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Chapter 1

Introduction

1.1 Description Logics and the idea of distributed

storage

Description Logics are a family of knowledge representation languages, using

the definition of concept description and individual to express an applica-

tion domain. Having the logic based semantics, with the supporting for

logical reasoning, Description Logics is widely used in Semantics Web, and

the OWL-DL and OWL-Lite of the Web Ontology Language (OWL) is also

based on Description logics.

For the last few years, the interest in Semantics Web has been strongly

increased. The size of the assertional part becomes much and much bigger.

Soon, the traditional in memory approach for reasoning using Tableau al-

gorithm will be inefficient, since the completion tree for ABox is no more fit

into the main memory. There have been several researches on this problem,

and in this thesis we introduce an approach that divides the ABox into many

smaller islands based on the information extracted from the terminology.

After the ABox is divided, some islands will be load into the memory for

solving a given reasoning problem instead of the whole ABox.

Further more, in this thesis we developed the proposed thoery into a dis-

tributed storage system for a Description Logics knowledge base, which

supports updating and reasoning w.r.t both ABox and TBox.

The base algorithm in this thesis is extended from the island algorithm in

the article [15] and the further development of update algorithm for parti-

tioning in [16].
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4 CHAPTER 1. INTRODUCTION

1.2 Structure of the report

The report is structured as following: Chapter 2 introduces some basic

knowledge about description logics and the reasoning problem with respect

to a knowledge base. Chapter 3 proposes an approach to the partitioning

of assertionology and of the description logic ontology. The further devel-

opment of partitioning, the decentralization of storage for ABox assertions

is discussed in Chapter 4. Chapter 4 also describes the architecture of a

system which was built to be a distributed storage system for a knowledge

base. Some experimental results and evaluation are exposed in chapter 5.

Chapter 6 summarizes the work which has been done in this thesis as well

as propose future development of the approach.



Chapter 2

Description Logics

2.1 Introduction

Researches in the field of knowledge representation and reasoning has been

focusing on formalizing high level descriptions of the world that can be ef-

fectively used in ”intelligent” system. ”Intelligent” refers to the ability of

systematically finding the implicit meaning from the explicit represented

knowledge. Since the 1970s, several approaches for knowledge represen-

tation have been evolved, including logic based formalisms and network

structure representation.

Realizing that the network structures, such as semantic network and frames,

being more appealing and effective in practical, can be given the logical se-

mantics by relying on first order logic, reseach in the area of Description

Logics began under the label of terminological system. In more recent years,

with more development in the field, the term Description Logics became

more popular. It is now getting much more interests and became the basis

for many knowledge base representation systems.

2.2 Description Logics basic

Description Logics expresses the world concepts using elementary descrip-

tions and complex descriptions. Elementary description includes atomic

concepts and atomic roles. Complex descriptions can be derived by com-

bining elementaries using concept constructors. In notation, A and B are

used as atomic concepts, R is used as atomic role, and C and D are used

5



6 CHAPTER 2. DESCRIPTION LOGICS

as complex descriptions.

Different description languages are distinguised by the constructors they

provide. In this thesis we use one in the family of AL -languages (AL- At-

tributive language). The following table is the syntax rules for the basic

description language AL .

C,D → A (atomic concept)

> (universal concept)

⊥ (bottom concept)

¬A (atomic negation)

C uD (intersection)

∀R.C (value restriction)

∃R.> (limited existential quantification)

Note that the negation is only applicable for atomic concept. AL does

not allow negation for complex description. And only the top concept is

allowed in an existential quantification over a role.

The other languages in the family is extended from AL by adding more

constructors. The more constructors added to the language, the more ex-

pressive and complex it is.

We can make an example of how to use AL to represent the real world.

We suppose having atomic concepts: Person,Male, Female; and atomic

roles hasChild. We can build more complex description from these atomic

ones as following

Person uMale

Person u Female
Person u ∀hasChild.Male

2.3 Semantics of Description Logics

A formal semantic of the AL language is defined using an interpretation

I = (∆I , ·I), where

• ∆I is a non-empty set, also called the domain of the interpretation.

• ·I is a function that maps
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– every concept to a subset of ∆I .

– every role to a subset of ∆I ×∆I .

For more complex concept descriptions, the semantic is interpretated as

in following table

>I = ∆I

⊥I = ∅
(¬A)I = ∆I\AI

(C uD)I = CI ∩DI
(∀R.C)I = {a ∈ ∆I |∀b.(a, b) ∈ RI → b ∈ CI}
(∃R.>)I = {a ∈ ∆I |∃b.(a, b) ∈ RI}

2.4 The family of Description Logics

In here we consider the family of AL languages. The AL language pre-

sented in the previous section is the most basic language for the family.

More expressive language is extended from AL language by adding more

constructors.

The union constructor (denoted by the letter U) is the union of con-

cepts, written as C tD, and is interpreted as (C tD)I = CI ∪DI .

Full existential quantification (indicated by the letter E) is written as

∃R.C, and is interpreted as

(∃R.C)I = {a ∈ ∆I |∃b.(a, b) ∈ RI ∧ b ∈ CI}

Note that different from ∃R.>, in full existential quantification, arbitrary

concepts are allowed to occur in the scope of the existential quantifier.

Number restrictions, which is denoted by the letterN , have two different

forms: ≥ nR (at least restriction) and ≤ nR (at most restriction) with n is

a nonnegative integer. Number restrictions are interpretated as

(≥ nR)I = {a ∈ ∆I ||{b|(a, b) ∈ RI}| ≥ n}

and

(≤ nR)I = {a ∈ ∆I ||{b|(a, b) ∈ RI}| ≤ n}
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where | · | is the cardinality of a set.

The complex concept negation introduces contructor allowing negation

of concepts that are not atomic concept. Indicated by letter C, written as

¬C, the negation is interpreted as

(¬C)I = ∆I\CI

Role hierarchy (indicated by letter H) introduces role inclusions to the

language. A role inclusion R ⊆ S means for all interpretation I, RI ⊆ SI .

Another role constructor is the Inverse roles (letter I). Written as

R−(a, b), inverse role is interpreted as

(R−)I = {(a, b) ∈ ∆I ×∆I |(b, a) ∈ RI}

.

The expressive description language extending from AL is written by

the string of the form

AL[U ][E ][N ][C][H][I]

where the presence of the letter in the name indicates the corresponding

added constructor to the basic language AL. For example, ALUEN is the

extension of AL by union, full existential quantification and number restric-

tions.

However, from the semantic point of view, not all of the extended languages

are distince. Negation can easily be used to replace the union and full exis-

tential quantification, and vice verse, as we have following transformation

C tD ≡ ¬(¬C u ¬D)

∃R.C ≡ ¬∀R.¬C

Thus we can safely assume that a languages containing negation constructor

also have union and full existential quantification constructors, and vice

verse. For instance, ALC is also equivalent to ALUEC.([5],[2])

The work in this thesis is based onALCHI language, the extension fromAL
with union, full existential quantification, complex nagation, role hierarchy

and inverse role.
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2.5 Knowledge base

Terminology

In this section we want to introduce terminology axioms, which are used to

represent the relations between concepts or roles. There are two kinds of

terminological axioms: inclusion and equality , written as

C v D inclusion

C ≡ D ( equality)

An interpretation I satisfies an inclusion C v D if CI ⊆ DI . Similarly, I
satisfies an equality C ≡ D if CI = DI .

A definition is a special case of equality when the left side is an atomic

concept. This can be illustrated by an example

Mother ≡ Woman u ∃hasChild.Man

which defines a Mother to be a Woman that has a child who is a Man.

An atomic concept C is called directly uses an atomic concept D if

D is presented in the definition of C. The uses relation is defined as the

transitive closure of the directly uses ; which means C1 uses Ci if there exists

{C1, C2, .., Ci} such that Ck directly uses Ck+1.

A terminology T (or a TBox) is composed of a finite set of terminological

axioms. An interpretation I satisfies T if and only if it satisfies all the

axioms in T , and is called a model of T .

T is cyclic iff there exists an atomic concept in T that uses itself. Oth-

erwise, T is acyclic.

Assertions

The terminology axioms are used to describe world concepts, or classes of

entity. On the other hand, an assertion is used to describe one entity or a

relation between entities. For example, one concept assertion

Mother(Marry)

defines a single person Marry to be a Mother. And an assertion on role

hasChild(Tom, Peter)
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says that Tom has a child who is Peter.

In generalization, assertions can be denoted by C(a) or R(a, b) with C,R

are concept and role, respectively, and a, b are specific individuals.

An world descriptions, or ABox - denoted by A, is composed of a finite

set of assertions. Semantic for ABox is given by extending the interpretation

of atomic concepts and roles in TBox for also individual names. That is,

with an interpretation I = (∆I , ·I), the interpretation function ·I maps

• every concept to a subset of ∆I .

• every role to a subset of ∆I ×∆I .

• every individual a to an element aI ∈ ∆I .

An interpretation I satisfies a concept assertion C(a) if aI ∈ CI , and

satisfies a role assertion R(a, b) if (aI , bI) ∈ RI . I satisfies an ABox A if it

satisfies every assertions in A, and is called a model of A.

Knowledge base

A knowledge base for description logics includes one TBox and one ABox.

Σ = 〈TBox,ABox〉

An interpretation I satisfies a knowledge base Σ if it satisfies the TBox and

the ABox in Σ. In that case, I is called a model of Σ. A knowledge base Σ

is satisfiable if it has a model.

2.6 Reasoning with Knowledge base

Reasoning problem

The inference problems on a knowledge base Σ = 〈T ,A〉 consists of prob-

lems which can be defined as following

Definition 1. Given a knownledge base Σ = 〈T ,A〉

• Σ is called consistent if it has a model I.

• A concept C is called satisfiable w.r.t Σ if there is a model I of Σ

such that CI 6= ∅. I is called a model of C w.r.t Σ.
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• The concept D subsumes the concept C w.r.t Σ (written as Σ � C v
D) if for all model I of Σ, CI ⊆ DI (subsumption problem).

• The concept C is equivalent with the concept D w.r.t Σ if they sub-

sumes each other w.r.t Σ.

• An individual a is an instance of concept C w.r.t Σ (Σ � a : C) if for

all model I of Σ, aI ∈ CI (instance checking problem).

• A pair of individuals (a, b) is an instance of a role R w.r.t Σ (Σ �
(a, b) : R) if for all model I of Σ, (aI , bI) ∈ RI.

Following we will consider the solutions for ABox consistency problem.

All other problems, as we will see later, can be transformed into ABox

consistency. The transformation for some problems will also be considered

in this section.

Tableau calculus for ABox consistency

Firstly we introduce the tableau algorithm for ABox A consistency prob-

lem only, as for a knowledge base Σ = 〈T ,A〉 with empty TBox T . Before

applying taleau algorithm, it is convinient to assume that all the concept

expression are in negation normal form (NNF), i.e., that negation occurs

only directly before concept name. Other arbitrary concepts can be trans-

formed into NNF by pushing negation inward by using the de Morgan’s

rules and the duality of existential and universal restrictions, which is

¬∀R.C ≡ ∃R.¬C and ¬∃R.C ≡ ∀R.¬C

The tableau algorithm tries to construct a finite representation of an

interpretation I by working on completion trees. A completion tree is a tree

with nodes are the individuals’ name x, each of which are labeled with a

set of concept expressions L(x); and edge between x and y, L(x, y) are roles

connecting that two individuals. The starting completion tree is created

directly from the ABox using its concept assertions and role assertions.

The tableau calculus expands the trees using following semantics

• if A � x : C1 u C2 then A � x : C1 and A � x : C2.

• if A � x : C1 t C2 then A � x : C1 or A � x : C2.

• if A � ∀R.C(a), then for every b such that A � R(a, b), we have

A � C(b).
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• if A � ∃R.C(a), then there must be at least one individual b such that

A � R(a, b) and A � C(b)

From these semantics, we have the following expanding rules forALCHI
ABox consistency tableau agorithm, listed in Figure 2.1

Figure 2.1: Tableau transformation rules of the satisfiability algorithm for
ALCHI

Here a node x is called has R-neighbor y if R ∈ L(x, y) or R− ∈ L(y, x).

In case of satisfiability problem for the ALCHI knowledge base with non

empty TBox, which is affected by role hierarchy, the definition of has R-

neighbor needs to be extended as following: x is called has R-neighbor y if

there exists a role S such that S ∈ L(x, y) or S− ∈ L(y, x), and S vΣ R.

The rule handling the disjunction is nondetermistic in the sense that the

completion tree will be transformed into either one of the two possible op-

tions. The original completion tree is open if any of the two derived trees is

open. A completion tree is open if it is complete and has no clash. The tree

is complete where there is no more application for Tableau rules or it con-

tains a clash. The tree contains a clash if there exists a node x and concept

C such that {C,¬C} ∈ L(x). If the tree is open, then the ABox is satisfiable.

Soundness. Tableau algorithm is sound because all the rules are de-

duced straight forward from the semantics of the constructors.
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Termination. One important property of the tableau is that the con-

cepts added to a label by applying any rules always has smaller size com-

pared to the original concept. And since the original tree has finite size, the

transformation procedure is terminated. More details on termination proof

can be found in [7], [4].

Completeness. From a complete and clash-free tree we can build a

model I for original ABox with

• The domain ∆I consists of all the nodes in the tree.

• For any concept name C, we have ·I : C → {x|C ∈ L(x)}.

• For any role name R, we have ·I : R→ {x, y|R ∈ L(x, y)}.

Knowledge base consistency problem

Unlike the ABox consistency problem, in the knowledge base consistency

problem we need to consider the presence of the terminology T . For the

case of regular terminology which contains only equality axioms, Tableau

algorithm can be applied on the ABox after eliminating the TBox, which is

done by extending TBox T into new TBox T ′, such that all the equivalent

axioms in T ′ contains only base concept name (for more details please refer

to [5]).

However, it is not as simple for the case of generalized terminology. The

presense of inclusion axioms of the form C v D (C,D can be complex

concept descriptions) makes the expanding no longer possible. In order

to eliminate the TBox, another technique is introduced. First, the set of

inclusion axioms C1 v D1, ..., Cn v Dn in the terminology is transformed

into a single equivalent axiom > v Ĉ where

Ĉ = (¬C1 tD1) u ... u (¬Cn tDn)

The single axiom > v Ĉ, with the > on the left side, simply means that

every individual in the ABox is an instance of the concept Ĉ.

The knowledge base consistency problem now can be transform into ABox

consistency problem by modifying the Tableau algorithm for ABox intro-

duced above such that it takes this new axiom into account: the labels of

every nodes in the ABox contain Ĉ (which means every individuals is an

instance of Ĉ), and the label for every new nodes created by applying ∃ rule

also contains Ĉ.

However, the new Tableau algorithm needs not to be terminated. For ex-

ample, considering consistency problem for a knowledge base with ABox
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A = {C(x0)} and TBox T = {> v (∃R.C)}, the tableau algorithm gener-

ates an infinite sequence of nodes for the completion tree {x0, x1, ...} such

that any node xi has the label L(xi) = {C(xi),∃R.C(xi)}. Here the algo-

rithm runs into a cycle.

In order to make the algorithm terminated, we use the dynamic blocking

technique to terminate those cycles. The application of →∃ on node y is

blocked by its ancestor x if L(x) = L(y), whereas other Tableau rules are

still applied on a blocked node. A blocking, however, can be broken if the

condition is no more satisfied (i.e. changes to L(x), making L(x) 6= L(y),

which unblocks y). More details of blocking can be refered in [5], [13].

The key idea of blocking is that, whenever a cycle is detected, by checking

whether the label of generated node is the same as the label of generating

node, then the expansion from generated node (by →∃ rule) is no longer

allowed. However, with the presense of inverse roles, a newly generated

node can affects the label of its ancester’s label, thus breaks the blocking

condition. In this case, the blocking need to be able to established broken

and reestablished when needed.

Concept satisfiability problem

Given a knowledge base Σ = 〈T ,A〉, we have from the definition that a

concept C0 is satisfiable w.r.t Σ if there is a model I of Σ such that CI0 6= ∅.
From a semantic view, we can see that ABox has no influence on the con-

cept satisfiability problem in ALCHI, and we can safely assume that the

considered knowledge base has an empty ABox.

To transform this problem into ABox consistency, we consider new knowl-

edge base Σ′ = 〈T ,A0〉 with A0 = {C(x0)}, with x0 is some newly created

individual name. We have that C is satisfiable if Σ′ is satisfiable, i.e. has a

model. And since the satisfiability problem for a knowledge base, as solved

above, is equivalent to the satisfiability problem of an ABox, then the prob-

lem of concept satisfiable for C0 is also equivalent to the ABox consistency

problem as well.

Concept subsumption problem

Given knowledge base Σ, a concept C is subsumed by D if CI ⊆ DI for all

model I of the knowledge base. This is equivalent to there is no model I
of Σ that satisfies ¬(C v D); and since we have

¬(C v D) ≡ C u ¬D



2.6. REASONING WITH KNOWLEDGE BASE 15

we have the concept subsumption problem turns into the concept satisfiabil-

ity problem for concept expression Cu¬D w.r.t knowledge base Σ, which is,

as just been discussed, can be transfomed into ABox consistency problem.

Instance checking problem

The instance checking problem for checking concept assertion C(a) w.r.t

the knowledge base Σ checks that if for all models I of Σ we have aI ∈ CI .
This is also equivalent to there is no model I of Σ that satisfies ¬C(a), or

Σ′ = 〈T ,A′〉 is inconsistent, where A′ = A∪{¬C(a)}. The instance check-

ing problem is then turned into a knowledge base consistency problem.





Chapter 3

Partitioning of Abox in DL

Knowledge Base

3.1 ABox partitioning

3.1.1 Introduction

As we already discussed in previous chapter, one of the most basic reasoning

problem w.r.t ALCHI ABox is the instance checking. Lately, the Semantic

Web are getting more and more of interest and the size of assertionology

is greatly increased; and as the standard in-memory reasoning algorithm

based on loading all the ABox into the memory, as well as the completion

trees used in reasoning, the size of physical memory will soon be inefficient.

There are several works on partitioning/modularizing (e.g. [11]) or on suma-

rization techniques ([9]). In this work we will continues and extend the

approach of ABox partitioning based on ∀-info structure of the terminology

that are proposed in [15].

The idea of the approach is that, considering the problem of checking if

individual a is an instance of concept C w.r.t a knowledge base Σ = 〈T ,A〉,
usually only a small subset of ABox A is needed to do the reasoning (i.e.

Figure 3.1). We only need to load this small subset into the memory instead

of the whole ABox for more efficient usage of physical memory. Thus, the

approach try to extract that small subset from the assertionology, and even

more, divide ABox into smaller inter-disconnected partitions which can be

use for executing the instance checking problem.

17
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Figure 3.1: Irrelevent subset need for inferences on individual a

3.1.2 Forall-info structure of terminology

Considering reasoning problem for instance checking on individual a, and

from the Tableau algorithm discussed in previous chapter we can see that

the expanding process only propagates to new node when there is existential

(∃) or universal (∀) restrictions; and to expands to an existed node in the

ABox, the universal restriction is needed.

Assuming the terminology does not trigger any application for→∀ rule when

applying Tableau algorithm, and since our ABox can only be composed of

the assertion of the type C(a) with C is an atomic concept or negation

of atomic concept, there would be no application for ∀-rule in Tableau

application. That means the label for one node is only deduced from itself,

but not from any other node; thus the instance checking problem for atomic

concept name on individual a will need only node a to get the answer.

Now if we consider TBox containing a universal restriction, i.e. > v ∀R.¬C,

and ABox contains R(b, a). If we carry out the instance checking for a on

concept C, then applying Tableau rules for ∀ on individual b gives us:

(∀R.¬C(b), R(b, a))→ ¬C(a)

This causes a clash (C,¬C) on node a. Thus, the presense of the universal

restriction makes that a and b are both needed for the instance checking

problem, or the connection between a and b is inseparable, and by intuition

we see that a and b should be on the same partition.

From above example, we realize that the info related to universal restriction

extracted from the terminology is needed to carry out the partitioning.

To make the extracting convinient, we assume that all the axioms in the

terminology are in Shalow Normal Form (SNF).
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Definition 2. A concept description C is in Shallow Normal Form (SNF),

if it has the shape C = C1 t C2 t ... t Cn, s.t. each Ci is either

• an atomic concept,

• a negated atomic concept,

• an ∃-constraint ∃R.D, s.t. D is an arbitrary concept description in

negation normal form,

• a ∀-constraint ∀R.D, s.t. D is an arbitrary concept description in

negation normal form.

Lemma 3.1.2.1. Each generalized concept inclusion C v D can be con-

verted into a set S of equivalent concept description in SNF. Equivalent

means that C v D is unsatisfiable iff the conjunction of the formulas in S

is unsatisfiable.([15])

With all the axioms in TBox being in SNF form, we have the following

definition for ∀-info structure.

Definition 3. A ∀-info structure for TBox T is a function f∀T : NR →
P(NC ∪ {¬A|A ∈ NC} ∪ {⊥} ∪ {∗}), s.t., NC(NR) is the set of concept

(role) used in T .The function f∀T is used to manage the ∀-constraints, i.e.

the function assigns to each role name in NR one of the following entries:

• ∅ if we know that there is no ∀ constraint for R in T .

• a subset S of NC ∪{¬A|A ∈ NC}∪{⊥}, s.t. there is no other concept

but those in S, which occurs ∀-bound (i.e. they are subconcepts of a

∀) constraint) on R in T .

• ∗, if there are arbitrary conplex ∀ constraints on role R in T .

([15])

The f∀T function simply extracts the direct sub concept under every ∀
constraints in the T , for example if we have following axiom in T

FatherWithOnlySon v ∀hasChild.Man

which has SNF form

¬FatherWithOnlySon t ∀hasChild.Man
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Then we have

f∀T (hasChild) = {Man}

while in case of following axiom

¬FatherWithGraduatedSon t ∀hasChild.(∃graduatedFrom.University)

then f∀T (hasChild) = {∗} because ∃graduatedFrom.University is a com-

plex concept description.

If T consists of both above axioms, then f∀T (hasChild) = {∗}. The algo-

rithm for calculating the ∀-info structure is illustrated in Figure 3.2.

Figure 3.2: Calculate ∀-info structure

The definition of ∀-info structure is extended w.r.t ontology O as fol-

lowing

Definition 4. A ∀-info structure for ontology O = 〈T ,R,A〉 is a function

f∀O : NR → P(NC ∪ {¬A|A ∈ NC} ∪ {⊥} ∪ {∗}), s.t.

f∀O(R) =

{
∗ ∃S ∈ NR· vR (R, S) ∧ (f∀O(S) = ∗)⋃

RvRS f
∀
T (S) else
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3.1.3 Partitioning of Abox

In order to partition the ABox, we need to evaluate the importance of

a role assertion. We also need to develop a method to split ABox at a

role assertion. Lets say that the importance of a role assertion is its O-

separability, s.t.

Definition 5. Given an ontology O = 〈T ,R,A〉, a role assertion R(a, b)

is called O-separable, if we have INC(O)⇔ INC(〈T ,R,A2〉, where

A2 = A\{R(a, b)} ∪ {R(a, i1), R(i2, b)} ∪ {i1 : C|b : C ∈ A} ∪ {i2 : C|a :

C ∈ A},

where i1 and i2 are fresh individual names.

This definition also proposes a method to split the Abox, such that

if the role assertion is O-separable, then the consistency of the ontology

is preserved. To determine the O-separability, we have following formal

criterion on a role assertion R(a, b), w.r.t. ontology O

Lemma 3.1.3.1. Given an ontology O = 〈T ,R,A〉 and a role assertion

R(a, b) ∈ A, it holds that R(a, b) is O-separable if

1. For each C ∈ f∀O(R)

• C = ⊥ or

• we can find a concept description D ∈ {E|b : E ∈ A}, such that

we have D vT C,

2. For each C ∈ f∀O(R−)

• C = ⊥ or

• we can find a concept description D ∈ {E|a : E ∈ A}, such that

we have D vT C.

Proof for this lemma can be found in [15]. By applying the replacement

for O separable roles as in above definition, we can create the partitioning

of the ABox.

Definition 6. Given an ontology O = 〈T ,R,A〉, let RED(A) be the ABox

computed from A by replacing each O-separable role assertion R(a, b) by

{R(a, i1), R(i2, b)} ∪ {i1 : C|b : C ∈ A} ∪ {i2 : C|a : C ∈ A}, with i1, i2
are fresh individuals. An interconnection based partitioning for A, denoted



22 CHAPTER 3. PARTITIONING OF ABOX IN DL KNOWLEDGE BASE

P (A) = {A1, ..,An}, is built by role-connectedless, i.e. two individuals are

in the same partition iff there exists an explicit role assertion between these

two individuals in RED(A).

Following is an example about partitioning an ontology. Considering

ontology OEX〈TEX ,REX ,AEX〉, where

TEX = {
Chair ≡ ∃headOf.Department u Person
Professor v Faculty

Book v Publication

GraduatedStudent v Student

Student ≡ Person u ∃takesCourse.Course
> v ∀teacherOf.Course
∃teacherOf.> v Faculty

Faculty v Person

> v ∀publicationAuthor−.(Book t ConferencePaper)
}

REX = {headOf v worksFor, worksFor v memberOf,memberOf
.
= member−}

AEX = see Figure 3.3

Figure 3.3: ABox AEX of the example

And we have the partitioning of the Abox AEX after applying the rules

from the definitions is shown in Figure 3.4

Finally, we have the following lemma:

Lemma 3.1.3.2. Denoting Pa(A) the partition containing individual a in

the set of partitioned ABox P (A) of ABox A, and given CON(〈T ,R,A〉),

we have that INC(〈T ,R,A∪{a : C}〉) iff INC(〈T ,R, Pa(A)∪{a : C}〉)([16])
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Figure 3.4: ABox AEX of the example after partitioning

The instance checking problem w.r.t. ontology O now can be executed

by loading Pa(A) only, and not all ABox A as before. And from the exper-

iment results, the size of Pa(A) is significantly smaller than A, especially

when A is big.

3.2 Updating partitioned Knowledge base

The method for partitioning ABox proposed above has been proved to be ef-

fective using practical experimental data. However, one big obstacle needs

to be overcome is the updating problem. As we already discussed, the

ABox is partitioned based on the O-separability of role assertions, and O-

separability is considered based on the ∀-info structure of the terminology as

well as the concept assertions in the assertionology. Thus, updating an on-

tology O might cause one role assertion losing or gaining the O-separability

property, which leads to the changes in the partitioning. To solve this

problem, in the following sections we will propose methods for updating

our partitioned ALCHI ontology. In the first section we will discuss the

method for updating ABox’s concept and role assertion. In the latter sec-

tion, the method for updating TBox axioms and RBox hierarchy will be

mentioned.
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3.2.1 Updating ABox

In the updating ABox, for the convinience we will adopt the Syntactic ABox

Updates from [12].

Definition 7. Let S be the set of assertions in an initial ABox A. Then

under Syntactic Updates, updating S with an ABox addition (respectively

deletion) α, resulting in an updated set of ABox axioms S ′ such that S ′ =

S ∪ α (respectively S ′ = S\α).

In the syntactic updates, there is no consistency cheking when adding

a new assertion, as well as the enforcement of non-entailment when re-

moving. However, systactic updates is computationally easier to handle.

Further more, the consistency checking can be done before the updating

being executed, if needed.

Before going into the details of updating ABox, we need to make some

more refinement to the partitioning to make the updating comfortable be-

cause the current definition for partitioning is not really feasible for adding

or removing of an assertion. The updatable partitioning will be built step

by step throught the following definitions.

Definition 8. Given an ontology O = 〈T ,R,A〉, an ABox Partition for A
is a tuple AP = 〈IN, S〉 such that IN ⊆ Inds(A) and

S = {a : C|a ∈M∧a : C ∈ A}∪{R(a, b)|(a ∈ IN∨b ∈ IN)∧R(a, b) ∈ A},
where M = {a|b ∈ IN ∧ (R(a, b) ∈ A ∨R(b, a) ∈ A)} ∪ IN
And we define πIN(AP ) = IN , and πS(AP ) = S.

Informally speaking, an ABox Partition is composed of two components.

The individuals set IN which contains the core individuals of the partition,

and the assertion set S containing all the assertions needed in the partition.

As depicted in the formula, if a is an individual in IN , then S contains all

the assertions involving a and all the concept assertions involving all the

direct neighbours of a.

Definition 9. Given an ontology O = 〈T ,R,A〉, an ABox Individual Par-

titioning for A is a set P = {ap1, .., apn}, such that each api is an ABox

Partition for A and

1. For each api, apj, (i 6= j) we have πIN(api) ∩ πIN(apj) = ∅

2. Ind(A) =
⋃

i=1..n πIN(api)
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3. A =
⋃

i=1..n πS(api)

The definition simply says that all the partitions has non-intersect core

individual sets, the union of all the core individual sets of all the partitions

is exactly the individual set of A, and the union of all the assertion sets of

all the partitions is the assertion set of A.

Since each individual is assigned to only one ABox partition as core indi-

vidual, we define a function φP : Ind(A)→ P that return the partition for

an given individual a. If a /∈ Ind(A) then φP (a) = ∅.

We already had the partitioning for ABox. Now we will define the

partitioning for the ontology. We also take into account the requirement for

an instance checking problem to be able to execute on only one partition,

which is our main motivation.

Definition 10. Given a consistent ontology O = 〈T ,R,A〉, an Ontology

Partitioning for O is a structure OPO = 〈T ,R, P 〉, where P is an ABox

Partitioning for A such that for each individual a ∈ Ind(A) and each atomic

concept C we have O � a : C iff 〈T ,R, πS(φP (a))〉 � a : C.

To satisfy the requirement defined for Ontology partitioning (the in-

stance checking being executed on only one partition), we use theO-separability

of role assertion to determine the partitioning of A. From the previous sec-

tion, it holds that with the partitioning an ABox based on theO-separability

of role assertions, the instance checking problem can be done with only one

partition; thus applying it here also preserve that property.

Lemma 3.2.1.1. Given ontology O = 〈T ,R,A〉, an ontology partitioning

OPO = 〈T ,R, P 〉 and a role assertion R(a, b) ∈ A, we have that R(a, b) is

O-separable w.r.t A iff R(a, b) is O-separable w.r.t πS(φP (a)) (respectively

πS(φP (b)))

This lemma proposes another convinience for dynamically update an

ABox partitioned by O-separability of role assertions. When adding (re-

moving) an assertion, we can decide if the change makes any role assertion

losing or gaining O-separability, causing the changes in partitioning, by

testing the separability on only one partition, not with the whole ABox.

In the remaining part of this section, we will introduce means to pre-

serve the partitioning of the Ontology under Syntatic ABox Update. We

start from the begining with an empty Ontology (has no assertion in ABox)
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and its corresponding partitioning, and then step by step build up the par-

titioned Ontology by using the two update functions for the Syntatic ABox

Update, the merge function and the reduce function.

First we say that for the empty Ontology O = 〈T ,R, {}〉, the corresponding

partitioning is OPO = 〈T ,R, P 〉 where P = {〈{}, {}〉} ([16])

We have the following formal definition for the two update functions:

Definition 11. The result of the merge operation on a set of ABox Parti-

tions for A, Merge({ap1, .., apn}), is defined as the ABox Partition ap for

A, s.t.

ap = 〈
⋃

i≤n πIN(api),
⋃

i≤n πS(api)〉

Definition 12. The result of the reduce operation on an ABox Partition

for A, Reduce(pa), is defined as a set of ABox Partition {ap1, .., apn} built

as follows:

1. For each R(a, b) ∈ πS(ap) do: if R(a, b) is O-separable, then replace

R(a, b) with {R(a, b∗), R(a∗, b)}∪{a∗ : C|a : C ∈ πS(ap)}∪{b∗ : C|b :

C ∈ πS(ap)}, where a∗ and b∗ are fresh individual names for a and b.

2. Let {ap1, .., apn} be the disconnected partition in ap.

3. Replace each a∗ in each api by a.

4. Replace each b∗ in each api by b.

The merge operation simply merge all the core individual sets and the

assertion sets of all the partitions. The reduce operation, in the other

hand, divides an ABox Partition into smaller partitions based on the O-

separability of role assertions.

We have the algorithm for updating ABox being illustrated in Figure

3.5, which can be informally expressed as following:

Adding a role assertion R(a, b): first we ensure that partitions are existed

for both a and b (if not, create new partition). If a and b are in the same

partition, then the role assertion is just simply added to the partition. If a

and b are in two different partitions, and R(a, b) is not O-separable, then

the two partitions are merged.

Removing a role assertion R(a, b): if a and b are in different partitions, then

the role assertion is just simply removed from both partitions. If a and b

in the same partition, then after removing the role assertion the partition
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need to be rechecked to see if the removal of the role assertion causes the

partition to be reduce-able.

Adding a concept assertion C(a): first we ensure that partition is existed

for individual a. Then we add concept assertion C(a) to the partition of a

(φP (a)), and all the partitions that containing any role assertion for a, to

maintain the data consistency between partitions.

Removing a concept assertion C(a): remove the concept assertion from all

the partitions containing it. After that all the role assertion involving a

need to be O-separability checked. If any of the role becomes inseparable

due to the removal, then the corresponding partitions need to be merged.

Figure 3.5: Updating ABox
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3.2.2 Updating TBox and RBox

Unlike updating ABox, which might cause those partitions relating to one

or two individuals to be merged/reduced, updating TBox or RBox is much

more costly in term of computational resources: the adding/removing of

a concept inclusion might triggers the changes on the whole partitioning.

For example, an addition of a concept inclusion containing ∀ constraint for

role R, might causes the merging/reducing of all the partition involving R,

which, in practical, can involves a big part of the ABox.

Another reason which makes the updating TBox and RBox expensive is that

it involves the instance retrieval problem (i.e. find all the role assertions for

a given role expression R). Our algorithm for Ontology partitioning is based

on the goal of optimizing the instance checking problem while minimize the

data needs to be loaded into main memory. An instance retrival problem,

in another hand, will require to be solved using all the partitions, consum-

ing alot of computational power as well as the capacity of the main memory.

Before going into details of updating TBox, let us consider the concept

taxonomy of the terminology. The taxonomy is critical for our algorithm,

since it is used to determine the O-separability of role assertions. Actually,

computing the exact concept taxonomy from a terminology is as complex as

a reasoning problem itself. Thus in our approach, instead of computing the

exact concept taxonomy, we use an approximate concept taxonomy which

is extracted directly from the axioms in TBox.

Definition 13. A Simple Concept Hierarchy HS of a TBox T is the sub-

sume hierarchy of the concepts in T which can be explicitly deduced from

SNF (T ). In other words, a subsume C v D exists in the hierarchy iff there

exists ¬C tD in SNF (T ).

Simple Concept Hierarchy is a sound subtree of the complete concept

hierarchy, and it is much easier to compute than the complete concept hier-

archy of the TBox. Thus from now on we assume that the concept hierarchy

used in this project is the Simple Concept Hierarchy; and all the inclusion

relations of atomic concepts (v and @) are based on the simple concept

hierarchy.

We also extend the definition of the ∀-info structure, by introducing the

reduced ∀-info structure and extended ∀-info structure.



3.2. UPDATING PARTITIONED KNOWLEDGE BASE 29

Definition 14. A reduced ∀-info structure for ontology O is a function e∀O
which is extend from ∀-info structure f∀O such that for every role R:

e∀O(R) = f∀O(R)\{Ck|∃C ∈ f∀O : C @ Ck}

Definition 15. An extended ∀-info structure for ontology O is a function

g∀O which is extended from reduced ∀-info structure e∀O as following:

• If e∀O(R) = ∗ then g∀O(R) = {〈∗, ∗〉}

• Else If e∀O(R) = ∅ then g∀O(R) = {〈∅, ∅〉}

• Else g∀O(R) = {〈Ci, Sub(Ci)〉}, with Ci ∈ e∀O(R), and Sub(Ci) is the

set of all the concepts that Ci subsumes in the simple concept hierarchy

HS.

We also denote πC(g∀O(R)) ≡ {Ci}, the set of all Ci appears in {〈Ci, Sub(Ci)〉}
(which is e∀O(R)); and πSub,Ci

(g∀O(R)) ≡ Sub(Ci).

Informally speaking, the reduced ∀-info structure contains only the bot-

tommost concepts of the concept hierarchy branches that appears in f∀O,

w.r.t. the simple concept hierarchy. In the other hand, extended ∀-info

structure is a set, each element of which is a tuples of a concept in e∀O and

the set of all the children of that concept, w.r.t. the concept hierarchy.

We have the following important property of the reduced and extended

∀-info structure, concerning O-separability of role assertions.

Lemma 3.2.2.1. Given an ontology O = 〈T ,R,A〉 and a role assertion

R(a, b) ∈ A, it holds that R(a, b) is O-separable if

1. For each C ∈ e∀O(R)

• C = ⊥ or

• we can find a concept description D ∈ {E|b : E ∈ A}, such that

we have D v C,

2. For each C ∈ e∀O(R−)

• C = ⊥ or

• we can find a concept description D ∈ {E|a : E ∈ A}, such that

we have D v C.
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Proof. This lemma is almost the same with the lemma 3.1.3.1 in previous

section. The only differences are in the set of considered concepts. From the

definition of reduced ∀-info structure, we have e∀O(R) ⊆ f∀O(R). Thus, there

are some concept being considered in lemma 3.1.3.1, but not here. However,

we will prove that those concepts also satisfy the separability condition, if

the separability condition is hold in lemma 3.2.2.1.

Consider Ci is any of those unconsidered concepts, we have Ci ∈ f∀O(R)

and Ci /∈ e∀O(R). From the definition of reduced ∀-info structure we have

∃C ∈ e∀O(R) : C @ Ci. Since the separability condition is hold in lemma

3.2.2.1, ∃D ∈ {|b : E ∈ A}, s.t.D v C; which also means D v Ci, hence Ci

satisfies the separability condition.

Lemma 3.2.2.2. Given an ontology O = 〈T ,R,A〉 and a role assertion

R(a, b) ∈ A, it holds that R(a, b) is O-separable if

1. For each C ∈ πC(g∀O(R))

• C = ⊥ or

• we can find a concept description D ∈ {E|b : E ∈ A}, such that

we have D ∈ πSub,C(g∀O(R)),

2. For each C ∈ πC(g∀O(R−))

• C = ⊥ or

• we can find a concept description D ∈ {E|a : E ∈ A}, such that

we have D ∈ πSub,C(g∀O(R)),

Proof. This lemma can easily be proved using lemma 3.2.2.1 and the def-

inition of extended ∀-info structure. We have πC(g∀O(R)) ≡ e∀O(R), thus

D v C;C ∈ e∀O(R)⇔ D ⊆ πSub,C(g∀O(R));C ∈ πC(g∀O(R)).

Now we come back to the problem of updating TBox and RBox. As

we discussed in previous section, updating ABox assertions can lead to the

merging/reducing involving one or two specific partitions identified by the

individuals in the updated assertions, while updating in TBox and RBox

rather causes the merging/reducing in many pairs of partitions involving

a certain set of role names. More formally speaking, updating w.r.t TBox

and RBox can affects a set of role UR, such that for each R ∈ UR, and

all individual pairs {a, b}, s.t.R(a, b) ∈ A, the status of the role assertion

R(a, b) might be changed (separable to inseparable or vice versa). We call

these role set UR the changable role set, and each R ∈ UR changable role
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The following lemma proposes the relation between extend ∀-info structure

and the changable role.

Lemma 3.2.2.3. Given an ontology O = 〈T ,R,A〉. A role name R is

changable w.r.t. an terminology update only if there exists changes in the

extended ∀-info structure of R (g∀O(R)). An extend ∀-info structure for role

R is called have changes if, after the update, πC(g∀O(R)) changes (has new

elements or lost elements), or for any Ci, πSub,Ci
(g∀O(R)) changes (has new

elements or lost elements).

Proof. This lemma can be directly derived from Lemma 3.2.2.2. In the

Lemma 3.2.2.2, the separability of a role assertion depends on the concept

assertions in ABox and the extended ∀-info structure. Since we have no

change in g∀O(R), and also no change in ABox assertions as well, there is no

change on the separability of role assertions on role R.

From above lemma, we can have the following algorithm for updating

TBox and RBox:

• For each role R in new terminology T ∗, calculate g∀O(R) before up-

dating and g∀O∗(R) after updating.

– If(g∀O(R) 6= g∀O ∗ (R)) then UR = UR ∪R

• For each R ∈ UR, and for each R(a, b):

– IfR(a, b) isO-separable but notO∗-separable then P = P\{φP (a), φP (b)}∪
Merge(φP (a), φP (b))

– IfR(a, b) is notO-separable butO∗-separable then P = P\φP (a)∪
Reduce(φP (a))

(*) O∗-separable is denoted for separable with respected to new Ontology (after update),

while O-separable is denoted for separable with respected to old Ontology.

Following we will consider specific cases of updating TBox, and the

effects they make to the extended ∀-info structure.

Updating TBox - concept inclusions

Updating TBox by adding/removing a concept inclusion might causes changes

to the g∀O because
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• if the concept inclusion adds A v B to the Simple Concept Hierachy

HS, and since the extended ∀-info structure g∀O is built based on HS,

there probably have changes in g∀O.

• if the shallow negation form of the added concept inclusion contains

one (or more) ∀-bound for a roleR that doesnt existed in the old termi-

nology (or does not exist in updated terminology in case of removing

concept inclusion), then there is changes in the ∀-info structure of

the terminology, which also probably causes changes in the extended

∀-info structure.

Thus, instead of recalculating the extend ∀-info structure, if we know that

the update is of a concept inclusion, then we just need to extract the info-

mation from the added/removed concept inclusion itself to check if it will

cause changes in the g∀O.

Before go into details how to decide the udpate role set from the added/

removed concept inclusion, we introduce some useful definitions.

Definition 16. A ∀-info structure for a concept inclusion C v D w.r.t

O, written as f∀CvD,O, is a function that assigns to each role name R in

SNF (C v D) one of the following entries:

• ∅ if we know that there is no ∀ constraint for R in SNF (C v D).

• a set S of atomic concept or negation atomic concept, s.t. there is no

other than those in S that occurs ∀-bound on R in SNF (C v D).

• ∗, if there are arbitrary complex ∀ constraints on role R in SNF (C v
D).

This definition is literally similar to the definition of the ∀-info structure

stated in section 3.1.2, but for only one axiom. From this, we also define

the reduced ∀-info structure for a concept inclusion w.r.t. ontology O and

extended ∀-info structure for a concept inclusion w.r.t. ontology O in the

same manner

Definition 17. A reduced ∀-info structure for a concept inclusion C v D

w.r.t. ontology O is a function e∀CvD,O which is extend from ∀-info structure

f∀CvD,O such that for every role R:

e∀CvD,O(R) = f∀CvD,O(R)\{Ck|∃C ∈ f∀CvD,O : C @ Ck}
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Definition 18. An extended ∀-info structure for a concept inclusion C v D

w.r.t. ontology O is a function g∀CvD,O which is extended from reduced ∀-info

structure e∀CvD,O as following:

• If e∀CvD,O(R) = ∗ then g∀CvD,O(R) = {〈∗, ∗〉}

• Else If e∀CvD,O(R) = ∅ then g∀CvD,O(R) = {〈∅, ∅〉}

• Else g∀CvD,O(R) = {〈Ci, Sub(Ci)〉}, with Ci ∈ e∀CvD,O(R), and Sub(Ci)

is the set of all the concepts that Ci subsumes in the simple concept

hierarchy HS.

And we have the following detailed algorithm for calculating the update

role set in case of adding/removing a concept inclusion:

• Adding a concept inclusion C v D

– For each A v B that is added to the concept hierarchy:

∗ for any role R that B ∈ g∀O(R), UR = UR ∪R

– For each R s.t. g∀CvD,O∗(R) 6= ∅ ∧ g∀CvD,O∗(R) * g∀O(R), UR =

UR ∪R

• Removing a concept inclusion C v D

– For each A v B that is removed to the concept hierarchy:

∗ for any role R that B ∈ g∀O(R), UR = UR ∪R

– For each R s.t. g∀CvD,O∗(R) 6= ∅ ∧ g∀CvD,O∗(R) * g∀O∗(R), UR =

UR ∪R

Here we denote O the ontology before updating and O∗ the ontology after

updating.

Updating RBox - role inclusions

Adding/removing a role inclusion has a quite obvious effect: it might change

the role hierarchy. Since the ∀-info structure of the Ontology is calculated

using role taxonomy, this will make the ∀-info structure, and also the ex-

tended ∀-info structure, to change. Following is the details algorithm for

determining the udpate role set

• Adding a role inclusion R v S
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– if g∀O(S) * g∀O(R) then for all sub role V of R (V v R), UR =

UR ∪ V

• Removing a role inclusion R v S

– if g∀O(S) * g∀O∗(R) then for all sub role V of R (V v R), UR =

UR ∪ V

Updating RBox - role inverses

Adding/removing a role inverse, on the other hand, might change the ∀-
bound for both roles involving in the role inverse. This causes the changes

for the ∀-info structure of the both roles, which also alters their extend ∀-
info structure, thus we have following algorithm for calcualting update role

set

• Adding a role inverse pair R = Inv(S)

– for all role V v R, UR = UR ∪ V

– for all role W v S, UR = UR ∪W

• Removing a role inverse pair R = Inv(S)

– for all role V v R, UR = UR ∪ V

– for all role W v S, UR = UR ∪W

3.3 Reasoning with partitioned Knowledge base

In this paper, we consider following basic reasoning problems w.r.t. Descrip-

tion Logics: the concept subsumption problem, and the instance checking

problem for concept assertion and role assertion.

For concept subsumption problem, it can be done without being concerned

about the ABox. We can do the reasoning on any partition.

For role assertion checking, i.e. checking of R(a, b), the reasoning can be

done on the partition containing either a or b. Since we dont allow complex

role in ALCHI, it is quite simple to execute this inference.

The biggest concern with reasoning w.r.t. partitioned knowledge base is

the instance checking for concept assertion. With atomic concept assertion,

C(a), it is already shown that the checking can be done on the partition

containing a alone, using normal tableau algorithm. However, we want to

be able to perform the checking also in the case of C being some arbitrary
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complex concept (i.e. we want to check john : Manu∀hasChild.Man). For

this kind of checking, we will need to merge several partitions in order to

do the reasoning. However, in this thesis we will not propose a method for

finding the exact minimal set of partitions needed for reasoning, but rather

a set of partitions which are easy to determined and relevant for solving the

problem.

Let say our instance checking problem is performed w.r.t. ontology O =

〈T ,R,A〉, with the partitioning OPO = 〈T ,R, P 〉, where P is an ABox Par-

titioning for A. We transform our problem into knowledge base consistency

problem for O′ = 〈T ,R,A ∪ {¬C(a)}〉, and execute Tableau algorithm,

starting at the partition of a: φP (a). Whenever the application of Tableau

algorithm goes outside the current partition, we merge the other respective

partition into current partition, and continue expanding the competion tree.

Lemma 3.3.0.4. If during expanding the compeltion tree, there is a merging

of two partitions on role assertion R(x, y), then there exists ∀ constraint of

R in ¬C.

Proof. If there is merging at R(x, y), meaning R(x, y) changes from O-

separable to O-inseparable when we add ¬C(a) to the ABox, there must

exists changes in the ∀-info structure of R. Since there is no change in the

terminolgy, then the change is causes by the presence of ¬C. This means

there must be ∀ constraint of R in ¬C.

We will use this result to determine which partitions need to be merged.

We start with the partition of a, Pa, and merge any partition that are

separated with Pa by a role assertion R(x, y) with R has ∀ constraint in

¬C and any pair {x, y}. The merging then is recursively executed, until

there is no more partition needed to be merged. After this procedure,

the resulted partition is the partition that is relevant for solving the given

instance checking problem. Notice that because we exhaustedly merged all

the relating partitions, the resulted partition is not the minimal solution.





Chapter 4

Distributed Storage System for

DL Knowledge bases

4.1 Extending problem of Knowledge bases

In the previous chapter, the algorithm for partitioning ABox based on O-

separability of role assertions was already discussed in details. The main

objectives of the algorithm is to avoid making main memory overloaded

when working with relatively large knowledge base. The main result of the

proposed algorithm is the dividing the assertionology into many small par-

titions such that only some of those are needed when solving a reasoning

problem.

Further developing the idea, seeing the trend of increasing size for Descrip-

tion Logics Knowledge Base systems that can exceed the storage capablility

of a single computer, and the possible demand for decentralizing the Knowl-

edge Base system, we carried out a reaseach on developing a distributed sys-

tem for storing the DL Knowledge Base data. The idea is rather simple: the

small partitions created from partitioning ABox is grouped and distributed

to storage nodes. Here we need a system to manage the distribution, and

even more, to provide the capability of performing the Knowledge Base up-

dating, introduced in previous chapter, distributedly.

We have developed a software system implementing above idea. In this

chapter, the overall structure as well as the details implementation design

of the system will be clearly illustrated.

37
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4.2 Overall system components

Our system consists of a server and a set of nodes, as illustrated in Figure

4.1. The main task of the server is to manage all the nodes, distribute

Figure 4.1: System architecture

the partitions on nodes, as well as receiving and scheduling the works re-

quested from user. In the other hand, each node manages its own set of

partitions using a database management system, and provides certain ser-

vices to server. Since we only partition the ABox, and the size of TBox is

much smaller compared to Abox, every partition contains a full version of

the terminology. The terminology is also hard stored on the server, so that

any request for TBox reasoning can be solved on server without requesting

nodes’ service.
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4.2.1 The Server

Server partition manager

Server partition manager component on the server provides all the utility

methods involving the partitions on the nodes. Some of the basic functions

it provides are moving partition from node to node, adding a partition to a

node, find the partition containing a given individual, etc. Server partition

manager also provides methods for working directly on assertions, such as

deleting or adding an assertion to a partition. Normally, these methods on

assertions simply add/delete the assertion to the corresponding partition

on the correct node without checking for repartitioning, assuming that the

checking is done beforehand and these assertions cause no repartitioning of

the ABox.

Server index service

Server index service monitors the id mapping as well as manages the termi-

nology on the server. The id mapping is the mapping between the full uri

naming of individuals, concept names and role names with an unique iden-

tifier. This mapping is stored in the database on the server, and is loaded

by server index service component everytime the server is up and running.

The terminology, including concept inclusions, role inclusions (role hierar-

chy), and role inverses is also stored in the database on the server. Server

index service loads the terminology from database when the server is started,

after loading the idmap so that all the concepts and roles can be indenti-

fied.

Another important function of the server index service is to provide the

mapping between core indidividuals and nodes. This allow users or other

services to be able to indentify the node that contains the partition having

a specific individual as core individual. This mapping is not hard stored on

the server, but is initialized when the system starts. Whenever a node is

up, it connects to the server and send its set of individuals. The mapping

on the server is built from those set and is stored in the main memory.

Server update service

Server update service component is to provide users the functionalities of

updating the knowledge base. Upon given an update request, this compo-

nent execute certain parts of the request, using the support from Server

partition manager and server index service. For the parts which need the
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information from specific nodes, it invokes the corresponding node update

service to do the work.

For each type of updating, the parts that are done on server and the parts

that need to be done on node will be discussed in more details in later

sections.

Server query service

This component provides users the query service. If the query concerns only

terminology reasoning, then it will be executed only on the server. Other

than that, the node query service will be invoked as needed.

4.2.2 The Node

Partition manager

The partition manager on each node manages all the operations on parti-

tions, such as adding, deleting, etc. It also supports two important meth-

ods on partitions: merging and reducing. Unlike reducing which can be

performed solely on a node, the merging might need partitions from other

nodes, in that case the request for moving partition will be sent to the server

partiton manager.

Index service and partition storage

These components are the parts of the node that connect directly to the

database. The partition storage manages all the partitions in the database

and allows other component to retrieve the partition given the partition’s

id. One important property of the partition storage is that it maintains the

number of the partitions loaded into main memory (as a cache) to speed up

the accessing to those partitions, while also prevent the memory from being

overloaded.

The index service component, in the other hand, mapping each individual

to its partition. It is also the only component that can directly access to

the partition storage. All the requests from other components to partition

storage have to go through the index service.
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Partition transmitter and receiver

As the name implied, a partition will be transfered to other node by par-

tition transmitter component if there is a request from partition manager

component. The partition arrives at the destination’s partition receiver and

is added to the partition storage via index service afterward.

Node update service

The node update service do its part of updating which are passed down by

server update service. The node update service component uses functional-

ities provided by partition manager and index service when needed.

Node query service

The node query service do its part of querying which are passed down by

server query service. The node query service component uses functionalities

provided by partition manager and index service when needed.

4.3 System Implementation Design

Our system is implemented based on an on-developing description logics

representation infrastructure, adding more functionalities, and performing

decentralization using the system architecture mentioned above. The details

about implementation will be described in following sections.

4.3.1 Description Logics representation

To represent the description logics individuals, concepts or axioms, a Java

based infrastructure was already implemented. The classes diagram for this

system can be found in Appendix A.

Besides that, an implementation for centralized partitioning ABox based

on ∀-info structure is under development, and is already tested with LUBM

data, as depicted in [16].

4.3.2 Network Implementation using RMI

Network communication is always the first concern when developing dis-

tributed system. In our system, we decide to use RMI - Remote Method
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Invocation, a java based simple remote interface between different JVMs.

RMI, at the most basic level, is Java’s remote procedure call (RPC) mecha-

nism, however it has many advantages over traditional RPC, some of which

are:

• Object Oriented: Besides predefined data types, RMI can also pass

object as the parameter or return value to the remote method directly

without needs of extra code in server and client to marshal/unmarshal

data.

• Dynamic Code Loading: RMI has capability to download the defi-

nition of an object’s class if the class is not defined in the receiver’s

JVM. That means all the types and behaviors of an object, previ-

ously only available for a single JVM, can be transmitted to another,

possibly remote, JVM.

• Security: Using java built-in security mechanism, RMI guarantees

the security of the server when users load class implememtation. The

rights applied for all the connection are defined in the policy file of

the server, and managed by security management.

• Thread based: The RMI remote interface is totally thread-based, with

the utilization of thread pool. This allow better processing time with-

out wasting resources.

• Distributed Garbage Collection: RMI has a distributed garbage col-

lection that free the objects that has no reference from remote JVM.

RMI distributed application

A RMI application is often composed of two components: a server and a

client. Basically, the server creates objects implementing the services it

offers, and makes the objects accessible by the client. The client, when

requestting for services, obtains a reference to one of those objects and in-

vokes its methods.

The Figure 4.2 illustrated the scenario of a RMI application. The server

call the RMI Registry to associate (bind) a name with a service object.

The client later obtains the service object by looking up by its name in the

server’s RMI registry, and invokes the methods in the object. In the figure,

a webserver is used to stored the class definition to be loaded by client and

server. In real system, this webserver can be any place accessible by both



4.3. SYSTEM IMPLEMENTATION DESIGN 43

client and server.

In the RMI application, an object that has methods to be invoked re-

Figure 4.2: RMI distributed application

motely is a remote object, and the methods are called remote methods. An

object becomes remote object if it implements a remote interface, which

has following characteristics:

• A remote interface is a sub interface of java.rmi.Remote.

• Every remote methods in the interface must declare java.rmi.RemoteException

in its throws clause.

The remote method is, when invoked, not performed on client but on the

server. The invocation is passed from client to server using skeleton-stub

mechanism.

A remote object, when being deployed, is compiled by RMI and result

in a skeleton-stub objects pair. When the client requests for the service,

it receives the stub. The stub acts as the local representative, or proxy,

for the remote object. It implements the same remote interfaces that the

remote object implements, yet not the real implementation but forwarding

everything to skeleton to be perfomed on the server.

RMI Security policy

The security of the remote access on the server is managed using a Security

Manager. There are several ways to specify the security policy, one of

which is to define them in some policy files, and load them upon running

application.
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Figure 4.3: RMI skeleton-stub architecture

4.3.3 Multi thread based

Our system aims to be not only an extendable distributed Description Log-

ics knowledge base storage system, but also a services provider that offers

multiple updating, multiple retriving and also reasoning services. With the

scalability in mind, we have designed the system totally thread based so

that it can serve multiple requests. Also, the whole system architecture

allows the number of data storage nodes to be extended easily.

Every remote service in our system has the structure as illustrated in Fig-

ure 4.4. To manage the threads, we use a so called thread pool, with a fixed

number of working threads. These working threads get the task (Runnable

object) from a queue. The main service thread puts a new task in the queue

when receiving a request from client, creates a new handler for the task, and

returns the handler to client. The handler, which is also a remote object,

provides methods allowing users to wait until the work finishs, retrieve the

result, etc., remotely.

The thread pool is created and managed by the main service thread. It

maintains a list of working threads to perform the work. Each thread takes

a new task from the queue when finishing previous task. When there is no

task in the queue, the threads go into sleep, and are waken up when new

tasks go in the queue.
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Figure 4.4: Structure of remote service

Refering to Figure 4.1, the components that implement this structure are:

• Server Update Service

• Server Query Service

• Server Partition Manager

• Node Update Service

• Node Query Service

• Partition Manager

4.3.4 Plugable implementation for services

During the development of the system, we saw the possibility of existing

many different algorithms for updating the assertionology as well as termi-

nology, and even for partitioning of knowledge base. From that, we decided
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to design the application so that it is easy to extend the application with

adding new algorithms. The simplified design is depicted in the figure 4.5.

We defined one interface and one abstract class, which are to be imple-

Figure 4.5: Plugable design for algorithms

mented by the implementation of the new algorithm. The implementation

should include:

• One index class implementing the IAlgorithmIndex interface, and

return the full qualified name for the service class of the algorithm,

given the command input from users or external system.

• A set of algorithm classes extending AbstractAlgorithm. Each of

these class is corresponding to a command which is given as the input

to the index class to get full qualified name. This full qualified name is

then used to create an instance of the algorithm class. Each algorithm

class implements its services in the doWork method, which will be

called by the system.

We can make a simple example here to illustrate the implemetations

for the index interface and the algorithm class. Consider a developer want

to create his own set of algorithm for updating, then he has to create his

index class, named MyIndex, and a set of update algorithm class, one of

them named MyAddCA, both are in the package myalgorithm. The class

MyIndex needs to define a set of command for all the algorithm classes, i.e.

”Add concept assertion” for the algorithm class MyAddCA, and implement

the method getFullName to return the full qualified name of the algo-

rithm class, given the corresponding command. This means the method in-

vocation getFullName("Add concept assertion") will return the string

myalgorithm.MyAddCA. The system can use this string to create the algo-

rithm instance, and invokes the doWork method.
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This design allows developer to add new algorithm by simply implementing

his index class and algorithm classes, then specify the full qualified class

name of the index class to the system. The system does not need to be shut

down to perform the changes.

4.3.5 Database

The database of the system is divided into two main parts: one is on the

server, storing the terminology of the knowledge base and the id mapping,

and the other part is distributed among nodes, containing data about as-

sertionology.

Database for Server

Figure 4.6: Server database

The database designed for the server is relatively simple. The most com-

plex part in the terminology are the concept inclusions, which are possibly

composed of a large combination of concept expressions. However, real im-

plementation for that combination in the database is really complicated and

the retrieval of an inclusion might need to join many tables, which is costly.

To avoid that, instead of designing a database model for conjunction, dis-

junction, etc., we decide to store the whole complex concept description as
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a single preformatted string so that it can be parsed into a complete conplex

description. For example, if we have a concept inclusion

Father v ∀hasParent.(Man tWoman) uMan

we can store it in the database as a string Father in the leftCE table field

and FORALL:hasParent:(:Man:OR:Woman:):AND:Man in the rightCE table

field. The stored strings are loaded by the server when needed, are validated

and intergrity checked before being ready to be used.

The table idmap is used to map between an id number and a name

string. The name string, being unique, can be the name of an individual, a

concept or a role. This table containing the name-id mapping for the whole

system. We have to notice here that in our system, the names need to be

unique for all individuals, concepts and roles.

Database for Node

Figure 4.7: Node database

Since the assertions in the assertionology are only in simple form (i.e.

C(a), C is atomic concept or negation of atomic concept, or R(a, b) with R
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atomic role or inverse of atomic role), it is really simple to store them in the

database. The only integrity constraints on the database is the existance of

the id for individual/concept/role in the idmap table on the server. How-

ever, it is a complex issue when checking for integrity distributedly using

database built-in mechanism, so here we ignore the integrity constraints on

the table, and perform the validation in the application level instead.

4.4 Algorithm Implementation

4.4.1 Distributedly updating ABox

In this section we will discuss more details about performing the different

types of updating in our distributed system.

Adding a concept assertion

From chapter 3, we have the algorithm for adding a concept assertion C(a)

is as following:

1. If φP (a) = ∅ then add 〈{a}, {}〉 to P .

2. πS(φP (a)) = πS(φP (a)) ∪ {a : C}

3. For each api ∈ P do: if a ∈ Ind(πS(api)) then πS(api) = πS(api)∪{a :

C}

4. P = P\{φP (a)} ∪Reduce(φP (a)).

As we can see, the step 1,2 and 4 can be done solely on partition φP (a).

The step 3, in contrast, needs to be executed on all the partitions that

contain any assertion involving a. From the definition of partitioning al-

gorithm, we know that if a partition api contains any assertion involving

a, then either a is a core individual of api, or there must exists an indi-

vidual b, s.t. b is the core individual of api and there exists a role R that

(R(a, b) ∈ A) ∨ (R(b, a) ∈ A). So, from the partition of a, we look for all b

that is not core individual of φP (a) and there exists a role assertion involv-

ing a and b. These b will be the core individuals of the partitions needed to

be updated, which we call the external partitions of φP (a) w.r.t a

Then we have the following steps for performing the algorithm on our sys-

tem:
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1. When server update service receives an update request w.r.t. adding

a concept assertion C(a), it finds the node containing the partition

for a and forwards the request to the node update service.

2. The node update service add the concept assertion into the correct

partition, as well as all the external partitions of that partition w.r.t

a.

3. The node update service request the partition manager to reduce the

partition φP (a).

Removing a concept assertion

We have following algoritgm for removing a concept assertion from previous

chapter:

1. πS(φP (a)) = πS(φP (a))\{a : C}

2. For each api ∈ P s.t. a ∈ Ind(πS(api)) then πs(api) = πs(api)\{a : C}

3. For each R(a, b)φP (a), if R(a, b) is not O-separable then

P = P\{φP (a), φP (b)} ∪ {Merge(φP (a), φP (b))}

4. For each R(b, a)φP (a), if R(b, a) is not O-separable then

P = P\{φP (a), φP (b)} ∪ {Merge(φP (a), φP (b))}

Unlike in the case of adding a concept assertion, in this case only step 1 can

be done solely on the partition of a. The step 2, where the update needs

to be executed on all the external partitions of φP (a) w.r.t. a, can also be

done as in the case of adding concept assertion. However, the steps 3 and

4 will require merging this partition with some other partitions, even the

partitions from other nodes which will trigger transferring partitions from

node to node.

We have the update is done as following steps:

1. When server update service receives an update request w.r.t. removing

a concept assertion C(a), it finds the node containing the partition

for a and forwards the request to the node update service.

2. The node update service remove the concept assertion From the cor-

rect partitioin, as well as all the external partitions of that partition

w.r.t a.
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3. The node update service test the O-separability of every roles involv-

ing a in φP (a), and ask the partition manager to merge partitions as

needed.

Adding a role assertion

The algorithm for adding a role assertion from the last chapter is as follow-

ing:

1. If φP (a) = ∅ then add 〈{a}, {R(a, b)}〉 to P .

2. If φP (b) = ∅ then add 〈{b}, {R(a, b)}〉 to P .

3. If φP (a) = φP (b) then πS(φP (a)) = πS(φP (a)) ∪ {R(a, b)}

4. Else If R(a, b) is O-separable w.r.t. πS(φP (a)) then

a) Add R(a, b) to πS(φP (a)) and to πS(φP (b))

b) Add {b : C|b : C ∈ πS(φP (b))} to πS(φP (a))

c) Add {a : C|a : C ∈ πS(φP (a))} to πS(φP (b))

5. Else

a) Add R(a, b) to πS(φP (a))

b) P = P\{φP (a), φP (b)} ∪ {Merge(φP (a), φP (b))}

We can easily see that the problem in case of adding role assertion is not

as simple as in case of concept assertion, since it might involves with two

different partitions, and in worse case, of the two different nodes. Thus, we

will perform the steps 1,2,3 and also the separability testing on the server.

The corresponding node only executes the updating in steps 4 and 5. The

details are as following:

1. When server update service receives update request for adding role

assertion R(a, b), it creates new partition if needed and requests to

add it to a node.

2. If the two partitions for a and b are the same, then server update

service request server partition manager to add the role assertion to

the corresponding partition.

3. Else, server update service test the O-separability of R(a, b) w.r.t.

φP (a), and forwards update work to node of b and node of a.
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4. Each node update service check for the separability passed from server,

and execute the update part corresponding to it.

Removing a role assertion

The algorithm for removing a role assertion is

1. If φP (a) 6= φP (b) then

a) πS(φP (a)) = πS(φP (a))\{R(a, b)}

b) πS(φP (b)) = πS(φP (b))\{R(a, b)}

2. Else

a) If R(a, b) is O-separable w.r.t πS(φP (a)) then

• πS(φP (a)) = πS(φP (a))\{R(a, b)}
• πS(φP (b)) = πS(φP (b))\{R(a, b)}

b) Else P = P\{φP (a), φP (b)} ∪Reduce(Merge(φP (a), φP (b)))

Same as the case of adding role assertion, removing role assertion also in-

volving updating on two partitions, and part of work will be done on the

server before forwarding to nodes.

The steps for removing role assertion are as following:

1. When receive the removingR(a, b) request, server update service check

the two partitions for a and b.

2. If the two partitions are not the same then server update service re-

quests server partition manager to remove the role assertion from 2

partitions.

3. Else, if the role assertion isO-separable then the updating is forwarded

two the nodes that containing the two partitions. If not, the work is

only forwarded to the node of a.

4. The node do the updating.

4.4.2 Distributedly updating TBox

As we discussed from previous chapter, the updating for TBox is much more

costly than updating ABox since it can involve changes on every partitions.

From the algorithm for updating
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1. For each R ∈ T , calculate g∀O(R) before updating and g∀O ∗ (R) after

updating.

• If(g∀O(R) 6= g∀O ∗ (R)) then UR = UR ∪R

2. For each R ∈ UR, and for each R(a, b):

• IfR(a, b) isO-separable but notO∗-separable then P = P\{φP (a), φP (b)}∪
Merge(φP (a), φP (b))

• IfR(a, b) is notO-separable butO∗-separable then P = P\φP (a)∪
Reduce(φP (a))

We can see that it is rather simple to divide the works between server and

node. The steps are as following:

1. When server udpate service receives request for updating terminology,

it calculate the update-role-set base on the information from termi-

nology. Then it forwards this set to every nodes.

2. Every nodes checks every role in the set to see if there is any partitions

need to be merged or reduced.

4.4.3 Distributedly reasoning

The reasoning service for our system is not much different from the algo-

rithm proposed in previous chapters.

• If the query is terminological reasoning, it is done on the server.

• If the query is instance checking problem, it is forwarded to node.

Node query service execute the reasoning using algorithm proposed in

previous chapters. If there is a need of merging partitions, it ask the

partition manager to carry out the merging.

4.4.4 Partitions allocation mechanism

An important aspect needed to be considered in the implementation of our

system is the partitions allocation policy. This is a policy concerning with

• choosing a node to store a newly created partition.

• choosing the node to store the newly partition which are merged from

different partitions from different nodes.
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The main objective in designing a policy is to minimize the network com-

munication, that is, trying to allocate the partitions so that all the merging

operations will involve only the partitions on the same node. However,

this totally depends on the application domains of each Descripion Logics

Knowledge Base.

In our application, we implemented a simple policy that

• places a newly created partition on the node that has the least number

of core individuals.

• places the merged partition on the node that

– contains the individual a if the merging is triggered by updating

concept assertion C(a)

– contains the invididual a if the merging is triggered by updating

role assertion R(a, b)

– appears first in the nodes list managed by the server, if the merg-

ing is triggered by updating terminology, since this updating af-

fect all the partitions.

This policy somehow guarantee the equally distribution of the data in the

nodes, but not satisfy the main objective of minimizing the network com-

munication. However, as we stated before, to develop a suitable policy for

a Knowledge Base needs a deep researching on its application domains.



Chapter 5

Evaluation

5.1 System performance

We have tested our system on a real test data. The first testing system is

composed of a server and 3 nodes, all being run in one laptop. The test data

is the LUBM with 1 university and 1 department, and the total number of

assertions in the data is 5738. After running the test several time, we got

the average time needed to load all the data is around 200 seconds, which

means it can load approximately 30 assertions per second. This seems to be

slow, since the localized implementation for our update algorithm can load

from 200-500 assertions per seconds, and the approach in [11] can load up

to 1000 assertions per seconds.

To find out what is the reason that makes the system running slow, we have

perfomed profiling the system, using JProfiler. The overall usefull running

time on the whole system (the waiting time of the working threads are ex-

cluded) is listed in the table 5.1. Here, the real process is the time system

Real process Database process Network process
seconds 65.966 4.63 129.404

% 32.98% 2.32% 64.70%

Table 5.1: The time usage in the system

really worked on the actual algorithm about updating, partitioning, etc.

The database process time is the total time used for accessing database,

and the network process time is the time needed for network communica-

tion between nodes. It shows in the table that the network communication
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is really costly; it takes more than 60% of the total processing time, while

the real processing time takes only 33%.

We also notice that the database accessing time is really small: only around

4.6 seconds, which is 2.32% total time. This is because in our system, al-

most all the database accessing is running in the background.

Considering only the real processing time, we will have that our system is

capable of loading around 100 assertions per second. This is closer to the

centralized implementation. However, we also need to notice that in our

system, we introduced the implementation for updating terminology, which

is much more time consuming comparing to updating assertionology only.

We also ran the testing on the same data with the different number of

nodes. In the table 5.2, the times need to load all the data using 3 nodes,

4 nodes, 5 nodes and 6 nodes are listed.

3 nodes 4 nodes 5 nodes 6 nodes
time(ms) 200437 209441 216146 223682

Table 5.2: Times for using different number of nodes

As we expected, increasing number of nodes used will increases the time

needed to load the test data. This is caused by the increasing number of

network communications, the most costly part of the system.

After testing with different number of node, we tested with the same

number of nodes (3 nodes) but with different loading data (different univer-

sities and deparments in LUBM). The result is shown in the table 5.3. We

can see that the time needed for loading the data is somehow linear with

the number of assertions need to be loaded.

n assertions 3985 4499 4979 14407
time(s) 142.047 160.328 178.89 510.188

Table 5.3: System performance when loading different test data

There is also a big factors that we need to take care of. The test data

we used, LUBM, has a very simple ∀-info structure. This leads to the fact

that there are not many O-inseparable role assertions in the assertionology,

and so there are not many merging/reducing on the network. Considering

another test data with a lot of merging/reducing during the loading, the
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time will greatly increase because of the possible suddenly large number of

network communications and also database accessing.

From the data we collected about loading times using different number

of nodes, we can see that increasing number of nodes used has slightly bad

effect on the performance of the system. Thus, the number of node needs

to be well considered, and new node should be added only when necessary.

5.2 Data distribution

Besides system performance, another factor we want to evaluate is the dis-

tribution of the data among nodes. The data collected using 3 nodes is

listed in the table 5.4.

As we already stated in previous section, our test data did not trigger

Node Total Partitions Total Assertions Assertions/partition min max
1 518 6089 11.7548 3 72
2 518 6822 13.1699 3 1596
3 518 5702 11.0077 3 77

Table 5.4: Partitions and assertions distribution among 3 nodes

many merging/reducing of the partitions, and because of our partition allo-

cation policy, the number of partitions in the 3 nodes are somehow equally

distributed.

The table also shows that we have a lot of stored assertions on the 3 nodes

(18613) comparing to the test data, which has only about 6000 assertions.

This is because we have alot of partitions created from test data, providing

there is not many O-inseparable role assertions. This factor was also men-

tioned in [16] as a down side of the algorithm.

The figure 5.1 illustrates the distribution of the assertions in the partitions

on the first node. As shown in the figure, the number of assertions is re-

ally different between partitions. These differences actually illustrate the

structure of the test data. From the table ??, we notice that there is a

partition in node 2 that has 1596 assertions. This is because that partition

contains an individual that has many role assertion involving (an individual

of Deparment).

We also ran the testing with 4, 5 and 6 nodes to collect distribution data.

The distribution is somehow similar to the case of 3 nodes. Table 5.5 listed

the data collected for 6 nodes.



58 CHAPTER 5. EVALUATION

Figure 5.1: Assertion distribution among partitions in node 1 (3 nodes)

Node Total Partition Total Assertion Assertion/partition min max
1 260 2989 11.4962 3 70
2 259 4129 15.9421 3 1596
3 259 2864 11.0579 3 77
4 258 3100 12.0155 3 72
5 259 2693 10.3977 3 76
6 259 2838 10.9575 3 74

Table 5.5: Partitions and assertions distribution among 6 nodes

The data distribution in our test is somehow nice, with the equally

distribution of the partitions among nodes. However, this is the result of

a simple testing data which does not instroduce many merging between

partitions. Running test with more complex data, the partition allocation

policy can be a critical factor deciding the system performance.

5.3 System performance with updating TBox

After testing the performance of the system for loading LUBM data, we

also carried out the tests on the data using TBox updating. As we already
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discussed, updating TBox is an expensive kind of updates, since it might

cause the merging/reducing the the whole ABox. In our experiments here,

we investigated the performance of the system with different TBox updates

that triggered different numbers of merging on the system. The results are

shown in the table 5.6. As we see in the table, the time for updating is

n mergings 58 82 82 374 510 1650 3756
time (s) 6.73 8.73 6.22 15.63 105.49 1450.16 2715.34

Table 5.6: System performance when updating TBox

some how linear with the number of mergings when still in a low number

range. However, when the number of mergings is higher (374 - 1650), the

time growns exponentially. After that, it is some how linear again between

1650 mergings to 3756 mergings. This is because in the mid-range (374 -

1650), the update triggered the merging of more than 1000 partitions into 1

big partitioin, and with our merging strategy, the system tried to merge the

first two partitions, saved new partition into database, then merged the new

partition with the third one, then again saved into database, and this kept

going on until all 1000 partitions was merged. This caused a very intensive

database accessing, and made the performance drop dramatically.

From the result we can see that the database accessing time, in the case

of intensive merging/reducing, have a really bad effect on the system’s per-

formance. This is even worse than the effect caused by network communi-

cation. However, it will be reduced if we can develop a better strategy for

merging/reducing that optimizes the database accessing.





Chapter 6

Summary

Conclusions

In this master thesis, we have developed a distributed system for storing,

updating and retrieving data relating to Description Logics knowledge base.

The system was designed and implemented with the support for scalability

and extendability. The number of database nodes in the system can easily

be increased without changes in code or restating of the server and other

nodes.

The functionalities of the system can also be conviniently extended with

other implementations or algorithms, using the plugable design of the ser-

vices, without recompiling the whole system.

The performance of our system is tested with an experiment data. There is

a trade off between the performance and the scalability. With a well con-

sideration for the system structure, the result is acceptable and promising

for real applications with some refinement on the algorithms used.

Future works

The current system has all the basic functionalities and is capable of run-

ning with real data now. It is also can be used as a frame to develop further

algorithm for updating. To improve the performance of the system, in the

near future we will run the application with more complex data and develop

a better partition allocation algorithm. However, we need to keep in mind

that any partition allocation algorithm might be good only for Description

Logics Knowledge base in certain application domains.
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Another aspect we would like to improve in the near future is the reson-

ing service in our system. The currently implementation only supports a

very straightforward algorithm, which is impracticle for inferencing on real

data. There are two approaches we would consider when develop the rea-

soning service:

• Reasoning based on current partitioning algorithm. In this approach,

to perform the instance checking with complec concept description,

we merge all the involving partitions and carry out the reasoning

algorithm. This is the currently approach in our thesis, and it need

more heuristic improvement in tableau algorithm to make it feasible

in real time.

• Reasoning based on propagation between partitions. This is an ap-

proach proposed during the development of our thesis, but yet suc-

cessfully to be proved. The idea of the approach is that given the

complex instance checking, the reasoning is performed by one specific

partition. The outcome of the first partition is then feeded into the

second partition, and that keeps going on until we get the final result.

This approach has an advantage that it doesnt need the transmission

of the partitions over the network for the merging. However, a sound

algorithm and its feasibility still need much more consideration.
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Appendix A

Class diagrams

This appendix lists all the class diagrams for our system, including diagrams for:

DL language representation

Server Update Service and Server Query Service

Node Update Service and Node Query Service

Utility Service
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Figure A.1: Class diagram for description language representation
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Figure A.2: Class diagram for Server Update and Query Services
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Figure A.3: Class diagram for Node Update and Query Services
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Figure A.4: Class diagram for the Partition Manager for server and nodes





Appendix B

Experiment data

This appendix lists all the experiment results running LUBM test data. Figure
B.1 illustrates the distribution of the ABox assertions over all the partitions in
the system. Data is collected from all nodes.
Besides, the overall distribution of partitions and assertions, running for 3 nodes,
4 nodes, 5 and 6 nodes are also listed in corresponding tables.

Figure B.1: The distribution of assertions amongs partitions
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Node Total Partitions Total Assertions Assertions/partition min max
1 518 6089 11.7548 3 72
2 518 6822 13.1699 3 1596
3 518 5702 11.0077 3 77

Table B.1: Partition distributions in system running with 3 nodes

Node Total partitions Total assertions assertions/partition min max
1 389 4344 11.1671 3 77
2 388 4253 10.9613 3 73
3 389 4202 10.8021 3 76
4 388 5814 14.9845 3 1596

Table B.2: Partition distributions in system running with 4 nodes

Node Total partitions Total assertions assertions/partition min max
1 311 3687 11.8553 3 72
2 311 3093 9.9453 3 68
3 311 3488 11.2154 3 76
4 311 3323 10.6849 3 73
5 310 5022 16.2 3 1596

Table B.3: Partition distributions in system running with 5 nodes

Node Total Partition Total Assertion Assertion/partition min max
1 260 2989 11.4962 3 70
2 259 4129 15.9421 3 1596
3 259 2864 11.0579 3 77
4 258 3100 12.0155 3 72
5 259 2693 10.3977 3 76
6 259 2838 10.9575 3 74

Table B.4: Partition distributions in system running with 6 nodes
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