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Abstract

Different types of data sources exist and different query languages exist to query them. For
example, SQL to query relational database, XQuery to query XML data, JPQL to query
object domain etc. The query languages can be used with high level programming languages
like Java but they stand isolated, as in most of the cases the queries are embedded as strings
inside the program. Therefore the syntactic and semantic meaning of the query is opaque to
the programming language and IDE will not be able to provide features like content assist,
auto completion, displaying problem markers (for syntactic violation) etc, for constructing the
queries. One possible solution to make these features available for the queries is to embed
them using the constructs of the host programming language. In the first part of this thesis,
an approach to embed JPQL in Java using a sequence of method calls (method chaining) is
presented. Another possibility is to extend the programming language itself to include the
query mechanism, which is the case with LINQ that adds data querying capabilities to .NET
languages like C#, VB. The second part of the thesis describes a LINQ to JPQL translator as
an interim step toward the proposed query integration.
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Chapter 1

Introduction

This chapter introduces the concept of Domain Specific Languages (DSLs) and their types,
briefs about the query languages LINQ and JPQL (as examples of DSL) , presents the objective
of this master thesis and concludes with the recent works in the area of embedding DSLs in
general purpose programming languages like Java.

1.1 Domain Specific Languages

Domain Specific Languages (DSLs) is a topic that has gained popularity recently. Different
knowledge domains demand different types of support from programming languages. Domain
engineers often use DSLs to overcome this problem. A DSL is commonly described as a com-
puter language targeted at a particular kind of problem domain. DSLs have been formally
studied for many years. The definition of DSL is given in DSLs: An Annotated Bibliography
as, A domain-specific language (DSL) is a programming language or executable specification
language that offers, through appropriate notations and abstractions, expressive power focused
on, and usually restricted to, a particular problem domain.

Simplicity is critical to the success of a DSL. A person familiar with the language’s domain
must easily understand it. DSLs allow solutions to be expressed at the level of abstraction
of the problem domain. Consequently, domain experts themselves can understand, validate,
modify, and often even develop domain-specific language programs. Well-known examples are
for DSLs are SQL, CSS, and HTML.

1.2 Types of DSLs

There are mainly two types of DSLs: Internal and External DSLs. Martin Fowler has written
extensively on these types of DSL in [Fow08].

An internal DSL is created with the main language of an application without re-
quiring the creation (and maintenance) of custom compilers and interpreters.
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In other words, internal DSLs use the same general purpose programming language that the
wider application uses, but uses that language in a particular and limited style. Internal DSLs
are also referred to as embedded DSLs.

External DSLs are DSLs that use a different language to the main language of the
application that uses them.

External DSLs have their own custom syntax and a parser to process them. Many XML config-
urations have ended up as external DSLs. The key strength of an external DSL is that the user
is free to use any form of syntax. This results in ability to express the domain in the easiest
form possible to read and modify. The major limitation is to build a translator/parser that can
parse the DSL and produce something executable, usually in the base language.

It is difficult to differentiate between a DSL and an API. In the case of internal DSLs, they are
essentially the same. When thinking in terms of DSL, we exploit the host language to create
a readable API with a limited scope. “Internal DSL” is more or less a fancy name for an API
that has been created thinking in terms of readability and focusing on a particular problem of
a specific domain.

1.3 Internal DSLs in Java

Alex Ruiz and Jeff Bay discusses 1 on creating internal DSLs in Java. Lately, with the advent
of Ruby and other dynamic languages, there has been a growing interest in DSLs amongst
programmers. These loosely structured languages offer an approach to DSLs which allow a
minimum of grammar and therefore the most direct representation of a particular language.
However, discarding the ability to use the most powerful modern IDEs such as Eclipse and
IntelliJ IDEA is a definite disadvantage with this approach.

On the bright side, by using the Java language we can take advantage of mature IDEs, which
can make creation, usage and maintenance of DSLs easier thanks to features like auto-complete,
automatic refactoring and debugging. Any internal DSL is limited to the syntax and structure
of its base language. In the case of Java, the obligatory use of curly braces, parenthesis and
semicolons, and the lack of closures and meta-programming may lead to a DSL that is more
verbose that one created with a dynamic language. But this limitation can be made insignificant
with new language features in Java 5 (generics, varargs and static imports) as they can help
us create a more compact API than previous versions of the language.

In general, a DSL written in Java will not lead to a language that a business user can create
from scratch. It will lead to a language that is quite readable by a business user, as well as being
very intuitive to read and write from the perspective of the programmer. It has the advantage
over an external DSL or a DSL written in a dynamic language that the compiler can enforce
correctness along the way, and flag inappropriate usage where Ruby or Pearl would accept
nonsensical input and fail at run-time. This reduces the verbosity of testing substantially and
can dramatically improve application quality.

1An Approach to Internal Domain-Specific Languages in Java, http://www.infoq.com/articles/
internal-dsls-java

http://www.infoq.com/articles/internal-dsls-java
http://www.infoq.com/articles/internal-dsls-java


1.4 Query Languages as DSLs 3

1.4 Query Languages as DSLs

The Java Persistence Query Language (JPQL) is used to define queries against persistent
entities (object model) independent of the mechanism used to store those entities. It uses the
abstract persistence schemas of entities, including their relationships, for its data model, and
it defines operators and expressions based on this data model.

Language Integrated Query (LINQ) is a Microsoft .NET Framework component that adds
native data querying capabilities to .NET languages like C#, VB. LINQ defines a set of query
operators that can be used to query, project and filter data in arrays, enumerable classes, XML,
relational database, and third party data sources.

1.5 Objective

The main objectives of this thesis work are

1. To embed a DSL in Java, supporting features like content assist, compile time type
checking etc. JPQL is taken as case study for embedding.

2. To explore the implementation of an integrated query language for Java (similar to LINQ)
and to develop a translator that generates a JPQL query from a LINQ query (can be
described as LINQ to JPQL provider) as a step towards realizing LINQ for Java.

One of the techniques used by us to embed JPQL is fluent interface2 or Method Chaining.
A fluent interface provides a easy-to-read representation of the domain problem we want to
model and it is a usual way to implement an internal DSL. The implementation in our approach
involves developing an Ecore metamodel for JPQL and using this metamodel to generate the
needed APIs for embedding JPQL.

The translation from a LINQ query to an equivalent JPQL query is implemented based on a
visitor pattern. An Ecore metamodel to realize the LINQ standard query operators is developed.

1.6 Related Works

The concept of embedding a query language in Java is not new. In the past and at present, many
promising efforts were made to improve language integration by providing fluent interfaces or
other lightweight wrappers around SQL, JDBC. This section specifies some of these related
efforts and provides references to them.

1. JPA Query Tool: This project 3 aims at creating a tool that can be used to browse
persistence unit entities and properties, edit and run queries in a GUI editor, browse
queries results etc.

2Domain Specific Languages, http://martinfowler.com/dslwip/index.html
3JPA Query Tool, https://jpaquerytool.dev.java.net/

http://martinfowler.com/dslwip/index.html
https://jpaquerytool.dev.java.net/


4 Chapter 1. Introduction

2. Silver [Sil08]: An attribute grammar specification language that can be used to extend
general purpose languages like Java. The authors added new features to Java 1.4 language
with modular language extensions. For example, one of the extension that is added is to
support SQL queries in Java such that the extension statically check for syntax and type
errors in SQL queries.

3. JEQUEL [Hun08]: Java Embedded QUEry Language, a DSL for embedding SQL in
Java. The APIs needed for fluent interface were developed manually. Listing 1.1 shows
fluent interface approach in JEQUEL.

Listing 1.1: Fluent Interface in JEQUEL
1 public void testSimpleSql() {
2 final SqlString sql =
3 select(ARTICLE.OID)
4 .from(ARTICLE, ARTICLE_COLOR)
5 .where(ARTICLE.OID.eq(ARTICLE_COLOR.ARTICLE_OID)
6 .and(ARTICLE.ARTICLE_NO.is_not(NULL)));
7

8 assertEquals("select ARTICLE.OID" +
9 " from ARTICLE, ARTICLE_COLOR" +

10 " where ARTICLE.OID = ARTICLE_COLOR.ARTICLE_OID" +
11 " and ARTICLE.ARTICLE_NO is not NULL", sql.toString());
12 }

4. Quaere [NM08]: Quaere is an internal DSL that adds a querying syntax similar to SQL
to Java. The language is modeled with basis in Microsoft’s Language Integrated Query
(LINQ) project, which adds similar capabilities to a range of Microsoft .NET languages.
The Quaere project allows users to use an internal DSL to filter, enumerate and create
projections over a number of collections and other queryable resources using a common,
expressive syntax. Example in Listing 1.2 is from Quaere Project.

Listing 1.2: Fluent interface in Quaere
1

2 public class GettingStartedWithQuaere {
3 public static void main() {
4 String[] cities = {
5 "London",
6 "New York",
7 "Tokyo",
8 "Stockholm",
9 "Barcelona",

10 "Sydney"
11 };
12

13 Iterable<String> allCities =
14 from("city").in(cities).select("city");
15 for (String city: allCities) {
16 System.out.println(city);
17 }
18 }
19 }
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5. Typesafe SQL [KR08]: This embeds the whole of the SQL as a typesafe embedded
DSL. Relies on the use of the Java 5 Generics to improve the type safety properties of
the DSLs. SQL query embedded in Java is shown in Listing 1.3.

Listing 1.3: SQL query embedded as fluent interface
1 List<Tuple3<String, Integer, Date>> rows =
2 new QueryBuilder(datasource)
3 .from(p)
4 .where(gt(p.height, 170))
5 .select(p.name, p.height, p.birthday)
6 .list();

1.7 Organization of the Report

This thesis work is carried out in two phases. Chapter 2 and Chapter 3 elaborates the first
phase. In this phase, we present our approach to use the Java language as a tool for creating
internal DSLs. Chapter 4 and Chapter 5 are part of the second phase and mainly deals with
the efforts spent towards developing an integrated query for Java. The rest of the report is
organized as follows.

Chapter 2 gives the motivation for embedding JPQL in Java using a tool called DSL2JDT,
followed by the explanation on the development of a metamodel for JPQL based on its BNF
grammar. In this chapter, we also listed the well-formedness rules (WFRs) for the queries from
the specification that are not captured by the grammar.

Chapter 3 addresses one of the shortcoming of the metamodel developed in Chapter 2. It uses
Java Generics to implement type checking at compile time for embedding JPQL.

Chapter 4 introduces the concept of LINQ queries, Lambda expressions and Expression trees.
It also provides an overview of building and visiting an expression tree.

Chapter 5 presents the challenges involved in developing a LINQ provider for JPQL. It elab-
orates on the metamodel developed for LINQ and the translation algorithm for generating a
JPQL query from a LINQ query.

Chapter 6 explores the area for future works and discusses conclusions.
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Chapter 2

JPQL as Internal DSL

This chapter describes an approach for embedding JPQL in Java. JPQL is a object oriented
query language for Java Persistence that operates on the logical entity model (object model) as
opposed to the physical data model. The object graph being queried results from the Object-
Relational Mapping (ORM). Embedding JPQL provides an internal DSL for building JPQL
statements. Our approach to embed JPQL involves building an Ecore metamodel based on
JPQL BNF grammar and then automatically generating the APIs required for method chaining
(fluent interface) from the metamodel using DSL2JDT tool [Gar08]. This tool generates a
class (expression builder [Fow08]) that encapsulates all of the methods generated from the
metamodel.

2.1 Motivation

To understand the importance of embedding query languages like JPQL in Java, consider the
following example that makes use of traditional JPQL. This example creates a query and then

Listing 2.1: JPQL query as a string
1 Query query = em.createQuery("SELECT e.name FROM Employee e");
2 Collection empNames = query.getResultList();

executes it to obtain all of the employee names in the database. As the query is specified as
string, errors in the query like misspelled keyword or entity name go unnoticed during compile
time. Similarly there are other errors that are only detected at runtime rather than at compile
time, when the query is specified as string. One way to catch such errors at compile time is to
embed the whole of the JPQL as a typesafe embedded DSL. With the internal DSL approach,
the query in Listing 2.1 may look like in Listing 2.2.

Listing 2.2: Embedded JPQL
1 List<Tuple1<String>> names =
2 new QueryBuilder(datasource).from(employee).as(e).select(e.name).list();
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2.2 Pros and Cons of Embedding JPQL in Java

There are advantages and disadvantages of embedding JPQL in Java as internal DSL. Most of
these pros and cons are due to the fact that JPQL is implemented as internal DSL.

Pros:

1. Model driven approach

2. Java IDE can be used to enforce static semantics of JPQL

3. Methods required to build fluent interface can be automatically generated from the meta-
model using DSL2JDT

4. Content Assist or Code completion for query keywords and operations

5. Use of Java Generics to enforce type safety

6. Enhanced readability of code

7. Easy for domain users to understand

Cons:

1. Queries may be more verbose than the ones created with dynamic languages like Ruby

2. May need to code manually few classes to improve usability

2.3 JPQL Metamodel Development

JPQL is an extension of the Enterprise Java Beans Query Language (EJB QL). It adds further
operations, including bulk update and delete, JOIN operations, GROUP BY, HAVING, pro-
jection, subqueries and supports the use of dynamic queries and the use of named parameters.
The full definition of the query language (BNF Grammar) can be found in Java Persistence 2.0
specification (JSR 317). The complete JPQL grammar is reproduced in Appendix A for quick
reference. A metamodel for JPQL (also known as EJB3QL) based on the JSR 220 specification
has already been developed as part of the master’s thesis work of Liu Yao [Yao06]. During the
development of this metamodel, the focus was not on embedding JPQL queries in Java but
was more on implementing tools to support a DSL (JPQL in this case) in eclipse. So we did
not use this metamodel but developed a new one based on the JSR 317 spec, focusing on the
embedding of JPQL queries in Java. Almost all the terminals and non-terminals which appear
in the BNF grammar are modeled. The classes in the resulting Ecore model are grouped into
different packages.

The approach followed in building the metamodel for JPQL can be described as follows: We first
identified the part of the metamodel that does not depend on other parts of the metamodel
or packages. And for a query language, this corresponds to database schema, as it is being
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referred by all the queries and does not refer any other part of metamodel. So we first built the
package schema. From the grammar, we inferred that path expressions are used by the queries
most often and hence pathExpr is built after the schema. Next comes the packages from which
refers mainly to schema and package primaries which will be referred by the queries. Now
the option is to continue the metamodel for the select, update and delete statements. Select
and subquery grammar are similar though not same and hence they are modeled together in
selectSubQ. We identified the functions and expressions in the grammar and modeled them in
package functions and expressions respectively. Grammar for update and delete statements
is simple and they are clubbed together in updateDel Figure 2.1 shows these packages. The
following section describes the stages in building the metamodel (.ecore) from the grammar.

Figure 2.1: JPQL Metamodel Packages

2.3.1 Package: Schema

JPQL is a language for querying entities. Instead of tables and rows, the language queries
operate on the set of entities known as the abstract persistence schema, from which results
may be retrieved. This package defines the entities, their state and their relationships. The
definition of persistent unit and abstract persistence schema taken from the specification is as
follows:

A persistence unit defines the set of all classes that are related or grouped by the application
and which must be co-located in their mapping to a single database.

The term abstract persistence schema refers to the persistent schema abstraction (persistent en-
tities, their state, and their relationships) over which Java Persistence queries operate. Queries
over this persistent schema abstraction are translated into queries that are executed over the
database schema to which entities are mapped.

In query expressions, entities are referred by name. This name is the abstract schema name
of the entity in the context of a query. The class diagram for the package schema is shown in
Figure 2.2.

2.3.2 Package: PathExpr

In the grammar, there are many productions that deal with path expressions (Listing 2.3). This
package models them. Path expressions are used to navigate out from an entity, either across a
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Figure 2.2: Class Diagram of Package Schema

relationship to another entity (or collection of entities) or to one of the persistent properties of
an entity. Navigation that results in one of the persistent state fields (either field or property)
of an entity is referred to as a state field path. Navigation that leads to a single entity is referred
to as a single-valued association path, while navigation to a collection of entities is referred to
as a collection-valued association path.

The dot operator (.) signifies path navigation in an expression. For example, if the Employee
entity has been mapped to an identification variable e, then e.name is a state field path
expression resolving to the employee name. Likewise, the path expression e.department is a
single-valued association from the employee to the department to which he or she is assigned.

The class diagram for the package pathExpr is shown in Figure 2.3.
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Listing 2.3: Path Expressions Grammar
1

2 single_valued_path_expression ::=
3 state_field_path_expression | single_valued_association_path_expression
4

5 state_field_path_expression ::=
6 {identification_variable | single_valued_association_path_expression}.state_field
7

8 single_valued_association_path_expression ::=
9 identification_variable.{single_valued_association_field.}*

10 single_valued_association_field
11

12 collection_valued_path_expression ::=
13 identification_variable.{single_valued_association_field.}*
14 collection_valued_association_field

Figure 2.3: Class Diagram of Package PathExpr

2.3.3 Package: From

This package models the FROM clause. The FROM clause is used to declare one or more
identification variables, optionally derived from joined relationships, that form the domain
over which the query should draw its results. The syntax of the FROM clause consists of
one or more identification variables and join clause declarations. The identification variable is
the starting point for all query expressions. Every query must have at least one identification
variable defined in the FROM clause, and that variable must correspond to an entity type.
When an identification variable declaration does not use a path expression (that is, when it is
a single entity name), it is referred to as a range variable declaration.

Range variable declarations use the following syntax: <entity_name> [AS] <identifier>. The
identifier must follow the standard Java naming rules and may be referenced throughout the
query in a case-insensitive manner. Multiple declarations may be specified by separating them
with commas. Path expressions may also be aliased to identification variables in the case of
joins and subqueries. Listing 2.4 shows the part of the grammar that corresponds to the class
diagram shown in Figure 2.4
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Listing 2.4: From Clause Grammar
1 from_clause ::= FROM identification_variable_declaration
2 {, {identification_variable_declaration | collection_member_declaration}}*
3

4 identification_variable_declaration ::= range_variable_declaration
5 { join | fetch_join }*
6

7 range_variable_declaration ::= abstract_schema_name [ AS ] identification_variable
8

9 join ::= join_spec join_association_path_expression [ AS ] identification_variable
10

11 fetch_join ::= join_spec FETCH join_association_path_expression
12

13 association_path_expression ::=
14 collection_valued_path_expression | single_valued_association_path_expression
15

16 join_spec::= [ LEFT [ OUTER ] | INNER ] JOIN
17

18 join_association_path_expression ::= join_collection_valued_path_expression |
19 join_single_valued_association_path_expression
20

21 join_collection_valued_path_expression::=
22 identification_variable.collection_valued_association_field
23

24 join_single_valued_association_path_expression::=
25 identification_variable.single_valued_association_field
26

27 collection_member_declaration ::=
28 IN (collection_valued_path_expression) [ AS ] identification_variable

Figure 2.4: Class Diagram of Package From

2.3.4 Package: SelectSubQ

This package models the select queries and subqueries. Select queries are the primary query
type and facilitate the bulk retrieval of data. They are also the most common form of query
used in applications. The overall form of a select query is as shown in Listing 2.5.

The simplest form of a select query consists of two mandatory parts, the SELECT clause and
the FROM clause. The SELECT clause defines the format of the query results, while the FROM
clause defines the entity or entities from which the results will be obtained. The SELECT clause
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Listing 2.5: Select Statement Grammar
1

2 select_statement ::= select_clause from_clause [where_clause]
3 [groupby_clause] [having_clause] [orderby_clause]
4

5 select_clause ::= SELECT [ DISTINCT ] select_expression {, select_expression}*
6

7 select_expression ::=
8 single_valued_path_expression |
9 aggregate_expression |

10 identification_variable |
11 OBJECT (identification_variable) |
12 constructor_expression
13

14 constructor_expression ::=
15 NEW constructor_name ( constructor_item {, constructor_item}* )
16

17 constructor_item ::= single_valued_path_expression | aggregate_expression

of a query can take several forms, including simple and complex path expressions, transforma-
tion functions, multiple expressions (constructor expressions), and aggregate functions. A form
of SELECT clause involving multiple expressions is the constructor expression, which specifies
that the results of the query are to be stored using a user-specified object type.

The WHERE clause of a query is used to specify filtering conditions to reduce the result set.
The WHERE clause is simply the keyword WHERE, followed by a conditional expression.

The GROUP BY clause defines the grouping expressions over which the results will be ag-
gregated. A grouping expression must either be a single-valued path expression (state field
or single-valued association field) or an identification variable. In the absence of a GROUP
BY clause, the entire query is treated as one group, and the SELECT list may contain only
aggregate functions.

Listing 2.6: SubQuery Expressions Grammar
1

2 subquery ::= simple_select_clause subquery_from_clause [where_clause]
3 [groupby_clause] [having_clause]
4

5 subquery_from_clause ::=
6 FROM subselect_identification_variable_declaration
7 {, subselect_identification_variable_declaration}*
8

9 subselect_identification_variable_declaration ::=
10 identification_variable_declaration |
11 association_path_expression [ AS ] identification_variable |
12 collection_member_declaration
13

14 simple_select_clause ::= SELECT [ DISTINCT ] simple_select_expression
15

16 simple_select_expression::=
17 single_valued_path_expression |
18 aggregate_expression |
19 identification_variable
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The HAVING clause defines a filter to be applied after the query results have been grouped. It
is effectively a secondary WHERE clause, and its definition is the same, the keyword HAVING
followed by a conditional expression. The key difference with the HAVING clause is that its
conditional expressions are limited to state fields or single-valued association fields previously
identified in the GROUP BY clause. Conditional expressions in the HAVING clause may also
make use of aggregate functions. In many respects, the primary use of the HAVING clause
is to restrict the results based on the aggregate result values. Subqueries may be used in the

Figure 2.5: Class Diagram of Package SelectSubQ

WHERE and HAVING clauses of a query. A subquery is a complete SELECT query inside a
pair of parentheses that is embedded within a conditional expression. The results of executing
the subquery (which will either be a scalar result or a collection of values) are then evaluated
in the context of the conditional expression.

Subqueries are a technique for solving the complex query scenarios. The scope of an identifier
variable name begins in the query where it is defined and extends down into any subqueries.
Identifiers in the main query may be referenced by a subquery, and identifiers introduced by a
subquery may be referenced by any subquery that it creates. If a subquery declares an identifier
variable of the same name, then it overrides the parent declaration and prevents the subquery
from referring to the parent variable. The part of the grammar that specifies the syntax of
subquery is shown in Listing 2.6. The class diagram for the package selectSubQ is shown in
Figure 2.5.

2.3.5 Package: UpdateDel

This package models the update and delete statements. Update and delete statements provide
an equivalent to the SQL UPDATE and DELETE statement but with JPQL conditional ex-
pressions. The form of an update and delete query is shown in Listing 2.7. Each UPDATE
statement consists of a single-valued path expression, assignment operator (=), and an ex-
pression. Expression choices for the assignment statement are slightly restricted compared to
regular conditional expressions. The right side of the assignment must resolve to a literal, sim-
ple expression resolving to a basic type, function expression, identification variable, or input
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parameter. The result type of that expression must be compatible with the simple association
path or persistent state field on the left side of the assignment.

Listing 2.7: Update Statement Grammar
1

2 update_statement ::= update_clause [where_clause]
3

4 update_clause ::= UPDATE abstract_schema_name [ [ AS ] identification_variable]
5 SET update_item {, update_item}*
6

7 update_item ::= [identification_variable.]
8 {state_field | single_valued_association_field} = new_value
9

10 new_value ::=
11 simple_arithmetic_expression |
12 string_primary |
13 datetime_primary |
14 boolean_primary |
15 enum_primary
16 simple_entity_expression |
17 NULL
18

19 delete_statement ::= delete_clause [where_clause]
20

21 delete_clause ::= DELETE FROM abstract_schema_name [[ AS ] identification_variable]

Delete queries are polymorphic. Any entity subclass instances that meet the criteria of the
delete query will also be deleted. The WHERE clause of an UPDATE statement functions the
same as a SELECT statement and may use the identification variable defined in the UPDATE
clause in expressions.

The class diagram for the package UpdateDel is shown in Figure 2.6.

Figure 2.6: Class Diagram of Package UpdateDel
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2.3.6 Package: Functions

This package models the functions that are often used in JPQL queries. Conditional expressions
may leverage a number of functions that can be used to modify query results in the WHERE
and HAVING clauses of a select query. Figure 2.7 shows the class diagram of functions package.

Figure 2.7: Class Diagram of Package Functions

2.3.7 Package: Expressions

Much of the conditional expression support in JPQL is borrowed directly from SQL. The
key difference between conditional expressions in JPQL and SQL is that JPQL expressions
can leverage identification variables and path expressions to navigate relationships during ex-
pression evaluation. Conditional expressions are constructed using a combination of logical
operators, comparison expressions, primitive and function operations on fields, and so on.

BETWEEN expressions are used to determine whether or not the result of an expression falls
within an inclusive range of values. Numeric, string, and date expressions may be evaluated
in this way. LIKE Expressions provides a limited form of string pattern matching. Each LIKE
expression consists of a string expression to be searched and a pattern string and optional
escape sequence that defines the match conditions. The IN expression may be used to check
whether a single-valued path expression is a member of a collection. The collection may be
defined inline as a set of literal values or may be derived from a subquery. Queries may check
whether a collection association path resolves to an empty collection or has at least one value
using collection expressions. The EXISTS expression returns true if a subquery returns any
rows. The ANY, ALL, and SOME operators may be used to compare an expression to the
results of a subquery.
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Figure 2.8: Class Diagram of Package Expressions

2.3.8 Package: Primaries

This package contains Identification Variable interface and Input parameter which is used in
several expressions.

Figure 2.9: Class Diagram of Package Primaries

2.4 Well-Formedness Rules (WFRs)

Now that the metamodel .ecore is ready, this can be used as input to the DSL2JDT tool to
generate the methods to embed JPQL query. But before doing this, we need to carry out the
task of implementing constraints in the form of Object Constraint Language (OCL) or Java
to check well-formedness of the embedded query. The metamodel is developed based on the
BNF grammar given in the JPA 2.0 specification [Gro08]. But the grammar alone does not
capture all of the constraints of the query language. For example as per the section 4.3.1 of the
specification, entity names must be unique within the persistence unit. But this constraint is
not depicted in the grammar. More examples for the shortcomings of the JPQL BNF grammar
to capture all the well-formedness rules are given in the article by Miguel [Gar06]. This section
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lists the constraints taken from the specification along with the section number in which the
constraint is specified. Examples are provided wherever needed.

1. Section 4.4.2: All identification variables must be declared in the FROM clause.

2. Section 4.4.4: It is syntactically illegal to compose a path expression from a path expres-
sion that evaluates to a collection. The path expression department.employees.name

is not valid because department.employees is a collection.

3. Section 4.4.5.3: The association referenced by the right side of the FETCH JOIN clause
must be an association that belongs to an entity that is returned as a result of the query.

4. Section 4.6.1: For enum literals, the enum class name must be specified.

5. Section 4.6.2: All identification variables used in the WHERE or HAVING clause of a
SELECT or DELETE statement must be declared in the FROM clause. The identification
variables used in the WHERE clause of an UPDATE statement must be declared in the
UPDATE clause.

6. Section 4.6.3: It is illegal to use a collection_valued_path_expression within a WHERE
or HAVING clause as part of a conditional expression except in an empty_collection_
comparison_expression, in a collection_member_expression, or as an argument to the
SIZE operator.

7. Section 4.6.4: Constraint for input parameters: Positional and named parameters may
not be mixed in a single query.

8. Section 4.6.8: Constraint for In Expressions: The state_field_path_expression must have
a string, numeric, or enum value.

9. Section 4.6.15: Subqueries are restricted to the WHERE and HAVING clauses.

10. Section 4.6.16: Built-in functions are restricted to the WHERE and HAVING clauses.

11. Section 4.7:

• Any item that appears in the SELECT clause (other than as an argument to an
aggregate function) must also appear in the GROUP BY clause. So the query in
Listing 2.8 is invalid as e.salary is not listed in the GROUP BY clause.

Listing 2.8: Invalid JPQL query
SELECT e.name, e.salary FROM employee e GROUP BY e.name

• Grouping by an entity is permitted. In this case, the entity must contain no serialized
state fields or lob-valued state fields.

12. Section 4.8.4:

• For all aggregate functions except COUNT, the path expression that is the argument
to the aggregate function must terminate in a state-field.

• The path expression argument to COUNT may terminate in either a state-field or
a association-field, or the argument to COUNT may be an identification variable.
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• Arguments to the functions SUM and AVG must be numeric.
• Arguments to the functions MAX and MIN must correspond to orderable state-field

types (i.e., numeric types, string types, character types, or date types).

13. Section 4.9: When the ORDER BY clause is used in a query, each element of the SELECT
clause of the query must be one of the following:

(a) an identification variable x, optionally denoted as OBJECT(x)
(b) a single_valued_association_path_expression
(c) a state_field_path_expression

In the first two cases, each orderby_item must be an orderable state-field of the entity
abstract schema type value returned by the SELECT clause. In the third case, the or-
derby_item must evaluate to the same state-field of the same entity abstract schema
type as the state_field_path_expression in the SELECT clause. Therefore the query in
Listing 2.9 is invalid as the ORDER BY item is e.age instead of e.name.

Listing 2.9: Invalid JPQL query
SELECT e.name FROM employee e ORDER BY e.age

14. Section 4.10: Only one entity abstract schema type may be specified in the FROM or
UPDATE clause of delete and update queries respectively.

Apart from the above mentioned WFRs, another important check is type compatibility
check. For example the LHS and RHS items in assignment and conditional expressions
should be type compatible.

2.5 JPQL Type System - Computing Expression Types

To embed JPQL in a typesafe manner, it is important to know the type to which a given JPQL
expression will evolve. This section tabulates the rules to compute the type of expressions
given the type of its subexpressions. The classification is based on the result type to which
a expression evaluates. In the following tables (Table 2.1-2.4), Op1, Op2 and Op3 represent
Operands.

It has to be noted that these tables are developed based on the JPQL specification (JSR 317).
Tables shown here does not cover the cases where the result type of an expression is unknown.
For example, as per the specification, if the value of a Op1 in an IN expression is NULL or
unknown, the value of the expression is unknown. As we need to know the datatype of a
expression when checking WFR, we modeled the JPQL datatype as a enumeration jpqlType

in the metamodel.

2.6 JUnit Test to Check Well-formedness

As mentioned earlier, IDE can be used to verify the static semantics of the embedded JPQL
queries. Two possible approaches to achieve this have been mentioned in the article by Miguel
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JPQL Expression Op1 Type Op2 Type Op3 Type Result Type

Op1 Between Op2 And Op3
String String String Boolean
Numeric Numeric Numeric Boolean
Date Date Date Boolean

Op1 In Op2
String String+ - Boolean
Numeric Numeric+ - Boolean
Enum Enum+ - Boolean

Op1 Like Op2 [escape Op3] String String Char Boolean

Op1 Is Null State Field - - Boolean
Entity - - Boolean

Op1 Is Empty Entity* - - Boolean
Op1 Member [Of] Op2 Entity Entity* - Boolean
Exists Op1 Any Type - - Boolean

Op1 ( > | >= | < | <= ) Op2
String String - Boolean
Numeric Numeric - Boolean
Date Date - Boolean

Op1 ( = | <>) Op2

String String - Boolean
Numeric Numeric - Boolean
Date Date - Boolean
Boolean Boolean - Boolean
Enum Enum - Boolean
Entity Entity - Boolean

Table 2.1: Expressions that return Boolean Type

JPQL Expression Op1 Type Op2 Type Op3 Type Result Type
Length (Op1) String - - Integer
Locate (Op1, Op2, [Op3]) String String Integer Integer
Mod (Op1, Op2) Numeric Numeric - Integer
Size (Op1) Entity* - - Integer

Count (Op1) State Field - - Long
Entity - - Long

Sqrt (Op1) Numeric - - Double
Avg (Op1) Numeric - - Double
Sum (Op1) Numeric - - Numeric
(Max | Min) Op1 Numeric - - Numeric
Abs (Op1) Numeric - - Numeric

Table 2.2: Expressions that return Numeric Type

[Gar08], namely the pragmatic and the grand plan way. The following description is based on
this article. In the pragmatic approach, the JUnit support of the JDT is leveraged to check the
WFRs of JPQL queries. The procedure to do the same is as follows:

1. Related JPQL expressions are embedded in a Java method that returns the root node of
the Abstract Syntax Tree (AST) of the embedded expression.

2. The root node returned in the step 1 is passed to the EMF validation method.
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JPQL Expression Op1 Type Op2 Type Op3 Type Result Type
Concat (Op1, Op2) String String - String
Lower (Op1) String - - String
Upper (Op1) String - - String
Substring (Op1, Op2, Op3) String Numeric Numeric String
Trim [Op1] from Op2 Char String - String
(Max | Min) Op1 String - - String

Table 2.3: Expressions that return String Type

JPQL Expression Op1 Type Op2 Type Result Type
(Max | Min) Op1 Date String Date
CURRENT_DATE - - Date
CURRENT_TIME - - Date
CURRENT_TIMESTAMP - - Date

Table 2.4: Expressions that return Date Type

3. The EMF validation method is invoked within JUnit’s assertTrue()

It should be noted that EMF validation method can check for the WFRs of all the nodes under
the root node i.e. all child nodes of the root node, if the relation between the root node and
child nodes is of composition type (black diamond in UML diagram). So it is enough to pass
the root node of the AST without the need to explicitly invoke EMF validation for the child
nodes.

Let’s see an example for the above procedure. In this example, we will embed a JPQL SELECT
statement with a BETWEEN conditional expression and we will check the WFR of the BE-
TWEEN conditional expression. The syntax of the BETWEEN expression and the SELECT
query to embed is shown in Listing 2.10.

Listing 2.10: BETWEEN expression syntax and SELECT statement
1 expression1 [ NOT ] BETWEEN expression2 AND expression3
2

3 JPQL Query to embed
4 SELECT e FROM Employee e WHERE ’200’ BETWEEN 40000 AND 45000

One of the constraint for BETWEEN expression is that all of its three expressions should be
of same type. All three expressions can be either arithmetic expression or string expression
or date-time expression. So the query in Listing 2.10 is not well-formed. We can verify this
constraint as part of the EMF validation. Listing 2.11 shows the Java method selStmt in
which the SELECT query is embedded. This method returns the node in AST that corresponds
to SelectStmt.

Now we will invoke the EMF Validation method MyEcoreUtil.isWellFormed for the Select-
Stmt node from the JUnit’s assertTrue(). This is shown in the Listing 2.12. The method
MyEcoreUtil.isWellFormed encapsulates the invocation of the EMF validation. It is shown
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in Listing 2.13. The WFR to check can be specified in Java or in OCL [Gro06]. In both cases
an annotation with source http://www.eclipse.org/emf/2002/Ecore has to be added in
the Ecore model to the appropriate class (in this example, class BetExpr). This is shown in
Figure 2.10. Adding the constraint this way to the model will result in generation of validation
code. The generated validation code is complete if the WFR is specified as OCL in the model.
If not, then we have to manually code the WFR check in the validation method. More infor-
mation on annotating an Ecore model with constraints can be found in the article [Dam06] by
Christian W.Damus.

Figure 2.10: BetExpr with annotation

In our example, as we have not specified the OCL in the model, our generated validation
method validateBetExpr_sameTypeExpr is incomplete and looks like in Listing 2.14. To
verify the constraint and to complete the code in Listing 2.14 we need to know the datatype of
the expressions used in the BETWEEN statement. For this, we added an operation to EClass
ExprPrimary that returns the type of an expression as shown in Figure 2.11. The code snippet
for the added operation is shown in Listing 2.15.

Figure 2.11: Operation to compute expression type

Now that we have a method to return the expression type, we can use this to complete the
code in Listing 2.14. This is shown in Listing 2.16. Executing the JUnit test (Listing 2.12) will
throw assertion error as MyEcoreUtil.isWellFormed(selStmExpr) which is the argument
to assertTrue returns false.

2.7 Improving Usability

One useful observation from the code shown in Listing 2.11 is embedding a query like a SELECT
with a WHERE clause based on the methods generated from the DSL2JDT tool may lead to
verbose embedding if we do not adapt any other techniques. Also from the user perspective,
query embedding like in Listing 2.11 is less useful. Usability can be improved by following
different techniques. For example, in the project work [KR08], the author argues that mixing
the fluent interface with static functions, metadata and closures provides for a better user
experience than pure method chaining. For our case of embedding JPQL, user experience can
be improved by extending the expression builder class generated by the DSL2JDT tool. Though
this involves manual coding, it is still desirable considering the advantage that we get by class
extension. This section gives an example on how to achieve this.

In the Listing 2.11, we extended the expression builder JpqlExprBuilder by the private

static class E and used it to embed the query. Alternatively, we can have a class with
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methods coded manually to improve the usability and this class then extends the expres-
sion builder. We call these hand coded methods as intermediate methods. This is shown in
Listing 2.17. Here the class MyClass extends the expression builder class JpqlExprBuilder.
Therefore at the point where we want to embed JPQL queries, it is enough to extend MyClass

instead of extending JpqlExprBuilder. This provides the intermediate methods to appear in
the content assist when embedding a query. Given that there are relevant intermediate methods,
then Listing 2.18 shows a embedded JPQL query.

The intermediate methods are basically wrappers for the APIs generated by the DSL2JDT.
The intermediate methods pass the parameters they receive to the methods generated by
the DSL2JDT. This way they provide a layer of abstraction to the generated methods. Also
overloading of the intermediate methods can be made use of to provide default values for the
optional parameters in the query. This relieves the user from specifying the default value. For
example, consider the LOCATE funtion (syntax: LOCATE(string1, string2 [, start]))
used in the JPQL queries which returns the position of string2 in string1, optionally starting
at the position indicated by start. This means that we can write the intermediate methods in
two ways, one with the start parameter and one without it as shown in Listing 2.19 and the
user can choose any of these at the time of embdding a query.

2.8 Summary

This chapter first described the motivation for embedding JPQL as internal DSL in Java and
then elaborated the development of a .ecore metamodel for JPQL based on the BNF gram-
mar of JSR 317. This metamodel is used to generate the APIs needed for method chaining
using DSL2JDT tool. We also listed the WFRs for the queries from the specification that are
not captured by the grammar. Type system of JPQL which plays an important role in the
correctness of JPQL queries was explained. Steps to implement the WFRs and to check well-
formedness during editing are also mentioned in this chapter. We inferred that embedding the
JPQL queries, only based on the methods generated from the ecore model may lead to verbose
embedding. This chapter proposed the technique of using intermediate class that extends the
expression builder to provide better user experience in embedding a query. One of the short-
coming of the metamodel developed in this chapter and which will also be addressed in the next
chapter is the type safety. For an instance, the current metamodel may allow the assignment of
string to a numeric simple state field. We propose the use of new feature introduced in Java 5,
Generics to implement type checking at compile time for embedding JPQL.
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Listing 2.11: JPQL embedded in Java
1 public class SelExpr {
2

3 public static SelectStmt selStmt() {
4 base.jpql.schema.Entity emp;
5 base.jpql.selectSubQ.SelectExpr selEmp;
6 base.jpql.from.RngVarDecl rngVarDecl;
7 base.jpql.from.From fromExpr;
8

9 /*
10 * Invalid query
11 * JPQL Query to embed SELECT e FROM Employee e WHERE
12 * ’200’ BETWEEN 40000 AND 45000
13 */
14

15 emp = E.entity().entityName("employee").simpleStateFields()
16 .embeddedClassFields().toAST();
17

18 selEmp = E.selectExpr().idVar("e").toAST();
19

20 rngVarDecl = E.rngVarDecl().entity(emp).as("e").toAST();
21 fromExpr = E.from().rngVarDecl(rngVarDecl).join().fetch().toAST();
22

23 ExprPrimary exprPrim1 = E.exprPrimary().Opr().stringInput("200").toAST();
24 Expr expr1 = E.expr().ExprPrim(exprPrim1).toAST();
25

26 ExprPrimary exprPrim2a = E.exprPrimary().Opr().integerInput(40000).toAST();
27 Sqrt sqrt1 = E.sqrt().number(exprPrim2a).toAST();
28 NumRetFn num1 = E.numRetFn().sqrt(sqrt1).toAST();
29 ExprPrimary exprPrim2b = E.exprPrimary().Opr().numFunc(num1).toAST();
30 Expr expr2 = E.expr().ExprPrim(exprPrim2b).toAST();
31

32 ExprPrimary exprPrim3a = E.exprPrimary().Opr().integerInput(45000).toAST();
33 Sqrt sqrt2 = E.sqrt().number(exprPrim3a).toAST();
34 NumRetFn num2 = E.numRetFn().sqrt(sqrt2).toAST();
35 ExprPrimary exprPrim3b = E.exprPrimary().Opr().numFunc(num2).toAST();
36 Expr expr3 = E.expr().ExprPrim(exprPrim3b).toAST();
37

38 BetExpr betExpr1 = E.betExpr().betExpr(expr1, expr2, expr3).toAST();
39

40 CondExpr betCond = E.condExpr().BoolOpr().betExpr(betExpr1).toAST();
41

42 SelectStmt selStmt = E.selectStmt().selExpr(selEmp).from(fromExpr)
43 .where(betCond).groupBy().orderBy().toAST();
44

45 return selStmt;
46

47 }
48

49 private static class E extends MyClass {
50

51 }
52 }
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Listing 2.12: JUnit test to check well-formedness
1 public class TestSelect extends TestCase {
2 public void testSelStmt() {
3 SelectStmt selStmExpr = SelExpr.selStmt();
4 assertTrue(MyEcoreUtil.isWellFormed(selStmExpr));
5 }
6 }

Listing 2.13: EMF validation method Invocation
1 public class MyEcoreUtil {
2 public static boolean isWellFormed(EObject root) {
3 Diagnostician diagnostician = new Diagnostician();
4 final Diagnostic diagnostic = diagnostician.validate(root);
5 boolean res = diagnostic.getSeverity() == Diagnostic.OK;
6 return res;
7 }
8 }

Listing 2.14: Generated validation code - Incomplete
1 public boolean validateBetExpr_sameTypeExpr(BetExpr betExpr,
2 DiagnosticChain diagnostics, Map<Object, Object> context) {
3 // TODO implement the constraint
4 // -> specify the condition that violates the constraint
5 // -> verify the diagnostic details, including severity, code, and message
6 // Ensure that you remove @generated or mark it @generated NOT
7 if (false) {
8 if (diagnostics != null) {
9 diagnostics.add

10 (createDiagnostic
11 (Diagnostic.ERROR,
12 DIAGNOSTIC_SOURCE,
13 0,
14 "_UI_GenericConstraint_diagnostic",
15 new Object[] { "sameTypeExpr", getObjectLabel(betExpr, context) },
16 new Object[] { betExpr },
17 context));
18 }
19 return false;
20 }
21 return true;
22 }
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Listing 2.15: Operation for finding expression return type added to class ExprPrimary
1 public jpqlType computeType() {
2 NumRetFn numfn = this.getNumFunc();
3 StrRetFn strfn = this.getStrFunc();
4 String estr = this.getStringInput();
5

6 if (numfn instanceof NumRetFn )
7 return jpqlType.NUMERIC;
8 if (strfn instanceof StrRetFn || estr instanceof String)
9 return jpqlType.STRING;

10 else
11 return jpqlType.DUMMY;
12 }

Listing 2.16: WFR check for BETWEEN Expr
1 public boolean validateBetExpr_sameTypeExpr(BetExpr betExpr,
2 DiagnosticChain diagnostics, Map<Object, Object> context) {
3 boolean wfr_failed = true;
4 jpqlType[] type1={jpqlType.CHAR, jpqlType.CHAR, jpqlType.CHAR};
5 EList<Expr> bet= betExpr.getBetExpr();
6 int i =0;
7 for (Expr e: bet){
8 type1[i] = e.getExprPrim().computeType();
9 i++;

10 }
11

12 if (type1[0].equals(type1[1]))
13 if (type1[1].equals(type1[2]))
14 wfr_failed = false;
15

16 if (wfr_failed) {
17 if (diagnostics != null) {
18 diagnostics.add
19 (createDiagnostic
20 (Diagnostic.ERROR,
21 DIAGNOSTIC_SOURCE,
22 0,
23 "_UI_GenericConstraint_diagnostic",
24 new Object[] { "sameTypeExpr", getObjectLabel(betExpr, context) },
25 new Object[] { betExpr },
26 context));
27 }
28 return false;
29 }
30 return true;
31 }

Listing 2.17: Intermediate class
1 public class MyClass extends JpqlExprBuilder {
2 /*
3 * Hand coded methods to be used in the method chaining goes here
4 */
5

6 }
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Listing 2.18: Usage of Intermediate methods in lines 22 24 and 26
1 public class SelExpr {
2

3 public static SelectStmt selStmt() {
4 base.jpql.schema.Entity emp;
5 base.jpql.selectSubQ.SelectExpr selEmp;
6 base.jpql.from.RngVarDecl rngVarDecl;
7 base.jpql.from.From fromExpr;
8

9 /*
10 * Invalid query
11 * JPQL Query to embed SELECT e FROM Employee e WHERE
12 * ’200’ BETWEEN 40000 AND 45000
13 */
14

15 emp = E.entity().entityName("employee").simpleStateFields()
16 .embeddedClassFields().toAST();
17

18 selEmp = E.selectExpr().idVar("e").toAST();
19

20 rngVarDecl = E.rngVarDecl().entity(emp).as("e").toAST();
21 fromExpr = E.from().rngVarDecl(rngVarDecl).join().fetch().toAST();
22

23 Expr expr1 = E.expr().ExprPrim().stringInput("200").toAST();
24

25 Expr expr2 = E.expr().ExprPrim().numRetFn().sqrt(40000).toAST();
26

27 Expr expr3 = E.expr().ExprPrim().numRetFn().sqrt(45000).toAST();
28

29 BetExpr betExpr1 = E.betExpr().betExpr(expr1, expr2, expr3).toAST();
30

31 CondExpr betCond = E.condExpr().BoolOpr().betExpr(betExpr1).toAST();
32

33 SelectStmt selStmt = E.selectStmt().selExpr(selEmp).from(fromExpr)
34 .where(betCond).groupBy().orderBy().toAST();
35

36 return selStmt;
37

38 }
39

40 private static class E extends MyClass {
41

42 }
43 }

Listing 2.19: Overloading of Intermediate methods
1 locate(string1,string2,start);
2 locate(string1,string2);
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Chapter 3

Typesafe Language Embedding

Java was intended to be a type safe language. It disallows incompatible type substitutions. For
example, the Java statement int i = 3.4 throws a type mismatch error at compile time. IDEs
usually rely on problem markers to display such errors in the editor as shown in Figure 3.1.
One of the objective in embedding JPQL in Java is to perform the embedding in a type-safe
manner. For example, when the user embeds a JPQL expression of type Integer where type
String is expected, then the IDE should indicate such errors at edit time by problem markers.
To achieve this, we modify the .ecore metamodel developed in the previous chapter to include
Java Generics or parameterized types.

Figure 3.1: Problem marker for type mismatch

This chapter shows how the current metamodel lacks the ability to enforce type safety and
then explains the steps to modify the metamodel and the expression builder generated by the
DSL2JDT tool to embed JPQL in a type safe manner. We will use the same JPQL query shown
in Listing 2.10 to embed in a type-safe manner.

3.1 Well-Formedness Check

In the previous chapter, we have derived WFRs from the JSR specification and not all of them
are enforced with the current metamodel. For example, section 4.8.4 of the spec (item number
12 in the WFR list of previous chapter), specifies that arguments to the functions SUM and
AVG must be numeric. With the current metamodel, if the user passes a non-numeric argument
to the functions SUM or AVG, it is not reported to the user by means of problem markers in
the editor. We showed that JUnit tests can be used to enforce WFRs. But this is not the only
way, a metamodel with Generics can also be used to enforce WFRs related to type system. In
the previous chapter, we checked the constraint of the BETWEEN expression (all parameters
should be of same type) using JUnit test. In this chapter we will modify the metamodel and the
expression builder to support Generics and we show that violation of the BETWEEN expression
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constraint can be captured at compile time and reported to the user through problem markers.

3.2 Metamodel with Generics

Generics are introduced in J2SE 5.0. They enable classes and methods to operate on well
defined parametric types that can be substituted by a suitable Java type at the compile time.
From EMF 2.3 onwards, Generics can be modeled directly in the Ecore itself. More details
on this can be found at [Ric08]. This section explains the stages of adding the generics to
relevant classes in the metamodel to support type-safe BETWEEN expression. The type of

Figure 3.2: Datatypes of BETWEEN expression

all three expressions in BETWEEN (syntax: expr1 [ NOT ] BETWEEN expr2 AND expr3)
can be either arithmetic expression or string expression or date-time expression. To model these
types, we added classes JPQLInt, JPQLString, JPQLDate to the metamodel in the package
dataTypes. These classes inherit the class JPQLTypes as shown in Figure 3.2.

The first class in our metamodel that has to be made generic is the class that models the
conditional expression (CondExpr) as BETWEEN is one of the conditional expression. A type
variable “T” that extends the class JPQLTypes is added to CondExpr. This is shown in emfatic
[DG08a] code in Listing 3.1. As type variable “T” extends JPQLTypes, it can be instantiated

Listing 3.1: CondExpr - Generic type
1

2 class CondExpr <T extends dataTypes.JPQLTypes> {
3 val BetExpr<T> betExpr;
4 attr BoolOperators[*] BoolOpr;
5 . . . . .
6 }

Figure 3.3: Generic classes

with the subclasses of JPQLTypes. This particular type is then used to instantiate BetExpr.
For example, CondExpr<JPQLInt> leads to BetExpr<JPQLInt>. BetExpr contains expressions
(Expr) which in turn contains primary expressions (ExprPrimary) and hence the type variable
“T” can be used to make these classes generic as well. This is shown in Figure 3.3. Primary
expressions can be constructed from state field path expressions and a state field path expression
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can end in a simple state field . So classes StateFieldPathExpr, SimpleStateField are also
made generic. As SimpleStateField carries the type information, the attribute datatype

can be omitted to avoid redundancy. The packages in the metamodel which are modified to
support generics for type-safe BETWEEN expression is given in the form of emfatic code in
Appendix B.

3.3 Expression Builder with Generics

As of now, the expression builder generated by the DSL2JDT tool does not suppport the
automatic generation of generic classes and generic methods from the .genmodel that has
generic classes defined in it. We need to manually change the generated classes and methods
to generic type wherever needed in the expression builder. The insight gained in the process of
manually changing the expression builder to include generics can be used as input to extend
the DSL2JDT tool to support automatic generation of generic classes and methods.

When we generate the expression builder using our new metamodel that has generic classes,
we get warnings and problem markers related to generics in the expression builder. One such
problem occurrence is shown in Figure 3.4 for the method simpleStateFields. The cause

Figure 3.4: Problem markers in expression builder output of DSL2JDT

for this error is obvious from the message. As we changed the SimpleStateField to generic
type in the metamodel, the argument of the method addAll is no longer valid for list of
raw type, i.e., no longer valid for list of SimpleStateField but valid for list of generic type
SimpleStateField<?>. The solution would be to change the method shown in Figure 3.4 to
generic method in the class and in the interface as shown in Listing 3.2. All the remaining
errors in the expression builder can be fixed in a similar fashion.

The warnings shown in the expression builder are of the form

classname is a raw type. References to generic type classname<T> should be parameterized.

These kind of warnings can be removed by making the appropriate classes and methods to
generic type. Listing 3.3 shows such modifications for the class SimpleStateFieldBeingBuilt.
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Listing 3.2: Generic method in expression builder
1 public <T extends JPQLTypes> EntityBeingBuilt1 simpleStateFields(
2 base.jpql.schema.SimpleStateField<T>... items) {
3 this.myExpr.getSimpleStateFields().clear();
4 this.myExpr.getSimpleStateFields().addAll(
5 java.util.Arrays.asList(items));
6 return this;
7 }
8

9 public interface EntityBeingBuilt0 {
10 public EntityBeingBuilt0 entityName(java.lang.String arg);
11 public EntityBeingBuilt0 dbName(java.lang.String arg);
12 public <T extends JPQLTypes> EntityBeingBuilt1 simpleStateFields(
13 base.jpql.schema.SimpleStateField<T>... items);
14 }

Listing 3.3: Generic class in expression builder
1 public static class SimpleStateFieldBeingBuilt<T extends JPQLTypes> {
2 private final base.jpql.schema.SimpleStateField<T> myExpr;
3 public base.jpql.schema.SimpleStateField<T> toAST() {
4 return this.myExpr;
5 }
6 SimpleStateFieldBeingBuilt(base.jpql.schema.SimpleStateField<T> arg) {
7 this.myExpr = arg;
8 }
9 public SimpleStateFieldBeingBuilt<T> name(java.lang.String arg) {

10 this.myExpr.setName(arg);
11 return this;
12 }
13 }

3.3.1 Static Methods

There are new warnings for some of the static methods in the expression builder because of
the changes done as per Listing 3.3. One of the static method that gives warning is shown in
Listing 3.4. These warnings looks like

Listing 3.4: Static method in expression builder
1 public static SimpleStateFieldBeingBuilt simpleStateField() {
2 return new SimpleStateFieldBeingBuilt(
3 base.jpql.schema.SchemaFactory.eINSTANCE
4 .createSimpleStateField());
5 }

The constructor constructor name belongs to the raw type classname. References to generic
type classname<T> should be parameterized.

Since we made some of the classes and its constructor method to be of generic type, the con-
structor call for these classes should also need to be parameterized to overcome such warnings.
This is shown in Listing 3.5. The factory method createSimpleStateField in Listing 3.4
is generated by EMF as a generic method as shown in Listing 3.6. So invoking this kind of
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Listing 3.5: Parametrized Static method in expression builder
1 public static <T extends JPQLTypes>
2 SimpleStateFieldBeingBuilt<T> simpleStateField() {
3 return new SimpleStateFieldBeingBuilt<T>(
4 base.jpql.schema.SchemaFactory.eINSTANCE
5 .<T> createSimpleStateField());
6 }

factory methods from the expression builder without type instantiation also raises warnings.
These warnings can be eliminated if we invoke these factory methods with type instantiation
as shown in Listing 3.7

Listing 3.6: Factory method auto generated by EMF
1 /**
2 * Returns a new object of class ’<em>Simple State Field</em>’.
3 * <!-- begin-user-doc -->
4 * <!-- end-user-doc -->
5 * @return a new object of class ’<em>Simple State Field</em>’.
6 * @generated
7 */
8 <T extends JPQLTypes> SimpleStateField<T> createSimpleStateField();

Listing 3.7: Factory method invokation for each datatype
SimpleStateField<JPQLString> ssf = E.<JPQLString>simpleStateField()

.name("name").toAST();

As we modeled three valid types of BETWEEN expression as classes JPQLInt, JPQLString,
JPQLDate, we can invoke the factory method for each type once.

3.4 Constraint Validation in Editor

In the previous chapter, we have validated the constraint of the BETWEEN expression by
JUnit test. Now as our metamodel and the expression builder have been modified to support
generics, we can use them to perform the validation of the expression and report the errors, if
any, to the user through problem markers shown in the editor. For example, we have embedded
a JPQL SELECT query with conditional BETWEEN expression as shown in Listing 3.8. This
query is not well-formed as the three expressions of BETWEEN are not of same type. This is
indicated in the editor by the problem marker as shown in Figure 3.5.

3.5 Proposed Improvement for JPQL embedding

Embedding JPQL in Java involves building a Abstract Syntax Tree (AST) [KT06] of the
emdedded expression. Apart from using this AST can be used to check Well-formedness of the
JPQL expression, it can also be used to improve the presentation of the program, ie, improving
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Figure 3.5: Problem markers for constraint violation

how the program is displayed to the user. This idea of making programs more expressive is
based on the work of Andrew Eisenberg [EK07]. In his work, a language called CAL is embedded
in Java and the embedded syntax of CAL is shown in its own editor inside JDT as shown in
Figure 3.6.

Figure 3.6: CAL embedded in Java

In our case, we can show the embedded JPQL query in a popup to the user when the cursor is
moved over the root node of the embedded expression as shown in Figure 3.7

Figure 3.7: Proposed improvement: showing embedded query in popup
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3.6 Summary

In this chapter, we modified the metamodel to support Generics and to aid us in type checking
at compile time for embedded JPQL statements. We also showed the steps needed to manually
change the methods and classes in the expression builder generated by the DSL2JDT tool, to
support the new metamodel. We concluded the chapter by showing an example that generates
a problem marker for a BETWEEN expression that is not well formed. So far, our efforts are
towards embedding a JPQL query in Java by method chaining approach. If we look at the
Microsoft .NET technologies, it provides the querying capabilities by means of LINQ, which is
the discussed in next chapter.
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Listing 3.8: Embedded BETWEEN expression - Not Well-formed
1 public class SelExprGen {
2 public static SelectStmt selStmt() {
3 base.jpql.schema.Entity emp;
4 base.jpql.selectSubQ.SelectExpr selEmp;
5 base.jpql.from.RngVarDecl rngVarDecl;
6 base.jpql.from.From fromExpr;
7

8 /*
9 * Invalid query to check WFR:

10 * JPQL Query to embed
11 * SELECT e FROM employee e WHERE e.name BETWEEN 40000 AND 45000
12 */
13

14 selEmp = E.selectExpr().idVar("e").toAST();
15 emp = E.entity().entityName("employee").simpleStateFields()
16 .embeddedClassFields().toAST();
17

18 rngVarDecl = E.rngVarDecl().entity(emp).as("e").toAST();
19 fromExpr = E.from().rngVarDecl(rngVarDecl).join().fetch().toAST();
20

21 SimpleStateField<JPQLString> ssf = E.<JPQLString>simpleStateField()
22 .name("name").toAST();
23 StateFieldPathExpr<JPQLString> sfpe = E.<JPQLString>stateFieldPathExpr()
24 .idVar("e").singleValuedAssoField().embeddedClsField().simpleStateField(ssf)
25 .toAST();
26 ExprPrimary<JPQLString> exprPrim1 = E.<JPQLString>exprPrimary()
27 .stFldPathExpr(sfpe).Opr().toAST();
28 Expr<JPQLString> expr1 = E.<JPQLString>expr().ExprPrim(exprPrim1).toAST();
29

30 ExprPrimary<JPQLInt> exprPrim2 = E.<JPQLInt>exprPrimary().integerInput(40000)
31 .toAST();
32 Expr<JPQLInt> expr2 = E.<JPQLInt>expr().ExprPrim(exprPrim2)
33 .toAST();
34

35 ExprPrimary<JPQLInt> exprPrim3 = E.<JPQLInt>exprPrimary().integerInput(45000)
36 .toAST();
37 Expr<JPQLInt> expr3 = E.<JPQLInt>expr().ExprPrim(exprPrim3).toAST();
38

39 BetExpr<JPQLInt> betExpr1 = E.<JPQLInt>betExpr().betExpr(expr1, expr2, expr3)
40 .toAST();
41

42 CondExpr<JPQLInt> betCond = E.<JPQLInt>condExpr().betExpr(betExpr1).toAST();
43

44 SelectStmt selStmt = E.selectStmt().selExpr(selEmp).from(fromExpr)
45 .where(betCond).groupBy().orderBy().toAST();
46

47 return selStmt;
48 }
49 private static class E extends JpqlExprBuilder {
50 }
51 }
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Chapter 4

LINQ Expression Trees

Language Integrated Query (LINQ)) is a Microsoft .NET Framework component that adds
data querying capabilities to .NET languages such as C# and Visual Basic. LINQ defines a
set of query operators that can be used to query, project and filter data in arrays, enumerable
classes, XML, relational database, and third party data sources. More details on LINQ can be
found at [LIN07] and [Pia08].

We plan to implement a translation algorithm that translates a LINQ query to an equivalent
JPQL query. For this translation, we do not plan to support all LINQ operators but only a
subset of operators. The LINQ operators [PR07] which can be mapped to a JPQL construct
are supported by the translation.

This chapter gives a brief introduction to lambda expressions and expression trees, which are
used in LINQ. It also explores the functioning of a tool called Expression Tree Visualizer which
comes with Visual Studio 2008. Then the techniques used for translating a LINQ query to a
native query of the persistent store are discussed. Examples used in this chapter are based on
C# language syntax.

4.1 LINQ Queries

LINQ query operations consist of three distinct actions: obtain the data source, create the query
and then execute the query. The example in Listing 4.1 shows how the three parts of a query
operation are expressed in source code. LINQ queries can be expressed in two forms, namely,
query expression and method syntax. Not all operations can be expressed in query expression
syntax, but it is simple and easy to write. query expressions provide nine basic operations (from,
join, join...into, group...by, orderby, where, let, select, into). Each of these basic operations is
expressed as a clause. The clauses are then chained together to provide a declaration of query.
These clauses are translated by the language compliers into invocations of methods that are
sequentially applied to the target of the query. Query expression to method syntax translation
rules are explained by Wes Dyer in his article on Comprehending Comprehensions 1

1Yet Another Language Geek, http://blogs.msdn.com/wesdyer/archive/2006/12/21/
comprehending-comprehensions.aspx

http://blogs.msdn.com/wesdyer/archive/2006/12/21/comprehending-comprehensions.aspx
http://blogs.msdn.com/wesdyer/archive/2006/12/21/comprehending-comprehensions.aspx
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Listing 4.1: LINQ query
1 class IntroToLINQ
2 {
3 static void Main()
4 {
5 // The Three Parts of a LINQ Query:
6 // 1. Data source.
7 int[] numbers = new int[7] { 0, 1, 2, 3, 4, 5, 6 };
8

9 // 2. Query creation using query expression syntax
10 // numQuery is an IEnumerable<int>
11 var numQuery =
12 from num in numbers
13 where (num % 2) == 0
14 select num;
15

16 // 3. Query execution.
17 foreach (int num in numQuery)
18 {
19 Console.Write("{0,1} ", num);
20 }
21 }
22 }

4.2 Lambda Expressions and Expression Trees

A Lambda Expression is a evolution of anonymous functions, which allows the body of a
function to be written in-line. The basic form of a lambda expression is,

argument-list => expression

For example, a lambda expression in C# can be written as

Func<int,int> LambdaExp = x => (x + 1) * 2

Expression trees are built from a LINQ query and can be navigated to process the query in the
desired manner, for example, to generate a SQL query from the LINQ query. They consists of
nodes in a tree-shaped structure. Each node in the expression tree represents an expression, for
example a method call or a binary operation such as x < y. An expression tree can be obtained
from a lambda expression by using Expression<TDelegate> syntax. For example,

Expression<Func<int, int» ExpTree = x => (x + 1) * 2

gives an expression tree whose graphical representation is shown in Figure 4.1 It has to be
noted that the nodes of an expression tree are immutable. This means that an expression tree
can be changed only by creating another one from the existing tree, adding the newly created
nodes.
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Figure 4.1: Expression tree - graphical representation

4.3 Expressions Namespace

In C#, namespaces are used to logically arrange classes, structs, interfaces, enums etc. The
.NET framework 3.5 has its own library to handle expression trees, which is formed by classes
defined in the System.Linq.Expressions namespace. Figure 4.2 shows the classes, interfaces
and enumerations that are available in the System.Linq.Expressions namespace. These
classes can be used directly by users to create expression trees, and also by compilers to
translate an expression written in C# or Visual Basic into an expression tree created at runtime.
Figure 4.3 shows the Expression class and its subclasses. As there are 15 subclasses that

Figure 4.2: System.Linq.Expressions Namespace

inherit the Expression class, the class diagram is shown in two parts. The abstract class
Expression provides the root of a class hierarchy used to model expression trees. The classes
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in this namespace that derive from Expression, are used to represent nodes in an expression
tree. The Expression class contains static factory methods to create expression tree nodes
of the various types. The enumeration type ExpressionType specifies the unique node types.
For example, Add can be a node type for the BinaryExpression node.

Figure 4.3: Expression and its subclasses

4.4 Expression Tree Visualizer

A tool for visualizing the expression trees is available in Visual studio 2008. This tool, called
Expression Tree Visualizer is useful for analyzing the structure of an expression tree while
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debugging. This tool is available as a project in the installation path of the Visual studio, in
the folder LinqSamples. To start using this tool, the following steps should be followed.

1. Build the Visual studio solution called ExpressionTreeVisualizer.sln found in the
ExpressionTreeVisualizer folder (sub-directory of LinqSamples). After the build
successfully completes, a file called ExpressionTreeVisualizer.dll is created in the
\ExpressionTreeVisualizer\bin\Debug sub-directory. This is the actual visualizer
DLL used by Visual Studio.

2. Copy the ExpressionTreeVisualizer.dll to the Visualizer folder. For example, copy
it to My Documents\Visual Studio 2008\Visualizers folder.

3. Restart the Visual Studio

Figure 4.4: Invoking Expression Tree Visualizer

After completing the above steps, when debugging an application with an Expression<T>

instance, having a breakpoint on a line of code with an Expression<T>, a magnifying glass
icon can be seen (refer Figure 4.4), indicating that a visualizer is available for the object under
the cursor. Clicking on the magnifying glass will pop up the Expression Tree Visualizer as
shown in Figure 4.5.

4.5 Building an Expression Tree

This section explores the approach followed by the Expression Tree Visualiser to build an ex-
pression tree. Major part of the work in constructing an expression tree is done by the class
ExpressionTreeNode in the file TreeNode.cs. Its constructor method takes the expression
as an argument(in our example, (b,h)=> b*h/2). The method GetType is used to get the
object Type of the root node of the expression and the method ObtainOriginalName(Type)

is invoked on this object to get the name of the type itself. In our case, this name corresponds
to Expression<Func<Double, Double, Double> >. Then based on the type of expression,
its static and instance properties are obtained [using reflection] to further construct the expres-
sion tree. The static and instance properties of Expression are namely, Body, Parameters,
NodeType and Type. For each of these properties, a subnode (also called AttributeNode)
is added. For each node that is added, its static and instance properties are obtained and
the above process is recursively applied to construct the appropriate subnodes. In this way,
the expression tree is built until all the subnodes are processed. The complete expression
tree is constructed with the help of two methods, ExpressionTreeNode(Object value) and
AttributeNode(Object attribute, PropertyInfo propertyInfo). This means that all
the different node types are identified while building the tree inside these two methods. This
is a special case if we compare with the typical approach of building and processing an ex-
pression tree using visitor pattern. In a typical visitor approach, an individual visit method
exists for each of the different type of node. Processing code is written inside the visit method,
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Figure 4.5: Expression Tree Visualizer

based on the visited node. The next section describes visitor pattern approach for processing
an expression tree.

4.6 Expression Tree Visitor

Visiting an expression tree is useful in many cases. For example, a LINQ to SQL provider uses
a visitor pattern to walk through the expression tree identifying different expression types and
then constructs an equivalent SQL statement which is executed against the database. LINQ
expression tree consists of nodes of different types and the properties of the node affect the nav-
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igation of the tree. For instance, BinaryExpression node has two properties (Left, Right)
and hence it has two children while the ConditionalExpression node has three properties
(Test, IfTrue, IfFalse) and hence it has three children in an expression. One approach to
handle the differences that arise in navigating an expression tree based on the node type is to
write a dedicated visit method for each type of node, like VisitBinaryExp(exp) method to
handle nodes of type BinaryExpression and VisitConditionalExp(exp) method for nodes
of type ConditionalExpression. This pattern is used by the ExpressionVisitor abstract
class published in the product documentation of Visual Studio 2008. This class has a method
Visit(exp) that visits a node and recursively calls itself for all the child nodes to visit the en-
tire tree. Listing 4.2 shows a part of the Visit(exp) method. As mentioned before, a dedicated

Listing 4.2: Fragment of a cloning visitor for LINQ expression trees
protected virtual Expression Visit(Expression exp)

{
if (exp == null)

return exp;
switch (exp.NodeType)
{

case ExpressionType.Negate:
case ExpressionType.NegateChecked:
case ExpressionType.Not:
case ExpressionType.Convert:
case ExpressionType.ConvertChecked:
case ExpressionType.ArrayLength:
case ExpressionType.Quote:
case ExpressionType.TypeAs:

return this.VisitUnary((UnaryExpression)exp);
case ExpressionType.Add:
case ExpressionType.AddChecked:
case ExpressionType.Subtract:
case ExpressionType.SubtractChecked:
case ExpressionType.Multiply:
case ExpressionType.MultiplyChecked:
case ExpressionType.Divide:
case ExpressionType.Modulo:
case ExpressionType.And:
case ExpressionType.AndAlso:
case ExpressionType.Or:
case ExpressionType.OrElse:
case ExpressionType.LessThan:
case ExpressionType.LessThanOrEqual:
case ExpressionType.GreaterThan:
case ExpressionType.GreaterThanOrEqual:
case ExpressionType.Equal:
case ExpressionType.NotEqual:
case ExpressionType.Coalesce:
case ExpressionType.ArrayIndex:
case ExpressionType.RightShift:
case ExpressionType.LeftShift:
case ExpressionType.ExclusiveOr:

return this.VisitBinary((BinaryExpression)exp);

visit method is implemented for each node type like UnaryExpression, BinaryExpression.
Listing 4.3 shows the visit method for BinaryExpression which calls Visit for Left, Right
and Conversion properties. If any of the internal nodes were changed during the visit, a new
BinaryExpression instance is created with the new properties. This is the case for non-leaf



42 Chapter 4. LINQ Expression Trees

nodes. As leaf nodes are those without any children, their visit method does not contain a re-
cursive call to another visit method. Listing 4.4 shows the leaf node ConstantExpression. In
order to carry out some useful work , the abstract class ExpressionVisitor can be inherited
to implement particular actions when visiting a node. For instance, Matt Warren, in his series
of post on Building an IQueryable Provider [War08], has inherited the ExpressionVisitor

to translate a LINQ query to SQL query.

Listing 4.3: Non-Leaf node: VisitBinary method
protected virtual Expression VisitBinary(BinaryExpression b)
{
Expression left = this.Visit(b.Left);
Expression right = this.Visit(b.Right);
Expression conversion = this.Visit(b.Conversion);
if (left != b.Left || right != b.Right || conversion != b.Conversion)
{
if (b.NodeType == ExpressionType.Coalesce && b.Conversion != null)
return Expression.Coalesce(left, right, conversion as LambdaExpression);

else
return Expression.MakeBinary(b.NodeType,left,right,b.IsLiftedToNull,b.Method);

}
return b;

}

Listing 4.4: Leaf node: VisitConstant method
protected virtual Expression VisitConstant(ConstantExpression c)
{

return c;
}

4.7 Partial Evaluation of an Expression Tree

When building an expression tree, the compiler tries to optimize the construction by evaluating
the possible expressions to their final value. For instance, if a binary expression involves only
constants, then its final value can be computed and used in building the expression tree. This
process involves, constructing a new tree for every reduction that can be applied as expression
trees are immutable and hence cannot be changed directly. Figure 4.6 shows such a partial
evaluation applied to a part of an expression tree. In this example, the compiler calculates the
value for the binary expression with only constants (2+1) and substitutes that part of the tree
with a new node containing the calculated value (3). In reality, not just one node is added,
but all the nodes till the root node in the hierarchy are changed. So in our case, two nodes
are modified with respect to the original expression tree, the BinaryExpression node with
NodeType Multiply and ConstantExpression node with value 3. Matt Warren [War08], gives
an example implementation of partial evaluator class that resolves the local variable references
in a LINQ query.
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Figure 4.6: Partial evaluation of an expression tree

4.8 A Visitor for Implementing Derivatives

To better understand on writing a visitor for an expression tree, Luke Marshall’s [Mar08] ex-
ample of a visitor that implements first order derivative is helpful. This visitor Derivative
inherits the ExpressionVisitor and overrides some of the Visit methods to implement the
derivative. In particular, the methods VisitBinary, VisitParamater and VisitConstant are over-
ridden. In the VisitBinary method, the node type of is examined to implement the product
rule [(fg)’ = f’g + fg’] for node type Multiply and the quotient rule [(f/g)’ = (f’g -

fg’) / (g*g)] for the node type Divide. The Visitor class is reproduced in Listing 4.5.

4.9 Expression Tree Nodes

This section gives a brief introduction on some of the nodes that are common in an expression
tree. In general, understanding these nodes will help us to better analyze and manipulate ex-
pression trees. The node types which we are going to describe areMethodCallExpression, Unary-
Expression, Expression<T>, ConstantExpression, BinaryExpression, MemberExpression, Pa-
rameterExpression, NewExpression. To aid in our understanding, we constructed a query that
involves all these node types. Suppose empList is a list of employee objects, then the query to
project all the names and IDs of employees whose salary is 1200 is shown in Listing 4.6 along
wih the compiler translated code for the query The diagrammatic representation of expression
tree empQuery.Expression is shown in Figure 4.7.

MethodCallExpression : The call to methods like Where, Select of our expression tree
is represented by an instance of MethodCallExpression and the value of the NodeType property
of a MethodCallExpression object is Call. This method has a Method property pointing to the
code to execute, Object property pointing to the instance itself, and a collection of Arguments
which stores the remaining part of the expression tree.

UnaryExpression : It represents an expression that has a unary operator and the value
of the NodeType property of UnaryExpression in our expression tree is Quote. Quoting an
expression causes the expression not be evaluated but instead to return the structure of the ex-
pression. Lambdas can be converted either to delegates or to expression trees (quoted lambdas)
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Listing 4.5: Visitor to implement first order derivative
class Derivative : ExpressionVisitor
{

public Expression Eval(Expression exp)
{

return this.Visit(Evaluator.PartialEval(exp));
}

protected override Expression VisitBinary(BinaryExpression b)
{

// Product Rule: (fg)’ = f’g + fg’
if (b.NodeType == ExpressionType.Multiply)
{

return Expression.Add(
Expression.Multiply(Eval(b.Left), b.Right),
Expression.Multiply(b.Left, Eval(b.Right)));

}

// Quotient Rule: (f/g)’ = (f’g - fg’) / (g*g)
if (b.NodeType == ExpressionType.Divide)
{

return Expression.Divide(
Expression.Subtract(

Expression.Multiply(Eval(b.Left), b.Right),
Expression.Multiply(b.Left, Eval(b.Right))),

Expression.Multiply(b.Right, b.Right));
}

return base.VisitBinary(b);
}

// Parameter Derivation: f(x)’ = 1
protected override Expression VisitParameter(ParameterExpression p)
{

return Expression.Constant(1.0);
}

// Constant Rule f(a)’ = 0
protected override Expression VisitConstant(ConstantExpression c)
{

return Expression.Constant(0.0);
}

}

depending on the usage. Delegates can be invoked while expression trees preserve the structure
of the lambda. This is useful when we need to analyze a lambda expression which should not be
evaluated, so that we can modify or translate the query into a form that is useful. For example,
translating a LINQ query to SQL query. More details on Quote can be found at [Dye08].

Expression<T> : This class is derived from LambdaExpression class which is the first node
of any expression tree generated from the C/ lambda expression syntax. It has two properties,
namely Body, which is the first node of the expression defined in the lambda expression and
Parameters is a collection of ParameterExpression, which references the parameters defined in
the context of lambda expressions.
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Listing 4.6: C# query and the compiler generated code and IDs
var empQuery = from e in empList.AsQueryable()

where e.salary == 1200
select new { e.name, e.id };

ConsoleApplication1.employee[].Where(e => (e.salary = 1200)).Select(e => new
<>f__AnonymousType0‘2(name = e.name, id = e.id))

Figure 4.7: Expression tree for query in Listing 4.6

ParameterExpression : This class specifies the number and type of arguments involved in
a lambda expression and hence is useful when building a delegate from an expression tree (i.e.,
compiling expression tree). They are always a leaf node in an expression tree.

ConstantExpression : Like ParameterExpression, Constant Expression also always appear
as leaf nodes in an expression tree. This class has a property Value that returns the value
stored in the node.
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BinaryExpression : The instance of this class represents a binary operator and the value of
the NodeType property of BinaryExpression can be Add, Subtract, Multiply, Divide, And, Or,
Equal, LessThan, GreaterThan etc. This class has two properties, Left and Right which points
to the two child nodes of a binary operator.

MemberExpression : The instance of this class represents accessing a field or property.
This class has two properties, Expression (i.e., the target) and Member.

NewExpression : LINQ queries make use of the C# 3.0 feature called Anonymous Types
to create types on the fly. The instance of the class NewExpression is used to represent an
anonymous type in expression trees.

4.10 Expression Tree Normalization

While writing a LINQ query, more than one way may exist to perform the same operation. For
example, in his blog2 , Bart De Smet shows different ways of testing Strings for equality, which is
reproduced in Listing 4.7. All the four lambda expressions lead to four different expression trees

Listing 4.7: Different ways to compare Strings
class S
{

static void Main()
{

Test((s1, s2) => s1 == s2);
Test((s1, s2) => s1.Equals(s2));
Test((s1, s2) => String.Equals(s1, s2));
Test((s1, s2) => String.Compare(s1, s2) == 0);

}

static void Test(Expression<Func<string, string, bool>> e)
{

Console.WriteLine(e);
Delegate d = e.Compile();
Console.WriteLine(d.DynamicInvoke("Bart", "John"));
Console.WriteLine(d.DynamicInvoke("Bart", "Bart"));

}
}

as shown in Listing 4.8. All are LambdaExpression instances, but their Body is fundamentally
different. The first one is a BinaryExpression with NodeType set to ExpressionType.Equal
while the second and the third are MethodCallExpressions and the last one is a mix of the two
(the top node will be a BinaryExpression with the left-hand side being a MethodCallExpression
to String.Compare and the right-hand side a ConstantExpression with Value set to 0). This
gives rise to the idea of normalizing the different expression trees into one common form, as it
might be useful when analyzing an expression tree to carry out some processing, like translating

2B# .NET Blog, http://bartdesmet.net/blogs/bart/archive/2008/08/13/
expression-tree-normalization-how-many-ways-to-say-string-string.aspx

http://bartdesmet.net/blogs/bart/archive/2008/08/13/expression-tree-normalization-how-many-ways-to-say-string-string.aspx
http://bartdesmet.net/blogs/bart/archive/2008/08/13/expression-tree-normalization-how-many-ways-to-say-string-string.aspx
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Listing 4.8: Output of code in Listing 4.7
(s1, s2) => (s1 = s2) False True
(s1, s2) => s1.Equals(s2)
False
True
(s1, s2) => Equals(s1, s2)
False
True
(s1, s2) => (Compare(s1, s2) = 0)
False
True

LINQ to a SQL query. Since expression trees are immutable this would imply using a visitor
to create a new normalized expression tree.

4.11 Summary

In this chapter, an introduction to LINQ queries, Lambda expressions and Expression trees is
provided, followed by a description of the Expression Tree Visualiser, a tool that is shipped as
part of the Visual studio 2008 for visualizing the structure of an expression tree. An overview
of building and visiting an expression tree with appropriate references to other resources was
offered. Finally, different types of nodes that are common in an expression tree are described
and the importance of expression tree normalization is emphasized. With this background, we
will explore the techniques of translating a LINQ query to JPQL query which can be described
as a LINQ provider for JPQL, in the next chapter.
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Chapter 5

LINQ Query Translation

Developing applications that works with the database systems has become common in software
development and hence the developer has to deal with two different worlds, object-oriented
domain models and physical database systems. Different query languages exist to handle these
different models. For example, JPQL and LINQ can be used to query the logical entity model
and SQL can be used to query the relational database systems. Lot of efforts are being made
to abstract the physical data model as much as possible, so that the developer can concentrate
only on object domain model. At runtime, queries expressed over the object model can be
translated into the native query language of the target data store by a component contributed
by the DBMS vendor.

Between LINQ and JPQL, the former is more expressive as it adopts a functional-style ap-
proach. As LINQ is a Microsoft .NET Framework component and is widely used with .NET
languages such as C# and Visual Basic, there is a need for more expressive query language
like LINQ for the Java world. As part of this thesis work, we direct our efforts towards devel-
oping an integrated query language for Java. This idea is to build expression trees in Java and
navigate these expression trees to construct a JPQL query, so that there is no need to modify
the compiler.

In this chapter, we present the challenges involved in translating a LINQ query to an equivalent
JPQL query and describe a prototype (developed in C# 3.0), that builds a JPQL query string
by visiting a LINQ expression tree. The ultimate aim is to develop a LINQ to JPQL provider
(that translates LINQ ASTs to JPQL ASTs), based on the model driven approach and to
enumerate the pros and cons of such approach. This will involve developing an Ecore metamodel
for LINQ and a translation algorithm to transform the instances of such metamodel.

5.1 Query Transformation Challenges

A LINQ to JPQL translation imposes many challenges, deriving from the mismatch between
the functional-style of LINQ and the relational algebra roots of JPQL.

1. It should be noted that it is hard to provide support for translating, all the possible LINQ
queries to JPQL equivalent. One of the limitations is imposed by the data sources on
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which these queries operate. For example, LINQ standard query operators are defined
against sequences (ordered collections, allowing duplicates), while the JPQL deals with
multisets (unordered collections). Similar issue can also be seen with the LINQ to SQL
provider, which does not provide support of all LINQ operators. So the first challenge is
to identify the subset of LINQ operators that we plan to support for the translation to
LINQ.

2. As we saw previously, JPQL has its own grammar that defines syntactically correct
queries. This means that the job of translation algorithm is not only to generate a LINQ
equivalent query but also to make sure that the generated query adheres to the rules of the
JPQL grammar. This means we should be aware of the constraints imposed by the JPQL
grammar while devising a translation algorithm. For example, as per the current Early
Draft 1 on JPA 2.0 (JSR 317), subqueries are restricted to the WHERE and HAVING
clauses and are not allowed in the FROM clause. Even within the WHERE and HAVING
clauses, subqueries are not always allowed. For example, subqueries are not allowed in
IS[NOT]NULL, IS[NOT]EMPTY, [NOT]MEMBER[OF] JPQL expressions that are used
in WHERE and HAVING clauses. The translation algorithm should take this into account
while performing the translation. One more important observation is the SELECT clause
in LINQ queries is optional, while it is mandatory in JPQL query. This implies that even
for LINQ queries without SELECT clause (having only GROUPBY), the translation has
to generate relevant SELECT clause in JPQL.

3. In LINQ, nearly all the operators are overloaded. For instance, the Where operator has
two overloaded methods. This means it is not sufficient to decide on the operators to
support but also to decide on the overloaded versions of the operator to support. This
may not be trivial. Consider the LINQ OrderBy operator whose overloaded methods are

Listing 5.1: Overloaded OrderBy Operator
public static IOrderedEnumerable<TSource> OrderBy<TSource, TKey>(

this IEnumerable<TSource> source,
Func<TSource, TKey> keySelector);

public static IOrderedEnumerable<TSource> OrderBy<TSource, TKey>(
this IEnumerable<TSource> source,
Func<TSource, TKey> keySelector, IComparer<TKey> comparer);

shown in Listing 5.1. The only difference between the two methods is that the second
version takes a comparer as an additional argument. The keySelector extracts a key,
which will be used by the comparer for ordering. The second method allows us to provide
a custom comparer. This means that the users can write their own comparer (as a lambda
expression). If no comparer is provided or the comparer argument is null, the default
comparer is used. But when the user provides an instance of his own comparer, then the
problem is to translate the semantics of this user defined comparer. If this problem is not
solved, then the support given by translation is restricted to operators without custom
comparer or custom comparer set to null.

4. In Chapter 2, we have seen that the JPQL grammar alone does not capture all of the
constraints of the query language. So generating a JPQL query adhering to the grammar
alone (as in step 2) does not guarantee the correctness of the query. One example of such
scenario where the translated JPQL query is not well-formed is shown in Listing 5.2. The
query is not well-formed as it violates the WFR 13 of our list in Chapter 2 (section 2.4).
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Listing 5.2: Translated JPQL query - Not well-formed
LINQ query is :

var query = from e in empList.AsQueryable()
where e.id > 2
orderby e.salary
select e.name;

Translated JPQL query is :
SELECT e.name FROM employee AS e WHERE (e.id > 2) ORDER BY e.salary

The challenges for LINQ to JPQL translation can be summarized as follows: Identifying the
subset of LINQ operators to support, deciding upon the overloaded methods to support for
this subset, adhering to the grammar and well-formedness rules of JPQL and appropriately
handling the scenarios for which the translation is not supported.

5.2 Prototype to Generate JPQL Query

This section describes the C# 3.0 program developed for translating a LINQ query to an
equivalent JPQL query. This program uses a approach that is similar to that described by
Matt Warren [War08] in his article on Building an IQueryable Provider that gives an example
for LINQ provider for SQL. One major difference is with respect to the way the query is built.
In the SQL provider, query is built by continuously appending strings to a stringbuilder when
the nodes of an expression tree are visited. In our prototype (JPQL provider), the query is
built in parts and finally concatenated to form a complete JPQL query.

The prototype works as follows: It has an abstract class ExpressionVisitor which is inherited
by class Linq2Jpql. This inherited class has few methods that override the methods in the base
class to construct the JPQL query string. Translation begins with the invocation of the method

Listing 5.3: Building a JPQL query string
1 internal string Translate(Expression expression)
2 {
3 this.sb = new StringBuilder();
4 this.Visit(expression);
5 if (sel == null)
6 sel = "Select * ";
7 return (sel + frm + whr + ordBy + grpBy);
8 }

Translate (Listing 5.3) in the class Linq2Jpql that takes the expression to be translated
as a argument. This expression is recursively visited and based on the visited node type,
the overridden methods in Linq2Jpql build the JPQL query in parts . After visiting the
entire expression tree, all the JPQL query parts (here, sel, frm, whr, ordBy, grpBy) that are
constructed so far are suitably concatenated (line 6 in Listing 5.3) to form a JPQL query. The
entire code can be found in the Appendix C.

One of the overridden methods that is of interest is VisitMethodCall (Listing 5.4). It is
invoked for the node type MethodCallExpression. Based on the method that is invoked, a
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Listing 5.4: Visiting node of type MethodCallExpression
protected override Expression VisitMethodCall(MethodCallExpression m)
{

// some code here

if (m.Method.Name == "Where")
{
sb.Append(" WHERE ");
LambdaExpression lambda = (LambdaExpression)StripQuotes(m.Arguments[1]);
this.Visit(lambda.Body);

whr = sb.ToString();
ClearStringBuilder(sb);
this.Visit(m.Arguments[0]);
return m;

}

// some code here
}

query string is constructed by visiting the Arguments of the node type.

This program is not complete and limitations do exist (for example, a query with SelectMany
operator is not supported; only one entity can be queried in a single query), but it gives an
insight for better understanding the expression trees and handling them to generate queries for
the target data source.

5.3 Realization of Standard Query Operators

This section describes the metamodel developed for enabling LINQ like capability in Java. It
can be used to express queries (instances of metamodel) that are later translated to JPQL
by AST-to-AST rewriting techniques. To start with a metamodel for a query language, we
would first need a data model. When we developed a metamodel for JPQL in Chapter 2, the
data model we used is described by the package Schema. For LINQ metamodel, we use the
Ecore.ecore as a base data model. The motivation for using the Ecore.ecore comes from the
OCL metamodel (OCL.ecore). A query which is an instance of LINQ metamodel is translated
by the translation algorithm to an instance of JPQL metamodel.

The entire metamodel is organized in three packages: types, basics and operators as shown
in Figure 5.1. Package types has a class PrimitiveType that inherits from the Ecore class
EDataType to represent the basic data types. Class Entity inherits from Eclass and Field

inherits from EAttribute. The package basics has classes whose instances will be used by
the supported LINQ operators. The subset of LINQ operators and their overloads that are
chosen for translating to JPQL is included in the package operators. The LINQ like metamodel
described above, can be used to express queries over the entity model using method invocation
syntax. The AST of such queries can be translated to JPQL using AST-AST rewriting methods,
which is sent to the database engine for evaluation.

One of the most important contribution towards developing a integrated query language for
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Java is made by the project JaQue 1. JaQue provides an infrastructure for Microsoft LINQ
like capabilities on Java platform. Using Java bytecode manipulation techniques, JaQue builds
expression trees, which can be translated later to native query language of the database.

One of the applications for the in-memory realization of the standard query operators in Java
can be for EMF persistence. The changes that are needed to the architecture of EMF persistence
are not simple as the job of Object Relational Mapping (ORM) engine has also need to be
considered. More details can be found in [GP08].

5.4 Summary

In this chapter, we presented the ideas around developing LINQ like query language for Java.
The challenges involved in the LINQ to JPQL query translation are enumerated, followed by
the prototype developed in C/ 3.0. Though the prototype has some limitations, it serves as a
base to understand the query transformation process. We also developed an Ecore metamodel
for realizing the LINQ standard query operators for Java.

1JaQue, http://code.google.com/p/jaque/

http://code.google.com/p/jaque/
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Figure 5.1: LINQ metamodel
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Chapter 6

Conclusions and Future Works

In this chapter, we give the conclusions and then we present ideas that evolved during the
course of this thesis work and that are probable candidates for future work.

6.1 Conclusions

The first objective of this master thesis was to embed JPQL in a typesafe manner in Java adopt-
ing the Model Driven approach. Aligned with this goal, we introduced the concepts revolving
around DSL in Chapter 1. This chapter also introduced the second objective of developing an
integrated query language for Java, similar to LINQ for Microsoft .NET framework languages
like C# and VB.

String-based queries can cause negative impact on programmer’s productivity, as these queries
are not accessible to development environment features like compile-time type checking, auto-
completion, and refactoring. This was the main motivation behind our efforts to implement
JPQL as an internal DSL. We relied on the most favored approach for embedding a DSL,
the fluent interface or method chaining approach and developed an Ecore metamodel in Chap-
ter 2. The code generation capability of Eclipse Modeling Framework(EMF) combined with the
DSL2JDT tool provided the necessary APIs required for method chaining. The approach we
followed is not limited to a query language and can be used to embed any DSL in general pur-
pose programming languages like Java. This can be achieved by building an Ecore metamodel
from the DSL grammar. Though we have done this manually for JPQL embedding, frame-
works like Gymnast [DG08b] can be used to automatically create an Ecore metamodel from
the grammar. Apart from automatically generating Java classes and methods from metamodel
by using EMF and DSL2JDT, another advantage is the specification of constraints in the Ecore
model itself as Annotations (for example, as OCL constraints). In Chapter 3, we showed the
usage of Java Generics to implement the type checking at compile time for embedded queries
and to generate problem markers for syntactically invalid queries.

We identified few shortcomings of typesafe embedding of JPQL and one of them is verbose query
embedding, but this additional noise in the host language can be reduced by the proposed tech-
niques like using intermediate classes. Also in JPQL, a query may either be dynamically spec-
ified at runtime (as string) or configured in metadata (annotation or XML) and referenced by
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name (Named Queries). Our present approach of JPQL embedding considers only the dynamic
queries and in this aspect it lags behind the support given by Dali JPA Tools Project [Tea08]
for named queries. ORM products like Hibernate and Oracle TopLink are widely used for Java
persistence and they have their own proprietary APIs that support additional features that
are not part of JPA 2.0 and hence JPQL embedding scores less against the query language
like HQL (Hibernate Query Language). With a number of significant changes are expected for
JPA 2.01 and hence for JPQL, embedding of JPQL (based on JSR 317 which is an Early Draft
Review as of now) is less attractive. All these limitations of JPQL embedding, paved way for
the second part of this thesis work, realizing a functional query language for Java, similar to
LINQ. As a step towards this, in Chapter 4, we analyzed the LINQ language and provided an
overview of building and visiting an Expression tree.

Developing an integrated query language differs from embedding a query language in one
important aspect. In JPQL embedding, we had the language grammar from which metamodel
is constructed and methods for fluent interfaces are subsequently generated. But this is only one
part of the effort needed for implementing an integrated query language. For the other part, we
also need to consider the task of ORM mapping. For example, in LINQ to SQL, details for ORM
mapping is specified in the code by means of metadata decorated to the class definitions. As
doing such O/R mapping by ourselves demands large efforts, we limited ourselves to LINQ →
JPQL translation in our first prototype. Chapter 5 explains the challenges and the techniques
for developing such a prototype. In order to fully realize the query translation and optimization
techniques that functional query languages call for, we see the need for a contribution by the
providers of ORM engines in future.

6.2 Future Works

6.2.1 Benchmarking of Query Processor for Model Repositories

Model repositories are Object Oriented DBMSs that are used to persist EMOF (Essential Meta
Object Facility). The Ecore that has been defined in the Eclipse Modeling Framework(EMF)
is more or less aligned to EMOF. EMF Objects can be stored and retrieved using queries
(expressed in LINQ or OCL) in Teneo, which is a database persistency solution for EMF using
Hibernate or JPOX/JDO 2.0. The queries can be evaluated on client side or they can be
moved to server side for evaluation (query shipping) for large repositories. In this case, LINQ
or OCL are translated into the query language of the database engine. In order to avoid the
additional work of query translation, one possibility would be to choose a query language that
is as expressive as LINQ or OCL and at the same time can be processed on the database engine
without the need for translation. One such query language is XQuery which can be processed
by a query engine called Pathfinder2. As a future work, the performance of pathfinder query
processor can be evaluated when used a model repository for large EMF models.

1Looking Forward to JPA 2.0, http://java.dzone.com/articles/looking-forward-jpa-20
2Pathfinder, http://www.pathfinder-xquery.org/

http://java.dzone.com/articles/looking-forward-jpa-20
http://www.pathfinder-xquery.org/
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6.2.2 Development of Query Optimizer

In the previous chapter, we described the translation from LINQ to JPQL as one of the ways
to provide integrated query functionality to Java and did not provide any optimizations for
such queries. Optimization is the key component of native queries (Figure 6.1). Users should be
able to write native query expressions and the database should execute them with performance
on par with the string-based queries. The inspiration for developing a query optimizer as part
of future work comes from the University of Texas project, titled lambda-DB3. This project
aims at developing frameworks and prototype systems that address the query optimization
challenges for OODBs.

Figure 6.1: Basic steps of query processing

3lambda-DB: An ODMG-Based Object-Oriented DBMS, http://lambda.uta.edu/lambda-DB/
manual/overview.html

http://lambda.uta.edu/lambda-DB/manual/overview.html
http://lambda.uta.edu/lambda-DB/manual/overview.html
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Appendix A

BNF Grammar for JPQL

QL_statement ::= select_statement | update_statement | delete_statement

select_statement ::= select_clause from_clause [where_clause] [groupby_clause] [having_clause]
[orderby_clause]

update_statement ::= update_clause [where_clause]

delete_statement ::= delete_clause [where_clause]

from_clause ::= FROM identification_variable_declaration {, {
identification_variable_declaration | collection_member_declaration}}*

identification_variable_declaration ::= range_variable_declaration { join | fetch_join }*

range_variable_declaration ::= abstract_schema_name [AS] identification_variable

join ::= join_spec join_association_path_expression [AS] identification_variable

fetch_join ::= join_spec FETCH join_association_path_expression

association_path_expression ::=
collection_valued_path_expression | single_valued_association_path_expression

join_spec::= [ LEFT [OUTER] | INNER ] JOIN

join_association_path_expression ::= join_collection_valued_path_expression |
join_single_valued_association_path_expression

join_collection_valued_path_expression::=
identification_variable.collection_valued_association_field

join_single_valued_association_path_expression::=
identification_variable.single_valued_association_field

collection_member_declaration ::= IN (collection_valued_path_expression) [AS] identifica-
tion_variable
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single_valued_path_expression ::=
state_field_path_expression | single_valued_association_path_expression

state_field_path_expression ::= {identification_variable |
single_valued_association_path_expression}.state_field

single_valued_association_path_expression ::= identification_variable.
{single_valued_association_field.}* single_valued_association_field

collection_valued_path_expression ::= identification_variable.
{single_valued_association_field.}* collection_valued_association_field

state_field ::= {embedded_class_state_field.}* simple_state_field

update_clause ::= UPDATE abstract_schema_name [[AS] identification_variable]
SET update_item {, update_item}*

update_item ::= [identification_variable.]{state_field | single_valued_association_field} =
new_value

new_value ::= simple_arithmetic_expression | string_primary | datetime_primary |
boolean_primary | enum_primary simple_entity_expression | NULL

delete_clause ::= DELETE FROM abstract_schema_name [[AS] identification_variable]

select_clause ::= SELECT [DISTINCT] select_expression {, select_expression}*

select_expression ::= single_valued_path_expression | aggregate_expression |
identification_variable | OBJECT(identification_variable) | constructor_expression

constructor_expression ::= NEW constructor_name
( constructor_item {, constructor_item}* )

constructor_item ::= single_valued_path_expression | aggregate_expression

aggregate_expression ::= { AVG | MAX | MIN | SUM } ([DISTINCT] state_field_path_expression)
| COUNT ([DISTINCT] identification_variable | state_field_path_expression |
single_valued_association_path_expression)

where_clause ::= WHERE conditional_expression

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*

groupby_item ::= single_valued_path_expression | identification_variable

having_clause ::= HAVING conditional_expression

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*

orderby_item ::= state_field_path_expression [ ASC | DESC ]

subquery ::= simple_select_clause subquery_from_clause [where_clause] [groupby_clause]
[having_clause]
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subquery_from_clause ::= FROM subselect_identification_variable_declaration
{, subselect_identification_variable_declaration}*

subselect_identification_variable_declaration ::= identification_variable_declaration |
association_path_expression [AS] identification_variable | collection_member_declaration

simple_select_clause ::= SELECT [DISTINCT] simple_select_expression

simple_select_expression::= single_valued_path_expression | aggregate_expression | identi-
fication_variable

conditional_expression ::= conditional_term | conditional_expression OR conditional_term

conditional_term ::= conditional_factor | conditional_term AND conditional_factor

conditional_factor ::= [ NOT ] conditional_primary

conditional_primary ::= simple_cond_expression | (conditional_expression)

simple_cond_expression ::= comparison_expression | between_expression | like_expression
| in_expression | null_comparison_expression | empty_collection_comparison_expression |
collection_member_expression | exists_expression

between_expression ::= arithmetic_expression [NOT] BETWEEN arithmetic_expression AND
arithmetic_expression | string_expression [NOT] BETWEEN string_expression AND
string_expression | datetime_expression [NOT] BETWEEN datetime_expression AND date-
time_expression

in_expression ::= state_field_path_expression [NOT] IN ( in_item {, in_item}* | subquery)

in_item ::= literal | input_parameter

like_expression ::= string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]

null_comparison_expression ::= {single_valued_path_expression | input_parameter} IS [NOT]
NULL

empty_collection_comparison_expression ::= collection_valued_path_expression IS [NOT]
EMPTY

collection_member_expression ::= entity_expression [NOT] MEMBER [OF]
collection_valued_path_expression

exists_expression::= [NOT] EXISTS (subquery)

all_or_any_expression ::= { ALL | ANY | SOME} (subquery)

comparison_expression ::= string_expression comparison_operator {string_expression
| all_or_any_expression} | boolean_expression { =|<>} {boolean_expression |
all_or_any_expression} | enum_expression { =|<>} {enum_expression |
all_or_any_expression} | datetime_expression comparison_operator {datetime_expression |
all_or_any_expression} | entity_expression { = | <> } {entity_expression |
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all_or_any_expression} | arithmetic_expression comparison_operator {arithmetic_expression
| all_or_any_expression}

comparison_operator ::= = | > | >= | < | <= | <>

arithmetic_expression ::= simple_arithmetic_expression | (subquery)

simple_arithmetic_expression ::= arithmetic_term | simple_arithmetic_expression { + | - }
arithmetic_term

arithmetic_term ::= arithmetic_factor | arithmetic_term { * | / } arithmetic_factor

arithmetic_factor ::= [{ + | - }] arithmetic_primary

arithmetic_primary ::= state_field_path_expression | numeric_literal |
(simple_arithmetic_expression) | input_parameter | functions_returning_numerics | aggre-
gate_expression

string_expression ::= string_primary | (subquery)

string_primary ::= state_field_path_expression | string_literal | input_parameter | func-
tions_returning_strings | aggregate_expression

datetime_expression ::= datetime_primary | (subquery)
datetime_primary ::= state_field_path_expression | input_parameter |
functions_returning_datetime | aggregate_expression

boolean_expression ::= boolean_primary | (subquery)
boolean_primary ::= state_field_path_expression | boolean_literal | input_parameter |

enum_expression ::= enum_primary | (subquery)
enum_primary ::= state_field_path_expression | enum_literal | input_parameter |

entity_expression ::= single_valued_association_path_expression | simple_entity_expression

simple_entity_expression ::= identification_variable | input_parameter

functions_returning_numerics::= LENGTH(string_primary) | LOCATE(string_primary,
string_primary[, simple_arithmetic_expression]) | ABS(simple_arithmetic_expression) |
SQRT(simple_arithmetic_expression) | MOD(simple_arithmetic_expression,
simple_arithmetic_expression) | SIZE(collection_valued_path_expression)

functions_returning_datetime ::= CURRENT_DATE| CURRENT_TIME |
CURRENT_TIMESTAMP

functions_returning_strings ::= CONCAT(string_primary, string_primary) | SUBSTRING
(string_primary, simple_arithmetic_expression, simple_arithmetic_expression)|
TRIM([[trim_specification] [trim_character] FROM] string_primary) |
LOWER(string_primary) |UPPER(string_primary)

trim_specification ::= LEADING | TRAILING | BOTH
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Appendix B

JPQL Metamodel with Generics

@namespace(uri="http://de.tuhh.sts/jpql", prefix="jpql")
package jpql;
@namespace(uri="schemaU", prefix="schemaP")
package schema {
@Ecore(constraints="PersistentUnitTest")
class PersistentUnit {
val Entity[*]#ownerUnit entities;

}
class Entity {
attr String entityName;
attr String dbName;
val SimpleStateField<?>[*]#owner simpleStateFields;
val EmbeddedClassField[*]#owner embeddedClassFields;
ref PersistentUnit#entities ownerUnit;

}
abstract class SimpleOrEmbeddedField {
attr String[1] name;

}
class SimpleStateField <T extends myDataTypes.MyTypes> extends SimpleOrEmbeddedField {
ref Entity#simpleStateFields owner;

}
class EmbeddedClassField extends SimpleOrEmbeddedField {
ref EmbeddedClass classType;
ref Entity#embeddedClassFields owner;

}
class EmbeddedClass extends Entity {
}
class AbstractSchema extends Entity {
val LOBField[*]#owner largeObjs;
val AssocField[*]#owner assocFields;

}
class LOBField extends SimpleOrEmbeddedField {
ref AbstractSchema#largeObjs owner;

}
class AssocField {
attr String name;
attr Multiplicity multiplicity;
ref AbstractSchema type;
ref AbstractSchema#assocFields owner;

}
class SingleValuedAssocField extends AssocField {
}
class CollValuedAssocField extends AssocField {
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}
class SupportedJavaType {
attr String name;

}
enum Multiplicity {
GT1 = 0;
LE1 = 0;

}
}

@namespace(uri="pathExprU", prefix="pathExprP")
package pathExpr {
@Ecore(constraints="pathExprTest")
abstract class PathExp extends primaries.IdVar {
attr String[1] idVar;
val schema.SingleValuedAssocField[*] singleValuedAssoField;

}
class StateFieldPathExpr <T extends myDataTypes.MyTypes> extends PathExp {
val schema.EmbeddedClassField[*] embeddedClsField;
val schema.SimpleStateField<T>[1] simpleStateField;

}
class SingleValuedAssoPathExpr extends PathExp {
val schema.SingleValuedAssocField[1] singleValAssoField;

}
class SingleValPathExp {
val StateFieldPathExpr<?> stFldPthExpr;
val SingleValuedAssoPathExpr singleValuedAssoPathExpr;

}
class CollValuedPathExpr extends PathExp {
val schema.CollValuedAssocField[1] collValuedAsso;

}
}

@namespace(uri="expressionsU", prefix="expressionsP")
package expressions {
class AllAnyExpr {
attr AllAny allAnySome;
val selectSubQ.SubQuery subQuery;

}
class AggExp {
attr Aggregate Aggr;
attr String idVar;
val pathExpr.StateFieldPathExpr<?> stFldPathExpr;
val pathExpr.SingleValuedAssoPathExpr singleValAssoPathExpr;

}
class ExprPrimary <T extends myDataTypes.MyTypes> {
op jpqlType computeType();
val pathExpr.StateFieldPathExpr<T> stFldPathExpr;
val functions.NumRetFn numFunc;
val functions.StrRetFn strFunc;
attr DateTimeFn dateTimefn;
val ExprPrimary<T> simpleArithExpr;
val AggExp aggExp;
val primaries.InputParam inputParam;
attr String idVar;
attr int integerInput;
attr String stringInput;
attr ArithOperators[*] Opr;

}
class Expr <T extends myDataTypes.MyTypes> {
val ExprPrimary<T> ExprPrim;
val selectSubQ.SubQuery subQuery;
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}
@Ecore(constraints="sameTypeExpr")
class BetExpr <T extends myDataTypes.MyTypes> {
val Expr<T>[3] betExpr;

}
class CondExpr <T extends myDataTypes.MyTypes> {
val BetExpr<T> betExpr;
attr BoolOperators[*] BoolOpr;

}
enum ArithOperators {
Plus = 0;
Minus = 1;
Multiply = 2;
Divide = 3;

}
enum BoolOperators {
And = 0;
Or = 1;
Not = 2;

}
enum DateTimeFn {
CtDate = 0;
CtTime = 1;
CtTimeStamp = 2;

}
enum AllAny {
All = 0;
Any = 1;
Some = 2;

}
enum Aggregate {
Avg = 0;
Max = 1;
Min = 2;
Sum = 3;
Count = 4;

}
enum jpqlType {
String = 0;
Numeric = 1;
Date = 2;
Boolean = 3;
Enum = 4;
Int = 5;
Long = 6;
Double = 7;
Char = 8;
Dummy = 9;

}
}

@namespace(uri="myDataTypesU", prefix="myDataTypesP")
package myDataTypes {
class MyTypes {
}
class MyInt extends MyTypes {
}
class MyString extends MyTypes {
}
class MyDate extends MyTypes {
}

}
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Appendix C

LINQ to JPQL translation - C#
Prototype

using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;
using System.Text;
using System.Linq.Expressions;
using System.Collections.ObjectModel;

namespace JPQLquery
{
public abstract class ExpressionVisitor
{
protected ExpressionVisitor()
{
}

protected virtual Expression Visit(Expression exp)
{

if (exp == null)
return exp;

switch (exp.NodeType)
{
case ExpressionType.Negate:
case ExpressionType.NegateChecked:
case ExpressionType.Not:
case ExpressionType.Convert:
case ExpressionType.ConvertChecked:
case ExpressionType.ArrayLength:
case ExpressionType.Quote:
case ExpressionType.TypeAs:

return this.VisitUnary((UnaryExpression)exp);

case ExpressionType.Add:
case ExpressionType.AddChecked:
case ExpressionType.Subtract:
case ExpressionType.SubtractChecked:
case ExpressionType.Multiply:
case ExpressionType.MultiplyChecked:
case ExpressionType.Divide:
case ExpressionType.Modulo:
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case ExpressionType.And:
case ExpressionType.AndAlso:
case ExpressionType.Or:
case ExpressionType.OrElse:
case ExpressionType.LessThan:
case ExpressionType.LessThanOrEqual:
case ExpressionType.GreaterThan:
case ExpressionType.GreaterThanOrEqual:
case ExpressionType.Equal:
case ExpressionType.NotEqual:
case ExpressionType.Coalesce:
case ExpressionType.ArrayIndex:
case ExpressionType.RightShift:
case ExpressionType.LeftShift:
case ExpressionType.ExclusiveOr:

return this.VisitBinary((BinaryExpression)exp);

case ExpressionType.TypeIs:
return this.VisitTypeIs((TypeBinaryExpression)exp);

case ExpressionType.Conditional:
return this.VisitConditional((ConditionalExpression)exp);

case ExpressionType.Constant:
return this.VisitConstant((ConstantExpression)exp);

case ExpressionType.Parameter:
return this.VisitParameter((ParameterExpression)exp);

case ExpressionType.MemberAccess:
return this.VisitMemberAccess((MemberExpression)exp);

case ExpressionType.Call:
return this.VisitMethodCall((MethodCallExpression)exp);

case ExpressionType.Lambda:
return this.VisitLambda((LambdaExpression)exp);

case ExpressionType.New:
return this.VisitNew((NewExpression)exp);

case ExpressionType.NewArrayInit:
case ExpressionType.NewArrayBounds:

return this.VisitNewArray((NewArrayExpression)exp);

case ExpressionType.Invoke:
return this.VisitInvocation((InvocationExpression)exp);

case ExpressionType.MemberInit:
return this.VisitMemberInit((MemberInitExpression)exp);

case ExpressionType.ListInit:
return this.VisitListInit((ListInitExpression)exp);

default:
throw new Exception(string.Format("Unhandled expression type: ’{0}’",

exp.NodeType));
}

}

protected virtual MemberBinding VisitBinding(MemberBinding binding)
{
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switch (binding.BindingType)
{
case MemberBindingType.Assignment:

return this.VisitMemberAssignment((MemberAssignment)binding);

case MemberBindingType.MemberBinding:
return this.VisitMemberMemberBinding((MemberMemberBinding)binding);

case MemberBindingType.ListBinding:
return this.VisitMemberListBinding((MemberListBinding)binding);

default:
throw new Exception(string.Format("Unhandled binding type ’{0}’",

binding.BindingType));
}

}

protected virtual ElementInit VisitElementInitializer(ElementInit initializer)
{

ReadOnlyCollection<Expression> arguments =
this.VisitExpressionList(initializer.Arguments);

if (arguments != initializer.Arguments)
return Expression.ElementInit(initializer.AddMethod, arguments);

return initializer;
}

protected virtual Expression VisitUnary(UnaryExpression u)
{

Expression operand = this.Visit(u.Operand);
if (operand != u.Operand)
return Expression.MakeUnary(u.NodeType, operand, u.Type, u.Method);

return u;
}

protected virtual Expression VisitBinary(BinaryExpression b)
{

Expression left = this.Visit(b.Left);
Expression right = this.Visit(b.Right);
Expression conversion = this.Visit(b.Conversion);

if (left != b.Left || right != b.Right || conversion != b.Conversion)
{

if (b.NodeType == ExpressionType.Coalesce && b.Conversion != null)
return Expression.Coalesce(left, right, conversion as LambdaExpression);

else
return Expression.MakeBinary(b.NodeType, left, right,

b.IsLiftedToNull, b.Method);
}
return b;

}

protected virtual Expression VisitTypeIs(TypeBinaryExpression b)
{

Expression expr = this.Visit(b.Expression);
if (expr != b.Expression)

return Expression.TypeIs(expr, b.TypeOperand);

return b;
}
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protected virtual Expression VisitConstant(ConstantExpression c)
{

return c;
}

protected virtual Expression VisitConditional(ConditionalExpression c)
{

Expression test = this.Visit(c.Test);
Expression ifTrue = this.Visit(c.IfTrue);
Expression ifFalse = this.Visit(c.IfFalse);
if (test != c.Test || ifTrue != c.IfTrue || ifFalse != c.IfFalse)

return Expression.Condition(test, ifTrue, ifFalse);

return c;
}

protected virtual Expression VisitParameter(ParameterExpression p)
{

return p;
}

protected virtual Expression VisitMemberAccess(MemberExpression m)
{

Expression exp = this.Visit(m.Expression);
if (exp != m.Expression)

return Expression.MakeMemberAccess(exp, m.Member);

return m;
}

protected virtual Expression VisitMethodCall(MethodCallExpression m)
{

Expression obj = this.Visit(m.Object);
IEnumerable<Expression> args = this.VisitExpressionList(m.Arguments);
if (obj != m.Object || args != m.Arguments)

return Expression.Call(obj, m.Method, args);

return m;
}

protected virtual ReadOnlyCollection<Expression> VisitExpressionList(
ReadOnlyCollection<Expression> original)

{
List<Expression> list = null;

for (int i = 0, n = original.Count; i < n; i++)
{

Expression p = this.Visit(original[i]);
if (list != null)
{
list.Add(p);

}
else if (p != original[i])
{

list = new List<Expression>(n);
for (int j = 0; j < i; j++)
{

list.Add(original[j]);
}
list.Add(p);

}
}



68 Appendix C. LINQ to JPQL translation - C# Prototype

if (list != null)
return list.AsReadOnly();

return original;
}

protected virtual MemberAssignment VisitMemberAssignment(MemberAssignment assignment)
{

Expression e = this.Visit(assignment.Expression);

if (e != assignment.Expression)
return Expression.Bind(assignment.Member, e);

return assignment;
}

protected virtual MemberMemberBinding VisitMemberMemberBinding(MemberMemberBinding binding)
{

IEnumerable<MemberBinding> bindings = this.VisitBindingList(binding.Bindings);

if (bindings != binding.Bindings)
return Expression.MemberBind(binding.Member, bindings);

return binding;
}

protected virtual MemberListBinding VisitMemberListBinding(MemberListBinding binding)
{

IEnumerable<ElementInit> initializers =
this.VisitElementInitializerList(binding.Initializers);

if (initializers != binding.Initializers)
{

return Expression.ListBind(binding.Member, initializers);
}
return binding;

}

protected virtual IEnumerable<MemberBinding> VisitBindingList(
ReadOnlyCollection<MemberBinding> original)

{
List<MemberBinding> list = null;
for (int i = 0, n = original.Count; i < n; i++)
{

MemberBinding b = this.VisitBinding(original[i]);
if (list != null)
{

list.Add(b);
}
else if (b != original[i])
{

list = new List<MemberBinding>(n);
for (int j = 0; j < i; j++)
{

list.Add(original[j]);
}
list.Add(b);

}
}
if (list != null)

return list;



69

return original;
}

protected virtual IEnumerable<ElementInit> VisitElementInitializerList(
ReadOnlyCollection<ElementInit> original)

{
List<ElementInit> list = null;
for (int i = 0, n = original.Count; i < n; i++)
{

ElementInit init = this.VisitElementInitializer(original[i]);

if (list != null)
{

list.Add(init);
}
else if (init != original[i])
{

list = new List<ElementInit>(n);
for (int j = 0; j < i; j++)
{

list.Add(original[j]);
}
list.Add(init);

}
}
if (list != null)

return list;

return original;
}

protected virtual Expression VisitLambda(LambdaExpression lambda)
{

Expression body = this.Visit(lambda.Body);
if (body != lambda.Body)

return Expression.Lambda(lambda.Type, body, lambda.Parameters);

return lambda;
}

protected virtual NewExpression VisitNew(NewExpression nex)
{

IEnumerable<Expression> args = this.VisitExpressionList(nex.Arguments);

if (args != nex.Arguments)
{

if (nex.Members != null)
return Expression.New(nex.Constructor, args, nex.Members);

else
return Expression.New(nex.Constructor, args);

}
return nex;

}

protected virtual Expression VisitMemberInit(MemberInitExpression init)
{

NewExpression n = this.VisitNew(init.NewExpression);
IEnumerable<MemberBinding> bindings = this.VisitBindingList(init.Bindings);

if (n != init.NewExpression || bindings != init.Bindings)
return Expression.MemberInit(n, bindings);
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return init;
}

protected virtual Expression VisitListInit(ListInitExpression init)
{

NewExpression n = this.VisitNew(init.NewExpression);
IEnumerable<ElementInit> initializers =

this.VisitElementInitializerList(init.Initializers);

if (n != init.NewExpression || initializers != init.Initializers)
return Expression.ListInit(n, initializers);

return init;
}

protected virtual Expression VisitNewArray(NewArrayExpression na)
{

IEnumerable<Expression> exprs = this.VisitExpressionList(na.Expressions);
if (exprs != na.Expressions)
{

if (na.NodeType == ExpressionType.NewArrayInit)
{

return Expression.NewArrayInit(na.Type.GetElementType(), exprs);
}
else
{

return Expression.NewArrayBounds(na.Type.GetElementType(), exprs);
}

}
return na;

}

protected virtual Expression VisitInvocation(InvocationExpression iv)
{

IEnumerable<Expression> args = this.VisitExpressionList(iv.Arguments);
Expression expr = this.Visit(iv.Expression);

if (args != iv.Arguments || expr != iv.Expression)
return Expression.Invoke(expr, args);

return iv;
}

}

class Linq2Jpql : ExpressionVisitor
{

StringBuilder sb;
String sel, frm, whr, ordBy, grpBy, param, idVar;
int sb_len, moreThanOneParam;

internal Linq2Jpql()
{
}

internal string Translate(Expression expression)
{

this.sb = new StringBuilder();
this.Visit(expression);
if (sel == null)

sel = "Select * ";
return (sel + frm + whr + ordBy + grpBy);

}
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private void ClearStringBuilder(StringBuilder strBldr)
{

sb_len = strBldr.Length;
strBldr.Remove(0, sb_len);

}

private static Expression StripQuotes(Expression e)
{

while (e.NodeType == ExpressionType.Quote)
e = ((UnaryExpression)e).Operand;

return e;
}

protected override Expression VisitMethodCall(MethodCallExpression m)
{

if (m.Method.Name == "Select")
{

moreThanOneParam = 1;
sb.Append("SELECT ");
LambdaExpression lambda = (LambdaExpression)StripQuotes(m.Arguments[1]);
this.Visit(lambda.Body);

sel = sb.ToString();
ClearStringBuilder(sb);
this.Visit(m.Arguments[0]);
return m;

}
if (m.Method.Name == "Where")
{

sb.Append(" WHERE ");
LambdaExpression lambda = (LambdaExpression)StripQuotes(m.Arguments[1]);
this.Visit(lambda.Body);

whr = sb.ToString();
ClearStringBuilder(sb);
this.Visit(m.Arguments[0]);
return m;

}
if (m.Method.Name == "OrderBy")
{

sb.Append(" ORDER BY ");
LambdaExpression lambda = (LambdaExpression)StripQuotes(m.Arguments[1]);
this.Visit(lambda.Body);

ordBy = sb.ToString();
ClearStringBuilder(sb);
this.Visit(m.Arguments[0]);
return m;

}
if (m.Method.Name == "GroupBy")
{

LambdaExpression lambda = (LambdaExpression)StripQuotes(m.Arguments[1]);
this.Visit(lambda.Body);
param = sb.ToString();

grpBy = " GROUP BY " + param;
sel = "SELECT " + param;
ClearStringBuilder(sb);
this.Visit(m.Arguments[0]);
return m;
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}

throw new NotSupportedException(string.Format(
"The method ’{0}’ is not supported", m.Method.Name));

}

protected override Expression VisitBinary(BinaryExpression b)
{

sb.Append("(");
this.Visit(b.Left);
switch (b.NodeType)
{
case ExpressionType.And:
case ExpressionType.AndAlso:

sb.Append(" AND ");
break;

case ExpressionType.Or:
case ExpressionType.OrElse:

sb.Append(" OR ");
break;

case ExpressionType.Equal:
sb.Append(" = ");
break;

case ExpressionType.NotEqual:
sb.Append(" <> ");
break;

case ExpressionType.LessThan:
sb.Append(" < ");
break;

case ExpressionType.LessThanOrEqual:
sb.Append(" <= ");
break;

case ExpressionType.GreaterThan:
sb.Append(" > ");
break;

case ExpressionType.GreaterThanOrEqual:
sb.Append(" >= ");
break;

case ExpressionType.Add:
sb.Append(" + ");
break;

case ExpressionType.Subtract:
sb.Append(" - ");
break;

case ExpressionType.Multiply:
sb.Append(" * ");
break;

case ExpressionType.Divide:
sb.Append(" % ");
break;
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default:
throw new NotSupportedException(string.Format(

"The binary operator ’{0}’ is not supported", b.NodeType));
}
this.Visit(b.Right);
sb.Append(")");
return b;

}

protected override Expression VisitConstant(ConstantExpression c)
{

IQueryable q = c.Value as IQueryable;
if (q != null)
{

sb.Append(" FROM ");
sb.Append(q.ElementType.Name);
sb.Append(" AS ");
sb.Append(idVar);

frm = sb.ToString();
ClearStringBuilder(sb);

}
else if (c.Value == null)
{
sb.Append("NULL");

}
else
{
switch (Type.GetTypeCode(c.Value.GetType()))
{

case TypeCode.Boolean:
sb.Append(((bool)c.Value) ? 1 : 0);
break;

case TypeCode.String:
sb.Append("\"");
sb.Append(c.Value);
sb.Append("\"");
break;

case TypeCode.Object:
throw new NotSupportedException(string.Format(

"The constant for ’{0}’ is not supported", c.Value));

default:
sb.Append(c.Value);
break;

}
}
return c;

}

protected override Expression VisitMemberAccess(MemberExpression m)
{

if (m.Expression != null && m.Expression.NodeType == ExpressionType.Parameter)
{

idVar = m.Expression.ToString();

if (moreThanOneParam > 1 && sel == null)
sb.Append(", ");
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moreThanOneParam++;
sb.Append(idVar + ".");
sb.Append(m.Member.Name);
return m;

}
throw new NotSupportedException(string.Format("The member ’{0}’ is not supported",

m.Member.Name));
}

}

public class employee
{

public int id;
public String name;
public float salary;

}

class App
{

static void Main()
{

employee[] empList = new employee[] {
new employee {id=1, name="john", salary=1200},
new employee {id=2, name="tom", salary=1500},
new employee {id=3, name="harry", salary=1200}

};

var query = empList.AsQueryable().Where(e => e.salary == 1200);

//var query = from e in empList.AsQueryable()
// where e.id > 2
// orderby e.name
// //group e by e.salary;
// select new { e.name, e.salary };

String queryString = new Linq2Jpql().Translate(query.Expression);
Console.WriteLine(" LINQ query is : {0}", query.Expression.ToString());
Console.WriteLine(" ");
Console.WriteLine(" Translated JPQL query is : {0}", queryString);
}

}
}
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