Hamburg University of Technology

INSTITUTE FOR SOFTWARE SYSTEMS

Evaluation of
Automatically Generated Semantic Descriptions
of Multimedia Documents

Diploma thesis by Kamil Sokolski
Hamburg, 29th January 2009

1st Supervisor: Prof. Dr. rer.-nat. habil. Ralf Moller
2nd Supervisor: Prof. Dr.-Ing. Dr. habil. Karl-Heinz Zimmermann
Advisor: M. Sc. Atila Kaya

Declaration

I hereby confirm that I have authored this thesis independently and without use of
others than the indicated resources. All passages taken out of publications or other
sources are marked as such.

Hamburg, 29th January 2009

City, Date Sign

i

Acknowledgements

I sincerely would like to thank Prof. Dr. Ralf Moller for fully integrating me into
the BOEMIE project and providing me with this research work. Special thanks to
Atila Kaya and Sofia Espinosa for their support and feedback. I also would like to
thank Dr. Michael Wessel, who implemented the compute-abox-difference function
in RacerPro, for his excellent RacerPro support and for explaining the main ideas of
MiniLisp and abduction to me.

v

Contents

1 Introduction

1.1 Motivation e
1.2 Objective
2 Introduction to Description Logics and DL Systems
2.1 Description Logics
2.1.1 TBoxX
2.1.2 ABox
2.2 DLsystems
2.2.1 Standard Inference Services
2.2.2 Retrieval Inference Services
2.2.3 Non-standard Inference Services
2.2.4 New Racer Query Language (nRQL)
3 Approach 1: Precision and Recall
3.1 Definition of Precision and Recall
3.2 The Process e
3.3 Datatype Properties and Media-related Information
3.4 Structure Scan
3.4.1 Levels of Abstraction
3.4.2 Abstraction Level 0
3.4.3 Abstraction Level 1, .
3.4.4 Abstraction Level 2
3.4.5 Abstraction Level >3
3.5 Query Transformation L.
3.6 Structure Retrieval
3.7 Calculation of Precision and Recall

4 Approach 2: Evaluation with Abduction
4.1 Omissions and Additions
4.2 Examples for Comparison of ABoxes

5 Other Matching Approaches
5.1 Graph Matching

J

—_ O © O

12
13
14
15

17
17
19
20
21
22
23
24
25
26
27
28
29

33
33
34

41

vi

Contents

5.1.1 Maximum Common Subgraph Isomorphism Problem

5.1.2 RDF Diff
5.1.3 Discussion
5.2 Instance Matching
52.1 HMatch 2.0
5.2.2 Discussion

6 Results and Conclusion

6.1 Results e

6.2 Conclusion e

6.3 Future Work

6.3.1 Matching with different TBoxes.

6.3.2 Learning Rules with Evaluation Results
Bibliography

List of Figures

1 Introduction

The Internet is constantly expanding. Since its initiation, it has been growing im-
pressivelyin size. In March 2000, there were one billion web pages indexed by search
engines [1]. In January 2005, already 11.5 billion web pages were indexed [2]. Nowa-
days, in October 2008, there are at least 50 billion web pages indexed [3] ! 2.

But not only is the amount of indexed web pages increasing, the kind of content also
has changed over the last years. In the beginning of the world wide web, most of
the web pages contained texts only. Nowadays, the rate of other media like image,
video and audio is increasing rapidly. There are even websites such as youtube and
flickr, which have specialized on providing the user with a specific kind of media
documents, such as videos and images respectively.

To categorize text documents some chosen words within the text, so-called keywords,
can be taken to represent the whole document. These keywords are then used to
index repositories of documents.

Search engines allow for searching documents in the web with respect to. keywords
used for indexing. To search for a document, a user has to guess keywords that
he assumes are related to the document he wants and state this set of keywords to
the search engine. The search engine looks up the index which documents contain
the keywords. As a result, all documents that are indexed by these keywords are
presented in the form of hyperlinks.

Since most images, video and audio documents do not contain text in digital form
itself (except embedded text), this approach cannot be applied to them.

‘Commercial search-engines often solely rely on the text clues of the pages in which
images are embedded to rank images, and often entirely ignore the content of the
images themselves as a ranking signal.’[4]

!Sorted on Yahoo!, Google, Windows Live Search and Ask
2The actual size of the Internet is approximately 500 times bigger then the indexed web pages
because not every web page can be indexed by a search engine [1]

2 1 Introduction

Figure 1.1: Image of Usain Bolt

Search engines do a good job when it comes to find a website that contains some
information the user searches for. But content specific services (like semantic naviga-
tion or content specific advertisement) require rich descriptions of the content. These
rich descriptions can be realized through so-called semantic descriptions, which not
only provide a meaningful structured vocabulary for objects but also allow to relate
objects with each other.

As an example consider the image of the 100m and 200m world record holder Usain
Bolt in Figure 1.1. If for the image in Figure 1.1 semantic descriptions are available
in terms of visible objects, relations among objects and corresponding regions in the
image depicting these objects, this information can be used to offer a new form of
interactions to the user. In this case, the user can interact with regions of the image
to e.g. display a menu with a link to his biography, by clicking on the face of Usain
Bolt, navigate to a web page about his running performance, by clicking on his feet
or display a shoe advertisement by holding the mouse over the marked region of his
feet.

A drawback of semantic descriptions as metadata is the big expense that is needed to
produce them, if they are created manually. On a wide scale, only an automatic ge-
neration of semantic descriptions can improve the retrieval of multimedia documents
and make content specific services affordable.

The EU-founded BOEMIE (Bootstrapping Ontology Evolution with Multimedia In-
formation Extraction) project aims to develop methods for (semi-) automatic ge-
neration of semantic descriptions. BOEMIE follows a declarative approach where
background knowledge directly affects the generated descriptions. In general, there
exists several ways to model the domain/ background knowledge, and thus several
alternative semantic descriptions can be generated for the same document.

This thesis investigates how automatically generated semantic descriptions can be
evaluated using manually annotated descriptions.

In the next section we motivate this work in the context of the BOEMIE project.

1 Introduction

Repository
with
multimedia

documents . .
Multimedia Document

Repository
with manual
annotations

IRIR

media iject
(part of multimedia document)

Analysis

4
N N N
NNV AR NN B NN

a media object with analysis results

Interpretation

N N N
\\
. \ SSY O BSSN BSS
Evaluation L/ L/ /

a media object with interpretations

€

>\\\‘ >\\ N NN

Repository
with multi-
media documents !

and interpretations i interpretations on
* multimedia documents

Figure 1.2: Schematic overview of the BOEMIE semantics extraction process

1.1 Motivation 5

1.1 Motivation

To motivate the evaluation of system generated semantic descriptions we provide a
brief overview of the ‘BOEMIE semantics extraction process’. Figure 1.2 illustrates
the BOEMIE semantics extraction process.

In the BOEMIE project a process called ‘semantics extraction’ is used to generates
rich semantic descriptions for web pages that contain both textual and visual informa-
tion, and audiovisual clips with audio and textual information(so-called videoOCR?3).
The semantics extraction process consists of three subprocesses, namely analysis, in-
terpretation and fusion.

The analysis process extracts objects based on low-level features that can be identi-
fied directly within the media object. For example in the text modality the analysis
process extracts names of persons, countries, cities, sports names etc; in the image
modality, analysis can identify objects like faces of persons and bodies of persons and
horizontal bars.

A multimedia document consists of some media objects, as shown on the right side
in Figure 1.2. The techniques that are used in analysis differ depending on the
modality of the media object. Therefore, analysis is done separately for every media
object by using techniques such as supervised machine learning for image, audio and
video media objects, and natural language processing for text. To extract objects
and relations reliably, all these techniques require manually annotated descriptions
as training data.

Besides training data, also domain-specific background knowledge is also required
for the analysis process in order to create semantic descriptions. Informally spea-
king, domain-specific background knowledge defines the terminology of the domain
of interest. It defines types in the domain and the relationships between objects.
In BOEMIE the domain is about Athletics and the background knowledge contains
names for concepts like pole vault competition or 100m run which themselves are
related to other objects like an athlete with a role called ‘hasParticipant’.

The analysis process produces already content specific descriptions but they are
insufficient for services that need richer semantic descriptions which include abstract
descriptions.

30CR stands for Optical Character Recognition, which is an electronic translation of images of
text into machine-editable text.

6 1 Introduction

The next subprocess, namely interpretation, interprets analysis results by providing
explanations, abstract semantic descriptions, for analysis results. The background
knowledge includes so-called interpretation rules in order to constrain the space of
possible explanations.

If analysis extracts some objects, the interpretation process tries to explain the exis-
tence and specific constellation of these objects. For example let us assume that in
the athletics domain, analysis extracts a person, a pole and a horizontal bar in an
image. With the background knowledge and interpretation rules for various sports
competitions the interpretation process comes to the conclusion that the best seman-
tics descriptions are these that describe the image as showing a pole vault scene.

The interpretation process is a modality-specific process, where analysis result of a
media object is interpreted w.r.t. a single modality through rules designed for this
specific modality.

In the last step of the semantics extraction process all interpretations of the media
objects are ‘fused’ together. That is because a multimedia document fusion tries to
relate the interpretation results from one modality with interpretation results of ano-
ther modality. The idea here is that some information are represented redundantly
in multiple modalities. In this way fusion creates interpretations for the whole mul-
timedia document.

Example: Assume that an image has been interpreted as showing a person, whereas
the corresponding caption has been interpreted as showing a person with a specific
name. Most likely the persons interpreted in both media refer to the same person.
Therefore fusion considers such interpretations in different modalities as interpreta-
tions of one and the same object.

In the BOEMIE project a logic-based approach to multimedia interpretation has
been developed. In this approach the background knowledge does not only define the
terminology of semantic descriptions but also acts as a declarative specification. This
means that the background knowledge directly affects the automatically generated
semantic descriptions.

To help improve the results of the semantic extraction process, we need to have the
ability to compare rich semantic descriptions which haven been generated automati-
cally using different background knowledge.

As a ‘ground truth’ for a good result, we take the manually annotated descriptions
of media objects that are produced for training the analysis process. These manual
annotations contain both annotations for objects of a lower abstraction level and

1.2 Objective 7

annotations for objects of a higher abstraction level.

In this work, evaluation is only done for the interpretation results in the text moda-
lity.

We define an automatically generated description as having a perfect quality if all
objects (and relations) in the manually-annotation descriptions can also be found in
the automatically generated metadata.

If we succeed to express the quality in terms of a value then we can compare re-
sults created with different background knowledge and therefore determine which
background knowledge is more appropriate for automatic generation of semantic
descriptions of multimedia documents.

1.2 Objective

When comparing two sets of semantic descriptions the key problem to be solved
is to find a way to match (the descriptions of) objects (and their relations) from
the manually annotated descriptions to automatically generated descriptions w.r.t
semantics defined in the background knowledge. This cannot be based solely on
syntax for two reasons:

1. The IDs of the objects do not match to each other as the human annotators
define the names of objects during the annotation phase due to a convention and
the system generates the names based on a unique name generation algorithm.

2. The information about an object may differ in the syntax but yet be similar on
a semantically level due to the semantics stated in the background knowledge.
E.g. a human annotator identifies the object in the image shown in Figure 1.1
as an athlete but the semantics extraction system interprets the objects as a
runner. Syntactically, the words ‘athlete’” and ‘runner’ are completely different.
However, according to the background knowledge a runner is also an athlete.

Therefore the development of a technique for semantically matching the manually and
automatically generated descriptions with respect to the domain-specific background
knowledge is the centerpiece of this work.

2 Introduction to Description Logics and DL
Systems

The BOEMIE project uses the web ontology language (OWL) as a standardized
way to represent semantic descriptions [5]. OWL is widely used in the semantic
web context and is based on description logics. Description logics (DL) is a formal
language with a well-defined semantic [6].

In this chapter, we introduce description logics (DL) as a suitable formalism for the
representation of semantic descriptions. The usage of DL enables to build appli-
cations with standard reasoning services. We present some of the core reasoning
services that are important for this work.

2.1 Description Logics

DLs is a family of Knowledge Representation formalism with different expressivity.
In this section we introduce the syntax and the semantics of description logics ALCQ
(Attributive Language with full Complement and Qualified number restrictions) as
an example.

2.1.1 TBox

The TBox contains general knowledge (also called intentional knowledge) about the
domain in the form of a terminology i.e. the vocabulary that is used. The vocabulary
consists of concept and role definitions. A concept denotes sets of individuals and a
role denotes a binary relationship between individuals [6]. For example, in the athle-
tics domain SportsCompetition and Athlete might be concepts and hasParticipant
might be a role between the concept SportsCompetition and Athlete.

Such elementary descriptions are called ‘atomic concepts’ and ‘atomic roles’ whereas

10 2 Introduction to Description Logics and DL Systems

‘complexed concepts’ and ‘complexed roles’ can be built by using logical combinations
of atomic concepts and roles. Let A be an atomic concept and R an atomic role,
then the complex concepts C' and D can be built using the following grammar:

C,D — A | atomic concept
CnD | conjunction
CuD | disjunction
-C | negation
iR.C | existential restriction
VR.C | wvalue restriction
3, R.C | qualified minimum restriction
3,,R.C | qualified maximum restriction
T | universal concept
1 | bottom concept

The concept top T is an abbreviation for Au-A and is always satisfiable. The concept
bottom 1 is an abbreviation for Amn—-A and is always unsatisfiable.

With these kind of constructors, new symbolic names can be defined to introduce
new complex concepts which can be stated as terminological arioms in the TBox.
The expressivity of the language derives form the expressivity of its constructors

[6].
As an example for a complex concept we could state

Runner © Athlete n IparticipatesIn. RunningCompetition

In general, terminological axioms have the form of so-called generalized concept in-
clusion (GCI), C c D (Rc S), where C and D are concepts (R and S are roles).
Also, axioms of the form of equalities C = D can be stated in the TBox, but these
can also be expressed by two GCIs: C'£ D and Dc C.

To give a definition of the semantics for terminological descriptions, we consider
Interpretations Z. An Interpretation Z=(AZ,-1) is a tuple of a non-empty set AZ,
the domain of individuals, and an interpretation function . The interpretation
function assigns a set AT ¢ AT to every atomic concept description A and a set
RT ¢ AT x AT to every atomic role R [6]. Informally speaking the interpretation
function maps form descriptions to objects of the world.

For complex concepts the interpretation function can be stated as follows:

2.1 Description Logics 11

TI — AI
17 = @
(CnD)r = CTnD?
(CuD)* = CTuD?
(-C)T = AT\CT
(3R.C)T = {x|3Fy.(z,y) € RT and y € CT}
(VR.C)T = {x|Vy.if (z,y) € R? then y e C*}
(3anR.CY = {z|i{y|(z,y) e RT and y e CT} <n}
(3.RCY = {v|fy|(x,y) € RE and yeCT} 2 n}

2.1.2 ABox

The other part of the knowledge base, the ABox, describes a specific state of a world.
In the ABox one can introduce individuals by giving them names and introduce pro-
perties of these individuals. For the properties one can make two kinds of assertions
so-called concept assertions and role assertions. E.g. Using the concept C' and the
Role R one could state the following assertions for the individuals a and b: C'(a) and
R(a,b). The first assertion means that a is in the interpretation of C' and the second
assertion means that b is the filler of the role R for a.

To stick to our example of the world record holder Usain Bolt, runner; could be a
name for the individual in the ABox that represents Usain. Athlete(runner;) would
therefore state a concept assertion for the individual representing Usain Bolt. An
other individual in the ABox could be personName; which represents the Name of
Usain. The assertion PersonName(personName;) would state that personName;
is actually an instance of PersonName. With the role assertion

hasNameV alue(personNamey, ‘UsainBolt")

we introduce the so-called datatype filler, which allows us to attach values, like string
or integer values to individuals. Finally, to state that the individual representing
Usain Bolt has a name called ‘Usain Bolt” we add the following assertion to our
ABox hasPersonName(runnery, personNamey).

Semantics for an ABox can be defined by extending interpretations to individual
names. In addition to the mapping of atomic concepts and roles to sets and relations,
an Interpretation now also maps each individual name a to an element a! € A [6].

A concept assertion C(a) is satisfied by the Interpretation Z if o € CZ. Similarly a
role assertion R(a,b) is satisfied if (aZ,b%) € RZ. If an interpretation satisfies each
assertion in the ABox, it satisfies the whole ABox. The interpretation satisfies an

12 2 Introduction to Description Logics and DL Systems

assertion of an ABox with respect to a TBox if the model of the assertion is also a
model of the TBox [7].

Thus, a model of an ABox and a TBox is an abstraction of a concrete world where
the concepts are interpreted as subsets of the domain as required by the TBox and
where the membership of the individuals to concepts and their relationships with one
another (in terms of roles) respect the assertions in the ABox[6].

2.2 DL systems

Analogous to a database system a DL system or reasoner is a system where informa-
tion described in the form of description logics can be stored, organized and retrieved.
The information described with description logics is stored in a knowledge base (also
called ontology) which consists of two components, a ‘TBox’ and an ‘ABox’.

The information described in the TBox is ‘timeless’ whereas the information in the
ABox changes occasionally or even constantly. Compared to relational databases
one can find some similarities between the TBox and a database schema and also
the instances of a database and an ABox seem to be similar. Nevertheless, one main
difference is that relational databases work on a Closed World Assumption (CWA)
whereas DL-reasoners work on a Open World Assumption (OWA). CWA presupposes
that the information about the domain is complete whereas OWA presupposes that
the information about the domain is incomplete. For the retrieval of information
Closed World Assumption means that anything which is not known to be true, is
assumed to be false. Under Open World Assumption things that are not known to
be true are not assumed to be false. ‘...this is one of the reasons why inferences in
DLs are often more complex than query answering in databases.’[6]

To enable solutions for different reasoning tasks on problems described in DLs, DL-
reasoner implement a set of algorithms for standard inference services, retrieval in-
ference services and non-standard inference services. We present some of the core
services that are important for our work.

2.2.1 Standard Inference Services

To check the consistency of an ABox w.r.t. the TBox a DL-reasoner has to test if all
models of assertions in the ABox are also models of the TBox. All ABoxes that are

2.2 DL systems 13

not consistent are called inconsistent.

To build a hierarchy of concept names the DL-reasoner has to check if a concept D
subsumes a concept C' w.r.t. a TBox. This is the case if, for all interpretations that
are models of the TBox, C! ¢ D' holds [7].

The classification service finds all children and parents of a given concept C. The
children of a concept C' are the most-general concept names that are subsumed by
the concept C', mentioned in the TBox.

A coherence check tests if all concept names mentioned in the TBox are consistent
without computing the concept hierarchy. A concept C' is consistent w.r.t. a TBox
if there exists a model of C that is also a model of the TBox [7].

A service called instance checking tests if an individual 7 is an instance of a concept

C'. This is the case if i/ € C'! holds for all models of the TBox [7].

Direct Types are the most-specific concept names in a TBox that an individual is an
instance of.

If all models of a TBox T" and all models of an ABox A are also models of an ABox
A’ than we say that A’ is entailed by T and A and we write Tu A £ A’. This
problem is called ABox entailment [7]. We show later on how this problem can be
solved by a query answering service and in the next chapter we will argue why this
problem corresponds to our main goal of finding a semantic matching for semantic
descriptions.

2.2.2 Retrieval Inference Services

In our semantic matching task and also in other practical applications, a DL-reasoner
needs to find individuals in an ABox that satisfy certain conditions. We discuss the
basic retrieval inference service a conjunctive queries in the following.

The problem to find all individuals in an ABox that are instances of a given concept
C or all individuals that are related via a certain role R is called retrieval inference
problem. Sometimes one would like not only to retrieve individuals that are asserted
to be an instance of a certain concept or a certain role but also to express complex
relational structures. Therefore a more expressive query language such as conjunctive
queries is required.

14 2 Introduction to Description Logics and DL Systems

A query consists of a head and a body. The query head lists variables to which the
retrieved individuals are bound. The query body consists of so-called query atoms.
All variables listed in the head have to appear in at least one of the query atoms. A
query has the form: (X1,..., X,,)|atomy, ... atom,, [7].

A query atom may be a concept query atom (C(X)), a role query atom (R(X,Y)), a
same-as query atom (X =Y")) or a so-called concrete domain query atom. Complex
queries can be built from query atoms by using the following boolean operators:
conjunction (indicated by commas), union (v) and query atom negation (-).

As an example we provide a complex query that asks for all running competitions
and all athletes that are taking part in these competitions:

(X, Y)|RunningCompetition(X), Athlete(Y"), hasParticipant(X,Y") (2.1)

Queries of such a form are called conjunctive queries. In literature (e.g. [8],[9] and
[10]) two different kinds of semantics are defined for conjunctive queries. In standard
conjunctive queries, variables are bound to named domain objects which may be
anonymous. In grounded conjunctive queries variables are only bound to domain
objects that are named in the ontology / KB.

As already mentioned, ABox entailment can be solved by using query answering. A
Boolean query is a query with no variables in the head. An ABox A’ is entailed by
a TBox T and an ABox A (Tu Ak A') if for all assertions a in A’ it holds that the
boolean query {()|a} returns true as an answer [7]. This is a very important fact for
this work.

2.2.3 Non-standard Inference Services

Besides the standard inference services and retrieval inference services, there are some
non-standard inference services that are implemented by DL-reasoners. We describe
only abduction as it is important for this work. Please refer to the literature for more
informations about other non-standard inference services [7].

Abductions tries to find a set of explanations A for a given set of assertion I' such
that A is consistent w.r.t. to the ABox A and the TBox T and satisfies:

1. TUAUAET

2. If A’ is an ABox satisfying Tu Au A’ T, then A E A’

2.2 DL systems 15

3. TEA

In this work we only focus on reasoning services that are implemented by practical
DL-reasoners like RacerPro. More details on reasoning services can be found in [7]
[11] and [12]

2.2.4 New Racer Query Language (nRQL)

The DL-reasoner RacerPro supports two kind of query languages for grounded conjunc-
tive queries, namely new Racer Query Language (nRQL) and Simple Protocol and
RDF Query Language (SPARQL) [12][13]. In this work we focus on nRQL be-
cause it not only allows us to formulate complex queries but also enables powerful
so-called miniLisp programs that are executed within the DIL-reasoner (server-side
execution).

The query in 2.1 can be formulated in nRQL as follows:

(retrieve (?x ?y)
(and (?x RunningCompetition)
(?y Athlete)
(?x ?y hasParticipant)))

The first line indicates that the query requires an instance retrieval for the variable
bindings 7x and ?y. In the following line, the keyword and conjuncts all query atoms.
Beside and, nRQL supports also other keywords as Boolean operators, namely or
for the union and neg for the query atom negation.

Keep in mind that query atom negation refers to the complement of the query
atom. It implements the Negation as Failure Semantics (NAF). E.g. (neg (?y
Athlete)) returns all individuals for which it cannot be proven that they are an
instance of Athlete. More details on the NAF can be found in [13] and [12].

Besides instance retrieval, nRQL has a simple expression language called ‘MiniLisp’.
MiniLisp is a Lisp dialect and enables the user to write simple, termination-safe
‘programs’ that are executed on the server side, e.g. by RacerPro.

MiniLisp supports the following features:

e user-defined output formats for query results (e.g., query results can also be
written into a file)

16 2 Introduction to Description Logics and DL Systems

e certain kinds of combined ABox/TBox queries

e cfficient aggregation operators (e.g., sum, avg, analogous to the Structured
Query Language(SQL) in database systems)

e so-called lambda expressions, which can denote (anonymous) functions

Lambda expressions are very useful when it comes to process results of RacerPro
functions on server side. For instance, if we get a list of individuals as a result
of a function call and we are not interested in the individuals themselves but on
their direct types, this can be efficiently solved on the server side by using lambda
expressions.

In the next two chapters we show how query answering and abduction can be exploi-
ted in order to match different semantic descriptions of a multimedia document.

3 Approach 1: Precision and Recall

As already mentioned, in the BOEMIE project the semantic descriptions of media
objects and multimedia documents are stored in the form of ABoxes.

Henceforth we denote an ABox where the manually annotated semantic descriptions
are stored by M and an ABox where the system generated semantic descriptions are
stored is denoted by S.

In this chapter we propose an approach which computes measurement values that
reveal how many assertions from a manually annotated ABox M are also in the
system generated ABox S.

The problem of ABox entailment 7 u A = A’ (presented in Section 2.2.1) represents
exactly our challenge to compare the manually annotated ABox M with the system
generated ABox §. We assume that both ABoxes share the same TBox 7. Therefore
we formulate our problem to:

TuSeEM

This means that, if the system generated ABox S entails the manually annotated
ABox M, all information about a media object that is stated by the annotators can
also be found in § and thus the information in S is at least as specific as stated in

M.

In Section 2.2.2 we mentioned that ABox entailment can be solved by query retrieval.
We exploit this fact to compute a measurement value that describes ‘how much’
information in M is also found in §. This is shown after a short introduction to
precision and recall.

3.1 Definition of Precision and Recall

In the field of information retrieval, precision and recall have become common stan-
dards to measure the performance of an information retrieval system (IRS).

18 3 Approach 1: Precision and Recall

Normally these values measure how good documents of a certain kind can be retrieved
from a large corpus of documents. E.g. if we have a corpus of landscapes and would
like to know how good the performance of retrieving beach landscapes is, we send
a query to our IRS and count the number of landscapes that our IRS gives us back
(the retrieved ones), the number of landscapes that are retrieved and actually show
a beach (the correctly retrieved) and all landscapes that are in the corpus and show
a beach (the relevant ones). Now we can calculate precision and recall using the
counted numbers.

Definition 1 (Recall) Recall is the fraction between the number of the elements in
the intersection of the relevant with the retrieved elements and the number of relevant
elements R € [0,1].

_ |relevant nretrieved| (3.1)
- [relevant| '

Definition 2 (Precision) Precision is the fraction between the number of the ele-
ments in the intersection of the relevant elements with the retrieved and the number
of retrieved elements P € [0,1].

[relevant N retrieved|

2 (3.2)

|retrieved|

In our case we do not examine a corpus of documents, but pairs of ABoxes. However
these ABoxes can be seen as sets of assertions. Thus we can formulate relevant and
retrieved elements regarding our two ABoxes M and S.

Similar to the information retrieval scenario, we define all answers that can be re-
trieved from M using a query ¢ as the relevant elements. Therefore the number of
relevant elements |relevant| is equal to the cardinality of the answers retrieved from
ABox M using query ¢ (or a set of queries Q).

Respectively, the number of retrieved elements |retrieved| is equal to the cardinality
of the answers retrieved from ABox S using query ¢ (or a set of queries Q).

And the number of elements in the intersection of precision and recall |relevant n retrieved,
is the cardinality of answers that can be retrieved from ABox M as well as from ABox
S using query ¢ (or a set of queries Q).

3.2 The Process 19

With these definitions we are able to calculate precision and recall according to
Formulas 3.1 and 3.2.

In the next section, we propose a process that first extracts a set of relevant assertions
from M and a set of assertions from § that could be retrieved and then transforms
the relevant assertions into grounded conjunctive queries. These queries are then
retrieved from §. Finally precision and recall are computed using the number of
positively answered queries, relevant assertions and retrieved assertions.

3.2 The Process

Our evaluation process has four steps:
1. Extract ‘structures’ from M and S (structure scan).

2. Transform ‘structures’ from M into grounded conjunctive queries (query trans-
formation).

3. Query S using queries from 2(structure retrieval).
4. Compute precision and recall.

We call ‘structure’ a set of all assertions that follow a specific characteristic and can
be retrieved from an ABox by a query g (or a set of queries @)). For example two
individuals, their datatype properties, their datatype fillers and the role assertion
between them is a ‘structure’. The structures should be defined in such a way that
each role assertion belong to only one structure.

The next step, before computing precision and recall, is to transform these assertions
into grounded conjunctive queries. As mentioned in Section 1.2, we cannot rely on
the individual names. Therefore the queries have to be anonymized, which means
that individual names are replaced by variables. This leads to the problem that there
may be more than one structures in S fitting to the query. More precisely: We are
not always able to identify an individual from M as a unique individual in §.

However, datatype filler and media related information that refer to the individuals
can help to identify individuals in S.

20 3 Approach 1: Precision and Recall

3.3 Datatype Properties and Media-related Information

In the BOEMIE semantics extraction process, as described in Section 1.1, analysis
generates descriptions for objects of low abstraction level, which can be directly
identified in the media object. We refer to these objects as surface-level objects. If
analysis identifies a surface-level object, it gives a unique name to that object and
adds a concept assertion to the analysis ABox. In the TBox, used by the BOEMIE
semantics extraction process, all concepts that can be identified by the analysis are
subsumed by a concept called Mild Level Concepts (MLC). We refer to individuals
created by the analysis as surface-level individuals.

In the text modality, analysis identifies named entities (strings) and asserts them to
the ABox by exploiting datatype properties. For example if a text contains the string
‘Isinbayeva’, analysis identifies it as a named entity and states a concept assertion
PersonName(p;) and also a datatype property hasValue(py,‘Isinbayeva’) in the
ABox. The string ‘Isinbayeva’ is used as a datatype filler for the datatype property.

Analysis also asserts relations between named entities in the ABox. For example
if a performance is identified in a text section that is related to the named entity
‘Isinbayeva’, analysis also states a concept assertion Per formance(per f1) and a role
assertion

PersonName2Per formance(py,per fi) in the ABox.

Besides the datatype filler in the text modality, in every modality media related
informations are created and asserted with reference to individuals. For example in
text modality, the positions of tokens are stored, in image modality the positions of
regions of the extracted objects are stored. etc.

We can use this additional information to identify M LC' instances.
In this work we take only the datatype fillers into account, because we focus on the

text modality where datatype fillers are available. All proposed principals apply also
if media related information are included.

manually annotated ABox M system generated ABox S
pNamej:PersonName x1:PersonName
pNamesa:PersonName xo:PersonName
pNames:PersonName x3:PersonName

(pNamei, ‘Jaroslav Rybakov'):hasV alue (z1, ‘Jaroslav Rybakov'):hasValue
(pNamea, ‘Oskari Fronensis'):hasValue (z2, ‘Oskari Fronensis'):hasValue

Figure 3.1: GS-ABox and SI-ABox Individuals with their datatype properties

3.4 Structure Scan 21

As an example consider Figure 3.1 that shows two ABoxes: a manually annotated
ABox M and a system generated ABox S. In both ABoxes there are three individuals
of the type PersonName, two with datatype filler and one without. The individual
pName; from M can easily be identified as corresponding to x; in S, because both
individuals have the same datatype filler, namely ‘Jaroslav Rybakov’. The same
applies to pNamey and x.

The third individual in M and S has no datatype filler. To identify the corresponding
individual in § it is not sufficient to ask for an individual of the type PersonName
in the ABox §. This would result in an answer with all three individuals. Instead
we have to formulate a query where an individual is bound to a variable that is of
the type PersonName and has no value for the datatype property hasValue. As
x3 is the only individual in § without a datatype filler, we get x3 as the matching
individual for pNames.

Things become more complicated when it comes to identify corresponding individuals
that are created by the interpretation process, because they do not have datatype
fillers. These individuals are hypothesized during interpretation process and given
unique names.

However, all hypothesized individuals are instances of concepts that are all subsumed
by the concept H LC', which stands for ‘High Level Concept’. We refer to individuals
created by the interpretation process as hypothesized individuals. Hypothesized indi-
viduals represent abstract objects that are composed of surface-level objects. During
the interpretation process hypothesized individuals are created to explain the occur-
rence of surface-level individuals. Role assertions are also introduced between the
new hypothesized individuals and the surface-level individuals. To identify the cor-
responding hypothesized individual we can integrate all the surface-level individuals
and their datatype fillers, which the hypothesized individual is related to.

Therefore we define for the purpose of evaluation so-called ‘levels of abstraction’ that
specify the characteristics of the structures that are scanned in M and §.

3.4 Structure Scan

In this section, we present how the levels of abstraction are applied to ABoxes and
how structures are extracted from the ABox M and S depending on the level of
abstraction.

22 3 Approach 1: Precision and Recall

As we need more information about the individuals e.g. their datatype properties and
role fillers, we extract structures form an ABox by forming a so-called ‘s-expression’
in MiniLisp that ‘scans’ the ABox for semantic structure of a certain kind, instead of
using a simple queries. We call this kind of s-expression ‘structure scan expression’.
This structure scan expression is executed on the server site of RacerPro and is more
efficient than using multiple queries to retrieve the same information.

Depending on the structure scan expression, the retrieved structures can consist of
concept assertions, role assertions, datatype properties and datatype filler or unions
of these.

3.4.1 Levels of Abstraction

e N ABox S

&/new,Polevault "
$

new,Athlete

Figure 3.2: Levels of Abstraction in the manually annotated ABox M and the system
generated ABox S

Figure 3.2 shows the structures of abstraction levels Ly to Lz for the ABoxes M
and §. The small black circles in the graph indicate individuals and the black boxes
indicate datatype fillers. The structures of each level are indicated by the red dashed
lines. As one can see the structures of each level includes all concept assertions, role
assertions and datatype fillers. Figure 3.2 also shows that the individual names in
both ABoxes do not correspond to each other and the concepts asserted to individuals
in § may be more specific than in M.

In the following we present structure scan expressions for each level.

3.4 Structure Scan 23

3.4.2 Abstraction Level 0

At the lowest level we examine how to match instances that have no children instances
in both ABoxes M and S. These instances result from the analysis process. We call
these structures ‘level 0.

As mentioned, all individuals that are created by analysis are instances of the concept
MLC. We apply the following structure scan expression to extract direct types and
datatype properties with datatype fillers for all individuals in the ABox that are
instances of MLC.

(evaluate (progn
(abox-consistent-p)
(let* ((allMLCs
(retrieve-concept-instances MLC
(current-abox)))
(concepts
(maplist
(lambda (x)
(list
(most-specific-instantiators x
(current—-abox))
(get-individual-datatype-fillers x)))
allMLCs)))
concepts)))

Figure 3.3: Structure scan expression for level 0 structures

Figure 3.3 shows the structure scan expression, a MiniLisp program, for level 0
structures. In the first line the keyword evaluate instructs the DL-reasoner to
execute the expressions as MiniLips programs. progn instructs that the following
expressions are executed in sequence. In line two we instruct the DL-reasoner to
do a consistency check. The next 12 lines executes a small program that gets all
individuals that are instance of M LC' and extracts their direct types and datatype
fillers. The function let* assigns function results to a temporal variable. The
function retrieve—-concept—instances with the parameter MLC gathers all
individuals that are instance of the concept M LC. With the lambda expression (see
2.2.4) we formulate a self defined anonymous function, that extracts the direct types
(most-specific-instantiators x) of the individual assigned to the temporal
variable x and the datatype fillers for the individual x
(get-individual-datatype-fillers x).

24 3 Approach 1: Precision and Recall

3.4.3 Abstraction Level 1

In the next level, we scan for level 1 structures. Here we take pairs of surface-level
instances that are related with each other. The structures look like (j : MLC,i :
MLC,(i,j):r), where j: MLC,i: MLC denotes that the two individuals are both
instances of the concept MLC and (i,j) : r denotes that they are related to each
other.

The level 1 structure scan expression for this kind of structures is:

(evaluate
(progn
(abox-consistent-p)
(remove nil
(maplist
(lambda (role)
(let* ((class MLC)
(res (racer-retrieve-related-individuals role))
(mlcs (remove nil
(maplist
(lambda (pair)
(when
(and
(individual-instance-p
(first pair) class (current-abox))
(individual-instance-p
(second pair) class (current-abox)))
(list
(cons
(most-specific-instantiators

(first pair) (current-abox))
(get-individual-datatype-fillers
(first pair) (current-abox)))

(cons
(most-specific-instantiators

(second pair) (current-abox))
(get-individual-datatype-fillers
(second pair) (current-abox))))))

res))))
(when mlcs (cons role mlcs))))
(remove—-if consp (all-roles))))))

Figure 3.4: Structure scan expression for level 1 structures

Figure 3.4 shows the structure scan expression for level 1 structures in nRQL syntax.
To understand this expression we have to start at the last line, namely with the
expression (remove—-if consp (all-roles)). This expression creates a list
of all roles that are not inverse roles. The result of this expression is then given
to the first maplist function which iterates over all elements of the list and hands
it over to the first lambda function lambda (role). In the lambda function the
function racer-retrieve-related-individuals results in a list of tuples of
individuals that are related with the role assigned to the temporal variable role.

3.4 Structure Scan 25

In a maplist expression and the second lambda function, each of these tuples is
assigned to the variable pair. First we check if both individuals are instances of
the concept M LC'. This is done with the function individual-instance-p. If
this test succeeds, we then extract the direct types and the datatype fillers of both
individuals in the tuple. We give this information back together with the role name
as a result for this level 1 structure scan expression (cons role mlcs).

At Level 0 and level 1 we mainly evaluate the results from the semantic analysis
process, but as they are the building blocks for abstract knowledge, they may be the
cause for a missing or a misinterpreted result. An hypothesized individual is only
constructed by the interpretation process, if there is a proper interpretation rule
defined and all necessary surface-level individuals and roles have been generated by
the analysis process. Therefore it is important to guarantee that all preconditions
are given for the interpretation engine to produce abstract interpretations. Moreover
to motivate learning, we would like to find the reason why an interpretation failed.

If instances or relations that are a presupposition for an aggregate concept are mis-
sing, then they can be definitely identified as the source for a missing interpretation.
Otherwise the failure of interpretation is caused by missing rules or other causes.

3.4.4 Abstraction Level 2

Structures that represent aggregates and their relations that result from the interpre-
tation process are considered starting from level 2. For level 2, we proceed in the same
manner as for the lower levels but with the difference that we ask in the structure
scan expression for hypothesized instances that are in a relation with surface-level
instances.

In the TBoxes of the BOEMIE project the hypothesized individuals are all instances
of the concept HLC', so to identify them we just have to ask for instances of the type
HLC.

A structure scan expression for level 2 structures is stated in the following but its
implementation details are not described here for the sake of brevity.

(evaluate (letx ((roles (all-roles))
(roles (remove-if consp roles))
(roles (remove-if (lambda (x)
(role-used-as—-datatype-property-p x
(current-tbox))) roles)))
(evaluate (cons ’'progn

26 3 Approach 1: Precision and Recall

(maplist (lambda (x)

‘(role-has-parent (quote ,x) "HLR (current-tbox)))
roles)))))
(evaluate (let ((res (retrieve ’ (?x ?y) ' (and (?x #HLC)
(?x ?y HLR)
(?y MLC)

(neg (project-to (?x)
(and (?x ?z HLR)

(?z HLC))))))))
(let ((inds (remove-duplicates (maplist (lambda (x)
(second (first x))) res))))

(let ((res2 (maplist (lambda (ind)
(list ind
(maplist (lambda (x)
(second (second x)))
(remove—-if (lambda (x)
(not (equal

(second (first x)) ind)))
res))))
inds)))
(maplist (lambda (x)
(list
(cons :HLC

(most-specific-instantiators
(first x) (current-abox)))
(maplist (lambda (mlc)
(list
(cons :relations
(remove-if (lambda(role)
(role-equivalent-p role
"HLR (current-tbox)))
(retrieve-individual-filled-roles
(first x) mlc (current—-abox))))
(cons :MLC
(most-specific—-instantiators
mlc (current-abox)))
(cons :D-Filler
(get-individual-datatype-fillers
mlc (current-abox)))))
(second x))
)) res2)))))

Level 2 structure scan expression in nRQL syntax.

3.4.5 Abstraction Level > 3

In the next level, namely level 3, we scan for structure for abstract hypothesized
individuals that are composed of at least one structure of the level 2 and other
structures of the level < 2. This means we scan for hypothesized instances that are
in relation to at least one hypothesized instance which is related only to surface-level
instances.

3.5 Query 'Transformation 27

Carrying this idea on for further steps we can define this algorithm recursively and
say that a level n structure consists of at least one structure of the level n-1 (and
other structures of the level < n-1 for all n > 0).

3.5 Query Transformation

In this section we propose how to transform the results of structure scan expressions
into grounded conjunctive queries. We described grounded conjunctive queries in
general in Section 2.2.2.

As we are only interested if the structure we extracted from M is also available in
S, it is sufficient to formulate a Boolean query with query atoms that represents the
information we extracted during the structure scan.

For example assume that the level 0 structure scan resulted in the following infor-
mation:

(((PersonName))
((hasPersonNameValue
((d-literal "Slesarenko" (d-base-type #!xsd:string))))))
(((PersonName))
((hasPersonNameValue
((d-literal "Isinbayeva" (d-base-type #!xsd:string))))))

As we see there are two structures represented in this result, both are individuals of
the type PersonName and have datatype properties of the name
hasPersonNameV alue. The first has the datatype filler *Slesarenko’ and the
second ‘*Isinbayeva’.

To represent the first structure as a Boolean query we choose the variable ?x for the
individual name and formulate the query as following:

(retrieve () (and (?x PersonName)
(?x (string= hasPersonNameValue "Slesarenko"))))

The first query atom (?x PersonName) represents the concept assertion and the
second query atom

(?x (string= hasPersonNameValue ‘Slesarenko’)) represents the da-
tatype property with its role filler. Both query atoms are conjuncted with the a
union indicated by the keyword and.

28 3 Approach 1: Precision and Recall

The same principals apply to the second structure but with the datatype filler
"Isinbayeva’ instead.

If the structure includes more than one individual then we have to introduce a new
variable name for each different individual.

For example let us assume the level 1 structure scan has in the following result:

((personNameToRanking
((((PersonName))
(hasPersonNameValue
((d-literal "Marion Jones" (d-base-type #!xsd:string)))))
(((Ranking))
(hasRankingValue
((d-literal "5" (d-base-type #!xsd:string))))))

To represent this structure we have to introduce two variables: one for the individual
of the type PersonName and one for the individual of the type Ranking. If we

choose ?x1 as a variable for the first individual and ?x2 as a variable for the second
one, our structure retrieval query would look as follows:

(retrieve () (and
(?x1 PersonName)
(?x1 (string= hasPersonNameValue "Marion Jones"))
(?x2 Ranking)
(?x2 (string= hasRankingValue "5"))
(?x1 ?x2 personNameToRanking)))

The query atom (?x1 ?x2 personNameToRanking) states that the two indivi-
duals are related with each other by the role personNameT oRanking.

The same principals apply also to structures of all further levels.

3.6 Structure Retrieval

After a structure is transformed into a Boolean query we can use the DL-reasoner to
check if the structures we have extracted form M are also available in S, by asking
the DL-reasoner to query them in S.

The DL-reasoner first tries to substitute the variable with individuals from the ABox
and checks if all query atoms can be fulfilled for the variable substitution with respect
to the TBox. If all query atoms can be verified as true then the result of the query
is true otherwise false.

3.7 Calculation of Precision and Recall 29

A positive result from the DL-reasoner means that the structure is in the intersection
of relevant and retrieved. To calculate precision and recall we are interested in the
cardinality of the intersection between the relevant and the retrieved structures.
Therefore we simply count the number of all positively answered structure retrieved
queries.

3.7 Calculation of Precision and Recall

To calculate precision and recall we need three important numbers:
1. The number of relevant structures in M
2. The number of retrievable structures in S
3. The cardinality of the intersection of relevant and retrieved structures.

To get the number of relevant structures we just count the structures of a specific
kind after the structure scan. E.g in level 0 we count the number of structures that
have the same direct type, in level 1 we count the number of structures that have
the same relation etc.

To get the number of retrieved structures we apply the structure scan process to the
ABox § and count similar structures by the same criteria as for the structures in

M.

Cardinality of the intersection of relevant and retrieved is the number of structures
in M which structure scan query could also be positively answered in §.

Sometimes the number of structures that are computed as correctly retrievable (inter-
section of relevant and retrieved) is greater than the number of the actual structures
in §. This is caused by the lack of a unique mapping between the individuals in
M and the individuals in §. This is especially the case if an individual cannot be
distinguished by their direct types, datatype properties or multimedia information.

Without further restrictions, this is a violation of set theory regularities, namely that
the number of elements in an intersection between two sets cannot be greater than
the number of elements of one of the sets. This would also lead to errors in our
calculations of precision and recall.

30 3 Approach 1: Precision and Recall

For example assume the following small ABoxes:

ABox M ABox S
ai:AthleteName | x1:PoleVaulter Name
ag:AthleteName
asz:AthleteName

With the corresponding TBox:

PersonNamec M LC
AthleteName c PersonName
PoleV aulter Name £ Athlete Name

There are three AthleteName instances in M but only one possible matching in-
dividual in the ABox S§. All instances in the ABox M and in the ABox S lack
datatype properties. If we apply the process of structure scan, query transformation
and structure retrieval on this example we get a positive matching of al, a2, a3 with
x1, because PoleV aulter Name & Athlete Name and therefore the structure retrieval
queries result positively for all three individuals in M.

With the definition the intersection we would get 3 for |relevant nretrieved| and
this would indicate to a recall of 1 at this level for this structure. Anyhow we know
that there is only one instance in & which can match with at most one instance from

M.
Therefore we restrict our definition of the intersection between relevant and retrieved

as follows:
|relevant N retrieved| < min(|relevant|, [retrieved|) (3.3)

Without this additional restriction the results of our example ABoxes would be:

concept name | [relevant| | |retrieved| | |relevantn retrieved| P R
PersonName 3 1 3 ERROR | 1

The calculation of the precision value for our example would lead to an error be-

cause:

_ [relevant nretrieved] 3 _ 3 ERROR! (3.4)

|retrieved| 1

This is not possible, because P € [0, 1].

3.7 Calculation of Precision and Recall 31

With the restriction we get a valid value for the precision in our example:

relevant N retrieved 1
p-! | ls-L 4 (3.5)
|retrieved| 1
With our restriction we get the following results:
conceptname | |relevant| | |retrieved| | |relevantnretrieved| | P R
PersonName 3 1 1 1 0,33

The ambiguity in finding matching individuals may be distinguished when structures
of a higher abstraction level are taken into account, because they may be distingui-
shed by their relations or the individuals they are related to.

4 Approach 2: Evaluation with Abduction

In the last chapter, we showed how measurement values known in the field of infor-
mation retrieval can be applied to ABox evaluation. In this chapter we present an
approach where we use abduction to uncover the differences between two ABoxes.
The principals of structure scan, query transformation and structure retrieval by
queries are applied again here. But this time we submit our structure retrieval que-
ries with the keyword ‘retrieve-with-explanations’ instead of just ‘retrieve’ to call the
abduction service in the DL-reasoner.

Abduction is reasoning from effects to causes or from observations to explanations.
Formally, abduction can be expressed as:

TUuAUAET (4.1)

where 7 is the TBox and A is the ABox of the background knowledge and I" the
observations already made by analysis. The explanations (A) are to be computed
by the abduction process. If description logics are used as the underlying knowledge
representation formalism, A and I' are ABoxes.

4.1 Omissions and Additions

In order to compare two ABoxes (M,S) for difference, consider this task as a logical
entailment problem and adjust Formula 4.1 as follows:

TuSUAs mMEM (4.2)

Now we can use abduction to derive explanations A for the given assertions in M
such that A is consistent to w.r.t. (7,S). In other words, what has to be added to
S such that M is entailed in S.

We call this set of assertions As_nq omissions, because they are the assertions that
are missing in § according to M.

34 4 Approach 2: Evaluation with Abduction

To discover the assertions that are in the system generated ABox S but are missing
in M, we apply the following formula:

TUMUAM_SPS (43)

Since Ap_s is a set of assertions that exist in & but not in M we call this set
additions.

4.2 Examples for Comparison of ABoxes

The steps of transforming the results of the structure scan and the retrieval pro-
cess are omitted to keep track of the main idea. For more information on query
transformation see 3.5.

Example 1: Low-Level Omissions

ABox M ABox S
b1:Body x1:Body
f1:Face y1:Face

(b1, f1):mear
p1:Athlete

(p1, bi):hasPart

(p1, f1):hasPart

Figure 4.1: A defective image ABox § and the corresponding ABox M

Person € 3hasPart.Body N 3hasPart.Facenn HLC
Athlete c Personn HLC'
PoleVaulter = Athlete
SportsTrial € 3<, hasParticipant. Athleten HLC
Bodyc MLC n-Face
Facec MLC
PoleV ault c SportsTrial N VhasParticipant.PoleV aulter n HLC

Figure 4.2: An simple TBox for ABoxes 4.1

As a example, consider the two ABoxes shown in figure 4.1 where the relation near
between Body and Face is missing in the ABox § and therefore no individual of type
Person could be interpreted as an explanation.

To detect this missing relation, we can evaluate the ABox through abduction as
follows: First we check whether all level 0 (low-level) structures match. Following

oD =

4.2 Examples for Comparison of ABoxes 35

the process steps of ‘structure scan’, ‘query transformation’ and ‘structure retrieval’
we prove that all low-level individuals are available in both ABoxes.

In the next level we evaluate whether all low-level relations between two low-level
objects match. After structure scan and query transformation, we pose the following

query to the DL-reasoner for answers form S.

(retrieve

()

(and
(?x Body)
(?y Face)
(?x ?y near))

We get the following result:

This means that the structure of an individual of the type Body that is in a relation
near to an individual of the type Face cannot be retrieved from the ABox S.

Now we use abduction to explain why this structure could not be retrieved. The
abduction query look as follows:

(retrieve-with-explanation
(?x ?y)

(and

(?x Body)

(?y Face)

(?x ?y near))
ronly-best-p t
)

Apart from the function name ‘retrieve-with-explanation’ and the abduction para-
meter “:only-best-p t’, this query looks just like our original structure retrieval query.
The parameter :only-best-p t’ state that we are only interested in the best solution,
which plays only a role if more then one solution is computed by the DL-reasoner.

As a result for the abduction query we get the following:
(((:tuple (?x #!:x1) (2y #!:y1l))

(:new-inds)
(:hypothesized-assertions (related #!:x1 #!:y1l #!:near)))))

36 4 Approach 2: Evaluation with Abduction

In the first line the keyword t indicates that an explanation could be computed. The
second line shows variable bindings from the ABox S that match the query. In our
example x; can be bound to the variable ?x and y; to ?y. Line 3 indicates new
individuals that had to be hypothesized to answer the query. In our example there
are no new individuals necessary, and thus nothing is listed here. From line 4 on,
all assertions that have to be hypothesized are listed. The result shows that in the
ABox S a relation near between z; and y; has to be hypothesized to answer the
query with true.

This hypothesized assertion is missing in ABox S from Figure 4.1. Because the
low-level relations, evaluated at level 1, should have been extracted in the analysis

process, we can report this result as a feedback to the analysis module.

Example 2: High-level Omissions

ABox M ABox S
b1:Body z1:Body
fi1:Face y1:Face

(b1, f1):near (z1, y1):near
p1:Athlete

(p1, b1):hasPart

(p1, f1):hasPart

Figure 4.3: ABox § is missing abstract objects.

As another example consider Figure 4.3 where both ABoxes match completely at the
low-level but the ABox § is missing an abstract individual of the type Athlete and
its relations. Tor this example there are no omissions and additions up to level 1.
However at level 2 we will not be able to get an answer for the query that asks for a
Athlete that has a Body which is near a Face.

(retrieve-with-explanation
(?x 2y ?z)
(and

(?x Body)

(?y Face)

(?x ?y near)

(?z Athlete)

(?z ?x hasPart)

(?z ?y hasPart))
:ronly-best-p nil
:show-score-p nil
:final-consistency-checking-p t

Figure 4.4: Abduction Query for the Level 2 structure for ABoxes 4.3

4.2 Examples for Comparison of ABoxes 37

(((:tuple (?x #!:x1) (2?y #!:yl) (2z IND-73)
(:new—-inds IND-73)
(:hypothesized-assertions

(related IND-73 #!:x1 #!:hasPart)
(instance IND-73 #!:Athlete)
(related IND-73 #!:y1l #!:hasPart)))))

~NOOULHRWN -

Figure 4.5: Result of the Abduction Query 4.4

Figure 4.4 shows the abduction query and figure 4.5 the corresponding result.

Line 2 of the result shown in figure 4.5 displays the individuals z; and 3; that
were found as bindings for the Body and Face variables and also introduces a new
individual I N D —73, which is also listed in line 3 in the list of new individuals. This
proves that an individual of type Athlete and its relations to a face and a body are
missing in the ABox &, shown in Figure 4.3.

In this example all low-level structures match but the evaluation on the high-level
structure detected omissions. It is very likely that this kind of missing interpretation
is caused by a missing or incorrect defined interpretation rule. Therefore this result
is an important feedback for the interpretation module.

Example 3: Additions

ABox M ABox S
b1:Body z1:Body
fi1:Face y1:Face
(b1, f1):near (z1, y1):near
p1:Athlete newi:PoleV aulter
(p1, b1):hasPart (newi, z1):hasPart
(p1, f1):hasPart (newi, y1):hasPart
(hj1, p1):hasParticipant | (newz, new):hasParticipant
hj1:HighJump newsy:PoleV ault

Figure 4.6: Missinterpretation in the ABox S

Person c JhasPart.Body N IhasPart.Facen HLC
Athlete © Personn HLC
PoleVaulter = Athlete
SportsTrial € 3<; hasParticipant. Athlete n HLC
Body c MLC n-Face
Facec MLC
PoleV ault € SportsTrial N YhasParticipant.PoleV aulter 1 HLC
HighJump € SportsTrial N ~PoleVaultn HLC

Figure 4.7: An simple TBox for ABoxes in figure 4.6

38 4 Approach 2: Evaluation with Abduction

Sometimes, the interpretation engine interprets an object completely differently than
it is stated in the manually annotated ABox M by the human annotators. The reason
for this may be an incorrectly designed interpretation rule or an incorrectly analyzed
object in the analysis ABox. This means that either the analysis module or the
interpretation engine added something to the system generated ABox compared to
the manually annotated ABox.

Using the Abduction process we can detect these additions and report them as feed-
back either to the analysis module or the interpretation module.

Figure 4.6 shows an ABox M and an ABox &, where in the ABox § a person is
interpreted as an abstract composition of a body and a face, but then is wrongly
assigned as a participant of a pole vault competition.

To detect these additions we have to first scan the structure of the ABox S, then
to transform the results into grounded conjunctive queries and finally try to retrieve
them from the ABox M. This will already fail at level 1 when we try to retrieve an
individual of type PoleV aulter.
(t

(((:tuple (?x #!:bl) (2y #!:f1) (2z #!:pl))

(:new-inds)
(:hypothesized-assertions (instance #!:pl #!:PoleVaulter)))))

Figure 4.8: Result of the abduction query for a PoleVaulter in the ABox M shown
in 4.6

Figure 4.8 shows the result of the abduction query. The results states that the
concept assertion PoleVaulter(p;) has to be added to M in order to answer the
query with true. From the view point of evaluation this assertion has to be seen as
an addition of the ABox & compared to the ABox M.

However when we retrieve the direct type of p; which is Athlete, we observe that
PoleV aulter is subsumed by Athlete (PoleV aulter © Athlete). This detected addi-
tion may be a correct specialization, according to the TBox shown in Figure 4.7. This
kind of subsumption checking becomes only necessary, if manual annotated ABox M
is more general than the system interpreted ABox.

At level 2 we try to explain why there is a structure of a pole vault in the ABox S
that cannot be retrieved from the ABox M using the following query:

1 (retrieve-with-explanation
(?x 2?2y ?z ?w)

4.2 Examples for Comparison of ABoxes 39

(and

(?x Body)

(?y Face)

(?x ?y near)

(?z PoleVaulter)

(?z ?xX hasPart)

(?z ?y hasPart)

(?w PoleVault)

(?w ?z hasParticipant))
ronly-best-p nil
:show-score-p nil
:final-consistency-checking-p t

For which we obtain the following result:

(NIL NIL :warning-only-inconsistent-explanations)

This result indicates that only inconsistent explanations can be found. To neverthe-
less retrieve explanations we have to switch off consistency checking in the query,
changing the line 14 of the abductive query to ‘:final-consistency-checking-p nil’. Per
default ‘“:final-consistency-checking-p t’ checks at the end of the computation of an
explanation whether the explanation is consistent w.r.t. the ABox and the TBox or
not.

Without consistency checking the result is:

(((:tuple (?x #!:bl) (2y #!:£f1) (2z #!:pl) (2w #!:stl))
(:new-inds)
(:hypothesized-assertions
(instance #!:pl #!:PoleVaulter)
(instance #!:hjl #!:PolevVault)))))

Here the abduction process hypothesizes that the individual hj; is of type PoleV ault.
However, since as the correct direct type of the individual hj, is HighJump, which
is disjoint with PoleVault, this is only an solution hj; is inconsistent. As we are
only interested in the difference between two ABoxes we can ignore this fact. Ho-
wever this kind of information may be interesting if the differences of ABoxes are
processed further e.g. for computing an additional measurement value depending on
the differences of ABoxes.

5 Other Matching Approaches

In this chapter we present some other approaches which also to deal with the pro-
blem of matching two ABoxes either based on graph or string matching. After an
introduction the the techniques used in that approaches, we discuss if they could also
be applied to our problems.

5.1 Graph Matching

Definition 3 (Subgraph) Let G = [V, E] and G' = [V', E’'] be two graphs.
G’ is called a subgraph of G if V'V and E' c E.
Definition 4 (Isomorphism) Two graphs G =[V,E] , P =[V', E'] are called iso-

morphic, if there exists a bijection ¢ : V — V' with xy € E < o(x)p(y) € E' for all
x,yeV. [14]

Verbalized:
We call two graphs isomorphic if they contain the same number of vertices witch are
connected in the same way.

G 4 5

Figure 5.1: two graphs isomorphic to each other

Tim Berners-Lee identifies the task of finding the difference between two ontologies
as a maximum common subgraph isomorphism problem[15].

42 5 Other Matching Approaches

5.1.1 Maximum Common Subgraph Isomorphism Problem

Given the two graphs G; and G5 the maximum common subgraph isomorphism
problem tries to find the largest induced subgraph of (G; isomorphic to a subgraph
of GQ.

5.1.2 RDF Diff

Tim Berners-Lee presents in [15] an approach, analogous to the text-diff that became
popular in version control systems like CVS, to compare two RDF graphs with each
other.

Triples of the RDF Graph are sorted by subject, and those that share a subject are

grouped together. Then RDF graphs are serialized and ‘pretty-printed’ to text files.
Now the two text files can be compared line by line with a standard text-diff tool.

Example

:Athlete :hasGender :Female;
:hasPersonName :PersonName [
:hasPersonNameValue "Isinbayeva"]

Listing 5.1: "RDF Graph M after serialization and pretty-printing.”

:PoleVaulter :hasGender :Female;
:hasPersonName :PersonName [
:hasPersonNameValue "Isinbayeva"]

Listing 5.2: "RDF Graph S after serialization and pretty-printing.”

5.1.3 Discussion

The RDFdiff technique proposed by Tim Berners-Lee lacks of an integration of the
semantics and does not include information stated in the TBox. E.g. if the ABox
S contains an individual of the type PoleV aulter and a corresponding individual in
the ABox M is of the type Athlete, this approaches would detect it as a mismatch.
However a TBox 7T, shared by both ABoxes might state that the concept PoleV aulter
is subsumed by the concept Athlete (PoleV aulter © Athlete).

5.2 Instance Matching 43

As the BOEMIE semantics extraction process is designed to generate as specific
informations about the media objects as possible this approach would detect many
specializations as a mismatch.

5.2 Instance Matching

There are several instance matching tools that compute the similarity between two
instances of two ontologies or a global value. This is mostly done by using string
based similarity, angle cosine of the ontology features of the two individuals or a graph
distance measurement of the concepts and roles of the instances [16]. In this chapter
we present the functionalities of a popular ontology matching tool and discuss why
computing just global or local similarity values is not sufficient for the evaluation of
interpretation results.

5.2.1 HMatch 2.0

HMatch 2.0 is a tool for mapping on ontologies. Mainly developed for concept
matching. HMatch’s component HMatch([/) is nowadays able to match the ABoxes
of two ontologies at the instance level.

In this section we present the operation method of HMatch(/) and discuss if it is
suitable evaluation of system generated ABoxes.

The instance matching component of HMatch checks for two individuals the similarity
of their direct types and their role fillers. The goal is to map to the same real object
in two different ontologies. To realize this HMatch uses a similarity measure called
weighted dice coefficient, that assigns some datatype fillers a factor representing
their relevance. The assumption is that ‘some properties are more important than
others’[17].

The instance matching algorithm of HMatch 2.0 works in two steps:
1. An instance tree is constructed, that represents the ABox as a tree. The goal of

this step is to represent the semantic dependencies between individuals through
their roles.

"HMatch 2.0 is used in the BOEMIE Project for ontology mapping and population purposes.

44 5 Other Matching Approaches

2. The instance matching procedure: for each couple of of individuals a degree of
similarity is computed.

e The similarity between datatype values is generated and

e it is propagated to higher level individuals, where they are combined to-
gether.

HMatch([7) uses a function datatype role filler matching that selects the most suitable
matching technique for a role filler. Also HMatch(/) uses reasoning to find out all
individuals in an ABox and to get all individuals of a given concept. The instance
matching algorithm gets as input: 2 ABoxes, Mappings from a concept mapping
process and a threshold. The threshold defines the minimal value of similarity that
two individuals have to reach to be accepted as equal.

HMatch(7) uses a top down tree traversion to get down to the datatype fillers called
‘depth first recursive visit’[17] and combines than in a bottom up process the similarity
degrees of the datatype fillers.

The Procedure MatchIndividuals(iy,is) works as following:
1. Check if the concepts of the individuals are compatible.
2. Get all role of the individuals and check if the roles match.

3. Get role fillers of each role and execute MatchIndividuals on each role filler.
IF role filler is a datatype property THEN compute the similarity degree
ELSE call MatchIndividuals on the fillers.

To combine the similarity values of datatype properties HMatch 2.0 uses a so called
‘weighted dice coefficient’. For each element of each ontology (e;,e;) a set of map-
pings M., .. =< e;,e;, R, V,S > is given. The mapping contains the semantic relation
R which the two elements share (e.g. synonym, hypernyme, meronym, etc.), a confi-
dence value V, which is the ratio between the number of occurrences of R in WordNet
and the number of relationships occurrences retrieved between the two elements and
S which denotes the similarity between the elements.

A set of similar elements Sxy is defined as the set of elements that have a similarity
value in their mapping that is higher or equal then a threshold .

Sxy = {€i7€j|€z‘ €X,ej EYya(eiaejaR7V75> € Mxy,S >t}

5.2 Instance Matching 45

The weighted dice coefficient is calculated as follows:

ZGESXZ We

wWDC =
Y Zk’EXUY Wk

(5.1)

The weights have to be defined manually by a domain expert. If no datatype property
value is present than HMatch 2.0 makes an optimistic supposition and assumes the
individuals to be equal if their direct types match according to the TBox matching
of HMatch. This decision is taken, because it is assumed that the ontology is well
defined and all existential restrictions must exist. An absence of other properties
does not take in the similarity degree computation.

In a semantic clustering process the roles are classified according to the meaning
they involved. It is distinguished between domain-independent features and domain-
specific ones. A configuration ontology specifies which matcher is the right to be
chosen for a datatype property class. During runtime the question of the one correct
match is solved by a reasoning agent.

5.2.2 Discussion

Although HMatch 2.0 has the ability to compute a global matching value of two
ontologies and can even give a similarity value for every pair of individuals, it is not
sufficient to solve the challenge of finding all differences between two ABoxes. Moreo-
ver, the necessity of weighting the datatype properties can lead to the disadvantage
that differences, in apparently not so relevant datatype fillers, are ‘weighted out’” and
their individuals are taken as equivalent.

The advantage of HMatch 2.0 is when it comes to match two ABoxes that do not share
the same TBox, but both TBoxes have linguistic similarities in their concept names.
Then the linguistic mappings of the concepts can be used to identify equivalent
individuals.

6 Results and Conclusion

In this chapter we present the results of our evaluation on a text document. We
evaluate text results and conclude this work with a discussion of areas of future
work.

6.1 Results

The following table presents the precision and recall values for the level 0 structure
results (MLC instances):

concept name [relevant| | |retrieved| | |relevant nretrieved| | P R
Date 2 1 0100 |0.0
Runningl00mName 2 2 010.0 0.0
SportsName 12 10 10 | 1.0 0.83
Male 2 2 2110 |10
Female 2 2 2110 |10
Ranking 48 50 37 1 0.74 | 0.77
HammerThrowName 1 2 0] 0.0 0.0
SportsRoundN ame 2 2 2| 1.0 1.0
HighJumpName 2 2 0]00 |00
Per formance 5 5 5| 1.0 1.0
LongJumpN ame 4 4 010.0 0.0
PersonName 62 63 61 | 0.97 | 0.99
PoleVaultName 2 2 010.0 0.0

The following table presents the precision and recall values for the level 1 structure
results (relation between two MLC instances):

relation name [relevant| | |retrieved| | |relevant nretrieved| | P R
per formanceToRanking 5 1 1110 0.2
sportsRoundNameToDate 1 0 01 - 0.0
personNameT oRanking 11 27 01]0.0 |00
personNameT oGender 15 64 41 0.06 | 0.27

48 6 Results and Conclusion

The following table shows the precision and recall values for the level 2 structure
results (HLC instances that are only in relation with MLC instances):

HLC concept name | |relevant| | |retrieved| | |relevant nretrieved| | P R
Athlete 12 59 41 0.07 | 0.33

As one can observe in the result tables the values of precision and recall are low
for level 1 and level 2 structures. Low values at a certain level influence the values
of higher levels negatively if the structures of the higher level contain lower level
structures as parts.

The result tables we present here were generated with a program that was developed
in the context of this thesis which can compute precision and recall for collections of
arbitrary length. A collection contains pairs of corresponding manually annotated
and system generated ABoxes. The program can be adapted to any kind of ABoxes
by adjusting the structure scan expressions (MiniLisp programs) to the specifications
of the application context.

Due to time constrains we only computed precision and recall for one pair of ABoxes.
However, using the program developed as part of this thesis the measurement va-
lues can be computed for a larger corpus of documents once all required data is
available.

6.2 Conclusion

After an introduction into the BOEMIE interpretation process and presentation of
the objectives of evaluating two ABoxes we proposed a new approach to match two
ABoxes on the semantic level. To this end, we exploited grounded conjunctive queries
and reasoning services offered by a DL-reasoner. We demonstrated how to compute
the performance values like precision and recall and presented the results for a text
interpretation ABox.

Although the numbers for precision and recall itself may dissatisfy, this work suc-
ceeded to provide a method to evaluate two ABoxes M, S with respect to a TBox
T. The ability to evaluate system generated ABoxes makes it possible to measure
the effects of changes in the background knowledge. For example let &; be a system
generated ABox that was generated before a change in the background knowledge

6.3 Future Work 49

and Sy be a system generated ABox that is generated after a change in the back-
ground knowledge. We can see the effects of the change by computing the precision
and recall values using &; and M and using S; and M. This enables us in deciding
whether 87 or Sy corresponds to more successful interpretation results.

Dividing the evaluation into levels of abstraction makes it possible to evaluate each
step of the semantics extraction process separately. In this work, we applied the
evaluation for ABoxes to semantic descriptions of media objects of the text modality.
This approach could also be applied to ABoxes of other modalities if corresponding
manually annotated ABoxes exist.

In a second approach, we showed that using grounded conjunctive queries and an
abductive retrieval process, we can compute the semantic differences between two
ABoxes. These differences can be presented to the developers of the analysis and
interpretation modules as a feedback. The developers themselves can use the feed-
back to improve interpretation rules or adjust parameters of the employed analysis
algorithms.

To examine the effects of changes in the background knowledge, rules or analysis pa-
rameters, it is also possible to evaluate the differences between two system generated
ABoxes &;, S with the same approach as the one applied for the ABoxes M and
S. Further the resulted omissions and additions can be used to devise a measure-
ment value for the difference of two ABoxes. This measurement value could than be
integrated into the evaluation report as additional information.

As a result of the discussions during this work a function called
‘compute-aboz-difference’ is implemented in the latest version of RacerPro!. Al-
though the algorithm is not scaling very well yet for large ABoxes, it works fine for
smaller ones.

6.3 Future Work

6.3.1 Matching with different TBoxes

Using a TBox matching tool, like HMatch 2.0, the presented two approaches of
semantic evaluation could be extended to evaluate two ABoxes that do not share the
same TBox, but have linguistic similarities in their concept names.

http:/ /www.racer-systems.com/

50 6 Results and Conclusion

6.3.2 Learning Rules with Evaluation Results

The omissions and the additions computed during the evaluation with abduction
could be used to learn new interpretation rules and to optimize existing ones. An
automatic rule learning process, which learns rules from the differences between two
interpretation ABoxes 8; and S; would enable a bootstrapping on the interpretation
process. For example we begin with a analysis ABox A; and interpret it by the
interpretation process with the manually designed rule set R,;. The result of this
interpretation is the system generated ABox &;. Computing the differences between
S1 and a manually annotated ABox M, the rule learning process suggests a new rule
set Ra1. Now we can interpret the analysis ABox again, this time with the rule set
Ra1. The result is another system generated ABox S;. Comparing the two system
generated ABoxes &7 and S, we can compute the differences between them which
can again be used to suggest an other rule set R42 and so on.

Interpretation rules represent additional constrains to concepts in the TBox. Du-
ring the interpretation process the rules are transformed into abduction queries and
consistent results are then added into the interpretation ABox. [5] Nowadays these
rules are designed manually by a human expert. The results of structure retrieval
query results could be used for learning the rules automatically.

Bibliography

1]

M. K. Bergman, “The deep web: Surfacing hidden value.”
http://www.brightplanet.com /images/stories/pdf/deepwebwhitepaper.pdf,
September 24, 2001.

A. Gulli and A. Signorini, “The indexable web is more than 11.5 billion pages.”
http://www.cs.uiowa.edu/asignori/web-size /size-indexable-web.pdf, 2005, May.

M. de Kunder, “The size of the world wide web.”
http://www.worldwidewebsize.com/, October 29, 2008.

Y. Jing and S. Baluja, “Pagerank for product image search,” WWW 2008 /
Refereed Track: Rich Media, April 21-25, 2008. Beijing, China.

S. Castano, A. F. Sofia Espinosa, V. Karkaletsis, A. Kaya, R. Moller, S. Mon-
tanelli, G. Petasis, and M. Wessel, “Multimedia interpretation for dynamic on-
tology evolution,” Journal of Logic and Computation, 2008.

F. Baader, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications. Cambridges
University Press, 2003.

S. Castano, K. Dalakleidi, S. Dasiopoulou, S. Espinosa, A. Ferrara, G. N. Hess,
V. Karkaletsis, A. Kaya, S. Melzer, R. Moller, S. Montanelli, and G. Petasis,
“Methodology and architecture for multimedia ontology evolution,” BOEMIE
deliverable, www.boemie.org, 2006.

B. Glimm, I. Horrocks, C. Lutz, and U. Sattler, “Conjunctive query answering
for the description logic SHIQ,” In Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence IJCAI-07. AAAI Press, 2007.

I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies, How to decide query contain-
ment under constraints using a description logic. In Proc. of the 7th Int. Conf.

52

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[20]

on Logic for Programming and Automated Reasoning LPAR 2000, volume 1955
of Lecture Notes in Computer Science, Springer, 2000.

M. Wessel and R. Moller, “A flexible DL-based architecture for deductive in-
formation systems,” in G.Sutcliffe, R. Schmidt, and S.Schultz, editors, Proc.
IJCAR-06 Workshop on Empirically Succesful Computerized Reasoning (ES-
CoR), pp 92-111, 2006.

S. Espinosal, V. Haarslev, A. Kaplunova, A. Kaya, S. Melzer, R. Moller, and
M. Wessel, “D4.2: Reasoning engine version 1 and state of the art in reasoning
techniques,” www.boemie.org, Februrary 16, 2007.

S. Espinosa, A. Kaya, S. Melzer, R. Modller, T. Nath, and M. Wessel, “D4.5:
Reasoning engine - version 2,” BOEMIE Deliverable, www.boemie.org, 2007.

Racer Systems GmbH & Co. KG, “RacerPro User’s Guide Version 1.9.2.”
http:/ /www.racer-systems.com, October 18,2007,

R. Diestel, Graph Theory. Springer-Verlag Heidelberg, 2005.

Tim Berners-Lee and Dan Connolly, MIT Computer Science and Artificial In-
telligence Laboratory (CSAIL), “Delta: an ontology for the distribution of dif-
ferences between rdf graphs.” http://www.w3.org/Designlssues/Diff, Created:
2001, current: Revision: 1.114 of Date: 2006/05/12 23:07:43.

C. Wang, J. Lu, and G. Zhang, “Integration of ontology data through learning
instance matching,” IEEE/WIC/ACM International Conference, NSW 2007,
Australia.

S. Bruno, S. Castano, A. Ferrara, D. Lorusso, G. Messa, and S. Montanelli,
“Ontology coordination tools,” BOENIE Deliverable D/.7, 2007.

T. Berners-Lee, “Plenary at WWW Geneva 94.”
http://www.w3.org/Talks/ WWW94Tim/, 1994.

S. Petridis, N. Tsapatsoulis, D. Kosmopoulos, Y. Pratikakis, V. Gatos, S. Peran-
tonis, G. Petasis, P. Fragou, V. Karkaletsis, K. Biatov, C. Seibert, S. Espinosa,
S. Melzer, A. Kaya, and R. Moller, “D2.1 methodology for semantics extraction
from multimedia content,” www.boemie.org, December 21, 2006.

G. Chartrand, Introductory Graph Theory. New York: Dover, 1985.

Bibliography 53

[21] E. M. Luks, “Isomorphism of graphs of bounded valence can be tested in po-
lynomial time,” 21st Annual Symposium on Foundations of Computer Science

(sfes 1980), 1980.

List of Figures

1.1
1.2

3.1
3.2

3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1

Image of Usain Bolt
Schematic overview of the BOEMIE semantics extraction process . . .

GS-ABox and SI-ABox Individuals with their datatype properties

Levels of Abstraction in the manually annotated ABox M and the
system generated ABox S oL
Structure scan expression for level 0 structures
Structure scan expression for level 1 structures

A defective image ABox § and the corresponding ABox M
An simple TBox for ABoxes 4.1
ABox § is missing abstract objects. o L.
Abduction Query for the Level 2 structure for ABoxes 4.3
Result of the Abduction Query 4.4
Missinterpretation in the ABox &
An simple TBox for ABoxes in figure 4.6
Result of the abduction query for a PoleVaulter in the ABox M shown
IN4.6 .. .

two graphs isomorphic to each other

	Titlepage
	Abstract
	Contents
	Introduction
	Motivation
	Objective

	Introduction to Description Logics and DL Systems
	Description Logics
	TBox
	ABox

	DL systems
	Standard Inference Services
	Retrieval Inference Services
	Non-standard Inference Services
	New Racer Query Language (nRQL)

	Approach 1: Precision and Recall
	Definition of Precision and Recall
	The Process
	Datatype Properties and Media-related Information
	Structure Scan
	Levels of Abstraction
	Abstraction Level 0
	Abstraction Level 1
	Abstraction Level 2
	Abstraction Level 3

	Query Transformation
	Structure Retrieval
	Calculation of Precision and Recall

	Approach 2: Evaluation with Abduction
	Omissions and Additions
	Examples for Comparison of ABoxes

	Other Matching Approaches
	Graph Matching
	Maximum Common Subgraph Isomorphism Problem
	RDF Diff
	Discussion

	Instance Matching
	HMatch 2.0
	Discussion

	Results and Conclusion
	Results
	Conclusion
	Future Work
	Matching with different TBoxes
	Learning Rules with Evaluation Results

	Bibliography
	List of Figures

