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Abstract

A Spares Order Desk is a working division within the aviation industry that
must provide the supply of spare parts in the appropriate quality, performance,
time and costs. One key activity is the planning of delivery routes for the effi-
cient shipment of spares to the customers. Due to emergency situations such as
aircraft-on-ground, this activity must be realized in the shortest possible time.
The thesis proposes an initial route planning framework that finds the best pos-
sible route among a network of transportation means and specific constraints.
Furthermore, an optimization mechanism centered on case-based reasoning is
proposed, enabling the system to learn from previous addressed routing situa-
tions, thus suggesting solutions in a shorter time based on analogies made over
the recorded situational behavior.
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Preface

Chapter 1: Introduction
This chapter explains the source of the project’s target problematic: best routing
assessment within a spare parts supply chain. The project motivation and scope are
also described, including the proposed solution approaches.

Chapter 2: Route Finding with the Shortest Path Problem
This chapter details the spare parts supply-chain process in the aviation industry.
An initial solution approach based on the shortest path problem is described and its
implementation is also conducted.

Chapter 3: Routing with a Case-Based Reasoning approach
This chapter describes a solution approach using case-based reasoning. This technique
present means of solving new problems based on similar situations already solved,
providing a way for modeling the behavior of a system. The integration of approaches
is proposed as the best way of addressing the project problematic.

Chapter 4: Web-Based Integrated Solution
This chapter describes the implementation of a multi-tiered Web-application that
integrates the solution approaches described in chapter 3 and chapter 4.

Chapter 5: Results
This chapter presents a brief evaluation of the project, describes an experiment carried
out for testing the proposed solution and discusses the results obtained.

Chapter 6: Conclusions
This chapter presents a summary of the achieved goals, discusses the identified project
shortcomings and proposes future possible work to be done for this problem.
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Chapter 1

Introduction

1.1 Background Information

The project fundamentals lie within the supply chain management of aircraft
spare parts. A spare part is a term used to indicate parts of a mechanical item that
are used for reparation purposes. Companies conduct a spare parts management
process to ensure that the right spare part is at the right place and at the right
time for repairing a broken counterpart. Spare parts management plays a critical
role in the effective operation of industrial supply chain systems.

A Spares Order Desk is a dedicated aviation manned logistics service that has to
provide the spare parts for an operating aircraft fleet in the appropriate quality,
performance, time and costs. Its main functions are the alignment of provision-
ing strategies to spare parts (e.g. on-demand or consumption based allocation
and sourcing, central or decentralized storage, etc.) and the operational spares
decision support (e.g. the assignment of spares to orders and the restock of the
warehouses). One key activity is the efficient determination of spares shipping
routes that satisfy the customer requests.

Nearly every aircraft manufacturer and bigger airline maintain a Spares Order
Desk to service calls from customers (mainly airlines, military and governmental
divisions) searching for critical spare parts during an AOG situation.

AOG (Aircraft on Ground) is a term in aviation maintenance indicating that a
problem is serious enough to prevent an aircraft from flying. Generally there is a
rush to acquire the parts to put the aircraft back into service and prevent further
delays or cancellations of the planned itinerary.
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Chapter 1. Introduction

In order to mitigate an AOG status, if the materials required are not on hand,
spare parts and personnel must be immediately taken to the location of the
grounded aircraft. Conservative estimates calculate that a one-to-two-hour AOG
situation costs an airline up to $10,000 in downtime. However, actual costs of such
delays can be as high as $150,000 per hour depending on the airplane model or the
airline [5]. Due to this exorbitant costs, time becomes the most important asset
when determining a delivery route, meaning that the shortest-possible shipping
time is the most important goal in this kind of emergencies.

Moreover, a Spares Order Desk also supplies parts to customers in situations such
as initial provisioning of spares and the continuous supply of parts that are needed
during normal maintenance and servicing. Given that an airplane comprises an
approximate of 4 million parts, this is also not an easy task.

Initially, a customer contacts the Order Desk for determining the details of the
problematic. For such, a detailed formal request must be filled out to comprise a
Customer Purchase Order (CPO). These orders can have either a Routine priority
(RTN) or an AOG priority. An order with a RTN priority is a customers’ planned
need of spares which is usually solved within a controlled environment. These
requests are commonly planned and forecasted in such a way that they do not
represent a high risk for the company, neither for the customer.

For instance, let us pretend that Lufthansa Technik is a customer that knows
its private jets fleet consumes a rate of 30 jet engine replacements per year.
The customer specifies preferences such as the amount of parts to be sent at
determined periods of time to predefined delivery locations. Since the Order Desk
knows these preferences in advance, it plans scheduled supply chains considering
a myriad of constraints (i.e. parts stock availability, current flight schedules,
existent transport operators) to come up with a spares delivery service level that
satisfies the customer’s demands.

Nevertheless, this route planning process becomes particularly complicated when
emergency situations like AOG occur. In such cases, RTN routes usually do
not offer a suitable solution due to the unplanned nature of the event and the
high variability of the routing constraints. Currently, the Order Desk does not
have an efficient solution model that is able to deal with the common AOG
situation, consuming high amounts of time and human resources by analyzing
each situation independently. This opportunity area is the basis for the Masters
Thesis motivation.

2



Chapter 1. Introduction

1.2 Project Motivation

The project motivation arises from the decision-making difficulties found when
an AOG situation is analyzed by a Spares Order Desk for determination of a
time-efficient spares delivery route. The main goal is to provide automatic means
of compiling AOG situations, based on a set of constraints, for proposing a best-
possible shipping route to deliver the urgently needed spares. This would be the
first part of the project.

For this part, a brief research in spares parts management procedures was con-
ducted to understand and identify the relevant factors that influence the decision-
making process for best routing [12] [13] [16].

However, to present an algorithm for the computational implementation of a
solution approach, a deeper research in graph theory was realized to understand
and reuse the principles for solving the shortest path problem [6] [7] [9] [26] [27].
The shortest path problem is a method for finding a path between two nodes
such that the sum of the weights of the edges that connect them is minimized.
A typical implementation of this method are automated routing advisors where
the nodes represent locations and the edges represent roads or routes weighted
by attributes like time, distance, or any other measurable factor.

The second part of the project has to do with finding an alternative solution
approach that complements the shortest path problem by modeling the behavior
of the Spares Order Desk. This approach should find an efficient way to reuse
experience from previously solved AOG situations. This experience should help
to propose solution suggestions for new incoming AOG situations.

For this part, an extensive research on Case-based Reasoning (CBR) was con-
ducted to understand and reuse this technique for modeling the behavior of the
Order Desk [1] [4] [14] [17] [18] [25]. CBR is a problem solving mechanism that
enables flexible reuse of experience. It provides methods that allow a computer
system to retrieve and adapt solutions to previous problems for solving new sim-
ilar problems.

Existing information on previously used AOG shipping routes and attributes in
the spares orders must be analyzed to find pattern features among them and
build up complete cases. Then, cases could be compared to each other by means
of discovering similarities between them, enabling the system to identify which
case fits better for a new incoming situation.

3
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Efficiently implemented, this problem-solving mechanism could greatly optimize
the decision-making process during AOG situations. CBR is not only a method
for computer reasoning, but also is related to common everyday human problem
solving based on past cases personally experienced. It has been proven that CBR
is a powerful method for problem domains like diagnosis, planning, and decision-
support.

1.3 Project Scope

The project aims to complete the four main activities depicted in Figure 1.1.

Case 

Library

CBR Route

Suggester

Integrated

Web-Application

Project Scope

Route 

Planner

Figure 1.1: Project Scope Concepts

Each activity follows a rationale for its consideration in the project:

• Implement a Route Planner for incoming Orders taking in consideration
current updated information from spare parts, transportation schedules,
available locations, etc. This approach should give a basis framework for
best-routing within AOG situations.

• Accumulate the solutions of the Route Planner with their respective Orders
in a Case Library for future retrieval and reuse. This will be the repository
that organizes the routing plans for Orders already processed. This is the
Spares Order Desk’s captured domain-knowledge.

• Propose an alternative solution approach that optimizes the Planner’s pro-
cessing times by means of analogy. A CBR Route Suggester is to be im-
plemented in order to solve new situations based on solutions found for old
situations.
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• Develop aWeb-Application that integrates the Route Planner and the Route
Suggester under a common interface, enabling the Spares Order Desk with
the possibility of inputting incoming orders for decision-support.

1.4 Specific Approaches

The following are the general approaches to achieve the aforementioned activities:

• For the Route Planner: revision of the shortest-path problem and adapta-
tion of the Dĳkstra’s algorithm implementation.

• For the Case Library: development of a relational database that holds the
system’s data structures and information for route calculation, as well as
the set of processed orders and their solutions representing the Order Desk
knowledge-base.

• For CBR Route Suggester: implement a case matching algorithm to com-
pare attributes of new orders with those stored in the case library; imple-
ment a case ranking mechanism to select the best-possible case among the
matches by means of similarity techniques; implement a case adaptation
process that updates old solutions with current routing information.

• For the Web-Application: development of a Web-oriented multi-tiered sys-
tem architecture, having the relational database as the data tier, the im-
plementations of the Planner and Suggester as the logic tier, and dynamic
Web pages as the presentation tier.

5



Chapter 2

Route Finding with the Shortest
Path Problem

2.1 Background Information

2.1.1 Common Spares Delivery Process

The Common Spares Delivery Process is the procedure that a Spares Order Desk
follows as a standardized way of processing orders. It is usually organized accord-
ing to the E-Business Specification for Materials Management (SPEC2000) issued
by the Air Transport Association (ATA) [3]. The top-level simplified process is
depicted in Figure 2.1.

Send CPO is the first step and it is done by the customer, directed to the Spares
Order Desk. The CPO is usually sent via an e-commerce platform connecting
both parties and must be formatted as a SPEC2000 message. In the second
step, the Order Desk collects and places the CPO in a SAP-based Materials
Management System, and sends an acknowledgement receipt to the customer.
This is not a contractual affirmation, but means that the CPO is already booked.

During the Commercial Technical Check, the order requests are verified for in-
tegrity, the amount of parts requested is checked in the dispatch warehouse, and a
delivery route is determined unless one was previously specified. This is the part
of the process where the information bottleneck occurs, and a decision-support
tool is needed for suggesting a best-possible spares shipping route. After this
analysis is done and a route is decided, the CPO details are changed to reflect
the decision taken and the detailed spares shipping plan.

6
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Send Customer 

Purchase Order

(CPO)
1

Receive and

Acknowledge 

CPO
2

Commercial

Technical Check 

of CPO
3

Advise 

Shipping Details

4

Prepare 

Documentation

5

Ship Items &

Forwarding

6

Figure 2.1: Top-Level Simplified Spares Delivery Process

The updated CPO is communicated to the customer, providing the date when
the spares are ready for dispatch and the expected final delivery date. Finally, all
the official documentation for this order is collected and the spares are forwarded
by the chosen transport operators to the defined delivery location.

2.1.2 Shipping Policies

The following are the main policies that constrain the decisioning process:

a) Consolidated Shipments
The standard process of shipping an order is done by consolidated shipments;
this means that whenever a set of spares is requested, the full amount of
items solicited must be dispatched from the same warehouse. Let us pretend a
customer orders 20 pieces of a standard jet accumulator and sets Singapore as its
desired dispatch warehouse; if this warehouse have only 15 pieces available, then
it is decided that the items will be shipped from a warehouse that completely
suffices the order, for instance Hamburg. The reason for this policy is that, in
emergency situations, segmented shipments add a higher level of logistical costs
and complexity, thus compromising even more the AOG mitigation process.

b) Forwarding Constraints
Due to the unexpected nature of an AOG situation, time is the primary delivery
constraint, but also the following policies are to be considered for decisioning:

• The Spares Order Desk designates the set of possible dispatch warehouses
depending on the stock availability of the part requested.

7
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• The main criteria determining the best route to follow is the total ship-
ping time which is determined by the aerial proximity between locations,
expected delay times, and the flight schedule availability.

• Whenever two or more possible routes satisfy the shipment at its best, the
differentiation criteria is the total shipping cost. However, if this cost is
considerably higher than the cost of the AOG situation for the time needed
to deliver the spares to mitigate it, then this route should not be considered.

• The spare parts attributes such as dimensions (height, weight, length) and
type of part (hazardous, costly piece) determine the possible set of transport
operators for forwarding the spares (e.g. not all operators ship hazardous
materials).

• Some customers predefine for a specific combination of spare part and de-
livery location a predefined shipping route with specific transport opera-
tors. When these shipping instructions are defined under an agreement
even though the order is Routine (RTN) it is treated with AOG priority.
Some of these agreements establishes a maximum delivery time, therefore
if it is foreseen that this time will not be satisfied, the shipment is dropped
and the part is delivered directly to the customer from the spares supplier’s
warehouse.

2.2 Domain Representation

The spares routing problem involves a set of identified entities that must be
represented and organized for understanding the underlying domain information.
The complete set of identified system entities is depicted in Figure 2.2.

The main input criteria is an Order containing a requested spare part, the cus-
tomer that requires it, the desired warehouse to ship it from, and the final delivery
destination.

The main output criteria is a Route and it is integrated by a sequence of
scheduled transportation legs which happen in a specific date and time. Each
leg has a departure location, an arrival location, and an operator that executes
the actual transportation. Locations represent places in the real world that are
relevant for the spares forwarding process.

8
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Spare Part Customer Desired
Warehouse

Delivery
Destination

Order

Operator 1Departure1 Arrival1

Schedule Leg 1 Schedule Leg N...
Route

Location

Schedule Leg 2

Operator2Departure2 Arrival2

OperatorNDepartureN ArrivalN

Figure 2.2: Relevant Identified System Entities

The types of identified locations for the problem domain are: the desired ware-
house to ship the order from; the delivery destination where spares are to be sent;
the departure location of a transport leg; the arrival location of a transport leg.

Additional to this conceptual representation, a database model is necessary for
establishing the basis for a practical solution implementation and for determin-
ing the necessary information to be considered for the project. In most of the
cases, business processes information is stored in relational databases as a cen-
tralized way of understanding and keeping information available for a purpose.
By providing such a database, the data structure is preserved and the integration
with real production databases is a straightforward process. The domain data
representation for the project is shown in Figure 2.3 in the form of a relational
database diagram.

From this model more detailed information can be derived for implementation
purposes. For instance, the table Location consolidates all the places that are
relevant for the route planning process, such as warehouses, airports, ground
transportation warehouses, customer’s workshops, etc. A Route will be defined
by a sequenced order of locations to be visited in order to reach a final destination.

The geographical position of these locations is irrelevant for the project. The
transport expected time is the criterion to determine how close a location is to
other locations. This time can be the aerial or ground proximity between these
locations.

9



Chapter 2. Route Finding with the Shortest Path Problem

W
ar
eh
ou
se

id
_w

ar
eh

ou
se

 I
N

T

id
_l

oc
at

io
n 

IN
T

w
h_

na
m

e_
sh

or
t 

V
A

R
C

H
A

R
(3

)

w
h_

na
m

e_
lo

ng
 V

A
R

C
H

A
R

(5
0)

In
d
e
x
e
s

Sp
ar
eP
ar
t

id
_p

ro
du

ct
 I

N
T

pr
_d

es
cr

ip
tio

n 
V

A
R

C
H

A
R

(5
0)

pr
_h

ei
gh

t 
D

O
U

B
LE

pr
_w

id
th

 D
O

U
B

LE

pr
_l

en
gt

h 
D

O
U

B
LE

pr
_w

ei
gh

t 
D

O
U

B
LE

pr
_p

ric
e 

D
O

U
B

LE

pr
_h

az
ar

do
us

 B
O

O
LE

A
N

In
d
e
x
e
s

C
us
to
m
er

id
_c

us
to

m
er

 I
N

T

cu
_n

am
e_

sh
or

t 
V

A
R

C
H

A
R

(6
)

cu
_n

am
e_

lo
ng

 V
A

R
C

H
A

R
(5

0)

cu
_o

pe
ra

to
r 

B
O

O
LE

A
N

cu
_m

ro
 B

O
O

LE
A

N

In
d
e
x
e
s

St
oc
k

id
_w

ar
eh

ou
se

 I
N

T

id
_p

ro
du

ct
 I

N
T

pr
_q

ua
nt

ity
 I

N
T

In
d
e
x
e
s

O
rd
er

id
_o

rd
er

 I
N

T

id
_c

us
to

m
er

 I
N

T

id
_l

oc
at

io
n_

to
 I

N
T

id
_w

h_
fr

om
 I

N
T

id
_p

ro
du

ct
 I

N
T

cp
o_

qu
an

tit
y 

IN
T

cp
o_

in
vo

ic
e_

da
te

 D
A

T
ET

IM
E

cp
o_

de
liv

_a
dd

re
ss

 V
A

R
C

H
A

R
(5

0)

cp
o_

pr
io

rit
y 

V
A

R
C

H
A

R
(3

)

cp
o_

co
st

 D
O

U
B

LE

cp
o_

pu
rp

os
e 

V
A

R
C

H
A

R
(3

)

cp
o_

pr
oc

es
se

d 
B

O
O

LE
A

N

In
d
e
x
e
s

In
st
ru
ct
io
n

id
_c

us
to

m
er

 I
N

T

id
_p

ro
du

ct
 I

N
T

id
_l

oc
at

io
n 

IN
T

id
_i

ns
tr

uc
tio

n 
IN

T

id
_w

ar
eh

ou
se

 I
N

T

id
_d

ep
ar

tu
re

 I
N

T

id
_a

rr
iv

al
 I

N
T

id
_t

yp
e 

IN
T

In
d
e
x
e
s

O
rd
er
P
ro
ce
ss
ed

id
_o

rd
er

 I
N

T

id
_c

om
p_

ro
ut

e 
IN

T

id
_f

ro
m

_t
o 

IN
T

to
ta

l_
sh

ip
 I

N
T

to
ta

l_
tim

e 
IN

T

to
ta

l_
co

st
 D

O
U

B
LE

da
te

_d
el

iv
er

y 
D

A
T

ET
IM

E

da
te

_p
ro

ce
ss

ed
 D

A
T

ET
IM

E

In
d
e
x
e
s

Sc
he
du
le

id
_s

ch
ed

ul
e 

IN
T

id
_o

pe
ra

to
r 

IN
T

id
_p

or
t_

de
p 

IN
T

id
_p

or
t_

ar
r 

IN
T

s_
de

p_
da

te
 D

A
T

ET
IM

E

s_
ar

r_
da

te
 D

A
T

ET
IM

E

s_
di

st
an

ce
 I

N
T

s_
co

st
 D

O
U

B
LE

s_
tim

e 
IN

T

s_
ty

pe
 I

N
T

In
d
e
x
e
s

C
it
y

id
_l

oc
at

io
n 

IN
T

lo
_n

am
e 

V
A

R
C

H
A

R
(3

0)

lo
_c

ou
nt

ry
 V

A
R

C
H

A
R

(3
0)

In
d
e
x
e
s

Lo
ca
ti
on

id
_p

or
t 

IN
T

id
_l

oc
at

io
n 

IN
T

p_
na

m
e_

sh
or

t 
V

A
R

C
H

A
R

(3
)

p_
na

m
e_

lo
ng

 V
A

R
C

H
A

R
(5

0)

p_
de

p_
de

la
y 

IN
T

p_
ar

r_
de

la
y 

IN
T

p_
ty

pe
 I

N
T

In
d
e
x
e
s

O
pe
ra
to
r

id
_o

pe
ra

to
r 

IN
T

op
_n

am
e_

sh
or

t 
V

A
R

C
H

A
R

(1
0)

op
_n

am
e_

lo
ng

 V
A

R
C

H
A

R
(5

0)

op
_t

yp
e 

IN
T

op
_m

ax
_h

ei
gh

t 
D

O
U

B
LE

op
_m

ax
_w

id
th

 D
O

U
B

LE

op
_m

ax
_l

en
gt

h 
D

O
U

B
LE

op
_m

ax
_w

ei
gh

t 
D

O
U

B
LE

op
_s

hi
p_

ha
za

rd
 D

O
U

B
LE

In
d
e
x
e
s

A
gr
ee
m
en
t

id
_c

us
to

m
er

 I
N

T

id
_p

ro
du

ct
 I

N
T

ag
r_

m
ax

_t
im

e 
IN

T

ag
r_

m
ax

_c
os

t 
IN

T

In
d
e
x
e
s

Ti
m
eD
is
ta
nc
e

id
_p

or
t_

de
p 

IN
T

id
_p

or
t_

ar
r 

IN
T

td
_d

is
ta

nc
e 

IN
T

td
_t

im
e 

IN
T

td
_t

yp
e 

IN
T

In
d
e
x
e
s

Le
gP
ro
ce
ss
ed

id
_o

rd
er

 I
N

T

id
_c

om
p_

ro
ut

e 
IN

T

id
_l

eg
 I

N
T

le
g_

ro
ut

e 
V

A
R

C
H

A
R

(7
)

le
g_

w
ee

kd
ay

 I
N

T

id
_s

ch
ed

ul
e 

IN
T

id
_o

pe
ra

to
r 

IN
T

id
_p

or
t_

de
p 

IN
T

le
g_

de
p_

da
te

 D
A

T
ET

IM
E

le
g_

de
p_

de
la

y 
IN

T

le
g_

re
al

_d
ep

_d
at

e 
D

A
T

ET
IM

E

id
_p

or
t_

ar
r 

IN
T

le
g_

ar
r_

da
te

 D
A

T
ET

IM
E

le
g_

ar
r_

de
la

y 
IN

T

le
g_

re
al

_a
rr

_d
at

e 
D

A
T

ET
IM

E

le
g_

di
st

an
ce

 I
N

T

le
g_

co
st

 D
O

U
B

LE

le
g_

tim
e 

IN
T

le
g_

ty
pe

 I
N

T

In
d
e
x
e
s

Figure 2.3: Domain’s Relational Database Model
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Chapter 2. Route Finding with the Shortest Path Problem

The table TimeDistance defines all the values for the transport expected time
between all locations. Aerial transport time expectations are established by the
standard flight time between airports. Ground transportation time expectations
are established by historical experience.

However, the basis for determining that between two locations exists a trans-
portation leg is the Schedule. In this table, the planned transportation activities
are defined by departure and arrival locations, and specific departure and arrival
dates and times. Each schedule also provides estimated distance in kilometers,
expected arrival and delay times, and total cost. These estimations are given by
the Spares Order Desk from recorded experience. If a transport operator offers
transportation between two locations, for instance every hour, there will be a
record for each single transport event.

The SparePart table defines the product attributes: length, weight, height, and
hazardousness. The Operator table defines the set of existing forwarders and
their spares measurement limits for transportation purposes. This information
is used to constrain the available schedule legs by allowed operators given the
characteristics of the product to be dispatched.

The Customer table contains the collection of customers of the Order Desk. It
is related to the Instruction and Agreement tables. The first defines the combi-
nations of spare part and delivery locations that are to be considered within an
agreement, and the respective sequence of legs to be followed to comply with it.
The second defines the maximum time and maximum cost that each agreement
defines, this is control information to derive if proposed routes meet agreements
properly.

The Warehouse table defines the existing warehouses that dispatch spare parts
to customers. The Stock table defines the current amount of spares available in
each warehouse.

Finally, the Order table defines all the attributes for a Customer Purchase Order.
Respectively, OrderProcessed and LegProcessed collect the historical information
of processed orders and the routes they followed to deliver their requested spares.
This information is will be the basis for implementing the case-based reasoning
approach mentioned in the project scope.

In order to build a routes network for path finding, database tables TimeDistance
and Location can be crossed to obtain the necessary input information. Table 2.1
is an excerpt of the obtained data matrix showing how much time is expected to
traverse a route between locations.
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Chapter 2. Route Finding with the Shortest Path Problem

HAM IAD DXB SIN PEK CDG WPL MEX WVM SYD WQC —
0 ∞ 440 800 ∞ 120 560 ∞ ∞ ∞ ∞ HAM
∞ 0 ∞ ∞ 980 540 ∞ 470 ∞ ∞ ∞ IAD
440 ∞ 0 ∞ ∞ 470 ∞ ∞ ∞ 1010 ∞ DXB
800 ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ 600 ∞ SIN
∞ 980 ∞ ∞ 0 ∞ ∞ ∞ ∞ 860 ∞ PEK
120 540 470 ∞ ∞ 0 60 ∞ ∞ ∞ ∞ CDG
560 ∞ ∞ ∞ ∞ 60 0 ∞ ∞ ∞ ∞ WPL
∞ 470 ∞ ∞ ∞ ∞ ∞ 0 240 ∞ ∞ MEX
∞ ∞ ∞ ∞ ∞ ∞ ∞ 240 0 ∞ ∞ WVM
∞ ∞ 1010 600 860 ∞ ∞ ∞ ∞ 0 330 SYD
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 330 0 WQC

Table 2.1: Excerpt matrix of expected transport times

The header identifiers are standard abbreviations for airports and aircraft
workshops (i.e. HAM means Hamburg Fuhlsbüttel Airport, WQC means
Workshop Qantas Canberra, etc.), the numbers contained are transportation
times in minutes, and the ∞ (infinity symbol) means that there is no transport
link serving this route. Figure 2.4 is a representation of a Routes Network Graph
built from the sample data on the previous table.

WVM

MEX

IAD
PEK

SIN

SYD

WQC

DXB

HAM

CDG
WPL 440

800

120
560

980

540

470
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1010

600

860

330

240

60

Figure 2.4: Routes Network Graph superimposed on a world map
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Chapter 2. Route Finding with the Shortest Path Problem

2.3 The Route Planner

Once the information is structured, it is possible to propose an initial solution
approach for the route determination process. Therefore, a Route Planner is to
be defined and implemented for efficiently finding the shortest possible path given
a routes network and a departure and destination location. This implementation
is based on the shortest path problem and reuses the principles of the Dĳkstra’s
algorithm for its solution.

2.3.1 Dĳkstra’s Shortest-Path Algorithm

A shortest path algorithm is a technique that tries to find a path between two
nodes such that the sum of the weights of its edges is minimized. The term
shortest is defined as the minimum possible sum of the weights of the edges
connecting the nodes that the path traverses, also called the length of the path.
Weights can be any kind of applicable measurement: distance, time, cost, etc.

Dĳkstra’s algorithm is a very popular and efficient algorithm that solves the short-
est path problem. It has been successfully implemented in many route planning
problems [7] [15] [19] and therefore it was chosen as the solution mechanism for
the problem domain. Dĳkstra’s algorithm is explained in the following five steps:

1. Assumptions: To compute the shortest path from a given start node s to
a given end node z of a given graph G, all the paths from s to all other
nodes must be traversed to assure that the selected-to-be shortest path is
actually the shortest. For accumulating the weights of the traversed paths,
an array D is maintained and indexed by the set of existing nodes. When
the algorithm finish its execution, D[z] will contain the total weight of the
shortest path from s to z.

2. Initialization: Before starting the algorithm, it is mandatory to set D[s] =
0 (meaning that the distance of the start node to itself is 0) and D[z] =∞
for the rest of the nodes (meaning that the distance to all other nodes is still
unknown and its considered as infinite); this unconfirmed distance value is
called overestimate. The algorithm will decrease this overestimate until is
no possible anymore and then will terminate.

3. Validation: The core validation of this algorithm is to find edges which
weights can decrease the path overestimate. Let us suppose there is a
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node b, which has an edge to z with a weight value of weight[b][z]. If the
sum of the overestimate D[b] and the given weight[b][z] is smaller than the
overestimate D[z], then a shortcut was found. This means that the total
length of the path s → b → z is smaller than the distance overestimate
from s to z, namely D[z]. Therefore, the overestimate D[z] can be replaced
by the value of following sum: D[b]+weight[b][z], which actually is a better
path length estimate. This validation must be systematically done through
the entire graph to keep improving the overestimate until the best possible
path length is achieved.

4. Finding minimal estimates: At each stage of the algorithm, if the dis-
tance D[x] of a node x has the minimal value among all values recorded in
the array D, then the value in D[x] is considered the minimal possible esti-
mate for the node x. This means that the estimate improvement validation
mentioned in step 3 will not find any better path length at this node. If this
happens, the node x is then added to a second array P that systematically
stores the shortest-path set of nodes.

5. Finalization: The algorithm finishes when all the nodes in the graph G
have got their minimal possible estimate. A method for extracting the
value D[z] and the ordered set of nodes in array P must be implemented
for respectively outputting the length of the path until final node z and the
nodes that conform the shortest-possible path.

2.3.2 Algorithm Inputs Obtainment

As mentioned above, in order to conduct Dĳkstra’s algorithm an input graph
with a defined start node and end node must be established. The following ex-
ample describes a route determination situation and the considerations observed
to obtain these necessary inputs.

Let us suppose that an aircraft from Qantas Airlines located at a workshop in
Canberra cannot operate because eight of its Fuel Shutoff Valves are broken
and need to be replaced to get the aircraft back to function. Immediately, the
customer sends a spares order with AOG priority to the Spares Order Desk.
Table 2.2 shows a simplified view of the information contained in such an order.
The Delivery Destination specified there will represent the algorithm’s end node
for this situation, namely WQC.
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Spares Parts Order Sample
Order-ID 45001
Current Date Wed 11.02.2009
Current Time 07:00hrs.
Order Priority AOG
Part-ID 90009 (Fuel Shutoff Valve)
Quantity 8 units
Delivery Destination WQC (Workshop Qantas Canberra)
Desired Warehouse HAM (Hamburg Warehouse)
Customer-ID 30003 (Qantas Airlines)

Table 2.2: Spares Parts Order Sample

To assess this order, the Order Desk firstly searches the ordered part in all the
available warehouses through an automated database procedure that queries the
existing spares stock information. The locations of the warehouses found with
enough spares availability are going to be the set of possible start nodes for
the algorithm. Since the algorithm only accepts one start node at a time, the
algorithm must be executed as many times as possible Dispatch Warehouses are
found. For the given example, let us suppose enough spares availability is found
in Hamburg (HAM) and Peking (PEK).

Finally, the input graph is obtained by determining the current routes network.
This network is never constant, given that at the reception time of the order some
operators might not have scheduled transportation means (edges) connecting lo-
cations (nodes). Usually a spares delivery route is integrated by a chronological
sequence of transport legs, therefore the routes network must consider transporta-
tion schedules for a specific period of time (i.e. transportation departing from
the order reception time until a maximum of 72 hours in the future, given the
belief that any of the locations served by the Order Desk can be reached within
this maximum timeframe). A final constraint must be included to only obtain
schedules performed by operators whose product transportation limits allow the
measurements of the ordered spares.

The set of nodes integrating the input graph will be the locations connected
by the obtained scheduled routes. The set of edges’ weight values will be the
respective transportation times between pairs of locations. These times, as well
as the routes depart and arrival times, must be updated to consider experienced
delay expectations. This will be discussed in the next section.
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2.3.3 Handling of Time Information

The distribution of Time in the implementation follows the sample structure
defined in Figure 2.5.

Time To 
Depart 1

Dep. Delay 
Time 1

Transport Time 1
Arr. Delay 
Time 1

Time To 
Depart 2

Dep. Delay 
Time 2

Transport Time 2
Arr. Delay 
Time 2

TTD1 = 120 DDT1 = 120 ADT1 = 95  DDT2 = 60 ADT2 = 30TT1 = 645 TT2 = 240TTD2 = 40

Total  Shipping  Time PEK‐SYD‐WQC 

TSTPEK‐SYD‐WQC = 1350 min.

Total Transport Time1
TTT1 = 860

Total Transport Time2
TTT2  =  330

Current Time
01.02.2009
08:00hrs.

Departs PEK
01.02.2009
12:00hrs.

Arrives SYD
01.02.2009
22:45hrs.

Departs SYD
02.02.2009
01:00hrs.

Arrives WQC
02.02.2009
05:00hrs.

Delivery Time
02.02.2009
05:00hrs.

RDT 1 RAT 1 RDT 2 RAT 2

Figure 2.5: Sample Distribution of a Route’s Time Information

Every possible route from the given start location to the delivery location is a
chronologically ordered set of scheduled transport links. Each of these scheduled
legs contains the following time-related information:

• Transport Time (TTi): the amount of time that the actual transporta-
tion (aerial or ground) takes for carrying the spares from one location to
another. It has a defined Departure Time (DTi) and Arrival Time (ATi). It
is considered a unique event by combining location-to-location, time-date,
and operator information.

• Departure Delay Time (DDTi): the amount of time that is expected
or needed for preparing the departure of the transportation link. This
account for boarding time, loading time, customs delays, or the sum of
those applying for this link. By subtracting the Departure Delay Time
from the Departure Time, the Real Departure Time (RDTi) is obtained.

RDTi = DTi −DDTi (2.1)

• Arrival Delay Time (ADTi): the amount of time that is expected or
needed for preparing the arrival of the transportation link. This accounts

16



Chapter 2. Route Finding with the Shortest Path Problem

for unloading time, customs delays, or the sum of both if the two apply. By
adding the Arrival Delay Time to the Arrival Time, the Real Arrival Time
(RATi) is calculated.

RATi = ATi + ADTi (2.2)

• Time to Depart (TTDi): for the first leg (2.3) will be used, this is the
amount of time allocated between the Current Time (CT ), which is the
timestamp at the moment of the algorithm execution, and the first leg’s
RDT. For the rest of legs (2.4) will be used, this is the amount of time
between the RDT of the current leg and the RAT of the previous leg.

TTD1 = RDT1 − CT (2.3)

TTDn = RATn−1 −RDTn (2.4)

• Total Transport Time (TTTi): the sum of Transport Time, Departure
Delay Time, and Arrival Delay Time for each scheduled leg of each route.

TTTi = DDTi + TTi + ADTi (2.5)

It is important to mention that all scheduled Departure and Arrival Dates for
all transport links are homogenized under the Greenwich mean time. This is to
reduce the complexity of dealing with different time zones.

For each possible route a Total Shipping Time (TST ) is calculated:

TSTroute =
n∑
i=1
TTTi + TTDi (2.6)

Where n is the total amount of transport links for this route. For the Dĳkstra
implementation this would be the amount of edges traversed between initial node
s and final node z.
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2.3.4 Algorithm Implementation

The inputs for the Route Planner’s algorithm implementation are now set:

1. A graph G with n nodes connected by weighted edges:

(a) Graph: the n obtained locations stored into an array G.

(b) Edges: the obtained transport schedules pairing the n locations stored
into an array Edge[x][y]. The initial edge weight value will be the
Total Transport Time (i.e. Edge[HAM ][DXB] = TTT[HAM ][DXB])

2. A start node s and a given end node z: following with the example
situation described in section 2.3.2, these are the following:

(a) Route Option 1: (s = HAM, z = WQC)

(b) Route Option 2: (s = PEK, z = WQC)

Let us calculate the shortest path for the Route Option 1, supposing that a
subset of the data matrix of Table 2.1 is the input graph, represented graphically
in Figure 2.6.

440

800

120

470
1010

600

860

330
DCDG= ∞

DDXB= ∞ 

DHAM=0

DSYD= ∞

DWQC= ∞

DSIN= ∞

DPEK= ∞

Figure 2.6: Sample Implementation Graph with initial values
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To follow the algorithm execution, a control table is provided to show how the
data is updated at each stage. The initial values, namely the Stage 0, are shown
in the following Table 2.3.

— HAM CDG DXB SIN SYD PEK WQC
length (D) 0 ∞ ∞ ∞ ∞ ∞ ∞
min.estimate false false false false false false false
via node — — — — — — —

Table 2.3: Stage 0: Initial set for Calculation

The following are the sample stages taken by the algorithm to reach a solution.

Stage 1: Computing shortest paths from start node s = HAM

Node HAM has reached its minimal estimate. Its neighbors have their estimates
decreased from ∞ to the value of length Dy to each one of them. The value
of Dy will accumulate the length in time to get to location y. To have a more
realistic shipping time determination, the value of Edge[x][y] must be updated
by adding the Time To Depart to the actual expected Total Transport Time.
Therefore, the realistic value for an edge connecting two locations is determined
by: Edge[x][y] = TTT[x][y] + TTD[x][y]

• DCDG = TTT[HAM ][CDG] + TTD[HAM ][CDG] = (120 + 60) = 180

• DDXB = TTT[HAM ][DXB] + TTD[HAM ][DXB] = (440 + 260) = 700

• DSIN = TTT[HAM ][SIN ] + TTD[HAM ][SIN ] = (800 + 240) = 1040

— HAM CDG DXB SIN SYD PEK WQC
length (D) 0 180 700 1040 ∞ ∞ ∞
min.estimate true false false false false false false
via node — HAM HAM HAM — — —

Table 2.4: Stage 1: Node HAM has minimal estimate

Stage 2: Computing shortest paths from next node n = CDG

Node CDG has reached its minimal estimate and its neighbor HAM is also in its
minimal. Its neighbor DXB has its estimate decreased from DDXB = 700 to the
updated weight via CDG.

• DDXB = DCDG + Edge[CDG][DXB] = 180 + (470 + 30) = 680
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— HAM CDG DXB SIN PEK SYD WQC
length (D) 0 180 680 1040 ∞ ∞ ∞
min.estimate true true false false false false false
via node — HAM CDG HAM — — —

Table 2.5: Stage 2: Node CDG has minimal estimate

Stage 3: Computing shortest paths from next node n = DXB

Node DXB has reached its minimal estimate and its neighbors HAM and CDG
are also in their minimal. Its neighbor SYD has its estimate decreased from ∞
to the updated weight via DXB.

• DSY D = DDXB + Edge[DXB][SY D] = 680 + (1010 + 60) = 1750

— HAM CDG DXB SIN SYD PEK WQC
length (D) 0 180 680 1040 1750 ∞ ∞
min.estimate true true true false false false false
via node — HAM CDG HAM DXB — —

Table 2.6: Stage 3: Node DXB has minimal estimate

Stage 4: Computing shortest paths from next node n = SIN

Node SIN has reached its minimal estimate and its neighbor HAM is also in its
minimal. Its neighbor SYD has its estimate unchanged because the updated
weight via SIN is higher than the actual value via DXB.

• DSY D[SIN ] = DSIN + Edge[SIN ][SY D] = 1040 + (600 + 160) = 1800

• DSY D[DXB] = DDXB + Edge[DXB][SY D] = 680 + (1010 + 60) = 1750

• DSY D[DXB] < DSY D[SIN ]

— HAM CDG DXB SIN SYD PEK WQC
length (D) 0 180 680 1040 1750 ∞ ∞
min.estimate true true true true false false false
via node — HAM CDG HAM DXB — —

Table 2.7: Stage 4: Node SIN has minimal estimate

20



Chapter 2. Route Finding with the Shortest Path Problem

Stage 5: Computing shortest paths from next node n = SY D

Node SYD has reached its minimal estimate and its neighbors SIN and DXB
are already in their minimal. Its neighbors PEK and WQC have their estimates
decreased from ∞ to the updated weight via SYD.

• DPEK = DSY D + Edge[SY D][PEK] = 1750 + (860 + 90) = 2700

• DWQC = DSY D + Edge[SY D][WQC] = 1750 + (330 + 30) = 2110

— HAM CDG DXB SIN SYD PEK WQC
length (D) 0 180 680 1040 1750 2700 2110
min.estimate true true true true true false false
via node — HAM CDG HAM DXB SYD SYD

Table 2.8: Stage 5: Node SYD has minimal estimate

Last Stages: Computing shortest paths from n = PEK and n = WQC

In the last stages it is confirmed that the nodes PEK, SYD, and WQC have
already reached their minimal estimates. Finally, when all nodes have reached
their minimal estimates the algorithm comes to an end.

Computation Results

The shortest path for this sample implementation is HAM → CDG→ DXB →
SY D → WQC. The length of this path is the value of DWQC = 2110. A
graphical representation is shown in Figure 2.7. For this particular case, it is
expected that the ordered spares will be finally delivered in 35 hours and 10
minutes, if departing from the Hamburg Warehouse.

However, during the spares avilability check it is confirmed that there was also
enough stock for delivery in the PEK warehouse. This means that the algorithm
must be executed again with PEK as start node, in order to confirm which of
both path lengths is the shortest.

The solution for the original input order is the route that offers the shortest
transportation time. In case two or more routes share a minimal time, the dif-
ferentiation factor will be the Route Total Cost. Nevertheless, all solutions are
recorded in the database for possible future use.
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DCDG=180

700
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DDXB=680

DHAM=0

DSYD=1750

DWQC=2110
P = { HAM, CDG, DXB, SYD, WQC }

DSIN=1040

DPEK=2700

Figure 2.7: Sample Implementation Graph with final values

2.3.5 Algorithm Efficiency

Dĳsktra’s algorithm traverses graphs doing a depth first search, meaning that
it expands a start node by pushing all its neighbors nodes in a memory stack
and then chooses the next node to expand by taking it from the stack. However,
when searching large graphs that cannot be fully contained in memory, this kind of
search can suffer from non-termination. The Route Planner’s real implementation
graph is expected to be large, therefore a search optimization is needed.

For a more efficient search within the Dĳkstra’s algorithm a priority queue is to
be included. A priority queue is an abstract data type in programming languages
that sorts elements in a data structure according to a custom comparator, pro-
viding constant-time access to the smallest element. This means that each time
that a node in the graph is visited, all of its neighboring nodes will be stored in
the queue and therefore prioritized. Then, the queue will return the node with
the highest priority, this is the node with the lowest total transport time value.
This way, the algorithm avoids to visit all neighbor nodes whenever a new node
is reached, optimizing the search and the time for computing routes.

A naive implementation of the priority queue gives a run time complexity O(N2),
where N is the number of nodes in the graph. Implementing the priority queue
with a Fibonacci heap makes the time complexity O(E+NlogN), where E is the
number of edges in the graph [8] [22].
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2.4 Conclusions

Given that the Spares Order Desk current procedure for solving AOG situations
lacks of an automated solution framework, it is concluded that the Route Plan-
ner’s implementation of the Dĳkstra’s algorithm provides the Spares Order Desk
with a basic solution model for determining spares delivery routes for incoming
AOG situations.

Dĳkstra’s algorithm is a simple but powerful solution already proven in areas
such as networking packet routing and traffic information systems. However, this
algorithm may not always be the most efficient solution, especially when the input
graph is very dense which is usually the case of real world applications.

The major disadvantage of the algorithm is the fact that it does a blind search,
therefore consuming much computational resources. The algorithm can be opti-
mized by including a priority queue during the route search. Nevertheless, even
when this optimization considerably reduces the computation time for route de-
termination, another solution approach is to be proposed to take advantage of
the experiential knowledge of the Spares Order Desk.

For defining and implementing such a solution, the following chapter addresses the
project problematic with a case-based reasoning approach. This technique intends
to provide solutions to new problems based on solutions to previous solved cases.
Every case and its solution are recorded within a knowledge-base that enables
the system to learn from experience. This special kind of problem-solving could
dramatically reduce the Order Desk’s efforts when determining efficient spares
supply routes.
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Chapter 3

Routing with a Case-Based
Reasoning approach

3.1 Introduction to Case-Based Reasoning

Case-Based Reasoning (CBR) is the process of solving new problems based on
the solutions of similar past problems. CBR can also mean adapting old solutions
to meet new demands by using old cases to critique new solutions. It is likely
to find everyday examples of CBR, for instance a doctor who has a patient with
an unusual combination of symptoms, he may remember situations with previous
patients where symptoms were similar, thus proposes the old diagnosis as a so-
lution. One advantage of using cases is that they provide context for discussing
more abstract issues.

CBR suggests a model of reasoning that incorporates problem solving, under-
standing, and sustained learning. The latter is achieved when solutions to prob-
lems are properly stored in a case library. The term problem solving is commonly
used in a wide sense. It means is not necessarily the finding of a concrete solution
to an application problem, but maybe an interpretation of a problem situation,
a set of possible solutions, or even justifications to solutions.

There are some premises to be considered when implementing this methodology:

• Reference to previous similar situations is necessary to deal with new prob-
lems, meaning that remembering a case is a necessary learning process.

• A reasoner cannot recall a relevant case unless it understands the new situ-
ation in it, meaning that specific case representation and matching are also
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necessary processes for proper case recognition.

• To compensate the differences between old and new situations a case adap-
tation process is necessary, because in most of situations old cases are not
exactly similar to new ones.

• For supporting the learning process it is necessary to record all solved situ-
ations and to have them properly indexed in a case library for future case
retrieval.

3.1.1 Definition of a Case

A case is a contextualized piece of knowledge representing an experience that
teaches a lesson to achieve the goals of the reasoner. Cases represent specific
knowledge tied to specific situations, meaning they provide knowledge at an op-
erational level. Usually, cases record experiences that are different from what is
expected. However, not all differences are important to record.

CBR emphasizes on the use of concrete instances for its learning process, because
they can provide more guidance in solving a new problem than abstract operators.
Cases show application and use of knowledge that abstract operators do not
supply.

The premise in CBR is that once a problem has been solved, it is often more
efficient to solve the next similar problem by starting from the old solution rather
than by rerunning all the reasoning that was necessary the first time. This is
precisely the fundamental reason for selecting CBR as an alternative approach
for the Spares Order Desk route determination process.

3.1.2 CBR Reasoning Cycle

The following are the primary processes required for Case-Based Reasoning, which
are also called the R4 Cycle (depicted in Figure 3.1):

1. Retrieval: recall a set of cases similar to the incoming new case.

2. Reuse: map retrieved solutions to current problem.

3. Revision: adapt a retrieved solution to fit the new situation.

4. Retain: record the case and its adapted solution into case library.
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Figure 3.1: Case-Based Reasoning Cycle

An initial description of a problem defines a new case, its features are used to
Retrieve other cases and its solutions from the case library by means of similarity
functions. The retrieved solutions are mapped to the new case through Reuse,
in order to propose a solution for it. Then, the case and its proposed solution
are Revised by being tested within the application domain, if solution does not
completely fit, it must be properly adapted and tested again. Once the new case
and solution are proven, they can be Retained for future use by means of recording
and indexing them in the case library. The General Knowledge is the domain-
dependent available knowledge that is not embodied by the cases themselves.

3.2 The CBR Route Suggester

Based on this methodology, the second part of the project is to define and imple-
ment a CBR Route Suggester for improving the route determination process by
means of reusing previously recorded knowledge.
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A thoroughly reasearch in this area was conducted in order to understand this
methodology and to discover its potential benefits within the problem domain [1]
[4] [14] [17] [18] [25]. Moreover, some related work exists that addresses the use
of CBR for route planning and for optimization of the shortest path problem [2]
[11] [20] [24]. However, like most of the current CBR applications, the goals they
achieve are specific to the domains they address, but some useful principles were
reused for the design of the Route Suggester proposed in this section.

There are four basic steps to follow when creating a CBR system:

1. The existing data must be examined and relevant features identified to
correctly conform the representation of a case.

2. The most relevant case features must be identified for defining the system
indexes for efficient case retrieval.

3. A matching mechanism must be defined for mapping new with old cases by
means of similarity and ranking functions.

4. Define a case revision process that adapts selected old case’s features for
fitting new cases.

3.2.1 Case Representation

The process of representing a case involves an analysis of the available domain
data to draw a set of features that every case would have in common. Therefore,
a situation description and a derived solution are to be defined for the cases.

a. Situation Description

The situation description encodes the state of the world as reasoning begins and
usually represents a problem that needs to be solved. This would roughly be the
spares Order entity. A situation description representation of a sample Order is
shown in Box 1. It has three major components: goals to be achieved in solving
the problem, constraints on those goals and features of the problem situation.
Only those fields which would aid the retrieval process are included in the case
library. This allows the system to ignore features that are relevant but left implicit
because they never vary or because they don’t offer any means for indexing or
similarity degree matching. The rest of the Order features are maintained in the
database system for referential purposes.
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SITUATION DESCRIPTION:

GOAL: (shortest-time shipping route to WQC)

CONSTRAINTS:
(set of warehouses with part availability)
(set of transport operators)
(set of available transport links)
(ship-to location)

SITUATION:
Order-Id: 45001
Order-Date: 11.02.2009
Order-Time: 07:00hrs.
Order-Weekday: WED
Order-Priority: AOG
Part-Id: 90009
Part-Name: Fuel Shutoff Valve
Part-Quantity: 8 units
Ship-To-Location: WQC
Desired-Warehouse: PEK
Customer-Id: 30003
Customer-Name: Qantas Airlines

Box 1: Sample Situation Description

b. Solution Description

The derived solution incorporates the concepts that achieve the goals set in the
situation description, taking into account the specified constraints. In the prob-
lem domain, the solution for an incoming spares order is a derived shipping route
plan. A sample solution description representation is shown in Box 2. It has
three major components: the solution itself, the set of reasoning steps used to
solve the problem and the justifications for the decisions taken when solving the
problem.

c. Integrated Structure

So far, the representation of a case has been described as a unitary measure,
meaning that the integration of an order and its solution represent a complete
case for the knowledge library. However, if the case’s solution is subdivided into
smaller solutions it could be possible to reuse sub-paths of shipping routes for
solving new cases.

The subdivision of the situation description provides no benefit, but the subdivi-
sion of the solution description has the potential to offer more than one possible
solution.
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SOLUTION DESCRIPTION:

PLAN:
Leg-1:
From: PEK
To: SYD
DepWeekday: WED
Departs: 12:00
ArrWeekday: WED
Arrives: 22:45
DDT: 120
TT: 645
ADT: 95
TTT: 860
Cost: 35.000
Type: Air
Operator: Qantas Airlines

Leg-2:
From: SYD
To: WQC
DepWeekday: THU
Departs: 01:00
ArrWeekday: THU
Arrives: 05:00
DDT: 60
TT: 240
ADT: 30
TTT: 330
Cost: 5.000
Type: Ground
Operator: TNT Transports

REASONING:
Step1:

a-kind-of: case-based inference
source-case: get-case-from-library(PEK,WQC)
adaptation: step1-tst[] = get-current-schedule( PEK,SYD,WQC,Weekday[],CurrTime)

justification: check-wh-stocks( PEK, Part-Id > Part-Quantity )
Weekday[] = WED

Step2:
a-kind-of: case-based inference
source-case: get-case-from-library(From[],WQC)
justification: From[] = get-wh-stocks(*,Part-Id)>Part-Quantity
adaptation: step2-tst[] = get-current-schedule( From[],*,WQC,Weekday[],CurrTime)

justification: From[] = get-warehouses( Part-Id > Part-Quantity )
Weekday[] = WED,THU

Step3:
a-kind-of: case-based inference
source-case: get-best-similarity-case(step1-tst[], step2-tst[])
justification: step1-tst[] not null and complete

step2-tst[] not null and complete
adaptation: save-in-library(source-case)

Step4:
a-kind-of: case-based inference
source-case: execute-dijsktra(From[], WQC, get-possible-routes(From[],WQC,CurrTime))
justification: From[] = get-warehouses( Part-Id > Part-Quantity )
adaptation: save-in-library(source-case)

Box 2: Sample Solution Description
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As it was mentioned in the previous chapter, a route plan is defined by the
locations it traverses and the scheduled legs that chronologically serve the trans-
portation between these locations, until arrival to the final delivery destination.
For Dĳkstra’s algorithm this is the shortest possible path between a node s to
a node z. It is important to mention that a sub-path of a shortest path is itself
a shortest path. This means that if the shortest path between node s to node z
happens to go through a node x and then node y, then the path from s to z can
be split into three sub-paths: s → x, x → y, and y → z. If we were looking for
the shortest path between nodes x and z in the same graph, then by definition
the shortest path must go through node y.

The CBR Route Suggester reuses this principle by considering sub-paths of a
solution route as candidate solutions for new situations. This will be further
explained in the Case Matching section.

Finally, an Integrated Case Representation is defined to blend both the situation
and solution descriptions. Figure 3.2 depicts this representation.

b) Solution Descriptiona) Situation Description

SolutionPath 
<Order-ID>

S Z

Leg <N> X Z
• Leg<N>.From
• Leg<N>.To
• Weekday<N>

• RDT<N>
• RAT<N>
• Cost<N>

Leg <2> T X
• Leg<2>.From
• Leg<2>.To
• Weekday<2>

• RDT<2>
• RAT<2>
• Cost<2>

Leg <1> S T
• Leg<1>.From
• Leg<1>.To
• Weekday<1>

• RDT<1>
• RAT<1>
• Cost<1>

Order <Order-ID>

• CurrDate
• CurrTime
• CurrWeekday
• Priority
• Part-ID
• Customer-ID
• Desired-Warehouse

RouteOption<1>
• RO<1>.From
• RO<1>.To
RouteOption<N>
• RO<N>.From
• RO<N>.To

Figure 3.2: Integrated Case Representation

Once a common case representation is defined, the biggest issue in CBR has to be
addressed: the retrieval of appropriate cases. The importance of this process is
fundamental because if a situation cannot be properly matched to old situations,
then the derived solutions will not properly fit the case, meaning that the whole
learning process could be compromised.
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The case retrieval process, no matter the method, requires a combination of
search and matching:

• Search: this problem is commonly called the Indexing Problem because
indexes are the labels assigned to cases that define under what conditions
each case can be used to make useful inferences.

• Matching: this problem has to do with finding potentially similar cases from
the library and judging their potential usefulness by means of similarity.
Then, the retrieved cases can be ranked depending on a defined scale that
best meets the reasoner’s goal.

3.2.2 Case Indexing

Case indexing involves assigning indexes to cases to facilitate their retrieval. Sev-
eral guidelines on indexing have been proposed by CBR researchers [25] and even
many automated methods have been used to select them. However, despite the
success of such methods, Kolodner [14] suggests that indexing is a problem better
addressed by humans and therefore for practical applications indexes should be
chosen by hand.

The following are the general guidelines for choosing indexes proposed by the
author:

• Indexes should be predictive.

• Indexes should address the purposes the case will be used for.

• Indexes should be abstract enough to make a case useful in a variety of
future situations.

• Indexes should be concrete enough to be easily recognized.

Kolodner also suggests that the usefulness of indexes must be maximized. There-
fore, considering that the CBR Route Suggester is a kind of reasoner that use
cases to help generate solutions to problems, the most suitable indexes will be
combinations of features responsible for choosing a particular solution.

Table 3.1 describes the relevant indexes for the case matching process. It includes
the constraints to apply them, their importance order, and basic examples on how
they assess the matching.
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Case Indexes
Index Description Examples

1. Location-related: Dispatch-Warehouse (DW),
Delivery-Location (DL)

1.1. DW is the start location and DL is the final
location in the solution Path.

1.2. DW is any location in the solution Path (except
the final location) and DL is another location that is
chronologically after DW in the solution path. (i.e. the
start and end nodes from a sub-path of the solution path)

1.3. If the new case contains more than one DW , it is
possible to retrieve more than one candidate cases from
one single old case.

RO1: (DW=HAM, DL=WQC)
RO2: (DW=DXB, DL=WQC)

1.1. HAM-SIN-SYD-WQC

1.2. CDG-HAM-SYD-WQC

1.3. HAM-DXB-SYD-WQC
1.3. HAM-DXB-SYD-WQC

2. Time-related: Current-Weekday (CW), Current-
Time (CT)

2.1. If Index 1.1 matched a Path: CW is the same as
the Leg1 Weekday (SW1) and CT is chronologically
before the solution’s RDT1.

2.2. If Index 1.2 matched a Sub-Path: CW is the same
as the Legx Weekday (SWx) and CT is chronologically
before the solution’s RDTx (where x stands for the
solution leg index matching CW).

2.3. If Index 1.1 or Index 1.2 matched: CW is one
day before the Leg1 Weekday (SW1), meaning that
cases with a route departing the day after CW are also
considered.

RO1: (DW=HAM, DL=WQC)
RO2: (DW=DXB, DL=WQC)
CW=Fri, CT=10:00

2.1. HAM-SIN-SYD-WQC
Leg1: WD1=Fri, RDT1=12:00
Leg2: WD2=Fri, RDT2=22:00
Leg3: WD3=Sat, RDT3=03:00

2.2. CDG-HAM-SYD-WQC
Leg1: WD1=Thu, RDT1=23:00
Leg2: WD2=Fri, RDT2=11:00
Leg3: WD3=Fri, RDT3=22:00

2.3. DXB-SIN-SYD-WQC
Leg1: WD1=Sat, RDT1=12:00
Leg2: WD2=Sat, RDT2=22:00
Leg3: WD3=Sun, RDT3=03:00

3. Support-indexes: Part-ID (PNR), Priority (PRY),
Customer-ID (CID)

3.1. If Index 1.1 or Index 1.2 matched: PNR is the
same as the solution’s PNR, providing for another case
dimension (strengthen similarity metric).

3.2. If Index 1.1 or Index 1.2 matched: PRY is the
same as the solution’s PRY , providing for another case
dimension (strengthen similarity metric).

3.3. If Index 1.1 or Index 1.2 matched: CID is the
same as the solution’s CID, providing for another case
dimension (strengthen similarity metric).

RO1: (DW=HAM, DL=WQC)
RO2: (DW=DXB, DL=WQC)
PNR=9009, PRY=AOG, CID=3001

3.1. HAM-SIN-SYD-WQC
PNR: 9009

3.2. HAM-SIN-SYD-WQC
PRY: AOG

3.2. HAM-SIN-SYD-WQC
CID: 3001

Table 3.1: Case Indexes Description
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3.2.3 Case Matching

Case retrieval techniques search cases in the case library by looking in their
defined indexes in order to select a set of cases that partially match the input
case. This process is illustrated in Figure 3.3 where a sample set of cases is
partially matched.

Order 45001

Date: 11.02.2009
CT: 07:00 hrs.
CW: WED
PRY: AOG
PNR:  90009
CID: 30003

RouteOption1
• RO1.From: HAM
• RO1.To: WQC

RouteOption2
• RO2.From: DXB
• RO2.To: WQC

Case 40004

PEK  SYD  WQC

PRY: RTN
PNR: 90009
CID: 30871

Case 40005

DXB  SYD  WQC

PRY: AOG
PNR: 90111
CID: 30003

Case 40006
HAM  CDG 

DXB  SYD  WQC
PRY: AOG
PNR: 90230
CID: 30222

Case 40007
SIN  DXB 
SYD  WQC
PRY: AOG
PNR: 90009
CID: 30450

CASE  LIBRARYLeg1: PEK SYD
SW1: WED
RDT1: 08:00 hrs
RAT1: 21:00 hrs
Cost1: 55.000€

Leg2: SYD WQC
SW2: WED
RDT2: 23:00 hrs
RAT2: 04:00 hrs (+1)
Cost2: 5.000€

Leg1: DXB SYD
SW1: WED
RDT1: 14:00 hrs
RAT1: 06:00 hrs (+1)
Cost1: 44.000€

Leg2: SYD WQC
SW2: THU
RDT2: 08:00 hrs
RAT2: 12:00 hrs
Cost2: 5.000€

Leg1: HAM CDG

Leg2: CDG DXB

Leg3: DXB SYD

Leg4: SYD WQC

SW1: THU
RDT1: 09:00 hrs
RAT1: 11:00 hrs
Cost1: 10.000€

SW2: THU
RDT2: 12:00 hrs
RAT2: 20:00 hrs
Cost2: 28.000€

SW3: THU
RDT3: 22:00 hrs
RAT3: 14:00 hrs (+1)
Cost3: 22.000€

SW4: FRI
RDT4: 16:00 hrs
RAT4: 20:00 hrs
Cost4: 5.000€

Leg1: SIN DXB

Leg2: DXB SYD

Leg3: SYD WQC

SW1: TUE
RDT1: 22:00 hrs
RAT1: 09:00 hrs
Cost1: 66.000€

SW2: WED
RDT2: 10:00 hrs
RAT2: 02:00 hrs (+1)
Cost2: 44.000€

SW3: THU
RDT3: 08:00 hrs
RAT3: 12:00 hrs
Cost3: 5.000€

RO1.From = Leg1.Dep
RO1.To = Leg4.Arr
RO2.From = Leg3.Dep
RO2.To = Leg4.Arr
PRY = PRY

RO2.From = Leg2.Dep
RO2.To = Leg3.Arr
CW = SW2, CT < RDT2
PRY = PRY, PNR= PNR

RO2.From = Leg1.Dep
RO2.To = Leg2.Arr
CW = SW1, CT < RDT1
PRY = PRY, CID = CID

PNR = PNR

INPUT  CASE

Figure 3.3: Sample Diagram of Matching Process

From this diagram it is possible to identify the attributes that are being compared
between cases for performing the matching process (i.e. the white rounded squares
describe the matching attributes). Not all attributes have an equal weight and
this constrain the cases to be selected. For instance between Order 45001 and
Case 40004 there is a match in the PNR attribute, but this isolated match does
not provide enough information to conclude that the Solution Path of Case 40004
can be reused for Order 45001. Therefore, this case is not retrieved because no
other attributes match with the input case.
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Case attributes usually can be categorized among the following concepts:

• Features/Descriptors: these are attribute-value pairs that describe the
most relevant aspects of the case description for the matching process.
These attributes can be found either in the situation description or the
solution description.

For instance, to confirm that the solution description of Case 40005 is useful
for the reasoner and therefore retrieved for later ranking, a possible solution
route must be firstly matched. The following statements describe how the
Order 45001 is matched to Case 40005 for the reuse of its solution path:

CPO45001.PRY = CPO40005.PRY

CPO45001.RO2.F rom = CPO40005.Leg1.Departs

CPO45001.RO2.T o = CPO40005.Leg2.Arrives

(CPO45001.RouteOption2 ← CPO40005.SolutionPathDXB−WQC)

• Dimensions: a case dimension is identified only when the primary case fea-
tures have been successfully matched and an attribute-value pair strength-
ens or weakens the similarity of this matched case against the input case.

For instance, when matching Order 45001 and Case 40007, the PNR at-
tribute match is relevant for the inference process only because the following
features have been previously matched:

CPO45001.RO2.F rom = CPO40007.Leg2.Departs

CPO45001.RO2.T o = CPO40007.Leg3.Arrives

(CPO45001.RouteOption2 ← CPO40007.SolutionSubPathDXB−WQC)

The presence of a matching PNR provides the case with another dimension
strengthening the inference that the SolutionSubPathDXB−WQC of Case
40007 is a good solution for Order 45001, primarly because both routes are
shipping the same part.

Other attributes that bring dimensions for cases are Current-Weekday
(CW ), Current-Time (CT ), Customer-ID (CID), and Priority (PRY ).

• Multiple Matches: the case indexes description shown in Table 3.1 con-
siders the possibility that an old case’s solution path encloses also a set of
possible subpaths to be considered as solution candidates.

Given also that the situation description of an input case can encompass
several RouteOption sets (i.e. pair of dispatch warehouse and destination
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location) because the part might be available at many different warehouses,
then it is possible to find as much solution routes in an old case as many
RouteOption sets found in the input case.

Let us consider a match between Order 45001 and Case 40006 from Figure
3.3. Order 45001 has two sets of RouteOption given that the PNR 90009
is to be found in sufficient amount in warehouses HAM and DXB. When
matching against Case 40006 it is found that RouteOption1 matches the
original SolutionPath going HAM→WQC and that RouteOption2 matches
a SolutionSubPath going DXB→WQC. This means that Case 40006 will
provide two candidate solutions for Order 45001.

The case matching is done by the following criteria:

CPO45001.RO1.F rom = CPO40006.Leg1.Departs

CPO45001.RO1.T o = CPO40006.Leg4.Arrives

(CPO45001.RouteOption1 ← CPO40006.SolutionPathHAM−WQC)

CPO45001.RO2.F rom = CPO40006.Leg3.Departs

CPO45001.RO2.T o = CPO40006.Leg4.Arrives

(CPO45001.RouteOption2 ← CPO40006.SolutionSubPathDXB−WQC)

After the matching, possible feature dimensions are to be searched to have
more accurate information of each solution candidate. Once all possible
candidates are extracted from all the retrieved and matched cases, the Route
Suggester must determine which candidate fits best to the new situation,
therefore a similarity ranking technique must be implemented.

3.2.4 Case Ranking

Ranking is the process of ordering partially-matched cases according to usefulness
to determine which of them fits best to the new situation. Usually, matching
schemes result in the computation of a score that specifies the degree of match
between one case and another. The match score can be absolute or relative. An
absolute match score is computed independent of other cases, while a relative
match score requires comparison to other cases.

The following activities are necessary for implementing a ranking scheme:

• Finding Correspondences: this is done to determine which features of
a new situation should be matched to which features in a stored situation.
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The Route Suggester finds correspondences by determining which features
can play different functional roles, and use their values for the roles needed.
For instance, locations can either play the role of a dispatch warehouse,
an intermediate stop, or a final delivery destination. Therefore, whenever a
sub-path of an old case’s solution path can serve as a solution for a new case,
the roles of these features must be corresponded to fit the new situation.
Table 3.2 shows the correspondence between a new case and an old case
with a route path and sub-path as matching solutions.

NEW CASE OLD CASE
Feature Value Feature Value
Order-ID 40007 Order-ID 45001
PNR 90009 PNR 90009
CID 30003 CID 30222
PRY AOG PRY AOG

Route Option 1 Solution Path
RO1.From HAM Leg1.Departs HAM
RO1.To WQC Leg4.Arrives WQC
CW Wed SW1 Wed
CT 07:00hrs RDT1 11:00hrs

Route Option 2 Solution SubPath
RO2.From DXB Leg3.Departs DXB
RO2.To WQC Leg4.Arrives WQC
CW Wed SW3 Thu
CT 07:00hrs RDT3 22:00hrs

Table 3.2: Sample correspondence between two cases

• Computing Degree of Similarity: once it is known which features cor-
respond to each other, the degree of similarity between these features can
be computed. Again, several methods exist for computing this.

As mentioned in the first chapters, the goal of both the Route Planner
and the Route Suggester is to suggest the route that takes the shortest
time from a dispatch warehouse to the spares delivery destination. Based
on these criteria, a quantitative scale for similarity fits best the reasoner’s
goal.

A quantitative scale refers to a numeric evaluation function that uses rel-
ative importance of case’s features and the degree of match of each to
compute a match score. The function chosen for this evaluation is the
Nearest-Neighbor Matching (NNM).
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In NNM, every feature in the new case is matched to its corresponding
feature in the old case; the degree of match of each pair is computed,
and added to an aggregate match score. Once all retrieved cases have
their match score computed, the most similar case will be the one with
the highest match score. The steps to compute NNM are described in Box 3.

1. For each feature in the new case:

a. Find the corresponding feature in the stored case
b. Compare the two values and compute a degree of match
c. Multiply by a coefficient representing the importance of the feature

2. Add the results to derive an aggregate match score
3. Select the case with the highest score

Box 3: Nearest-Neighbor Matching Algorithm

Ranking Guided Example

Recalling the case matching process example for the CBR Route Suggester de-
picted in Figure 3.3, the Order 45001 is being compared against the case library,
which in this reduced sample comprises four past cases. During the case match-
ing process, only three of these cases are partially matched against the input case
due to the correspondences found among them. The white rounded squares in
the figure show the criteria used to match each particular case.

Therefore, a set of four possible routes are extracted from the three partially
matched cases. It must be recalled that Case 40006 matches two possible solutions
for the input case. The red frames in Figure 3.3 represent the four solution
candidates, whose attributes are detailed in Table 3.3.

An empirical ranking approach would easily select the solution candidate that
offers the minimum TTT, thus satisfying the goal of the reasoner. However,
the ranking evaluation is in direct relationship with the input case information,
meaning that even if a solution candidate seems to provide the best route timing,
this is irrelevant if not evaluated together with the input case.
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Candidates Attributes Summary
Feature SC1 SC2 SC3 SC4
Order-ID 40005 40006 40006 40007
PNR 90111 90230 90230 90009
CID 30003 30222 30222 30450
PRY AOG AOG AOG AOG
Departs DXB HAM DXB DXB
Leg-ID 1 1 3 2
SW Wed Thu Thu Wed
RDT 14:00 9:00 22:00 10:00
Arrives WQC WQC WQC WQC
Leg-ID 2 4 4 3
SW Thu Fri Fri Thu
RAT 12:00 20:00 20:00 12:00
TTT 1320 2100 1320 1560
LegCount 2 4 2 2
Cost e 49.000 e 65.000 e 27.000 e 49.000

Table 3.3: Candidates Attributes Summary

As it can be seen in Table 3.4, when the input case information is related to the
solution candidates, derived data is calculated such as the Total Shipping Time
(TST ) which adds the time to be waited before these routes depart.

Candidates TST
SC TTT TTD TST
1 1320 420 1740
2 2100 1560 3660
3 1320 2340 3660
4 1560 180 1740

Table 3.4: Candidates Total Shipping Time

From this derived information it can be inferred that SC1 and SC4 share the
same final delivery date/time because they share the same final transportation
leg, even when their route schedules are different. SC2 and SC3 also share the
same delivery date/time, but this is because they traverse the same route schedule
because SC3 is a sub-path of SC2. Given this initial ranking based on shipping
time, Candidates 1 and 4 are selected among the other candidates.
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However, other case attributes that could give a more detailed conclusion are
still not being considered. Let us keep these two candidates as the best possible
solutions. Then, a differentiation factor must be applied for finding the most
accurate solution candidate.

Both cases PRY is AOG just as the input case, so this cannot be the factor.
The SC1 matches the CID, so both the input and the recorded case are requests
from the same customer, meaning that if the customer agreed to traverse through
this route once, it is likely to accept it as a solution for a new similar case.
Moreover, the SC4 does not match the CID, but matches the PNR with the
input case. When old and new case share the same PNR it is affirmed that the
route operators for the old solution will likely transport the new order because it
actually is the same product and no further checks are needed.

Because this is a stronger reason to believe a route will function as it did for a
past solution, then SC4 is selected as solution suggestion for Order 45001. The
initial case-based inference process for suggesting a solution ends here, but some
case adaptation to actual schedules might be needed.

The similarity ranking inference done in this sample is a straightforward process
for a human to solve given the contraints. However, for an automated reasoner, it
is necessary to implement an evaluation function that encompasses this ranking
process.

Ranking Evaluation Function

The NNM algorithm described in Box 3 suggests that for each feature matched
among cases a degree of match must be computed and multiplied by a coefficient
that represents the importance of each feature. The results must be aggregated
in a match score. The case with the highest score is the most similar to the input
case. Therefore, a way to calculate this aggregate match score (AMS) must be
expressed (3.1).

AMScase =

n∑
i=1
wi × sim(f Ii , fRi )

n∑
i=1
wi

(3.1)

where wi is the importance of feature i, sim is the similarity function, and f Ii
and fRi are the values for feature fi in the input and retrieved cases respectively.
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For computing the degree of match, an importance coefficient for each relevant
feature must to established. Table 3.5 shows the scale used to measure the at-
tributes importance.

Importance Scale
Very High 1.0
High 0.8
Moderate 0.4
Low 0.2
Not assigned 0.0

Table 3.5: Attributes Importance Scale

The indexes defined for case matching will be the set of attributes to consider for
ranking. If the PNR attribute matches it will get a value of 1.0, if there is no
match then value will be 0. For CID the match will be 0.2, and no match is 0.

If CW matches and CT is before RDT1 then value will be 1.0; if CW is one day
before the solution’s first leg weekday SW1, the value will be 0.4; else, importance
will be 0. For PRY if the match is AOG then value will be 0.8; for RTN the
value 0.4 will be assigned.

In addition to the indexes, a factor called Route Quality (RQ) is calculated for
supporting the ranking process. RQ assigns a value between 0 and 1 to each
candidate’s route and measures how short a route schedule is. Formula (3.2)
shows how to derive this factor. RQ depends on two other factors: Transport
Time Factor (TTF ) explained in (3.3); and the Time To Depart Factor (TTDF ).

RQroute = TTFroute/TTDFroute (3.2)

TTFroute = TETroute/TTroute (3.3)

To derive the TTF of a route, it is necessary to previously obtain its Transport
Expected Time (TETroute) which is explained in (3.4).

TETroute =
n∑
leg=1
TETleg (3.4)

TETleg is the value of the expected amount of time that a specific transport
schedule should take to perform. This value for each possible route connecting two
locations is stored in the system database and is established based on experience
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data. The sum of these legs’ expected times will be TET for the route they
compose.

Finally, the resulting value of TTF reflects how close a route performed in time
against its expected established time. Routes that where traversed closer to the
expectation get a higher rank value, while routes that are more distant from the
expectation receive a lower rank value.

Moreover, TTDF for a route is formulated in (3.5), where TTD is the Time to
Depart for this route; while MWT stands for Maximum Wait Time, a control
value established by the Order Desk. For the Route Suggester this value is set to
2880 minutes, meaning that the Order Desk must not take more than 48 hours
to determine a shipping route for an AOG situation. The resulting value must
then be subtracted to 1. This it is assured that the lower waiting times have a
higher rank value, and the longer times have a lower rank value.

TTDFroute = 1− (TTDroute/MWT ) (3.5)

Table 3.6 shows the results for the Route Quality calculation for each of the routes
offered by the solution candidates discussed in the previous section.

Route Quality
Factor SC1 SC2 SC3 SC4
TET 1250 1870 1250 1250
TT 1320 2100 1320 1560
TTF 0.94 0.89 0.94 0.81

TTD 420 1560 2340 180
MW 2880 2880 2880 2880
TTDF 0.85 0.45 0.18 0.93

RQ 0.8 0.4 0.17 0.75

Table 3.6: Route Quality values for each Case

Another factor considered for the Ranking process is the Leg Count of candidate
routes. The rationale for its inclusion comes from the idea that as the number of
transport legs increases the risk probability of having a delay or missing a connec-
tion also increases, due to the variability of service levels of transport operators
and traversed locations. Table 3.7 depicts the importance values regarding the
Leg Count factor. More than 4 legs receive 0 as importance value.
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1 Schedule Leg 1.0
2 Schedule Legs 0.8
3 Schedule Legs 0.4
4 Schedule Legs 0.2
5 Schedule Legs 0.0

Table 3.7: Leg Count Importance Scale

Once all importance values for attributes and factors are assigned, the defined
evaluation function can be computed. Table 3.8 shows the degree of match calcu-
lations summary. The Maximum Importance column shows the maximum values
that each feature can be assigned to. The other columns show the degree of
match between features of each solution candidate and the new case’s features.

Candidates Degree of Match
Feature Type Max.Imp. SC1 SC2 SC3 SC4
Part-ID Index 1.0 0.0 0.0 0.0 1.0
Weekday/Time Index 1.0 1.0 0.4 0.4 1.0
Priority Index 0.8 0.8 0.8 0.8 0.8
Customer-ID Index 0.2 0.2 0.0 0.0 0.0
Route Quality Factor 1.0 0.8 0.4 0.17 0.75
Leg Count Factor 1.0 0.8 0.2 0.8 0.8
Aggregate Match Score 5.00 3.60 1.80 2.17 4.35
Normalized Match Score .720 .360 .434 .870

Table 3.8: Candidates Degree of Match Summary

The row before the last shows the aggregate match score resulting from the eval-
uation function. The bottom row normalizes each candidate’s match score in
respect to the maximum possible match score. The highest AMS is .870 corre-
sponding to Candidate 4 (SC4) which is the case to be selected as solution for
the previously discussed sample problem.

The use of this numeric evaluation function enables the automation of the rank-
ing process. However, when similarity scores among candidates is close, it can
mean that each solution is about equally similar to the new situation. There are
two possible explanations for such situation: either the cases are indeed quite
similar to one another, or the matching criteria have not been chosen well. If
this situation is recurrent, then it is suggested to collect more cases within the
case library to allow a more balanced set of suggestions or some better means of
distinguishing cases must be found (i.e. better similarity or matching criteria).
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3.2.5 Case Revision

The revision of a suggested solution obtained from an old case is necessary to
prove that it actually fits the new situation. Because no old situation is ever
exactly the same as a new one, adaptation is a necessary process in CBR.

Adaptation might be as simple as substituting one component of a solution for
another or as complex as modifying the overall structure of a solution. There
are many adaptation techniques performing diverse updates in cases. The Route
Suggester uses a type of substitution method called reinstantiation.

Substitution is the process of choosing and installing a replacement for some part
of an old solution. Moreover, reinstantiation is used when the frameworks of
an old and new problem are obviously the same, but roles in the case are filled
differently than roles in the old one. This means that the data bindings of the
old solution components are replaced by new data bindings.

Specifically, the adaptation done by the Route Suggester is to bind the suggested
solution route to actual scheduled transport links stored in the system’s database.
This schedule information is constantly fed by transport operators. The reliability
on availability of updated transport links that match the suggested route is based
on the belief that operators maintain a constant schedule for the routes they serve.

Whenever a transport link schedule is unavailable due to seasonal or operational
changes, the adaptation process on the suggested case will not be successful.
In this situation, the next solution candidate with higher ranking will then be
selected and again sent to adaptation. If none of the possible candidates can be
linked to an actual schedule, the Route Suggester presents no solution and the
candidate cases are dismissed from the case-library. This way the case-library is
maintained up to date in regard to actual operator’s schedules.

Finally, the new case is stored and indexed in the case library for future use.
The case comprises the situation description and the detailed solution, plus any
support data for presentation or calculation purposes.

3.3 Integration of Routing Approaches

After describing the Route Suggester it is possible to understand that the case-
based reasoning approach optimizes the route finding problem and enhances the
possibility of learning.
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However, the CBR approach cannot completely replace the Route Planner based
on Dĳkstra’s algorithm, because it lacks of a route searching functionality. Also,
the Route Planner itself is not the optimal solution in terms of computation time.
This means that the single implementation of any of these approaches is probably
not the best solution.

Dĳkstra’s algorithm is the only technique that is able to work independently to
solve the problem. The algorithm searches in a weighted directed network and it
finds the shortest path from a source to every other node in the network.

Although this algorithm is efficient, searching the whole route network with thou-
sands of nodes and edges to find the shortest route will take a long time. The
problem with Dĳkstra’s algorithm is that it is not always necessary to search
through the whole route network in order to find the solution. For example, if
an order must find a route going PEK→SYD (Peking to Sydney) most probably
one will not consider those routes leading to destinations in Europe or America.

Case-based reasoning has the advantage of learning as it acquires more cases. For
the route finding problem, many routes could be previously stored, thus providing
a robust case library for problem solving. However, it is highly inefficient to store
all the possible routes from one location to another for a huge network. This
means that if all possible routes cannot be stored, then there will not always be
old cases to fit new situations. In such cases the only possible solution is to use
a route searching algorithm.

To summarize, the following are the advantages and disadvantages of the de-
scribed solution approaches:

• Route Planner: Dĳkstra’s algorithm is able to find the best solution but
this is done by a blind search which can be time consuming and wasteful in
terms of computation.

• CBR Route Suggester: CBR gives a solution to a new problem instantly
if there are similar cases in the case library, but if there are no case matches
for this situation it will not provide a solution.

Therefore, it can be concluded that integrating both approaches is a better so-
lution than any of them as a single. In an integrated approach, for example,
when there is an old case in the case library which matches a new incoming case,
there will be no need to search with Dĳkstra’s algorithm, but simply output the
route provided by the CBR Route Suggester and adapt it to the current schedule
information.
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Moreover, when a similar case is not found, the CBR Route Suggester can pass
the problem to the Route Planner for finding a route through a network search.
Once a route is found, this can be added to the case-library improving the chances
of solving a future problem with an old solution, gradually minimizing the use of
the Route Planner.

This integrated approach is described as an algorithm in Box 4 suggesting a
sequence of problem solving: the CBR approach should try to solve the problem
first because it is more efficient, but if it fails, the problem will then be passed
to the Route Planner. Finally, after using any of the approaches, the case must
be properly indexed and recorded in the case library.

1. Input a new situation (incoming order)

2. Execute CBR Route Suggester to find similar cases.

3. If any similar cases are found:
Then: Select case solution with best match score.

Adapt solution with new schedule information.
Else: Execute Route Planner.

4. Add new case to library with proper indexes.

Box 4: Integrated Solution Approach Algorithm
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Web-Based Integrated Solution

4.1 Introduction

The last part of the project is to make the functionality of the Route Planner and
the CBR Route Suggester available through a common interface. This interface
intends to provide the Spares Order Desk with a decision-support tool that can
be accessed to assess incoming AOG situations in a single application.

Therefore, a Web-based application was designed and developed to provide the
system with online availability via the World Wide Web. The foundations to
create such an application are:

• The integrated system can be easily accessed via a Web browser within orga-
nizational Intranet boundaries, and its contents are dynamically generated
by user request.

• The application is developed, hosted and executed using reliable open-
source technologies and there is no need of installing any software within
the user’s environment.

• The system can be easily integrated to any platform due to the high level
of interoperability provided by the implementation done in a Java-based
environment.

• The system architecture is based on a multi-tiered architecture allowing
modularity and customization through distributed computing.
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4.2 System Architecture

As stated above, the Web-based application was developed using a multi-tiered
architecture. Apart from the usual advantages of modular software with well
defined interfaces, the multi-tier architecture is intended to allow any of the tiers
to be upgraded or replaced independently as requirements or technology change.
The current system architecture is depicted in Figure 4.1.

CaseRanker

CBR Route Suggester

Best Route 
Suggestion

Presentation Tier

Logic Tier

Data Tier

Case-Library
Locations

Stored Procedures

RouteFinder

Route Planner
Controller

Schedules

Spare Parts Operators

CaseAdapter

Incoming 
AOG Order

Figure 4.1: System Architecture

4.2.1 Data Tier

This tier consists of a Relational Database Management System (RDBMS) where
the data is kept neutral and independent from the application. The data separa-
tion from other tiers provides easier scalability and performance improvements.

The system database model defined in Figure 2.3 is the repository represented by
this tier. This database, maintained in a MySQL 5.0 management system, con-
tains the following: the collection of previous cases organized in a Case-Library;
the catalogue of Spare Parts, Locations, Operators and Schedules; and a set of
Stored Procedures which contain all the queries and methods for data access.
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4.2.2 Logic Tier

The Logic Tier controls the application’s functionality by performing the data
processing. This tier contains the implementations of the Route Planner and
the CBR Route Suggester based on the Java Platform. Also in this tier, a CBR
support tool was used to graphically represent the data-flow during the best-route
decisioning process, this is the Erudine Behavior Engine [21].

CBR Support Tool: Erudine

Erudine presents a user interface in which it is possible to define a Knowledge
Model. This model is comprised by a set of interconnected nodes representing the
different data system states during the processing of an Order. The data sets to
be used as inputs and outputs can automatically be pulled or pushed respectively
from the defined relational database. A sample Erudine’s Knowledge Model for
the project is represented in Figure 4.2.

Figure 4.2: Erudine’s Knowledge Model Sample

Within these nodes, it is possible to establish rules to evaluate data states in order
to direct/redirect the flow of information among the model nodes. A detailed view
of a node with a basic rule is shown in Figure 4.3. In this node it is defined that
only Warehouses with enough product stock availability are to be considered as
possible Dispatch Warehouses for the route determination problem.
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Figure 4.3: Erudine’s Knowledge Node Sample

For testing the validity of the model, corresponding sets of input cases and output
solutions are pushed into the model. The model processes them and relates their
relevant features based on those mentioned rules, in order to help the system
designer to identify possible inferences to be made for modeling a CBR system.
This way, the logic can be continuously refined until many of the possible cases
are covered. This is a very powerful way to efficiently understand and represent
the domain-knowledge. Erudine was used to support the logical design of the
case matching process for the Route Suggester.

Java-based Processes Implementation

After the system design was completed, practical implementations of the Route
Planner and the Route Suggester were developed using the Java platform. The
decision to choose the Java platform is because it is a standardized and mature
technology with vast learning resources and huge interoperability possibilities
with other platforms.

For the Web application development the specific technology used is the Java
Server Pages (JSP). JSP enables software developers to create dynamically-
generated web sites in response to a client request, allowing Java code to be
embedded into static Web content [10] [23].
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Initially, a request is received via a Web browser (i.e. user selects an Order for
decision-support). The responsible JSP for catching this action is sent to a com-
piler which generates an object that dynamically processes requests and construct
responses, also called Java Servlet. The Servlet executes the proper methods in-
dicated by the JSP, which might need to query/save information from/to a rela-
tional database. Finally, a response is generated containing the execution results
formatted in HTML and sent back to the browser for presentation. Figure 4.4
depicts a typical JSP architecture.

JSP
Client request is 

received Relational
Database

Request
Queries

Presentation Tier Logic Tier Data Tier

Response

JSP Compiler
Converts JSP
into Servlet

Servlet
Executes class 
methods and 

sends results in 
HTML format

Figure 4.4: Typical multi-tiered JSP Architecture

For the Java-based application design, a class diagram is defined to visualize
the system classes and the methods they implement. Figure 4.5 shows an inte-
grated class diagram for the Route Planner and the CBR Route Suggester. The
Integrated Approach main classes are the following:

• Controller is an implementation of a process dispatcher that either calls the
CaseRanker to get a case solution suggestion or the RouteFinder for route
finding.

• RouteFinder is an implementation containing the Route Planner’s search
methods.

• Route is a generalization of the route concept. This is a list of objects
representing the nodes that compose a route.

• Dĳkstra is an implementation of the Dĳkstra’s algorithm that searches for
the shortest path in a weighted oriented graph.

• IGraph is an interface that specifies a weighted oriented graph and it is used
by the search algorithm in order to deal with graphs.

• NetworkGraph is an implementation of the weighted graph.

• CaseRanker is an implementation of the matching and ranking process for
an inputted order.
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• CaseAdapter is an implementation of the adaptation process that updates
the order’s scheduled legs data with current schedules.

• Order is a generalization of the order concept. It contains a SparePart, a
Customer, a solution Path, and a set of dispatch warehouses and a delivery
point that are defined by the class Location.

• SparePart is a generalization of the spare part concept.

• Customer is a generalization of the customer concept.

• Location is a generalization of the location concept. It can be instantiated
as a dispatch warehouse, a delivery location, a leg departure point, or a leg
arrival point.

• Path is a generalization of the solution path concept. It contains a set of
scheduled legs defined by the class SchedLeg. This class has empty values
for a new incoming Order.

• SchedLeg is a generalization of the scheduled leg concept.

• Operator is a generalization of the transport operator concept.

Web Application Demonstrator

A demonstrator was developed for testing the Web application’s integrated func-
tionality. The following is a list of the components integrating the demonstrator:

• JAR file: the Web application is contained in a Java Archive (JAR) file
which is the standard for distributing Java classes and associated metadata.

• JSP files: they are the dynamic-generated Web pages for realizing requests
to the application and presenting results in a Web browser.

• Configuration file: a Web configuration and deployment file that defines
the application’s components, interfaces, and parameters.

• Knowledge Model file: the Erudine’s knowledge model file defining the
decisional rules for evaluating situations. The Erudine Engine JAR file is
also attached for the validation and execution of this model.

• Database Script file: contains the database structure and system data.
It must be initialized and maintained in a MySQL 5.0+ database server.
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+RouteFinder() : RouteFinder
+findRoutesWithMaxDistance() : ArrayList
+findRoutesWithMaxTime() : ArrayList
+findRoutes() : void
+searchDistance() : void
+searchTime() : void

-graph : IGraph
-dijkstra : Dijkstra
-destination : object
-maxDistance : int
-maxTransportTime : int
-maxDelayTime : int
-maxWaitTime : int
-solutionsList : ArrayList

RouteFinder
+addNode() : void
+addEdge() : void
+removeEdge() : void
+edgeExist() : bool
+nodeExist() : bool
+getEdgeWeight() : int
+getAdjacentNodes() : Iterator
+getPredecessors() : Iterator

«interface»
IGraph

+Dijkstra() : Dijkstra
+runAlgorithm() : void
+relaxNodes() : void
+getShortestPathFromStart() : int
+setShortestPathFromStart() : void
+getShortestWeightDistance()
+getShortestPath() : Route
+buildShortestPath() : Route
+checkNodeExist() : void

-infinite : int
-graph : IGraph
-determinedNodesSet : HashSet
-remainingNodes : PriorityQueue
-shortestPathMap : HashMap
-predecessorsMap : HashMap

Dijkstra
+Route() : Route
+addNode() : Route
+addRoute() : Route
+get() : object
+clone() : object

-nodesList : ArrayList
-distance : int
-time : int
-last : object

Route

+NetworkGraph() : NetworkGraph
+addNode() : void
+addEdge() : void
+removeEdge() : void
+edgeExist() : bool
+nodeExist() : bool
+getEdgeWeight() : int
+getAdjacentNodes() : Iterator
+getPredecessors() : Iterator
+getNodeIndex() : int

-nodesMap : HashMap
-objectsArray : Object[ ]
-indexCurrentNode : int
-networkGraph : int[ ][ ]
-networkGraphInversed : int[ ][ ]

NetworkGraph

+getLocation() : Location
+setLocation()

-idLocation : int
-locationName : string
-locationType : int

Location

+CaseAdapter() : CaseAdapter
+adaptLegInfo() : SchedLeg

-inputCase : Order
-finalSolution : Order

CaseAdapter

+CaseRanker() : CaseRanker
+setMaxWaitTime() : int
+searchPaths() : Order[ ]
+fetchMatches() : Order[ ]
+removeMatch() : bool
+getHighestRank() : int
+getTransportTime() : int
+getTotalCost() : int
+getShipTime() : int
+outputCase() : Order

-order : Order
-matchedCases : Order[ ]
-maxWaitTime : int

CaseRanker

+getSchedLeg() : SchedLeg
+setSchedLeg()
+getDeparture() : Location
+getArrival() : Location
+getLegTime() : int
+getLegCost() : int
+getLegExpTime()
+getLegExpCost()

-idSchedule : int
-departurePoint : Location
-arrivalPoint : Location
-operator : Operator
-departDate : date
-departTime : time
-arrivalDate : date
-arrivalTime : time
-legSequence : int
-legWeekday : int
-legDistance : int
-legTime : int
-legCost : int
-legType : int

SchedLeg

+getOperator() : Operator
+setOperator()

-idOperator : int
-operatorName : string
-maxWeight : double
-maxHeight : double
-maxLength : double

Operator

+getPath() : Path
+setPath()

-idPath : int
Path

1

*

+getOrder() : Order
+setOrder()
+getSolutionPath() : Path

-idOrder : int
-sparePart : SparePart
-customer : Customer
-deliveryPoint : Location
-dispatchPoints : Location[ ]
-solutionPath : Path
-desiredWH : int
-currentDate : date
-currentTime : time
-partQuantity : int

Order

+getSparePart() : SparePart
+setSparePart()
+getStockAmount() : int

-idPart : int
-partName : string
-partWeight : double
-partHeight : double
-partLength : double

SparePart

+getCustomer() : Customer
+setCustomer()

-idCustomer : int
-customerName : string

Customer

(1) Route Planner

(2) CBR Route Suggester

+controller() : Controller
+callRouteFinder() : RouteFinder
+callCaseRanker() : CaseRanker

-MAIN : void
-executedProcess : int
-routeFinder : RouteFinder
-caseRanker : CaseRanker

Controller

1

1

11 1

1

1

1

* * *
*

Figure 4.5: Integrated Approach Class Diagram
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4.2.3 Presentation Tier

This tier provides a set of interfaces for the Spares Order Desk user, where it
is possible to: receive incoming orders, request for CBR solution suggestions or
compute the best shipping route, and finally record the confirmed decision. This
functionality enables the real-time processing of orders. These interfaces are a
sequence of Web pages done in JSP language embedded with HTML formatting.

The Web Interfaces sequence is very simple and is ordered as follows:

1. Order Selection: this is the starting point of the sequence (view Figure
4.6). The top section shows the list of orders waiting to be processed,
meaning that yet no solution has been selected for them; the bottom section
shows the details of the order clicked on the top section, providing a button
to query the CaseRanker for routing suggestions.

2. Similarity Check: this screen shows the results of the CaseRanker for the
order selected in the first interface (view Figure 4.7). The top section shows
the order details (situation description); the bottom section shows the best
matching case (solution description), with its similarity ranking value. A
button is provided to query the CaseAdapter for updated schedule informa-
tion on this suggestion. If no case matches the order, the RouteFinder is
automatically queried for performing route search and the view is redirected
to the third interface.

3. Route Suggestion: this screen shows a best route solution, either out-
putted by the CaseAdapter or by the RouteFinder (view Figure 4.8). In
the case that the second interface provided a best case match, this screen
will show the adapted information of the legs composing the solution sugges-
tion. Else, this screen will show the results of the route search computation
done by the RouteFinder. A button is provided for the user to confirm that
the outputted route is to be selected as the final solution for the order.

4. Order Processing: the last interface shows the confirmation that the
order was successfully processed (view Figure 4.9). To reach this screen,
the user must have confirmed in the previous interface that the outputted
route is an acceptable solution. In this step, the order status is set to
processed and the case is finally recorded in the case-library. A button to
return to the first interface is also provided.
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Figure 4.6: Web Interface 1: Order Selection

Figure 4.7: Web Interface 2: Similarity Check
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Figure 4.8: Web Interface 3: Route Suggestion

Figure 4.9: Web Interface 4: Order Processing
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Chapter 5

Results

5.1 Introduction

In previous sections it was discussed that the solution approach based on Dĳk-
stra’s algorithm provides a reliable but not very efficient solution. It was also
mentioned that the case-based reasoning approach provides a more efficient so-
lution as long as the case-library is well populated and the retrieval mechanisms
were correctly chosen. Moreover, proper measurements are needed to illustrate
this in a certain way.

Case-based reasoning is a relatively young field of study which traces its roots
from the early 1980s. However, despite increased interest on the field during
all these years, yet there are not clear established standards on how a CBR
application should be revised for success. This is mainly because every reasoner
is different to the others, and the goals they are designed to achieve are so diverse
that is almost impossible to establish a standardized method. Nevertheless, the
CBR application should efficiently achieve the goal it was made for, namely the
determination of a spares supply route.

Since it is difficult to establish a metric for comparing one route to another due
to the different contexts in which they are suggested, the only relevant metric
we can rely on is the computation time. If the integrated approach determines
a spares supply route in considerable less time than the average time the Order
Desk takes to find a solution, then it can be concluded that the project could
succeed in saving man-hours dedicated to this task.
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5.2 Experiments

The goal of the experiments is to show that the proposed solution approaches of
this project produce reasonable shipping routes to incoming spares orders in a
competitive time. The experiments have been performed on a portion of a real
spares transportation network.

The initial data set are 50 locations (nodes) with 2,227 different transportation
schedules (edges) connecting them. Their time of departure has been randomly
determined to provide the set with more diverse transport legs connectivity. Their
arrival time has been determined based on the expected transport time values for
each specific pair of locations. Delay times information for every location has
been randomly generated. These schedules are repeated for a duration of one
week, just as flight schedules are regularly planned, meaning that the total set of
transportation schedules accounts for 15,589. These schedules have a randomized
operator, meaning that not all legs are available for all spare parts. An initial set
of 20 spare parts with different measurements enables these variations. There are
a set of 5 established supplies warehouses, meaning that each order has the possi-
bility of being dispatched from a maximum of 5 locations. All these randomized
information provides for a realistic picture of a typical transport routes network.

Sets of incoming spares orders are subsequently inputted, providing first a case
that does not exist in the case-library, and then re-inputting this case directed
to the same delivery destination but with different attribute values. This way
the Web-Application has means of determining a route either with the Route
Planner or the CBR Route Suggester. The Planner was tested with a naive
implementation of Dĳkstra’s algorithm and also with an optimized version of
this algorithm using a priority queue with a Fibonacci heap.

Table 5.1 shows the average computation time needed to determine a route for
one case tested on an Intel Core 2 Duo T5450 processor with 2GB of RAM.

Tested Approach Min. Time per
Order

Max. Time per
Order

Route Planner (naive) 975 sec. 4875 sec.

Route Planner (priority queue) 897 sec. 4485 sec.

CBR Route Suggester 57 sec. 285 sec.

Table 5.1: Average Computation Time for three Approaches
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5.3 Conclusions

Looking at the results from these computations it is clear that searching a route
is extremely expensive when compared to the case-based reasoning approach.
Moreover, when the routes network includes thousands of locations and possible
schedules between them, the computation time for the first two approaches is
not acceptable anymore. To address this limitation, the route search algorithm
could be directed with support data. For instance, locations could be grouped
into self-defined geographical zones where the search could focus only on relevant
locations enabling a search within a reduced routes network.

The notably lower computation time shown by the CBR Route Suggester is due
to the fact that it has lesser search to do than the other algorithms because most
of the search was done for the previous cases used. As long as the case-library
collects more and more cases, the probability of finding matches will be higher
and the performance of the integrated application could increase. Unfortunately,
in order to make a projection on how fast could the reasoner learn to improve
the application performance, the problem of determining how many routes exist
between a start and destination node must be firstly addressed. This problem
might be mathematically intractable given the variation and non-completeness of
the routes graphs.

The average amount of AOG situations assisted by a Spares Order Desk accounts
to nearly 5,000 per year with an average response time of one hour and a half
(5400 seconds) [5]. If an AOG situation is to be solved by the CBR Route
Suggester given that the case library provides for old matching cases, the Spares
Order Desk could save up to 95% of the time required for route determination,
yielding in important costs savings for the group. If the problem is to be solved
by the Route Planner, still up to 17% of time could be saved if the search problem
could be always reduced to a search within a maximum of 50 nodes, just as the
experiment found.

However, further testing with real situations within a Spares Order Desk could of-
fer a much clearer estimation of the possible time and cost savings of the project’s
implementation. Also, feedback from real users regarding the reliability of the
suggested routes could provide a more accurate evaluation of the goals achieved
by the project.
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Conclusions

6.1 Final Discussion

The project as a whole has the main purpose of proposing a good solution ap-
proach for the route-finding problem of the spare parts supply chain within the
aviation industry. The activities carried out to complete it and their respective
obtained results allow us to conclude that the current integrated solution works
properly for suggesting acceptable and realistic routes, thus successfully support-
ing the decision-making process of the Spares Order Desk.

Currently, the integrated solution approach has been found to be efficient, but
it is difficult to give a precise evaluation of the system performance since it is
in a prototype phase. A continuous evaluation process could provide us with a
better metric for confirming that the reasoner is actually able to replace some of
the human reasoning during the decisioning process. During an initial phase, the
solution approach proposed in this paper could be parallelly used to the current
route determination process in order to measure the reliability of its findings.
Nevertheless, the dramatic reduction in terms of computation time confirms one
of the many benefits of applying reasoning techniques for decision-support.

Although the approach has mainly focused on logistics for spare parts manage-
ment, a similar implementation framework and methods could be applied to other
engineering disciplines. Reasoning techniques based on expert knowledge are
an interesting approach for improving the accuracy of systems interacting with
changing environments such as the real world. More exploration of these tech-
niques could assist many industrial processes that rely entirely on human experts.
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6.2 Contributions

The project has shown that it enables a faster decisioning for the spares delivery
process compared to the current Order Desk route planning process. The main
contributions for achieving this goal are the activities defined in the project scope,
namely:

1. Route Planner: an implementation of the Dĳkstra’s algorithm for per-
forming route search in a weighted oriented graph. This graph is a repre-
sentation of the spares delivery transportation network that considers cur-
rent schedules, time and delay information, and transport operators. The
Planner finds the shortest path in terms of time from one location (dis-
patch warehouse) to another location (delivery destination), outputting a
scheduled route for decision support within the spares route determination
process.

2. Case-Library: a relational data repository that contains the information
of processed spare parts orders and the routing solutions selected for them.
This library represents the collected knowledge to be used for future situa-
tions and for historical evidence of the Order Desk decisions regarding the
spares delivery process.

3. CBR Route Suggester: an implementation of a case-based reasoner that
proposes routes for mitigating AOG situations based on the captured knowl-
edge collected in the case-library. It makes use of particular features of new
orders for mapping them to orders already processed, then it selects the
best route from the retrieved set of possible solutions based on a ranking
mechanism, and finally adapts this route with updated schedule informa-
tion. These findings based on analogy provide a much faster solution to the
spares route determination process.

4. Integrated Web-Application: an interface that provides online access to
the aforementioned implementations in an integrated fashion. Within this
application, incoming spares orders can be evaluated by firstly looking for
a reliable delivery route through the CBR Route Suggester, and secondly
searching for a route through the Route Planner if the reasoner provided
no suggestions. Finally, the results of the findings are outputted to a Web-
based interface available via a standard Web browser.
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6.3 Shortcomings

During the research done for the project, many possible features and improve-
ments were identified, but due to the reduced timeframe were not possible to
implement.

The following are the main identified project shortcomings:

• The CBR approach could extend its ranking criteria to improve the relia-
bility of the suggested routes. For instance, including some of the following
knowledge-based features: current weather conditions in locations, ranking
of the operators service levels, road conditions and average traffic for ground
transportations, customer’s feedback on traversed routes, etc.

• Instead of having mutually exclusive approaches, the Route Suggester could
work together with the Route Planner to build up routes. For instance, if
during the case matching process is found that some legs of a route are miss-
ing for completing a reliable solution, the Suggester could ask the Planner
to search routes for these particular legs, attach them to the incomplete
route, and finally adapt the results to obtain a fully functional route. This
combined effort could be implemented both ways.

• The case adaptation process could propose alternative delivery points when
routes to the original destination are not found. For instance, it could sug-
gest arriving at a location close (in terms of transportation time) to the
final location. Including geographical information of locations and knowl-
edge on availability of unscheduled transportation means such as taxis or
helicopters, could improve solutions that initially might seem useless and
go further into more realistic routes suggestions.

• The quality of the cases stored in the case-library could be enhanced by
executing planned maintenance tasks for identifying cases rarely used or
cases that are already outdated. This way the case matching mechanism
could be faster executed.
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6.4 Future Work

The project could be initially extended by implementing the shortcomings men-
tioned in the previous section. Moreover, aside from the routing problem, there
are other identified opportunity areas for the use of case-based reasoning within
a Spares Order Desk.

The following are the identified scenarios that could benefit from this approach:

• Spare Parts Leasing: commonly, a Spares Order Desk leases tools to cus-
tomers as another maintenance service. When a tool is leased to a customer,
it becomes invisible for others when a leasing agreement is signed, enabling
a net inventory availability strategy. However, the leased tool sometimes
waits some days/weeks in the warehouse until the customer makes use of it.
In the case that during this invisibility time the tool is urgently needed by
a different customer, a reasoning mechanism could propose a logistic plan
to fulfill both customers’ requests.

• Spare Parts Alternatives Proposal: sometimes, when customers order
spare parts that are not available in stock, the Order Desk suggests alterna-
tives such as the next higher assembly of the spare part or interchangeable
parts that share same fit, form, and/or function. A reasoning mechanism
could propose these alternatives based on a defined spare parts ontology.

Furthermore, the principles of routing with a case-based reasoning approach could
be used in many different types of applications. There could be interesting ap-
plications that fit the everyday human life, such as: route planning within a city
providing drivers with suggestions regarding alternative routes to avoid traffic
jams or accidents; planning of touristic paths based on the frequency of visitors
on sightseeing places within a city; suggestion of self-guided tours in museums
based on the recorded experiences of previous visitors; proposal of supermar-
ket efficient-shopping routes based on the location of the groceries and recorded
customer habits.
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