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Abstract

To remain pro�table under a tight competition, a leasing company has to o�er a good leas-
ing price. In order to determine the right price, it is necessary to predict the future price
of a second hand car. By knowing the car's value depreciation, the leasing price could be
set to cover it. The approach commonly used for a price prediction task is multiple linear
regression analysis. However, there are a large number of factors that drive the price, that
make this crucial task di�cult. The standard regression approach might not be suitable
for high dimensional data. A modern data mining technique which is independent of input
dimension, namely Support Vector Regression, will be applied to overcome this potential
problem. The forecasting accuracy will then be compared against the statistical regression
model. In particular, a fully automatic approach for tuning and applying SVR is devel-
oped, borrowing ideas from the �eld of evolutionary search. The whole experiment with
the machine learning approach is based upon a real-world data from a leading German car
manufacturer.

Keywords: Support Vector Regression, parameter search optimization, hyperparameter se-

lection, learning curve, grid search, evolution strategy, SVM parameter impact
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Chapter 1

Introduction

1.1 Car Leasing

Leasing is one of the options for �nancing a good. The lessor simply pays for and retains
ownership of the good, but permits the lessee to use it. In return, the lessee is required
to pay a rent, which covers the exclusive-right-of-use-fee, the loss of good's value and the
interest on money 'loaned' over the leasing period. Leasing is often favored by those people
who like to enjoy the bene�ts of new goods but would not like to be burdened with the
risk of re-selling, or because of tax incentives and some other reasons.

In many parts of the world it is common to lease a vehicle. There are usually two types of
calculations, kilometer or residual value leasing. With the former, the customer agrees to
drive a certain number of kilometers per year, whereas with the later both parties agree on
a �nal value of the vehicle after the leasing period. When the customer returns the vehicle,
irrespective of the deal, the leasing company will do 'wear-and-tear' evaluation. The vehicle
will be re-valued and one may be liable for additional body repair or refurbishment costs
if the value is actually less than planned.

Figure 1.1 depicts an example of residual value leasing. The initial value of the car is
100,000 euro. According to the prediction, the loss of the car's value for two years is
40,000 euro, or equal to 1,667 euro per month when counted linearly. In order to cover the
loan interest and lessor's bene�t, the customer should pay 2,000 euro per month. Given
that the interest and initial car's price are known, one main factor that determines the
leasing price is the unknown future residual value. Therefore the lessor has to predict
this value accurately, in order to make a pro�table o�er. The price should not be too
low, otherwise the lessor will su�er from loss when re-selling the car, and not too high,
otherwise the customers will buy or lease from other providers.

In Germany, there are well-known lists, namely Schwacke List [AG09] and Deutsche Au-
tomobil Treuhand GmbH (DAT) List [Gmb09], that help public domain to approximate
the value of a second hand car, based on its attributes like type, year of manufacture,
common equipments and kilometers driven. Nevertheless, one has to note that both lists
have a limitation on the attributes scope. Only basic car equipments are included for price
calculation, while other features, that may also be in�uential, are failed to be captured.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Car Leasing with Residual Value Scheme

Time

Current Future

Factor Internal type, equipments vehicle's condition

External interest rate general economic and vehicle market
condition, location, change of pol-
icy, e.g. incentive for environmental-
friendly cars, tax for old cars

Table 1.1: Examples on Two Dimensional Factors A�ecting Used Car Price

Moreover, there are other factors that play a role in determining the residual value, which
could be observed from the examples in Table 1.1. An external factor is unlikely recorded
if it does not show any direct impact, since it would probably only waste data storage and
maintenance resources, but could not provide relevant information, whereas a future factor
cannot be captured because it is unknown. They both account for error while predicting
the salvage value of a used vehicle, since one can only base the prediction on the new
car's attributes. The price during the worldwide economic depression in the second half
of 2008, for example, cannot be predicted correctly based on the historical data within
normal conditions. Despite the absence of future and external factors, an accurate residual
value prediction model based upon available internal factors needs to be optimized here.

To understand the importance of a prediction model in a bigger business-perspective, we
will look at some car market data. Germany's yearly vehichle market volume in 2004 was
160 billion euro. Nevertheless, the industry only left 4.1 billion euro or 2.5% pro�t to be
divided between car producers, banks, importers, spare parts- and car dealers (see Figure
1.2). The used car segment which generates 52 billion revenue yields just 0.03 billion or 1%,
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altough it has a pro�t potential of 3% [Con05]. This is due to the lack of professionalism
in dealers-networks and over production that leads to a rebate war. An abundance of
relatively new second hand vehicles forces the residual value for leasing to decrease, and
at the end of the leasing period, car manufacturer and dealers then have to clear this
expensive cost. Also in the USA, Germany's car makers had to cover around 1 billion euro
lost while reselling 2.2 million cars, whose leasing contracts ended in 2008 [Gmb08]. To stop
further lost in the used car segment, Mercer and Oliver Wyman Management Consulting
suggested a residual value management that covers the whole product life cycle. One of
the steps is the professional price calculation by dealers [MC06]. This thesis tries to answer
the challenge in optimizing the residual value prediction.

Figure 1.2: Division of Revenue and Pro�t in Germany's Car Market Segments [Con05]

1.2 Problem De�nition

The basic problem in this thesis is to �nd a good regression model that can explain the
vehicle's residual price. In order to solve it, a set of historical data of second hand cars
with their attributes and their re-sell price is provided. The attributes of the cars being
the independent variables or input, while the price being the dependent variable or output.
Given some samples of input and output, we would like to �nd the unknown function that
explains the relationship between them. As a simpli�ed illustration, the regression function
in Figure 1.3, y = f(x) = wx+ b, with w as the weight of factor x and b as the constant,
maps one independent variable, e.g. the kilometer driven (x), to the price (y).
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Figure 1.3: Example of a Regression Function with One Independent Variable

The input space of used car data is high dimensional, which means, there are many inde-
pendent variables that may a�ect the price. Learning from a huge set of high dimensional
data is not an easy task. Hence, one needs a machine that can learn from this data set,
deal with such complexity and generate a good model out of it. A good model is required
to have a good performance on future or previously unseen data, hereafter regarded as test
or validation set. In other words the prediction model should not be [Fre02]

• Over-�tting: where the solution derived from training data is more complex than the
real function. The model is too tailored to the training data, and thus it does not �t
well for unseen data.

• Under-�tting: where the solution derived from training data is too simple, and there-
fore incapable to capture the right in�uence of the independent variables.

Both have the same e�ect of reducing model's accuracy in predicting future outcome.

It is also important to note, that prediciting the future is an ill-de�ned, non-deterministic

task [Fre02]. In the sense that, using only training data, one cannot be sure that the
discovered function will have a high predictive accuracy on the test set. The reason is,
there could be more than one hypothesis function that con�rms with all training data, and
how should one choose from among multiple consistent hypotheses? This question will be
answered later in chapter two, speci�cally for the learning machine used.

1.3 Motivation and Research Contribution

As described previously, the learning problem here is di�cult, yet it is crucial for improving
the marginal pro�t in the used car market. Therefore, a state-of-the-art learning machine,
namely Support Vector Machine (SVM), is going to be applied for the regression problem
here, due to its computation that does not depend on the input space dimension.

This thesis will also provide additional empirical study for SVM users. An experiment
methodology will be applied to handle a huge data set, in order to maximize the use of the
information available, without getting trapped in an excessive learning duration.
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Moreover, one can learn about parameter search automization and parameters impact
from the experiment results. The input needed in SVM is not only a historical data set,
but also some parameters; and the performance of SVM in generating a model is highly
dependent on the chosen parameters (see Figure 1.4). To replace the ine�cient try-and-
error approach, two automatic parameters selection schemes will be tested and reported
here.

Figure 1.4: Support Vector Machine Prediction Model

1.4 Outline

The reminder of this work is organized as follow. Chapter 2 describes the background
theories on two approaches that will be used to solve this problem and their suitabil-
ity for implementation: linear regression analysis and Support Vector Regression (SVR).
Supporting knowledge for using SVR, namely kernel functions and parameters selection
algorithms, will also be explained here.

In chapter 3 the methodology will be elaborated in detail, including the reasoning behind
each step taken along the course of this experiment. Starting from data preparation,
learning from a smaller data set until the �nal model building and testing. Chapter 4 will
present the experiment results and its analysis. While chapter 5 shows some benchmarking
results with the statistical linear regression. Finally, conclusions will be drawn in chapter
6, along with some limitation from this study and outlook for the future research.



Chapter 2

Background Theory

In regression, the task is to �nd a mapping between input or independent variables x,
and the dependent output y, where y is a continuous value instead of a discrete one as in
classi�cation. The approach used for such a problem is usually linear regression. However,
the linear regression is based on some assumptions, that cannot always be matched by the
characteristic of a contemporary data set. Thus, these assumptions pose a limitation on
statistical regression analysis. Therefore, SVM is used to counter it, and the background
theory on how it solves a regression problem will be explained in here. Two general views
on the risk of prediction will also be elaborated to clarify the underlying di�erence between
these two approaches.

2.1 Regression Analysis

This subchapter will start with simple linear regression before proceeding with the multiple
one.

2.1.1 Linear Regression

Simple Linear Regression

In simple linear regression, there is only one independent variable. Given n samples of
observation (xi, yi) , i = 1 · · ·n, the regression model is [KKMN98]

yi = w0 + w1xi + εi (2.1)

where w0, w1 are the regression coe�cients, and εi is the residual, i.e. the di�erence between
the desired and predicted value of the dependent variable εi = yi − y.

The most common method to estimate the regression line is by minimizing the sum of
squared residuals

SSE =
n∑
i=1

ε2i =
n∑
i=1

(yi − y)2 (2.2)

6
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Minimization of this function solves a predicted regression slope w1 and intercept w0, that
gives the regression line y = ŵ0 + ŵ1x

ŵ1 =
∑n

i=1 (xi − x) (yi − y)∑n
i=1 (xi − x)2

and ŵ0 = y − ŵ1x (2.3)

Multiple Linear Regression

Multiple Linear Regression deals with problems having more than one (m) independent
variables [KKMN98]. Given n samples of observation (xi1, · · · , xim, yi) , i = 1 · · ·n, the
regression model is

yi = w0 + w1xi1 + w2xi2 + · · ·+ wmxim + εi (2.4)

There are p + 1 regression coe�cients, and the residual εi to capture other in�uences on
yi apart from w1xi1, · · · , wmxim.

To ease the computation one could represent equation 2.4 in matrix notation:

Y = wX + ε with X =


1 x11 · · · x1m

1 x21 · · · x2m
...

...
. . .

...
1 xn1 · · · xnm

 and Y =


y1

y2
...
yn

 (2.5)

The coe�cients matrix w is then found by solving the equation below 1.(
XTX

)
ŵ = XTY that yields ŵ =

(
XTX

)−1
XTY (2.6)

2.1.2 Linear Regression Assumptions

Before doing the aforementioned linear regression analysis, there are some prerequisites to
be checked 2 [Abr07]:

• Linearity
Linear regression assumes that there is a straight line relationship between continuous
independent variables and the dependent one. It could be seen from a bivariate
scatterplot, a graph with the independent variable on one axis and the dependent
variable on the other.

• Normality
The dependent variable, as well as the independent ones should be normally dis-
tributed. This could be checked by several ways, e.g. looking at the histogram for
each variable. Another way is by calculating the skewness and kurtosis for each vari-
able. Skewness is a measure how symmetrical the data is. When the data is skewed,

1The �rst column of X is used to represent the intercept term w0.
2Failing to satistfy those assumptions does not mean that the resulting regression model will be com-

pletely wrong, it will just under-�t the real relationship [Sch03].



CHAPTER 2. BACKGROUND THEORY 8

then the mean is not in the middle of the distribution, and thus not normally dis-
tributed. While kurtosis is a measure how peaked the distribution is, and normality
means it is not too peaked and not too �at. Any value greater than +3 or less than
-3 needs a pre-transformation before linear regression.

• Homoscedasticity
Linear regression also assumes that the relationship between the dependent variable
and binary independent variables are homoscedastic. This means that the residuals
are approximately equal for all predicted dependent variable scores. One can check
homoscedasticity by looking at the residuals plot, where the x-axis is the standardized
predicted value and the y-axis the standardized residual. Data is homoscedastic if
the residuals plot is the same width for all values of the predicted dependent variable.
Heteroscedasticity is usually shown by a cluster of points that is wider as the values
for the predicted dependent variable get larger.

• Multicollinearity and Singularity
Multicollinearity is a condition where the independent variables are very highly cor-
related (.90 or greater), and singularity is when they are perfectly correlated, e.g.
one independent variable is a combination of one or more of the other independent
variables. High bivariate correlations can be seen by running correlations among the
independent variables. If there is high bivariate correlations, one of the two variables
has to be deleted.

To wrap up the prerequisites, the statistical inference is based on the following assumptions:

1. Data can be modeled by a set of linear functions.

2. The data follows a normal probability or Gaussian distribution.

3. Because of the �rst assumption, the induction for parameter estimation is the max-
imum likelihood method, which is then translated as minimization of sum-of-errors-
squares cost function.

This assumptions turned out to be inappropriate for many contemporary real-life problems
because of the following issues [HKK06]:

1. Modern problems are high dimensional and if the mapping is not very smooth, the
linear paradigm needs an exponentially increasing number of samples with an increas-
ing number of independent variables. This is known as the curse of dimensionality

[Bel61]. For example, to build a model with one dimension, one needs only n sam-
ples, but for generating a model with d dimensions, one will need approximately nd

samples to achieve the same accuracy. Table 2.1 shows the curse of dimensional-
ity problem in Silverman's experiment [Sil86], where a density function had to be
estimated with a prede�ned accuracy.
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Dimensionality Required Sample Size

1 4

3 67

5 786

7 10,700

10 842,000

Table 2.1: Sample Size Required to Estimate a Density Function with Accuracy of 0.1

2. The data may be far from the normal distribution.

3. Because of the above mentioned tendencies, maximum likelihood method estimator
(and consequently the sum-of-errors-squares cost function) should be replaced by
other induction paradigm, in order to model non-Gaussian distribution.

SVM is a machine learning method that has been developed to work with data sets that
are typically high dimensional and sparse (data set contains a small number of the training
data pairs). More detail of it will be elaborated below.

2.2 Basic Idea of Support Vector Machine

According to [RN03], there are three types of machine learning: unsupervised learning,
reinforcement learning and supervised learning. In supervised learning the desired out-

come is available from the training data set. The supervised learning is divided into two
categories, namely regression (if the outcome is a continuous value) and classi�cation (if
the outcome is a class label).

A supervised learning consists of basically two phases. The �rst is the learning phase,
where training data is used to build a mathematical model that explains the relationship
between some variables. The second is the test phase, where the model is used to predict
the outcome of test data set [RN03].

Figure 2.1: Supervised Learning Scheme

Empirical Risk Minimization (ERM)

The problem setting in this supervised learning is: there is some unknown dependency
between some high dimensional input vector x and the scalar output vector y. A machine
with parameters w is used to learn the mapping x → y. The machine will tune its
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parameters w to get a possible mapping x → f (x,w). Since the actual risk measure
of a machine is not always possible, one could relax it to empirical risk measure. It is the
error associated with a function f over the training data set, and usually de�ned as:

f(x,w) =
1
n

n∑
i=1

E (y − f(x,w))2 (2.7)

Most training algorithms for learning machines implement ERM, i.e. minimise the em-
pirical error based on maximum likelihood estimation for the parameters w. Those con-
ventional training algorithms do not consider the capacity of the learning machine and
this can result in over-�tting, i.e. using a learning machine with too much capacity while
learning from a �nite training data set [Vap98, Chi98b].

Structural Risk Minimization (SRM)

A new paradigm of risk, i.e. SRM, is introduced by Vapnik and Chervonenkis to overcome
this problem. SRM is an inductive principle for model selection used for learning from
�nite training data sets, that prescribe a way to balance the learning power of a machine
[Vap98, VC74]. The goal of SRM is to �nd the learning machine that yields a good trade-o�
between low empirical risk and small capacity. There are two major problems in achieving
this goal [Chi98b].

• The SRM requires a measure of the capacity of a particular learning machine, or at
least an upper bound of this measure.

• An algorithm to select the desired learning machine according to SRM's goal is
needed. One can divide the entire class of machines into nested subsets with decreas-
ing capacity. Then one can train a series of machines, one for each subset, using the
ERM principle. Finally the machine that gives the best trade-o� can be selected.
This can be a very di�cult task. An alternative is to de�ne a learning machine with
variable capacity and a corresponding training algorithm that minimizes both the
empirical error and capacity of that machine.

Figure 2.2: Structural Risk Minimization [VC74]
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To address the �rst problems, the concept of Vapnik Chervenenkis (VC) con�dence is
developed. VC con�dence is de�ned as the right hand part of equation 2.8. The upper
bound of the generalization risk with a probability of 1− η is given by

R (wm) ≤ Remp (wm) +

√
h
[
ln
(

2n
h

)
+ 1
]
− ln

(η
4

)
n

(2.8)

where:
wm = parameter vector of model m subject to training
h = Vapnik-Chervonenkis (VC) dimension, a measure of model complexity. A machine
with oriented hyperplanes in Rm as its mapping function, has a VC dimension of m+ 1
n = data set size

Figure 2.2 clearly shows that a learning machine with large capacity will give low empirical
risk, but the VC con�dence interval is also large for that learning machine, i.e the machine
does not generalise well. By measuring this bound, one can select a learning machine that
give the lowest expected generalization risk, which is the point where the combination of
the VC con�dence and the empirical error is at the minimum.

Based on SRM, Support Vector Machine (SVM) is proposed to tackle the second problem
[Vap98]. The SVM employed the following generalization risk:

R =
n∑
i=1

Lε︸︷︷︸
empirical error

+ Ω(n, h)︸ ︷︷ ︸
Capacity of a machine

(2.9)

2.3 Support Vector Regression

The SVM used to solve regression problem is called Support Vector Regression. The
learning machine is given a training data set {χ = [xi, yi] ∈ Rm ×R, i = 1 · · ·n}, where
the inputs x are m-dimensional vectors x ∈ Rm and the outcomes y ∈ R are continuous
values. The approximation function of this data is a linear regression hyperplane

f(x,w) = wTx+ b (2.10)

In measuring the error of approximation, Support Vector Machine uses a novel equation
called Vapnik's ε-insensitivity error function which is de�ned as [HKK06]

|y − f(x,w)|ε =
{

0 , if |y − f(x,w)| ≤ ε
|y − f(x,w)| − ε , otherwise

(2.11)

where ε is a radius of a tube within which the regression function must lie, after the
successful learning. The idea is to reduce model's complexity by tolerating errors up to a
certain point. Figure 2.3 gives a visual comparison of Vapnik's ε-insensitivity error function
to other two classical error functions, namely the quadratic error (y−f(x,w))2, as in linear
regression, and the absolute error |y − f(x,w)|.
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Figure 2.3: Error Functions [HKK06]

As mentioned in the introduction part, SVM has to deal with a non-deterministic prob-
lem. This means, there could be more than one hypothesis functions that have the same
empirical risk on the training data as the regression function, as illustrated in �gure 2.4.

Figure 2.4: Two linear approximations (dashed lines) have the same empirical risk on the
training data as the regression function (solid line) [HKK06]

Given some functions with the same empirical/training error, to achieve minimum gener-
alization error, i.e. the optimal solution, SVM should minimize the capacity of machine
learning, and consequently the model complexity, which is re�ected by ‖w‖2 [HKK06].
Thus, this problem could be then viewed as a convex optimization problem as in 2.12.

minimize 1
2‖w‖

2

subject to

{
yi − 〈w, xi〉 − b ≤ ε
〈w, xi〉+ b− yi ≤ ε

(2.12)

Due to the use of Vapnik's ε-insensitivity loss function, for all training data outside the
ε-tube a new 'error' variable is introduced.

|y − f (x,w)| − ε = ξ , for data above an ε-tube, and
|y − f (x,w)| − ε = ξ∗ , for data below an ε-tube

(2.13)

The slack variables should be kept at a minimum, which implies that there should be a
function that penalizes non-zero ξi, ξ

∗
i . This can be done by adding the sum of all slack
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variables in the objective function and the cost C > 0, a parameter to be determined by
the user, which controls the trade-o� between the model complexity and the amount up
to which deviations larger than ε are tolerated. Hence the formula 2.12 could be restated
as [SS03]

minimize 1
2‖w‖

2 + C
n∑
i=1

(ξi + ξ∗i )

subject to


yi − 〈w, xi〉 − b ≤ ε+ ξi i = 1..n
〈w, xi〉+ b− yi ≤ ε+ ξ∗i i = 1..n
ξi, ξ

∗
i ≥ 0 i = 1..n

(2.14)

This is a classic quadratic optimization problem with inequality constraints. Such opti-
mization problem could be solved by the saddle points λ of the Lagrangian Λ.

Λ (x, λ) = f +
∑
k

λkgk (2.15)

where f(x) is the objective function and gk(x) = 0 are the constrains 3.

The primal Lagrangian function is as follow

Lp(w, b, ξi, ξ∗i , αi, α
∗
i , βi, β

∗
i ) = 1

2‖w‖
2 + C

n∑
i=1

(ξi + ξ∗i )

−
n∑
i=1

αi (ε+ ξi − yi + 〈w, xi〉+ b)

−
n∑
i=1

αi (ε+ ξ∗i + yi − 〈w, xi〉 − b)

−
n∑
i=1

(βiξi + β∗i ξ
∗
i )

(2.16)

The stationary points are achieved by solving a number of equations resulted from setting
Langragian's derivation to zero ∇Λ = 0.

∂bL =
n∑
i=1

(α∗i − αi) = 0 (2.17)

∂wL = w −
n∑
i=1

(αi − α∗i )xi = 0 (2.18)

∂ξiL = C − αi − βi = 0 (2.19)

∂ξ∗i L = C − α∗i − β∗i = 0 (2.20)

After the substitution of these derivations into 2.16 and eliminating dual variable βi, β
∗
i ,

it becomes a maximization of a dual variables Lagrangian below[SS03]

Ld(αi, α∗i ) = −1
2

n∑
i,j=1

(αi − α∗i )
(
αj − α∗j

)
〈xi, xj〉

−ε
n∑
i=1

(αi + α∗i ) +
n∑
i=1

yi (αi − α∗i )

subject to
n∑
i=1

(αi − α∗i ) = 0 and αi, α
∗
i ∈ [0, C]

(2.21)

3The domain of f should be an open set containing all points satisfying the constraints. Furthermore,
f and the gk must have continuous �rst partial derivatives and the gradients of the gk must not be zero
on the domain [CST00].
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The equation 2.18 could be rewritten as

w =
n∑
i=1

(αi − α∗i )xithus (2.22)

f (x) = 〈w, x〉+ b =
n∑
i=1

(αi − α∗i ) 〈xi, x〉+ b (2.23)

While b is given by [SS03].

max {−ε+ yi − 〈w, xi〉 |αi < C or α∗i > 0} ≤ b ≤ min {−ε+ yi − 〈w, xi〉 |α∗i < C}
(2.24)

After the learning process, the number of support vectors is equal to the number of non-
zero αi and α

∗
i . Moreover, since w can be described as a linear combination of the training

patterns xi, the complexity of a function's representation is independent of the dimension-
ality of the input space χ, and depends only on the number of support vectors [HKK06].
This independency is a strength of SVM in dealing with high dimensional input, which is
also useful for the formulation of a non-linear extension.

2.4 Kernel Functions

In general, complex data needs a more expressive function than a linear one. In this case,
SVM �rst non linearly transforms the original input space into a higher dimensional feature
space [CST00]. Afterwards, the SVM will do the same linear calculation to �nd the optimal
regression hyperplane in this feature space, as illustrated in �gure 2.5.

Figure 2.5: After the mapping of a two dimensional classi�cation set into a three dimen-
sional feature space, the data becomes linearly separable. [Gij07]

The SVM algorithm in its dual formulation depends only on the inner products of the
training samples. Thus, one �rst maps data points using Φ, then the formula would
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be simply the inner products of the points in the feature space. This mapping into the
hypothetical feature space is implicit, therefore it becomes feasible to use feature spaces of
in�nite dimensionality [CST00].

k (x, z) = 〈Φ (x) ,Φ (z)〉 (2.25)

By integrating the kernel function into 2.21 one would get the following formula

Ld(αi, α∗i ) = −1
2

n∑
i,j=1

(αi − α∗i )
(
αj − α∗j

)
k (xi, xj)

−ε
n∑
i=1

(αi + α∗i ) +
n∑
i=1

yi (αi − α∗i )

subject to
n∑
i=1

(αi − α∗i ) = 0 and αi, α
∗
i ∈ [0, C]

(2.26)

Not all kernels are valid to be applied on the equation 2.26. Only those which satisfy the
symmetric, continuous, and positive semi-de�nite conditions are admissible [HSS08]. There
are several common kernel functions that are proven to be admissible for classi�cation and
regression purposes, such as polynomial and radial basis function (RBF) [HCL08].

Polynomial : (x, z) = (〈x, z〉+ c)d with d natural number, c ≥ 0
RBF : k (x, z) = exp

(
−γ ‖x− z‖2

)
with γ > 0

(2.27)

2.5 Hyperparameters Selection

These kernel functions in 2.27 are parameterized to allow for adjustments with respect to
the training data. The kernel parameters, as well as SVM parameters C and ε, optimize
the generalization performance, and they are known as hyperparameters.

The selection of hyperparameters determines the performance of SVM signi�cantly, mean-
ing that the model's accuracy depends on those parameters. Therefore, it is important
to set good values for them. The optimal hyperparameter setting depends on the actual
training data, and commonly must be set manually, because there is currently no theory
that de�nes what a good value is.

The choice of ε is generally easier than the choice of C. It is given as either maximally
allowed error or some desired percentage of the output mean value y, e.g. ε = 0.05 of the
mean value of y [HKK06]. Whereas for C, there is a prescription on the approximate value
from V. Cherkassky and Y. Ma [CM02]

C = max(|y + 3σy| , |y − 3σy|) (2.28)

Traditionally people use empirical try-and-error approach or intuition for hyperparameters
selection. This is insu�cient because try-and-error is time consuming, and an inappro-
priate manual setting can hamper SVM performance on problem solving. Therefore, an
automated approach for hyperparameters selection is needed here.
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A popular way is to employ grid search model selection. The basic idea is to set several
values of each parameter within certain range using intervals, e.g. C = {100, 200 · · · 1000}
and ε =

{
2−2, 20 · · · 28

}
. After running SVM training and testing for each parameters

combination, choose the good values by looking at the least error generated. This grid
search could be done in coarse steps at the beginning to �nd the approximation area, and
then in �ner steps to �nd the optimum parameters.

2.6 Evolution Strategy

Even though grid search is an automatic approach, it is still computation expensive, since
machine learning has to be performed over a wide range of parameter values. Therefore,
one still needs an automatic approach to choose the good values with less computation.
Evolutionary Algorithms (EA) could be applied to improve it.

EAs consist of several search algorithms that are based on Darwin's evolution theory, the
general idea is as follow: [Fre02]

• EAs work with a population of individuals.

• To get the �nal solution, the population experiences several rounds of selection pro-
cess, each resulting in a new population of selected individuals. The selection is
based on the �tness of an individual as a solution. The better it is, the more often
the individual is selected, and the more some parts of its 'genetic material' will be
passed on to later generations.

• They generate new individuals by applying stochastic operators to the existing indi-
viduals of the current generation. The two popular operators are crossover (recombi-
nation) and mutation. Crossover swaps some genetic material between two or more
individuals, while mutation changes the value of a small part of the genetic mate-
rial of an individual to a random value, simulating the errorneous self-replication of
individuals.

Deriving from this general idea to the problem, the candidate values of SVM hyperparam-
eters are the individuals in EA. Initially certain values have to be set to form the parents
population. After undergoing several rounds of regeneration and selection, these values will
converge to the optimal ones. The selection criteria here is the estimation error produced
by each model.

There are two main subparadigms in EAs for parameter optimization [Gij07, Fre02]:

• Genetic Algorithm (GA)
GA operates in the genotype realm 4, and the individuals are usually represented in
binary form. GA emphasizes on crossover, where parents are exchanging part of their
chromosome to produce an o�spring. A mutation could as well be done by �ipping
the bits in the chromosome with certain probability.

4Genotype distinction is a paradigm in evolution and inheritance of traits study focusing on organism's
hereditary information
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• Evolution Strategy (ES)
ES on the other hand operates in phenotype realm 5, with real value individual
representation. To generate the o�springs, ES emphasizes on mutation according to
a probability distribution.

ES will be employed for hyperparameters selection, due to its nature of application for
real-value representation, which could be easily applied to the problem [Gij07].

Algorithm 1 Pseudocodes for the Evolution Strategy (µ+
, λ)

Require: µ > 0 and λ > µ % µ and λ are the sizes of parent and o�spring population
P ⇐ initialize(µ) % create initial random population
P.evaluate ()
while isNotTerminated do
O ⇐ P.reproduceandmutate (λ) % create o�spring population
O.evaluate ()
if usePlusStrategy() then
O ⇐ O

⋃
P % combine parent and o�spring populations

end if

P ⇐ O.select (µ)
end while

As shown in the pseudocodes of ES Algorithm 1, there are two options in ES, (µ, λ) and
(µ+ λ). In (µ, λ)-ES selection is done only within the newly generated o�springs popu-
lation, and this means that an individual's lifetime is limited to one generation. On the
other hand, (µ+ λ)-ES allows a potential individual with high �tness to survive multi-
ple generations, because the selection's domain is the combined parents and o�springs
populations.

The mutation for the real-value is typically implemented as the normal distribution around
the object individual with the mean of 0 and standard deviation σ, although other distri-
bution may be used as well.

x′i = xi +Ni (0, σi) (2.29)

The σ value determines the step of mutation, and users need to specify σi for each parame-
ter in the chromosome. This is an additional parameter selection task for hyperparameters
tuning, therefore, it has to be simpli�ed. One needs an automatic approach to update
the mutation's step, so that the search range could be narrowed along with the increas-
ing generation. The �rst round should have a relatively big step size, then it should be
gradually reduced during the evolutionary process. The σ-tuning mechanism is called self

adaptation, because it is done by embedding σ in the chromosome (x, c). This chromosome
could be updated into a new one (x′, c′) by applying 2.29 and

σ′i = σi exp
(
τ ′N (0, 1) + τNi (0, 1)

)
(2.30)

5Phenotype distinction focuses on organism's observed properties, such as morphology or behavior
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The N (0, 1) denotes a random value which is identical for each object parameter in the
chromosome, while Ni (0, 1) is a random value speci�c for each distinct object parameter.
The τ and τ ′ are the so-called learning parameters, and they are constants determining the
rate of self adaptation. These learning parameters could be chosen according to [Sch81]

τ ∝ 1√
2
√
m

(2.31)

τ ′ ∝ 1√
2m

(2.32)

where m denotes the number of object parameters.

In general, all the values given by users are called the strategy parameters. The one which
needs to be updated during the evolution, namely σ, is called endogenous strategy param-

eter, while those which need to be determined only once in the initialization phase, such
as µ, λ, τ, τ ′, are called exogenous strategy parameter.



Chapter 3

Implementation

3.1 Experiment Methodology

The general scheme for supervised learning in Figure 2.1 is also applicable for SVR.
Nonetheless, before using SVR to predict an outcome, one should select the suitable kernel
and hyperparameters �rst. Therefore, an intermediary validation step is needed before
the test phase. Test and validation are basically the same assessment, the di�erence is
just the aim and the sequence in the learning scheme. In the hyperparameter selection
phase, several rounds of learning and validation are needed, in order to indentify the most
suitable hyperparameters for each proposed kernel. The �tness of hyperparameters is then
compared among each other based on the predicted outcome's deviation, i.e. by their
root-mean-squared-error (RMSE) on the validation set. Thus, the best hyperparameters

for each kernel can be found. Afterwards, they will be used to train the machine, and the
resulting model will be tested in the �nal test.

Figure 3.1: SVR Learning Scheme with Hyperparameters Selection

19
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The whole experiment is done twice with the same data set, but di�erent independent
variables inclusion. The �rst part uses only continuous variables (see V3 .. V6 in Table
3.1) to build a regression model for the future price of second hand cars. The second
part utilizes the whole continuous and binary variables. The aim of employing di�erent
complexity here is, to observe the relevance of the binary factors in improving the �tness of
the model. Meaning, how much decrease in error prediction can be achieved by including
additional binary variables.

3.1.1 Data Preparation

This experiment has been done using data of a certain model of a high quality cars, whose
nature tend to loose value in a slower rate than other economic ones. The data comprises
180 columns and 124,386 samples without missing input. The data structure is given in
Table 3.1.

The dependent variable is the re-sell value of second hand cars in the form of percentage
from their original manufacture price (V2). The original data contains several independent
variables with continuous values, such as the car's lifetime, kilometer driven and number
of previous owners, as well as multinomial values (having more than two discrete values),
such as model year, paint color and other optional equipments.

Valid samples 124,386

Columns 180

V1 ID No.
V2 Price Percentage
V3 Lifetime Month
V4 1/10,000 Km Driven
V5 Days Sold since 1.1.1999
V6 No.of Prev. Owner
V7 .. V9 Customer Group
V10 Tax
V11 .. V17 Transaction Type
V18 .. V27 Type of Car Use
V28 .. V33 Model Year
V34 .. V57 Car Series
V58 .. V86 Paint Color
V89 .. V103 Cushion
V104 .. V180 Optional Equipments

Table 3.1: Summary of Second Hand Vehicles Data

Multinomial to Binary Variables Transformation

The use of independent multinomial variables in regression analysis and SVR is not justi�-
able, since they can cause a non-linear e�ect. Therefore, the data in this format need to be
converted into several dummy binary variables before they can be used in linear regression.
A binary variable only has two values, thus, only a linear relationship could be build out of
it. Variable Paint Color, for example, has to be broken down into 29 variables (V58..V86),
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such as variable black, variable silver, etc. with value of true (1) or false (0).

Independent Variables Standardization

Table 3.3 shows the basic descriptive analysis of the dependent and continuous independent
variables. One can directly see that the values in those continuous variables are much larger
than the rest of 174 binary variables. According to [Sar09], the contribution of an input
will depend heavily on its variability relative to other inputs. If one input has a range of 0
to 1, while another input has a range of 0 to 1,000, then the contribution of the �rst input
to the regression function will be swamped by the second input. Thus, it is essential to
normalize the inputs so that their variability re�ects their importance, or at least is not in
inverse relation to their importance. In this experiment normalization to the same range
approach is used, as suggested by [HCL08]. Normalizing here means scaling the values of
those continuous variables by their minimum and maximum, to make all elements lie in a
range of [0, 1], similar to those binary variables' range.

Minimum Maximum Mean Std. Deviation

Price Percentage 5.1819 98.5611 57.8186 16.1792

Lifetime Month 1 1,220 36.80 22.253

1/10,000 Km Driven 0.1 99.9 5.143 4.7403

Days Sold since 1.1.1999 2 2,066 850.68 527.169

No.of Prev. Owner 1 9 1.32 0.564

Valid N (listwise) 124,386

Table 3.2: Descriptive Analysis from Data's Continuous Variables before Standardization

Minimum Maximum Mean Std. Deviation

Lifetime Month 0 1 0.0294 0.0183

1/10,000 Km Driven 0 1 0.0505 0.0475

Days Sold since 1.1.1999 0 1 0.4112 0.2554

No.of Prev. Owner 0 1 0.0400 0.0705

Valid N (listwise) 124,386

Table 3.3: Descriptive Analysis from Data's Continuous Variables after Standardization

Data division

As there is a huge number of samples at disposal, they have to be arranged to suit the SVR
learning scheme. Obviously the experiment needs a bigger portion of data in the learning
phase than in the test phase. As a rule of thumb, one could use 70% - 30% division.
Therefore the samples are divided as in Table 3.4.

Total samples 124,386

70% for hyperparameter selection phase 87,070
and for �nal training phase

70% training data 60,949
30% validation data 26,121

30% for �nal test 37,316

Table 3.4: Data Division
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Data shu�ing

One important thing to note here is the data shu�ing prior to data division. Since this
data is documented over a long period, which is re�ected in the increasing ID number,
there is a possibility of di�erent time-wise-characteristics. If one build the model by taking
samples from certain time frame, and then test it against another time frame with quite
a large time lag, the model could not perform well. Therefore, one should randomize the
order, to assure that the resulting three sub-group have the same behaviour.

3.1.2 Kernel Selection

In addition to standard linear SVR, two other kernels are assessed in this experiments,
namely polynomial and RBF kernel. Both are the classical kernels that perform well in
many cases [HKK06]. Before choosing the right kernel, it is important to measure the
nature of the data, i.e., the distribution of the dataset. According to [AS03], if the data
distribution is normal, then the Gaussian or RBF kernel is recommended to be used,
otherwise the polynomial kernel. At the �nal round the results of di�erent kernels will be
compared, which one is most suitable for the nature of data set, and at the same time
checking the validity of this suggestion.

3.1.3 SVR Learning Curve

The main experimental part in SVR is to �nd suitable hyperparameter values through
several rounds of model building, as depicted in Figure 3.1. For example, the iterations
needed for grid search with a set of m cost values and n epsilon values is m × n times,
with an avarage computation e�ort of t. Thus, the duration for grid search would be
approximately m× n× t. The actual time for each round depends heavily on size of data
processed. The more data SVR has to crunch, the more time is needed to build a model
and test it. Therefore, the computation e�ort has to be minimized. Since SVR learning is
based on support vectors, it is actually enough to learn from a partial data set, in order
to generate a model. Thus, one would want to �nd out the required minimum training set
size that can generate just a nearly optimum model, to speed up the search.

The purpose of learning curve is to understand the sensitivity of SVR, with respect to
training data set size, as suggested by [PPS03, WT07]. This is done by running SVR
several times with increasing sample numbers, and monitoring the learning e�ect that it
gains from additional data, by measuring the RSME. A percentage of error decrease or
learning improvement, will be calculated as well.

RMSEdecrease = (RMSEi+1 −RMSEi) /RMSEi (3.1)

A threshold for RMSEdecrease is to be set. Any learning improvement below the threshold
is not regarded as substantial anymore. Thus, the last data set size used for training is
considered big enough for further experiments.

In this learning curve experiment, 60,949 samples are crunched by SVR step by step. Each
round adds 500 more data, and the threshold value is 0.1%.



CHAPTER 3. IMPLEMENTATION 23

3.1.4 Grid Search Analysis

For linear SVR, the hyperparameters are the cost and the epsilon value. The grid search
is done in rather �ne steps with an increasing exponent to the base of two. Cost values
are set to

{
2−6, 2−5, · · · , 215

}
, and epsilon values to

{
2−9, 2−8, · · · , 29

}
.

For SVR with polynomial and RBF kernel, only a coarse grid search will be conducted,
because there is an additional parameter, which increases the number of combinations
to be tested. Thus, a larger interval is used to select good values of cost and epsilon.
The ranges are the same as for the linear one, but each with 23 exponential increase:
C =

{
2−6, 2−3, · · · , 215

}
and ε =

{
2−9, 2−6, · · · , 29

}
. An equal step is also used for the

gamma values
{

2−15, 2−12, · · · , 23
}
for SVR with RBF kernel. Whereas for SVR with

polynomial kernel, degrees {2, 3, 4, 5, 6} are tested.

3.1.5 Evolution Strategy

In ES the initialization values for reproduction and selection are as follows:

• plus comma: a selection strategy that determines from which population the selection
is to be done. Comma strategy uses only o�spring population as domain for the
next generations, while plus strategy uses a combination of parents and o�springs
population. In this experiment, both strategies are applied and observed.

• parents population size: a �xed exogenous strategy parameter which is set to 3.

• parents o�springs ratio: used to get the o�springs population size, it is set to 4.
o�springs population size = parents population size × parents o�springs ratio
The o�springs population size, which is 12 in this experiment, is a �xed exogenous
strategy parameter.

• standard deviation: a dynamic endogenous strategy parameter, that determines the
step size for updating object parameters while reproducing the o�springs.

While the parents population of the �rst generation (initial values) are set as follows:

1. SVR with linear kernel

• C: 106.5544, 106.5544, 106.5544, initially the three parents are set to the same
value, as suggested in equation 2.28

• ε: 0.25, 1, 4

2. SVR with polynomial kernel

• C: 106.5544, 106.5544, 106.5544
• ε: 0.25, 1, 4
• degree: 2, 3, 4

3. SVR with RBF kernel
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• C: 106.5544, 106.5544, 106.5544
• ε: 0.25, 1, 4
• γ: 0.125, 1, 8

While the stopping criteria used is number of maximum generation, which is 15.

3.1.6 Final Training and Testing

In this phase, the hyperparameter candidates for the three di�erent kernels suggested by
grid search and evolution strategy will be compared against each other. The best one, i.e.
the one with the lowest error, will be taken as the hyperparameter setting for the �nal
experiment. The whole samples will be used: 87,070 data for training the machine, and
the rest 37,316 for testing the model.

3.2 Experiment Tools

Software

This experiment has been run with the following softwares:

• Matlab R© for its ease of use and e�ciency in matrix calculation.

• LibSVM, a library for SVM written by Chang and Lin [CL01] in C with an interface
to Matlab.

• SPSS R© for its comprehensive result on statistical experiments.

Hardware

A same platform accross nine computers has been set up for these experiments with the
following attributes: Intel Pentium 4, 2.4 GHz CPU, with a 2 GB main memory and
Microsoft Windows Server 2003 Service Pack 2 operating system.
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Analysis

In this chapter, the experimental results will be presented, and then discussed mainly from
the RMSE viewpoint, and to some extent the training time. This chapter is organized
according to the methodolody described in the previous chapter, starting with the learning
curve, then proceeding to the result from hyperparameters selection with grid search and
evolution strategy. The summary of the hyperparameter search result can be observed
from Table 4.4, and at last, the result of �nal experiment using the chosen hyperparameter
setting will be given.

4.1 Learning Curve

In this section, the result from three di�erent curves are presented, for SVR with linear,
polynomial and RBF kernels. All kernels used the same standard setting of C = 1 and
ε = 1, while degree is set to 2 for polynomial SVR and γ = 0.25 for RBF SVR.

One can see from Figure 4.1, that there is a steep decrease in RMSE by adding 500 samples
in the �rst 10,000 data. This holds for all three kernels. The decreasing trend is shown
with less gradient until the curves end. Nevertheless, a decision about minimal learning
data set size cannot be based upon an optical view of the curves. Therefore, a threshold
value of 0.1% will determine at which point the learning improvement is not considered
important anymore. Table 4.1 suggests that the minimum training set sizes are 27,500 for
linear SVR, 22,000 for polynomial SVR degree 2 and 32,500 for RBF SVR.

However, one needs the same training data set for all SVR kernels in order to make a fair
evaluation for further experiments. Thus, a maximum number of them is chosen, which is
32,500. From this training set size, a number for validation set size of 14,000 is derived,
with respect to 70%-30% proportion.

SVR Kernel No.of Iter. Min.Train Data Train Dur.(sec) RMSE

Linear 55 27,500 91 8.4918

Polynomial deg.2 44 22,000 76 10.5736

RBF 65 32,500 262 8.6585

Table 4.1: Minimum Training Set Size Derived from Learning Curve Experiment

25
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Figure 4.1: Learning Curve of SVR with Linear, Polynomial and RBF Kernels

Figure 4.2: Learning Improvement of SVR with Linear, Polynomial and RBF Kernels
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Training Duration

t(5,000) t(10,000) t(20,000) t(30,000) t(40,000) t(50,000) t(60,949)

9.46 18.25 36.85 60.43 79.58 98.18 119.75

16.16 32.25 64.56 100.26 134.49 162.43 191.48

37.24 74.98 147.31 229.79 303.85 372.55 463.22

Table 4.2: Training Duration for Di�erent Data Set Sizes (in Seconds)

Table 4.2 shows the training duration needed for the increasing data set sizes. The duration
increases linearly along with the data size, e.g. SVR with RBF kernel takes 37.24 seconds
for processing 5,000 data, and approximately four and eight times longer for 20,000 and
40,000 data respectively. Therefore, one can expect, that the time saving by reducing data
set size from 60,949 to 32,500 is 1− (32, 500/60, 949) ≈ 46%. Important to note here, the
time taken is based on solely four continuous independent variables.

4.2 Grid Search Analysis

In grid search analysis, SVR is trained and validated for each parameters combination to
choose good values by looking at the lowest error generated. This section is divided into
two subsections. The �rst subsection focuses only on the continuous variables, while the
second subsection elaborates the results from the experiment with the whole continuous
and binary variables.

4.2.1 Grid Search with Continuous Variables

SVR with Linear Kernel

For linear SVR, a grid search with 22 cost and 19 epsilon values is executed. The number
of iterations needed to do this grid search is 418 times. Figure 4.3 displays the validation
RMSE for each combination of cost and epsilon. As one could already predict, RMSE
goes down along with increasing cost and decreasing epsilon. The underlying reason could
be studied from equation 2.11 and 2.14. A higher cost penalizes the empirical training
error (non-zero ξi, ξ

∗
i ) more, so that the model built is less under-�t. While lower ε de�nes

a lower insensitivity loss function, which re�ects a higher learning capacity for a better
model �tting.

In this experiment, the RMSE minimum value of 7.45 is achieved with C = 214 = 16, 384.00
and ε = 23 = 8.00. Actually, there is an area of good RMSE ≤ 8.00 for cost values of{

22, 23, · · · , 215
}
and epsilon values of

{
2−9, 2−8, · · · , 23

}
. Even an RMSE ≤ 7.50 can be

achieved with cost values starting from 26 = 64, without changing the epsilon range.
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Figure 4.3: Grid Search for SVR with Linear Kernel for Models with Continuous Variables

Figure 4.4 depicts the training time based on di�erent cost and epsilon. It shows that
there is a high increase in training duration for a small epsilon and big cost combination.
To understand which parameter plays more signi�cant role, a comparison between their
impact is made. Mean values of training time with diverse epsilon and same cost are
counted to disclose the cost e�ect, and vice versa with diverse cost and same epsilon for
epsilon e�ect. The result is presented by Figure 4.5. The cost plotting has a linear curve,
and the epsilon plotting has a logarithmic one.
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Figure 4.4: Training Time for SVR with Linear Kernel for Models with Continuous Vari-
ables

Figure 4.5: Cost and Epsilon E�ect on The Training Time of SVR with Linear Kernel



CHAPTER 4. ANALYSIS 30

From the RMSE and the training time outcome, there are two �ndings:

1. The band of good enough parameters can be found in quite a large range. Therefore
a �ner grid search is not necessary for model selection, it is better to do just a coarse
search in order to reduce computational e�ort and time.

2. The training time depends on both epsilon and cost values, besides training data size.
Nonetheless, in this particular case, the epsilon shows much higher in�uence. The
lower the epsilon, the longer duration it takes, since more learning e�ort is needed.

SVR with Polynomial Kernel

The grid search for polynomial SVR is done with �ve di�erent degrees, eight cost and
seven epsilon values in coarse steps of 23. The total of iteration is 280 times. Figure 4.6
displays �ve plots of RMSE with respect to all degrees experimented. The similar minimum
RMSE of 6.97 is achieved for three settings. First, d = 3, C = 512.00, ε = 8.00, second,
d = 4, C = 512.00, ε = 8.00, and third, d = 5, C = 64.00, ε = 8.00. One thing to mention
here, the value of epsilon which generates a minimum RMSE for all degrees is 8.00.

Moreover, a higher degree of polynomial is more sensitive to the change of cost. One can
observe this e�ect in the increase of RMSE for C = 32, 768.00 and ε =

{
2−9, 2−6, 2−3, 20

}
which are ≈ {0.01, 0.1, 1, 2, 20} for degree {2, 3, 4, 5, 6}. While building a model, SVR with
a high value of cost combined with a high learning capacity reduces the empirical training
error more than it is needed to achieve the best model. This leads to over-�tting, and
therefore, the generalization error (RMSE) for the validation set goes up.
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Figure 4.6: Grid Search for SVR with Polynomial Kernel for Models with Continuous
Variables, Degree = {2, 3, 4, 5, 6}
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SVR with RBF Kernel

SVR with RBF kernel is run with 392 combinations of eight cost, seven epsilon and seven
gamma values. The minimum error of 6.88 is accomplished with the following hyperpa-
rameters, C = 512.00, ε = 1.00, γ = 8.00, as shown in Figure 4.7.

Whereas Figure 4.8 shows, that increasing gamma settings
{

2−15, 2−12, 2−9, 2−6, 2−3, 20
}

generate decreasing minimum RMSE {8.11, 7.53, 7.33, 7.07, 7.00, 6.93}. The area of C and
ε combinations that gives RMSE level ≤ 8 also gets larger. This �gure exhibits model
improvement as γ increases.

An explanation for this has to be searched, because the theory states the opposite. The
RBF kernel can also be written as

k (x, z) = exp

(
−‖x− z‖

2

2α2

)
(4.1)

The α determines the area of in�uence of a support vector over data space. A large α
allows a support vector to have a strong in�uence over a larger area, so that SVR can
build a smoother regression model. Therefore, as α increases, the value of generalization
error will decrease [Chi98a]. From Equations 4.1 and 2.27, γ = 1/

(
2α2
)
. Thus, one should

expect that as γ decreases, the value of generalization error will decrease.

One can prove this theory by doing further experiment with larger gamma values, because
obviously the trend of decreasing RMSE for increasing gamma will have to stop at a certain
turning point.

Another interesting �nding from Figure 4.8 is the value of cost that minimizes the RMSE.
For di�erent γ =

{
2−15, 2−12, 2−9, 2−6, 2−3, 20

}
, and consequently diverse epsilon values,

the optimum cost is 215 = 32768, the largest cost available in this grid search. The best
parameters combination, in contrast, uses only a considerably low cost of 29 = 512.00 (see
Figure 4.7). This indicates that, with the right setting of gamma and epsilon to determine
the machine learning capacity, a very high cost to penalize the empirical error is no longer
needed in order to achieve a low generalization error.
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Figure 4.7: Grid Search for SVR with RBF Kernel for Models with Continuous Variables,
Gamma = 23
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Figure 4.8: Grid Search for SVR with RBF Kernel for Models with Continuous Variables,
Gamma =

{
2−15, 2−12, 2−9, 2−6, 2−3, 20

}
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4.2.2 Grid Search with All Variables

SVR with Linear Kernel

Figure 4.9: Grid Search for SVR with Linear Kernel for Models with All Variables

The grid search for linear SVR with all variables is done for 16 cost and 19 epsilon values.
Actually there are 22 cost values to be evaluated, but at the time this thesis is written,
only 15 have been executed completely and one partially. Due to time limitation, after 708
hours (30 days), the result has to be fetched before the experiment is �nished. Thus, one
can only learn from 291, instead of 418, cost and epsilon combinations. Figure 4.9 displays
the available RMSE outcome.

There is a general decrease in RMSE in comparison to the result of grid search for linear
SVR with only continuous variables. Taking the same range of cost

{
2−6, 2−5, · · · , 28

}
and epsilon

{
2−9, 2−8, · · · , 29

}
, the mean of RMSE with all variables is 9.0924, while with

continuous variables 10.9042. The minimum RMSE is also smaller, 6.25 in compare to
7.45. Thus, the increase of input dimension by including the binary variables yields a 16%
decrease in RMSE.

The optimum values of cost and epsilon are 256.00 and 4.00 respectively. Parallel to the
�nding in grid search for continuous variables, there is a large area of good RMSE ≤ 6.5
for C =

{
2−3, 2−2, · · · , 28

}
and ε =

{
2−9, 2−8, · · · , 22

}
.
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Besides that, the whole plot for linear SVR with continuous and all variables are showing
the same tendency. They both experience a leap in RMSE value for the epsilon values
above 25 = 32.00. This is due to the radius of the insensitivity tube which is too big. As
the result, the model is under-�tting, and the empirical, as well as generalization error,
goes up.

Figure 4.10: Training Time for SVR with Linear Kernel for Models with All Variables

As in any other circumstances, where the complexity drives up the problem solving dura-
tion, in this case, adding 174 binary variables leads to a longer training time. Although the
experiment with all variables has not covered the grid area with big cost values completely{

29, 210, · · · , 215
}
, the mean of training period has soared to more than 25 times the one

with continuous variables only. If the training time for C = 29 and ε = 2−4 epsilon values
is almost 40 hours, then with the linear e�ect of cost to time increase (see Figure 4.5),
one should anticipate, that the single calculation for C = 215 and the same epsilon will be
solved in 708 hours (30 days) by the same computer.

Unfortunately, such a long computation does not entail low generalization error due to
over-learning. Therefore, it has to be avoided. This is exactly why evolution strategy is
prefered over grid search for hyperparameters selection. ES could �nd reasonably good
parameters without being trapped in the over-�t cases, as what the grid search faces. One
can always limit the ES search either by maximum generation number, maximum allowed
training time or RMSE improvement threshold.
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SVR with Polynomial Kernel

Figure 4.11: Grid Search for SVR with Polynomial Kernel for Models with All Variables

Epsilon 0.0020 0.0156 0.1250 1.00 8.00 64.00 512.00
Cost Degree = 2

0.015625 6.3307 6.3303 6.3286 6.3215 6.6502 17.1804 17.1804

0.125 6.2451 6.2441 6.2395 6.1955 6.4233 17.1804 17.1804

Degree = 3

0.015625 6.7518 6.7498 6.7354 6.6376 6.8701 17.1804 17.1804

0.125 8.4401 8.4340 8.3870 8.0600 7.4283 17.1804 17.1804

Degree = 4

0.015625 8.6715 8.6643 8.6085 8.2350 7.6348 17.1804 17.1804

0.125 9.9408 9.9295 9.8408 9.2128 7.8344 17.1804 17.1804

Degree = 5

0.015625 9.8817 9.8714 9.7918 9.2751 8.0278 17.1804 17.1804

0.125 13.9080 13.8825 13.6666 12.2153 8.2264 17.1804 17.1804

Degree = 6

0.015625 15.0006 14.9681 14.7456 13.3869 8.3505 17.1804 17.1804

0.125 27.2258 27.1393 26.4392 21.8533 9.8126 17.1804 17.1804

Table 4.3: Grid Search Evaluation with Polynomial SVR for Models with All Variables
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After 36 days running SVR with polynomial kernel to look for the best hyperparameters,
there are only 70 cost - epsilon - degree combinations available for analysis. Fortunately,
the minimum RMSE attained from this set is quite low, thus, the parameters setting is
good enough to be used in the �nal experiment.

As one can already notice in Figure 4.11, the RMSE is smaller for the lower polynomial
degree. In accordance with the learning from grid search with continuous variables, a
higher polynomial degree is wigglier to the change of cost, as suggested by the RMSE of
polynomial SVR degree 5 and 6. Moreover, the e�ect of epsilon setting to under-�tting can
be observed in Table 4.3. With epsilon values larger than 64.00, the RMSE is the same,
17.1804, for all cost values and degrees tested.

The lowest RMSE of 6.20 is found for a mix of low cost, epsilon and degree (C = 0.125, ε =
1.00, d = 2). The improvement in term of RMSE, in compare to the one with continuous
variables only, is 11%.

SVR with RBF Kernel

In the experiment with RBF kernel, the evaluation of di�erent cost, epsilon and gamma
has been more thoroughly done, although it does not manage to build the models with
the last cost setting of C = 215 = 32768. This is due to the excessively long computation
to generate SVR model with a mixture of large cost, low epsilon and approriate gamma
setting (appropriate here means that the gamma is likely to yield the minimum RMSE). For
example, the training time for the SVR with C = 215, ε = 2−9, γ = 2−9 is approximately
155 hours (6.5 days).

Moreover, it is expected that a very large cost is not necessary to gain a low generalization
error, when the right setting of gamma and epsilon is found, as indicated by the �nding
in the RBF SVR experiment with continuous variables. Thus, the present result with
C =

{
2−6, 2−3, · · · , 212

}
, and 87.5% coverage of the grid search area, by running 343 out

of 392 parameter combinations, can be considered as complete.

The lowest RMSE of 6.07 is achieved for C = 64.00, ε = 1.00, γ = 0.0156, as one can see
in Figure 4.12. Unlike the result from the experiment with continuous variables, where
the chosen gamma (23) is at the end of its range, with all variable, the chosen gamma
(2−6) is in the middle of its range. Figure 4.13 shows that the increasing gamma values
between 2−15 to 2−9 decreases the minimum RMSE, whereas the values between 2−3 and 23

increases it. This is coherent to the previous assumption in the analysis of the experiment
with continuous variables, where the decreasing trend of RMSE along the increasing value
of gamma cannot continue forever.

Parallel to the previous results, by including the binary variables, the SVR model accuracy
can be increased by almost 12% in compare to the one with continuous variables only.
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Figure 4.12: Grid Search for SVR with RBF Kernel for Models with All Variables, Gamma
= 2−6
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Figure 4.13: Grid Search for SVR with RBF Kernel for Models with All Variables, Gamma
=
{

2−15, 2−12, 2−9, 2−3, 20, 23
}
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4.3 Evolution Strategy

In the following, the results of hyperparameter selection with ES will be presented. As in
the grid search analysis, this section is also divided into two subsections, namely ES with
continuous variables and ES with all variables.

There are two kinds of plots that are utilized to describe the results here. The �rst
one is the proliferation �gure, which displays the mutation of hyperparameter candidates
through the evolution process of ES. The green points depitc all individuals generated
through mutation. The blue circles are the selected candidates, which are passed on to the
next generation, and the big red dot is the chosen individual with highest �tness.

The second type of �gure is the box plot, which is used in order to depict the RMSE spread
of individuals in successive generations. Each structure in this plot summarizes the RMSE
minimum, lower quartile (Q1), median (Q2), upper quartile (Q3), RMSE maximum and
the outliers for each generation.

4.3.1 Evolution Strategy with Continuous Variables

SVR with Linear Kernel

The results achieved by performing plus and comma strategy for the linear SVR with
continuous variables are similar. Both RMSEs are converging to 7.44 and epsilon to 10.
These values are con�rming the result from grid search. However, the optimum costs chosen
show quite a di�erence, 112.69 and 207.26 (grid search result is 16, 384), but with minor
consequence on error discrepancy. This is due to the inferior role of cost and dominant
role of epsilon in reducing error, as one can see in the grid search before.

As shown from Figure 4.14, ES converges quite quickly to the optimum epsilon value. From
totally 15 generations, starting from the �fth generation for (µ, λ)-ES and the fourth for
(µ+ λ)-ES, the best epsilon values in each generation steadily moving around 0.1% range
from the optimum one. One thing need to be stated here, those values are selected because
of their �tness, and not due to an overly decrease in standard deviation for mutation.

From Figure 4.17 one can learn, that generally, regardless of the kernel, the �rst few
generations have higher RMSE median, which is decreasing along the increasing generation,
due to the selection procedure. It is also common that early generations have larger
interquartile range, which indicates larger spread. Furthermore, this �gure exhibits that
the self adaptation procedure for the mutation's step σ, does a good job to reduce the
spread, and focuses on good parameter values instead.

SVR with Polynomial Kernel

As one could see from Figure 4.15, the minimum RMSE for both (µ+ λ)-ES and (µ, λ)-ES
is 6.97. This is the same result achieved from grid search. The selected degrees in both
strategies are 5, and the epsilon values are approximately 8.00. The values of cost chosen
in ES-comma (130.06) and ES-plus (111.14) are also similar. Both are approximately twice
as much the optimum cost found with grid search. Considering the big interval within grid



CHAPTER 4. ANALYSIS 42

search (23), the cost values from ES and grid search have no major di�erence. Hence, all
the best parameter combinations suggested by ES are synchron to the result from grid
search analysis.

Another thing to mention here is the error spread during the evolution course. Figure 4.17
reveals that the RMSE spread of polynomial SVR in the �rst three generations is much
larger than the RMSE variance for the other two kernels. This is mainly caused by some
individuals with higher polynomial degrees (e.g. 6, 7), which do not �t to the data set
nature, and thus, generate high generalization errors.

SVR with RBF Kernel

The resulting RMSE of 6.88 can be achieved with ES-comma, and 6.86 with ES-plus. Thus,
the best parameters setting for RBF SVR as suggested by ES is C = 197.72, ε = 2.93, γ =
12.18 (see Figure 4.16).

Looking at the optimal parameters found in grid search (Figure 4.7), C = 512.00, ε =
1.00, γ = 8.00, again, the similarity of the results between the two approaches has to be
drawn for the experiment with RBF SVR. A slight decrease of 0.02 in RMSE is achieved by
loosening the epsilon tube a bit and reducing the cost. In the grid search analysis for RBF
SVR, it is proposed to check higher values of gamma in order to �nd even a lower RMSE.
ES does this search, and proves, that a little higher gamma can yield a lower RMSE.
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(a) (µ, λ)-ES selection

(b) (µ+ λ)-ES selection

Figure 4.14: Evolution Strategy for SVR with Linear Kernel for Models with Continuous
Variables
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(a) (µ, λ)-ES selection

(b) (µ+ λ)-ES selection

Figure 4.15: Evolution Strategy for SVR with Polynomial Kernel for Models with Contin-
uous Variables
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(a) (µ, λ)-ES selection

(b) (µ+ λ)-ES selection

Figure 4.16: Evolution Strategy for SVR with RBF Kernel for Models with Continuous
Variables



CHAPTER 4. ANALYSIS 46

Figure 4.17: RMSE Spread of Individuals within Di�erent Generations for Models with
Continuous Variables
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4.3.2 Evolution Strategy with All Variables

SVR with Linear Kernel

From the two graphs in Figure 4.18 one can see that both ES-comma and ES-plus �nd the
same minimum RMSE of 6.24, and the same optimum cost (182.71) as well as epsilon value
(6.42). This �gure also displays a high similarity of both parameters proliferation (but not
the same), although ES-comma and ES-plus are run in di�erent platform. The same remark
can also be made based on RMSE spread within di�erent generations, as depicted by two
graphs for linear SVR in Figure 4.20. This can happen because Matlab coindentally uses
similar initial states for its randn function, to generate the random numbers that follows
the normal distribution according to the ziggurat algorithm [Inc05].

Besides the forementioned observation, there is only a minor decrease in RMSE, that has
been achieved by both ES strategies in compare to the grid search result (6.25).

SVR with Polynomial Kernel

Unfortunately, the experiment with polynomial SVR for models with all variables has to
excluded from this report. Due to an excessively long ES-search that takes approximately
3.5 days for a single parameters combination, there are only six models built in the time
being. Thus, there is a lack of comprehensive result to be analyzed, and further be used
as a basis for a decision of the best parameters setting.

SVR with RBF Kernel

The results from the ES experiment with RBF SVR are displayed in Figure 4.19. A slightly
better RMSE is found by employing ES-plus strategy rather than ES-comma, which can
only �nd the the same minimum RMSE as in the grid search. Not surprisingly, the best
hyperparameter settings are also alike, especially for the gamma values (ES = 0.01, GS =
0.0156). ES' best radius for the epsilon tube is around three time larger than the best one
according to grid searh (ES = 3.42, GS = 1.00), whereas the cost is twice as much (ES =
110.96, GS = 64.00). Considering the grid search steps, this variation is not so important.
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(a) (µ, λ)-ES selection

(b) (µ+ λ)-ES selection

Figure 4.18: Evolution Strategy for SVR with Linear Kernel for Models with All Variables
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(a) (µ, λ)-ES selection

(b) (µ+ λ)-ES selection

Figure 4.19: Evolution Strategy for SVR with RBF Kernel for Models with All Variables
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Figure 4.20: RMSE Spread of Individuals within Di�erent Generations for Models with
All Variables
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4.4 Summary of Hyperparameters Selection

SVR Kernel Min.RMSE Hyperparameters Setting

With Continuous Variables

Grid Search

Linear Kernel 7.45 C = 16, 384.00, ε = 8.00
Polynomial Kernel 6.97 C = 512.00, ε = 8.00, d = 3

C = 512.00, ε = 8.00, d = 4
C = 64.00, ε = 8.00, d = 5

RBF Kernel 6.88 C = 512.00, ε = 1.00, γ = 8.00
Evolution Strategy

Linear Kernel (µ, λ) 12thgen., 7.44 C = 207.26, ε = 10.00
Linear Kernel (µ+ λ) 15thgen., 7.45 C = 112.69, ε = 10.03
Polynomial Kernel (µ, λ) 13thgen., 6.97 C = 130.06, ε = 7.94, d = 5
Polynomial Kernel (µ+ λ) 14thgen., 6.97 C = 111.14, ε = 7.67, d = 5
RBF Kernel (µ, λ) 10thgen., 6.88 C = 198.91, ε = 2.74, γ = 8.52
RBF Kernel (µ+ λ) 14thgen., 6.86 C = 197.72, ε = 2.93, γ = 12.18
With All Variables

Grid Search

Linear Kernel 6.25 C = 256.00, ε = 4.00
Polynomial Kernel 6.20 C = 0.125, ε = 1.00, d = 2
RBF Kernel 6.07 C = 64.00, ε = 1.00, γ = 0.0156
Evolution Strategy

Linear Kernel (µ, λ) 15thgen., 6.24 C = 182.71, ε = 6.42
Linear Kernel (µ+ λ) 15thgen., 6.24 C = 182.71, ε = 6.42
RBF Kernel (µ, λ) 11thgen., 6.07 C = 141.47, ε = 3.41, γ = 0.01
RBF Kernel (µ+ λ) 7thgen., 6.06 C = 110.96, ε = 3.42, γ = 0.01

Table 4.4: Best Hyperparameter Candidates Suggested by Grid Search and Evolution
Strategy

Before deciding the parameters for the �nal experiment, a comparison between hyperpa-
rameters achieved from di�erent searching methods needs to be done. Table 4.4 summarizes
all the forementioned results to facilitate this objective 1. The criterion for selection is the
lowest RMSE. The best hyperparameters are then listed in Table 4.6 and 4.7, and used for
the �nal experiment.

There are several learning items from ES approach in comparison to grid search for di�erent
SVR kernels and variables inclusions from this table:

1. The best parameters combination from grid search learning can be found as well in
an approximity by ES. This is due to the fact, that there is quite a large plateau in
grid search with di�erent parameter settings, which can generate low errors.

1The generation numbers accompanying the RMSE values in the ES division are the points of time
where the minimum RMSE are detected along the evolution for ES-comma, or the earliest one in the case
of ES-plus.
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2. The resulting minimum RMSE from ES search is always better, or at least as good
as the one found in grid search. This is due to the �exible search area of ES, which
is exactly the advantage of ES over grid search. The grid search is limited to the
parameter values set initially. Thus, one should do a two phase grid search, a coarse
one and then a �ner one, to improve the model accuracy. Moreover, one should
also consider to check beyond the area of current search, if the minimum RMSE is
achieved by a parameter value in the search range border. The ES approach is not
curbed by these issues. To �nd the optimal parameters setting, ES can start the
search from any point, and then move closer to the �nal solution. It also adapts its
search level autonomously, so that it begins the search with a relatively coarse step,
and then, it tunes itself to a �ner search.

3. Although ES can start the search from any point, the initialization point is important
to enable it to �nd the right parameters quicker. Small epsilon values of {0.25, 1,
4} and cost derived from Cherkassky and Ma's Equation 2.28 have been proven to
be good starting points for SVR to assess this data set. For SVR with polynomial
kernel, one can use low degrees such as {2, 3, 4} for the �rst parents. Whereas {0.125,
1, 8} can be employed to initialize gamma setting for SVR with RBF kernel.

4. Both (µ, λ)-ES and (µ+ λ)-ES generate a similar error level, with less then 0.3%
RMSE di�erence for all kernels, independent of variables selection used to build the
regression models. Besides, neither comma nor plus strategy can always yield the
minimum RMSE for all kernels. These facts lead to a conclusion, that the results
achieved by performing plus and comma strategy are the same for this particular
huge data set.

Additionally, a summary of the training time from the hyperparameter selection tasks is
displayed in Table 4.5, excluding the predicting time and other calculations. From the
experiment with continuous variables which is completed according to the plan, one can
see, that the time saving by using ES instead of GS is huge. For linear SVR, GS needs
around 25 times longer duration than ES, whereas for polynomial and RBF SVR, GS takes
16 and 3 times longer period than ES.

One could probably get such a comparison for the training time in the experiment with all
variables, if GS had been completed. Unfortunately, this is not the case. Therefore, Table
4.5 just shows the number of the SVR models successfully built for each kernel, and display
the time accordingly. The note 'partially used results' means, that there are 2 or 3 models
left out from being taken into the analysis, due to the lack of range comprehensiveness.
These excluded results have either big cost setting, higher polynomial degree or appropriate
gamma, which makes a single SVR calculation take an excessive time.

Despite the uncomplete GS result, one can easily notice that the number of models to be
built for �nding the best parameters with GS is higher than with ES. Thus, GS needs a
longer search duration, which can be much worsened when SVR is trapped in some over
learning areas. This trap will also blockade the evaluations of other parameters combina-
tions, which have more probability to be the best hyperparameters. For example, the two
excluded models in polynomial SVR take alone almost 240 hours to build. Therefore, GS
is not time e�cient for hyperparameter search, especially for high dimensional and huge
data set.
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SVR Kernel Note No.of Models Ttrain(s.) Ttrain(h.)

With Continuous Variables

Grid Search

Linear Kernel 418 139590 39

Polynomial Kernel 280 298550 83

RBF Kernel 392 114840 32

Evolution Strategy

Linear Kernel comma 183 6503 2

Linear Kernel plus 183 4610 1

Polynomial Kernel comma 183 17764 5

Polynomial Kernel plus 183 17649 5

RBF Kernel comma 183 35886 10

RBF Kernel plus 183 33777 9

With All Variables

Grid Search

Linear Kernel 291 2441300 678

Polynomial Kernel partially used results 70 2175300 604
all results 72 3028300 841

RBF Kernel partially used results 343 1611300 448
all results 346 2180200 606

Evolution Strategy

Linear Kernel comma 183 1264200 351

Linear Kernel plus 183 1260800 350

Polynomial Kernel plus, unused results 6 1799000 500

RBF Kernel comma 183 693810 193

RBF Kernel plus 183 733880 204

Table 4.5: Comparison of Training Time from Grid Search and Evolution Strategy

4.5 Final Training and Testing

Table 4.6 shows the best parameter settings for each di�erent kernel used in the �nal
experiment with continuous variables only, whereas Table 4.7 displays the parameters
employed in the experiment with all variables. The resulting RMSE are listed to choose
which kernel and parameters setting is the best. The results of another generalization
error measure, namely Squared Correlation Coe�cient (SCC), are also recorded here, to
strengthen the decision made by selecting the lowest RMSE. SCC (a.k.a. R squared)
de�nes the correlation of variance between the predicted values and the given outcomes
[KKMN98]. The SCC values vary from 0 to 1. The larger the SCC value, the better the
model performance is in predicting a future outcome. In addition to the error measures,
these tables exhibit the training duration used to build the respective SVR model.

From Table 4.6, one can learn, that the best kernel for the model with continuous vari-
ables in the used car price prediction application is the RBF. The following setting,
C = 197.72, ε = 2.93, γ = 12.18, gives an RMSE as low as 6.9331, and an SCC of 0.8184.
The linear SVR is following in the second rank with RMSE of 8.2701. Whereas SVR with
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polynomial kernel degree 3 comes in the last place, with a big disparity of 66.5% to the
result from RBF SVR. This is a proof that the polynomial SVR is not suitable for the
particular data set, considering only the continuous variables.

Table 4.7 shows, that the result of the experiment with all variables rea�rms the above-
mentioned kernel ranking. The best SVR kernel for this application is the RBF, with an
RMSE less than 6 - the lowest recorded error ever, and an SCC of 0.8665. This is an im-
provement of 14.5% in compare to the best one with continuous variables only. The second
place is given to the linear SVR, with the RMSE of 6.3917, but this is achieved with a
much longer training time than the RBF SVR's. Whereas the high RMSE of polynomial
SVR restates, that it is unproper to be applied for the second hand car data.

SVR Kernel Hyperparameters Setting RMSE SCC Ttrain(sec.)

Linear Kernel C = 207.26, ε = 10.00 8.2701 0.7444 245.62
Polynomial Kernel C = 512.00, ε = 8.00, d = 3 11.5450 0.4960 795.08
RBF Kernel C = 197.72, ε = 2.93, γ = 12.18 6.9331 0.8184 1345.90

Table 4.6: Final Experiment with Continuous Variables

SVR Kernel Hyperparameters Setting RMSE SCC Ttrain(sec.)

Linear Kernel C = 182.71, ε = 6.42 6.3917 0.8454 159295
Polynomial Kernel C = 0.125, ε = 1.00, d = 2 15.3626 0.4657 8101
RBF Kernel C = 110.96, ε = 3.42, γ = 0.01 5.9383 0.8665 26279

Table 4.7: Final Experiment with All Variables



Chapter 5

Benchmarking with Statistical Linear

Regression

In this chapter the statistical models generated by SPSS will be presented and compared
with the SVR approach. The model is built solely on continuous independent variables
in the �rst section, whereas all variables are used in the second. They are built based on
the same 87,070 cases, and tested against 37,316 unseen data to observe the generalization
error. The error measurement which is used throuhgout the experiment to compare the
�tness of regression models is the RMSE.

5.1 Experiment with Continuous Variables

For this experiment, SPSS calculates the regression line based on the four continuous
independent variables only. In the following, the assumptions and the model �tness will
be discussed according to the result.

The �rst step of regression analysis is to check the assumptions. The normality of data
distribution could be inspected from descriptive statistics in Table 5.1. The skewness of V3,
as well as kurtosis of V3, V4, V6 are beyond normal distribution range. Thus, the data set
actually needs a pre-transformation before linear regression. However, this will not be done
for the sake of fairness to SVR experiment, which has been performed beforehand. Table
5.2 exhibits the Pearson Correlations, which measure the linearity between each variables.
These correlation coe�cients are signi�cant, as indicated by their signi�cance level (0.000),
since the probability of obtaining result as the one observed is very small. The correlation
indexes of V3 and V4 to the dependent variable V2 are bigger in comparison to V5 and
V6, thus, one could expect a stronger in�uence from V3 and V4 in the regression equation.
The last presumption to be checked is multicollinearity. Table 5.6 suggests that the model
has no problem with collinearity, because the condition indexes are well below 15 [Inc06].

Table 5.4 displays the result of an analysis of variance on the mean value of the dependent
variable, which comes from two sources, the regression and the residual. The sum of
squared value of the regression is comparatively larger than the residual's, and it means
that the model accounts for most of variation in the dependent variable. This is supported
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by the signi�cance value of the F statistic, which is very small (0.000), indicating that the
independent variables can explain the variation well.

Table 5.3 exhibits the summary of the model �tness. R shows the correlation between
the observed and predicted values of dependent variable, while R squared indicates the
proportion of variation in the dependent variable explained by the regression model. Since
R squared tends to optimistically estimate it, the adjusted R squared is calculated to
more closely re�ect the goodness of model's �t in the population [Inc06]. Due to the huge
samples size, both values are very close to 0.7689. The standard error of the estimate in
this table, 7.7657, is also known as RMSE. It is derived from the residual mean square, i.e.
MSE, in Table 5.4.

The coe�cients of the regression model can be found in column B (Unstandardized Coef-
�cients) of Table 5.5. Using the model

V 2pred = 81.116 + (−424.262 ∗ V 3) + (−126.711 ∗ V 4) + (−10.058 ∗ V 5) + (−7.000 ∗ V 6)

a test is done against 37,316 unseen data, producing the RMSE of 8.0612, which is a little
higher than the RMSE obtained from the training data set.

This test set's RMSE is the benchmark of accuracy improvement, that one can yield by
employing SVR to build a regression model. The RMSE from the best SVR kernel and
parameters setting is 6.9331, which means an enhancement in prediction by 14%. It is
the expected decrease of error prediction when building a model merely on the continuous
variables.

5.2 Experiment with All Variables

In the experiment with all variables, the linear regression is built using enter method and
forward stepwise method. With the former, all variables are included simultaneously to
generate a single model. Whereas in forward stepwise, the independent variables are in-
cluded one by one based on their statistic score, resulting in multiple models. Independent
variables are tested consecutively according to their relevance with the dependent vari-
able. The one with the strongest relationship, i.e. the largest absolute value of correlation
coe�cient, is chosen �rst.

The motivation for running regression twice is to show the e�ect of model complexity to
generalization error. With feature selection, generalization error is expected to decrease as
less important variables are excluded to avoid over-�tting.

5.2.1 Enter Method

With enter method, SPSS uses 170 out of 178 independent variables available to create
the following regression line, excluding 8 variables (V7, V15, V25, V31, V34, V80, V88,
V98) due to multicollinearity problem. The model summary as well as the ANOVA are
presented in Table 5.7 and 5.8 subsequently 1.

1The comprehensive results from SPSS can be found in the CD attached.
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From Table 5.7 one could observe, that the training set's RMSE declines from 7.7657 to
6.1408, by including all independent variables. The test set's RMSE corresponds with
the same manner. By applying the equation 5.9, a 22.79% RMSE decrease to 6.2240 is
achieved, in compare to the model with continuous variables only.

5.2.2 Forward Stepwise Method

The outcomes of forward stepwise method are 109 regression models. The summary of
these models could be seen in Table 5.10. Column Var. Entered displays which independent
variable is entered for each consecutive model. The criteria used for variable inclusion is
the probability of F ≤ 0.05 2.

Since the R squared indicates the proportion of variation in the dependent variable ex-
plained by the regression, it could be used to determine the best model. [Inc06] recom-
mends to choose a model with high value of R squared that does not include too many
variables, because models with too many variables are often over-�t and hard to interpret.
Based on this recommendation and considering the insigni�cant R Square Change of model
35 onwards (0.000), the author chooses model 34 as the best one. The coe�cients of this
regression model can be found in Table 5.12, while its ANOVA in Table 5.11.

By applying model 34 to the test set, an RMSE of 6.3519 is obtained. This is a 21.20%
RMSE reduction from the model with continuous variables, but surprisingly, the perfor-
mance turns out to be not as good as the one with enter method (6.2240).

The lowest RMSE achieved in the �nal SVR experiment including all variables is 5.9383.
This means, that SVR can improve the accuracy by 4.6% in compare to the statistical
model resulted from the enter method, or even 6.5% to the one with forward stepwise
method.

N Mean Std. Deviation Skewness Kurtosis

Statistic Statistic Statistic Statistic Std. Error Statistic Std. Error

V2 87070 57.8456 16.1548 -0.2636 0.0083 -0.6352 0.0166

V3 87070 0.0294 0.0181 4.4410 0.0083 179.7834 0.0166

V4 87070 0.0505 0.0477 2.6692 0.0083 28.1393 0.0166

V5 87070 0.4112 0.2553 0.3946 0.0083 -0.7581 0.0166

V6 87070 0.0402 0.0705 2.0336 0.0083 7.9582 0.0166

Table 5.1: Descriptive Statistics of Dependent Variable and Independent Continuous Vari-
ables

2The criteria used for exclusion is the probability of F ≥ 0.10.
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V2 V3 V4 V5 V6

Pearson Correlation V2 1.000 -0.809 -0.725 -0.634 -0.439

V3 -0.809 1.000 0.579 0.646 0.503

V4 -0.725 0.579 1.000 0.424 0.310

V5 -0.634 0.646 0.424 1.000 0.343

V6 -0.439 0.503 0.310 0.343 1.000

Sig. (1-tailed) V2 . 0.000 0.000 0.000 0.000

V3 0.000 . 0.000 0.000 0.000

V4 0.000 0.000 . 0.000 0.000

V5 0.000 0.000 0.000 . 0.000

V6 0.000 0.000 0.000 0.000 .

Table 5.2: Correlations - Continuous Variables

Model R R Square Adjusted R Square Std. Error of the Estimate

1 0.8770 0.7689 0.7689 7.7657

Table 5.3: Model Summary - Continuous Variables

Model Sum of Squares df Mean Square F Sig.

1 Regression 17472421 4 4368105.227 72432.111 0.000
Residual 5250559 87065 60.306
Total 22722980 87069

Table 5.4: ANOVA - Continuous Variables

Model Unstandardized Coef. Standardized Coef. t Sig.

B Std. Error Beta

1 (Constant) 81.116 0.054 1,489.079 0.000
V3 -424.262 2.271 -0.474 -186.822 0.000
V4 -126.711 0.680 -0.374 -186.360 0.000
V5 -10.058 0.136 -0.159 -74.206 0.000
V6 -7.000 0.432 -0.031 -16.201 0.000

Table 5.5: Regression Coe�cients - Continuous Variables

Model Dimen. Eigenvalue Condition Variance Proportions

Index (Constant) V3 V4 V5 V6

1 1 3.9120 1.0000 0.0123 0.0069 0.0158 0.0092 0.0191
2 0.5740 2.6107 0.0467 0.0007 0.0102 0.0093 0.8135
3 0.2848 3.7065 0.1709 0.0005 0.7845 0.0353 0.0177
4 0.1457 5.1811 0.7311 0.0435 0.0632 0.4874 0.0637
5 0.0836 6.8413 0.0390 0.9484 0.1263 0.4588 0.0861

Table 5.6: Collinearity Diagnostics - Continuous Variables



CHAPTER 5. BENCHMARKING WITH STATISTICAL LINEAR REGRESSION 59

Model R R Square Adjusted R Square Std. Error of the Estimate

1 0.925 0.856 0.856 6.1408

Table 5.7: Model Summary - Enter Method

Model Sum of Squares df Mean Square F Sig.

1 Regression 19446071.866 170 114388.658 3033.426491 .000(a)

Residual 3276908.152 86899 37.709

Total 22722980.018 87069

Table 5.8: ANOVA - Enter Method
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V 2pred = 79.9619+(−86.3978∗V 3)+(−94.1792∗V 4)+(−30.9193∗V 5)+(−5.9418∗
V 6)+(−5.4134∗V 8)+(−1.5103∗V 9)+(1.6185∗V 10)+(−0.4702∗V 11)+
(−1.0318 ∗ V 12) + (−0.6459 ∗ V 13) + (0.2661 ∗ V 14) + (−0.9407 ∗ V 16) +
(−3.2836 ∗ V 17) + (−1.5689 ∗ V 18) + (2.6305 ∗ V 19) + (1.1536 ∗ V 20) +
(−2.1629 ∗ V 21) + (−1.5373 ∗ V 22) + (1.9688 ∗ V 23) + (−1.5257 ∗ V 24) +
(−2.8816 ∗ V 26) + (−0.7412 ∗ V 27) + (−7.9317 ∗ V 28) + (−5.1911 ∗ V 29) +
(−1.8808 ∗ V 30) + (1.9583 ∗ V 32) + (4.4570 ∗ V 33) + (−1.5375 ∗ V 35) +
(−3.4558 ∗ V 36) + (−2.7253 ∗ V 37) + (−4.5433 ∗ V 38) + (−2.7596 ∗ V 39) +
(−4.7640∗V 40)+(−2.4419∗V 41)+(2.9402∗V 42)+(1.5986∗V 43)+(0.2484∗
V 44)+(−0.8348∗V 45)+(3.4632∗V 46)+(0.8415∗V 47)+(−0.8680∗V 48)+
(0.3012∗V 49)+(3.4655∗V 50)+(0.9649∗V 51)+(6.5376∗V 52)+(7.8867∗
V 53) + (4.9999 ∗V 54) + (2.8996 ∗V 55) + (8.9795 ∗V 56) + (8.4479 ∗V 57) +
(−1.2725 ∗ V 58) + (−0.9764 ∗ V 59) + (−3.0832 ∗ V 60) + (−0.9567 ∗ V 61) +
(−1.1983 ∗ V 62) + (−1.0620 ∗ V 63) + (−1.2266 ∗ V 64) + (−2.1482 ∗ V 65) +
(0.7759 ∗ V 66) + (−2.2587 ∗ V 67) + (−1.0758 ∗ V 68) + (0.1718 ∗ V 69) +
(−1.0461 ∗ V 70) + (−2.0234 ∗ V 71) + (−1.8560 ∗ V 72) + (−1.1497 ∗ V 73) +
(−3.3939 ∗ V 74) + (−1.7986 ∗ V 75) + (−2.4727 ∗ V 76) + (−1.1551 ∗ V 77) +
(−1.3934 ∗ V 78) + (−1.3169 ∗ V 79) + (−1.2590 ∗ V 81) + (−2.1558 ∗ V 82) +
(−0.3334 ∗ V 83) + (−1.5544 ∗ V 84) + (−1.1133 ∗ V 85) + (−1.0379 ∗ V 86) +
(0.1248 ∗ V 87) + (−0.3463 ∗ V 89) + (−0.2439 ∗ V 90) + (−0.4037 ∗ V 91) +
(−1.5990 ∗ V 92) + (−1.1756 ∗ V 93) + (−0.6423 ∗ V 94) + (−0.1986 ∗ V 95) +
(−0.6582 ∗ V 96) + (−0.4294 ∗ V 97) + (0.1010 ∗ V 99) + (0.7275 ∗ V 100) +
(−0.0460∗V 101)+(−1.4296∗V 102)+(−0.2321∗V 103)+(−0.4321∗V 104)+
(0.4010∗V 105)+(−1.1251∗V 106)+(−0.4195∗V 107)+(−0.4152∗V 108)+
(−0.1240∗V 109)+(−0.3681∗V 110)+(−0.3635∗V 111)+(−0.2279∗V 112)+
(0.1593 ∗V 113) + (0.1331 ∗V 114) + (−0.5259 ∗V 115) + (−0.8022 ∗V 116) +
(−0.0658∗V 117)+(0.3279∗V 118)+(−2.1053∗V 119)+(−1.9921∗V 120)+
(−0.9213∗V 121)+(−0.3503∗V 122)+(−0.9337∗V 123)+(0.1713∗V 124)+
(−0.5788∗V 125)+(−0.3980∗V 126)+(−0.4773∗V 127)+(−0.0442∗V 128)+
(−0.4605∗V 129)+(−0.7047∗V 130)+(−0.7625∗V 131)+(−0.1858∗V 132)+
(−1.2545∗V 133)+(−0.0939∗V 134)+(−0.2106∗V 135)+(0.0008∗V 136)+
(−0.3187∗V 137)+(−0.2994∗V 138)+(−0.4376∗V 139)+(−0.0811∗V 140)+
(−0.2381 ∗V 141) + (0.6580 ∗V 142) + (0.3003 ∗V 143) + (−0.2427 ∗V 144) +
(−0.6669 ∗V 145) + (0.0323 ∗V 146) + (0.2126 ∗V 147) + (−0.2496 ∗V 148) +
(−0.8285∗V 149)+(−0.6827∗V 150)+(−1.1741∗V 151)+(0.3630∗V 152)+
(−0.3916∗V 153)+(0.3280∗V 154)+(−0.0443∗V 155)+(−1.0064∗V 156)+
(−0.4844∗V 157)+(−0.2652∗V 158)+(−0.1415∗V 159)+(−1.8737∗V 160)+
(−0.6365 ∗V 161) + (−0.3161 ∗V 162) + (1.6179 ∗V 163) + (1.4242 ∗V 164) +
(−0.6974 ∗V 165) + (−0.1148 ∗V 166) + (0.0518 ∗V 167) + (0.1469 ∗V 168) +
(−0.1489∗V 169)+(−1.9362∗V 170)+(−0.1507∗V 171)+(1.6113∗V 172)+
(2.4232 ∗ V 173) + (0.1285 ∗ V 174) + (0.5679 ∗ V 175) + (−0.0930 ∗ V 176) +
(1.5410 ∗ V 177) + (1.9008 ∗ V 178) + (1.8380 ∗ V 179) + (2.0977 ∗ V 180)

Table 5.9: Regression Model - Enter Method
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Md. Var.
En-
tered

R R
Square

Adj.R
Square

Std.
Err. of
Estim.

Change Statistics

R
Square
Chg.

F Change df1 df2 Sig.
F
Chg.

1 V3 0.809 0.654 0.654 9.5001 0.654 164704.928 1 87068 0.000

2 V4 0.868 0.753 0.753 8.0217 0.099 35052.707 1 87067 0.000

3 V5 0.876 0.768 0.768 7.7774 0.015 5556.906 1 87066 0.000

4 V8 0.883 0.780 0.780 7.5762 0.012 4686.906 1 87065 0.000

5 V20 0.888 0.789 0.789 7.4138 0.009 3855.283 1 87064 0.000

6 V56 0.893 0.797 0.797 7.2798 0.008 3235.830 1 87063 0.000

7 V28 0.895 0.802 0.802 7.1914 0.005 2155.863 1 87062 0.000

8 V29 0.899 0.808 0.808 7.0700 0.007 3016.371 1 87061 0.000

9 V52 0.902 0.813 0.813 6.9916 0.004 1963.656 1 87060 0.000

10 V57 0.904 0.817 0.817 6.9188 0.004 1842.478 1 87059 0.000

11 V53 0.906 0.821 0.821 6.8364 0.004 2111.930 1 87058 0.000

12 V42 0.908 0.825 0.825 6.7565 0.004 2074.223 1 87057 0.000

13 V21 0.910 0.828 0.828 6.6911 0.003 1709.797 1 87056 0.000

14 V40 0.911 0.831 0.831 6.6461 0.002 1185.227 1 87055 0.000

15 V80 0.912 0.833 0.833 6.6098 0.002 957.586 1 87054 0.000

16 V38 0.913 0.834 0.834 6.5773 0.002 864.011 1 87053 0.000

17 V10 0.914 0.836 0.836 6.5515 0.001 689.308 1 87052 0.000

18 V179 0.915 0.837 0.837 6.5264 0.001 669.862 1 87051 0.000

19 V178 0.916 0.838 0.838 6.4983 0.001 756.293 1 87050 0.000

20 V30 0.916 0.839 0.839 6.4748 0.001 634.275 1 87049 0.000

21 V50 0.917 0.841 0.841 6.4504 0.001 660.640 1 87048 0.000

22 V33 0.917 0.842 0.842 6.4280 0.001 608.523 1 87047 0.000

23 V17 0.918 0.843 0.843 6.4109 0.001 466.797 1 87046 0.000

24 V9 0.918 0.843 0.843 6.3935 0.001 475.774 1 87045 0.000

25 V39 0.919 0.844 0.844 6.3766 0.001 462.713 1 87044 0.000

26 V54 0.919 0.845 0.845 6.3607 0.001 435.702 1 87043 0.000

27 V31 0.920 0.846 0.846 6.3456 0.001 416.305 1 87042 0.000

28 V121 0.920 0.846 0.846 6.3324 0.001 364.403 1 87041 0.000

29 V120 0.920 0.847 0.847 6.3206 0.001 325.177 1 87040 0.000

30 V25 0.921 0.848 0.848 6.3079 0.001 352.728 1 87039 0.000

31 V35 0.921 0.848 0.848 6.2954 0.001 347.823 1 87038 0.000

32 V19 0.921 0.849 0.849 6.2835 0.001 330.210 1 87037 0.000

33 V36 0.922 0.849 0.849 6.2719 0.001 322.635 1 87036 0.000

34 V142 0.922 0.850 0.850 6.2613 0.001 297.166 1 87035 0.000

35 V6 0.922 0.850 0.850 6.2526 0.000 243.566 1 87034 0.000

36 V37 0.922 0.851 0.851 6.2448 0.000 218.755 1 87033 0.000

37 V60 0.922 0.851 0.851 6.2372 0.000 211.644 1 87032 0.000

38 V177 0.923 0.851 0.851 6.2303 0.000 196.069 1 87031 0.000

39 V15 0.923 0.852 0.852 6.2232 0.000 199.024 1 87030 0.000

Continued on next page
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Table5.10 � continued from previous page

Md. Var.
En-
tered

R R
Square

Adj.R
Square

Std.
Err. of
Estim.

Change Statistics

R
Square
Chg.

F Change df1 df2 Sig.
F
Chg.

40 V46 0.923 0.852 0.852 6.2169 0.000 175.706 1 87029 0.000

41 V172 0.923 0.852 0.852 6.2110 0.000 168.527 1 87028 0.000

42 V127 0.923 0.853 0.852 6.2055 0.000 154.029 1 87027 0.000

43 V55 0.923 0.853 0.853 6.2005 0.000 142.053 1 87026 0.000

44 V173 0.924 0.853 0.853 6.1955 0.000 140.640 1 87025 0.000

45 V133 0.924 0.853 0.853 6.1911 0.000 125.400 1 87024 0.000

46 V165 0.924 0.853 0.853 6.1866 0.000 127.657 1 87023 0.000

47 V43 0.924 0.854 0.854 6.1833 0.000 94.892 1 87022 0.000

48 V145 0.924 0.854 0.854 6.1800 0.000 93.385 1 87021 0.000

49 V123 0.924 0.854 0.854 6.1772 0.000 80.336 1 87020 0.000

50 V149 0.924 0.854 0.854 6.1747 0.000 70.185 1 87019 0.000

51 V160 0.924 0.854 0.854 6.1724 0.000 67.421 1 87018 0.000

52 V65 0.924 0.854 0.854 6.1705 0.000 53.603 1 87017 0.000

53 V12 0.924 0.854 0.854 6.1688 0.000 48.428 1 87016 0.000

54 V125 0.924 0.854 0.854 6.1672 0.000 47.300 1 87015 0.000

55 V126 0.924 0.854 0.854 6.1646 0.000 72.327 1 87014 0.000

56 V130 0.924 0.855 0.854 6.1633 0.000 39.522 1 87013 0.000

57 V152 0.924 0.855 0.855 6.1619 0.000 38.880 1 87012 0.000

58 V144 0.924 0.855 0.855 6.1607 0.000 36.421 1 87011 0.000

59 V51 0.925 0.855 0.855 6.1596 0.000 32.932 1 87010 0.000

60 V138 0.925 0.855 0.855 6.1585 0.000 29.680 1 87009 0.000

61 V67 0.925 0.855 0.855 6.1575 0.000 29.488 1 87008 0.000

62 V116 0.925 0.855 0.855 6.1567 0.000 24.097 1 87007 0.000

63 V137 0.925 0.855 0.855 6.1559 0.000 23.309 1 87006 0.000

64 V141 0.925 0.855 0.855 6.1552 0.000 22.442 1 87005 0.000

65 V161 0.925 0.855 0.855 6.1544 0.000 21.904 1 87004 0.000

66 V72 0.925 0.855 0.855 6.1538 0.000 19.540 1 87003 0.000

67 V47 0.925 0.855 0.855 6.1531 0.000 18.977 1 87002 0.000

68 V27 0.925 0.855 0.855 6.1526 0.000 17.212 1 87001 0.000

69 V114 0.925 0.855 0.855 6.1520 0.000 16.105 1 87000 0.000

70 V75 0.925 0.855 0.855 6.1515 0.000 15.550 1 86999 0.000

71 V74 0.925 0.855 0.855 6.1510 0.000 15.515 1 86998 0.000

72 V76 0.925 0.855 0.855 6.1505 0.000 15.390 1 86997 0.000

73 V118 0.925 0.855 0.855 6.1501 0.000 12.535 1 86996 0.000

74 V110 0.925 0.855 0.855 6.1496 0.000 15.426 1 86995 0.000

75 V139 0.925 0.855 0.855 6.1492 0.000 12.552 1 86994 0.000

76 V26 0.925 0.855 0.855 6.1488 0.000 12.669 1 86993 0.000

77 V16 0.925 0.855 0.855 6.1482 0.000 15.331 1 86992 0.000

Continued on next page
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Table5.10 � continued from previous page

Md. Var.
En-
tered

R R
Square

Adj.R
Square

Std.
Err. of
Estim.

Change Statistics

R
Square
Chg.

F Change df1 df2 Sig.
F
Chg.

78 V154 0.925 0.855 0.855 6.1479 0.000 11.732 1 86991 0.001

79 V84 0.925 0.855 0.855 6.1475 0.000 11.716 1 86990 0.001

80 V170 0.925 0.855 0.855 6.1471 0.000 11.311 1 86989 0.001

81 V34 0.925 0.855 0.855 6.1468 0.000 11.185 1 86988 0.001

82 V100 0.925 0.855 0.855 6.1465 0.000 9.504 1 86987 0.002

83 V87 0.925 0.855 0.855 6.1462 0.000 9.656 1 86986 0.002

84 V23 0.925 0.855 0.855 6.1459 0.000 9.405 1 86985 0.002

85 V82 0.925 0.855 0.855 6.1456 0.000 8.938 1 86984 0.003

86 V111 0.925 0.855 0.855 6.1453 0.000 8.833 1 86983 0.003

87 V150 0.925 0.855 0.855 6.1450 0.000 8.622 1 86982 0.003

88 V88 0.925 0.855 0.855 6.1448 0.000 8.695 1 86981 0.003

89 V99 0.925 0.855 0.855 6.1444 0.000 10.900 1 86980 0.001

90 V156 0.925 0.855 0.855 6.1441 0.000 8.800 1 86979 0.003

91 V69 0.925 0.856 0.855 6.1439 0.000 8.725 1 86978 0.003

92 V112 0.925 0.856 0.855 6.1436 0.000 7.448 1 86977 0.006

93 V151 0.925 0.856 0.855 6.1434 0.000 7.441 1 86976 0.006

94 V66 0.925 0.856 0.855 6.1431 0.000 9.668 1 86975 0.002

95 V44 0.925 0.856 0.855 6.1428 0.000 8.551 1 86974 0.003

96 V61 0.925 0.856 0.855 6.1426 0.000 8.179 1 86973 0.004

97 V131 0.925 0.856 0.855 6.1423 0.000 7.891 1 86972 0.005

98 V158 0.925 0.856 0.855 6.1421 0.000 7.211 1 86971 0.007

99 V49 0.925 0.856 0.855 6.1419 0.000 6.134 1 86970 0.013

100 V102 0.925 0.856 0.855 6.1418 0.000 5.585 1 86969 0.018

101 V143 0.925 0.856 0.855 6.1416 0.000 5.124 1 86968 0.024

102 V103 0.925 0.856 0.855 6.1415 0.000 5.258 1 86967 0.022

103 V122 0.925 0.856 0.855 6.1413 0.000 5.097 1 86966 0.024

104 V153 0.925 0.856 0.855 6.1412 0.000 5.026 1 86965 0.025

105 V168 0.925 0.856 0.855 6.1411 0.000 4.864 1 86964 0.027

106 V162 0.925 0.856 0.856 6.1409 0.000 4.656 1 86963 0.031

107 V175 0.925 0.856 0.856 6.1408 0.000 4.423 1 86962 0.035

108 V148 0.925 0.856 0.856 6.1407 0.000 4.360 1 86961 0.037

109 V92 0.925 0.856 0.856 6.1406 0.000 3.911 1 86960 0.048

Table 5.10: Model Summary - Stepwise Method
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Model Sum of Squares df Mean Square F Sig.

34 Regression 19310883 34 567967.155 14487.579 .000
Residual 3412097 87035 39.204
Total 22722980 87069

Table 5.11: ANOVA - Model 34 - Stepwise Method

Model Unstandardized Coef. Standardized Coef. t Sig.

B Std. Error Beta

34 (Constant) 79.227 0.119 663.611 0.000
V3 -100.315 3.441 -0.112 -29.156 0.000
V4 -93.788 0.645 -0.277 -145.345 0.000
V5 -31.044 0.212 -0.491 -146.356 0.000
V8 -5.354 0.064 -0.119 -83.339 0.000
V20 3.572 0.083 0.087 42.901 0.000
V56 6.819 0.097 0.108 70.300 0.000
V28 -12.501 0.167 -0.257 -74.995 0.000
V29 -9.483 0.143 -0.196 -66.458 0.000
V52 4.793 0.095 0.072 50.499 0.000
V57 6.276 0.152 0.059 41.396 0.000
V53 6.194 0.141 0.060 43.825 0.000
V42 2.668 0.066 0.058 40.723 0.000
V21 -0.610 0.098 -0.012 -6.214 0.000
V40 -6.178 0.178 -0.046 -34.787 0.000
V80 1.258 0.047 0.036 27.027 0.000
V38 -5.368 0.181 -0.039 -29.631 0.000
V10 1.517 0.053 0.047 28.739 0.000
V179 2.006 0.126 0.025 15.960 0.000
V178 1.850 0.126 0.022 14.683 0.000
V30 -4.365 0.112 -0.113 -38.883 0.000
V50 2.840 0.120 0.032 23.591 0.000
V33 3.250 0.136 0.036 23.874 0.000
V17 -2.373 0.135 -0.024 -17.571 0.000
V9 -1.312 0.050 -0.037 -26.096 0.000
V39 -2.967 0.135 -0.030 -22.030 0.000
V54 3.849 0.193 0.027 19.983 0.000
V31 -1.906 0.085 -0.055 -22.422 0.000
V121 -1.485 0.069 -0.030 -21.565 0.000
V120 -2.917 0.164 -0.024 -17.748 0.000
V25 1.800 0.075 0.055 23.888 0.000
V35 -1.826 0.091 -0.027 -20.084 0.000
V19 4.526 0.245 0.025 18.442 0.000
V36 -4.220 0.229 -0.025 -18.457 0.000
V142 0.892 0.052 0.024 17.238 0.000

Table 5.12: Regression Coe�cients - Model 34 - Stepwise Method



Chapter 6

Conclusion and Outlook

As stated in the introduction chapter, there are three main tasks to be carried out in this
thesis:

1. Applying the Support Vector Machine to build a good regression model that can
explain the car's residual price.

2. Conducting an SVR parameters search automization experiment to improve SVR
accuracy and time e�ciency.

3. Presenting the learning on methodology and results from the experiment with a large,
high dimensional data set for the SVR communities.

In the following section, the experiment process, results and analysis will be summarized
to conclude the forementioned tasks.

6.1 Conclusion

In this experiment, the SVR has successfully proved its capability in generating a good
prediction model. With the right kernel and hyperparameters setting, it achieves a better
accuracy than the standard solution, multiple linear regression. Figure 6.1 shows the RMSE
comparison between di�erent statistical regression and SVR models on the �nal test set in
this experiment. In both cases, with continuous and all variables, the RMSEs for SVR are
lower than those achieved by the statistical model, demonstrating the superiority of SVR
over its benchmark.

A lower generalization error can be achieved by SVR because it applies the structural risk
minimization paradigm while learning from a data set, which means SVR minimizes both
the empirical error and the model complexity. Due to this concept, SVR computation does
not depend on the input space dimension, therefore it is suitable to solve a high dimensional
problem, without having to face the curse of dimensionality. Another factor that decreases
the generalization error is the use of kernel, which can capture the non-linear relationship
in the data set. However, the kernel suitability depends on the nature of the data. For
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this particular data set, the RBF kernel shows to be more appropriate than the linear and
polynomial kernel.

Figure 6.1: RMSE Comparison of Di�erent Statistical Regression and SVR Models from
The Final Experiment

Since the model accuracy depends on the hyperparameters, �nding the right setting is
a very important task in the SVR experiment. As the parameters setting depends on
the training data set, and there is no o�-the-shelf solution, it has to be searched. Two
automated searching algorithm have been tested here, namely grid search and evolution
strategy. The results show that evolution strategy has an advantage over grid search in
terms of �nding better setting which generates lower error, and learning time needed to
�nd the optimal setting.

Regarding the methodology, based on the experience gained in this experiment, the author
suggests the following procedure for using SVR in a large data set application:

1. Data preparation: including multinomial to binary variables transformation, inde-
pendent variables standardization, data shu�ing and data division to create three
subsets, which serve as the training and validation set in the hyperparameter selection
phase, and as the �nal training and test set.

2. Selection of SVR kernels.

3. Learning curve: to determine the minimal training data set size needed for the hy-
perparameter search process. This step is important to handle a huge data set, in
order to maximize the use of the information available, without getting trapped in
an excessive learning duration.

4. Hyperparameters search with the evolution strategy algorithm.

5. Best hyperparameters selection based on the result of previous search.

6. Final training and testing by utilizing the best parameters setting.
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The above mentioned steps need to be done consistently with the data subsets prepared
in the beginning.

With respect to high dimensionality, the car data set consists of 178 attributes. There-
fore, there are two arrangements for the attributes inclusion. The �rst considers only the
continuous independent variables, while the second includes the binary variables as well,
when predicting the future re-sell price. The results from SVR with all kernels and multi-
ple linear regression show, that the prediction accuracy can be improved substantially by
incorporating all independent variables.

Considering the time, the whole process of building an SVR model from a huge data set may
take days, depending on the power of the computer. On the other hand, the computation
of multiple linear regression, with the same data set size and platform, can be �nished
just in several minutes. This is the weakness of SVR. However, as it is mentioned in the
introduction chapter, the car makers and dealers need a professional price calculation, in
order to avoid the expensive cost of wrong prediction. SVR can provide this, because it
yields a higher accuracy than statistical model. Moreover, the lengthy model construction
takes place only periodically, when the model needs to be updated, whereas the predicting
time is actually only several miliseconds. Another convenient reason to employ SVR is
its independence of the input space dimensionality. It frees the analyst from scrutinizing
variables e�ect on the outcome one by one, as what happen when the multiple linear
regression is used. Besides, the whole learning process can be automated. With the
aforementioned arguments, the users are expected to accept SVR training time, and utilize
it due to its high performance.

6.2 Summary of Findings

There are many �ndings regarding parameters selection that have been achieved through
this experiment, and they will be elaborated in two parts: grid search and evolution
strategy.

6.2.1 Grid Search and SVR Hyperparameters Impact

In grid search, di�erent combinations of parameters within certain range are tested, to
check which one generates the lowest error. Although grid search is computation expensive
and time consuming, it gives a good insight on the SVR hyperparameters interplay and
their consequences for di�erent kernels.

SVR with Linear Kernel

• There are two hyperparameters for linear SVR: the cost and the epsilon. The gen-
eralization error (RMSE) goes down along with the increasing cost and decreasing
epsilon. A higher cost penalizes the empirical training error more, so that the model
built is less under-�t. While lower epsilon de�nes a lower insensitivity loss function,
which re�ects a higher learning capacity for a better model �tting. However, how
big or small the values should be are relative to a particular data set.

• The cost has an inferior e�ect to epsilon in determining the model accuracy. Thus,
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when an SVR model generates a very high error, one has to �rst check the epsilon
value. If the radius of the insensitivity tube is too big, then the model is under-�tting,
thus, the empirical, as well as generalization error, goes up.

• The plateau of decent parameter combinations is quite large. Therefore, a �ner grid
search is not necessary for model selection, it is enough to do a coarse search in order
to reduce computational e�ort and time.

• The training time for linear SVR depends on both epsilon and cost values, besides
training data size. There is a high increase in training duration for a small epsilon
and big cost combination. The lower the epsilon is, the longer duration it takes, since
more learning e�ort is needed. A comparison between their impact reveals, that the
epsilon gives much higher in�uence than the cost to training time. The cost has a
linear e�ect, whereas the epsilon has a logarithmic one.

SVR with Polynomial Kernel

• The important parameters for polynomial SVR, beside the cost and the epsilon, is
the polynomial degree. Due to the particular nature of the car data set, the RMSE
is smaller for the lower polynomial degree.

• A higher polynomial degree is more sensitive to the change of cost. While building a
model, SVR with a high value of cost combined with a high learning capacity reduces
the empirical training error more than it is needed to achieve the best model. This
leads to over-�tting, and therefore, the generalization error for the validation set goes
up.

• Di�erent settings of epsilon show the same impact in accordance with the learning
from linear SVR. A big epsilon value leads to under-�tting.

SVR with RBF Kernel

• The hyperparameters for RBF SVR are: the cost, the epsilon and the gamma. The
search for an appropriate gamma value in this experiment shows, that increasing
gamma settings generate the trend of decreasing RMSE. However, this trend will
stop at a certain turning point. Afterwards, as gamma further increases, the value
of generalization error will increase as well.

• With the right setting of gamma and epsilon to determine the machine learning
capacity, a very high cost to penalize the empirical error is not necessary in order to
gain a low generalization error.

• One can expect a long computation duration to generate SVR model with a mixture
of large cost, low epsilon and approriate gamma setting (appropriate here means,
that the gamma is likely to yield the minimum RMSE).

As in any other circumstances, where the complexity drives up the problem solving time, a
high dimensional data leads to a longer training duration. Unfortunately, such a long com-
putation does not always entail low generalization error due to over-learning. Therefore, it
has to be avoided. This is exactly why evolution strategy is prefered over grid search for
hyperparameters selection.
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6.2.2 Evolution Strategy

Evolution strategy is an automated search approach, which is based on Darwin's evolution
theory. A population of SVR hyperparameter candidates must undergo several rounds of
regeneration and selection process. The selection is based on the �tness of an individual
as a solution, in this case the RMSE value.

The regeneration is done through mutation. In this experiment, the mutation for the
parameter values is implemented as the normal distribution around the object individual,
with the mean of 0 and standard deviation σ. The standard deviation (mutation step) is
also self adapted by embedding σ in the candidates' chromosome. There are two options
to pass the solution chromosomes on to the next generation. With comma strategy, only
partial solution chromosomes can be passed on, because the selection is done within the
newly mutated o�springs population. Whereas plus strategy allows the whole solution
chromosomes of an individual with high �tness to survive multiple generations, because
the selection's domain is the combined parents and o�springs populations.

There are several points to be mentioned here about evolution strategy in compare to grid
search:

1. The best parameters combination found in grid search can be matched in approximity
by evolution strategy, because grid search shows that there is a large plateau of low
errors with di�erent appropriate parameter settings.

2. The resulting minimum RMSE from evolution strategy is always better, or at least
as good as the one found in grid search. This is due to the �exible search area of
evolution strategy, which is the advantage of this approach over grid search. The
grid search is limited to the parameter values set initially. Thus, one should do a two
phase grid search, a coarse one and then a �ner one, to improve the model accuracy.
Moreover, one should also consider to check beyond the area of current grid search,
if the minimum RMSE is achieved by a parameter value in the search range border.
The evolution strategy is not curbed by these issues.

3. To �nd the optimal parameters setting, evolution strategy can start the search from
any point, and then move closer to the �nal solution. This is proven by the decreasing
trend in RMSE values along the increasing generation. It also adapts its search level
autonomously, so that the initial search could be done within a relatively big range,
and then, the range is narrowed down along with the increasing generation. The
smaller RMSE spread among the individuals in the later generations proves, that
Schwefel's self adaptation procedure for the mutation's step does a good job to reduce
the search range and focuses on good parameters instead.

4. Evolution strategy can converge faster toward the more important optimum param-
eter values, which are the epsilon, polynomial degree and gamma, than to cost.

5. Although evolution strategy can start the search from any point, the initialization
point is important to enable it to �nd the right parameters faster. A small epsilon
value can be initialized as an allowed error percentage of the output mean value.
The cost derived from Cherkassky and Ma's equation has also proved to be a good
starting point for SVR. For polynomial SVR, one can use low degrees such as 2 or 3
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for the �rst parents. Whereas gamma for RBF SVR can be initialized with quite a
large range of exponential values, e.g. {2−3, 20, 23}.

6. In this experiment with a huge data set, there is no considerable di�erence in mini-
mum RMSE that can be observed by employing comma or plus strategy. Therefore,
the author does not make any recommendation on it.

7. A relatively small parents population size, e.g. 3, and parents-o�springs ratio, e.g.
4, provides large enough spread to �nd the good solutions.

8. The time saving by using evolution strategy instead of grid search is huge. There
are two reasons behind it. First, the number of models that have to be built to
�nd the best parameters with grid search is likely to be higher than with evolution
strategy, and thus, longer search duration is needed. Second, with grid search, the
SVR can be trapped in some over learning areas. This trap will block the evaluations
of other parameter combinations, which might have more probability to be the best
hyperparameters. Therefore, grid search is not time e�cient for hyperparameter
search, especially for high dimensional and huge data set. Evolution strategy, on the
other hand, can �nd good parameters without being trapped in those over-�t cases.

9. One can always limit the search in evolution strategy by either maximum generation
number, maximum allowed training time, RMSE improvement threshold or other
constraint, in order to avoid over learning.

Hopefully, this learning could give a guidance for novice SVR users in understanding the
e�ect of parameters tuning, as well as the importance of an automated and fast search
algorithm in selecting SVR hyperparameters.

6.3 Limitations and Outlook

With the given time constraint to write this thesis, some parts of the experiments have to
be left out. Those are the grid search experiments with all variables and high cost settings,
and evolution strategy with all variables for polynomial SVR. However, as mentioned
before, this should not change the �nal result, because a very high cost is not needed
to achieve a low RMSE, if the other learning capacity parameters are appropriate. The
training duration for those high cost settings are overly long, but they are expected to give
only a slight improvement to the generalization error.

Moreover, the author chooses to conduct the whole experiment without outliers removal to
keep the naturality of the data set. Although outliers are the source of distortion, because
they pull the regression model towards themselves. This opens a chance for a further study.
Using the result of this experiment as a benchmark, one could check how much accuracy
improvement can be gained by removing the outliers.

Furthermore, the multiple linear regression performance on the the particular data set
has to be recognized. This is most likely due to the fact that those leased cars are high
quality cars, which loose value in a slow rate. Thus, the re-sell price tend to have linear
relationship with its independent variables. The performance gap between the SVR and
statistical solutions may be larger, when an economic car data set is used, since these cars
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loose value quite rapidly, and the re-sell price may follow a logarithmic curve, instead of
a linear one. If this is the case, then a kernel usage will boost the accuracy of the SVR
model, creating a considerable discrepancy to the multiple linear regression result. Hence,
one can do further experiment with other types of cars.

One can also do benchmarking work against other data mining tools in the future. Some
possible tools to be tested are neural networks, regression trees, or meta-learning that
combines the predictions from multiple models [dep08].

Another constraint in this experiment comes from the data set itself. There are no variables
dedicated to external information, such as general economic or vehicle market condition
indicators, which could increase the prediction accuracy. As SVR is capable in handling
the high dimensionality well, adding some variables to the data set will not be a problem
from the machine learning viewpoint. Thus, the author suggests, to choose a small number
of external indicators to be used as the pilot data enrichment, and then, to see if those
variables can really improve the prediction accuracy.
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