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Abstract

The aim of this project is to research the utility of collaborative filtering techniques to improve the
user interaction with the Semantic Browser. The practical part of the project describes the actual
implementation of a recommender system engine, which recommends BOEMIE Concepts and/or Ser-
vices (BOEMIE commands) based on the history of the user interaction. The collaborative filtering
algorithm is built upon the assumption that the users with similar interaction will have a similar nav-
igation taste in the future.
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Chapter 1

Theorical Background

This chapter introduces the concepts of recommender systems, collaborative filtering and its utilization in the

world wide web.

It is impossible to deny the boom that the Internet and the World Wide Web have had over the last
decade, the amount of information extracted from Internet has increased in unimaginable proportions.
Society has become a consumer of Internet as a source of information. However, searching through the
vast amount of information has become a true challenge for everyone. There is too much information
to make relevant decision or remain informed about a certain topic. Companies like Google and Yahoo,
aware of this problematic, have developed solutions making use of Information Retrieval techniques.
Information Retrieval, defined as the science of searching for information in documents, searching for
documents themselves, searching for meta-data that describe documents, searching through databases,
whether relational standalone databases or hypertext networked databases such as Intenet or Intranets,
for text, sound, images or data, has become a billionaire business.

Through the years the research on Information Retrieval has developed several technology-based so-
lutions, addressing information overload, like: Intelligent Agents, ranking algorithms, cluster analysis,
web/data mining, personalization, recommender system and others. This project focuses specifically
on recommender systems using collaborative filtering techniques as an application of Information Re-
trieval.
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1.1 The Long Tail

The term Long Tail refers to the distribution and inventory costs of a business that have a significant
profit by selling small volumes of items that are not popular, instead of selling large volumes of a
reduced number of popular items. The Long Tail is identified by the group of people that buy a large
amount of non-popular items.

Given a large enough availability of items and a large population of customers, the buying pattern
of the population results in a Pareto Distribution as shown in the Figure 1.1. This suggests that a
market with a high freedom of choice will create a certain degree of inequality by favoring the upper
20% of the items (head) against the other 80% (long tail).

Figure 1.1: The Long Tail

The Long Tail has been used to create successful business models. Before a Long Tail works, only the
most popular products are generally offered. When the cost of inventory storage and distribution fall,
a wide range of products become available. This can have the effect of reducing demand for the most
popular products. For example, Web Content businesses with broad coverage, such as Yahoo, may
be threatened by the rise of smaller Web sites that focus on niches of content, and cover that content
better than the larger sites. Some of the most successful Internet businesses have leveraged the Long
Tail as part of their businesses. Examples include eBay, Yahoo, Google and Amazon among others.

Statistically the Long Tail is the name for a feature of some statistical distributions, also known as
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heavy tails, power-law tails or Pareto tails. In "long-tailed" distributions a high-frequency population
is followed by a low-frequency population which gradually tails off. The events at the far end of the
tail have a very low probability of occurrence. As a rule of thumb, for such population distributions
the majority of occurrences are accounted for by the first 20% of items in the distribution. What is
unusual about a long-tailed distribution is that the most frequently-occurring 20% of items represent
less than 50% of occurrences; or in other words, the least-frequently-occurring 80% of items are more
important as a proportion of the total population.

In this project the Long Tail concept is not used as a business strategy but as a way to improve the
user interaction with a system. As explained later in this chapter, a recommender system exploits the
Long Tail to present relevant items to a user according to its profile. If instead, only the the most
popular items were recommended, the items in the Long Tail would never be used, hiding some items
that could be relevant for a particular user.

1.2 recommender systems

A recommender system is a type of Information filtering system whose objective is to remove redun-
dant or unwanted information, reducing the information overload to the user and incrementing the
semantic signal-to-noise-ratio. A recommender system attempts to predict information (items) that
an user may be interested in. Typically, the predictions are done by taking into account information
available on the user’s profile.

In essence a recommendation engine is a matching engine that takes into account the context where
the items are being shown and to whom they are being shown. Typically the following inputs could
be taken into account to make a recommendation to an user: (Figure 1.2).

• The user’s profile - Age, gender, geographical location, etc.

• Information about the items available - Name of the item, description, value, etc

• Interactions of the user - Ratings, tags, navigation, clicks, page views

• The context where the items will be shown - Subcategories of items to be considered.

3



Figure 1.2: Recommendation process inputs

It’s important to notice that in some cases an user could also behave as an item, therefore it could be
recommended to other users. This is the case in the now popular social networking sites like Facebook,
Myspace, Linkdl, Xing.

One of the easiest types of recommendations is to build a "Top item list", on which the items that
have been viewed, clicked or bought the most in a period of time are shown to the user. Although
showing this could be useful, the objective of a recommendation engine is to create a personalized list
of recommendations to the user.

There are two main approaches for building recommender systems, based on whether the system
searches for related items or related users. In item-based analysis, as shown in the Figure 1.3, the
objective is to find the items related to an item. When an user likes a particular item, items related
to that item are recommended to the user.

4



Figure 1.3: Item-Based Analysis

In user-based analysis, similar users are first clustered. As shown in Figure 1.4, if an user U likes an
Item, then this Item can be recommended to users who are similar to user U. Similarity between users
can be found using their profile information or using collaborative filtering techniques based on the
interactions of the users with the system.

Figure 1.4: User-Based Analysis
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1.3 Converting Interaction into Intelligence

In recent years, the increasing amount of Internet applications and its complexity have transformed
the way users interact with applications. Users rate items, create a blog entries, tag items, create
connections with other users, share interest items, etc. That information behind the users’ interaction
can be be collected, exploited and later used to understand the users’ behavior. Typically this infor-
mation is ignored by most of the applications. System owners in many cases are not aware that this
information could help to create users’ profiles that later could be used to improve the overall user
experience.

1.3.1 Collaborative Filtering

The main idea of collaborative filtering is to select and recommend items of interest for a particular
user based on the interaction of other users with the system. This technique relies on the assumption
that a good way to find interesting content is to identify other users with similar interests and then
select or recommend items that those similar people like. Someone browsing an e-commerce web site
might not always have a specific request and so it is the web site’s interest to provide compelling
recommendations to get the user attention.

In the typical Collaborative filtering scenario, there is a list of m users: U = {u1, u2, ..., um} and a
list of n items: I = {i1, i2, ..., in}. Each user ui has a list of items Iui , which the user has rated. It’s
important to notice that Iui ⊆ I and it’s possible for Iui to be a null set. The task of a collaborative
filtering algorithm is to find the item likeliness for an active user a. The likeliness can be of two forms:

• Prediction - It’s a numerical value Pa,j , that express the likeliness of item ij . The predicted
value is within the same scale as the ratings provided by the user.

• Recommendation - It’s a list of N items, Ir ⊂ I, that the user a will like the most. This is
known as the Top-N recommendations.

In collaborative-filtering, contrary to Content-Based Approaches, an item is considered a black box.
The content of the item doesn’t matter and the user interactions with the item are collected to build
the intelligence needed to recommend an item of interest to the user. There are two main types of
collaborative filtering algorithms: Memory based and Model based. In memory-based algorithms, the
entire user-item database is used. The algorithm first finds a set of similar users and then generates a
set of recommendations (Top N recommendations) by combining the preferences of the similar users.
Model-based algorithms, used during the implementation of this project, try to model the user based
on past ratings and then use the models to predict the ratings on items the user hasn’t visited or rated.

6



1.3.2 Comparison of content-based and collaborative techniques

The following are some of the advantages and disadvantages of collaborative and content-based tech-
niques.

• Collaborative-based techniques have the advantage that they treat an item as a black-box. They
don’t use any information about the content itself. Therefore, the same infrastructure is appli-
cable across domains and languages.

• In content-based analysis, the algorithm has no notion of the item’s quality. It’s all based in the
term vector. On the other hand, with collaborative-based approaches, there is usable quantitative
information about the quality of an item.

• The results of a content-based approach don’t change much over time; text associated with the
item may not change much. Contrary to collaborative filtering that relies on user interaction.

• Collaborative-based systems rely on using the information provided by the interaction of users
with the system. In the absence of an adequate amount of data, these systems can perform
poorly in their predictions. For a user with little interaction history, there may not be enough
information to find similar users using the user’s interaction history. Typically to overcome this,
user-profile information like age, gender, demographics is used.

• Collaborative-based system won’t recommend new items added to the system unless they have
been rated by a substantial amount of users.

Some recommender systems use a hybrid approach, combining content-based and collaborative analy-
sis. The combination could be done by implementing the two methods separately and the combining
the results.

1.4 BOEMIE

BOEMIE (Bootstrapping Ontology Evolution with Multimedia Information Extraction) is a project,
partially funded by the European Commission, which has started in March,1 2006. The main BOEMIE
objective is to automate the process of knowledge acquisition from multimedia content, by introducing
the notion of evolving multimedia ontologies, which is used for the extraction of information from
multimedia content in networked sources.

BOEMIE approach combines multimedia extraction and ontology evolution in a bootstrapping process
involving, on the one hand, the continuous extraction of semantic information from multimedia content

7



Figure 1.5: Boemie Semantic Browser

in order to populate and enrich the ontologies and the deployment of these ontologies to enhance the
robustness of the extraction system.

1.4.1 Boemie Semantic Browser

The purposes of the Boemie Semantic Browser is to demonstrate the extra value that BOEMIE tech-
nologies provide for semantic web applications. It exploits different levels of automatic information
extraction, media interpretation and multimedia fusion.

The Boemie Semantic browser was built to complain with the following uses cases:

• Geographically-aware IR - Demonstrates that semantic tagging of map information can be
extended to cover multiple types of media, e.g. video, image, text. (Without the need of online
communities)

• Content activation - Demonstrates the use of automatic information extraction to highlight
relevant content of a specific domain on top of text or images to prepare the interface for further
interaction possibilities.)

• Dynamic suggestion of related information - Exploits explicit and implicit information to
provide for context related information.

The recommender system for this project improves the last two use cases. In the first case, due to the
big amount of highlighted concepts the user interface is polluted by noise that at the end affects the
user experience.

8



Figure 1.6: Concept highligthing in the Semantic Browser

The Image 1.4.1demonstrates the first problem. The Semantic Browser highlights too many concepts
to the users. To solve this problem the recommender system will recommend concepts, highlighting
only the top K concepts that are relevant based on the user’s navigation history.

The second problem comes with the services that the semantic browser presents for each concept. Each
concepts has associated a list of services that can be executed by the user. When the list of services is
too big, the user’s experience is again affected by overwhelming amount of choices. In this case, the
recommender system will present the services that the user will more likely like to use. The problem
becomes clear in the Image 1.4.1.
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Figure 1.7: Services of a concept in the Semantic Browser

1.5 Outline

The rest of the project is organized in 6 chapters. Chapter 2 presents the basic algorithms used
for collaborative filtering. Chapter 3 and 4 presents the System Architecture and implementation of
the recommender system for the Boemie Semantic Browser. Chapter 5 presents the results of using
collaborative filtering techniques to enhance the Semantic Browser GUI. Finally, chapter 6 summarizes
the work done in this project.
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Chapter 2

Algorithms

This chapter focuses on the main algorithms for collaborative filtering.

As mentioned before there exist two approaches for collaborative filtering:

• Memory-Based Algorithms - Operate online over the entire matrix to make predictions

• Model-Based Algorithms - Use matrix offline to estimate a model that is then used for
predictions.

This chapter introduces the most popular collaborative filtering algorithms. First, the the main algo-
rithms used for collaborative filtering are introduced: User-Based Algorithm and the Item-Based Al-
gorithm. three algorithms to compute similarity are explained: Cosine-Based Similarity, Correlation-
Based Similarity and Adjusted-Cosine Based similarity. At the end of the chapter Singular Value
Decomposition (SVD) is introduced as a matrix dimension reduction technique.

2.1 User-Based Algorithm

The main idea of this approach is to predict the ratings of an user a; the user database is first searched
for users with similar rating vectors to user a (users with similar taste). The rating similarity, w(i, a),
can reflect the similarity between user i and user a. The ratings of the n most similar neighbors are
then used as predictions for the user.

The predicted ratings Pa,j of the active user a for another user j, is assumed to be a weighted sum of
the ratings for user j of those n most similar neighbors, as shown in the equation:

11



Pa,j = ra + ξ
∑

ω(a, ni)(rni,j, − rni)

Where ni is the i-th nearest neighbor with a non-zero similarity to the user and a non-empty rating
rni for user j ; ξ represents a normalizing factor such that the absolute values of the similarities ω(a,ni)

sum to unity. If Ru is a set of users which the user u has rated, then the mean rating of the user u is
defined as:

ru = 1
|Ru|

∑
vεRu

ru,v

2.2 Item-Based Algorithm

The item-based algorithm, instead of utilizing the ratings matrix rows similarities, utilizes the rating
matrix columns similarities. When predicting a Pa,j of the user a, the user database is first searched
for items with similar ratings vectors to the item j. The items’ scores similarity #(i, j) is calculated in
the same manner as for the User-Based algorithm. The rating of an user a for the most n most similar
neighbors to j are then use to form the prediction Pa,j , as shown by the formula:

Pa,j = Sj + ξ
∑k

i=1 #(j, ni)(ra,ni − Sni)

Where ni, is the i-the nearest neighbor with a non-zero similarity to the target user j and a non-empty
rating ra,ni from user a; ξ is a normalizing factor such that the absolute values of the similarities
#(j, ni) sum one, and Su is the mean score for the user a.

2.3 Computing Similarity

Most collaborative filtering algorithms based on the nearest neighbor approach required the calcu-
lations of similarity. To find this similarity, the content associated with an user or item must be
represented in a term vector.

In Content based analysis, recommending items simply amounts to finding items that have similar
term vectors. In collaborative filtering each user is represented as an N-dimensional vectors of items,
where N is the number of distinct items in the system. It is important to notice that the vector will
be sparse for almost all users, where a typical user would have acted on only a few item of the N items.
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The method used for computing the similarity does have an effect on the final recommendations
presented to the user. There are 3 main algorithms used to find the similarity between 2 vectors. It is
easier to explain how they work with an example:

The following User-Item Matrix will be used to find the similarity between the users.

Item 1 Item 2 Item 3 Average
User 1 3 4 2 3
User 2 2 2 4 2.67
User 3 1 3 5 3
Average 2 3 3.67 8.67

Table 2.1: Example Data

2.3.1 Cosine-Based similarty Computation

Cosine-based similarity takes the dot product of two vectors as a measure of similarity. Formally, if R
is the n × m user-item matrix, then the similarity between two items i and j is defined as the cosine
of the n dimensional vectors corresponding to the ith and jth column of matrix R. The cosine between
these vectors is given by

sim(i, j) = cos(−→i ,
−→
j ) =

−→
i !−→j‚‚‚‚

−→
i

‚‚‚‚
2
∗

‚‚‚‚
−→
j

‚‚‚‚
2

where “ !” denotes the dot-product operation.

One important feature of the cosine-based similarity is that takes into account the acting frequency of
the different items (achieved by the denominator in the formula).

User 1 User 2 User 3 Average
Item 1 3 2 1 2
Item 2 4 2 3 3
Item 3 2 4 5 3.67
Averate 3 2.67 3 8.67

Table 2.2: Dataset to describe Items

To learn about the items, the user-item matrix is transposed, so that a row corresponds to an item
while the columns (users) to dimensions that describe the item as show in Table 2.2. Next, the values
for each of the rows are normalized. This is done by dividing each of the cell entries by the square
root of the sum of the squares of entries in a particular row.
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For example, to get the normalized dataset for item 1 show in the Table 2.3, the following value is
used:

√
32 + 22 + 12 =

√
14 = 3.74

User 1 User 3 User 3
Item 1 0.80 0.53 0.27
Item 2 0.74 0.37 0.56
Item 3 0.30 0.60 0.75

Table 2.3: Normalized vectors for each item

We can find the similarities between the items by taking the dot product of their vectors. For example,
the similarity between Item 1 and Item 2 is computed as: (0.80∗0.74)+(0.53∗0.37)+(0.27∗0.56) = 0.94

Repeating this operation, the Item-to-Item similarity matrix, shown in the Table 2.4, can be con-
structed. The values in the table allow to find the most related items for any given item. The closer
to 1 a value in the similarity table is, the more similar the items are to each other. For example: Item
1 and Item 2 are very similar.

Item 1 Item 2 Item 3
Item 1 1 0.94 0.76
Item 2 0.94 1 0.86
Item 3 0.76 0.86 1

Table 2.4: Item-to-Item Matrix

To determine similar users, the original data in the Table 2.1 needs to be considered. Here, associated
with each user is a vector, where the rating associated with each item corresponds to a dimension in
the vector. The analysis process is similar to the approach for calculating the Item-to-Item similarity
table. First the vectors are normalized and the dot product between two normalized vectors is found
to compute their similarities.The Table 2.9 contains the normalized vectors associated with each user.
The process is similar to the approach take to compute Item-to-Item Matrix (Table 2.4) from Table
2.1. The normalizing factor for the vector of User 1 is found like this:

√
32 + 42 + 22 =

√
29 = 5.39
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Item 1 Item 2 Item 3
User 1 0.56 0.74 0.37
User 2 0.41 0.41 0.82
User 3 0.17 0.51 0.85

Table 2.5: Normalized vectors for each user

Next, a user-to-user similarity matrix can be computed as shown in the Table 2.6 by taking the dot
product of the normalized vectors for two users.

User 1 User 2 User 3
User 1 1 0.83 0.78
User 2 0.83 1 0.97
User 3 0.78 0.97 1

Table 2.6: User-to-User similarity Matrix

As shown in the Table 2.6 User 1 and User 2 are very similar. The preceding approach uses the raw
values collected from the user. Another alternative is to focus on the deviations in the rating from the
average values that user provides.

2.3.2 Correlation-Based Similarity Computation

Similar to the dot product or cosine of two vectors, the correlation between two items, also known as
the Pearson-r correlation, can be used as a measure of the similarity. This correlation between two
items is a number between -1 and 1, that tells the direction and magnitude of the association between
two items or users. The higher the magnitude (closer to -1 or 1) the higher the association between
the two items. The direction of the correlation tells how the variables vary. A negative number means
one variable increases as the other decreases, or in this case, the interest in one service increases as the
other one decreases.

To compute the correlation, it’s needed to isolate the cases where the users co-rated items, in the
example, it’s the complete set of users, as all users have interacted with all the items. Let U be the
set of users that have interacted with both item i and j. The formula looks like this:

Sim(i, j) = Corr(i, j) =
P

ueU (Rui−Ri)(Ruj−Ri)√P
ueU (Rui−Ri)2

√P
ueU (Ruj−Rj)2

Where Ru,i is the rating of user u for item i and Ri is the average rating of item i. the correlation
computation looks for variances from the mean value for the items. For example to find the correlation
between Item 1 and Item 2 :
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Corr(1, 2) = (3−2)(4−3)+(2+2)(2−3)+(1−2)(3−3)√
(3−2)2+(2−2)2+(2−2)2

√
(4−3)2+(2−3)2+(3−3)2

= 1
2 = 0.5

It’s useful, for the computation, to subtract the average value for a row as shown in the Table 2.11.
Note that the sum of each row is zero.

User 1 User 2 User 3
Item 1 1 0 -1
Item 2 1 -1 0
Item 3 -1.67 0.33 1.33

Table 2.7: Normalized Matrix for the correlation computation

The Table 2.8 show the correlation matrix between the items and allows to find the set of items related
to an item. According to the table Item 1 and Item 3 are strongly negatively correlated.

Item 1 Item 2 Item 3
Item 1 1 0.5 -0.98
Item 2 0.5 1 -0.65
Item 3 -0.98 -0.65 1

Table 2.8: Items Correlation Matrix

Similarly, the correlation matrix between the users is computed along the rows of the data shown in
the Table 2.1. The Table 2.9 contains the normalized rating vectors for each user that will be used for
computer correlation. Note that the sum of the values for each row is 0.

Item 1 Item 2 Item 3
User 1 0 0.71 -0.71
User 2 -0.41 -0.41 0.81
User 3 -0.71 0 0.71

Table 2.9: Normalized vectors for each user

The resulting correlation matrix is shown in the Table 2.10 and allows to find the users that are similar
to an user. Note that User 2 and User 3 are highly correlated. If one likes an item, chances are the
other likes it too. User 1 is negatively correlated; He dislikes what User 2 and User 3 like.

User 1 User 2 User 3
User 1 1 -0.87 -0.5
User 2 -0.87 1 0.87
User 3 -0.5 0.87 1

Table 2.10: Users correlation matrix
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2.3.3 Adjusted Cosine-Based Similarity

One drawback of computing the correlation between items is that it doesn’t take into account the
difference in the rating scale between users. For example, in the example data, the User 3 is highly
correlated with User 2 but tends to give ratings toward the extremes. The adjusted cosine similarity
offsets this drawback by subtracting the corresponding user average from each co-rated pair. Formally,
the similarity between items i and j using this scheme is given by

similarity(i, j) =
P

ueU (Ru,i−Ru)(Ru,j−Ru)√P
ueU (Ru,i−Ru)2

√P
ueU (Ru,ij−Ru)2

Where Ru is the average rating for user u. Here, instead of subtracting the average value for a row,
the average value provided by an user is considered.

To compute this, it’s again useful to normalize the dataset by removing the average rating from the
column values. This leads to the data shown in the Table 2.11. Note that the sum of the entries for a
column is equal to zero.

User 1 User 2 User 3
Item 1 0 -0.67 -2
Item 2 1 -0.67 0
Item 3 -1 1.33 2

Table 2.11: Normalized Matrix for the adjusted cosine-based computation

The Table 2.12 shows the item-to-item similarity for the three items. Again, Item 1 and Item 3 are
strongly negatively correlated, while Item 2 and Item 3 are similar.

Item 1 Item 2 Item 3
Item 1 1 0.17 -0.80
Item 2 0.18 1 0.60
Item 3 -0.89 0.60 1

Table 2.12: Items similarity using correlation similarity

Similarly, to compute the similarity between users, the average rating associated with each item is
subtracted. Table 2.13 shows the resulting table. Note that the sum of the values for a column is equal
to zero.

17



Item 1 Item 2 Item 3
User 1 1 1 -1.67
User 2 0 -1 0.33
User 3 -1 0 1.33

Table 2.13: Normalized vectors for each user

Again, normalizing each of the vectors to unit length leads to Table 2.14.

Item 1 Item 2 Item 3
User 1 0.46 0.46 -0.76
User 2 0 -0.95 0.32
User 3 -0.6 0 0.8

Table 2.14: Normalized vectors to unit length

Finally the Table 2.15 contains the similarity matrix between the users by taking the dot product of
the vectors.

User 1 User 2 User 3
User 1 1 -0.67 -0.89
User 2 -0.67 1 -0.25
User 3 -0.88 -0.25 1

Table 2.15: Adjusted cosine similarity matrix for users

2.4 Dimension Reduction

One of the challenges of a recommender system is that most of the users will not interact with all the
items of the application, therefore the user-item matrix will be a very sparse matrix. Adding to this,
that if the users or/and items of the application grow constantly the user-item matrix could be too
large from a computational point of view. For those reasons it may be needed to apply techniques to
reduce the dimensionality of the matrix.

The motivation to perform dimension reduction in the user-item matrix are the following:

• If the user-matrix is too large from a computational point of view, an approximation may be
more computational feasible.

• If the matrix is noisy, the transformed matrix may be a better approximation of the concepts.
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• If the matrix is sparse, transforming the matrix may increase its density.

Figure 2.1: Singular Value Decomposition Matrices

2.4.1 Singular Value Decomposition

Singular Value Decomposition (SVD) is a common method to perform matrix dimension reduction.
The way SVD transform a matrix is as follow:

An arbitrary matrix A of size m x n can be decomposed into three matrices using SVD. Let r be the
rank of A. As show in the Figure 2.1, the matrices are:

• U, an orthogonal square matrix of size m x r.

• S, a diagonal matrix of size r x r, with each diagonal value being the eigen value for the matrix.
All values of S are positive and stored top to bottom in decreasing order of magnitude.

• V is an orthogonal square matrix of size n x r.

SVD can be used to reduce the r x r dimensionality of the matrix S to use only the top k singular
values. As show in in the Figure 2.1, the matrices U and Vt are reduced in dimensionality for this
approximation of A. The lower dimensionality allows to approximate using k singular values.
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Chapter 3

Architecture

This chapter introduces the architecture and design of the recommender system for the semantic browser.

The system architecture of a recommender system must be flexible enough so users or developers of
the system can focus on the collaborative filtering techniques instead of the system complexity. At the
same time, the system must scale well under high traffic. The General view of the architecture of the
recommender system for the semantic browser is shown on Image 3.1

Figure 3.1: Architecture Overiew

The system architecture contains 3 main components: Recommender Engine, Boemie Collector and
Boemie Client Integration.
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3.1 Recommender Engine

The Recommender Engine is a generic recommender system that allows to create an Item similarity
matrix and provide Top-N recommendations to its users. The component abstracts the type of item
that is being recommended. Therefore, It could be used to recommend any kind of item, not only
Boemie Concepts or Actions. To increase the scalability, and overall performance of the system, the
engine keeps a cache of the recommended items for each user and recreates periodically the Item sim-
ilarity matrix.

The recommender engine component can run embedded as a library in a web application or as a
standalone component in an Application server. The later would warranty better performance and
scalability of the system.

3.2 Boemie Collector

The Boemie Collector is the module that allows the semantic browser to interact with the generic rec-
ommender engine. It runs as a web application listening for HTTP Requests. Its three main purposes
are:

• Keep track of boemie users - Identifies the user interacting with the Boemie Browser to keep
track of its interaction.

• Collect User Interaction - Collects the boemie concepts and services (commands) viewed by
the users in the semantic browser.

• Update User-Item Matrix - The collector modules updates the User-Item matrix, in the
recommender engine, every time a concept or service from the semantic browser is collected.

• Load Recommendations - Based in the user and the current context, the component requests
recommendations to the recommender engine that are then delivered to the semantic browser
via a JSON String over an HTTP connection.

3.3 Boemie Client Integration

The Integration client component provides recommendations functionality to the semantic browser
without drastically changing its inner code. Its main purposes are:
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• Collect the user interaction - This is done by intercepting clicks made to Concepts and
Services. The clicked item is sent to the Collector module via an asynchronous call to the
Boemie Concept Collector. The asynchronous calls warranty that the original user experience of
the user is not affected.

• Request and display recommended items - Every time the user loads a page, the client
component asks the Collector component for recommendations in a particular page. Similarly,
when a user wants to access the available actions of a concept, the client component requests
recommended items for a specific concept (Context) that are later display to the user.
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Chapter 4

Design and Implementation

This chapter presents the details of the design and implementation of the recommender system for the

semantic browser.

4.1 Recommender Engine

As explained in the last chapter, the recommender engine is a generic component that allows to create
an Item similarity matrix without being aware of the type of item being processed.
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Figure 4.1: Recommender Engine Class Diagram

The class diagram in Figure 4.1 shows the design of the recommender Engine. Its main elements are:

• Class Recommendable - It’s the base class used by the classes that represent the items that
would be recommended by the engine. The component has no knowledge about the items as
such.

• Class UserItem - Represents an entry in the User-Item Matrix. It holds the rating given by
an user to a specific item.

• Class Context - Base Class that represents the Context where a recommendable item is been
shown.

• Class Similarity - Contains the similarity value between two items.

• Class UserRecommendable - It works as a cache of an item previously recommended to an
user. It helps to improve the scalability and performance of the system by keeping a cache of
the recommended items for an user in a specific context.

• Interface SimilarityStrategy - Represents the strategy used to find the similarity between 2
items. The recommender system supports the 3 main algorithms to find the similarity between
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vectors, each of them is implemented in the classes: CosineBasedSimilarity, CorrelationBased-
Similarity and AdjustedCosineBasedSimilarity. New strategies could be easily added to the
system by implementing this interface.

• SimilarityBuilderThread - The biggest bottleneck of the application is to build the similar-
ity matrix. The SimilarityBuilderThread class allows to split the computation of the matrix in
different threads. Each of them takes a set of item vectors to find its similarity. In a produc-
tion system the threads could be running each of them on different machines giving a bust on
performance and scalability, achieving almost real time processing funcionality.

• Interface Recommender - This interface exposes the 2 main services of the component to
its clients: addUserItem and getRecommendations. addUserItem allows to add new entries to
the user-item matrix; getRecommendations finds the top-k recommendations for an user in a
particular context.

4.1.1 Build Similarity Matrix

The similarity matrix is built periodically by a Job that can be configured to run at any specific time.
This is specially useful when the recommender engine is running in the same server as the collector
component, because it allows to control at what time the system consumes more resources. The process
of building the similarity matrix is done by a number of configurable threads that take a set of items’
vectors and find its similarity. The downside of this approach is that using a job doesn’t provide real
time processing. To achieve such funcionality, an event driven architecture is recommended, where
the Similarity Builder Job listens for new entries in the User-Item matrix and finds the similarity in a
distributed manner.

Once the Item similarity matrix has been created, the cached recommendations (UserRecommendable
objects) are erased allowing the recommendation process to discover new recommended items for the
users.

4.1.2 Select recommendations

To make recommendations the system needs the following inputs: the user for whom the items are
being recommended, the context where the items are been recommended and the total number of items
to recommend. The process to find user recommendations is the following:

• Obtain Recommendation from cache - The system checks if the client has already asked
for recommendations in the context. If found, the recommendations are retrieved from cache.
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• Obtain User Items - If there are no cached items the system obtains the items that the user
has rated in the context.

• Finds similar items - Based on the user items, the system selects the top-k similar items in
the current context, based on the Item similarity matrix.

• Save recommendations in cache - Once the top-k recommended items have been found, they
are saved in the user recommendations cache to speed up the recommendation process in later
requests.

4.2 Boemie Collector Component

As explained before, the Boemie collector works as a bridge between the recommender engine and the
Semantic Browser. The Figure 4.2 show its main classes.

Figure 4.2: Boemie Collector Class Diagram

The main elements of the components are:

• Collector Actions - The collector component has 2 controllers that are constantly listening
for requests. ActionCollector and ConceptCollector collect, respectively, Services and Concepts.
Both require the item as such (Concept or Service), the user viewing the item and the con-
text where the item was accessed. The context is represented by the classes PageContext and
ConceptContext.

26



• Collector Interface - The collector interface exposes the services to the collector controllers.
The responsability of this class is to make the necesarry calls to save the user interaction his-
tory, this includes calling the addUserItem Service of the Recommender Interface defined in the
Recommender Engine.

• RecommenderFacade Interface - It works as a facade between the collector component and
the recommender engine. It simplifies the calls made to the recommender engine.

• Concept Class - Represents a Boemie Concept that has been seen by an user and could be
recommended. Notice that it extends the base Recommendable class.

• Action Class - Represents a Boemie Action that has been seen by an user and could be recom-
mended. Notice that it extends the base Recommendable class.

• Manager Classes - The Manager classes provide CRUD operations to persist information in
the database.

4.2.1 Create User Profile

One of the purposes of the collector component is to create an user profile based on the user’s in-
teraction history. Currently, the Semantic Browser doesn’t have the concept of users. Therefore, the
first step to build an user profile is to support users. To add users to the system, the componet uses
a cookie based identifier that is created the first time the Semantic Browser makes a request to the
boemie-collector server. The user key is created randomly and it’s unique for each user. As long as
the visitor uses the same browser, the user would be identified by the previously defined key.

Once an identifier has been assigned to the user, the system starts to collect Boemie Concepts and
Services. This is done by the controllers ActionCollector and ConceptCollector. Both controllers re-
ceive the name of the Concept or Service and the context where the item was accessed. The collector
component creates an instance of the item and adds it to the User-Item matrix via the Recommender
service of the Recommender Engine Component. If an User-Item entry already exists the count for
the user is increased by one.

It’s important to notice that the User-Item vector contains Boemie Concepts and Service; for the
recommender system they are just different items that are shown in different Contexts: Components
are shown inside a Page and Actions are shown inside a Concept.
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4.2.2 Obtain Recommendations

The collector component also allows the Semantic Browser to obtain recommendations. To provide
recommendations the user and the context where there recommended items will be shown,are required.
With this information the controllers (ConceptRecommender and ActionRecommender), listening for
requests, can make calls to the RecommenderFacade service that asks the recommender engine for
recommended items in the given context. The list of recommended items is returned to the server
using a JSON String of the form: {”recommended item 1”, “recommended item 2”,...,“recommended item N”}

4.3 Boemie Integration Component

The boemie integration client runs in the user browser and its purpose is to track the clicks to Boemie
Concepts and Services. One of the objectives during the design of the Integreation Component was to
add the new functionality without modifying the existing code. The only change required is to add a
line, on each page, that points to the library with the integration component.

4.3.1 Cross Domain Requests

The pages shown by the Semantic Browser require to make asyncronous calls, that collect and obtain
recommendations, to the Boemie Collector component installed in a different domain. Those cross
domain calls break the Cross Domain security enforced by the web browsers that specifies that all
the Ajax calls made in page must be made to the same domain where the page is hosted. A page
on http://www.boemie.org/ could only make Ajax calls to pages on the domain www.boemie.org. To
overcome this problem, a library that uses a Cross Domain policy file, originally used by flash objects,
on the target server is been used.

The cross domain policy is a file that contains the list of domains that are allowed to make calls to the
domain where the file is present. The format looks like this:

<?xml version=\"1.0\"?>

<!DOCTYPE cross-domain-policy SYSTEM \"http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd\">

<cross-domain-policy>

<allow-access-from domain="www.boemie.org" />

<allow-http-request-headers-from domain="www.boemie.org" headers="*" />

</cross-domain-policy>
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The Cross Domain Policy File of the Boemie Collector component is created dynamically by the
CrossDomainPolicy Controller. Every time a page is loaded, the server checks if the origin domain is
a valid Cross Domain Server and grants or denies the privilege to make Ajax requests to the domain.

4.3.2 Collect User Interaction

The integration component intercepts the clicks made by the users to Boemie Concepts and Services.
This is done by registering observers that listen for clicks in any of the page’s links. The following is
the step by step process to collect the user interaction history:

• Register link observer - The first time a page loads, the integration component registers an
observer that listens for clicks in the page’s links.

• Identify user action - Every time a link is clicked, the observer process the user action iden-
tifying if the element clicked was a Concept or a Service.

• Send Collect Notification - If the element clicked was successfully identified as a Concept
or Service, an Ajax notification is sent to the Boemie Collector component to process the item.
The notification is asynchronous via Ajax, therefore it doesn’t affect the user ineraction with the
semantic browser.

4.3.3 Show Recommendations

The process to recommend concepts is as follow:

• Request recommendations - The first time a page loads the integration component requests for
concept recommendations to the ConceptRecommender controller.

• Process response - The ConceptRecommender controller returns a JSON String with the list of
recommended concepts for the current page and user. The integration component processes the
response and identifies the html elements in the page that contain the recommended concepts.

• Show recommendations - If concepts to recommend were found, the integration component
disables the highlighting of those concepts that are not recommended. The user can still toggle
the view to display all the components, by clicking a link on the bottom of the page or by pressing
alt + t. If there were not recommended concepts found the component shows all the originally
highlighted concepts.

The process to recommend actions works similar to the concept recommendation process:
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• Request recommendations - The integration component request for Services recommenda-
tions to the ActionRecommender every time a concept inside a page is clicked.

• Process Response - The ActionRecommender retuns a JSON String with the list of recom-
mended services. The integration component process the response to identify the recommended
actions.

• Display Recommendation - If there are recommended Services, the integration component
displays a menu that contains only those recommended items to the user. the original menu is
shown if there are no recommended items. The user can always toggle the menu to see the list
of all the available Services.

4.4 Technologies

The server side components, Recommender Engine and Boemie Collector, are written using Java 6
standard edition. The use of java warranties portability between multiple application servers. For
development purposes, jetty, a lightweight Servlet container was used. Derby was chosen as relational
database because of its easy deployment process, however the server side components can be used in
top of any database without making any changes to the code. The integration component was written
with JavaScript and runs in the users’ browser.

4.4.1 Frameworks and Libraries

During the development of the project some libraries and frameworks were used to connect the com-
ponents between them.

Hibernate - Hibernate was used as Object Relational Mapping technology because it warranties the
interoperability between databases and leverage the complexities to persist java objects in a database.

Apache Tapestry 5 (MVC) - Tapestry 5 is a robust MVC framework built upon the standard
Java Servlet API. It was used to build the controllers on the Boemie Collector component that lis-
ten for Concepts and Services, as well as the controllers that recommend Items to the Semantic browser.

Apache Tapestry 5 (IOC) - The IoC (Inversion of Control) module of Tapestry 5 allowed to design
the system from many small, easily testable pieces. By breaking the system into small pieces, it became
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easier to modify and extend the system.

Javascript Prototype - Prototype is a JavaScript framework that aims to ease development of dy-
namic web applications. It features a toolkit for class-driven development and Ajax development.
Prototype is vastly used by the Semantic Browser so it doesn’t add more code base to its code.

Javascript flXHR (flex-er) - Flex-er is a client-based cross-browser, XHR-compatible tool for cross-
domain Ajax (Flash) communication. It utilizes an invisible flXHR.swf instance that acts as a client-
side proxy for requests, combined with a Javascript object/module wrapper that exposes an identical
interface to the native XMLHttpRequest (XHR) browser object. Flexer brings cross-domain Ajax and
API-consistency to any browser with Javascript and Flash Player plug-in v9+ support.

Apache Maven - Maven is a software tool for Java project management and build automation. Maven
dynamically downloads the project dependencies from Internet helping to distribute the application
and install dependencies during development.

4.5 Deployment and Configuration

4.5.1 Requirements

The only requirements to deploy the server side components are:

• Java 1.6 http://java.sun.com

• Apache Maven http://maven.apache.org

• Derby or any relational database. http://db.apache.org/derby/

4.5.2 Deployment

The server side components can be deployed in any java complaint Servlet container or Application
server. There are 2 different ways to deploy the application:

• Development and testing mode - In the root folder of the recommender engine, <workspace>/boemie-
recommender/recommender-engine, run the maven command: mvn install. The first time the
command is executed, maven will download all the required dependencies of the project. This
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may take a few minutes but simplifies the libraries distribution process. Once the process fin-
ishes, the embedded jetty Servlet container can be executed. To run the embedder jetty server go
to: <workspace>/boemie-recommender/boemie-collector/ and run the command: mvn jetty:run.
Again, maven will download the required libraries to execute jetty. Once the process finishes the
application will be available at http://localhost:8080/boemie-collector.

• Production mode - The first step is to create a Web Application Archive (war) that con-
tains the complete application. To do this, run the command: mvn install in the folder:
<workspace>/boemie-recommender. Maven will download the required dependecies and generate
the war file in: <workspace>/boemie-recommender/boemie-collector/target/boemie-collector.war.
The installation of the war in a Servlet container or Application server differs depending of the
server of choice. The process normally consist in just dropping the war file in a specific directory.

The deployment process requires the successful configuration of a persistence database. Out of the
box, the server side components are configured to use a Derby Database in network mode, running in
the same machine as the servlet container. The file hibernate.cfg.xml allows to modify the database to
be used. The database structure required by the system is created, automatically, the first time the
server starts.

4.5.3 Configuration

Both server side components are configured using java properties files. The behaviour of the recom-
mender engine can be modified via the recommender.properties file. The following properties can be
configured:

• max-matrix-threads - Specifies the number of threads used to generate the Item-to-Item
similarity matrix. If not specified, the default number of threads is 5.

• matrix-interval - Specifies a Cron expression that specifies how often the Item-to-Item simi-
larity matrix is recreated. If not specified, the matrix is created every day at 1 am.

• similarity-strategy - Specifies the similarity strategy used to create the Item-to-Item similar-
ity matrix. The possible values are: COSINE, ADJUSTED_COSINE or PEARSON-R. If not
specified, the default value is COSINE.

The boemie-collector component can be configured in the collector.properties file. The following are
the available configuration properties:

• number-recommended-concepts - Specifies the number of recommended concepts that will
be presented to the users. If not specified, the default value is 10.
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• number-recommended-actions - Specifies the number of recommend actions that will be
presented to the user. If not specified, the default value is 2.
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Chapter 5

Analysis of the Semantic Browser GUI

This chapter analysis the Semantic browser UI and how a recommender engine could improve the overall user

experiece.

The usability and utility, and no the visual design, are the factors that determine the success or failure
of a web-site. The visitor of a page is at the end the one that takes the final decision of how he wants
to use the application.

5.1 How do users think?

Users’ habits on the Web can be comparable to the customers’ habits in a store. Visitors look at each
page, scan some of the text and click on the link that catches their interest or vaguely resembles their
taste. Typical users don’t read, they scan a document. Users search for fixed points which would guide
them through the content of the page. The Image 5.1 shows the typical scan process. Notice, how the
eyes of the user abruptly stop in the middle of sentences.
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Figure 5.1: Typical user scanning process

Visitors are impatient and expect instant gratification. The higher the cognitive load and the less
intuitive the navigation, the more difficult is to keep the users in the web-site. Typically, users don’t
make optimal choices, they search for the quickest way to find the information they are looking for.

5.2 Principles of effective web design

With the boom of web applications a set of principles, heuristics and approaches for successful web
design have appear through the years which used properly can lead to more sophisticated design
decisions simplifying the process of presenting information. The following list summarize the main
principles for a successful web design.

• Don’t make users think - A web-page should be obvious and self-explanatory. The content
must be well-understood and visitors should feel comfortable with the way the interact with the
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system.

• Don’t make users lose their patient - Keep the user requirements minimal. The less action
is required from the users the better. Letting the user see clearly what options are available is a
fundamental principle of successful user interface design.

• Manage to obtain users’ attention - Focusing users’ attention to specific areas of the site
with moderate use of visual elements can help visitors to navigate through the page without
making the user think. The less doubts the users have, the better sense of orientation and better
user experience which is the aim of usability in the first place.

• Search for simplicity - Users are rarely on a site to enjoy the design. In most cases they are
looking for the information despite the design.

5.3 Improving the Semantic Browser User Interface

5.3.1 Concept Highlighting

Some of the principles presented in the last section can be applied to enhance the Semantic browser’s
user interface and improve the overall user experience. The semantic browser could be seen as a
sophisticated Document viewer that improves the experience by highlighting concepts and providing
useful actions over those concepts. However, the users could feel lost when the semantic browser
highlights too many concepts per page, affecting the overall user experience. Figure 5.2 shows how
the highlighting can become difficult for the users to read. The big number of highlighted concepts in
a very small space, doesn’t manage to get the user attention on the items that he might be interested in.
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Figure 5.2: Semantic Browser - Concept Hightlighting

The recommender engine can improve, drastically, the way documents are shown to the user. By
highlighting only those concepts that the user may be interested, the interface will successfully manage
to obtain the users’ attention and keep the focus in the most important part of the document: The
information. Image 5.3 shows the same content that Image 5.2, but this time only the recommended
items for the user are highlighted. If the user wants to know more about a Concept, there would be a
high chance that it would be one of the recommended ones. The functionality of the semantic browser
is still available but with an improved user interface.
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Figure 5.3: Semantic Browser - Concept Recommendation

5.3.2 Service Selection

Every highlighted concept in a page has a list of associated items that could be accessed by any user
that has a particular interest in a concept. Once the highlighted concept is selected a menu with the
list available services is displayed to the user.
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Figure 5.4: Boemie Concept - Services Menu

As shown in the Figure 5.4, the list of available services for each concept could be long and overwhelming
for the user. The recommender engine proposed in this projects displays only the set of recommended
services of interest for the user. By reducing the number of items, the user would not lose time searching
through the list of available actions, making the interaction with the Semantic Browser much simpler.
Currently, most of the concepts have a small number of actions and the use of a recommender system
could be an overkill for the Semantic Browser. However, it could be very useful to use recommendations
when the number of actions per concept starts to grow.
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Chapter 6

Conclusion

This chapter summarizes the contributions of the project and proposes possible directions for future work.

6.1 Contribution

The main goals and structure of the work taken during this project were:

• General recommender system, collaborative filtering and similarity algorithms research.

• Application of collaborative filtering concepts for the enhancement of the GUI of the semantic
browser.

• Implementation of a generic recommender system engine.

• Implementation of the integration between the semantic browser and the generic recommender
system component.

All the goals were successfully accomplished during the past 3 months of work. The general collabora-
tive filtering research is summarized in Chapter 1 and Chapter 2, where the concepts of collaborative
filterings are described together with the main filtering algorithms. Chapter 3 and Chapter 4 deal with
the architecture and implementation of the components required to recommend items to the semantic
browser. And finally, the effects of using a recommender system to improve user experience of the
semantic browser are presented in Chapter 5.
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The research gathered during this project, proved that collaborative filtering is a promising approach
that could simplify and improve the user experience with the Semantic Browser and in general with any
complex web site. And even though collaborative filtering algorithms are quite computationally expen-
sive, the recommendation process does not necessarily have to be real-time, as offline recommendation
computations are sufficient.

6.2 Future Work

The viability to enhance the user interface of the semantic browser was the main objective of the
project. However, several issues still may be resolved to make a better use of recommendation tech-
niques for this purpose:

• Scalability - The presented collaborative filtering algorithms are too general and therefore
unoptimized and computationally expensive. More advanced algorithms should be tested or
developed to answer the problem of growing number of users and huge data sets.

• Distributed solution - Another answer to the scalability issue could be a distributed recom-
mender system.

• Hybrid algorithms – There is an extensive area of so called hybrid collaborative filtering
algorithms. These algorithms combine the collaborative filtering together with a content-based
approach.
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