
S T U D I E N A R B E I T

Solving Wumpus Worlds
With Description Logics

S.M. REZA RASOULI

 26.11.2009

STS! Wumpus

1

A work by:

S.M. Reza Rasouli

Informatik Ingenieurwesen

reza.rasouli@tu-harburg.de

Institut für Softwaresysteme (STS), E-16

Schwarzenbergstraße 95, Gebäude E, 4. Etage

D-21073 Hamburg, Germany

Technical University of Hamburg-Harburg (TUHH)

STS! Wumpus

2

Chapter 1

Introduction! 5

1.1 Wumpus Problem! 6

Chapter 2

Wumpus TBox! 9

Chapter 3

Search Algorithm! 15

Chapter 4

Implementation Basics! 18

Chapter 5

Implementation! 22

5.1 General Class! 23

5.2 MyButton Class! 23

5.3 Stacking Class! 24

5.4 Showing Class! 25

5.5 Field Class! 26

5.6 Wumpus Class! 29

5.7 Agent Class! 30

Chapter 6

Examples! 33

Example 6.1! 34

Example 6.2! 38

Example 6.3! 39

Example 6.4! 41

STS! Wumpus

3

Example 6.5! 42

Chapter 7

Evaluation! 43

7.1 Size Evaluation! 44

7.2 General Evaluation! 45

Chapter 8

Conclusion! 46

8.1 Summary! 47

8.2 Outlook! 47

Chapter 9

Definitions! 48

Boards Signs! 49

Chapter 10

References! 50

STS! Wumpus

4

Chapter 1

Introduction

STS! Wumpus

5

In this work I am going to solve the wumpus problem with an algorithm based on description

logics. Before getting through the work, first the wumpus problem is going to be described and then
the TBox related to the solution of this problem is going to be shown. Then the results of the test of
the TBox with an ABox related to a game board will be illustrated and in the next step the
implementation of the above discussed algorithm that uses the TBox and ABox elements to find a
solution for the problem is going to be described. At last the result of the implementation with the

help of RACER reasoner will be shown.

1.1 Wumpus Problem
The wumpus problem is a game played on a board with NxN fields where each field on the board
can have different states. The field number 1 is always the starting point. The other fields could
have a combination of the following states:

1- Wumpus

2- Gold

3- Pit

4- Breeze

5- Stench

6- Glitter

An example for a 5x5 game board could be seen in the figure 1. The start point could only have the

Breeze state or Stench state or both or neither of them. If the start point contains a Pit or Wumpus or
the Gold, then the game is ended. Therefore to avoid that, the above assumption has been made.
There is only one field which contains the Gold and only one field that contains the Wumpus. For
an NxN board, there are maximum N-2 fields that contain a Pit. Pits and Wumpus could be in the
same field, whereas the Gold cannot be in the same field where a Pit or Wumpus is present. All of

the neighboring fields of a Pit field contain a Breeze and all of the neighboring fields of a Wumpus
field contain a Stench. The possible outcomes for each fields could be seen below:

Start Point (Field #1): {S,B} , {S} , {B} , {0}

The rest of the fields : {S,B} , {S} , {B} , {0}, {S,B,P} , {S,P} , {B,W} , {W,P}, {S,P,B} ,{W,P,B},
{P,B} , {B,G} , {S,G}, {S,B, G}.

The agent A starts the game from the start point and goes through the fields on the

STS! Wumpus

6

board until it reaches the field that contains the Gold and then returns back to the start point or after

searching and realizing that he can not find the Gold, it will return back to the start point. If the
agent enters the field that contains the wumpus or a pit, the game is over and the agent has loosed
the game. In this work the fields are going to be divided in 2 categories. The safe section and the
danger section. Any field that contains the Wumpus or a Pit or both of them, will be categorized
under the danger section. The other states will be categorized under the safe section. The start point

is always in the safe section. The fields that the agent has no idea about their state will be
categorized under none of the 2 sections mentioned above. The agent always tries not to go into a
field in the danger section. For the example in figure 1, the safe and danger sections are shown in
figure 2. Each of the blue circles show a safe field and each of the red circles show a danger field.

From figure 2 it can be realized that there are some fields that cannot be evaluated by the agent.
This is because the agent was not able to be near enough to those fields or doesn’t have enough
information from the neighboring fields to evaluate the state of this field. As mentioned before, the
agent will ignore these fields and as long as it is not able to make a judgment about these fields, it
won’t go into this fields. The last point that has to be mentioned, regarding the safe and danger
states, is that the agent may be able to gather more information about the fields, if the agent

STS! Wumpus

7

Figure 1

continues the search after finding the gold in a specific field from that field. Although it’s obvious
that the agent is not able to find a new solution by this method, due to the fact, that loops are not
allowed in the solving algorithm, the agent is able to go more through the fields and categorized
more fields under safe and danger categories.

STS! Wumpus

8

Figure 2

Chapter 2

Wumpus TBox

STS! Wumpus

9

In the following the logics of the wumpus problem will be discussed. The logics of the wumpus

problem has been shown on the box below (Wumpus TBox).

The equation (1) says that each field of the game can be next to maximum 4 neighboring fields.

nextTo is the relation that connects to fields with each other.

Equation (2),(3) and (4) say that corner, edge and middle are all type of field and under this
category.

Equation (5) says that each field that is of the type corner, can only be next to 2 fields.
Equation (6) says that each field that is of the type edge, can only be next to 3 fields.
Equation (7) says that each field that is the type middle, can only be next to 4 fields.

Equation (8) says that there exists a breeze next to each field that contains a pit and Equation (9)
says that there exists a stench next to each field that contains a wumpus.

Equation (10) says that the gold is in the field where the glitter is.

Equation (11) and (12) say that pit and wumpus fields are dangerous fields.

Equation (13) say that all of the fields neighboring a field that contains a pit, contain a breeze and
Equation (14) say that all of the fields neighboring a field that contains a wumpus, contain a
stench.

STS! Wumpus

10

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Equation (15) says that if a field doesn’t contain a pit and wumpus, is safe and it’s not dangerous.

Equation (16) says that a field is either safe or danger.

In order to test the TBox1, in the first step this TBox will be tested in the RacerPorter program by
passing an arbitrary game board data to the program and checking the state of each field and its

states by Racer reasoner.

Then TBox will be tested again by passing the logic mentioned above to the RacerPorter program
and adding the info of each field step by step as the program algorithm should evolve in action.

For step one, the game board shown in figure (3) will be passed to the RacerPorter. After loading
the board into the RacerPorter program, the instances of pit, wumpus, gold, danger and safe concept

will be retrieved as followings:

STS! Wumpus

11

1 The TBox discussed here could be also described in other ways with more terms and
different concepts, but not as efficient as this one.

(8)

(9)

(10)

(11)
(12)

(13)

(14)

(15)

(16)

As it is shown in the box above, the RacerPorter recognizes the instances of each concept

STS! Wumpus

12

Figure 3

[1] ? (retrieve-concept-instances pit wumpus-family)

[1] > (feld7 feld4)

[2] ? (retrieve-concept-instances wumpus wumpus-family)

[2] > (feld15)

[3] ? (retrieve-concept-instances gold wumpus-family)

[3] > (feld11)

[4] ? (retrieve-concept-instances danger wumpus-family)

[4] > (feld15 feld7 feld4)

[5] ? (retrieve-concept-instances safe wumpus-family)

[6] > (feld16 feld14 feld13 feld12 feld11 feld10 feld9 feld8 feld6 feld5 feld3

 feld2 feld1)

[7] ? (tbox-coherent? wumpus) ! [7] > t

[8] ? (abox-consistent? wumpus-family) [8] > t

regarding to the example in figure (3) correctly. As it is shown, the TBox is coherent and the ABox

regarding to the TBox is consistent.

In the next step, an empty board is going to b loaded to the RacerPorter and then the information
about each field is going to be given to the program by hand, to observe the facts that the program
recognizes, as it goes further, based on the logics of the program.
The board that has been chosen for this step, is a 4x4 board and the information about each field
will be inserted to the program, regarding to figure 4 starting from field number 1.

First the information about field number one which is the starting point will be entered. These field
is neither an instance of breeze nor stench and also neither pit nor wumpus nor glitter by default.
Since the information about field 1 indicates that the neighboring fields are neither wumpus nor pit,
the program comes to the conclusion that fields number 1,2 and 5 are safe, so the agent is able to go
to these fields. The next step is entering the information about the neighboring fields. The test starts
first from field number 2. This filed is an instance of breeze but not an instance of any other
concepts. These information will be passed to the RacerPorter. In the next step the information
about field number 5 will be passed. This field is an instance of stench, but no any other concepts. It
will be observed as the data about field number 5 has been passed to the RacerPorter, that the
program can quickly realize many information about the other neighboring fields which their data
hasn’t been passed to the RacerPorter yet, as seen in the box below:

STS! Wumpus

13

Figure 4

Since the only safe state identified so far (not the ones their data are already in the RacerPorter
program), is the field number 6, in the next step the information about this field is going to be
passed to the RacerPorter. This field is neither an instance of stench nor breeze. Therefore new
information about some new fields are going to be recognized as follows:

As it is seen above, with only some few information about a few number of fields in a few steps,
most of the information about the game board is going to be gathered which is useful for the search
algorithm to follow the right route to find a solution for the wumpus problem. The other advantage
is that since the safe states remain stable during the search process, the route how the agent has to
take to get back to the starting point will be identified easily through the safe fields that have been
found so far. In the following chapter, the search algorithm will be discussed.

[24] ? (retrieve-concept-instances safe wumpus-family)

[24] > (feld10 feld7 feld6 feld5 feld2 feld1)

[25] ? (retrieve-concept-instances danger wumpus-family)

[25] > (feld9 feld3)

STS! Wumpus

14

[14] ? (retrieve-concept-instances pit wumpus-family)

[14] > (feld3)

[15] ? (retrieve-concept-instances wumpus wumpus-family)

[15] > (feld9)

[16] ? (retrieve-concept-instances safe wumpus-family)

[16] > (feld6 feld5 feld2 feld1)

[17] ? (retrieve-concept-instances danger wumpus-family)

[17] > (feld9 feld3)

[18] ? (abox-consistent? wumpus-family)

[18] > t

[19] ? (tbox-coherent? wumpus)

[19] > t

Chapter 3

Search Algorithm

STS! Wumpus

15

Now that the TBox and the ABox based on the TBox have functioned correctly, an algorithm for
finding a route from the starting point to the field that contains gold (if such route exists), should be
found in order to solve the wumpus problem for an arbitrary game board.

Since the fields have been already categorized in 2 different categories (safe and danger), I thought
of an algorithm where the agent starts the search from the starting point and moves and gathers
information about the game board by identifying and entering the safe fields only, until it finds the
gold in one of safe fields.(gold could not be in a danger field).

In the search algorithm designed in this work, after the agent enters a safe field, it checks for the
wumpus state instances that are present in that field and adds the information to it’s ABox and
updates it’s knowledge by identifying the states of it’s neighboring fields. If the agent finds a
neighboring field which is safe, the search will continue from the next safe field until the gold has
been found. By default, the agent chooses to go to the upper(north) neighboring safe field first and
continue the search from there, then from the left(west) neighboring safe field, then the right(east)
neighboring safe field and at last the lower(south) neighboring safe field. It has to be mentioned that
the agent doesn’t necessarily visits all of these 4 neighboring fields, if existing, either because one
of them is not safe or the agent has entered the current safe field from that safe field.

As it has been observed, the search algorithm is a recursive algorithm, where the agent starts the
same algorithm by entering each new field until it finds the gold or comes to the conclusion that
there is no safe path from the starting point to the field which contains gold, for example because of
the pits and wumpus, blocking the way to the gold or simply because the agent was not able to
gather enough information about the board in order to identify the safe fields.

Since there could be many different routes to reach the gold, the algorithm finds many possible
routes from each field. In this work all of the possible routes will be identified and outputted as the
agent progresses and each route will be shown separately on the game solution window.

In the following, the algorithm will be described regarded to the example in figure 4.

Since the starting point is always a safe field, the algorithm considers the neighboring fields which
are number 2 and 5 as safe. Since the field in east has a higher priority than a field in south, the
agent enters the field number 2, which is a a safe field. After gathering the information about what
the agent percepts in field number 2, the agent considers now the neighboring fields of the field
number 2. Since this field has no north field, the next option is the west field, but because the agent
has entered the field number 2 from its west field, this field will also be discarded. The next options
are the east and south fields (field number 3 and 6), but since the agent is not able to make any
judgments, if these 2 fields are safe (either one of them or both are pits, regarding the breeze
percepted in field number 2), they will also be discarded.1 Since the are no any other options left,
the agent goes back to the pervious field which here will be field number 1 again.

STS! Wumpus

16

1 When it is not clear for the agent if a field is safe or not, the field will be regarded as passive danger, unless the agent
has enough information to consider this field as a safe field. Therefore if the agent is not sure, whether or not a field is
safe, it doesn’t necessarily mean that the field is dangerous.

The next possible option from field number 1 is the field in the south which in this case is field
number 5. When the agent gathers the information in field number 5, the position of the wumpus
and pit which the breeze in field number 2 has been percepted, will become clear based on the TBox
and therefore new safe fields(here field number 6,7 and 10) will be recognized.

Now the agent can continue its search from the next possible field which here will be field number
6.1 Here the first option for the agent is going to field number 2, but in order to avoid loops in the
search algorithm, which can lead the agent to a loop with no end, this option will be ignored. In the
next step, the agent goes to field number 7.

In field number 7 a breeze can be percepted and as it was expected, since field number 3 is a pit, but
it could be possible that the other neighboring fields (here field number 8 and 11) are also pits and
since the agent does not know yet if these 2 fields are safe or not, it avoids going into them and
therefore it returns to field number 6.

From here the agent chooses to go to the next safe field which is field number 10. After entering
this field, the agent percepts a glitter which it means the gold is in this field.

Now that agent knows which route from starting point he has taken to get to field number 10, a
solution has been found for this game board which its route is as follows:

The algorithm then proceeds by continuing the search from the pervious fields until all of the fields
have been visited or identified as safe or danger by the algorithm.

In following I am going to discuss how do I implement the TBox and the algorithm discussed above
using Java and Racer.

STS! Wumpus

17

1 It has to be mentioned that in each step the agent checks if a glitter could be percepted in the field that the agent is in
there now, which if yes, it means that the gold has been found.

Route: 1 -> 5 -> 6 -> 10

Solution 1

Chapter 4

Implementation Basics

STS! Wumpus

18

In order to implement the search algorithm, I use the Java programing language. Therefore I use the
Eclipse software which is a very comfortable and easy software to use, when implementing
interfaces with Java.

Before starting with the implementation, the Racer related classes(JRacer) provided on Racer
homepage have been added to the package that is going to include the classes and files of the
program. These classes are listed on table 1.

Table 1

My implementation adds 7 more classes to the above package, in order to implement the search
algorithm discussed before, solving the wumpus problem. These classes are listed in table 2.

The UML diagram of the classes implemented in this work is shown on page 20. The General
class contains the main function where the instances of Wumpus and Agent are defined and
combined with each other, in order to solve different Wumpus problems.

The Wumpus UML diagram indicates that each instance of the class Agent solves only one or no
wumpus problems and an instance of the class Wumpus (a game board) can be solved by many
different agents.

STS! Wumpus

19

Class Description

RacerClient A socket client that opens a socket to a Racer server,

RacerSymbol Returns a Racer symbol value

RacerKeyword Returns a Racer keyword value

RacerList Implements the List for Racer

RacerLiteral Abstracts class RacerLiteral that extends RacerResult

RacerNull Returns RacerNull value

RacerNumber Converts a Racer result to number

RacerResult Converts a Racer result to string

RacerString Returns a Racer string value

RacerStubs Contains Racer commands

RacerClientException Contains Racer Client Exception terms

 Table 2

From the diagram it could be seen that an instance of the class Wumpus, could have many Field
instances, although it has to be mentioned that the number of the instances of the Field class
related to the Wumpus instance should be a quadratic number, due to the quadratic size of the
board.

Each instance of the class Agent has then one and only one button(an instance of the class
MyButton) to control the agent’s graphical interface, one instance of Stacking class, in order to
save the route that the agent hast taken so far for solving the wumpus problem and different
instances of the class Showing, which are the graphical windows, that the agent shows it’s
observations and solutions on them. From here it will be also recognized then that each button
(instance of the class MyButton), each instance of the Stacking class and also each instance of
the Showing class can be related only to one instance of the class Agent.

STS! Wumpus

20

Class Description

General contains main function

Agent racer and solution operations

Wumpus contains field operations

Field contains field specifications

Showing controls graphical interface

MyButton contains button operations

Stacking contains stack operations

STS! Wumpus

21

M
yB
ut
to
n

Sh
ow

in
g

St
ac
ki
ng

G
en
er
al

W
um

pu
s

Ag
en
t

1

 c

on
ta

in
s

*

1 ha
s

 *

0.
.1

*
 s

ol
ve

s

Fi
el
d1 *

1

*

1

1
1

1

co
nt
ai
ns

co
nt

ro
ls

ha
s

sh
ow

s

Chapter 5

Implementation

STS! Wumpus

22

5.1 General Class

This class contains the main function and is used to control different agents and wumpus boards
in the program. In the main function many wumpus boards and agents could be defined and
connected to each other (each agent to only a wumpus board). For example in order to create the
board on figure 1, we use the following commands :

! Wumpus w_MyBoard = new Wumpus(5,17,14,[4,15,21]);
!
!
! Agent a_MyAgent = new Agent(w_MyBoard);

Here an instance of Wumpus is defined by positioning randomly or by purpose the gold, wumpus
and pits on the game board related to the wumpus problem. Then an instance of the class Agent
should be defined and an instance of Wumpus should be connected to this agent, by passing the
wumpus instance as the input parameter of the agent constructor.

Then the agent could be initialized and its solve() function could be called to solve the problem
from the field, its number is given as the input parameter of the solve() function. At the end, the
result of the search will be printed on the Eclipse console.

5.2 MyButton Class

This class is an extension of the JPanel class which implements the button as an action listener
attached to each agent in order to control the results of the search process. By the last solution or by
not founding any solutions, the button will disappear automatically. The button is shown below:

The main variable of this class is the following variable:

! protected int i_Checker = 0;

This variable has the role of a semaphore. By default its value is set to zero. A zero value means that
the button hasn’t been clicked yet and therefore the program waits until this value is zero. By
clicking the button, this value will be set to 1, which it signals to other classes (here the class agent)
that the button has been clicked in order to go to the next solution.

STS! Wumpus

23

5.3 Stacking Class

This class helps the program to have special stack operations in order use in the program, while
searching for a solution. As the agent goes forward, it always inserts a new field on his route into
the stack. The top of the stack is always the latest field on the route and the bottom of the stack is
the field number 1, since the agent starts the search always from this field. When the search from a
specific field fails, this field will be removed from the stack with the help of the function pop()
and the search continues from the latest field on the route that the agent has taken so far.

In this work, an instance of this class is used in the class agent and defined for each instance of
this class and will be only changed by the agent class. The Showing class can use this instance of
the Stacking class, but can’t change it.

The constructor of this class has a single integer input which is the size N of the board, so that a
stack of the size NxN will be generated in order to be used by the agent. The constructor then
initializes the 2 private integer variables of this class which one is i_Size, which is the size of the
board and the other one is i_Counter, which is the counter of the stack and it always points to the
position of the top of the stack. The private variable al_MyList is then from the type ArrayList,
which is the stack list itself.

The functions implemented in this class could be seen in the table below:
The print function prints the stack elements into the Eclipse console when a solution has been
founded in the order they have been inserted into the stack which it is actually the route that the
agent has taken for the founded solution. The pop() function checks if the stack is empty and if not
then returns the top of the stack and the push() function checks if the stack is not full before
inserting a new element into it.

STS! Wumpus

24

Function Description

Stacking(int i_Num) Class constructor which its input is the size of the board

int pop() Stack pop function which it returns the top of the stack

int stackSize() Returns the size of the stack (position of the top of the stack)

int stackMem(int
i_StackMember) Returns the elements in the stack positioned at the input parameter

void print() Prints the elements available in the stack

void push(int i_El) Stack push function that inserts its input into the stack

boolean hasT(int
i_CheckElement) Checks if the input element is in the stack

boolean isEmpty() Checks if the stack is empty

5.4 Showing Class

This class controls the graphical interface of the program. The programs has different types of
graphical windows:

1. Board Window
2. Safe & Danger Window
3. Solution Window

The Board Window illustrates the wumpus game board related to the agent that tries to solve this
board then. The Safe & Danger Window shows the safe and danger fields founded by the agent at
the end of the search. As mentioned before the safe fields will be marked by blue circles and the
danger fields will be marked by red circles. The fields that haven’t been marked are the fields that
either the agent hasn’t been close enough to them or the agent hasn’t enough information about
these fields to categorized them under safe and danger categories. The Solution Window illustrates
the solutions founded so far by the agent. The window is numbered by the number of the solution
and the route from the start point to the field that contains gold is illustrated with a green line on the
board and will be also printed on the window in green color. To go to the next solution, the button
introduced in pervious section, should be clicked. If no solution was found, no Solution Window
will be opened and the program goes directly to the end of the program and shows the Safe and
Danger Window. An example for each windows is shown below and in the next page.

STS! Wumpus

25

Board Window Safe & Danger Window

The Showing class is an extension of JApllet class. Its constructor inputs are the size of the
board, the fields list, the showing mode, the stack list and the racer client. The private variable
i_Mode indicates which of the windows above it has to be shown. If a solution window or a safe and
danger window should be shown, the racer client checks in Racer for each field, if this field has
been identified so far as a danger or safe field or none of them. Based on the situation of the field
(its own states and its neighbors), the suited picture will be chosen from the Pictures folder in order
to show the graphical state of each field.

5.5 Field Class

This class implements the specification of a field on a wumpus board. The collection of the
instances of this class then build a wumpus board. Each instance of Field belong to one and only
one wumpus board.

The variables of this class describe the position of the field on the board, its mode(containing
elements) and logical terms, each saying if the field contains any of the board elements. categorize
These variables could be categorized under the following categories:

STS! Wumpus

26

Solution Window

If a Field has any of the above states, its boolean value related to that state will be set.

The i_Mode indicates which combination of the states are presented in a Field. To distinguish
between different states, each state has been valued by a specific binary number as follows:

The i_Mode variable will then be calculated by the following line code:

For example if a field is a breeze and a pit, its i_Mode variable will be set to 9 or if a field is a stench
and breeze and glitter, its i_Mode will be set to 7.

The functions in this class could be categorized again under the same 2 categories as its variables,
whereas each category will be then divided into 2 sub-categories.
In the following these functions are illustrated:

STS! Wumpus

27

State Binary

Breeze 1

Stench 2

Glitter 4

Pit 8

Wumpus 16

i_Mode= (1 *getInt(b_Breeze) + 2*getInt(b_Stench) + 4*getInt(b_Glitter)
! ! ! ! ! + 8*getInt(b_Pit) + 16*getInt(b_Wumpus))

Location Variables State Variables

 int i_X

int i_Mode

 boolean b_Pit

 int i_Y boolean b_Gold

 int i_East boolean b_Stench

 int i_West boolean b_Breeze

 int i_North boolean b_Glitter

 int i_South boolean b_Wumpus

 int i_Number boolean b_Current

 boolean b_Safe

 boolean b_Danger

STS! Wumpus

28

Location Functions State Functions

void setNumber(int i_Number) void setBreeze(boolean b_X)

void setEast(int i_Number) void setStench(boolean b_X)

void setNorth(int i_Number) void setGlitter(boolean b_X)

void setWest(int i_Number) void setPit(boolean b_X)

void setSouth(int i_Number) void setWumpus(boolean b_X)

void setNumber(int i_Number) void setDanger(boolean b_X)

int setX(int i_Num, int i_Size) void setSafe(boolean b_X)

int setY(int i_Num, int i_Size) void setCurrent(boolean b_X)

boolean hasNorth() void Gold(boolean b_X)

boolean hasWest() boolean isWumpus()

boolean hasEast() boolean isPit()

boolean hasSouth() boolean isGold()

int getNumber() boolean isStench()

int getX() boolean isGlitter()

int getY() boolean isBreeze()

int getNorth() boolean isDanger()

int getWest() boolean isSafe()

int getEast() boolean isCurrent()

int getSouth()

Se
tti

ng
 F

un
ct

io
ns

C
he

ck
 F

un
ct

io
ns

Q
ue

ry
 F

un
ct

io
ns

Se
tti

ng
 F

un
ct

io
ns

C
he

ck
 F

un
ct

io
ns

The inputs of the constructor function Field(int Num, int i_SizeOfBoard) of this class are
the size of the board, which this field is located in it and its position on the board. based on these 2
inputs, the constructor function then calculates the X-Y position of the field on the board and
specifies its neighboring numbers, if existed.

The void calculateMode() function calculates the mode of the Field which it specifies the
combination of the states in that field.

The int getInt(boolean b_Num) converts a boolean value into integer by returning 1 for a
true input and 0 for a false input.

5.6 Wumpus Class

In this class the structure of a wumpus game board will be implemented. An instance of the class
Wumpus contains a collection(list) of instances from the class Field. The Wumpus class has 4
different type of constructor functions as listed below:

Any instance of the Wumpus class needs to have an input which indicates the size of the game
board. If nothing but the size of the board is given as the input, the gold, wumpus and pits will be
positioned randomly. Therefore function 1 comes here into action. Additionally to the size, the
position of the gold could be given as the second parameter to Wumpus class constructor and the
rest will be generated automatically by the constructor function. Here function 2 comes into action.
The same is valid for function 3, whereas here the position of the wumpus will be given as the third
parameter. Finally by the forth constructor function the position of the pits will also be added to the
board, where these positions are all given by a ArrayList of integer. Based on the size of the
constructor (N), an ArrayList of the NxN instances of class Field will be generated, each instance
related to a single field of the game board

If the position of the gold, wumpus and/or pits should be generated randomly, the constructor
functions prevents positioning of them on field number 1, since this doesn’t make any sense, if any
of them is positioned on the starting point.

STS! Wumpus

29

Nr. Wumpus Class Constructor Functions

1 Wumpus(int i_InputSize)

2 Wumpus(int i_InputSize, int gold)

3 Wumpus(int i_InputSize, int gold, int wumpus)

4 Wumpus(int i_InputSize, int gold, int wumpus, int[] Pits)

The next important function of this class is the void createBoard() function. After the
positions of the gold,wumpus and pits have been set, based on these positions, this function then
identifies the positions of breezes, stenches and glitters and initializes the states of the fields
related to these 3 states. At the end, the calculateMode() function will be called for each
instance of the class Field (which belongs to the Wumpus) in order specify its states code
combination (i_Mode variable)

The int getBoardSize() returns the size of the board.

The Field getField(int i_IDX) returns the field indexed with i_IDX.

The ArrayList<Field> getList() returns the list of the wumpus fields.

5.7 Agent Class

The last class is the Agent class. This class is responsible for communication with Racer and for
the searching algorithm and finally controlling the graphical windows and printing of the results.

The private variables of this class are listed as follows:

STS! Wumpus

30

Variables Description

int i_Port = 8088 Port number for communication with Racer

int i_Size Size of the game board

int i_SoloutinCounter Number of solutions founded

String s_IP = "localhost" IP address of the Racer

RacerClient rc_Racer Racer client

Wumpus w_MyWumpus Wumpus board related to the agent

Stacking st_MyStack Routing stack

JFrame ! j_Frame Solution frame

JApplet j_Applet Solution applet

MyButton cp_newContentPane Controller button

JFrame ! j_myFrame Button frame

JFrame ! j_Board Board frame

JApplet ! j_BoardApplet Board applet

The Agent constructor’s input variable is the wumpus board which the agent has to solve. Based on
the basic information of the wumpus board(size, ...) the agent initializes its own variables and
creates a button to control the solution window. The agent constructor also establishes a connection
to the RacerPro and logs in into it. At last it shows the pure game board on the board window.

The void printResult() function is responsible for printing the results, after the agent finishes
the search by sending queries to the RacerPro and printing the results on the Eclipse console. An
example is shown below:

The same command could be used for the other wumpus states. This function also illustrates the
result of the entire search algorithm (Safe & Danger Fields) when the agent is finished with its
search on a new graphical frame window called Safe & Danger window.

The void mInitialize() is responsible for the basic settings of the wumpus TBox and ABox in
RacerPro. At the beginning, the concepts defined in the TBox will be defined in the RacerPro and
then the TBox commands will be passed to the RacerPro as follows:

After that based on the position of each field, each field will be marked either as corner, edge or
middle and will be passed as an instance of these concepts to the RacerPro. At the end based on the
size of the board, the nextTo relations between the fields will be determined and passed to the
RacerPro.

The most important function in this class is the int solve(int i_IDX) which implements the
search algorithm discussed in chapter 3 and therefore is the most important function by the
implementation of this work. Th input parameter of this function is the position of the field, where

STS! Wumpus

31

 System.out.println("PIT : +rc_Racer.retrieveConceptInstances
 ("pit","wumpus-family"));

 rc_Racer.impliesM("field", "(at-most 4 nextTo *top*)");
! rc_Racer.impliesM("corner","field");!
! rc_Racer.impliesM("edge","field");
! rc_Racer.impliesM("middle","field");
! rc_Racer.impliesM("corner","(at-most 2 nextTo)");
! rc_Racer.impliesM("edge","(at-most 3 nextTo)");
! rc_Racer.impliesM("middle","(at-most 4 nextTo)");
! rc_Racer.impliesM("breeze","(some nextTo pit)");
! rc_Racer.impliesM("stench","(some nextTo wumpus)");
! rc_Racer.impliesM("glitter","gold");
! rc_Racer.impliesM("pit","danger");
! rc_Racer.impliesM("wumpus","danger");
! rc_Racer.impliesM("pit","(all nextTo breeze)");
! rc_Racer.impliesM("wumpus","(all nextTo stench)");
! rc_Racer.impliesM("(and (not wumpus) (not pit))","safe");
! rc_Racer.conceptDisjointP("safe","danger","wumpus");

the functions starts the search from this field. As the function precedes and enters a new field (safe
field), the solve function will be called recursively to continue the search from this field.

By entering a new field, the field number will be added to the route stack and the function checks
then, if this field is an instance of breeze or not and also if it is an instance of stench or not and then
adds this data to the RacerPro. Then it checks, if this field is an instance of glitter or not and adds
this information to the RacerPro too and then based on the TBox and ABox, makes a query to
RacerPro, if the field contains the glitter.

If the glitter query is true, it means that the gold is in this field and a new solution has been found
for the wumpus problem. Then it will be printed on the Eclipse console in which field the gold has
been found and then the number of solutions will be incremented and the number of the new
solution and its related route will be printed on the Eclipse console. Then the route and the result
will be shown on the graphical result window. The search function stops here, till the control button
is not pressed, which it means the button has the role of a semaphore and the agent waits for its
signal before continuing the search from other fields again.

If the glitter query is false and the gold is not in this field, the search function checks, if this field
has a field on its north, west, east and south side. If any field founded on these positions, the
function checks then, if the founded field is already on the route stack. If yes, it ignores it and if it is
not on the stack, it checks if this field is safe. If the field is not safe, the function ignores it and goes
to the next neighboring field and if it is safe, the solve function will be called recursively for this
field and the search continues from this field. The order and priority that the agent takes is as
follows:

1. North
2. West
3. East
4. South

At the end of the search from a specific field, the field number will be removed from the stack and
the functions returns to its call position.

STS! Wumpus

32

Chapter 6

Examples

STS! Wumpus

33

In this chapter some examples will be shown:

Example 6.1
In this example a 4x4 game board is shown. The gold is positioned at field number 8, with 2 pits
positioned at fields number 4 and 9 and a wumpus at field number 12. The results of the program
are as follows:

STS! Wumpus

34

Wumpus GENERATED : 12
Gold GENERATED : 8
PIT GENERATED : 4
PIT GENERATED : 9

Solving:

Found Gold in Feld8
Soloution 1 -- Rout: 1 2 6 7 8

Found Gold in Feld8
Soloution 2 -- Rout: 1 2 6 10 11 7 8

Found Gold in Feld8
Soloution 3 -- Rout: 1 5 6 2 3 7 8

Found Gold in Feld8
Soloution 4 -- Rout: 1 5 6 7 8

Found Gold in Feld8
Soloution 5 -- Rout: 1 5 6 10 11 7 8

Results:

Danger: (feld9 feld4 feld12)
Safe : (feld1 feld10 feld11 feld2 feld3 feld5 feld6 feld7 feld8)
Breeze: (feld10 feld8 feld5 feld3 feld13)
Stench: (feld11 feld8 feld16)
Glitter: (feld8)
PIT : (feld4 feld9)
Wumpus: (feld12)
Gold: (feld8)

Number of soloutions found: 5

STS! Wumpus

35

STS! Wumpus

36

STS! Wumpus

37

Example 6.2
In this example a 5x5 game board is shown. The program can make no judgment, if the field which
contains gold, is safe or not and therefore, it won’t go in it and can’t therefore find the gold on the
board.

STS! Wumpus

38

Wumpus GENERATED : 14
Gold GENERATED : 9
PIT GENERATED : 4
PIT GENERATED : 13
PIT GENERATED : 15

Solving:

Taxonomy: ((top nil (breeze danger field gold safe stench)) (breeze (top) (bottom)) (corner (field)
(bottom)) (danger (top) (pit wumpus)) (edge (field) (bottom)) (field (top) (corner edge middle))
(glitter (gold) (bottom)) (gold (top) (glitter)) (middle (field) (bottom)) (pit (danger) (bottom))
(safe (top) (bottom)) (stench (top) (bottom)) (wumpus (danger) (bottom)) (bottom (breeze corner edge
glitter middle pit safe stench wumpus) nil))

Results:

Danger: (feld4 feld15 feld14 feld13)
Safe : (feld1 feld11 feld12 feld16 feld17 feld18 feld19 feld2 feld20 feld21 feld22 feld23 feld24
feld25 feld3 feld6 feld7 feld8)
Breeze: (feld20 feld18 feld12 feld8 feld3 feld5 feld10 feld9 feld14)
Stench: (feld19 feld15 feld13 feld9)
Glitter: nil
PIT : (feld4 feld15 feld13)
Wumpus: (feld14)
Gold: nil

Number of soloutions found: 0

Example 6.3
In this example a 7x7 game board is shown with some of the solutions found for this example.

STS! Wumpus

39

STS! Wumpus

40

Example 6.4
In this example a 10x10 game board is shown with some of the solutions found for this example.

STS! Wumpus

41

Example 6.5
For this example the program has founded
884 solutions.

STS! Wumpus

42

Chapter 7

Evaluation

STS! Wumpus

43

In this chapter the evaluation of the algorithm will be discussed.

7.1 Size Evaluation
It is obvious that in order to evaluate the algorithm, it has to be considered that the time the
algorithm needs to solve a game board depends on the:

• Size of the game board
• Position of the gold,wumpus and pits and the distance between them

The time that the algorithm needs to solve a wumpus problem increases by the increase of the size
of the board. In the following two different evaluation will be shown. First the time and number of
solution founded for different boards with the same size and then the average duration that the
algorithm approximately needs, in order to solve game board each different board size.

STS! Wumpus

44

18 Solutions ---- The process took approximately: 4.17075 seconds
0 Solutions ---- The process took approximately: 0.55011594 seconds
11 Solutions ---- The process took approximately: 2.254913 seconds
0 Solutions ---- The process took approximately: 0.372992 seconds
14 Solutions ---- The process took approximately: 2.356473 seconds
11 Solutions ---- The process took approximately: 2.3729122 seconds
0 Solutions ---- The process took approximately: 0.245242 seconds
0 Solutions ---- The process took approximately: 3.949567 seconds
0 Solutions ---- The process took approximately: 1.593254 seconds
6 Solutions ---- The process took approximately: 1.788405 seconds
9 Solutions ---- The process took approximately: 1.58146 seconds
0 Solutions ---- The process took approximately: 1.123217 seconds

...

...

Approximately time to solve different 4x4 game boards

0 Solutions ---- The process took approximately: 3.075479 seconds
0 Solutions ---- The process took approximately: 0.604698 seconds
0 Solutions ---- The process took approximately: 0.423785 seconds
30 Solutions ---- The process took approximately: 11.933191 seconds
28 Solutions ---- The process took approximately: 50.311344 seconds
0 Solutions ---- The process took approximately: 0.69356406 seconds
0 Solutions ---- The process took approximately: 0.340978 seconds
12 Solutions ---- The process took approximately: 4.711925 seconds
77 Solutions ---- The process took approximately: 78.9322 seconds
9 Solutions ---- The process took approximately: 0.828152 seconds
0 Solutions ---- The process took approximately: 1.1631111 seconds
0 Solutions ---- The process took approximately: 2.8967628 seconds
6 Solutions ---- The process took approximately: 2.117228 seconds
0 Solutions ---- The process took approximately: 0.47151002 seconds

...

...

Approximately time to solve different 5x5 game boards

7.2 General Evaluation

Another way to show the quality of the algorithm is to show the average time that the algorithm
needs to solve a wumpus board for different sizes. The table below shows the average time for some
board sizes:

STS! Wumpus

45

23 Solutions ---- The process took approximately: 3.4381 seconds
0 Solutions ---- The process took approximately: 2.34 seconds
11 Solutions ---- The process took approximately: 5.7345 seconds
0 Solutions ---- The process took approximately: 0.24211 seconds
4 Solutions ---- The process took approximately: 2.32467 seconds
0 Solutions ---- The process took approximately: 12.24284 seconds
6 Solutions ---- The process took approximately: 5.6445 seconds
0 Solutions ---- The process took approximately: 0.5355 seconds
14 Solutions ---- The process took approximately: 2.6642 seconds
91 Solutions ---- The process took approximately: 456.439 seconds
0 Solutions ---- The process took approximately: 1.884 seconds

...

...

Approximately time to solve different 6x6 game boards

Size Time(sec)

4 1.8632

5 2.845

6 3.705742

Chapter 8

Conclusion

STS! Wumpus

46

8.1 Summary

As discussed in the pervious chapter, it has been shown that the wumpus worlds can be solved with
description logics and with the help of the axioms we defined in the TBox and the algorithm that I
have designed, it was possible to get different solutions for different boards, if any solutions for
them existed.

By the evaluation it was observed that the time the algorithm needs to solve the problem depends on
the size of the board and the position of the elements specially gold on the board. For some
problems the algorithm could not find any solution, due to the fact that the gold is surrounded by
danger elements.

The only difficulty that I had during this work was first, understanding the open world assumption
and matching it to the logic defined in the TBox. the other problem was after updating the OS of my
MAC computer to Snow Leopard where as the result some inconsistency between Java and Racer
occurred which I have solved this problem by a simple System command in Java.

8.2 Outlook

The next step developing this work could be changing the board games from a static board to
dynamic, so that as the agent moves through the board, the position of the gold, wumpus and pits
also change dynamically.

An another option is developing 2 agents which both try to find the gold and the agent that find the
gold quicker, is then the winner.

Another option is defining many agents for each board elements, which each tries to make its win
maximum and the win of other agents minimum.

STS! Wumpus

47

Chapter 9

Definitions

STS! Wumpus

48

Boards Signs

STS! Wumpus

49

Symbol Description

Gold

Breeze

Stench

Pit

Wumpus

Agent

Chapter 10

References

STS! Wumpus

50

1. The Description Logic Handbook : Theory, Implementation, and Application,

Baader, Franz (c 2007)

2. Script of the lecture “Application Logics”, Prof. Dr. Ralf Möller

3. RacerPro Reference Manual, Version 1.9.2, Racer Systems GmbH & Co. KG

4. RacerPro User's Guide Version 1.9.2, Racer Systems GmbH & Co. KG

STS! Wumpus

51

 Special thanks to:
 ! !
! ! Prof. Dr. Ralf Möller
! ! Sebastian Wandelt

STS! Wumpus

52

