Figure 4.1: Mixed Vertex Ordering Algorithm, taken from [6].

With the algorithm of Asano, Imai and Mukaiyama [5] a maximum independent set of an
overlap graph can be calculated in time O(NM), where N is the number of different interval
endpoints and M is the number of edges in the overlap graph. In our setting, N � n and M � m,
which leads to a running time of O(nm). Since this algorithm computed the maximum
independent set, the algorithm proposed in this section can compute planar subgraph.

In Figure 4.2 we show a run of the mixed vertex order algorithm. As input graph we take the
minimal non-planar graph K5, in order to make the problem trivial we add a new vertex 6 and
a directed edge from vertex 4 point to the new vertex 6.

 - 21 -

Figure 4.2: A run of the mixed vertex ordering algorithm.

1

2

3 4

5

6

v1 = {3}
��= {1, 2, 4, 5, 6}

1

2

4

5

6

G1 =

� �� �{2, 4}
v2 = {2}
 ��= {1, 4, 5, 6}

1

4

5

6

G2 =

� �� �{1, 4}
v3 = {1}
 ��= {4, 5, 6}

4

5

6

G3 =

� �� �{4}
v4 = {4}
 ��= {5, 6}

5

6

G4 =

� �� �{5, 6}
v5 = {5}
 ��= {6}

6

G5 =

� �� �{6}
v6 = {6}
 ��= �

Ordering � = (3, 2, 1, 4, 5, 6)

G =

3 2 1 4 5 6

L= {(3, 5), (2, 5), (1, 5), (3, 2), (2, 1), (1, 4), (4, 5)}
R= {(3, 1), (3, 4), (4, 6)}
B= {(2, 4)}

1

2

3 4

5

6

A planar drawing of the input graph G by
introducing a dummy vertex red depicted.
See section Edge Insertion.

1

2

3 4

5

6

Maximum Upward Planar Subgraph

 - 22 -

From the set L and R and the ordering �, we can now easily obtain the mixed upward
embedding: For each vertex � � V we sort the edges with source � in R decreasing according
to � and the edges with source � in L increasing according to �, and concatenate these two
ordered lists to one. For the incoming edges, we first sort the edges with target � in L
increasing according to � and the edges with source � in R decreasing according to � and
append the result to the list of outgoing edges.

Figure 4.3: The order of the edges at a vertex can be derived directly from � and the sets L and R [5].

The embedding � of the example runs in figure 4.2:

4.2.2 Edge Insertion

Insertion of Undirected Edges
In this section we consider the problem of inserting an undirected edge into an embedded
graph. An algorithm for insertion of undirected edges is based on the dual graph of the plane
graph. The dual graph G* of plane graph G = (V,E,F) has a vertex for each face of G, and an
edge d(e) = (f,g) between two faces f and g for each edge e that is shared by f and g. To insert
an edge (a,b), the extended dual graph G(a,b)

* will be constructed from G* by adding two
vertices a’ and b’ to G* and inserting an edge from (a’, f), resp. (b’, f), into G* for each f
which contains an edge adjacent to a’, resp. b’ according to a, b. From each path e0, . . . , ek
from a’ to b’ in G(a,b)

* we can obtain a planarization of G by subdividing the edges in G
corresponding to e1, . . . , ek-1 and adding a path from a to b which uses the vertices

� (3) = {(3, 4), (3, 1), (3, 2), (3, 5)}
� (2) = {(2, 1), (2, 5), (2, 3)}
� (1) = {(1, 4), (1, 5), (1, 2), (1, 3)}
� (4) = {(4, 6), (4, 5), (4, 1), (4, 3)}
� (5) = {(5, 3), (5, 2), (5, 1), (5, 4)}
� (6) = {(6, 4)}

3 2 1 4 5 6

L= {(3, 5), (2, 5), (1, 5), (3, 2), (2, 1), (1, 4), (4, 5)}
R= {(3, 1), (3, 4), (4, 6)}

1

2

3 4

5

6

Maximum Upward Planar Subgraph

 - 23 -

introduced by the subdivision. A shortest path from a’ to b’ induces therefore a planarization
of G � (a, b) with minimal crossing number without changing the embedding of G. The
algorithm is illustrated in Figure 4.4.

Figure 4.4: Insertion of edge (1,3) into the plane graph shown in upper left. The dual graph G* is depicted in
upper right and the extended dual graph G(1,3)

* in under left. The shortest path from vertex 1 to vertex 3
illustrated by the thick dashed red edges. The resulting planarization is shown in under right.

Insertion of directed edges
Inserting directed edges into an upward embedded directed graph can be much more complex
than inserting undirected edges in a embedded graph. Since we cannot easily insert edge into
the drawing without considering the remaining edges which will be inserted later. The reason
for this is that the dummy vertices added to the graph in a planarization step introduce
changes in the ordering of the vertices of the graph. Although the graph remains acyclic, this
may introduce a directed cycle with an edge which will be added later. Then this edge can no
longer be inserted. We show here an example to illustrate this critical configuration.

In Figure 4.5(a) the dashed edges will be inserted into the drawing, and we first insert edge (5,
6). If we insert edge (5, 6) as in Figure 4.5(b), we produce a dummy vertex in edge (1,3).

1

2

3 4

5

6

1

2

3 4

5

6

1

2

3 4

5

6

1

2

3 4

5

6

 - 24 -

Then, it is no longer possible to introduce edge (3, 2) without destroying the upward property
because of the new directed cycle (5, Dummy, 3, 2, 5).

(a) (b)

Figure 4.5: A critical configuration.

As shown above cycles must be avoided when inserting directed edges. This will be achieved
by layering the graph. A valid layering l is defined as a mapping of V to integers such that l(v)
> l(u) for each edge (u,v) 	 E. Computing a layering for a directed acyclic graph has been
studied extensively, for more details refer to [5]. An longest path layering method, which
calculates a layering of minimal height in time O(n+m) is used.

From the layered graph we construct the routing graph R(a,b) for the insertion of a directed
edge (a, b). The routing graph contains, for each face f and for each layer i that f spans, a
vertex �(f, i). Two vertices lying in neighbouring layers and representing the same face are
connected by a directed edge of weight 0 in increasing layer order. Additionally, two vertices
at the same layer i of adjacent faces are connected by an edge if the source vertex of an edge
separating these two faces is less than or equal to i and the layer of the target vertex is greater
than i. We assign to this edge the product of the weight of the edge separating the faces and
the weight of edge (a, b).

In this graph, there are no edges in decreasing layer order, in other words for each edge (�(f,
i), �(g, j)) holds i � j. Each edge of positive weight represents one crossing. A shortest path in
the routing graph represents, therefore, an insertion of an edge with minimal weighted
crossing number with respect to the given layering.

We add a vertex �(a) to the routing graph and connect it to faces which are adjacent to
outgoing edges of a. Analogously we add a vertex �(b) to the routing graph and connect it to
faces which are adjacent to incoming edges of b. A path from �(a) to �(b) corresponds to a
valid routing of the edge (a, b). Figure 4.6(b) shows an example for a routing graph.

1

2 3 4

5 6

7

1

2

3

4

5 6

7

 - 25 -

Figure 4.6: Example for algorithm directed edge insertion. Figure (b) shows a valid layering of the input graph
(a), taken from [5].

 - 26 -

4.3 Orthogonalization

This section describes orthogonalization algorithms which try to minimize the number of
bends, notably which vertices have prescribed size and directed edges point upward. The
result of the algorithm is an orthogonal shape which is computed from a mixed upward
planarization. The KANDINSKY algorithm is an extension of Tamassia’ s algorithm that
computes bend-minimal point drawings of plane 4-graphs. The KANDINSKY algorithm
overcomes the severe restriction of Tamassia’ s algorithm that it is restricted to point drawing
which means available only for 4-graphs. The KANDINSKY algorithm is also the only one
that guarantees prescribed vertex sizes. We review the Tamassia’s Algorithm in detail, for
further reading of the KANDINSKY algorithm, we refer to [6].

4.3.1 Tamassia’s Algorithm

Tamassia’ s algorithm computes an orthogonal shape of a plane 4-graph with respect to an
input embedding with a minimal number of bends. Calculating a drawing from an orthogonal
shape is called compaction and it will be discussed in [sec 4.4].

This problem can be solved using Min-Cost-Flow [sec 2.3] network algorithm:

For each plane graph G there is a minimum cost flow network NG in which there is a one-to-
one correspondence between valid flows in the network and valid orthogonal shapes of G.
The cost of a network flow corresponds to the number of bends in the induced orthogonal
shape, and there fore a bend-minimal orthogonal shape can be computed with a Min-Cost-
Flow solving algorithm.

The minimum cost flow network NG=(N,A) for a plane 4-graph G=(V,E,F) is a minimum cost
flow network and is defined as follows:

� The set of nodes N is defined as N=NV

 NF with
1. The set NV contains a node for each vertex in V.
2. The set NF contains a node for each face in F.

� The set of arcs A is defined as:
1. The set (s, nv), where nv � NV, connects source s with every �; this set of arcs have

cost zero and capacity 4-� (nv). (Compare Figure 4.7(b))
2. The set (s, nf), where nf � NF , f is an inner face with � (nf) � 3; this set of arcs have

cost zero and capacity 4-� (f). (Compare Figure 4.7(c))
3. The set (nf, t), where nf � NF, f is either the outer face or an inner face with � (nf) 	

5; this set of arcs have cost zero and capacity � (f)+4 for outer face or � (f)-4 else.
(Compare Figure 4.7(d))

4. The set (nv, nf), where nv � NV, nf � NF; this set of arcs have cost zero and capacity

. (Compare Figure 4.7(e))

5. The set (nf, ng), where nf,ng � NF, and the face f and g have at least one common
edge; this set of arcs have cost one and capacity
. (Compare Figure 4.7(e))

Flow | f | = � cap(s,nv) = � cap(nt,t).

A proof of the above equation is the Euler’ s formula, see [21].

 - 27 -

Figure 4.7: Min-Cost-Flow st-settings. (a) is the input graph.

(a) (b) capacity / cost

2/0

2/0

2/0

(c)

2/0

2/0

2/0
1/0

(d)

2/0

2/0

2/0
1/0

7/0

2/0

2/0

2/0
1/0

7/0

/0

/1

/0

/0

/0
/0

/0

/0

/1

(e)

 - 28 -

We can solve this simple Min-Cost-Flow problem with inspection:

Figure 4.8: Min-Cost- Flow of the input graph.

A feasible flow f = 7 and cost = 1 are foreseeable. For more complex Min-Cost-Flow
problems there are different algorithms with best running time O(n2logn) [13].

The flow f and the cost can be interpreted as:

� Each flow value over an edge (nf, ng) represent a bend in an arbitrary edge, which
connects the two faces f and g.

� A flow value x over an edge (nv, nf) defined an angle with (x+1) � 90° between the both
edges incident by node v.

Figure 4.9: The input graph (a) and its orthogonal shape (b)

We summarize the above discussion as follows: Given a plane graph G and a feasible flow x
in the bend-minimization network, we can define an orthogonal shape H(G) for G. In this
phrase, we calculate an orthogonal shape for an input planar graph.

2/0

2/0

2/0
1/0

7/0

2/0

2/0

2/0
1/1

(a) (b)

f0
f1

H(f0) = {(e1, �, 270°), (e2, 0, 180°), (e3, �, 270°)},
H(f1) = {(e3, �, 270°), (e2, 1, 180°), (e1, �, 270°)}.

e1

e2

e3

e1

e2
e3

 - 29 -

4.3.2 Generalizations of Tamassia’s Algorithm Using Reduction

One possibility to generalize Tamassia’ s Algorithm to orthogonal rectangle drawing of graphs
with arbitrarily degree is the reduction approach. The idea behind this approach is not to
change the algorithm, rather change the input to accommodate the restriction of Tamassia’ s
Algorithm with 4-graph. The reduction approach is based on the observation, that we can
often overcome the limitations of an algorithm which requires a special type of input by
transforming the input, so that it fulfils these requirements, and then perform the algorithm on
the transformed input. We can then obtain a solution for the original input by interpreting the
algorithms result. In an object-oriented sense this is captured by the Algorithmic Reduction
design pattern.

Figure 4.10: Transformation of a high-degree vertex into a face, taken from [6].

4.4 Compaction

In this section we briefly introduce the compaction algorithm. We first describe the
constructive techniques which produce a drawing for a given orthogonal shape H. The key
idea behind these methods is to transform H into an auxiliary representation H’ by introducing
artificial edges and vertices and to find a drawing for H’ in polynomial time. Removing the
artificial vertices and edges in the auxiliary drawing leads to a drawing for H.

By the computation of edge length the following points must be considered:

� Length of all line segments must be positive integer.
� Each cycle of the graph will be mapped as a polygon.
� There are no segments, which overlaps with themselves, unless they have common

end points.

For more details on compaction of orthogonal drawing see [6] [22].

4.4.1 Constructive Heuristic

Tamassia mentions the first and still most common method to produce an auxiliary
representation H’ . He introduces the dissection method which consists of decomposing each
internal face of the given simple orthogonal shape H into to a set of faces each of which has
rectangular shape by introducing artificial vertices and edges. Figure 4.11 illustrates this
method with an example. Please note that the method works at representation level, the
coordinates have not yet been assigned. This process can be done in O(n) time where n
denotes the number of vertices in H. In the resulting orthogonal shape H’ , all interior faces

 - 30 -

have rectangular shape. Of course, the artificial vertices and edges impose additional
constraints on the geometry which may lead to suboptimal total edge length and are in the
resulting drawing.

With the help of decomposing the faces into rectangles we can describe the set of orthogonal
shapes, for which optimal compactions can be calculated in polynomial time.

Figure 4.11: The dissection method. On the left is the original orthogonal shape H. On the right is the
transformed auxiliary representation H’ . Dashed lines and empty vertices represent artificial edges and vertices.
Taken from [22].

There are also other effective heuristics for construct an auxiliary representation, for further
reading we refer to [22].

4.4.2 Optimal Compaction

An ILP-based approach is used to solve instances of the two-dimensional compaction
problem to optimality. It is based on a characterisation of the set of feasible solutions in terms
of paths in the pair of constraint graphs. Given a pair of constraint graphs in which only the
relative positions known from the shape H are present, the compaction problem can be seen as
optimising over the set of certain extensions of these graphs.

The complete compaction algorithms for prescribed vertex-size KANDINSKY shape see also
[6][22].

 - 31 -

Chapter 5

Conclusion

In this last Chapter we draw a conclusion of the presented work and show same sample
diagram layout using the Topology-Shape-Metrics approach.

5.1 Conclusions

In this work we presented state-of-the-art techniques for the automatic layout of graphs using
the topology-shape-metrics approach which yield automatic layout for EMF diagrams.

Orthogonal graph drawing is getting increasing attention from industry because of its
numerous applications, e.g., in database design, software engineering and many more. For
many of these applications, the Topology-Shape-Metrics approach leads to the best results. In
this approach, a first phase (planarization) determines the topology of the drawing. The aim is
to generate a drawing with a small number of edge crossings, e.g., by computing a large
planar subgraph and carefully reinserting the removed edges. Then, the crossings are replaced
by artificial vertices resulting in a planar graph. A second phase determines the shape of the
final layout. This phase is often restricted to planar orthogonal drawings (orthogonalization).
A widely accepted optimization criterion is to minimize the number of bends without
changing the topology. Finally, the third phase (compaction) deals with computing the metrics
of the layout. Here, the optimization problem is to compute a layout of minimum area with
minimum total edge length.

Although the Topology-Shape-Metrics approach was suggested already in 1984, it took some
years until the approach was getting popular. The reason for this is that it is time consuming
to implement the approach, since many different kinds of algorithms are needed. Recently, a
lot of research has been done to solve many of the upcoming problems. Major improvements
have been made concerning various aspects of the three phases of the Topology-Shape-
Metrics approach. Moreover, today there exist some software libraries containing the
Topology-Shape-Metrics approach [18].

 - 32 -

5.2 Sample Diagram Layout Using Topology-Shape-
Metrics Approach

Figure 5.1: The Royal and Loyal EMF Diagram see also [Figure 1.1].

Figure 5.2: An UML class diagram depicted using JarInspector, which also based on the Topology-Shape-
Metrics Approach, screenshot taken from [12].

 - 33 -

Figure 5.3: “yEd”, a Java graph editor (http://www.yworks.com).

5.3 Issues Not Concerned in This work

Some themes were not coved in this work, such as prescribed size orthogonalization,
hyperedges, label placement, etc. For detailed information about these issues we recommend
[5][6][12][13].

Figure 5.1: Generalization with distinct paths and hyperedge notation, taken from [6].

 - 34 -

Bibliography

+,- ������������.�����!/�
0��.�������1���������.�!�
�2�
.����
�2�����
.�����

#�)������3%&&45 �����������	���
�����������������
����.��������
67��� �

�

+%- ����#�����.���
6#���������8�3%&&95 ���
�����������
������
�������	����������

��������������� ������������!��
�����������������
�7������������
�� �

�

+4- 1��
:�(���
�:�.�!��������
���.�;��#�:�.�"����
��;������:.���������� ������

3%&&45 ���
�����"���
����#���$� ��!�	���
�����������.��������
67��� �

�

+<- "�
��������
�3%&&=5 ������������
����%&��������
�������������������������
�

��������#���$� .�>(#�������7��:�������� �

�

+9- #��:���;���������3%&&45 �!���������'�(�������)"'��
����	�������!�����
(%

*����%"������!������+�

�

+=- #��:���;��������.�1��
:�;���
��.�#������2�����

�3%&&45.�!��!����������

"�,���)�$����
����-����� �

�

+'- "�����)���:�*�:.�!��!��
(�������*����.����������������"�,������
����

*�&�������&
�� �

�

+?- ������;��������.�	��������������!��������'�(�������)"'��
����	�������&(�

*���/�& �

�

+@- (�
��������A��

.�	(�������,�
����������'��������� �

�

+,&-)����
����*
��.�#��������
��.�2����
�2��
.���������2��:.��������
�

�����.������#��A�.���0����
�!�1�$�!����������0����
�-����)"'��
����

	������ �

�

+,,- !
���!���3%&&=5.������'�(�������	�����%*��������"���
��� �

�

+,%- #��:���;��������.�#������2�����

.�#����
����
�����.�!�����
��(%*����%

"������!��������������!���������'�(�������)"'��
����	������ �

�

+,4- #����
����
������3%&&45.�!�������������'�(��������)"'%

2
�������������� �

�

+,<- 2������1�������.�	����!������A.��������2�:�����3%&&,5.�	�����������������

�(��������������
(��������� ����������� ��

�

+,9- 	���:�(��
��.�#��:���;��������.�#������2�����

.�!�������7��
�.�

* ����%	�����3�������
������	�$��� �

�

+,=- ;������#����
��1���*��:����0��.�����BCC*** ����� ���C�����
�C��C �

 - 35 -

�

+,'- ;���������
���������;#1�!�����
�.�����BCC*** �����*��:� ��� ����

C���C������ �

�

+,?- ��!���������	���#�
��.�����BCC*** ��� ��*�
 �� ��C��!C#�D	��C�

#�D	�� ���� �

�

+,@- #����������E������	
�����
��
��������������������������������.�

����BCC��� �*������ ��CF����*��
C)�'<=�CD���C��������,@?,G#E	C �

�

+%&- ������
�����
.�"����
����
��*.����������(������
��������
��������������

�
������� �

�

+%,- "�
�����!�����3%&&=5.������������� �

�

+%%- ��

���7 �2���.�2����
�2��
.������#��A�.�!���,��������
��������������

3�������
������������!
������� �

�

