
HAMBURG UNIVERSITY OF TECHNOLOGY
INSTITUTE FOR SOFTWARE SYSTEMS

On The Extension and Integration of
Existing SAP Enterprise Services

in The Context of SOA4All

PATRICK UN

Supervisor: Prof. Dr. RALF MÖLLER
Co-supervisor: Prof. Dr. DIETER GOLLMANN

Advisor: Dr. JÜRGEN VOGEL

Submitted in conformity and partial fulfillment of the requirements
for the degree of Master of Computer Science in

Information and Media Technologies

Hamburg University of Technology
Technische Universität Hamburg-Harburg

Hamburg, August 2009

2

Abstract
The SOA4All project aims to provide an user-friendly service delivery plat-
form to a wide range of users consisting of both experts and laymen. This
novel platform uses semantic web technology to annotate syntactic based
web services and use logical reasoning to discover and mediate a large num-
ber of services for easier consumption and efficient delivery to end users. At
SAP Research, the integration of existing, currently non-semantic SAP en-
terprise services into the SOA4All framework is studied. In order to obtain
a set of synthesized complex functionalities for a process scenario of busi-
ness registration at governmental administration which is supported by au-
tomated ERP systems using existing enterprise services, we show that using
a well-known and proven approach of dynamical basic action theory in the
situation calculus to axiomatize the domain can soundly and correctly cap-
ture the interaction dynamics, invocation constraints of the component en-
terprise services so that the constraints and requirements for integration are
satisfied. With an in-depth survey of a series of semantic service matching
and automatic service composition approaches in the industry and academia,
we provide a consolidated, critical view of contemporary intelligent agent
based solutions to the service composition problem in the domain of knowl-
edge representation and artificial intelligence. We argue that it can suitably
solve the challenging integration problem of existing enterprise services.

4

Dedication

This work is dedicated to my parents for their unconditional and infinite love.

5

6

Acknowledgements

I owe my deep gratitude and respect to my supervisor Prof. Dr. rer.-nat. habil. Ralf Möller, professor at the
Institute for Software Systems at the Hamburg University of Technology, whose wisdom, knowledge and
experiences shape many insightful conversations during the course of this thesis, without which many ideas
would not have been well developed or contemplated on. His patient guidance, understanding, very conge-
nial and helpful advice at every stage of my work has given the correct direction for my research and has
helped me to make this thesis possible. I owe deep and heartfelt gratitude to my co-supervisor Prof. Dr. rer.-
nat. habil. Dieter Gollmann who is very kind in offering help and stimulating thought and thank him greatly
for co-supervising my thesis.
I owe sincere gratitude to Dr. Michael Wessel at the Institute for Software Systems, for his patient answering
of my questions and giving me clarification of many important concepts. I shall always remember his
benevolence and often wittiness in our conversations.

I must also thank Prof. Wolfgang Bauhofer from my whole heart for his kindness, unconditional help and
supervision of my NIT propositions. Prof. Bauhofer’s fruitful guidance during the NIT studies will always
remain vivid in my mind.

To my advisor at SAP Research Switzerland, Dr. Jürgen Vogel, I want to thank him from my heart for his
patience, his brilliant thought and his benevolence which is intrinsic to his kind personality. He has helped
me at every stage of this thesis, especially concerning the topics of SAP applications. My thank also goes
to Florian Stroh who as a team member has been enormously helpful in many challenging situations and
contributing to a harmonious and fun working environment.

7

Declaration

I declare that this thesis has been prepared by me independently,
all literal or citations are clearly indicated with appropriate source references,
and that no other sources or aids than the declared and cited ones have been used.

Hamburg, August 2009
Patrick Un

8

9

Contents

1 Introduction 15
1.1 SOA4All Project Background . 15
1.2 Motivation and Thesis Statement . 16

1.2.1 Motivation . 16
1.2.2 Objective . 17
1.2.3 Contributions . 18

1.3 Thesis Structure . 19

2 SAP Enterprise Services 21
2.1 SOA Enterprise Service Characteristics . 21

2.1.1 Service Oriented Computing . 21
2.1.2 Business Process Fundamentals and Enterprise Services 22

2.2 SAP Enterprise Service Information Model . 23
2.2.1 Business Objects and Process Components . 23
2.2.2 Core and Global Data Types . 24

2.3 SAP Enterprise Service Behavior Model . 26
2.3.1 Service Constraints . 26
2.3.2 Status and Actions Model . 27

3 Survey of Related Works 31
3.1 Service Modeling . 31

3.1.1 Service Characterization Aspects . 31
3.1.2 Service Description and Modeling . 32
3.1.3 Service Matching and Discovery . 36

3.2 Service Composition Synthesis . 37
3.2.1 Industrial Approaches . 38
3.2.2 Academic Approaches . 39

3.3 Comparative Juxtapositions . 42

4 Foundations of Service Matching and Composition 47
4.1 Semantic Service Matching and Discovery . 47

4.1.1 Formal Abstract Service Description . 48
4.1.2 Formal Abstract Service Matching . 49
4.1.3 Notion of Semantic Service Description and Matching 52
4.1.4 Deciding Matching Level of Services . 56

4.2 Action Theoretic Foundations for Service Composition . 58
4.2.1 Situation Calculus . 58
4.2.2 Basic Action Theories . 60
4.2.3 Action Metatheory for the Situation Calculus . 64
4.2.4 Action Dynamic Logic Language GOLOG . 68
4.2.5 Concurrency with ConGolog . 74
4.2.6 Sequential Temporal Extension of Situation Calculus 79

10

4.2.7 Service Composition in the Situation Calculus . 80
4.3 The Roman Model . 87

4.3.1 Characterizing Services . 87
4.3.2 Formalization of Service Interaction Dynamics . 92
4.3.3 Target Service Specification . 100
4.3.4 Automatic Composition Synthesis . 101
4.3.5 Characterization of Services Composition in the Situation Calculus 113

5 Conceptual Functional Synthesis of Enterprise Services 117
5.1 Guiding Process Scenario . 118

5.1.1 Supporting Automated Business Registration with Enterprise Services 118
5.1.2 Composite Process Functional Requirements . 120
5.1.3 Selected Enterprise Services . 122

5.2 Action Theory Applied . 131
5.2.1 Preliminary Action Theory Axiomatization . 131
5.2.2 Building Domain Model . 135
5.2.3 Model-based Program . 144

5.3 Discussion . 149

6 Endnotes 151
6.1 Summary . 151
6.2 Discussion of Lesson Learned . 152
6.3 Outlook . 153

A GOLOG Interpreter 157

B ConGolog Interpreter 159

C ConGolog Model-Based Program Instance 161

11

List of Tables

3.1 Comparative Juxtaposition of Service Description and Modeling Approaches 43
3.2 Comparative Juxtaposition of Service Composition Synthesis Approaches (Part 1) 44
3.3 Comparative Juxtaposition of Service Composition Synthesis Approaches (Part 2) 45

5.1 Enterprise service: Process application of inbound business registration 123
5.2 Enterprise service: Search profile of applicants in CRM . 124
5.3 Enterprise service: Create and initialize CRM applicant profile 125
5.4 Enterprise service: Read bank information in CRM . 126
5.5 Enterprise service: Create bank information of applicant in CRM 127
5.6 Enterprise service: Process application denial of inbound business registration 128
5.7 Enterprise service: Search taxation register for charging service 129
5.8 Enterprise service: Charge registration service and send invoice 130
5.9 Enterprise service: Process registration send confirmation 132
5.10 Enterprise service: Process dormant registration application for archival 133
5.11 Mapping of service operations to corresponding complex actions in the situation calculus . . 134

12

Listings

A.1 A GOLOG interpreter implemented in SWI Prolog . 157

B.1 A ConGolog interpreter implemented published in [Giacomo et al., 2000] 159

C.1 A ConGolog model-based program instance for the synthesized composite service for busi-
ness registration . 161

13

List of Figures

2.1 Modeling business objects . 23
2.2 Relation of data types in the information model . 25
2.3 Semantic structure and data types of business processes . 26
2.4 Status and actions of a business object . 27
2.5 Status and actions management runtime system architecture 28

4.1 A labeled execution tree . 89
4.2 An external execution tree . 90
4.3 An internal execution tree . 91
4.4 Life cycle of a service instance . 93
4.5 Full delegation with non-interleaved execution: composite service E delegates to at most

one active instance e1 or e2 of service E1 or E2 respectively 96
4.6 Partial delegation with interleaved execution: composite service E executes actions itself or

delegates to at most one active instance of a component service 96
4.7 Partial delegation with non-interleaved execution: composite service E executes actions it-

self or delegates to at most one active instance of a component service 98
4.8 Partial delegation with interleaved execution: composite service E executes actions itself or

delegates to two simultaneously active component service instances 98
4.9 Partial delegation with interleaved execution: composite service E delegates to two compo-

nent service instances with at most one instance being active at a time 99
4.10 FSM external schema Aext(E0) of the target service E0 . 101
4.11 FSM external schema Aext(E1) of component service E1 102
4.12 FSM external schema Aext(E2) of component service E2 102
4.13 Target service external execution tree T ext(A0) . 103
4.14 MFSM internal schema Aint(E0) of target service E0 . 104
4.15 Target service internal execution tree T int(A0) . 104

5.1 Process scenario for business registration at governmental administration 119

14

15

1 Introduction and Background

Service oriented computing is an implementation agnostic paradigm that can be realized by suitable technol-
ogy platform, facilitated by distributed computing architecture and compartmentalization of complex process
oriented business logic into manageable, decoupled and freely composable units of application logic that are
exposed as services. To retain independence, services encapsulate logic within a distinct context. This con-
text can be specific to a business task or a business entity underlying business processes. The size and scope
of the processing logic represented by services can vary.

Service oriented architecture (SOA) is an integration architecture based on the notion of service oriented
computing, especially for the enterprise application domain [Erl, 2005]. Integration means first of all bring-
ing together applications by providing connection, enabling utilization of resources, harmonizing hetero-
geneous systems by adapting differences and resolving conflicts, standardizing incompatible architectures,
mismatched formats and proprietary platforms towards interoperable components so that one can facilitate
an even more efficient use of current and legacy systems in the enterprise application landscape. Business
automatic are typically realized out of business processes which are comprised of business logic that dictates
the actions performed by process components. The underlying business logic can be decomposed into a
series of steps that execute in predefined sequence according to specific business rules and constraints.

1.1 SOA4All Project Background

The Service Oriented Architecture for All (SOA4All1) is an integration project of the European Seventh
Framework Programme2 [Domingue et al., 2008] aiming to facilitate a wide spectrum of users the easier
comsumption and adoption of large number of services by providing comprehensive service delivery frame-
work to enable context based, automated service delivery. Using the principles of the service oriented
paradigm for application development, adopting context management for personal preferences, managing
system constraints and organizational policies, harnessing semantic web technologies and web 2.0 to au-
tomate service discovery, mediation and composition helps to incorporate the vision of semantic web into
service oriented computing. The goal of this project is to advance current SOA in these aspects:

• enabling easier service consumption and turning the method of consumption more user friendly,

• using open standard to realize better interoperability,

• making service integration more customizable to incorporate user preferences and context information,

• enhancing scalability of the architecture by field test integration of million of services.

Existing enterprise SOA platforms such as the SAP NetWeaver application server platform are usually
designed for software developers and experts in business process management [van der Aalst et al., 2003,
van der Aalst et al., 2005] rather than regular end users. As a result, they offer rich functionalities develop-
ment and detailed modeling of business processes to a rather selected group of domain experts and process

1SOA4All http://www.soa4all.eu/
2Seventh Framework Programme http://cordis.europa.eu/fp7/

16 1 Introduction

modelers. Additionally, their focus is on planned, well-structured, adequately syntactically formalized and
highly repetitive business processes which are often located within a single department or organization of
an enterprise or among a few organizations with well established business relations. Consequently, current
SOA platforms with heavyweight process oriented services usually cannot be directly exposed to general end
users because they lack the necessary technological skills or business process background knowledge.

This is where SOA4All strives to achieve its goal. It aims to empower general end users easier ac-
cess to service consumption. It envisages an open, dynamic service environment where a large number
of actors, who might be system users, process integrators and even business process experts , can ex-
pose, combine and consume a very large number of services. To enable such a challenging vision and
make the corresponding business scenarios manageable, SOA4All builds on four complimentary and proven
paradigms [Domingue et al., 2008] to achieve its goal: supporting open web standards and system archi-
tectural principles for the problem of service integration on a world wide scale; using proven technologies
of existing web 2.0 technology infrastructure to enable better participation, personalization and sharing of
information as a means to structure human-machine cooperation in an efficient and cost effective manner;
using semantic web technologies as a means to abstract from syntax driven to semantics driven, meaningful
and precise service discovery and process handling; using context management as a means to capture and
process user needs and preferences in a machine interpretable way so that services can be customized for
specific requirements.

1.2 Motivation and Thesis Statement

The focus on use cases and business scenarios requires conceptualization and implementation of an end user
service delivery platform that can deliver general web services as well as integrate process oriented enterprise
services. Consequently one of the research questions of SOA4All is the investigation of how to integrate and
extend process oriented enterprise services into an open, dynamic, lightweight and end user driven service
platform.

1.2.1 Motivation

Enterprise services are defined as the services that are provided by enterprise computing environments that
expose functionality of enterprise application systems [Weske, 2007]. Currently these services are imple-
mented with web service technologies [Alonso et al., 2003] to a large extent. This is not necessarily the
case because the functionality of the application system is provided through services which can be realized
by other application technologies that conform to the service oriented paradigm. In the SAP applications
enterprise services are implemented with web services technologies which expose functionality of the SAP
enterprise resource planning ERP backend systems to application users.

Common perception of enterprise services is that they comprise a plethora of powerful functionalities
that unleash the business functionality of the backend systems on one side, with the drawback of complex
interface definitions, abundant operations and elaborate data types which must be handled accordingly on
the other side. In order to utilize and integrate them efficiently, complexity in their usage must be resolved
and their semantics must be understood thoroughly. Consequently ERP system based enterprise services are
often referred to as heavyweight processes where the coupled-ness with the backend system and its business
logic is high. This situation reduces the possibility of incorporating flexibility and intelligence into existing
systems due to the difficulties encountered when often only process experts are able to understand and inte-
grate these processes as mentioned previously. In short combination and service delivery are hampered by

Master’s Thesis Patrick Un

1.2 Motivation and Thesis Statement 17

inflexibility.

From the perspective of formal knowledge representation [Fagin et al., 2003, Levesque & Brachman, 2004]
and artificial intelligence, building a more intelligent ERP system can be viewed as one possible solution to
enhance accessibility and flexibility of ERP system and enterprise services. Such an approach means that
the semantics of business processes and operations must be better annotated, documented and processed,
for instance, using metadata to describe the semantics and constraints of business processes and employing
logical reasoning on the metadata to infer implicit knowledge from existing explicit one or uncover hidden
relations such as evocability and constraints of enterprise services or possible execution ordering, etc.

Another solution approach is to study the existing enterprise services in order to understand their semantics
in terms of capability and invocation constraints. The motivation lies in the synthesis of dedicated process
functionality satisfying specific scenarios. This can be understood as intelligent combination of existing
partial functionality by using metadata to semantically annotate the existing enterprise services to enable
exposing their capability more precisely so that intelligent agents can be used to discover, match and select
more appropriate enterprise services to satisfy process requirements. In terms of efficiency and complexity,
due to the possibility of using appropriate heuristics, matching service capability query with existing service
capability descriptions regarding enterprise services can benefit from reduction of the size of search space,
thus transcending the mere limitation of contemporary keyword based search service discovery and selection
approach.

1.2.2 Objective

Obviously it is not practical to redesign an existing ERP system from scratch so that intelligence can be built
into the system at design time. Nevertheless we are motivated to investigate the integration of enterprise
services in the context of SOA4All. We approach the integration problem based on a field test business
process to illustrate an integration scenario and to evaluate functionality synthesis in processes by studying
the problem of automatic service composition. By inquiring research efforts in academia from the domain
of knowledge representation, agent theory and technologies, artificial intelligence (AI) and logical reasoning
we strive to:

A) give reasonable characterization of existing process oriented enterprise services,

B) survey existing industry solutions and academic approaches in service modeling, service matching
and service composition critically and give source references to help to understand the essential and
fundamental issues involved,

C) lay a foundation for complete, decidable and tractable logical account for service matching and compo-
sition and use the situation calculus formalism [Reiter, 2001a] and agent theory to tackle composition
problem in a guiding business process scenario from an action theoretical perspective of knowledge
representation [Fagin et al., 2003],

D) draw conclusion and give dicussion from a sound and complete composition approach to serve as an
example for future attempts in enterprise service integration for SOA4All.

The fundamental research question is how to correctly and effectively compose enterprise services seman-
tically to achieve business specific goals within a business process scenario. By semantic we mean that the
properties, constraints and conditions of enterprise services are very often implicit and therefore not easy to
understand. We want to inquire fundamental issues of service matching and composition and from such a
perspective evaluate integration of existing enterprise service. We address and investigate the fundamental
issues of the following:

Patrick Un Master’s Thesis

18 1 Introduction

I) What are enterprise services and how can they be composed and coordinated correctly?

II) How can state constraints in terms of preconditions, invariance and postconditions of enterprise ser-
vices be correctly and completely characterized?

III) How can we characterize a set of enterprise services in a composition such that we can get a correct
sequence of executions of these services?

IV) What theoretical framework is expressive and powerful enough to characterized properties, constraints
and conditions of enterprise services?

V) Assume we possess an appropriate framework and that we observe operations of enterprise services as
executable actions, what kind of action theory is needed and how can we axiomatize a domain?

VI) How will such an axiomatization affect enterprise service composition and when do we know that we
have obtained a correct composition?

If we assume a theoretical approach for composition of enterprise services to integrate them into a business
scenario, at first it seems that it is not on par with the lightweight thought of service delivery in SOA4All.
Providing sound, complete and correct approach to tackle existing integration problem has often been falsely
accused of tending to be heavyweight or arcane unfortunately because understanding such theoretical ap-
proach would assume existing knowledge in relevant academic discipline. However on the other hand we
understand that since the lightweight thought of service delivery in SOA4All does not actually prohibit more
formal approach nor is it contradictory to the attempt to correctly delimit the problem domain in order to
investigate essential and fundamental issues underlying the problem. Using correct and proven theoretical
frameworks of knowledge representation formalism and logical reasoning has convinced us to believe that
the intrinsic semantics of enterprise service often incur implicit interaction constraints and condition for
execution which can only be correctly captured by an appropriately sufficient logical formalism. Domain
dynamics and states must be axiomatized using an appropriate formalism that is invented for the dedicated
purpose of describing the dynamics within involved interacting systems. It is like the metaphor of using the
right tools to do the right job. We are convinced that based on an appropriate axiomatization of the problem
and using logical reasoning technique we can derive the correct results. We want to show that business pro-
cess experts should also share this view in future SOA4All integration scenarios.

1.2.3 Contributions

We hope that future research in the area of process and service integration can be stimulated to considering
the problem from a new perpective by grasping the essential and necessary substance of the issues rather than
solely relying on conventional software technologies. We strive to bring up attention to some appropriate
formalisms to tackle the current problem and argue that more formal approach ín problem solving must be
considered without bias.

Our approach is understood as a consolidated impulse for SOA4All to inspire contemplation on the essen-
tial issues of enterprsie integration. It is novel in the sense that the current integration project goal prescribes
heavyweight enterprise services that are complex and inflexible; therefore as such they require correct and
complete account of their process semantics which are not representable in mere lightweight syntactic based
descriptions. Very few past works exist on marrying the notion of using decidable action theory of the sit-
uation calculus to model the intrinsic dynamical aspects of enterprise services with regard of the practical
aspects of process-orientation. None exists that axiomatizes the service domain and simultaneously observes
aspects of intrinsic service constraints within an existing non-semantical process oriented ERP setup.

Master’s Thesis Patrick Un

1.3 Thesis Structure 19

1.3 Thesis Structure

This thesis is structured as follows: after the background information is introduced in chapter 1, we give a
comprehensive account in chapter 2 on existing SAP enterprise services, their information and behavioral
model as well as a description of the runtime system which ensures that process and service actions trig-
ger the correct state changes. In chapter 3 we review and survey different approaches for semantic service
matching and automated service composition in the industry and academia; and subsequently giving a brief
critical comparison of these approaches. In chapter 4 we inquire the formal foundations of service matching
and select two exemplary formal approaches to describe enterprise service composition and integration. In
chapter 5 we introduce the guiding process scenario in the SOA4All context to illustrate the appropriateness
of the introduced formal action theoretical approach in solving the composition and integration problem cor-
rectly and efficiently. Finally in chapter 6 we give dicussion on the lesson learned and outlook future works.

Patrick Un Master’s Thesis

20 1 Introduction

Master’s Thesis Patrick Un

21

2 Enterprise Services

In this chapter we relate the concept of business process management and enterprise resource planning sys-
tems to characterize SAP enterprise services and shed light on some issues of service integration. We begin
with an account on enterprise information system in general and continue with brief introduction of SAP
enterprise services, its underlying information model, process and behavior model.

2.1 SOA Enterprise Service Characteristics

2.1.1 Service Oriented Computing

Service oriented architecture (SOA) is one of the principles that is adopted in SOA4All [Domingue et al., 2008].
Service orientation architecture is not a software library nor merely a framework but a distinct implementation-
agnostic principle to design application in a service centric way. It represents a form of technology architec-
ture that adheres to these aspects:

• loose coupling: services maintain only necessary relationship that minimizes dependencies that are
required to retain awareness among one another, i.e., services must be designed to interact without
unnecessary tight, cross-service dependencies;

• service contract: services adhere to an agreed upon contract of communication in order to advertise-
ment valid input, output data as well as expose their operations in a standardized manner;

• service autonomy: services are endowed control over the business or process logic that they encapsu-
late;

• coherency and abstraction: services are described in an agreed upon service contract without exposing
other necessary or irrelevant implementation details;

• reusability: modularization of processing logic contributes to better functionality management with
the intention to promote better reuse of generic modules;

• composability: a set of related services can be coordinated and assembled to form composite service
which can satisfy more complex functional requirement. Composability allows business logic to be
encapsulated and representable at different levels of granularity;

• statelessness and statefulness: stateless services are intended to minimize retaining information for
a prolonged period belonging to specific service activities or sessions in order to simplify service
implementation. On the other hand stateful services can be involved in more sophisticated interaction
patterns by appropriate management of stateful conversational state;

• discoverability: well annotated services are designed to facilitate explicit description of either syntactic
or semantic based information so that they can be searched for and selected efficiently via available
discovery mechanisms.

22 2 SAP Enterprise Services

When realized through the current web services technology, SOA establishes support of open, standardized
and interoperable communication of business process oriented services and contributes to enhanced automa-
tion domains of an enterprise [Erl, 2007, Erl, 2009]. Although there is often the misconception that when
an application uses web service technology, it is service oriented, in fact service orientation is not solely
realizable using web services. Instead web services have been used as a vehicle to facilitate implementing a
service architecture that is currently at the heart of SOA implementation. It does not need to be web services
at all because service oriented applications and platforms may be implemented using other novel, even more
suitable technologies in the future rather than client-server based distributed systems.

Contemporary SOA represents an open, extensible, federated and composable architecture comsisting of
partially autonomous, interoperable, discoverable and to a large extent reusable services that are implemented
using web services technology. Service oriented architecture can be conceived as a high level abstraction
of business logic and process technology which when implemented appropriately results in a possible loose
coupling between application domains. Contemporary SOA is also an evoluation of existing distributed com-
puting platforms [Lynch, 1997].

The collective business logic that defines and drives the applications of an enterprise is an ever evolving
entity that is constantly undergoing changes in response to external and internal change of requirement. The
dichotomy of this evolving entity is the division between business logic and application logic. Business
logic is a documented implementation of the business requirements that correspond to the business area of
an enterprise that is reflected in the close alignment of business logic with domain specific models. Business
logic is generally structured into processes that express these requirements along with a set of constraints
and dependencies. Application logic is an automated implementation of business logic that are organized
into different solutions based on their underlying technology. Application logic expresses workflows of a
business process through specification of dataflow and control flow [van der Aalst et al., 2005], i.e., dataflow
specifies relevant data pathes which essential information, either input or output flows through the process
during the execution of the application logic while control flow clarifies the move of the thread of control of
a process during execution.

2.1.2 Business Process Fundamentals and Enterprise Services

The service oriented paradigm applies to enterprise logic by introduction the concept of encapsulated ser-
vices to properly expose the functionality of business processes of an enterprise information system. A
business process consists of a set of activities that are performed in coordination in an organizational and
technical environment. These activities jointly realize a business goal. Each business process can be in-
stantiated on its own or interact with other business processes at different organizations [Weske, 2007].
Business process management is a discipline of study that investigates concepts, methods and techniques
to support the design, implementation, administration, configuration, enactment and analysis of business
processes [van der Aalst et al., 2003]. The basis of business process management lies in the formal and ex-
plicit representation of business processes, their corresponding activities and execution constraints such as
execution order or necessary conditions leading to state changes, etc. For managing business processes, a
dedicated business process management system can be used which is driven by the explicit process represen-
tations to coordinate the enactment of business processes. For the purpose of modeling business activities,
business process models are used. Such a model consists of a set of activity models and execution constraints
between them. A business process instance represents an instantiated view a predefined business process in
its operational manifestation which contains activities instances. The relation between a business process
model and process instances resembles the relation of a blueprint and concrete edifice of business processes
built from the blueprint.

Master’s Thesis Patrick Un

2.2 SAP Enterprise Service Information Model 23

Tradition enterprise resource planning systems are designed to span large parts of the business processes
of an enterprise with consistent, centralized data storage. They store data in integrated databases and provide
business functionality to application clients via exposure of these functionality over an application server to
provide access to clients. Enterprise systems architecture is the underlying software architecture that sup-
ports this type of application setup and it is mainly based on process oriented workflow information systems
which can be extended with support of service orientation by providing the functionality as enterprise ser-
vices. They capture functionality with a business value that is implemented by software service instances
a provider platform and is ready to be used. The service oriented paradigm is the main influence factor for
enterprise information system currently and enterprise services architecture is based on the understanding
that complex applications are increasingly built on top of existing business processes and functionality that
are characterized by the added value of enterprise services through standardized interfaces. Driving forces
for development of enterprise services are mainly change that dictate business scenarios and the state of a
value chain; consequently there is a need to increase enterprise system transparency and computer mediated
interaction with customers and corporate suppliers with the increased perception of the the presence of a
corporation through the services it provides. These services exposed to customers can be realized in the
form of enterprise services that provide access to functionality of the backend application systems.

Advance in technology has paved the way for enterprise services. The major milestone of this develop-
ment is the commercialization of full suites of enterprise application products with built-in enterprise services
which decompose processes and workflows functionally as coarse-grained services that are provided in cus-
tomizable middleware that are available nowadays, e.g. ERP application suites from vendors such as Oracle
and the SAP Netweaver Suites products.

2.2 SAP Enterprise Service Information Model

Existing SAP enterprise services are developed in the way that inherits the general notion of enterprise
services described in the previous section. The technological infrastructure for implementing the SAP en-
terprise services is the web services technology platform using standardized interface description such as
WSDL, transport protocol over HTTP, synchronous or asynchronous invocation pattern and registry tech-
nology such as UDDI. Currently the WS-∗ stack of extended web services specifications and standards such
as WS-BusinessActivity, WS-CDL, WS-Coordination, etc. are not yet completely supported by the enter-
prise service middleware, though limited support of WS-BPEL and a set of other important web services
transaction standards have been built into newer releases of the NetWeaver Suites products to support bet-
ter realization of service oriented architecture. What characterizes these SAP enterprise services is the fact
that they are organized into bundles according to the business domain and area, such as banking, CRM and
SCM, etc. for which these enterprise services are designed. Understanding the intrinsic information model
of the underlying SAP enterprise resource planning systems is crucial in order to get a notion of how data is
structured within business processes and how functionalities are implemented for these enterprise services.

2.2.1 Business Objects and Process Components
Business Object / Service Operation
with Global Data Types

node of a

Business

Object

or

Message

Data Type

Business Object / Service Operation
with Global Data Types

node of a

Business

Object

or

Message

Data Type

Figure 2.1: Modeling business objects

The aim of enterprise modeling is to clarify business process work-
flows and dataflows by using a systematic approach to structure, or-
ganize, visualize and document the relationship, dependencies and
interactions between components of an enterprise system. In order
to facilitate reuse and make the structure of enterprise data more
transparent and manageable, the fundamental idea is to use a clear

Patrick Un Master’s Thesis

24 2 SAP Enterprise Services

abstraction to model data in detail that is independent from the implementation. The data of each process
workflow is modeled using business objects in SAP systems [Snabe et al., 2009]. A set of business objects
are shown in figure 2.1. Business objects describe the data of a process as fundamental idea of distinction
between the data and business logic implementation and are structured to enhance good modeling practice
of the business process, avoiding duplication of modeling, overlapping definitions of data and redundant in-
formation storage. Business objects represent specific views of data of a well-defined and outlined business
area and are the central point of the modeling principles used by SAP systems. Business objects are the
fundamental modeling unit that can be combined to form more complex data structures. The duration of a
business object is another aspect to characterize in data modeling with the difference between transaction
data and master data:

• business objects that work with transient data during the course of a business process represent trans-
action data. They are called business process objects;

• business objects that work with essential persistent data within the entire system over a long period of
time are called master data business objects.

Enterprise services always need to work with and access data. Therefore the modeling of enterprise ser-
vices are intrinsically linked with the modeling of business objects, both business process objects and master
data business objects. The business process modeling with business objects is carried out on the ARIS mod-
eling platform products1. In an ARIS model, an abstraction using process components is used to work with
business process modeling to identify self-contained part of a business value chain which is relevant and cru-
cial in subsequent implementation of cross organizational business-to-business processes [Snabe et al., 2009].
A process component in SAP system is defined as the part of a value chain that is performed for a specific
business area in an enterprise and it acts as a unit to group business objects with each business object be-
longs to one process component. Additionally the level of granularity of modeling using process components
is also relevant because the modeling of business objects is closely connected with the granularity chosen
which is important to ensure that there is no overlapped part of process components containing duplicated
business objects that are accessed in different process components.

Accessing data in a process component means access to the relevant business objects of the component.
There are two types of access patterns: asynchronous access to process component is used for inter-process
communications between process components of different business areas in different value chains; syn-
chronous access depends on other process components of the same business area within an application.
Access to process components is modeled in ARIS as service interfaces and operations that access business
objects with each operation is assigned to one business object. A service interface is used to group operations
in order to expose business object data access operations to external systems.

While the main purpose of a process component model is to describe the inner workings of a business
process component specifying the relevant business objects to represent data as well as the corresponding
service interfaces and operations to access them, a deployment unit is used to group all process compo-
nents that belong to a specific business scenario so that they can be installed together and configured for
deployment. In the process component integration model deployment units are modeled in relation with the
corresponding process components on the ARIS platform.

2.2.2 Core and Global Data Types

Business objects represent a kind of semantic structure to model business process with specification of data
access operations defined in service interfaces, on the other hand a conceptual data model has been intro-

1ARIS Platform http://www.ids-scheer.de/de/ARIS

Master’s Thesis Patrick Un

2.2 SAP Enterprise Service Information Model 25

Global Data Type

(GDT)

Context specific

Derived Data Type

/

Projection
Global Data Type

(GDT)

Context specific

Derived Data Type

/

Projectionbasis forContext specific

Derived Data Type
CCTS

Core DataType
Global Data Type

(GDT)

Context specific

Derived Data Type

/

Projection
Global Data Type

(GDT)

Context specific

Derived Data Type

Restriction/

Projectionbasis forContext specific

Derived Data Type
CCTS

Core DataType

Basic Aggregate

Figure 2.2: Relation of data types in the information model

duced to structure data types within SAP applications. Core data types are international standardized data
types which are modeled according to UN/CEFACT Core Component Technical Specification (CCTS/ISO
15000-5). They do not contain business semantics and define exactly one primary component known as
content component across all types of SAP applications.

Core data types are syntax neutral and represent an atomic and most generic pieces of information in a
business process model. Core data types are based on primitive data types such as primitive types of the W3C
XMLSchema and yet are different than general primitive types because they carry attributes and properties
that further define a concrete value domain. A data type repository is used to store the representations of core
data types which are defined using verbal representation terms. Each core data type can be identified with
the representation term which is not specific to SAP application only because it is detached from specific
business semantics details.

Global data types are divided into basic and aggregated types. While the basic type is built directly on
core data types, the aggregated data type contains list of elements of global data types, i.e., it can be seen
as a composite type for the global data type. Global data types contain business semantics that is used cross
application. Figure 2.2 shows the relation between the mentioned core data types and global data types.
Basic business semantic is built on top of global data types that has context-specific business process. These
context-specific data types are derived from global data types.

Common business semantics of global data types are modeled in a template in ARIS model which specifies
all the elements and attributes of a global data type without redundancy where attributes define elementary
features of the underlying data types. Templates have no implementation and it ensures the consistency of
semantics of global data types to which they describe. Global data types specify value range which con-
straints the value of attributes and content they represent. Based on the fact that global data types are built
from core data types, they inherit the data structure and integrity conditions from their constituents.

Dataflow for enterprsie services is based on the notions of business objects, core and global data types
as well as the corresponding operations semantics. Figure 2.3 shows in a comprehensive way the semantic
structure of the business object view of enterprise services, illustrated with the example business object rep-
resenting purchase order. Underneath the semantic structure layer, corresponding entity specific and global
data type are shown in relation to the semantic structure of a process component for the business logic pur-
chase order processing.

Patrick Un Master’s Thesis

26 2 SAP Enterprise Services

Service Operation

Message Type

Message Data TypeNode Data Type

Global Data Type

CCTS Core Data Type

W3C Data Type

! Purchase Order Notif ication

! Purchase Order Cancel Request

! PurchaseOrderNotif icationMessage

! PurchaseOrderCancelMessage

! PurchaseOrderPartyElements

! PurchaseOrderDeliveryTermsElements

! Deliery Terms

! Address

! ProductID

! f loat

! string

Business

Semantics

1

n

1

1

n

1

n

1

Entity

specific

no

Business

Semantics

Global

Business Object Node

Business Object

1

n

1

c

! Purchase Order Party

! Purchase Order Delivery Terms

! Purchase Order

nn

Data

Typing

Semantic

Structure

! Indicator

! Measure

!"

! Amount

! Binary Object

! Code

Service Interface

! Purchase Order Processing

! Purchase Ordering In

! Purchase Ordering Out

1

n

Process Component

1

n

1

n

! Notify of Purchase Order

! Request Purchase Order Change

Figure 2.3: Semantic structure and data types of business processes

2.3 SAP Enterprise Service Behavior Model

We turn our attention to description of service behavior. Although the previously described information
model of SAP enterprise services can be characterized with an existing upper service ontology that describes
each data types semantically, such ontology is not sufficient when it comes to describe the service semantics
in terms of behavior. Beside dataflow and control flow which characterize enterprise services, if we adopt an
abstract perspective and view such services as black boxes which require certain constraints to hold and some
preconditions satisfied before they can be executed, and if we also view the result of the process steps during
execution, the constraints for executing the steps are essential and must also hold; the same is true for effects
which service execution and process steps have on the states of the overall application domain and on the
state of the data in the backend. It is clear that we must both state the constraints, preconditions, invariance
and effects of enterprise service with clear specification, so that they can be combined and coordinated in a
way that is coherent with their execution semantics. As we know that enterprise services expose functionality
of the underlying enterprise application systems, therefore its behavioral semantic is also intrinsically related
to that of the business processes.

2.3.1 Service Constraints

Operations on business objects change the state of the business objects. The state is called in a SAP ap-
plication a status and it is a business object attribute and a modeled entity that represent the life cycle of a
business object or the result of processing steps within a process. It represents additionally the preconditions
and effects of processing steps. State of a business object can be viewed as a kind of control to facilitate
decisions at different process steps within processes and therefore it influences the behavior of processes as

Master’s Thesis Patrick Un

2.3 SAP Enterprise Service Behavior Model 27

Figure 2.4: Status and actions of a business object

a whole.

The state of business objects can be change by an action which abstractly represents any system internal
or external activity that has an influence on the state and consistency of business objects. An example of an
business object called Approval with the actions shown in the round boxes which can change the set of status
within the business object are illustrated in figure 2.4. Notice that actions which point out as arrow that set a
status while diamond head is an enabler for an action to execute. An action requires an implementation that
performs the corresponding business logic associated with the action. This action implementation is respon-
sible of transforming the attributes of the business objects which correspond to the status and subsequently
performing business logic to determine possible resulting status. Application constraints therefore describe
which actions are allowed to be performed when specific status are reached during certain process steps.

2.3.2 Status and Actions Model

In SAP enterprise services, the status and actions management runtime is a control and monitoring system
which guard constraints and ensure that the life cycle of business objects in a process is correctly observed
and that operations on the business object will be conformed to the predefined constraints. Constraints in
business process are often caused by real world events that are part of the business process, for instance
user input or certain activities that are irreversible. Therefore safeguarding the consistent and correct status
transition is crucial in the runtime system. Constraints on business object, and process component represent
the core process entities by defining constraints between status changes and corresponding actions.

For modeling processes that underly enterprise services, one can proceed with identification of process
steps of a business process, review the steps and identify relevant actions and status values. For each process
step, one models status, actions and constraints diagrammatically in a graph structure as shown in figure 2.4;

Patrick Un Master’s Thesis

28 2 SAP Enterprise Services

Application /

Business
Object

S&AM

Runtime

Derivation

Implementation

Deriv. Interface Buffer Interface

BO Persistence

Status

Instance data

Buffer

Implementation

R

R R

R

RR

S&AM

Runtime

Model

E
S

I S
e
rv

ic
e
 P

ro
v
id

e
r

E
S

F
 B

a
c
k
e
n
d

U
p
d
a
te

 B
u
ffe

r

R

R

Client

R Persistence Interface

Persistence

Implementation

R

R

Default Buffer

Figure 2.5: Status and actions management runtime system architecture

subsequently all identified process steps are assembled so that the dependency constraints, preconditions and
postconditions among the process steps are modeled appropriately.

Clearly an SAP enterprise application must access the status and actions management data during runtime.
Therefore it is necessary to persist this data. This is where a status and actions schema comes in. A status
schema consists of status variables, a set of allowed status transitions, the set of preconditions that are neces-
sary to influence status changes and allowed actions of business objects. It is used to group status, constraints
and actions to the corresponding business object. At design time a status schema is provided with all known
status while during runtime only certain status values will appear as current status values of a business object
within a process instance. During runtime a module called the status and actions management runtime is
responsible for intercepting the operations on business objects of a process instance so that constraints of
each process steps can be checked and enforced and executed operations are guarded for data consistency
and integrity.

Figure 2.5 shows the runtime overview of a status and actions management runtime module in action. The
figure also indicate the relation between the runtime module with enterprise service instance (ESI) runtime
backend which is responsible for creating, configuring and running enterprise services. The ESI runtime and
service framework of an SAP enterprise application is shown on the left hand side together with a depic-
tion of client service call. The status and actions management runtime accesses status schema and relevant
persistent information from a backend status instance repository in order to compute correct status values
and corresponding status transitions for the different operations on the business object which themselves are
exposed to the service clients as enterprise services.

With this brief explanation on the characteristics of enterprise services and their underlying information,
process and behavioral models, one understands that in order to effectively utilize existing enterprise services
with the goal of providing solution to complex business process oriented problems, one must understand the
behavioral semantics of these services. Furthermore in order to generate more customizable and complex
functionality from existing, self-contained and often domain-specific enterprise services, it is necessary to
find effective ways to combine the individual services together in a sensible manner so that constraints are

Master’s Thesis Patrick Un

2.3 SAP Enterprise Service Behavior Model 29

observed and correctness is guaranteed. This is where the problem of composition enterprise services comes
in. We will see some of the existing approaches of semantic service composition synthesis in the next chapter.

Patrick Un Master’s Thesis

30 2 SAP Enterprise Services

Master’s Thesis Patrick Un

31

3 Survey of Related Works on Service
Integration

In this chapter we review and analyze a selection of existing research approaches and efforts as well as
relevant publications in the literature in the domain of service modeling and service composition which we
collectively summarize and regard as necessary prerequisite steps towards achieving well-defined service
integration. We do not intend to provide an exhaustive account of all available approaches in the literature
but a subset of those which are relevant to our research question. The survey in this chapter is mainly divided
two dimensions: critical explanatory reviews on service description and modeling approaches1 and survey
on existing approaches of service composition synthesis both across industry and in academia circles. The
last section of this chapter provides a comparative juxtaposition of these solutions and approaches according
to a set of chosen criteria to highlight commonalities and differences among them in order to identify issues
about what has been researched and what are the strength and potential weakness of these approaches.

3.1 Service Modeling

Conventional web services and enterprise services are common in descriptive aspects in a variety of ways.
Conceptually they are programs that export their description model which is not defined with a strict formal
approach generally. These solutions are mainly found in the industry. In the academic research, there have
been efforts to combine semantic web technologies with web services to provide metadata based service
annotations to conventional web services.

3.1.1 Service Characterization Aspects

When modeling service beyond a pure syntactic dimension, it is necessary to identify some other dimensions
for classification of service description. We distinguish the following aspects:

1. service interaction model: it represents the interaction form with a service client. We observe three
types of interaction patterns:

• monolithic interaction characterizes service operations that are described in terms of legal and
executable operations only without exerting restriction on the order of execution of these opera-
tions;

• sequential interaction characterizes a temporal sequential model of description of legal operation
executions where temporal order of the executions are observed linearly;

• tree-based interaction characterizes a branching model of temporal execution of service opera-
tions based on the choices a service presents to execute in the next step after each execution of a
operation.

2. controllability: it refers to the possibility of fully controlling a service based on the operations it
executes in terms of knowing the available choices of executable operation at a certain execution step

1This also includes service matching based on a certain descriptive model of services

32 3 Survey of Related Works

after a previous operations has been executed. Another term of full controllability is deterministic
service. In contrary if given a certain state during execution, the choice of executable operation for
the next step is sometimes not determined due to for instance abnormality of operation behavior or
irreversible failure such that the service cannot be sure to offer certain choices. In such cases, we
called the service to be only partially controllable or a non-deterministic service;

3. state observability: it characterizes the transparency of internal states of a service in terms of observ-
able states available to external services or other enterprise components;

4. dataflow awareness: it characterizes the property of a service whether it deals with dataflow and other
data in form of input and output parameters.

3.1.2 Service Description and Modeling

Traditional proposals for service modeling and description from the industry are these following languages:

Web Service Description Language (WSDL) is a conventional syntactic approach for describing web
services [Chinnici et al., 2007a, Chinnici et al., 2007b] which mainly describes services from syntactical data
type centric aspects with an emphasis on definition of operation signatures and exchanged message formats.
It is a static representation of a service because it does not describe behavior of a service. Incoming and
outgoing messages are declared using data types based on the XML schema language. It provides syntactic
mechanism to locate service through URI, specify concrete transport protocol to exchange messages and
concrete mapping between abstract method definition and concrete protocol and data format.

Web Service Conversation Language (WSCL) is a proposed language [Banerji et al., 2002] to specify
and support conversational state of web services based on XML syntax [Bray et al., 2008]. A WSCL docu-
ment views communication as a web service conversation and specifies the exchange order of legal instances
of XML messages in a conversation.

Web Service Choreography Interface (WSCI) is a proposed language [Arkin et al., 2002] which de-
scribes the observable coordination behavior of web services from client’s perspective with the purpose to
represent temporal and logical dependencies of exchanged conversational messages using XML syntax.

It can be observed that WSDL provides a static representation of implementation-independent interfaces
of web services and has become widely adopted. It encodes a monolithic interaction model without restric-
tion on the order of execution of the operations specified in the WSDL interface. In comparison WSCL and
WSCI provide support of tree-based interaction and explicitly deal with data and fully controllability of the
services they describe.

The Web Service Choreography Description Language (WS-CDL) is a process oriented language
[Austin et al., 2004, Kavantzas et al., 2005, Ross-Talbot & Fletcher, 2006] which has been proposed to ex-
press collaboration between participant services with appropriate specification of their conversations. It is a
language which is based on π-calculus2 with the behavior of each participant services in the collaboration
being described through a sequential finite state transition system, interacting with the others and sharing re-
sources through predefined channels. WS-CDL provides a formal model [Burdett & Kavantzas, 2004] with
constructs for service communication, decision choice support, concurrency and iteration which have a pre-
cise formal semantics based on corresponding π-calculus constructs. Formal verification of livelock and
deadlock is also supported.

2π-calculus is also known as process calculus or process algebra which is originally proposed by Milner [Milner, 1999].

Master’s Thesis Patrick Un

3.1 Service Modeling 33

Likewise in the business process management domain, there have been efforts to develop other languages
to incorporate support of business process artifacts into service modeling, such as XLANG, WSFL, XPDL,
WS-BPEL [Barreto et al., 2007, Alves et al., 2007]. While some of which have been adopted for process
orient service model, they suffer from lacking of well-defined semantics [Grüninger et al., 2008] which pro-
vide unique and unambiguous interpretation of the specifications though the Business Process Execution
Language (BPEL) family of languages have been widely adopted.

Comparing to the mostly syntactic description solutions in the industry, many semantically well-defined
approaches have been proposed in academic research circles. The First-Order Logic Ontology for Web
Services (FLOWS) [Grüninger et al., 2008] and it currently has been submitted to W3C known as Seman-
tic Web Service Ontology (SWSO) [Battle et al., 2005b, Battle et al., 2005c] and related Semantic Web
Service Language (SWSL) [Battle et al., 2005a]. It is a framework that is comprehensive with respect to
web service features towards automated service discovery, verification or composition by providing a well-
defined first order logic based semantic description for services. It possesses a sequential interaction model
which is geared towards specification of temporal order of the executions of services.

One of the prominent earlier efforts in the direction of semantic service description and modeling with sim-
ilar goal is the OWL-S framework for semantic markup and annotation for web services [Martin et al., 2004a,
Martin et al., 2007, Martin et al., 2004b].
OWL-S is based on the W3C Web Ontology Language (OWL) recommendation [Bechhofer et al., 2004,
McGuinness & van Harmelen, 2004, Patel-Schneider et al., 2004, Smith et al., 2004] and is developed as a
dedicated service ontology based on the expressive semantics of the underlying language. Based on the
core semantic web technology [Cardoso, 2007, Kashyap et al., 2008], OWL is a sufficiently expressive be-
havioral model to represent the static aspects of service description as well as a black box view of service
precondition, invariance and postconditions of operations towards the state of services and relevant features
perceivable in the external environment. OWL-S is a typical dedicated ontology for semantic web services
that is built around an upper service ontology consisting of the following main concepts:

• a service profile in OWL-S is a description of service capabilities that use the constructs of the OWL
language to express service inputs, outputs, preconditions and effects. The service profile is geared
towards semantic reasoning support for precise and effective service discovery;

• an OWL-S service model specifies the service process model, i.e., as similar to many process oriented
services3 the underlying business process behavior directly influence the behavior and semantics of
the enterprise services in terms of controllability, dataflow, control flow and constraints of execution
of the intrinsic service operations. OWL-S service model is aimed towards enabling automated service
composition and execution;

• an OWL-S service grounding specifies how the semantic web services can be accessed with description
of the communication protocol, data marshaling and serialization and it relates semantically described
service message types to grounded WSDL messages, i.e., the messages on the syntactic level.

Another effort in semantic service description and modeling is Web Service Modeling Ontology (WSMO)
[de Bruijn et al., 2005a, Arroyo et al., 2005, de Bruijn et al., 2005c, Lausen et al., 2006, Studer et al., 2007]
and the related Web Service Modeling Language (WSML) [de Bruijn et al., 2005b]. The proposed ontol-
ogy and language can be used to specify abstract conceptual of service descriptions with focus on interop-
erability of semantic web services. This proposal has provided a reference implementation of a semantic
execution environment (SEE) runtime framework called Web Service Execution Environment (WSMX)
[Bussler et al., 2005], to support deployment of semantic web services to showcase WSMO. The service

3For instance, SAP enterprise services are examples of typical process oriented services.

Patrick Un Master’s Thesis

34 3 Survey of Related Works

ontology WSMO is built on the basis of frame logic [Kifer et al., 1995] which allows a WSMO ontol-
ogy to use attributes to describe service relevant concepts in details. WSMO is based on a combination
of semantics of description logics (DL) [Baader et al., 2007] and Horn logic as well as logic program-
ming [Perrin et al., 1990] with a reduced expressive variant based on description logic programs (DLP)
[Grosof et al., 2003]. Generally WSMO has four main components:

• a goal is a formulated objective or client’s desire for certain functionality w.r.t. a service. A goal
consists of a specification of the state transitions based on Horn logic rules which represent the pre-
conditions regarding the state of a described semantic service before it is executed, the states that are
kept invariant, the postconditions that must hold, as well as the effects after the service is executed. It
is an abstract state machine approach for specification of service behavior that is inline with WSMO;

• a set of ontologies which formally describe all the components, parameters, etc. of the described
semantic web service. It is a well-defined mechanism to semantically annotate services so that every
constituents of the services can be enriched with semantic metadata for interpretation. In contrary to
the OWL-S approach to adopt OWL based ontology expressions, WSMO has adopted an object-based
frame logic approach to specify service ontologies;

• a set of mediators [Lausen et al., 2006] which is conceived as dedicated first class components in
WSMO based semantic web services to resolve incompatibilities between service ontologies, service
interfaces, service goals, etc.; WSMO mediators do not dictate concrete implementation details about
how these mediators must be built, rather they stay on an abstract level and specify what elements must
be available in the mediators and what such mediators achieve to perform functionally. Mediators can
be implemented as software components that are deployed in the WSMX runtime environment;

• a set of semantic web service descriptions using the defined service ontologies, they specify the dedi-
cate service ontologies for each semantic web service consisting of functional descriptions expressing
service capabilities which are summarized in a service interface syntax using WSML. Moreover the
orchestration and coordination details between interoperable semantic web services with each other
are specified also in the service descriptions using corresponding WSML language syntax. In order to
resolve incompatibilites which can arise during service interactions, the mentioned mediator specifi-
cations can also be included in each service description. WSMO service descriptions are essential to
express the behavioral model of semantic web services.

The WSMO ontology is expressed using the related Web Service Modeling Language (WSML) literally
[de Bruijn et al., 2005b, de Bruijn et al., 2008, Lausen et al., 2005, Steinmetz et al., 2008, Toma et al., 2008]
which exemplifies and reflects the semantic layering [de Bruijn & Heymans, 2007] corresponding to the se-
mantics and expressiveness of WSMO ontology. WSML supports a frame logic based surface syntax allow-
ing definition of abstract concepts, abstract relations, instances of concepts, instances of relations as well as
logical axioms that are based on a rules in Horn logic syntax [de Bruijn et al., 2005d, Lausen et al., 2005].
Moreover WSML also has an abstract syntax and intrinsic semantics based on Hoare logic [Hoare, 1969]
by Charles Hoare and Horn logic as shown in [de Bruijn, 2008]. Serialization of WSML is supported in
XML and RDF syntax [de Bruijn et al., 2008, Toma et al., 2008]. While the four former constructs focus on
the modeling of the constituents such as input, output and instances of semantic services, the latter axioms
supports definition of logic rules and conditions for state transitions which are essential in the interaction
and behavioral model based on abstract state machines that are intrinsically defined in the WSMO service
ontology.
While the DLP variant is weak in expressivity in terms of the descriptive power of service description but is
decidable [Grosof et al., 2003] computationally, the more expressive variants of the WSML language such
as WSML-Full or WSML-Rule based on Horn logic programming can suffer from undecidability because of
unrestrained expressiveness in logical syntax. Since WSML possesses a combination of semantics in logic

Master’s Thesis Patrick Un

3.1 Service Modeling 35

programming and description logics, therefore it requires both type of reasoners to support semantic ser-
vice discovery and mediation. The interaction model of WSMO/WSML semantic web services follows the
monolithic model in the dedicated ontologies and the sequential interaction model in the service mediation
and service descriptions based on abstract state machine state transitions.

In academia another interesting web service description modeling approach is published in the works of the
group of Ambite, Takkar et al. [Thakkar et al., 2002, Ghandeharizadeh et al., 2003, Thakkar et al., 2003,
Thakkar et al., 2004, Knoblock et al., 2005] where the interaction model is a monolithic one and services are
modeled as view over existing data sources. Services are described by their input and output parameters,
binding patterns and constraints on the data sources, which directly characterize the output data that the ser-
vices return.

Further research approaches have characterized service modeling which exports the behavior of services
which has proved to bear significant relevance to the latter described composition of services. Works such as
explained by Hull et al. in [Bultan et al., 2003, Hull, 2005, Hull et al., 2003] and the group Deutsch et al.
[Deutsch et al., 2009, Deutsch et al., 2007, Deutsch et al., 2004, Deutsch et al., 2006a, Deutsch et al., 2006b]
as well as De Giacomo’s group in Rome [Berardi et al., 2005b, Berardi et al., 2003a, Berardi et al., 2003c]
together more or less characterize services from an observable, deterministic or non-deterministic perspec-
tive that focus on conversational descriptions. Many of these proposed approaches follow the tree-based
interaction model and consist of detailed specification on observability and controllability of services.

In [Bultan et al., 2003] services are modeled as possibly non-deterministic Mealy finite state machines
that are able to send or receive messages to or from service peers according to a predefined communication
network configuration. Services communicate and evolve asynchronously and are equipped with a bounded
queue buffering incoming messages while if the queue is zero-length, services communicate synchronously.
The behavior of a service is summarized as sending messages, receiving messages, consuming queued mes-
sages or simply performing no operation. These operations are mutually exclusive and yield when performed
state transitions w.r.t. the services.

A similar framework which incorporates both message exchange among services with exported behavior
and interaction with a shared database is the COLOMBO framework [Berardi et al., 2005b] where services are
represented as Mealy deterministic finite state machines and are equipped with queues and asynchronously
exchange messages with other peers. The framework interacts with a database through atomic and possibly
non-deterministic processes with OWL-S as description language.

From a modeling view point that resembles the previous approach, Pistore’s group has also proposed in
[Pistore et al., 2004, Pistore et al., 2005a, Pistore et al., 2005b] a behavioral description of services as non-
deterministic finite-state processes which are specified in WS-BPEL [Alves et al., 2007] and abstractly repre-
sented as finite state transition systems that are partially observable which mean that states are not completely
known during runtime. Each state of the transition system represents a service internal state which is char-
acterized by the set of operations the service offers and transitions represent the state changes that a service
performs when an operation is executed. The non-determinism incurred by partial observability models par-
tial knowledge of domain in terms of uncertainty about possible outcomes of executing operations, however
partial observability is a correct way to model the inability to observe all properties of the internal states of
services that are ubiquitous in many services; this approach follows the tree-based interaction model.

Patrick Un Master’s Thesis

36 3 Survey of Related Works

3.1.3 Service Matching and Discovery

In industry a standard solution for service discovery has been Universal Description, Discovery and In-
tegration (UDDI) which is a registry specification proposed by a consortium of several major industry
vendors. The repository is referred to as UDDI registry which is administered centrally and can be phys-
ically distributed. A service provider publishes service descriptions as WSDL to a UDDI registry which
store the descriptions and replicate the information accordingly. The core of a UDDI registry consists of
the conceptual components of white pages which contain business information about the service provider,
yellow pages which contain classifications of services in various taxonomies and green pages which provide
technical information about the published services [Alonso et al., 2003]. A service consumer can consult the
UDDI registry by searching based on keywords or service name. Found results are returned with links to
invoke the services to the service consumer. The major drawback of UDDI is scalability issues and most of
all the inability to precisely expose the functionalities and capabilities of services in the registry beside just
classification according to certain business taxonomies or verbal descriptions.

In academic research, many research efforts have concentrated on finding appropriate ways to expose and
declare the capabilities of services semantically so that automatic logical reasoning and inference mecha-
nisms can be used to match for most appropriate services bearing the capabilities that are desired.
A standardized model of semantic matching of services has been introduced in [Paolucci et al., 2002] where
an OWL-S (then DAML-S) based service profile matching algorithm is proposed to define semantic match-
ing model in conformity to the semantic matching notion of services described in description logics. Five
types of semantic matches are identified with the preference and degree of matches between capabilities
formulated in a query and a set of service profiles. They are exact match, plug-in match, subsume match, in-
tersection match and non-match which will be described in detail when we formalize matching in chapter 4.
The semantic matching model of semantically annotated services has become widely adopted in academia
and research.

In the works of [Agarwal & Studer, 2006] of Rudi Studer’s group, it has been proposed to semantically
annotate WSDL documents with rich semantic descriptions. Moreover a brief reasoning algorithm is pro-
posed to match services and return either matching services or a set of conditions under which a services
offer the desired functionality requested in the matching query. A goal based and equvalence based formal-
ism for matching services is propose in [Agarwal, 2007] which allows to describe services with involved
resources. Goal based matching deals with specifying constraints on desired web services and then finding
those services that satisfy the constraints, whereas equivalence based matching supports the view that an
existing service is replaced by another service without changing the overall behaviour of the system hosting
the service. An expressive formalism is developed to specify desired constraints on a service with a sound
and complete algorithm to check whether a service description fulfills a goal. Furthermore regarding func-
tionalities of services algorithm that shows how two service descriptions can be checked for equivalence is
developed.

In the works of [Noia et al., 2008, Noia et al., 2007], the researchers have described a formal non-monotonic
logical approach of semantic matching of services and algorithm that does semantic based ranking of or-
ders of matches in query of services. Similar to works by Noia in contrary to open world semantics of
the underlying description logic semantics of OWL, Grimm et al. have proposed in [Grimm et al., 2006,
Grimm & Hitzler, 2008] that an analysis to use local closed-world reasoning4 to reason about service match-

4In traditional AI planning a closed world assumption is made with the meaning that if a literal does not exist and cannot be proved
to be true in the current state of the world, its truth value in the current state is considered false, i.e., everything that is unknown
to an agent is assumed to be false. In logic programming a corresponding epistemic approach to knowledge is called negation as
failure. An incurred trouble with the closed-world assumption is that merely with the true and known literals one cannot express
that new information and possibly true literal has been acquired when the state of the world changes.

Master’s Thesis Patrick Un

3.2 Service Composition Synthesis 37

ing and evaluate its applicability to matching. Two non-monotonic extensions to description logics: autoepis-
temic DLs and DLs with circumscription have been used to overcome traditional problem incurred with
closed-world reasoning. In [Grimm et al., 2004] matching notion is further refined to take into consideration
the variance between the human intuition of the service modeler and the formalism used to enable service
discovery by proposing an approach to map the intuition into description logics constructs to incorporate it
into reasoning. Service discovery and matching process thereby is based on service description as classes
and instances. Variance in the matching process is described in two dimensions: intended diversities due
to possibly many matched instances in the domain within a single world and complete knowledge due to
matched instances in all possible worlds where ranking of the degree of matching is possible using formal
DL inference.

Ian Horrocks et al. have proprose in [Li, 2004, Li & Horrocks, 2003a, Li & Horrocks, 2003b] an ap-
proach to formulate service capabilities as service advertisements which describes the functional and non-
functional properties of a service using description logics constructs. Desired capability is formulated as
query which is also based on description logics, one of the first approaches to do so, while matching algo-
rithm observes the set based view of matching between concepts and relations in the query and in the ad-
vertisements that is conformed to the standard semantic matching model proposed in [Paolucci et al., 2002].
Matching is defined over the notion of compatibility of the set of queried concepts and those in the adver-
tisement which is defined in terms of concept satisfiability based on set intersection between the queried set
and the advertisement set.

Likewise interesting approach in semantic matching of services is published in [Hull et al., 2006] where
services are described with description logics in a knowledge base comprising TBox and ABox. Service
descriptions are formalized to tuples consisting of lists of pairs enumerating input parameters and their cor-
responding types as well as output value pairs with their corresponding types respectively. Services are
consequently described in such enumerated conjunctive lists of tuples where instances in a corresponding
ABox represent the instances of input and output lists characterizing the services. In a proposed matching
formalization, a query of a certain service is likewise represented as a tuple containing the enumerated in-
put type list, output value list and instances from ABox. Consequently service matching can be reduced to
checking containment between two such conjunctive queries in description logics, one for the query and the
other one for a matched service candidate representing in similar conjunctive tuples w.r.t. a TBox, which is a
standard decidable reasoning task.

Finally the researchers of the group with Di Sciascio et al. have shown in works [Colucci et al., 2003a,
Colucci et al., 2003b, Colucci et al., 2004, Colucci et al., 2005a] that semantic service discovery and match-
ing can be tackled using a formalized approach of concept contraction and concept abduction which are
specific extensions to standard description logics inference mechanism [Baader et al., 2007] to solve concept
covering problem w.r.t. matching definition over intersection of sets of concepts as described in the semantic
matching model in [Paolucci et al., 2002]. In a non-monotonic inference service, concept abduction and con-
traction represent, which extends concept subsumption and concept satisfiability respectively, can refinement
in a knowledge and belief revision framework regarding logic based matching and query refinement which
allows determining the quality of possible matches.

3.2 Service Composition Synthesis

We proceed with our survey on several well-defined techniques for service composition synthesis. We re-
capitulate the definition of the problem of service composition synthesis which states that it is concerned
with synthesizing a distinct composite service that realizes the client request upon a certain set of complex

Patrick Un Master’s Thesis

38 3 Survey of Related Works

functionalities and behavior by appropriately coordinating available services. We review some of the existing
approaches regarding the aspects of the following:

1. the way in which the client request is modeled;

2. the nature of the composition regarding the underlying interaction model and the way in which the
modeled behavior of services and the world state interact;

3. the proposed architecture for coordination and orchestration in terms of possible support of dataflow
and control flow.

A client request can be characterized according to its interaction model w.r.t. a service description, its degree
of completeness and observability as described previously in section 3.1.2. A request is characterized as
monolithic if it specifies that signature of the service that the client wants to realize in terms of input values,
output data types and possibly preconditions and effects. Moreover client request can also be character-
ized in terms of the actions that the composite service will execute by specification of either sequential or
tree-based interaction properties. From the perspective of the former one, a client specifies a set of tem-
poral linear sequences of executable actions determined on the basis of properties expressed in the request
without the client having to intervene the execution. The latter one specifies executions that are temporally
representable in a tree form with the client obtaining choices of possible actions among which it can choose
from and therefore tree-based interaction represents to certain degree at each point in execution a set of
possible future states based on the executable actions to choose from. It is worth mentioning that client re-
quest that is specified as such do not necessarily share the same interaction model with the composite service.

Client specification can be either a complete or partial specification. The former denotes a deterministic
single service with completely specified behavior that the client wants to realize while the latter denotes a set
of partial services with any of which can realize the desire composite service, leaving a certain degree in the
composite behavior unspecified and letting the composite service realizing it. Consequently it is interesting
to study what kind of impact partial client specification will have on algorithmic realization for automatic
service composition in the latter case.
While temporal sequential interaction is a simpler case when at each single step only one service executes
sequentially. The tree-based interaction with possible partial client specification allows the possibility of
interleaved concurrent executions among the component services which synthesize the composite service.
The latter case is challenging in the sense that several services can be simultaneously active and concurrently
executing. Also worth mentioning is the way how the component services behave in the latter case of partial
specification when composite services can either execute regardless of all possible states of the component
service at runtime or it must be realized by component services which execute actions to gather information
to complement the underspecified composite service to satisfy certain conditional constraints such as guard
conditions on certain state transitions during runtime.

3.2.1 Industrial Approaches

The Business Process Execution Language (BPEL) has constructs to allow combination of processes. The
relevant Web Services Business Process Execution Language (WS-BPEL) [Alves et al., 2007] is one of
the efforts in the industry to invent a solution for specification of process execution and combination for pro-
cess oriented services. WS-BPEL is based on XML and specifies standard structures which are necessary for
web services orchestration. Service composition is based on the modeling of workflow. Fundamental to the
model is a set of activities that represent message exchange or intermediate result of processes. A process is
conceptually defined to consist of a set of activities. Activities are structured with dedicated constructs such
as sequential execution, switching for choices of execution, loop structure, etc. where variables are used

Master’s Thesis Patrick Un

3.2 Service Composition Synthesis 39

to hold messages and data and messages can be assigned identifying correlation to allow stateful conversa-
tion. The interaction model of WS-BPEL is largely monolithic because it incurs fixed completely specified
and deterministic executions. Another drawback is the lack of semantics because services are described in
WSDL.

Another previously mentioned effort is Web Services Choreography Definition Language (WS-CDL)
[Kavantzas et al., 2005]. Composition in the choreography approach represents peer-based communication
between services which are mutually controlled by the messages exchanged without resorting to any external
instance for coordination. Therefore a WS-CDL specification is an agreement from an external perspective
referring to the observable behavior of the coordinated services. As mentioned the underlying process model
of WS-CDL is π-calculus defined by finite state transition systems using predefined communication chan-
nels.

Very few works exist which describe automatic service composition, i.e., in the sense of WS-BPEL and
WS-CDL, to study how such syntactic specifications can be automatically generated given description of a
desired target service (composite service) and a set of available component services. This deficiency still
persists currently with the fact that WS-BPEL and similar solutions represent only semi-automatic or non-
automatic mechanisms to compose services. Nevertheless, in the academia, many research efforts have pro-
posed such automatic composition techniques which are theoretically based on related academic disciplines
spanning across topics such as agent theory, automated theorem proving, artificial intelligence (AI) planning,
etc. These techniques deal with monolithic as well as the sequential and tree-based interaction models and
therefore represent far more desirable solution attempts to tackle the service composition problem. In the
following, some of the most significant results are briefly reviewed.

3.2.2 Academic Approaches

McIlraith’s Group

In the works [McIlraith & Son, 2001, McIlraith et al., 2001, McIlraith & Son, 2002] and with slightly differ-
ent approach [Narayanan & McIlraith, 2002, Narayanan & McIlraith, 2003] by McIlraith et al., they have
presented a framework for automatic service composition that is based on the basic action theory of the sit-
uation calculus by Reiter [Reiter, 2001a] and AI planning. Service are represented as generic procedures
in the agent-based GOLOG/ConGolog language with the corresponding information model expressed in an
OWL-S service ontology. A user presents a request to the framework that is expressed as a GOLOG/Con-
Golog generic procedure with constraints and possible preferences. A user specification can be executed by
an agent which internalizes the OWL-S service ontology and instantiates the services within the ontology.
An agent takes described constraints and preferences into account and tries to execute the services. The
GOLOG/ConGolog generic procedure of the composite service is actually associated with a situation tree
with each node denoting a situation as the state of the service at a certain point in the execution.
Due to incomplete knowledge on the effects of execution of service actions, the agent executes knowledge
gathering actions in an interleaved manner together with actual actions to update its belief state about the
world in order to determine possible successor situation when a certain action is executed subsequently.
Therefore the obtained trajectory of actions that the agent has executed so far includes interleaved world-
altering actions, i.e., the actual actions corresponding to a service operation of a GOLOG/ConGolog generic
procedure and knowledge gathering actions. It is possible that several such action trajectories can be obtained
within the situation tree with each one of these representing a possible sequence of actions of the composite
service to execute. It specifies the order that the generic procedures representing the component services can
be instantiated and executed and represents acceptable sequence of actions in the sense of AI planning to
satisfy a particular user goal. More recently Sohrabi et al. have shown in [Sohrabi et al., 2006] that user

Patrick Un Master’s Thesis

40 3 Survey of Related Works

preferences are customizable and can be formally incorporated into the generic procedures for reasoning
and theorem proving tasks for web service composition based on McIlraith’s approach. Ulterior approach to
tackle the problem using planning has been shown in [Fadel & McIlraith, 2002, Baier & McIlraith, 2006a,
Baier & McIlraith, 2006b, Baier et al., 2006, Sohrabi & McIlraith, 2008, Sohrabi et al., 2008] which are also
worthwhile readings for comprehension of some of the relevant fundamental issues.

The Roman Group

In [Berardi et al., 2003a, Berardi et al., 2003b, Berardi et al., 2005c, Berardi et al., 2005d], a group of Ro-
man researchers led by De Giacomo, Calvanese et al. have proposed a useful model that abstracts service
behavior as finite state transition systems that are either deterministic or observably non-deterministic. Ser-
vices are modeled as execution trees where they admit a representation as deterministic finite state machine.
Services are observed as the executable actions (operations) which they offer. Composition is based on ob-
servable behavior of a (virtual) target service which is presented in a client specification and realized by
suitably combining and coordinating a set of available component services. The composition is a synthe-
sis of Mealy finite state transition system that requires full delegation of the actions of the target service to
available services in a service community for execution. Each action in the target service is labeled with the
component service to which it can be delegated. Each possible sequence of actions on the execution tree
corresponds to possible interleaved sequence of actions of the available services. At each execution step the
client has control of what action to execute next since it is presented choices of possible actions to execute
by the target service.
While the behavior of a target service and the component services is expressed in an external schema,
an internal schema is used to specify detailed delegation of individual actions to specific component ser-
vices. A composition of the target service exists there exists a Mealy internal schema for the target service
that is an Mealy finite state transition system which is expressed in a form of deterministic propositional
dynamic logic (DPDL) [Fischer & Ladner, 1979, Ben-Ari et al., 1982] described in [Berardi et al., 2004b,
Berardi et al., 2005c]. Checking existence of composition has EXPTIME complexity. Such a composition is
reusable in the sense that it is a bottom up approach by client specification of a target service representing
desired behavior and the synthesis attempts to assemble such desired behavior from available services. The
interaction model of this approach is a tree-based branching model where each node in the execution tree
denotes a choice point of the next possible actions.
A more recent variation of this approach adopts and utilizes the concept of simulation [Milner, 1971] to
derived service composition synthesis based on simulation preorder between finite state transitions sys-
tems [Berardi et al., 2008, Sardina et al., 2007, Sardina et al., 2008, Patrizi & Giacomo, 2009]. It has favor-
able runtime complexity characteristics and is more tolerant in failure situations [Sardina et al., 2008]. It
is worth mentioned that non-deterministic behavior due to uncertainty of outcomes of action executions
has led the researchers to come up with a solution to deal with non-determinism [Berardi et al., 2006a,
Berardi et al., 2006b, Berardi et al., 2004c] with underspecified client specification, as a loosely specified
target service transition system, which enables the target services to incorporate an implementation that al-
lows it to take decisions on whether to execute actions on its own or to delegate them in order to cope
with uncertainty. Also interesting is the fact that there has been an initial attempt by the group to combine
service behavioral description with handling of dataflow in the COLOMBO framework [Berardi et al., 2005a].

Hull and Su’s Group

Hull, Su et al. have shown in [Bultan et al., 2003, Hull et al., 2003, Gerede et al., 2004, Hull, 2005] that
services exchange messages according to a certain communication topology expressed in communication
channels that are buffered queues among services. A sequence of exchanged messages using the dedicated,

Master’s Thesis Patrick Un

3.2 Service Composition Synthesis 41

bounded channel is referred to as specifciation of a conversation and service behavior is modeled as Mealy
finite state machine which Hull calls a mediator for coordinating the set of conversations among peer ser-
vices. The composition of services is a synthesis problem with a set inputs consisting of the desired global
behavior expressed as a set of all desired conversations in a certain temporal logic and a composition infras-
tructure consisting of a set of services and messages as well as a set of associated channels. Output of the
composition synthesis is the specification of the Mealy machine of the services such that their conversations
are compliant with the expressed specification of desired conversation. The conceptual interaction model
underlying this approach is a sequential model because the Mealy composition focuses on linearly ordered
sequences of messages from a global perspective and there is no account from the client perspective of the
Mealy automaton about decision of possible messages to send at each step for the next step. Therefore Hull’s
approach is in this regard different to the Roman approach though both proposals attempt to use finite state
machines to model behavior.

Miscellaneous Other Research Efforts

In the AI planning approach proposed in [Pistore et al., 2004, Pistore et al., 2005a, Pistore et al., 2005b] by
Traverso et al., they have proposed a composition algorithm which takes in input a set of partially specified
services, modeled as non-deterministic finite state machines and a client goal specified in a specific planning
domain language. The algorithm returns a plan that specifies how to coordinate the execution of concur-
rent services in order to realize the goal. The plan can serve to monitor the composition in the sense that
available services behave consistently with their specifications. Due to the presence of non-determinism and
partial observability of states, the search space in planning is quite large even for simple services with few
states. An approach is proposed to overcome the problem by using symbolic modeling checking techniques
and efficient heuristics to prune search space and avoid undirected searches during the generation of the plan.

Knoblock et al. have proposed to use data integration techniques to dynamically compose atomic services
of some data sources [Thakkar et al., 2002, Thakkar et al., 2003, Thakkar et al., 2004, Knoblock et al., 2005].
Their composition algorithm takes in the set of data source fed services as input and a user query expressed
in terms of user input and requested outputs. An output is a composite service that is able to execute an inte-
gration plan for a template query such that all input values can be answered by the composite service. This
approach adopts a mediator concept by enabling the mediator to construct an integration plan consisting of
a sequence of source queries and binding the template source queries with concrete values. The integration
plan is generated with a forward chaining planning algorithm. The interaction model is a monolithic model
with dataflow taken into account based on abstraction of services associated with their data sources which
are represented as views on a relational database.

An interesting approach to combine AI planning and well-known description logic inference mecha-
nisms for service composition has been proposed by Sirin et al. in [Sirin et al., 2003a, Sirin et al., 2003b,
Sirin et al., 2004a, Sirin et al., 2004c, Sirin et al., 2005a, Sirin et al., 2005b, Sirin, 2006]. Sirin’s approach
combines hierarchical task network (HTN) planning5 [Russell & Norvig, 2002] and OWL-S service ontol-
ogy descriptions which are based on semantics of description logics (DL) to generate composition plan. The
proposed variant formalism HTN-DL combines HTN planning and DL to provide sufficient expressiveness
based on DL and efficiency of HTN planning (SHOP2) systems to solve service composition problem in se-
mantical rich way. This approach provides a translation algorithm to transform OWL-S service descriptions
available as templates to HTN-DL to encode the control constructs used to describe the control flow of web
service in an HTN-DL planning domain formalism. It also provides a semantics for OWL-S processes which

5HTN planning is a useful automated planning approach to break down complex planning task into a hierarchical network of tasks
and support conditional and decision during planning.

Patrick Un Master’s Thesis

42 3 Survey of Related Works

is compatible with the originally proposed situation calculus based semantics of OWL-S. Some optimization
techniques for DL reasoning which target nominals and large number of individuals have bee proposed to
allow the HTN-DL planner to efficiently reason with OWL-DL ontologies during planning.

Some other grounded discussions on occasionally mentioned topics regarding service composition, e.g.
nature of service composition, complexity issues are those given by Lécué et al. in [Lécué & Leger, 2006,
Lécué & Delteil, 2007], by Di Sciacio et al. in [Colucci et al., 2005b, Noia et al., 2005, Ragone et al., 2007]
and by Shen et al. in [Shen & Su, 2007a, Shen & Su, 2007b], whereby these approaches will not be exhaus-
tively explained and readers can consult these publications directly.

3.3 Comparative Juxtapositions

Based on the service modeling characterization aspects of: (i) interaction model, (ii) controllability and
state observability and (iii) dataflow handling ability described in section 3.1.1, the following tables show
comparatively the similarities and differences of the different approaches in both service description and
modeling (shown in table 3.1) and service composition synthesis (shown in tables 3.2 and 3.3) respectively.
Columns are labeled with the originating group of researchers for a specific proposed approach, references
can be consulted in the previous sections where each approach is explained with source hints to literature
and therefore are not otherwise repeated in the tables.

Master’s Thesis Patrick Un

3.3 Comparative Juxtapositions 43

W
SD

L
W

SC
L

&
W

SC
I

W
S-

C
D

L
W

S-
B

PE
L

O
W

L
-S

W
SM

O
A

m
bi

te
et

al
.

In
te

ra
ct

io
n

M
od

el
m

on
ol

ith
ic

tr
ee

-b
as

ed
se

qu
en

tia
l

se
qu

en
tia

l

Se
rv

ic
eP

ro
fil

e
m

on
ol

ith
ic

;
Se

rv
ic

eM
od

el
se

qu
en

tia
l

se
qu

en
tia

l
m

on
ol

ith
ic

C
om

pl
et

en
es

s
&

O
bs

er
va

bi
lit

y
of

St
at

es
&

E
x-

po
rt

ed
B

eh
av

io
r

N
.A

.
fu

ll
fu

ll
fu

ll
N

.A
.

/n
ot

ad
-

dr
es

se
d

/n
o

su
p-

po
rt

N
.A

.
N

.A
.

Su
pp

or
tD

at
afl

ow
ye

s(
X

M
L

do
c-

um
en

t
in

-
st

an
ce

s)

ye
s

(X
M

L
do

cu
-

m
en

ti
ns

ta
nc

es
)

ye
s

ye
s

lim
ite

d
no

ye
s

(v
ie

w
s

ov
er

re
-

la
tio

na
l

da
ta

ba
se

/-
da

ta
so

ur
ce

)

H
ul

le
ta

l.
D

eu
ts

ch
et

al
.

D
e

G
ia

co
m

o
et

al
.

Pi
st

or
e

et
al

.
M

cI
lr

ai
th

et
al

.
D

iS
ci

as
ci

o
et

al
.

Si
ri

n
et

al
.

[S
ir

in
et

al
.,

20
04

b]

In
te

ra
ct

io
n

M
od

el
se

qu
en

tia
l

tr
ee

-b
as

ed
tr

ee
-b

as
ed

tr
ee

-b
as

ed
tr

ee
-b

as
ed

m
on

ol
ith

ic
se

qu
en

tia
l

C
om

pl
et

en
es

s
&

O
bs

er
va

bi
lit

y
of

St
at

es
&

E
x-

po
rt

ed
B

eh
av

io
r

fu
ll

fu
ll

fu
ll

an
d

pa
rt

ia
l

ob
se

rv
ab

ili
ty

su
pp

or
te

d
pa

rt
ia

l
N

.A
.

N
.A

./
no

ta
d-

dr
es

se
d

/
no

su
pp

or
t

pa
rt

ia
l

Su
pp

or
tD

at
afl

ow
no

ye
s

(r
el

at
io

na
l

sc
he

m
a)

pa
rt

ia
l

(s
up

po
rt

in
C

O
L

O
M

B
O

)
no

pa
rt

ia
l

(v
ia

G
O

L
O

G
/-

C
on

G
ol

og
pa

ra
m

et
er

s)

no
no

Ta
bl

e
3.

1:
C

om
pa

ra
tiv

e
Ju

xt
ap

os
iti

on
of

S
er

vi
ce

D
es

cr
ip

tio
n

an
d

M
od

el
in

g
A

pp
ro

ac
he

s

Patrick Un Master’s Thesis

44 3 Survey of Related Works

W
S-

C
D

L
W

S-
B

PE
L

O
W

L
-S

W
SM

O
M

cI
lr

ai
th

et
al

.
D

e
G

ia
co

m
o

et
al

.
H

ul
le

ta
l.

C
lie

nt
Sp

ec
ifi

ca
-

tio
n

In
te

ra
ct

io
n

M
od

el

N
.A

.
N

.A
.

m
on

ol
ith

ic
an

d
se

qu
en

tia
l

N
.A

.
se

qu
en

tia
l

tr
ee

-b
as

ed
se

qu
en

tia
l

C
om

pl
et

en
es

s
&

O
bs

er
va

bi
lit

y
in

C
lie

nt
Sp

ec
ifi

ca
-

tio
n

fu
ll

fu
ll

fu
ll

N
.A

.
pa

rt
ia

l
fu

ll
an

d
pa

rt
ia

l
fu

ll

Ty
pe

of
C

om
po

-
si

tio
n

E
xe

cu
tio

n
se

qu
en

tia
l

se
qu

en
tia

l
se

qu
en

tia
l,

co
n-

di
tio

na
l

se
qu

en
tia

l,
co

n-
di

tio
na

l
se

qu
en

tia
l,

co
n-

di
tio

na
l

se
qu

en
tia

l,
co

nc
ur

-
re

nt
se

qu
en

tia
l,

co
nc

ur
re

nt

O
rc

he
st

ra
tio

n
or

C
oo

rd
in

at
io

n
M

od
el

m
ed

ia
tio

n
m

ed
ia

tio
n

N
.A

.
m

ed
ia

tio
n

m
ed

ia
tio

n
m

ed
ia

tio
n

an
d

de
l-

eg
at

io
n

pe
er

to
pe

er

Ty
pe

of
C

om
po

-
si

tio
n

m
an

ua
l

m
an

ua
l

se
m

i-
au

to
m

at
ic

se
m

i-
au

to
m

at
ic

au
to

m
at

ic
au

to
m

at
ic

au
to

m
at

ic

Su
pp

or
t

D
at

afl
ow

ye
s

ye
s

lim
ite

d
no

pa
rt

ia
l

(v
ia

G
O

L
O

G
/-

C
on

G
ol

og
pa

ra
m

et
er

s)

no
no

Ta
bl

e
3.

2:
C

om
pa

ra
tiv

e
Ju

xt
ap

os
iti

on
of

S
er

vi
ce

C
om

po
si

tio
n

S
yn

th
es

is
A

pp
ro

ac
he

s
(P

ar
t1

)

Master’s Thesis Patrick Un

3.3 Comparative Juxtapositions 45

Tr
av

er
so

et
al

.
K

no
bl

oc
k

et
al

.
Si

ri
n

et
al

.
L

éc
ué

et
al

.
D

iS
ci

ac
io

et
al

.
Sh

en
et

al
.

C
lie

nt
Sp

ec
ifi

ca
-

tio
n

In
te

ra
ct

io
n

M
od

el

se
qu

en
tia

l
m

on
ol

ith
ic

Se
qu

en
tia

l
N

.A
.

N
.A

.
se

qu
en

tia
l

C
om

pl
et

en
es

s
&

O
bs

er
va

bi
lit

y
in

C
lie

nt
Sp

ec
ifi

ca
-

tio
n

fu
ll

N
.A

.
pa

rt
ia

l
N

.A
.

N
.A

.
fu

ll

Ty
pe

of
C

om
po

-
si

tio
n

E
xe

cu
tio

n

co
nd

iti
on

al
,

co
nc

ur
re

nt
se

qu
en

tia
l

se
qu

en
tia

l,
co

n-
di

tio
na

l
N

.A
.

N
.A

.
se

qu
en

tia
l,

co
nc

ur
re

nt

O
rc

he
st

ra
tio

n
or

C
oo

rd
in

at
io

n
M

od
el

m
ed

ia
tio

n
m

ed
ia

tio
n

m
ed

ia
tio

n
N

.A
.

m
ed

ia
tio

n
pe

er
to

pe
er

Ty
pe

of
C

om
po

-
si

tio
n

au
to

m
at

ic
au

to
m

at
ic

au
to

m
at

ic
m

an
ua

l
or

se
m

i-
au

to
m

at
ic

au
to

m
at

ic
au

to
m

at
ic

Su
pp

or
t

D
at

afl
ow

no
ye

s
no

no
no

ye
s

Ta
bl

e
3.

3:
C

om
pa

ra
tiv

e
Ju

xt
ap

os
iti

on
of

S
er

vi
ce

C
om

po
si

tio
n

S
yn

th
es

is
A

pp
ro

ac
he

s
(P

ar
t2

)

Patrick Un Master’s Thesis

46 3 Survey of Related Works

Master’s Thesis Patrick Un

47

4 Formalisms for Service Matching and Service
Composition

In the landscape of process oriented enterprise services, deciding on which enterprise service to select to
accomplish a task is often a challenging issue. This is partly due to a vast number of available enterprise
services on one side which expose a backend enterprise resource planning system such as the SAP services;
and on the other side the lack of effective description of service capabilities and appropriate discovery mech-
anisms to find services. Beside terse textual documentations there is often no other sources to know about
their functionalities. Unintelligent keyword based service search is provided to query for service; inflexible
configuration of service registries and administrative overhead further limit efficient discovery and usage of
enterprise services. Since there exists very limited semantically rich description of service capabilities, con-
temporary interaction with enterprise services is still characterized by either manually intervention-centric
search and selection or rigid machine-to-machine communication with high coupling among processes and
their exposed services, making flexible reconfiguration difficult for them.

4.1 Semantic Service Matching and Discovery

We have reviewed some of the important approach proposals in chapter 3 concerning service modeling, ser-
vice matching and service composition. A first step towards better interoperability for existing enterprise
services is an improvement of ability to locate the ‘right’ services from potentially a large bunch of similar
or functionally related services. Potentially they can all offer help toward the solution of a problem though
we certainly do not want to use or test each one of them before use. Since traditional syntactic web services
languages and discovery mechanisms do not support intelligent selection per se, the task of location of en-
terprise services has been to a large extent based on enterprise registries such as UDDI which has proved to
be not very scalable. It fails to catch on probably also due to high administrative overhead and unintelligent
search query answering merely based on categorized tags and keyword based search.

Deciding and evaluating quality of matches and degree of appropriateness of matches in terms of variance
between available functionality and requested functionality using traditional syntactic search and matching
techniques are outside the representation capabilities of UDDI registries. Thus a more flexible and intelligent
type of registries should be based on rich semantic description formalisms to abstract service capabilities into
shared knowledge collections such as a set of service ontologies reflecting in an expressive way the actual
service functionality. Rich semantic description can be reasoned about using decidable logical inference
mechanisms using for instance logic reasoners to enable more precise query answering, satisfying function-
ality attributes constraints, user preferences or even service quality attributes. A declarative approach of
service capability advertisement represents a key development towards more intelligent and automated en-
terprise service discovery, matching and selection.

48 4 Foundations of Service Matching and Composition

4.1.1 Formal Abstract Service Description

From a pure syntactic perspective, we conceive an enterprise service as a generic web procedure based on
some underlying process configuration and processing viewed as a black box, abstracting away from the con-
versational state with client and concrete details of the implementation. Each enterprise service as such can
be represented by a concept name S denoting the service, a processing function δ, a finite set of internal ser-
vice states Bint representing the different possible states within the processing of a process oriented service,
a list ~P consisting of n finite input parameters P = {p1, . . . , pn} where pi denotes one argument component
in the list and n ∈ N. A service performs an operation that is intrinsic to its operation semantic which we
assume that service will success without any further prerequisite. After an operation finishes, depending on
the characteristic of the service, it can return a value. This can be represented with a list ~R which can either
be empty (if no value is returned or the service is not configured to return anything) or it can consist of a
finite set of return values1, i.e., R = {∅ | {r1, . . . , rm}}. The variable n is the arity of parameter list which
denotes the size of the list.
Enterprise services must be deployed by creating an evocable unit of the service from the service defini-
tion S. The evocable unit is called an instance of S and is denoted by sI . An instance s is assigned a copy of
the processing function δs with the corresponding set of internal states Bints . The instance accepts a list of
parameters containing argument objects which are instances of the corresponding argument components of
the parameter list in the service definition, denoted by ~Ps = [a1 : p1, . . . , an : pn] where ai is an instance of
argument of type pi. The instance is allocated the necessary resources to finish processing and can return a
list ~Rs = [b1 : r1, . . . , bm : rm] which is either empty or contains a finite set of returned objects correspond-
ing to the types of the components in the return list of the service definition.

Definition 4.1.1 (Abstract Enterprise Service Syntax). An enterprise service can be defined syntactically
as follows:

Sn(~P) : δ(~P)×Bint → ~R

where

• S is the name of the service and Sn is a service with an arity n of input parameters;

• ~P denotes the input parameters in a list structure. The size of the list is n;

• δ denotes a processing function containing the predefined business logic underlying the service. δ(~P)
denotes this function with the input parameters;

• Bint denotes a finite set of internal service states representing the different processing states within the
services;

• ~R denotes the result list containing output of the service.

The service definition Sn(~P) is a function which maps the set of input parameters to a set of (possibly empty)
output values. This definition is called a service signature.

Definition 4.1.2 (Abstract Enterprise Service Instance Syntax). An enterprise service instance is an object
serving a request and is created from a service definition S by proper resource allocation and assignment. It
is defined syntactically as follows:

sn.Sn(~Ps) : δs(~Ps)×Bints → ~Rs

where

1One can think of this as a result list where the returned value is a list consisting of individual output objects.

Master’s Thesis Patrick Un

4.1 Semantic Service Matching and Discovery 49

• sn is the identifier of the instances with the arity n of input parameters. The instance belongs to the
type of service Sn on which the instance is created and the notation sni is used to uniquely identify an
instance among others;

• ~Ps denotes the input parameter list with size n that belongs to the instance;

• δs denotes a copy of processing function that is assigned to the instance;

• Bints denotes the finite set of internal states belonging to the instance;

• ~Rs denotes the result list of the instance.

Being an object, an instance has a life cycle. It can be created, deactivated if not needed, reactivated to serve
request, pooled or destroyed and evicted from memory by the system that deploys the instance. We call the
above instance definition an instance signature.

A community of enterprise services C is defined as a finite set of service definitions as described in defi-
nition (4.1.1). An instance community Cs is the corresponding finite set of available and activated instances
based on the service definitions in C that are ready to serve requests. While the size of C is usually fixed
and does not subject to change a lot provided that no definition is removed from the community frequently
for instance because of maintenance or removal of outdated services; the size of an instance community Cs
do change quite often because instances have comparably shorter life cycle.

4.1.2 Formal Abstract Service Matching

Given a finite set of enterprise services in a community C of size m containing the following service de-
scriptions and a query Q := Slquery(~P)→ ~R searching for a service with the signature as shown:

Sl1(p1, . . . , pl) → ~R (service 1)
Sn2 (p1, . . . , pn) → ~R (service 2)
...

...
Skm(p1, . . . , pk) → ~R (service m)

Sl(p1, . . . , pl) → ~R (query)

The services inC are numbered by subscripts. The following fundamental question is essential to any service
search and discovery system: how to select an appropriate match that can satisfy the query?
The answer w.r.t. definition of the abstract service syntax is not difficult: a match can be determined by an
algorithm based on the notion of matching service signature by performing the following steps:

1. first it tries to match the query service name against a name Si in C, if no match is found it aborts;

2. then it matches the arity in the query with that of the services in C, if there is no match it aborts;

3. with a match of arity, it tries to match the parameter types of the argument components in the candidate
service in exactly the order they appear, if type does not match, selecting the service for invocation
may cause failure;

Patrick Un Master’s Thesis

50 4 Foundations of Service Matching and Composition

4. finally it tries to match the type of ~R in the query against the one in the candidate service. Notice that
a mismatch in this step will not necessarily cause failure since the return value may still be ignored
provided that the previous matching criteria are met. The client can still invoke the service and choose
to discard the return value2 while unmatched input parameters cause immediate failure on invocation
of the service.

If there are multiple matching candidates with slightly different signature, for instance every criteria matches
except that the return value differs in terms of type generality, these candidates can be returned in an answer
set for choice.

On the instance level, once service instances are involved the above matching criteria must be extended
in order to safely select service instance to answer a query. This is because the type membership of the
parameter objects must be accounted for polymorphically, i.e., a parameter object does not only belong to
its direct type but also a more general type from which it derives. This is where the issues of covariance and
contravariance [Meyer, 1990, Castagna, 1994] of types regardings input parameter and return type of the
service can influence a decision of match. The contravariance rule captures the substitutivity of types, i.e.,
subtyping relation that specifies which generalized set of types can safely replace another set of given types
in every context. In juxtaposition, a covariance rule characterizes the specialization of type which specifies
the creation or referencing of more special types to replace the general ones in a more specific context. Given
an instance community Cs consisting of:

SlA(p1, . . . , pl) → ~R (service A definition)

sl1.S
l
A(a1 : p1, . . . , al : pl) → ~Rs = [o1 : r1, . . . , on : rn] (instance 1 of service A)

sl2.S
l
A(a1 : p1, . . . , al : pl) → ~Rs = [o1 : r1, . . . , on : rn] (instance 2 of service A)

sl3.S
l
A(a1 : p1, . . . , al : pl) → ~Rs = [o1 : r1, . . . , on : rn] (instance 3 of service A)

...
...

slx.S
l
A(a1 : p1, . . . , al : pl) → ~Rs = [o1 : r1, . . . , on : rn] (instance x of service A)

SmB (p1, . . . , pm) → ~R (service B definition)

sm1 .S
m
B (a1 : p1, . . . , am : pm) → ~Rs = [o1 : r1, . . . , on : rn] (instance 1 of service B)

sm2 .S
m
B (a1 : p1, . . . , am : pm) → ~Rs = [o1 : r1, . . . , on : rn] (instance 2 of service B)

...
...

smy .S
m
B (a1 : p1, . . . , am : pm) → ~Rs = [o1 : r1, . . . , on : rn] (instance y of service B)

SnC(p1, . . . , pn) → ~R (service C definition)

sn1 .S
n
C(a1 : p1, . . . , an : pn) → ~Rs = [o1 : r1, . . . , on : rn] (instance 1 of service B)

...
...

snz .S
n
C(a1 : p1, . . . , an : pn) → ~Rs = [o1 : r1, . . . , on : rn] (instance z of service B)

...
...

2Unmatched result value is not a necessary condition of failure, therefore in such case the candidate service can still be selected to
answer the service query.

Master’s Thesis Patrick Un

4.1 Semantic Service Matching and Discovery 51

and a query
Q := snquery.S

n
query(q1 : p1, . . . , qn : pn) → ~Rs = [t1 : r1, . . . , tn : rn]

to select a matching service instance from an instance community. A matching algorithm, in addition to the
previously described steps, is required to take care of these following aspects:

1. for the size (arity) of the parameter list of the query, the matching algorithm can try to find a set of
candidate service instances with matching arity and filter out those mismatch ones in order to reduce
the size of search space;

2. for each input parameter object q1, . . . , qn of the query, it iteratively checks

(∀qi ∈ ~Ps ∧ ~Ps 6= ∅)
n∧
i=1

(qi v ai) ∨ (qi w ai),

i.e., whether the query input parameter objects belong type-wise to the corresponding parameter ob-
jects of candidate service instances in the given order they appear in the list. The notations “v” and
“w” denote instance subsumption relations where a v b denotes that the object a is subsumed by b
such that b belongs to the generalized type to which a also belongs. The other notation “w” indicates
that the subsumption goes in the other direction. If there exists one pair of objects with

(qi v ai ≡ ⊥) ∧ (qi w ai ≡ ⊥),

i.e., subsumption relation does not exist in either direction and the check fails for both, then the candi-
date instance must be rejected due to mismatch;

3. the specification of input parameters for matching on the instance level must conform to the covariance
rule of parameters which states that the type of input parameter objects of candidate service instances
represents a more specific and stringent type-checking than the query parameter objects in order to
guarantee an appropriate degree of matching and selection precision;

4. for each output objects in the result list ~Rs = [t1, . . . , tn], the matching algorithm iteratively checks

(∀ti ∈ ~Rs)
n∧
i=1

ti v oi

which means that each possible output object of the query is subsumed by the output object of the
candidate service instance. If it is found that

ti v oi ≡ ⊥,

the candidate service instance must not be returned as answer to the query;

5. the specification of output objects of the service instances conform to the contravariance rule3 stating
that they should be more general than those in the query in order to guarantee that they can be replaced
by the more specific output objects of the query instance.

With this we have had a survey of the fundamentals of service matching from a syntactic perspective,
next we investigate rich description of service capability with semantic annotation for matching purpose and
define how semantic matches are evaluated.

3Hence the subsumption relation is checked only in one direction but not both in the last point.

Patrick Un Master’s Thesis

52 4 Foundations of Service Matching and Composition

4.1.3 Notion of Semantic Service Description and Matching

We have shown essential service description and matching issues based on a rather strict view of generic
procedure to build an abstract model of matching of enterprise services. However no description of the
capabilities of services has been made. We introduce semantic matching to answer query on functionality of
services.

Description Logics

Description logics [Baader et al., 2007] (DL) are a well-known family of knowledge representation for-
malisms. They are based on notion the concepts such as unary predicates, concept classes and roles such
as binary relations which are mainly characterized by constructors that allow complex concepts and roles
to be built from atomic concepts and roles. DL Concepts and roles are defined in a knowledge base de-
noted with KB consisting of a TBox which is a shorthand for terminology box and an ABox, which is
a shorthand for assertion box, containing instances of concepts and roles. A DL knowledge base com-
prises a TBox, an ABox and a reasoning facility to infer new knowledge from existing knowledge us-
ing logical inference mechanisms as well as performing a series of logical operations on the knowledge
base such as concept classification, subsumption proving and checking satisfiability of concepts w.r.t. a
TBox and an ABox. A DL reasoner such as RACER [Haarslev & Möller, 2001b, Haarslev & Möller, 2003,
Haarslev & Möller, 2001a, Möller & Haarslev, 2003] and RacerPro that are efficient and use DL tableau
method4 [Baader & Sattler, 2001, Ortiz et al., 2006a] for deciding logical inference. Tableau method is a
type of logical decision procedure in logical proof theory that can be used to carry out the previously men-
tioned logical operations very efficiently. Atomic concepts and roles are built from DL constructors, for
instance, constructors for the DL lanugage ALC [Baader et al., 2007] with A, C and D as atomic concept
names are as follows:

C,D → A (atomic concept)
> (universal concept, always satisfiable)
⊥ (bottom concept, never satisfiable)
¬A (atomic negation of concept)
C uD (intersection of concepts)
∀R.C (universal role restriction)
∃R.> (limited existential quantification)

and for more expressive semantic description, the variant SHIQ(D) [Baader et al., 2007] can be used:

∃R.C (full existential role restriction)
¬C (negation of arbitrary concepts)
≤ nR (utmost cardinality restriction on role)
≥ nR (at least cardinality restriction on role)
= nR (exact cardinality restriction on role)
≤ nR.C (qualified utmost cardinality restriction)
≥ nR.C (qualified at least cardinality restriction)
= nR.C (qualified exact cardinality restriction)

Formal semantic of DL is characterized by an interpretation I that consists of a non-empty set 4I repre-
senting the domain of interpretation. and an interpretation function which assigns to every atomic concept
A a set AI ⊆ 4I and to every atomic role R a binary relation RI ⊆ 4I ×4I . We interpretation of more
complex concepts is built from the interpretation of atomic concepts with the appropriate logical connectives,

4Tableau method is also known as tableau algorithm.

Master’s Thesis Patrick Un

4.1 Semantic Service Matching and Discovery 53

e.g., (C uD)I = CI ∩DI and (∃R.>)I =
{
a ∈ 4I | ∃b.(a, b) ∈ RI

}
. We say that two atomic concepts

are equivalent, i.e., concept equivalence is defined as

C ≡ D .= (∀I).(CI = DI).

In a DL knowledge base, there are a set of terminological axioms that assert how concepts and roles relate
to each other with the form: C v D for concepts and R v R′ for roles. It specifies that a DL concept D is
more general than another one C in which case the more general concept subsumes the more specific one.
Axioms that denote this type of relation are called subsumption axioms. Subsumption relations contribute
to classification of concepts within the knowledge base KB. The set of classified concepts form the set of
general concept inclusion (GCI) axioms in the TBox.

Service Capability Description with DL

In order to advertise the capability of an enterprise service, we resort to axiomatizing the functionality and
other non-functional properties to express them in terms of general concept inclusions and concepts equiva-
lence in a TBox which resembles an ontology for the service functionality. The point is that TBox reasoning
is more effective than ABox reasoning due to known reasons [Hustadt et al., 2005, Calvanese et al., 2006,
Calvanese et al., 2007] and most of the efficient logical inferential and decision algorithms are optimized for
TBox reasoning. We do not limit ourselves in the specific semantic language such as OWL or other syntax
in expressing service capability, instead we device a general ontology using GCIs which are able to describe
a natural hierarchy of relationships between concepts. For instance in DL we define service profile for the
description of capability:

enterpriseServiceProfile v >
enterpriseServiceParameters v >
serviceFunctionalityProperty v enterpriseServiceProfile
serviceNonFunctionalProperty v enterpriseServiceProfile
serviceQuery v enterpriseServiceProfile
serviceFunctionalityQuery v enterpriseServiceProfile
serviceNonFunctionalQuery v enterpriseServiceProfile
inputParameter v enterpriseServiceParameters
outputParameter v enterpriseServiceParameters
...

...

For a typical enterprise procurement service for instance the input parameters and output can be axioma-
tized inexhaustibly using GCIs5:

requestedBy v inputParameter
identifiedBy v inputParameter
hasCustomerId v inputParameter
requestedProduct v inputParameter
requestedQuantity v inputParameter
usedPayment v inputParameter
delivery v inputParameter
deliveryDate v inputParameter
...

...
deliveredProduct v outputParameter
...

...

5GCI is a shorthand for general concept inclusion in description logics.

Patrick Un Master’s Thesis

54 4 Foundations of Service Matching and Composition

and use a profile to advertise the functionality:

enterpriseProcurementServiceProfile v enterpriseServiceProfileu
(=1 requestedBy.ServiceClient)u
(=1 identifiedBy.CustomerIdNumber)u
(=1 hasCustomerId.Integer)u
(=1 requestedProduct.Product)u
(=1 requestedQuantity.Integer)u
(=1 usedPayment.PaymentMethod)u
(=1 minDeliver.Integer)u
(=1 delivery.Location)u
(=1 deliveryDate.Date)

Product v (=1 hasName.ProductName)u
(=1 hasDescription.Description)u
(=1 hasPrice.RealNumber)u
(=1 hasStockQuantity.Integer)

PaymentMethod v (=1 hasName.MethodName)u
(=1 hasType.PaymentType)u
(=1 hasCreditLevel.RealNumber)u
(=1 hasCreditor.Person)u
(=1 hasDebtor.Organization)

...
...

For instance a certain enterprise procurement service instance can be described as:

instancePSAdvertisement ≡ enterpriseProcurementServiceProfile u
(∀requestedBy.(ServiceClientu
∀hasName. {SAP})) u

(∀identifiedBy.(CustomerIdNumberu
≥0001 hasCustomerId)) u

(∀requestedProduct.(Productu
∀hasName. {Bosch drill spare part} u
∀hasDescription. {diamond drill head} u
≥2500 hasPriceu
≥5000 hasStockQuantity)) u

(≥200 requestedQuantity) u
(∀usedPayment.(PaymentMethodu
∀hasName. {credit} u
∀hasType. {V isa} u
≥24000.00 hasCreditLevelu
∃hasCreditor. {Bob} u
∃hasDebtor. {Citibank})) u

(∀delivery.(Delivery u
≤2010.02.01 deliveryDateu
deliveryLocation.Boston))

We notice that the above service advertisement is for a single instance within an instance community while
other instances can exist simultaneously in the community with other functionalities which are either similar

Master’s Thesis Patrick Un

4.1 Semantic Service Matching and Discovery 55

to the current instance or quite different from it. An example query searching for a procurement service
instance is shown in the following:

serviceQuery1 ≡ enterpriseProcurementServiceProfile u
(∀requestedProduct.(Productu

∀hasName. {Bosch drill spare part} u
≤8500 hasPriceu
≥3000 hasStockQuantity)) u

(∀usedPayment.(PaymentMethodu
∀hasName. {credit} u
≥20000.00 hasCreditLevel)) u

(∀delivery.(Delivery u
≤2010.04.01 deliveryDate))

Query Matching

A query can be formulated in a similar manner by a DL statement expressing a set of desired functionalities.
A DL reasoner is used to check for satisfiability of the query against a set of service capability advertisements
with standard known inference techniques to decide on matches. One can conceive the service instance ad-
vertisements as semantic axiomatizations of an application domain which expose the capability, functionality
and perhaps non-functional properties in semantic interpretable statements. A query from the DL point of
view is almost identical to the service instance advertisements since a query explicitly formulates a desired
set of functionalities and non-functional properties regarding a service that is searched for. This requested
set of functionalities and properties can either:

• be satisfied by one or more declared descriptions of instances that are available in the community in
which case the capability set of the query can be viewed as a subset of the capability of the available
instances;

• the query is unsatisfiable because there exists no single set of service functionalities and properties
declared in the community which is either equivalent or partially coincide with the requested set in the
query. One has to be careful with terminology since a real mismatch is only determined by the fact
that the requested set and the declared set of functionalities are mutually disjoint. Otherwise it is still
possible that some service instances can partially satisfy the request set of functionalities.

Unless the query is unsatisfiable due to mutual disjointness of the query set and the advertisement set, an an-
swer can still be returned which incorporates the set of compatible or partially compatible service instances.

Definition 4.1.3 (Service Capability Query Matching). Let Ψ be the set of all service advertisements de-
scribing the capability of service instances semantically using concepts and roles of description logics which
are stored in persistent repository of an instance community. Given a query Q with the set of desired re-
quirements on functional and non-functional properties denoted with FQ and a set of service advertisements
denoted with FA which represent instances that can potentially satisfy the query. We define a query match-
ing function Match such that Match : Match(FQ) → FA. The matching function has the following
semantic:

Match(FQ)
def
= {FA ⊆ Ψ | compatible(FA,FQ)}

where the compatibility of two concepts C and D from the sets FQ and FA respectively is defined as

compatible(C,D) .= ¬(C uD v ⊥)

Patrick Un Master’s Thesis

56 4 Foundations of Service Matching and Composition

i.e., their intersection is not the emptyset (∀I ∈ 4I).FIQ ∩ FIA 6= {∅} or

(∀C ∈ FQ ∧ ∀D ∈ FA). {¬(C uD v ⊥)}

and thus the query set can be satisfied.

4.1.4 Deciding Matching Level of Services

Matching decision from the DL perspective can be reduced to standard reasoning problem of answering con-
junctive query [Hull et al., 2006]. For instance, there is a service query formulated as a conjunctive query
with q(~c, ~r) .= [qterm1(~c, ~r) ∧ · · · ∧ qtermn(~c, ~r)] where ~c and ~r denotes the vectors of concepts and roles
as query parameters w.r.t. a knowledge base KB comprising TBox T and ABox A. Given KB and a set of
individuals ~I = 〈i1, . . . , im〉 in KB, the answer to the conjunctive query q(~c, ~r) is defined as:

(∃~a ∈ ~I).q(KB) ∧ KB |= ∃~y.(qterm1(~a, ~y) ∧ · · · ∧ qtermn(~a, ~y))

Conjunctive query answering is decidable [Calvanese et al., 2008a] with tractable computational complex-
ity upper bounds [Calvanese et al., 2006, Ortiz et al., 2006a, Calvanese et al., 2008a, Ortiz et al., 2008] and
lower bound [Calvanese et al., 2006, Ortiz et al., 2006b, Calvanese et al., 2007].

Regarding query matching w.r.t. capability advertisements in a KB, one can give an account on the fact
that there exists a match using the notion of intersection of sets as described in definition (4.1.3). Viewing the
matching problem between desired capabilities formulated in a query and service capability advertisements
stored in KB as determining intersection of sets is intuitive and helpful in understanding the problem of se-
mantic service discovery, issues involved in matching and selection. Often it is even more interesting to give
an additional account of the goodness of matches. As a result of research effort of [Paolucci et al., 2002,
Grimm et al., 2004, Grimm & Hitzler, 2008], a standard matching model [Paolucci et al., 2002] has been
proposed. This model consists of five types of matches representing different level of matching precision
and compatibility. We introduce this model briefly for the purpose of refining the matching notion described
in definition (4.1.3) where the concept of match is based on compatibility alone. With the standard matching
model one can extend the matching semantics of intersection and account for more precise decision. We
define A to denote the set of declared service advertisements and the set Q to denote the desired features
within the query:

• exact match: if advertisement A and the query Q are equivalent sets, it is called an exact match and is
denoted with

A ≡ Q
which denotes semantically that the specific capability formulated in the query set is exactly satisfied
and covered by the capability declared in the advertisement set;

• plug-in match: if concept C in the query set Q is a subconcept of concept D in the advertisement
set A, there is a plug-in match, i.e.,

(∀C ∈ Q ∧ ∀D ∈ A).C v D

. A plug-in match represents semantically the situation where advertisement is more general than the
query set and that

Q ⊂ A
, i.e., the query set is totally contained in the advertisement set. The specific capability formulated
in the query can be either partially or at best completely satisfied by the capability declared in the
advertisement set;

Master’s Thesis Patrick Un

4.1 Semantic Service Matching and Discovery 57

• subsume match: if concept D in the advertisement set A is a subconcept of concept C in the query
set Q, there is a subsume match with

(∀C ∈ Q ∧ ∀D ∈ A).C w D.

it represents semantically the fact that the query set is more general than the advertisement set and that

A ⊂ Q

, i.e., the advertisement set is just a subset of the query set with the significant meaning that there exists
concepts in the query set which are not contained inside the advertisement set. The specific capability
formulated in the query can be at best partially satisfied by the capability declared in the advertisement
set;

• intersection match: if concept D in the advertisement set A can satisfy concept C in the query set Q,
there is a intersection match with formally

(∀C ∈ Q ∧ ∀D ∈ A).¬(C uD v ⊥).

This match type corresponds semantically to the matching notion described in definition (4.1.3) repre-
senting that there exists an intersection between the two set

Q ∩A 6= {∅}

while on the other hand conveying little information of high good the match is. The specific capability
formulated in the query can be satisfied by the capability declared in the advertisement set, though
there is no guarantee whether the requested capability will be entirely provided;

• disjoint match: it is characterized by complete disjointness between the two sets:

Q ∩A = {∅}

which means a non-match and that the specific capability formulated in the query cannot be satisfied
by the capability declared in the advertisement set.

We observe that exact match is the most desirable and preferable type of match which is followed by
plug-in match and by subsume match and so forth such that the following relation exists

disjoint match ≺ intersection match ≺ subsume match ≺ plug-in match ≺ exact match

with ≺ denoting the relation in terms of the degree of exactness and precision of matches.

Patrick Un Master’s Thesis

58 4 Foundations of Service Matching and Composition

4.2 Action Theoretic Foundations for Service Composition

If there is a client request of certain desired functionality which can not be satisfied by any single available
service, it may still be possible that the functionalities of some of the available services, when combined
together in an appropriate way, can satisfy the client’s request. This is where service composition comes in.
One tries to synthesize a composite functionality from the pieces of functionality of the available services in
order to satisfy a more complex requirement on functionality. Formally we say that the available services can
be composed, coordinated and orchestrated as a virtual controller service to serve the purpose of function-
ality synthesis. The essential question in a web service composition problem (WSC) is how to combine and
services in which order so that basic constraints such as preconditions and postconditions of service invoca-
tion are observed. Without proper account for these constraints during design time and a strict observance
of a suitable order during runtime, coordination of the component services is impossible. In order to shed
light on the WSC problem, we harness a knowledge representation formalism [Levesque & Brachman, 2004]
called the situation calculus [McCarthy, 1963, McCarthy, 2001a, McCarthy, 2001b, Reiter, 2001a] and the
agent programming languages GOLOG/ConGolog [Levesque et al., 1997, Giacomo et al., 2000] to lay down
a foundation framework for a formal knowledge relevant approach [Levesque & Lakemeyer, 2001] to this
problem.

4.2.1 Situation Calculus

The formal language of the situation calculus Lsitcalc was proposed by John McCarthy in [McCarthy, 1963]
which has gained appreciation in academia and is included in standard material in every introductory course
on artificial intelligence such as [Russell & Norvig, 2002]. Since its inception it has evolved into a widely
known and adopted formalism in the investigation of various technical problems in theoretical axiomati-
zation about actions and their effects as well as in reasoning about dynamical aspects of systems. It has
been taken seriously as a foundation for practical work in the domain of AI planning, system control, sim-
ulation, database theories, agent programming and robotics such as in [Reiter, 1996, Giacomo et al., 1997,
Levesque et al., 1997, Lesperance et al., 1999, Sardina et al., 2004, Giacomo et al., 2009]. It is a based on a
useful fragment of the first order logic language with some second order elements6. The situation calculus
language Lsitcalc has been extended and thoroughly studied by the research community since McCarthy’s
first proposal, especially by the late Raymond Reiter who has made significant contribution to this branch
of knowledge representation formalism in seminal worsks such as [Reiter, 2001a, Reiter & Pinto, 1993,
Pinto & Reiter, 1995, Pirri & Reiter, 1999, Reiter, 1996, Reiter, 1998, Reiter, 2001b, Pirri & Reiter, 2000].
Since then it has been successfully used in many disciplines involving the specification of dynamical sys-
tems, especially in robotics, controller systems, simulation, etc., whereas our effective concerns are attributed
to the works by McIlraith and her group in [McIlraith, 1999, McIlraith & Son, 2001, McIlraith & Son, 2002,
McIlraith et al., 2001, Narayanan & McIlraith, 2002, Narayanan & McIlraith, 2003].

The basic language components of Lsitcalc are the following types:

• action for describing actions in Lsitcalc, as a shorthand we generally use “a” to denote this type of
language construct in the situation calculus;

• situation for situations in Lsitcalc with a shorthand “s” is used conventionally;

• object for everything else in the domain of interest.

6Noticeable is the alphabet of Lsitcalc includes countably infinitely many predicates variables of all arities For our pur-
pose of service composition investigation, the second order elements are not of interest because it can incur undecidabil-
ity [Levesque et al., 1998]. We concentrate on situation calculus predicates, otherwise called fluents will two variables which
are proved to be decidable [Gu & Soutchanski, 2006].

Master’s Thesis Patrick Un

4.2 Action Theoretic Foundations for Service Composition 59

The essential assertion mechanism is a predicate which is also common in traditional propositional logic.
A predicate is evaluated according to its trueness, either being true or false and it consists of a countably
finite number of places for variables with the total number called the arity. A predicate which value depends
on situation and varies is called a fluent in the situation calculus language Lsitcalc. By convention the
situation argument is written in the place of the last argument in a fluent. There are a number of important
foundational situation calculus predicates and functional symbols which are intrinsic to Lsitcalc and they are
listed below:

1. a special binary function symbol “do” in Lsitcalc which is defined as do : action × situation →
situation. With an arity of two, the definition domain of this function is action and situation in
the situation calculus and the value domain is obtained from the cartesian product of them which is a
situation. The interpretation of do(a, s) lies in the evaluation of its side effect of the binary function
“do” which semantically returns the successor situation resulting from performing action a in the
situation s. An abbreviation for a ‘zero’ action is:

do([] , s)
def
= s

and a shorthand form of writing a sequential execution of actions is:

do([a1, a2, . . . , an] , s)
def
= do(an, do(. . . , do(a1, s) . . .))

where do([a1, a2, . . . , an] , s) is called a log7;

2. a special constant symbol “S0” is used to denote the initial situation;

3. a binary predicate @: situation× situation is evaluated to define an ordering relation on situations.
The semantics of interpretation of this predicate is as action histories, for instance, s @ s′ means s is
a proper subhistory of s′;

4. a special binary predicate “Poss” in Lsitcalc which is defined as Poss : action × situation. This
predicate Poss(a, s) is evaluated for trueness indicating whether is is possible to perform an action a
in the situation s;

5. let n be a number for arity with n ≥ 1, aLsitcalc predicate (action∪object)n with countably infinite ar-
ity that are independent of situation, for instance, human(Reiter), book(author(human(Reiter))),
title(languague(en), book(Knowledge_in_Action)) . . . indicates relations using situation calculus
predicate;

6. let n be an arity with n ≥ 1, the Lsitcalc function symbols called action functions with (action ∪
object)n → action asserts an action in the value domain such as pickup(x),move(loc1, loc2);

7. juxtaposing with the action functions, situation independent function specifies (action ∪ object)n →
object and asserts object in the value domain which is independent of situation calculus situation
such as sqrt(x), height(door), depth(hole). Situation independent function is not interpreted in
contrary to action functions as action in Lsitcalc;

8. a predicate with n arity where n ≥ 1 which is defined as (action ∪ object)n × situation. This type
of predicates are called relational fluents or simply fluents8 and are used to denote situation depen-
dent relations such as ontable(orange, s), final(s) and chairmanof(John,Corporate_B, s). By
convention the situation variable is placed in the position of the last argument in fluents;

7See([Reiter, 2001a], chapter 4 for detail.)
8In fact fluents belong to a class of important situation calculus mechanism which depend on a situation argument to be evaluated.

Patrick Un Master’s Thesis

60 4 Foundations of Service Matching and Composition

9. a function symbol with n arity where n ≥ 1 which is defined as (action ∪ object)n × situation →
action∪ object. This is called functional fluents and are used to denote situation dependent functions
such as sendToPrinter(printerNo, queueNo, taskNo, s).

The proper way to understand a situation inLsitcalc is to view it as a history, namely, a sequence of actions.
Two situations are identical iff they denote identical histories. Every situation in Lsitcalc corresponds to a
sequence of actions, for instance:

do(pickup(x), do(drop(y), do(pickup(y), S0)))

has the meaning starting from the initial situation S0, the action pickup(y) is performed which leads to
a situation other than the initial situation. As mentioned previously this successor situation serves as the
situation argument when the action drop(y) is performed resulting again in a successor situation which is
used in the outermost do(a, s) function when the action pickup(x) is performed last. Therefore the nested
execution instructions of a history is both read and executed from the innermost to the outermost do function.

4.2.2 Basic Action Theories

A basic action theory is a set of situation calculus axioms which models the actions and their effects in a
given dynamic system D together with functional fluent consistency property. Important types of situation
calculus axioms are:

Definition 4.2.1 (Action Precondition Axiom). An action precondtion axiom Dap of the situation lan-
guage Lsitcalc is a formula of the form:

Poss(A(x1, . . . , xn), s) ≡
∏
A

(x1, . . . , xn, s)

where A is a situation calculus action function symbol with arity n representing with a situation calculus
action function and

∏
A(x1, . . . , xn, s) a formula which is uniform in s9 and whose free variables are among

x1, . . . , xn, s. The action function can be abbreviated by convention to:

A(x1, . . . , xn), s)⇔ A(~x)

where ~x = x1, x2, . . . , xn denotes a shorthand to write the n-ary arguments and therefore the axiom can be
rewritten to:

Poss(A(~x), s) ≡
∏
A

(~x, s)

The uniformity requirements on
∏
A(x1, . . . , xn, s) ensures that the preconditions for the executability of

the action function A(x1, . . . , xn) are determined only by the current situation s. For each one primitive
action A(~x) there is one action precondition axiom within the set Dap. World dynamics are specified by
effect axioms which are closely related the action precondition axioms and describe the effects of a given
action on the fluents which specify the causal laws of the domain. We can write an effect axiom in a general
form:

Poss(A(~x), s) ∧ C(~x, s) ⊃ (¬)F (~x, do(A(~x), s))

where C(~x, s) is a first order situation calculus formula specifying the contextual conditions under which the
action A(~x) will have its real specified effect on the trueness of fluent F .

9A first order situation calculus formula is uniform in s if it does not contain any term mentioning another term of type situation
calculus situation in itself.

Master’s Thesis Patrick Un

4.2 Action Theoretic Foundations for Service Composition 61

Example 4.2.2. A simple example illustrating definition (4.2.1) is a blocks world which is shown here
encoding an action precondition axiom:

Poss(pickup(x), s) ≡ (∀x)¬holding(x, s) ∧ ¬heavy(x, s)

Here the situation calculus action function A(x1, . . . , xn) is the action pickup(x) and the axiom states that
this action is possible iff the two situation calculus fluents on the right hand side hold, i.e., the agent is not
currently holding x (encoded with the relational fluent ¬holding(x, s) which must be true) and that x is not
heavy (encoded with the fluent ¬heavy(x, s)). The axiomatization of action precondition in this form stems
from the qualification problem [Russell & Norvig, 2002] in the artificial intelligence and its non-monotonic
formulation. With the rationale of specifying world dynamics with effect axioms which have the general
form:

Poss(A(~x), s) ∧ C(~x, s) ⊃ (¬)F (~x, do(A(~x), s))

we show here some more examples of them:

Poss(drop(p, x), s) ∧ fragile(x, s) ⊃ broken(x, do(drop(p, x), s))
Poss(explode(b), s) ∧ nexto(b, x, s) ⊃ broken(x, do(explode(b), s))
Poss(repair(p, t, x), s) ∧ toolsAvailable(t, s) ⊃ ¬broken(x, do(repair(p, t, x), s))

where the contextual conditions are fragile(x, s), nexto(b, x, s) and toolsAvailable(t, s) respectively and
they contribute to the fact that the specified effects on the right hand side of the fluents hold.

John McCarthy and Patrick Hayes first observed in [McCarthy & Hayes, 1969] that axiomatizing dynam-
ical aspects of the world requires more than mere action precondition and effect axioms. Since the events of
the world cannot be just characterized by action causal laws which remark changes to the state of the world, in
a complete and sound characterization it is also necessary to state the invariants of the domain, i.e., the fluents
which remain unaffected by a given action. Frame axioms are used to accomplish such characterization; with-
out them it is not possible to specify which fluents and which states of the domain remain unchanged. This is
called the frame problem [Scherl & Levesque, 1993, Scherl & Levesque, 2003, Russell & Norvig, 2002] in
artificial intelligence. In order to have complete knowledge in an axiomatized knowledge base, it is not only
necessary to provide account for causality of actions affecting specific fluents in a domain but also enumerate
over those axioms which will not affect the fluents respectively.

Example 4.2.3. A typical example showing the frame problem in axiomatizing the action of a person drop-
ping something that does not change the color of the thing:

Poss(drop(p, x), s) ∧ color(x, s) = c ⊃ color(x, do(drop(p, x), s)) = c

where the contextual condition here is a situation calculus functional fluent color(x, s) which is evaluated to
return the color denoted with c of x. The color c of x is not affected by the action of dropping x. Another
example is to show dropping one thing will not affect another:

Poss(drop(p, x), s) ∧ ¬broken(y, s) ∧ [x 6= y ∨ ¬fragile(y, s)] ⊃ ¬broken(y, do(drop(p, x), s))

this axiom states that one things x is dropped by a person p in the situation s and another thing y is not
broken in that situation s and that the two things are different or y is not a fragile thing in the situation s then
the action of dropping will not affect the thing y which remains not broken.

Patrick Un Master’s Thesis

62 4 Foundations of Service Matching and Composition

The problem of frame axioms is that there are a vast number of them. In fact only relatively few actions
affect the trueness of a given situation calculus fluent while most of all other actions leave the trueness of
the fluent unchanged. Domain axiomatization however must account for all these frame axioms; moreover
theorem proving with a vast number of frame axioms makes it inefficient. There were historical suggestions
of theoretical approach to solve the frame problem by [Haas, 1987, Schubert, 1990]. What counts as an ac-
ceptable solution to the frame problem is a systematic procedure for generating all the frame axioms from
the situation calculus effect axioms. However, what is more important is that we try to obtain a parsimonious
representation for the vast set of frame axioms. The late Raymond Reiter has proposed a simple and effective
solution to the frame problem [Reiter, 1991] in the situation calculus in order to deal with the sheer number
of frame axioms.

Definition 4.2.4 (Situation Calculus Solution to the Frame Problem). The effect axioms in the situation
calculus can be written with an account on the possible contextual conditions which will positively and
negatively affect the trueness of a fluent as in a general form:

Poss(A(~x), s) ∧ γ+
F (~x, a, s) ⊃ F (~x, do(a, s))

Poss(A(~x), s) ∧ γ−F (~x, a, s) ⊃ ¬F (~x, do(a, s))

where the contextual condition γ+
F (~x, a, s) is a first order situation calculus formula describing under what

conditions that an action a in the situation s will affect the fluent F on the right hand side to become true
in the successor situation do(a, s). Analogously γ−F (~x, a, s) represents the contextual condition under which
the action a will affect the fluent F to take on a false value. Reiter’s solution [Reiter, 1991] is based on the
completeness assumption where the above characterizations in fact describe all the causal laws affecting the
trueness of a specific fluent F .

Definition 4.2.5 (Successor State Axiom). Successor state axiom of the situation calculus language Lsitcalc
is denoted with Dss. With the completeness assumption and the general parsimonious solution to the frame
problem described in definition (4.2.4), successor state axiom can be described in the general form:

Poss(A(~x), s) ⊃
[
F (~x, do(a, s)) ≡ γ+

F (~x, a, s) ∨ (F (~x, s) ∧ γ−F (~x, a, s))
]

where the formular F (~x, do(a, s)) can be abbreviated with the shorthand ΦF (~x, a, s). There are mainly two
types of successor state axioms:

1. A relational fluent F based successor state axiom for an (n+1)-ary formula has the form:

F (x1, . . . , xn, do(a, s)) ≡ ΦF (x1, . . . , xn, a, s)

where ΦF (~x, a, s) is a situation calculus formula uniform in s, all of which free variables are among
a, s, x1, . . . , xn (if arity is 0, the relational fluent F has one argument of the type situation in Lsitcalc.
There is one successor state axiom for each relational fluent within the set Dss.

2. A functional fluent f based successor state axiom in the situation calculus language is an (n+1)-ary
formula of the form:

f(~x, do(a, s)) = y ≡ Φf (~x, y, a, s)

where the variable y denotes the effect, i.e., the return value of the functional fluent and Φf (~x, y, a, s)
is a formula uniform in s, all of which free variables are among ~x = x1, . . . , xn and y, a, s The
value of a functional fluent in a successor situation is determined entirely by properties of the current
situation s. There is one successor state axiom for each functional fluent within the set Dss.

Master’s Thesis Patrick Un

4.2 Action Theoretic Foundations for Service Composition 63

Example 4.2.6. On the basis of definition of successor state axiom described in definition (4.2.5) this exam-
ple shows a relational fluent and a functional fluent:

1. In an example about relational fluent we try to characterize the effect as successor state axiom for the
action a = drop(p, x) which characterizes the act of dropping by a person denoted with variable p and
a thing denoted with variable x:

broken(x, do(a, s)) ≡ (∃p) {a = drop(p, x) ∧ fragile(x, s)}∨
(∃b) {a = explode(b) ∧ nexto(b, x, s)}∨
{broken(x, s) ∧ ¬(∃p)a = repair(p, x)}

This relational fluent states that a thing denoted with xwill be broken as successor situation of do(a, s)
which can be an effect caused by either that x is fragile in situation s and the action taken is a person
denoted with p dropping x or that there is a bomb denoted with b exploding and the bomb is next
to the thing x in situation s or the thing x is already broken is the situation s and there is no person
p who repairs x. The uniformity of the formula ΦF guarantees the trueness of fluent F (~x, do(a, s))
in the successor situation do(a, s) is determined entirely by the current situation s which is Marko-
vian [Fadel & McIlraith, 2002].

2. An example illustrating the functional fluent is given:

height(x, do(a, s)) = y ≡ a = moveToTable(x) ∧ y = 1∨
(∃z, h)(a = move(x, z) ∧ height(z, s) = h ∧ y = h+ 1)∨
height(x, s) = y ∧ a 6= moveToTable(x) ∧ ¬(∃z)a = move(x, z)

which can be interpreted as the successor situation of evaluating the height of a thing denoted with
x by executing an action a in the situation s which return a value denoted with the variable y as an
effect of the evaluation of the functional fluent height(x, do(a, s)). such an action can be the action
moveToTable(x) interpreted as moving x onto a table and y is evaluated to be 1 or there exists an-
other thing z and a given height h for which the action of move(x, z) interpreted as moving z onto x
and evaluating the height of h will have the effect that y is equal to a new height h+1 or the height has
already been evaluated to be y and no action is carried out, neither moveToTable(x) nor move(x, z).

Definition 4.2.7 (Unique Name Axioms). Unique name axioms in the situation calculus language Lsitcalc
is denoted with Duna. For any single n-ary action a, equivalence is defined as

a(x1, . . . , xn) = a(y1, . . . , yn) ⊃ x1 = y1 ∧ · · · ∧ xn = yn

iff the arity for two argument lists is equal and all the elements in the argument lists are pairwise equal. For
any distinct actions a and b and by using the abbreviated notation for an n-ary argument list ~x = x1, . . . , xn
and ~y = y1, . . . , yn different names for both actions are defined as a(~x) 6= b(~y) which indicate that the
arguments are pairwise disjoint and unequal. Since for any domain axiomatization there are predictably large
number of such unique name axioms in order to guarantee that there is no naming conflicts, for parsimonious
reason, it is conventionally assumed that these axioms are true without writing them out for every domain
axiomatization.

Definition 4.2.8 (Axioms for Initial Situation). In the situation calculus language Lsitcalc axioms for initial
situation is denoted with DS0 . They represent the set of first order formulas in which S0 is the only term
of type situation and thus uniform in S0. Aximos in the set DS0 do not quantify over situations, or use
the special binary fluents do(a, s) or Poss(a(~x), s). DS0 can contain formulas which do not mention any
situation term.

Patrick Un Master’s Thesis

64 4 Foundations of Service Matching and Composition

Definition 4.2.9 (Basic Action Theory). A basic action theory D in the situation calculus [Reiter, 2001a] is
a set of first order axioms of the form:

D = Σ ∪ DS0 ∪ Dap ∪ Dss ∪ Duna

where

• Σ are the set of foundational axioms for the situation calculus;

• DS0 is the set of situation calculus describing the initial situation as described in definition (4.2.8);

• Dap is the set of action precondition axioms, one for each action function in Lsitcalc as described in
definition (4.2.1);

• Dss is the set of successor state axioms including the types relation fluents and functional fluents, with
one for each fluent as described in definition (4.2.5);

• Duna is the set of unique name axioms for all action function with distinct action symbols, i.e.,A(~x) 6=
B(~x) where A and B are two distinct action symbols in the situation calculus language Lsitcalc as
described in definition (4.2.7).

D satisfies the functional fluent consistency property of a functional fluent f which has the successor state
axiom:

f(~x, do(a, s)) = y ≡ Φf (~x, y, a, s)

where

Duna ∪ DS0 |= (∀a, s).(∀~x).(∃y)Φf (~x, y, a, s)∧
[(∀y, y′).Φf (~x, y, a, s) ∧ Φf (~x, y′, a, s) ⊃ y = y′]

This consistency property offers a sufficient condition to rule out a source of inconsistency in the successor
state axiom of the functional fluent f stating that the condition defining the fluent’s value in the successor
situation is unique.

4.2.3 Action Metatheory for the Situation Calculus

We first define satisfiability of a basic action theory in the situation calculus and with it we define an impor-
tant operation called regression in the situation calculus.

Definition 4.2.10 (Relative Satisfiability). A basic action theory D in the situation calculus is relatively
satisfiable iff Duna ∪ DS0 is satisfiable.

An important theorem proving mechanism in the situation calculus is the regression operation. It provides
a systematic way to establish that a basic action theory entails a regressable formula in the situation calculus
language Lsitcalc. Regression is also a central concept which forms the basis for many planning prece-
dures [Manna & Waldinger, 1980, Pirri & Reiter, 2000] in artifical intelligence and for automated reasoning
in the situation calculus [Pirri & Reiter, 1999]. Generally the regression of a situation calculus formula φ
through an action a is an (a priori) formula φ′ which holds prior to the action a has been performed iff the
formula φ holds after executing a. The regression operation resembles the backward reasoning in classical

Master’s Thesis Patrick Un

4.2 Action Theoretic Foundations for Service Composition 65

planning [Russell & Norvig, 2002] in artificial intelligence: given a goal state in which the reasoning process
retraces the plan to figure out the initial state. The situation calculus successor state axiom supports regres-
sion operation in a natural way. Reiter [Reiter, 2001a] introduces a notation for the regression operation R
and defines a regressable formula W in the situation calculus language Lsitcalc as follows:

Definition 4.2.11 (Regressable Formula in the Situation Calculus). According to [Reiter, 2001a], a for-
mula W in the situation calculus language Lsitcalc is regressable iff

1. Every term of type situation in Lsitcalc mentioned by W has the syntactic form:

do([α1, . . . , αn] , S0)

where the arguments α1, . . . , αn is an n-ary list of type action in the situation calculus;

2. For every predicate of the form Poss(a, s) mentioned by W , α has the syntactic form A(~x) for an
n-ary action function symbol A in Lsitcalc;

3. W does not quantify over situations;

4. W does not mention the predicate symbol @, nor does it mention any equation σ = σ′ where σ, σ′ are
of type situation in Lsitcalc.

The point in regressable formula is the fact that each of its situation terms is rooted at the initial situation
S0 and therefore it can be inspected from the term exactly how many actions are involved. If a regressable for-
mula mentions the predicate Poss(a, s), it is possible to tell what the action symbol is by inspecting the first
place in its arguments, for instance a regressable formula telling a history of someone walking from location
A to B then enter Susan’s office can be formulated as Poss(enter(office(Susan)), do(walk(A,B), S0)).

Definition 4.2.12 (Regression Operator for Non-Functional Fluents in the Situation Calculus). Given
a regressable formula W in the situation calculus language Lsitcalc and W does not contain functional flu-
ent. The regression operator R when applied to W is determined relative to a basic theory of actions
of Lsitcalc that serves a background axiomatization. Let ~x be a tuple of terms consisting of a list of argu-
ments x1, . . . , xn, α be a term of type action and σ be a term of type situation. The regression operator for
non-functional fluents is defined as:

1. if W is an atom, for W there are the possibilities:

• W is a situation independent atom in terms of the type action or object whose predicate symbol
is not a fluent, then

R [W] = W

• W is a relational fluent depending on situation of the form F (~x, S0), then

R [W] = W

• W is a regressable Poss(A(~x), σ) predicate for the terms A(~x) of type action and σ of type
situation respectively. A is an action function symbol in Lsitcalc, then there is an action precon-
dition axiom Poss(A(~x), s) ≡

∏
A(~x, s) in Dap, then the regression operator over W is

R [W] = R

[∏
A

(~x, σ)

]

Patrick Un Master’s Thesis

66 4 Foundations of Service Matching and Composition

• W is a relational fluent of the form F (~x, do(α, σ)) with the successor state axiom in Dss written
in the general form F (~x, do(a, s)) ≡ ΦF (~x, a, s), then the regression operator over W is

R [W] = R [ΦF (~x, α, σ)]

2. if W is a non-atomic formula, regression is defined inductively.

R [¬W] = ¬R [W]
R [W1 ∧W2] = R [W1] ∧R [W2]
R [(∃v)W] = (∃v)R [W]

We observe that the regression operator applies only to regressable formulas, such a formula must only
mention the initial situation S0

Theorem 4.2.13. Uniformity of the Regression Operator Given W is a regressable formula of Lsitcalc that
mentions no functional fluents and D is a basic action theory. R [W] is a formula uniform in S0 and

D |= W ≡ R [W]

Proof. (sketch) According to [Reiter, 2001a] because W andR [W] are logically equivalent: the former is a
regressable formula that is uniform in S0 and the latter is the regression operator applied to W , for proving
D it is sufficient to show that R [W] mentions only the term S0 which is the case and most of the axioms in
D would be irrelevant to the proof.

Theorem 4.2.14. Regression Theorem Given W is a regressable formula of Lsitcalc that mentions no func-
tional fluents and D is a basic action theory, then

D |= W iff Duna ∪ DS0 |= R [W]

Proof. (sketch) Based on the last proof to prove theorem (4.2.13) and the satisfiability of a basic action
theory described in definition (4.2.10), it is obvious by substitution that theorem (4.2.14) is proved.

Regression is very useful in the investigation of a basic action theory in order to prove that a sequence of
primitive actions10 is in fact executable and therefore represented as a history of executed actions.

Definition 4.2.15 (Executable Ground Action Sequences in the Situation Calculus). Given an n-ary
predicate executable(σ) where σ is a variable of type situation in Lsitcalc, Σ the foundational axioms
in Lsitcalc and n a natural number with n ≥ 0, then

Σ |= (∀a1, . . . , an).executable(do([a1, . . . , an] , S0)) ≡
n∧
i=1

Poss(ai, do([a1, . . . , ai−1]), S0)

where ~α = a1, . . . , an the sequence of ground action to execute, i.e., actions which do not contain arguments
variables and let α1, . . . , αn be a sequence of ground actions in Lsitcalc, then the sequence of ground action
is executable

D |= executable(do([~α] , S0))

iff

DS0 ∪ Duna |=
n∧
i=1

R [Poss(αi, do(α1, . . . , αi−1, S0))]

10The terminology of a primitive action is exchangeable with that of an atomic action throughout this thesis.

Master’s Thesis Patrick Un

4.2 Action Theoretic Foundations for Service Composition 67

The above definition provides a systematic way for determining whether a sequence of ground actions and
a ground situation S0 is executable with do([α1, . . . , αn] , S0) based on regression operation. It reduces the
test of executability to a theorem proving task by checking entailment of the union of the initial situation
axioms and the unique name axioms. With a straighforward idea in the spirit of definition (4.2.12), we define
the regression operator for functional fluents.

Definition 4.2.16 (Prime Functional Fluent Terms). A functional fluent is prime iff it has the form

f(~x, do([α1, . . . , αn] , S0))

for n ≥ 1 and each of the terms in ~x and α1, . . . , αn is uniform in S0. Therefore prime functional fluents,
S0 is the only term of type situation mentioned by ~x and α1, . . . , αn.

Definition 4.2.17 (Regression Operator for Functional Fluents in the Situation Calculus). Given a re-
gressable formula W in the situation calculus language Lsitcalc and W contains functional fluent, the regres-
sion operator is defined as:

1. if W is a regressable Poss(A(~x), σ) predicate in Lsitcalc where A is an action function symbol and σ
is a term of type situation in Lsitcalc, then regression operator is defined the same as for the respective
sort of W in definition (4.2.12);

2. if W is a regressable predication beside a Poss(A(~x), σ) predicate, there are three possibilities:

• if S0 is the only situation term mentioned in W then

R [W] = W

which is obvious based on the only situation term S0;

• if W mentions a term of the form g(~τ , do(α′, σ′)) for a functional fluent g and because W
is regressable, g(~τ , do(α′, σ′)) mentions a prime functional fluent term as described in defini-
tion (4.2.16). Let g(~τ , do(α′, σ′)) have the form of a functional fluent f(~x, do(α′, σ′)) and let its
successor state axiom be

f(~x, do(α′, σ′)) = y ≡ φf (~x, y, a, s)

, then the regression operator is defined as

R [W] = R
[
(∃y).φf (~x, y, α, σ) ∧W |f(~x,do(α,σ))

y

]
11

It is necessary to focus on prime functional fluents to guarantee that the regression operation
actually terminates;

• if W is a relational fluent of the form F (~x, do(α, σ)) and W does not mention any functional
fluent of the form g(~τ , do(α′, σ′)), then the regression operator is defined the same as in defini-
tion (4.2.12).

11In general given a situation calculus regressable formula φ, the notation φ|t′t represents the formula φ′ that is obtained by replacing
all t′ with t in φ.

Patrick Un Master’s Thesis

68 4 Foundations of Service Matching and Composition

3. For non-atomic formulas, regression is defined inductively analogously as described in the last point
of definition (4.2.12).

Another important mechanism of automatic deduction is the projection problem in artificial intelligence
which is described in general as: given a sequence of ground action terms and a formula G, determine
whether G is true in the situation resulting from performing the sequence of ground actions. In the situation
calculus the projection problem is described in the following.

Definition 4.2.18 (Projection Problem in the Situation Calculus). Given a basic action theoryD inLsitcalc
and let α1, . . . , αn be a sequence of ground action terms and G(s) be a situation calculus formula with one
free variable of type situation in Lsitcalc, the projection problem is to check the entailment of:

D |= G(do([α1, . . . , αn] , S0))

With the help of the definition of regressable formula described in definition (4.2.11), itG(s) is a regressable
formula, then the regression theorem in (4.2.14) provides an immediate mechanism to solve the projection
problem in that it is necessary and sufficient to regress G(do([α1, . . . , αn] , S0)) and check entailment of the
regressed formula w.r.t. the union set of situation calculus initial situation axioms and unique name axioms:

Duna ∪ DS0 |= R [G(do([α1, . . . , αn] , S0))]

In artificial intelligence planning, verifying a proposed plan whether a sequence of actions do([α1, . . . , αn] , S0)
satisfies a goal G is a natural application of projection. It is necessary and sufficient to show that the axioms
of the planning domain entail the projection query G(do([α1, . . . , αn] , S0)).

Example 4.2.19. Given a sequence of ground actions ~α describing how to provide a person a cup of coffee
and answer the query whether the person has become the cup of coffee after the actions are executed in the
defined sequence, we can formulate in the situation calculus language Lsitcalc:

~α = pourCoffee(blueMountainCoffee,mug);walk(Agent, office(Patrick));
enter(office(Patrick)); giveCoffee(Patrick,mug)

where the notation “;” is used conventionally to denote an ordered sequence, we can query the basic action
theory knowledge base with a projection query hasCoffee(~p, s):

D |= R [hasCoffee(Patrick, do([~α] , S0))]

If the regressed formula is entailed by the knowledge base D, then the query returns true.

4.2.4 Action Dynamic Logic Language GOLOG

GOLOG is a high-level logic programming language based entirely on the action theory of the situation
calculus for implementing complex behaviors for dynamical systems and domains. Programs in GOLOG
decompose into primitives that in most cases refer to actions in the external world. These actions and their
changes to the world are formulated together with an account of situations as precondition and successor
state in axioms in first order logic so their effects can be formally reasoned about. This feature of GOLOG
supports the specification of dynamic systems at the right level of abstraction. GOLOG programs are evalu-
ated with a theorem prover. The programmer supplies a background basic action action theory axiomatizing

Master’s Thesis Patrick Un

4.2 Action Theoretic Foundations for Service Composition 69

the application domain by stating precondition axioms, one for each action, successor state axioms, one for
each fluent, axiomatized specification of the initial situation of the domain, unique name axioms
indexsituation calculus!unique name axioms and a GOLOG main program specifying the agent behavior of
executing the program. These required axioms are described in the definitions (4.2.1), (4.2.5) (4.2.8), (4.2.7)
and (4.2.9) previously.

In the GOLOG language [Levesque et al., 1997], in order to capture the essence of algorithmic programs,
syntactic contrusts with conditional testing, decision branching, loops and procedures have been added to
GOLOG to mimic complex actions in the domain of interest. A complex action is any programmatic expres-
sion of the form of conditions:

if (predicate) then δ1 . . . else δ2 . . . endif

or in form of loop:
while (predicate) do δ1; δ2; . . . endwhile

or in procedures with procedure name symbol and argument list:

proc procedureName(x) [δ1; δ2; . . .] endproc

The notation δi is used to represent a partial program in GOLOG and “;” denotes sequence order of program
execution. A complex action is represented intuitively with a ternary fluent

Do(δ, s, s′)

which has been defined as a macro to denote program execution parsimoniously. In general macros represent
partial programmatic fragments which can be expanded into a formulas of the situation calculus. The fluent
is quintessential in defining the execution of actions in a GOLOG program. The semantic of Do(δ, s, s′) is
as follows: the fluent holds whenever the situation s′ is a terminating situation of complex action δ execution
starting in situation s. Often complex actions can be non-deterministic because they can have several posi-
tion executions terminating differently12.
We define the necessary constructs of a GOLOG program and describe the meaning of each contruct in the
following definition.

Definition 4.2.20 (GOLOG Program Syntactic Constructs and Semantics). The constituent parts of syn-
tactic contructs of GOLOG are defined with their respective situation calculus semantics as follows:

1. primitive action is represented with “a”:

Do(a, s, s′)
def
= Poss(a [s] , s) ∧ s′ = do(a [s] , s)

where the notation a [s] denotes the result of restoring a situation argument s to any functional fluents
mentioned by the action a13;

2. test action is denoted with φ? to represent a condition to check:

Do(φ?, s, s′)
def
= φ [s] ∧ s = s′

12If one visualizes all possible sequences or combination of executions of a non-deterministic complex action δ, a tree of situations
in Lsitcalc can be built with different execution paths called execution trajectories which terminate in different situations.

13The situation argument restoration is accomplished by expanding the fluents in an axiom with a situation argu-
ment s, for instance, if a = see(trafficLight(locationX)) and trafficLight is a functional fluent then a [s] is
see(trafficLight(locationX, s)).

Patrick Un Master’s Thesis

70 4 Foundations of Service Matching and Composition

where φ is an expression which stands for a suppressed formula stripped down of situation variables
and φ [s] is a restored formula, for instance, if φ is

(∀x).ontable(x) ∧ ¬on(x,A)

then φ [s] is restored to
(∀x).ontable(x, s) ∧ ¬on(x,A, s)

where each fluent is expanded with a situation variable respectively;

3. sequence is an ordered execution of actions:

Do([δ1; δ2] , s, s′)
def
= (∃sast).(Do(δ1, s, s

ast) ∧Do(δ2, s
ast, s′))

where δ1 and δ2 represent two partial GOLOG programs and s∗ is a certain intermediate situation such
that the execution of δ1 starts in the situation s and terminates in the intermediate situation s∗ and the
second program δ2 begins execution in the intermediate situation s∗ and terminates in the situation s′.
The order of execution of the sequence of programs is therefore determined by the conjunction on the
right hand side;

4. non-deterministic choice of two actions:

Do((δ1|δ2), s, s′)
def
= Do(δ1, s, s

′) ∨Do(δ2, s, s
′)

where the choice of which program to execute first in decided non-deterministically;

5. non-deterministic choice of action arguments:

Do((πx)δ(x), s, s′)
def
= (∃x)Do(δ(x), s, s′)

where the non-deterministic operator π in (πx)δ(x) means an agent picks non-deterministically an
individual x as argument for the program δ and execute δ(x);

6. non-deterministic iteration:

Do(δ∗, s, s′)
def
= (∀P). {(∀s1)P (s1, s2) ∧ (∀s1, s2, s3) [P (s1, s2) ∧Do(δ, s2, s3) ⊃ P (s1, s3)]} ⊃ P (s, s′)

where the operator δ∗ means execute the program δ zero or more times and the definition of execution
semantic with transitive closure14 means that executing the program δ zero or more times takes the
situation from s to s′;

7. conditional of program flow can be defined in terms of the previous syntactic contructs:

if φ then δ1 else δ2 endif
def
= [φ?; δ1] | [¬φ?; δ2]

where φ? is the test action defined previously and the semantic of the conditional is captured with
the syntactic constructs on the right hand side stating that if the test action is true then program δ1 is
executed else if the test action fails δ2 is executed;

14The transitive closure is a second order operator which is necessary because non-deterministic iteration is not sufficiently defined
with first order construct [Levesque et al., 1997].

Master’s Thesis Patrick Un

4.2 Action Theoretic Foundations for Service Composition 71

8. while loop:

while φ do δ endwhile
def
= [[φ?; δ]∗;¬φ?]

where the syntactic constructs means that the test action φ? is checked; if it is true the program δ is
executed and then the test action is checked again (as termination conditional for the while loop) and
if it is still true, the iteration continues non-deterministically and the test action is again checked. If it
is false, the while loop is terminated;

9. procedures in a GOLOG program:

proc P1(~v1)δ1 endproc; . . . ; proc Pn(~vn)δn endproc; δ0

where Pi denotes procedure names with ~v1, . . . , ~vn as formal parameters, δ1, . . . , δn denotes a set of
GOLOG program bodies and δ0 denotes the main program body. We evaluate the program in the
semantic of Do:

Do({proc P1(~v1)δ1 endproc; . . . ; proc Pn(~vn)δn endproc; δ0} , s, s′)
def
=

(∀P1, . . . , Pn). [
∧n
i=1(∀s1, s2, ~vi).Do(δi, s1, s2) ⊃ Do(Pi(~vi), s1, s2)] ⊃ Do(δ0, s, s

′)

where a GOLOG program consists of a main program body denoted with δ0 and a set of procedures
Pi with a vector of formal input parameters as arguments which are executed in an ordered sequence,
each procedure itself consists of a partial program body δi respectively.

Example 4.2.21. Given a controller that serves an elevator, we show a set of procedures which define the
actions of the controller:

• the program body δ = moveDown moves the elevator down one floor, we show a procedure down
which takes a parameter n representing the floor number to go down to:

proc down(n) (n = 0)?|down(n− 1);moveDown endproc

where the procedure recursively calls itself, decrementing n and execute the program body δ =
moveDown to go down one floor, until the test action φ? = (n = 0)? is false.

• we show that the controller parks the elevator on the ground floor with the procedure park:

proc park(πm) [atF loor(m)?; down(m)] endproc

here the procedure park uses the previous procedure down and we notice also that the non-deterministic
choice of argument (πm) is used because the procedure does not dictate which parameter must be
passed. Instead it allows an agent to choose non-deterministically what argument m to pass and
checks whether the test action atF loor(m)? is true. It executes the previous procedure down(m) to
move the elevator down m ∈ N floors. More examples can be found in [Levesque et al., 1997].

Definition 4.2.22 (Proper GOLOG Program). A GOLOG program δ is proper iff s and s′ are the only
free variables of type situation in Lsitcalc mentioned in Do(δ, s, s′).

Definition 4.2.23 (General Planning in Theorem Proving). Given a basic action theory D for a certain

domain, a sequence of actions ~a
def
= [a1; . . . ; an] and a goal formula φ(s) with a single free situation

variable s, a classical planning task w.r.t. D is to evaluate and prove entailment of

Patrick Un Master’s Thesis

72 4 Foundations of Service Matching and Composition

D |= Legal(~a, S0) ∧ φ(do(~a, S0))

do(~a, S0)
def
= do(an, . . . do(a2, do(a1, S0)) . . .)

Legal(~a, S0)
def
= Poss(a1, S0) ∧ · · · ∧ Poss(an, do([a1; a2; . . . ; an−1] , S0))

therefore the general planning task resolves to finding a legal sequence of actions by resolution [Schöning, 2008,
Russell & Norvig, 2002] which is

• legal in the sense that it is executable where each action is executed when its precondition (encoded
with an action precondition axiom) is satisfied and

• the goal formula φ(do(~a, S0)) is satisfied and as a “side effect”, it holds the final state (situation)
resulting from performing the actions in the sequence.

Definition 4.2.24 (Evaluation and Termination of GOLOG Programs). Execution of a GOLOG program
amounts to finding a ground situation term σ15 such that

Axiomssitcalc |= Do(programGOLOG, S0, σ)

where S0 is the initial situation and σ a placeholder for a term of type situation in Lsitcalc. In general
execution evaluation is accomplished by trying to prove the entailment [Reiter, 2001a]:

Axiomssitcalc |= Do(programGOLOG, S0, s)

where σ is substituted with a concrete situation term s denoting a certain terminating situation for the pro-
gram. If a constructive proof is obtained, the ground situation term s = do(an, . . . do(a2, do(a1, S0)) . . .)
is returned as a binding for the variable σ. It represents an ordered trace of actions from a1 to an. Anal-
ogously on a concrete level, given a GOLOG program δ and a background basic action theory D of the
situation calculus specifying a certain application domain as described in definition (4.2.9). If δ is a proper
GOLOG program, its execution is evaluated relative to D by proving the entailment:

D |= (∃s)Do(δ, S0, s) ≡ (∃s)Do(δ, S0, do(~a, S0))

where starting from the initial situation S0, execution of δ terminates in a certain situation s. It states that if

D entails the complex action Do(δ, S0, s), there exists an existentially quantified binding s = do(~a, S0)
def
=

do(an, . . . do(a2, do(a1, S0)) . . .) containing the correct execution trace ~a = a1; a2; . . . ; an of δ.

By convention complex actions are expressed as program bodies δ in GOLOG which are a type of macro
in order to maintain a brevity and a degree of simplicity which can be expanded into formulas of the situation
calculus to express complex behaviors. A GOLOG program is interpreted with a theorem prover which is im-
plemented on top of the logic programming language Prolog. Researchers of the Cognitive Robotics Group
of the University of Toronto has implemented the GOLOG language. The GOLOG interpreter is shown in
listing A.1 in appendix A.
Nevertheless, the described theorem proving task to find the correct execution trace for δ incurs much over-
head for the GOLOG interpreter because the complex action (∃s)Do(δ, S0, s) stands for a quite complicated
second order sentence in Lsitcalc, it is desirable to reduce D in order to simplify the task. Fortunately, we
can do this with Σ-elimination [Reiter, 2001a] where Σ is the set of foundational axioms for situations in D.

15The ground situation term σ is therefore similar to the goal formula phi(s) of planning described in definition (4.2.23) in that it
specifies as a “side effect” the final situation resulting from executing the primitive actions in the sequence. Though in defini-
tion (4.2.23) there is no specific requirement or specification on the semantic of termination, here for the evaluation of GOLOG
programs, it is necessary to bring in the termination criteria using the situation-transition semantics of Do(δ, S0, σ).

Master’s Thesis Patrick Un

4.2 Action Theoretic Foundations for Service Composition 73

Theorem 4.2.25. Σ-Elimination Given a basic action theory D = Σ∪DS0 ∪Duna ∪Dap ∪Dss in Lsitcalc
as described in definition (4.2.9) and δ is a proper GOLOG program, then Σ is eliminable:

D |= (∃s)Do(δ, S0, s) iff DS0 ∪ Duna ∪ Dap ∪ Dss |= (∃s)Do(δ, S0, s)

Proof. (sketch) A sketch to prove theorem (4.2.25) can be found in [Pirri & Reiter, 1999].

Definition 4.2.26 (GOLOG Program Syntactic Constructs). A GOLOG interpreter handles the following
legal language constructs with action expressions e which corresponds to the previously described program
body δ in the following description:

• e1 : e2 the symbol “:” corresponds to “;” in Do([e1; e2] , s, s′) and denotes sequential execution of e1

followed by e2;

• ?(p) is the GOLOG language construct for test action where p corresponds toDo(p?, s, s′) and denotes
a condition;

• e1 # e2 denotes non-deterministic choice of actions e1 or e2 and corresponds to Do(e1|e2, s, s
′);

• if(p, e1, e2) is a GOLOG predicate construct which denotes conditional execution which corresponds
to Do([p?; e1] | [¬p?; e2] , s, s′);

• star(e) denotes non-deterministic iteration which corresponds to Do(e∗, s, s′);

• while(p, e) denotes while-loop iteration which corresponds to Do([[p?; e]∗;¬p?] , s, s′);

• pi(v, e) denotes non-deterministic choice of action argument where v is a Prolog constant which
acts as a GOLOG variable and e denotes a program body of primitive action. It corresponds to
Do((πv)e(v), s, s′);

• a is the name of a user-declared primitive action used in a GOLOG procedure.

The GOLOG interpreter presupposes a background basic action theory D with available information con-
tentD = DS0∪Duna∪Dap∪Dss and evaluation amounts to theorem proving of a set of regressable formulas.
Based on its Prolog implementation, the GOLOG interpreter exerts these assumptions on a GOLOG main
program:

1. GOLOG programs axiomatizing an application domain in the situation calculus language Lsitcalc do
not contain functional fluent and they contain only a finite number of relational fluents and action
function symbols;

2. The basic action theory D has a closed initial database DS0 meaning that DS0 contains appropriate
unique names axioms, it contains a definition for each non-fluent symbol and for each fluent F it
contains F (~x, S0) ≡ ΨF (~x, S0) where ΨF (~x, S0) is a first order formula that is uniform in S0.

Definition 4.2.27 (GOLOG Main Program). A GOLOG main program δ0 is expected to have the following
parts [Levesque et al., 1997]:

1. a set of clauses declaring each primitive action using the Prolog construct primitive_action(a) where
a is a name of the primitive action;

2. a set of clauses specifying the initial situation as described in definition (4.2.8) and a set of unique
names axiom clauses as described in definition (4.2.7);

Patrick Un Master’s Thesis

74 4 Foundations of Service Matching and Composition

3. a set of clauses of the form proc(name, body) to define complex actions as procedures where name
is a name and body the GOLOG code implementation for the procedure respectively;

4. a set of action precondition axioms corresponding to Poss(a, s of Lsitcalc in definition (4.2.1), de-
clared using the predefined predicate poss(a, S) each for every declared primitive action a with S as
variable to range over all situations;

5. a set of successor state axioms corresponding to definition (4.2.5) for each fluent and situation, declared
using the predefined predicate holds(fluent, situation) with fluent being any relational fluent and
situation a situation. The clause is written as:

a) a set of clauses defining holds(fluent, s0) where s0 is the predefined GOLOG construct of
initial situation S0, characterizing which fluents are true in the initial situation;

b) a set of clauses in the form holds(fluent, do(a, S)) where a is further assigned a definition
of a primitive action and S is a free situation variable. These clauses represents definitions for
successor state axioms, one for each fluent.

4.2.5 Concurrency with ConGolog

ConGolog [Baier & Pinto, 1999, Giacomo et al., 2000, Lesperance et al., 2008] is an extended version of
GOLOG language that incorporates a rich semantic of concurrency and interrupt handling capability. It has
built in features to handle

• concurrent processes with possibly different priorities,

• high level interrupts,

• arbitrary exogenous actions.

The process concurrent model in ConGolog is implemented as interleavings of primitive actions in the com-
ponent processes. A concurrent execution of two processes is one where the primitive actions in both pro-
cesses occur, interleaved in the execution in a certain manner. Since the ConGolog language is based on
GOLOG, it absorbs the GOLOG syntactic constructs as described in definition (4.2.20). Interleaved con-
current execution in ConGolog takes advantage of the blocking concept. While blocking of execution in
GOLOG can happen, for instance, if a deterministic program δ executes and reaches a point where it is about
to do a primitive action a in the situation s but Poss(a, s) evaluates to false; or a test action φ? fails, the
overall execution fails in GOLOG. In ConGolog the failed program δ is blocked and if another program δ′

available and is ready to execute, the current interleaving execution can continue with δ′.

When concurrency is central to the interpretation of ConGolog programs, it is necessary to redefine a
transition semantic for the execution of complex action Do(δ, s, s′) defined in GOLOG. Such a transition
semantic is based on defining single step of computation in contrast to directly defining computation of the
entire execution. Regarding transition semantic there are two addition relational fluents to add to the evalu-
ation semantic of GOLOG.

Definition 4.2.28 (ConGolog Transition Semantic). Given a program δ and a start situation s, transi-
tion semantic [Giacomo et al., 2000] uses two additional relational fluents to refine the evaluation semantic
Do(δ, s, s′) of GOLOG:

1. Trans(δ, s, δ′, s′) which is associated with a given GOLOG program δ defines the relation of exe-
cution of a program δ, either a primitive action or test action, in the situation s so that it reaches the
successor state s′ and δ′ which represents what remains of the program after δ is executed;

Master’s Thesis Patrick Un

4.2 Action Theoretic Foundations for Service Composition 75

2. Final(δ, s) is a relational fluent which denotes termination of program δ in the final situation s.

The final situation is reached after a finite number of Trans transitions from a starting situation coincide
with those satisfying the Do(δ, s, s′) relation. If a program does not terminate, then there is no final situation
which satisfies that Do(δ, s, s′) relation. The reflexive transitive closure of the transition semantic is denoted
with Trans∗ where

Trans∗
def
= ∀T.

[[
> ⊃ T (δ, s, δ, s) ∧ Trans(δ, s, δ′′, s′′) ∧ T (δ′′, s′′, δ′, s′)

]
⊃ T (δ, s, δ′, s′)

]
where T () is a transition semantic operator and that > ⊃ T (δ, s, δ, s) is true16 and through intermediate
transitions with program δ′′ in situation s′′, it is possible to imply the transition semantic T (δ, s, δ′, s′).
Using Trans∗ and Final the complex action Do(δ, s, s′) can be rewritten as:

Do(δ, s, s′)
def
= ∃δ′.T rans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)

The transition semantic therefore amounts to iteratively single-stepping through a program δ obtaining a
remaining program δ′ in the situation s′ so that δ can legally terminate in situation s′ (when Final(δ′, s′) is
true).

For comprehensive reasons it is necessary to refine the GOLOG semantics described in definition (4.2.20)
using the transition semantic [Giacomo et al., 1997]. An empty program “nil” is introduced to denote pro-
gram termination17. We redefine the described program constructs using Trans and Final with detailed
verbal explanations of these axioms given in [Giacomo et al., 2000]. For procedure-free programs transition
semantic is shown for:

1. empty program:
Trans(nil, s, δ′, s′) ≡ ⊥

Final(nil, s) ≡ >

2. primitive actions:

Trans(a, s, δ′, s′) ≡ Poss(a [s] , s) ∧ δ′ = nil ∧ s′ = do(a [s] , s)

Final(a, s) ≡ ⊥

3. test actions:
Trans(φ?, s, δ′, s′) ≡ φ [s] ∧ δ′ = nil ∧ s′ = s

F inal((φ?, s) ≡ ⊥

4. sequence:

Trans([δ1; δ2] , s, δ′, s′) ≡ ∃γ.δ′ = (γ; δ2)∧Trans(δ1, s, γ, s
′)∨Final(δ1, s)∧Trans(δ2, s, δ

′, s′)

Final([δ1; δ2] , s) ≡ Final(δ1, s) ∧ Final(δ2, s)

16If no transition happens, i.e., the remaining program is the same as the original program and the situation remains the same, then
T (δ, s, δ, s) is always true.

17The symbol nil literally means that there is no more program that remains to be executed.

Patrick Un Master’s Thesis

76 4 Foundations of Service Matching and Composition

5. non-deterministic branching:

Trans([δ1|δ2] , s, δ′, s′) ≡ Trans(δ1, s, δ
′, s′) ∨ Trans(δ2, s, δ

′, s′)

Final([δ1|δ2] , s) ≡ Final(δ1, s) ∨ Final(δ2, s)

6. non-deterministic choice of argument:

Trans((πv).δ, s, δ′, s′) ≡ ∃x.Trans(δvx, s, δ′, s′)18

Final((πv).δ, s) ≡ ∃x.F inal(δvx, s)

7. non-deterministic iteration:

Trans(δ∗, s, δ′, s′) ≡ ∃γ.(δ′ = γ; δ∗) ∧ Trans(δ, s, γ, s′)

Final(δ∗, s) ≡ >

Definition 4.2.29 (ConGolog Syntactic Constructs and Semantics). Given the constructs and semantics
which are adopted from GOLOG described in definition (4.2.20), using the transition semantics described in
definition (4.2.28), the additional constructs of ConGolog are shown with corresponding transition semantic
using Trans and Final:

1. synchronized conditional:
if φ?sync then δ1 else δ2

Trans(
[
if φ?sync then δ1 else δ2

]
, s, δ′, s′) ≡

φ [s] ∧ Trans(δ1, s, δ
′, s′) ∨ ¬φ [s] ∧ Trans(δ2, s, δ

′, s′)

Final(
[
if φ?sync then δ1 else δ2

]
, s) ≡

φ [s] ∧ Final(δ1, s) ∨ ¬φ [s] ∧ Final(δ2, s)

2. synchronized loop:
while φ?sync do δ

Trans(
[
while φ?sync do δ

]
, s, δ′, s′) ≡

∃γ.(δ′ = γ; while φ?sync do δ) ∧ φ [s] ∧ Trans(δ, s, γ, s′)

Final(
[
while φ?sync do δ

]
, s) ≡

¬φ [s] ∨ Final(δ, s)

where φ?sync is the synchronized version of the same conditional in GOLOG. Synchronization means
that test actions in both the synchronized if-conditional and while-loop do not involve transition from
one situation to another19. The evaluation of the test action condition and the first action of the branch
chosen are executed in an atomic unit similar to “test-and-set” semantic in concurrent programming20;

3. concurrent execution of programs:
(δ1 || δ2)

18The term δv
x means substituting v with x.

19We recapitulate that the general semantic of a test action φ? in GOLOG is defined as the transition: Do(φ?, s, s′)
def
= φ [s]∧ s =

s′. A test action progresses the situation from s to s′ after the test has finished. Synchronized test actions in ConGolog are
associated with the subsequent action of the program body in a test-and-set manner so that transition of situation happens only
after the action in the branch chosen has been executed.

20Description of the transition semantic using Trans and Final for these axioms can be referenced in [Giacomo et al., 2000]

Master’s Thesis Patrick Un

4.2 Action Theoretic Foundations for Service Composition 77

Trans([δ1 || δ2] , s, δ′, s′) ≡
∃γ.δ′ = (γ || δ2) ∧ Trans(δ1, s, γ, s

′)∨
∃γ.δ′ = (δ1 || γ) ∧ Trans(δ2, s, γ, s

′)

Final([δ1 || δ2] , s) ≡ Final(δ1, s) ∧ Final(δ2, s)

(δ1 〉〉 δ2)

Trans([δ1 〉〉 δ2] , s, δ′, s′) ≡
∃γ.δ′ = (γ 〉〉 δ2) ∧ Trans(δ1, s, γ, s

′)∨
∃γ.δ′ = (δ1 〉〉 γ) ∧ Trans(δ2, s, γ, s

′) ∧ ¬∃ζ, s′′.T rans(δ1, s, ζ, s
′′)

Final([δ1 〉〉 δ2] , s) ≡ Final(δ1, s) ∧ Final(δ2, s)

the construct (δ1 || δ2) denotes concurrent interleaved execution of programs δ1 and δ2 while (δ1 〉〉 δ2)
denotes prioritized concurrent execution with δ1 having higher priority than δ2. Priority restricts pos-
sible interleaving of two programs with the lower prioritized program executes only when higher
prioritized program is either done or blocked;

4. concurrent iteration:
δ||

Trans(δ||, s, δ′, s′) ≡
∃γ.δ′ = (γ || δ||) ∧ Trans(δ, s, γ, s′)

Final(δ||, s) ≡ >

this construct resembles the non-deterministic iteration δ∗ with the difference that here the instances
of program δ execute concurrently rather than in sequence. In δ∗ depending on the size of the se-
quence to execute, the iteration continues zero or more time using the complex action Do to enforce:
nil|δ|(δ; δ)|(δ; δ; δ)| . . . with “;” indicating sequential execution. Concurrent iteration is characterized
by: nil|δ|(δ||δ)|(δ||δ||δ)| . . . with the “||” symbol denoting concurrency;

5. exogenous actions and interrupt:
< φ→ δ >

where < φ→ δ > is an interrupt consisting of two parts: φ is a trigger condition and a program body
δ to execute once the trigger condition becomes true. Once it has completed it is ready to be triggered
again. Should an interrupt never become true, it will not be triggered. One can think of interrupts in
program as the sequence

{start_interrupts; (δ 〉〉 stop_interrupts)}

with the described semantic of prioritized concurrency. However if an exogenous event occurs asyn-
chronously without being part of a user specified program, one still can capture this semantic by
defining a special program for exogenous events

δEXO
def
= ((πa).Exo(a)?; a)∗

. Then the user specified program can be executed interleaved concurrently as

δ||δEXO

. This is advantageous because an exogenous event often is not under control of δ at all. In this manner,
exogenous event is well captured with the semantic of non-deterministic concurrency in ConGolog.

Patrick Un Master’s Thesis

78 4 Foundations of Service Matching and Composition

ConGolog interpreter can be implemented on top of Prolog, an interpreter based on the described transi-
tion semantic using Trans, Final and Do is shown in listing B.1 in appendix B. The interpreter requires
that the action preconditions axioms, successor state axioms, unique names axioms and initial axioms to be
expressible in Prolog clauses.

Definition 4.2.30 (ConGolog Program Syntactic Constructs). A ConGolog interpreter based on transition
semantic handles the following legal language constructs:

• nil denotes the empty program;

• act(a) denotes atomic action where a is an action argument;

• test(c) denotes a test action where c is a situation which is a fluent or one expression of the following:
and(c1, c2), or(c1, c2), neg(c), all(v, c) or some(v, c) where v is a logical variable;

• seq(p1, p2) denotes sequence;

• choice(p1, p2) denotes non-deterministic choice of actions;

• pick(v, p) denotes non-deterministic choice of argument where v is a logical variable and p is a pro-
gram term which uses v;

• iter(p) denotes non-deterministic iteration;

• if(c, p1, p2) denotes if-then-else conditional execution where p1 represents the program to execute in
the then-branch and p2 represents the else-branch;

• while(c, p) denotes a while-loop;

• conc(p1, p2) denotes concurrency;

• prconc(p1, p2) denotes prioritized concurrency;

• iterconc(p) denotes iterated concurrency;

• pcall(p_args) denotes procedure call where p_args is a procedure name together with a possible list
of arguments to invoke.

Definition 4.2.31 (ConGolog Application Program). A ConGolog program δ0 is expected to have the
following parts [Giacomo et al., 2000]:

1. a set of clauses describing the initial situation S0 which can be atomic clauses or other complex clauses.
The restriction by the intrinsic Prolog implementation on the initial database is that restriction of a
close world assumption is forced on it;

2. a set of action precondition axioms specified with Poss for every action a and situation s with one
axiom for each primitive action using a variable to quantify over all situations;

3. a set of successor state axioms for each fluent where one clause is required for each fluent with vari-
ables for actions and situations;

Master’s Thesis Patrick Un

4.2 Action Theoretic Foundations for Service Composition 79

4. a set of procedures in the form
proc(p(X1, . . . , Xn), δ)

where p is the procedure name, the n-ary listX1, . . . , Xn contains formal parameters and δ the program
of the procedure body.

4.2.6 Sequential Temporal Extension of Situation Calculus

Specification of time in knowledge systems is a challenging task because time does not stand still itself, this
makes even specification of the real current time a problematic issue. There have been different attempts
to specify time in knowledge representation, some of these can be found in [Hobbs & Pustejovsky, 2003,
Hobbs & Pan, 2004, Pan & Hobbs, 2005, Hobbs & Pan, 2006, Pan et al., 2006, Pan, 2007].

In the situation calculus temporal reasoning amounts to the specification of time often related to process
duration [Pinto & Reiter, 1993, Pinto, 1994]. A functional fluent time(a, t) is introduced which denotes
the time of occurrence of an action with time(A(~x, t)) = t involving a particular action A(~x, t) as an
argument [Reiter, 1998]. This expression can be abbreviated as time(a) ≡ time(a, now) where now is a
special constant in Lsitcalc denoting the current instance time. it is convenient to define a function start(s)
denoting the start time of an action a such that

start(do(a, s)) = time(a)

here start takes a situation term and returns the current time.

In section 4.2.5 concurrency is described as interleaved giving an account of actions that are interleaved in
a way that time is not accounted for specifically. There are many advantages to use interleaved concurrency,
for instance, in complex actions some actions can serve as enabling conditions for another action to start
such as cutting a string can cause the attached bottle start to fall, etc. An extension of the situation calculus
to incorporate temporal reasoning makes a combination of instantaneous actions, explicit representation of
time and an interleaved account of concurrency can contribute to a rich formal representation situation cal-
culus language to describe processes that overlap in temporally complex manner which are very intrinsic to
many real world dynamical systems.

Concurrency raises interesting issues in reasoning about multiple actions, one of the essential issues is
whether the duration of two actions actually overlaps, or for instance that the time span of one action
is entirely, partially or not at all contained in the time span of another action. The issue can get quite
complicated if more actions are added to the problem. A representation device in the situation calculus
to tackle and overcome this issue is by conceiving actions as processes that are represented by relational
fluents in Lsitcalc. The duration of a process is evaluated as the temporal displacement or time span be-
tween two instantaneous and durationless actions w.r.t. a relational fluent corresponding to the primitive
action [Reiter, 2001a]. A start action that initiates the process and a end action that terminates it. The ini-
tiation is evaluated as the start action making the fluent of the primitive action to become true and the end
actions renders it false, for instance, for the primitive action walk(loc1, loc2) two durationless instantaneous
actions startWalk(loc1, loc2) and endWalk(loc1, loc2) mark the initiation and termination of the primi-
tive action and the relational fluent walking(loc1, loc2, s) is associated with the primitive action. The action
startWalk turns the fluent walking(loc1, loc2, s) true and endWalk makes it false. With one drawback
that one cannot exactly represent two overlapping actions if the start and end actions coincide exactly with
each other, though being an exception to this temporal extension approach, this situation is really not quite

Patrick Un Master’s Thesis

80 4 Foundations of Service Matching and Composition

often. Notice that even same duration of two actions does not imply that the start and end of both actions
exactly coincide with each other. With this rationale, a situation of the form

do([a1, a2, . . . , an−1, an] , S0)
def
= do(an, do(an−1, do(. . . , do(a2, do(a1, S0)) . . .)))

can be understood as a world history of actions execution starting in S0 and after a non-deterministic period
of time, a1 occurs when it is started with it start action and then it terminates when its end action makes
the relational fluent false; subsequently after a non-deterministic period of time a2 is initiated and then ter-
minated in the same manner and so forth.

The above process concept of action initiation and termination w.r.t. to the duration that actions elapse
is a solid foundation to temporal reasoning, however it is silent on an exact representation of the time at
which actions occur. A function symbol time(a) = t is introduced to represent an instantaneous action
returning the time t when an action a occurs. Temporal modification to the Do(a, s, s′) macro in Lsitcalc to
accomodate time can be defined as:

Do(a, s, s′)
def
= Poss(a, s) ∧ start(s) � time(a) ∧ (s′ = do(a, s))

where Do is extended in a temporal dimension with the functions start(s) and time(a) to a sequential
situation calculus where:

start(do(a, s)) = time(a)

The symbol “�” denotes an order between situations giving a partial ordered relation between, for instance,
s � s′ meaning that one can get to s′ by a sequence of possible actions starting in situation s. The start(s)
function is analogous to a shorthand now(s) which returns the current time t. A GOLOG program clause
can be rewritten, for instance, w.r.t. the modified Do complex action from:

do(E,S,do(E,s)) :-
primitive_action(E), poss(E,S) to

do(E,S,do(E,s)) :-
primitive_action(E), poss(E,S), start(S,T1), time(E,T2), T1 <= T2

Augmenting ConGolog with a temporal dimension is beneficial for the upcoming discussion on service
composition techniques using GOLOG and ConGolog. Not that this sequential temporal approach is indis-
pensable but just it can enrich the semantic of a language to make it suitable for more realisitc modeling of
dynamical systems such as web services.

4.2.7 Service Composition in the Situation Calculus

We can turn our attention to use the situation calculus as axiomatizing theory for the domain of services and
use GOLOG/ConGolog to tackle web services composition problem. Researchers of Sheila Ann McIlraith’s
group have first proposed using an extended GOLOG21 to tackle the web service composition problem by
conceiving it as AI planning task [McIlraith et al., 2001, McIlraith & Son, 2002, Baier & McIlraith, 2006a]
using the theoretical foundation of the situation calculus and agent theories [Wooldridge & Jennings, 1994,
Wooldridge & Jennings, 1995, Lesperance et al., 1999, Fagin et al., 2003]. In their synthesis approach, web
services are modeled as generic procedures of GOLOG programs with an appropriate axiomatized back-
ground basic action theory [Reiter, 2001a] such that their preconditions, postconditions, successor states and
world altering effects are suitably axiomatized. They introduced an extended semantic in GOLOG to de-
scribe transition semantic in order to incorporate user constraints, sensing actions by planning agent, notion

21For brevity reason the term GOLOG henceforth means also ConGolog when it is mentioned in the following text.

Master’s Thesis Patrick Un

4.2 Action Theoretic Foundations for Service Composition 81

of knowledge self-sufficient and physically sufficient programs.

In an rational agent approach to tackle the web service composition problem, we resort to a type of
model-based programming in which a model-based program is a reusable hight-level program that captures
the procedural knowledge of how to accomplish a task without the requirements of complete and detailed
specification of it. Model-based programs are instantiated in the context of a model of a specific system
and state of the world where the program instance is sequences of actions which can be performed by an
agent to control the behavior of the system. A model-based program in contrary to conventional algorithmic
programs is not necessarily deterministic and it comprises:

• a model is an abstract representation of the domain system being programmed, the operator or control
actions that affect it and the state of the system. A model M of a model-based program is a situation
calculus domain axiomatization in the language Lsitcalc;

• a program is a collection of high level procedural algorithms for performing tasks using operators
and control actions that are intrinsic to the model. A GOLOG program is a manifestation of such a
program that is based on the model M of the situation calculus action theory D.

It is obvious that using model-based program, we can tackle the problem of web service composition.

Web services are programs offering their functionalities accessible to clients over networks, especially the
internet. They offer their operations as functionalities that are exposed as behavior to an agent, in this regard
an intelligent rational agent can use an instance of the program, i.e., composition of web services realized
in sequences of actions, as a plan to control the behavior of the service. What the plan is satisfying is essen-
tially the goal of the composition which is the overall desired functionality of the behavior of a system and
its state of the world. The problem of web service composition is often characterized by incomplete initial
knowledge both in terms of functionality of available services as well as the constraints about using these
services. Therefore web service composition must account for the ability to sense in the planning process
by agents since web services also sense and accumulate knowledge to react upon input in the world besides
just performing their world altering actions. McIlraith has shown how to represent and compile services
into generic GOLOG programs in order to treat services as planning operators to allow agents to reason
upon generation of possible execution plan. Input and output parameters of services are modeled as generic
procedures [McIlraith & Son, 2002] with input as knowledge preconditions and output as knowledge effects
in the planning context respectively. Exogenous events such as failure, timeouts, etc. can affect the things
in the world being sensed and hence affect value of fluents. User input and user constraints are essential in
pruning the search space of plans.

Definition 4.2.32 (GOLOG Tree Program). A GOLOG tree program is a program that does not contain
any unbounded loop contructs [Baier & McIlraith, 2006a]. A tree program is guaranteed to terminate within
a bounded number of iterations over a sequence of situations which can be unfolded into a well-formed
situation tree22 after performing a sequence of actions in a situation history. The boundedness of iteration is
defined as

if φ? ∧ k 6= 0 then {whilek [φ? ∧ k > 0] do δ; k − 1 endwhile} else nil endif

where k ∈ N.

22See [Reiter, 2001a] chapter 4 for a definition.

Patrick Un Master’s Thesis

82 4 Foundations of Service Matching and Composition

Definition 4.2.33 (Deterministic GOLOG Tree Program). A deterministic GOLOG tree program is a pro-
gram that does not contain any non-deterministic choice of arguments construct, i.e., the (πx)δ(x) contruct.

For a given complex action δ that terminates in s′ = doca(δ, s) starting from s, we can analyze the
possibility of execution of the complex action δ as:

Do(δ, s, doca(δ, s)) ∨ (¬∃s′′.Do(δ, s, s′′) ∧ ¬executable(doca(δ, s)))

where doca(δ, s) is a named version for the predefined do action function in Lsitcalc denoting a complex ac-
tion δ is performed in situation s, juxtaposing with the do(a, s) for primitive actions. The above axiom states
a epistemic complete account of the execution of a complex action δ, i.e., either the δ is executable within the
Do computational semantics starting from situation s and reaches the successor situation doca(δ, s) which
is implicitly s′ as stated previously; or δ is not executable, i.e., there exists no successor situation s′′ such
that within Do the execution of δ starting from s cannot reach situation s′′ and therefore doca(δ, s) is not
executable. The predicate executable(s) denotes a situation with all of its actions in the situation history s∗,
i.e., all the a-priori situations in the situation tree [Reiter, 2001a] that lead to the current situation argument
s are possible:

executable(s)
def
= (∀a, s∗).Poss(a, s∗) ∧ do(a, s∗) = sa−priori � s

where the symbol “�” denotes the ordering relation for situations sa−priori and s within the situation tree
where sa−priori is a certain a-priori situation within the situation tree relative to the current situation s. It
follows that this account of doca computational semantic in Dca can be added to the set of axioms of the
basic action theory D. Henceforth we call it the physical executability of a complex action within Dca.

Definition 4.2.34 (Physical Executability of Complex Actions). A given complex action δ is physically
executable in all situation s iff

D |= ∀s.executable(s) ∧Do(δ, s, doca(δ, s))→ executable(doca(δ, s))

where Dca is already merged within D and doca(δ, s) is defined previously.

Customizable Programs with User Constraints

To capture user constraints, [McIlraith & Son, 2002] extends Lsitcalc with a new fluent Desirable(a, s) one
for each action to specify that an action a is desirable in situation s. It is used to describe that a is not
only physically executable in s but also desirable so that it helps to constraint search space for actions when
realizing a GOLOG program. The fluent is generally true, i.e., Desirable(a, s) ≡ true unless otherwise
specified. The set ofDesirable fluents is contained inDD ⊆ D. User constraints can therefore be expressed
in two parts:

1. a set of necessary conditions ω in DnecessaryD of necessary conditions for desirable actions with
Desirable(a, s) ⊃ ωi where subscript i is an index into DnecessaryD , for instance, a necessary condi-
tion to desire buying a new CD is that it is not yet available in my collection:

Desirable(buyCD(disc), s) ⊃ ¬existInCollection(disc, s);

2. a set of personal constraint Ωpersonal in Lsitcalc specifying personal preferences as constraint expres-
sions C(s) with C(do(A(~x), s)). For instance, desired to buy if cheaper than 20 dollars and having
money: enoughMoney(s) ∧ costLessThan(disc, 20, s).

Master’s Thesis Patrick Un

4.2 Action Theoretic Foundations for Service Composition 83

Definition 4.2.35 (Desirable Actions). Given a set of user constraints w.r.t. a basic action theoryD contain-
ing the constraints DnecessaryD and DpersonalD , an action that is Desirable(a, s) is defined as

Desirable(a, s) ≡ (
n∨
i=1

ωi) ∧ (
∧

C(s)∈Dpersonal

Ωpersonal)

where Ωpersonal = R [C(do(A(~x), s))], i.e., a regression of the personal constraint expression using succes-
sor state axioms.

With the previous definition, the transition semantic for GOLOG, i.e., Trans(δ, s, δ′, s′) and Final(δ, s),
can incorporate the concept of desired actions:

Trans(a, s, δ′, s′) ≡ Poss(a, s) ∧ δ′ = nil ∧ s′ = do(a, s)
Trans(a, s, δ′, s′) ≡ Poss(a, s) ∧Desirable(a, s) ∧ δ′ = nil ∧ s′ = do(a, s)

so that the expression
Legal(a, s) ≡ Poss(a, s) ∧Desirable(a, s)

can be used as a shorthand whereas for Final it really does not matter whether it is desirable because it is
about checking whether the program terminates rather than if we want it to terminate.
They introduce a new order connective which is denoted by “:” to loosen up the overly constrained sequential
execution of primitive actions imposed by using “;” in GOLOG. The rationale is that it can somehow continue
execution without letting the whole GOLOG program to fail after a certain individual action in the sequence
has failed. If the first primitive action in the sequence fails, it deals with the failure by inducing the GOLOG
program to search for sequence of actions replacing the failed action in order to enable the second action to
execute. This feature can positively impact the GOLOG program for service composition because services
do fail in practice quite often and having this order construct can induce the GOLOG interpreter to search in
its search space for alternative known action trajectories; this can be understood in practice to mimic some
fail over handling. The semantic for conventional sequential execution is a1; a2 iff Poss(a2, do(a1, s)) is
true. However in conventional GOLOG, if it is not, a2 can never be executed. Instead the GOLOG interpreter
could search for an alternative sequence of actions ~a = [a′1, . . . , a

′
n] to achieve the precondition such that a2

can execute, i.e., Poss(a2, do(~a, do(a1, s))) = true. The order connective “:” for actions a1 and a2 can be
written out to:

a1; while (¬Poss(a2, s)) do (πa′)
[
Poss(a′, s)?; a′

]
endwhile; a2

This search functionality to compensate failure can be encoded into a function

achieve(φ)
def
= while (¬φ?) do (πa′)

[
Poss(a′, s)?; a′

]
endwhile

with one drawback: this type of undirected search [Russell & Norvig, 2002] is that the search space can
impose some overhead to the GOLOG interpreter.
Consequently the transition semantic of GOLOG can be further refined w.r.t. the new order connective and
defined as:

Trans(δ : a, s, δ′, s′) ≡ Trans((δ; achieve(Poss(a, s))); a, s, δ′, s′)

Final(δ : a, s) ≡ Final(δ; achieve(Poss(a, s)); a, s)

Subsequently achieve(Poss(a, s)) can be replace by

achieve(Legal(a, s))

to incorporate the user constraints described previously.

Patrick Un Master’s Thesis

84 4 Foundations of Service Matching and Composition

Agent Sensing Actions in Service Composition

Web service composition problem in the situation calculus is often characterized with insufficient initial
knowledge of a planning agent or when exogenous events exist that unpredictably change portion of the
world state known to the agent or affect values of fluents that are known to the agent. Therefore web service
composition is characterized by an interleaved sequence of knowledge gathering actions and world-altering
actual actions, i.e., the agent performs beside the complex actions that represent the invocation of a service,
it also performs actions in parallel to gather information about possible unpredictable state changes in the
world. In this regard [McIlraith & Son, 2002] has proposed the idea of self-sufficient GOLOG programs to
make it generic enough so that nothing is assumed about what the agents know in terms of their acquired
knowledge to execute the programs. Preconditions for actions to be executed by a program is realized within
the program as kernel initial state Initδ w.r.t. the program denoting the preconditions for executing δ.
The knowledge of an agent regarding trueness of a formula φ and its belief state can be expressed with a
distinguished fluent [Scherl & Levesque, 1993, Lesperance et al., 1999]

KWhether(φ, s).

It characterizes completely the epistemic state of an agent since

KWhether(φ, s)
def
= Know(φ, s) ∨Know(¬φ, s)

where Know(φ, s) is a special fluent representing the agent’s knowledge w.r.t. the formula φ in the situa-
tion s, i.e., that the agent knows and believes that φ is either true or false.

Program self-sufficiency is characterized with the predicate

ssf(δ, s)

and defined semantically over the structure of δ as follows:

ssf(nil, s) ≡ >
ssf(φ?, s) ≡ KWhether(φ, s)
ssf(a, s) ≡ KWhether(Legal(a, s))
ssf([δ1; δ2] , s) ≡ ssf(δ1, s) ∧ ∀s′. [Do(δ1, s, s

′) ⊃ ssf(δ2, s
′)]

ssf([δ1 : δ2] , s) ≡ ssf(δ1, s) ∧ ∀s′. [Do(achieve(Poss(δ1, s)), s, s′) ⊃ ssf(δ2, s
′)]

ssf(δ1|δ2, s) ≡ ssf(δ1, s) ∧ ssf(δ2, s)
ssf(δ∗, s) ≡ ssf(δ, s) ∧ ∀s′. [Do(δ, s, s′) ⊃ ssf(δ∗, s′)]
ssf((πx)δ(x), s) ≡ ∀x.ssf(δ(x), s)
ssf(ifφ then δ1 else δ2 endif, s) ≡ KWhether(φ, s) ∧ (φ(s) ⊃ ssf(δ1, s)) ∧ (¬φ(s) ⊃ ssf(δ2, s))
ssf(whileφdo δ endwhile, s) ≡ KWhether(φ, s) ∧ (φ(s) ⊃ ssf(δ, s))∧

(∀s′. [Do(δ, s, s′) ⊃ ssf(whileφdo δ endwhile, s′)])

Before executing a program an agent’s belief state and level of knowledge is characterized by the part of
knowledge which it has already possessed and another which it still needs to acquire [Lesperance et al., 1999].
In the former case, the source of information is obviously the state of the world prior to execution of any
action. The agent acquires this information from the kernel initial state Initδ(S0) in the initial situation S0.
In the latter case, a customizable and generic GOLOG program does not assume the level of knowledge or
the belief state of an agent regarding execution of the program. Instead it presupposes that an agent will take
necessary steps to acquire additional information via sensing subsequently [Baier & McIlraith, 2006a] if it
needs to do so.

Master’s Thesis Patrick Un

4.2 Action Theoretic Foundations for Service Composition 85

Definition 4.2.36 (Knowledge Self-Sufficient GOLOG Programs). A GOLOG program δ is knowledge
self-sufficient (KSSF) w.r.t. to a basic action theory D in Lsitcalc and kernel initial state Initδ iff δ is a
deterministic tree program as described in definition (4.2.33) and

D |= Initδ(S0) ∧ ssf(δ, S0)

This property ensures that given proper Initδ the execution of a GOLOG program will not fail due to
lack of knowledge of an agent, though a program will still fail due to impossible action, i.e., for instance
¬Poss(δ, s). It shows the epistemic knowledge of an agent knowing whether Poss is true.

Definition 4.2.37 (Physically Self-Sufficient GOLOG Programs). A GOLOG program δ is physically
self-sufficient (PSSF) w.r.t. to a basic action theory D in Lsitcalc and kernel initial state Initδ iff

KSSF (δ, Initδ) ∧ D |= ∃s′.Do(δ, S0, s
′)

such that PSSF (δ, Initδ) ⊃ KSSF (δ, Initδ).

Definition 4.2.38 (Self-Sufficient GOLOG Programs). Given a GOLOG program δ, a corresponding basic
action theory D and a kernel initial state Initδ, the program is self-sufficient w.r.t. D and Initδ iff

1. δ is knowledge self-sufficient as described in definition (4.2.36);

2. δ is physically self-sufficient and physically executable as described in definitions (4.2.37) and (4.2.34)
respectively.

To execute the extended GOLOG program there is a choice between online or offline interpreter. Reiter
suggests to use an online GOLOG interpreter to reason with sensing actions [Reiter, 2001a]. Comparing to
an offline interpreter the online one does not usually support backtracking while offline interpreter suffers
from computational overhead due to large search space and the inaptitude to automatically incorporate sens-
ing actions. McIlraith proposes to use a combination of online and offline interpreter, coining the term middle
ground (MG) which is a type of hybrid interpreter. It executes sensing actions for knowledge gathering for
agents online while the actual actions are performed to simulate their world-altering effects23. The outcome
of the online simulation is a complete execution plan where sequence of world-altering actions can be sub-
sequently executed by real invocation of the corresponding services. The complete plan reveals a sequence
of complex actions that are related to a sequence of existing web services. An agent knows how to execute
the plan in order to achieve its goal through acquisition of information at runtime [Lesperance et al., 2000].
A MG GOLOG interpreter achieves a possible composition by continuously executing sensing actions and
actual complex actions to simulate and search for a set of actions (services) which satisfy a goal w.r.t. a
basic action theory and user constraints. If do(~α, S0) is the termination situation after executing a GOLOG
program δ with basic action theoryD using the hybrid MG GOLOG interpreter starting in the initial situation
S0, then the entailment holds

D |= ∃s.Do(δ, S0, do(~α, S0)) ∧ s = do(~α, S0) ∧ Legal(~α, S0) ∧ ssf(δ, S0)

where the sequence of actions ~α comprises both sensing and world-altering actions in an interleaved manner,
for instance [s1, a1, a2, a3, s2, . . .] where si denotes sensing action and ai actual action respectively. We

23By world-altering action, it is meant here that a web service is represented as an action which is executed to have a perceivable
effect in the changed state of the world (domain), whereby service is this respect is modeled quasi as a black box.

Patrick Un Master’s Thesis

86 4 Foundations of Service Matching and Composition

denote the sequence of sensing actions with ~αsensing and the sequence of world-altering actions with ~αwa
where the outcome sequence ~α = ~αsensing ∪ ~αwa. Sequence ~α exists in output if this entailment relation
holds

MG(D, δ, Initδ, ~α)
def
= D |= Initδ(S0) ∧Do(δ, S0, do(~α, S0))

If no unpredictable exogenous events or sensor error change the value of the fluents, then for all fluents F in
D:

D |= F (~x, do(~αwa, ~αsensing, S0))

For the hybrid MG GOLOG interpreter, amendments have been made to the interpreter that have been incor-
porated into listing B.1 in appendix B whereby explanations are found in [McIlraith & Son, 2002].

The model M of our GOLOG program is based on an axiomatized background basic action theory D and
we are interested in obtaining an instance of service composition program as a controller for solving the web
service composition problem (WSC) so that an agent can use it as a plan to simulate and execute actions.

Definition 4.2.39 (Model-Based GOLOG Program Instance for WSC). Let δ be a model-based GOLOG
progam w.r.t. the model M based on the basic action theory D in Lsitcalc. An execution trajectory ~A =
[a1, . . . , an]∪ [s1, . . . , sn] is model-based program instance representing a solution to a web service compo-
sition problem (WSC) iff

M |= Do(δ, S0, do([a1, . . . , an] , S0))

Generation of such an instance ~A from the model M is the theorem proving task to prove:

D |= ∃s′.Do(δ, S0, do(~A, S0)) ∧ s′ = do(~A, S0) ∧ Legal(~A, S0) ∧ ssf(δ, S0)

The extrated sequence ~A from the binding for s′ is a sequence of actions (including actual and sensing
actions) among the trajectories of a situation tree over all possible situations. The sequence of actions
represents a controller of a compsite service which can be used by an agent to control the behavior of it. In
addition, the extracted sequence can be verified that it will not pass through unsafe states, i.e., those with
failure potential, by using a first-order logic formula P (s) to include a situation s and proving:

M |= (∀s′).Do(δ, S0, s
′) ∧ s′ = do(~A, S0) ⊃ P (s′)

The following propositions are derived from definition (4.2.39) regarding the existence of a model-based
program instance and the aspect of goal achievement of a composite service program.

Proposition 4.2.40 (Existence of Program Instance). A program instance exists for a model-based pro-
gram δ and model M iff

M |= (∃s).Do(δ, S0, s)

Proposition 4.2.41 (Goal Achievement of Program). Let G(s) be a first-order logic formula representing
the goal state of a model-based program δ with modelM . The program and model are guaranteed to achieve
the goal iff

M |= (∀s).Do(δ, S0, s) ⊃ G(s)

Proposition 4.2.42 (Goal Achievement of Program Instance). Let G(s) be a first-order logic formula
representing the goal state of a model-based program δ with model M . A model-based program instance
~A = [a1, . . . , an] ∪ [s1, . . . , sn] of the program δ achieve the goal G(s) iff

M |= Do(δ, S0, do(~A, S0)) ⊃ G(do(~A, S0))

Master’s Thesis Patrick Un

4.3 The Roman Model 87

4.3 The Roman Model

After a survey of an agent based view of service composition in the action theory of the situation calculus,
we turn our attention to another important approach which essentially let us formulate a client specification
of a target service representing the desired functionality that we want to synthesize from available service by
using deterministic finite state machines techniques to specify and synthesize a composition. In their effort
to determine a sound, tractable and decidable automated service synthesis formalism for process oriented
services, the group of researchers around Giuseppe De Giacomo at the Università di Roma La Sapienza has
proposed a model of automated service synthesis based on description of conversational behavior of stateful
services, i.e., by taking care of the constraints on a sequence of operations imposed by a set of available
stateful service. This model is known as the Roman Model [Calvanese et al., 2008b] in academia.

The Roman Model is based on the concept of coordinating and orchestrating the atomic interactions be-
tween service client and a set of available services which form a service community. The central focus of
this model is on the delegation of execution of actions, to the services in the service community which can
perform the required operations. The conversational behavior is represented by finite state machine (FSM)
with a finite set of transitions. Each transition in the finite state transition system represents a possible op-
eration between the client and an available service. A community of services consists of a set of such finite
state transitions systems describing the corresponding service. These services share a common set of action
alphabets. In order to realize a composite service, the client specifies a virtual target service consisting of
the client’s desired deterministic operations which is represented as a finite state transition system that shares
the common operation alphabets with the service community. The goal of composition synthesis is therefore
to maintain the client’s interaction with the virtual target service by using an orchestrator to delegate actions
to the available services.

4.3.1 Characterizing Services

Services are characterized regarding their dynamic conversational behavior in the Roman Model. A service
is a fragment of process oriented application logic intended to interact with a client agent atomically where
a client is either a human user or another service.

Definition 4.3.1 (Service). Let E be the notation of a service. A service is defined as a software artifact
delivered and accessible over a network that interacts with its client agent C in order to perform a specified
task by executing an atomic actions a. A client agent can be either a human user or another service E

′
. The

finite set of all atomic actions24 offered by a service E is called its action alphabet, denoted with Σ.

An interaction between client agent and a service can characterized as follows:

1. in a certain step of execution, an available service possesses an internal state; it proposes a finite set of
executable operations among those in its current state to a client agent,

2. the client agent chooses one of these operations and requests the service to perform it,

3. the service executes the chosen operation on behalf of the client agent,

4. the service proceeds to a new state that is conformant to its behavioral specification, i.e. the set of its
allowed states according to the specifiation of its finite state transition system,

24i.e. all the allowed executable operations of E

Patrick Un Master’s Thesis

88 4 Foundations of Service Matching and Composition

5. the service reiterates the suggestion to the client agent of the executable operations for the client to
choose,

6. the client can again choose an operation or (in some specified state called the final state according to
the specification) it can choose to end the interaction with the service.

Definition 4.3.2 (Abstract Service Behavior). Let E be a service, the abstract service behavior of E is
represented as deterministic transition system (TS) where the service is observed as a black-box. Atomic
actions performed by the service is modeled as state transitions, each having a corresponding enabling state
as precondition and a successor state as effect of the transition caused by execution of the action. Service
behavior is characterized with the tuple (Σ, SE , s0

E , δE , FE) where:

• Σ denotes a finite set of operations of the service called the set of atomic actions which is contained in
the action alphabet defining the TS;

• SE denotes a finite set of states of E;

• s0
E denotes the initial state of E;

• δE with δE : SE × Σ → SE denotes a partial transition function of TS, when given a state s and an
atomic action a ∈ Σ returns the successor state s′ resulting from the execution of a in state s, i.e.,
formally δE(s, a) = s′;

• FE ⊆ SE denotes the finite set of final states of E where the interactions of a client with E can be
legally terminated.

From a conceptual perspective, the characterization of enterprise services in the domain of service oriented
computing determines the following manifestations:

• Service schema specifies the feature of an enterprise service regarding the functional and non-functional
requirements. The Roman Model deals with the functional requirements solely. It defines interface and
behavior specification of an enterprise service.

• Service implementation and deployment represents the realization of an enterprise services in terms of
software applications corresponding to the service schema as well as the technology platform used to
deploy the service.

• Service instance represent a run time concept as an object of the implemented enterprise service with
a unique identity. An instance realizes the implemented behavior as specified in the service schema.
A deployed enterprise service can have multiple instances during runtime.

Definition 4.3.3 (Service Community). Let Ei be a service with the action alphabet ΣEi . A service com-
munity C = {E1, . . . , En} is the finite set of available services which:

• shares a common set of community action alphabet ΣC , with ΣC = ΣE1 ∪ · · · ∪ ΣEn ;

• identifies a specific service withEi whose alphabet is conformed to the alphabet ofC, i.e., ΣEi ⊂ ΣC ;

• a service Ei exports it service behavior in terms of ΣC when joining the community.

Master’s Thesis Patrick Un

4.3 The Roman Model 89

Definition 4.3.4 (Service Schema). Let E be a service and ΣE be its action alphabet. The service schema
denoted with AE specifies the functional requirements of a service E. AE has two facets: from client’s
perspective it represents E’s exported service behavior denoting the sequence of executable atomic actions
a ∈ Σ with constraint on their invocation order and from a service’s perspective, it represents the implemen-
tation and realization of the service, specifying whether a is performed by E itself or whether it delegates a
for execution by another service.

It is relevant to specify whether each atomic action is execute by a serviceE itself or whether its execution
is delegated to another service E′ in the community C with which E interacts as client agent transparently
on behalf of its own client agent. From an external perspective of a client agent, a service E in C is a black
box with a certain exported behavior; from an internal perspective due to implementation and activation of
service instances to handle client request, it is necessary to describe how the atomic actions which are part
of the the exported behavior are actually executed. To capture these two perspectives, A service schema AE
is divided into external schema and internal schema. A service instance inherits from the these schemas an
external and internal view respectively when activated.

Definition 4.3.5 (External Schema). Let E be a service and ΣE be its action alphabet. An external schema
of E, denoted with AEext , is a formal specification of the behavior of service E in terms of all the atomic
actions underlying ΣE provided by E and the constraints of the invocation order of these atomic actions.

Definition 4.3.6 (Internal Schema). Let E be a service, ΣE be its action alphabet and C be a service
community to which E belongs. An internal schema of E, denoted with AEint , is a formal specification of
the internal implementation of the exported behavior of service E taking into account which atomic action
is executed by E itself and which can be delegated to other services in C for execution.

In order to visualize the execution of the atomic actions of a service, i.e. the operations and its correspond-
ing transitions of state within the service instance better, the notion of a labeled execution tree is used to show
the behavior of a service in terms of the actions executable at each step and its transitions of internal states.

Figure 4.1: A labeled execution tree

A labeled execution tree is shown in figure 4.1. It
is possible to visualize all possible sequences of de-
terministic atomic actions of a service by unfold-
ing the deterministic finite state machine (FSM)
that is associated with the service into an execu-
tion tree of sequences of actions. Each node in
the tree represents a state corresponding to a state
in the FSM. An (partial) incoming edges lead-
ing to the node representing an executed action
that leads to the specified state and an outgoing
edge from the node indicates a possible action in
the current state to execute next. Each execu-
tion path of the unfolded FSM is call a trajectory
of the execution tree. It constitutes a sequence
of such edges visualizing the execution order of
atomic actions and the corresponding state transi-
tions.

Patrick Un Master’s Thesis

90 4 Foundations of Service Matching and Composition

Definition 4.3.7 (Labeled Execution Tree). LetE be a service and ΣE be its action alphabet. An execution
tree, denoted with T over the alphabet ΣE , represents the trajectory of action execution paths of the service
in interaction with its client. The characteristics of T are:

• the root node of T is denoted by ε and represents the fact that no action has been executed by the
service;

• each node possesses an internal state snode ∈ {true, false} denoting whether the node is final, i.e.,
whether the client can stop terminate the interaction with the service if snode = true, otherwise not;

• each edge of T is labeled with an atomic action a ∈ ΣE meaning that the execution of a is possible
from the state of the incoming node; reaching the successor state in the successor node after executing
a;

• each node x of T beside ε is labeled by a labeling function f which assigns a history of actions
executed so far by the service up to x. For instance the history of a node x is denoted with a · l · a
where a, l, a ∈ ΣE are atomic actions and the history means that starting from ε the trajectory is
followed by first executing the action a, then l and then a again up to node x;

• the number of trajectories and therefore the number of nodes of T can be infinite if the client continues
interaction with E without choosing to terminate the interaction;

• a labeled execution tree is a pair (T , f) where every node of T is assigned a history by f and every
edge is labeled properly with allowed actions.

Definition 4.3.8 (External Execution Tree). Let AEext be the external schema of service E with action
alphabet ΣE . An external execution tree T ext(E)25 is a labeled execution tree defined over ΣE as described
in definition (4.3.7) obtained by unfolding the deterministic finite state machine (FSM) ofE. It is represented
with a pair (T , f) formally where T is the execution tree and f the labeling function assigning to each edge
a possible action.

The external execution tree specifies the information about the execution of atomic actions w.r.t.

Figure 4.2: An external execution tree

states and state transitions of a service from an abstract
perspective where each atomic action represents an exe-
cutable operation of the service, abstractly grouped in the
action alphabet, i.e., he set of all known and executable
operations of a service. An external execution tree is
shown in figure 4.2 where the nodes represents states and
the edges with alphabet letters represent abstract named
executable actions. Final nodes denote states where in-
teraction with the service is allowed to terminate and are
indicated with double circular nodes in the tree. In this
abstraction the service itself is viewed as a kind of black
box in the sense that all the perceivable characteristics of
the service and the effects which the service has upon the
state of the world are essentially captured within the pos-
sible interaction of the service with a client. The external

25the abbreviated form is T ext and it is constructed by T (AEext)

Master’s Thesis Patrick Un

4.3 The Roman Model 91

execution tree encodes the information on the execution of possible actions at each internal state of the ser-
vice which is opaque to the client. The client solicits the service to perform an action by sending an operation
request to the service; whereby the only perceivable outcome of the execution to the client is often a message
reply. This information is not observed by the external execution tree since messages constitute a series of
dataflow between client and service and possibly within the service itself. What is more interesting is the
dynamic aspect of the interaction between service and client. Since many process oriented services undergo
transition of states within the process without notification to the client, it is important to encode in informa-
tion of what service observable state permits which action to execute. This information is exactly encoded
in the external execution tree. It is helpful in specifying constraints such as preconditions and effects of the
service operations to allow more elaborate combination of different services with regard to these constraints.

Definition 4.3.9 (Internal Execution Tree). Let AEint be the internal schema of service E with action
alphabet ΣE . An internal execution tree T int(E)26 is a labeled execution tree defined over ΣE analogous
to definition (4.3.7). Additionally each edge is labeled by a pair (a, I) where a is the executable atomic
action as in the case of an external execution tree. I is a nonempty set with I = (Ei, ei) denoting the
services identified with their subscripts and their corresponding instances to execute a. Each service instance
is identified uniquely with an instance identifier w.r.t. to service Ei to which the instance belongs.

The internal execution tree specifies the information about which service instances in a service community
can execute each given action. The specification of which instance to delegate the execution of a certain
action to is practical since a service is sometimes not able to perform the requested action itself either due to
state constraints or unavailability of such a action. An example internal execution tree is shown in figure 4.3.

Figure 4.3: An internal execution tree

The service delegable instances are identified with
their corresponding instance identifier. The set I
in definition (4.3.9) is nonempty due to the fact
that there can be more than one service capa-
ble of delegating a requested action to. If a
service executes the action itself, then the iden-
tifier is this for the service instance. The no-
tion of an internal execution tree T int induces
an external execution tree T ext can be under-
stood as the external execution tree obtained from
T int by removing the part labeling the service
instances from T int, keeping only the informa-
tion on actions. Such induced external execu-
tion tree is called an offered external execution
tree.

Theorem 4.3.10 (Service Conformance). Given an internal execution tree T int and an external execution
tree T ext of a service E defined over the common alphabet ΣE and T int is inducible, T int conforms to T ext

iff T ext is topologically equal to the offered external execution tree of T int obtained by induction.

Proof. (sketch) Suppose T int is inducible, the offered external execution tree of T int is obtained by dropping
the information on service instances contained in T int. Since T int, similar to T ext, is a labeled execution
tree which is defined over the set of alphabet ΣE as defined in definition (4.3.7), after removing all instance
information, T int is topologically transformed into its corresponding T ext; thus T ext is equal to the offered
external execution tree.
Definition 4.3.11 (Service Well-Formedness).
26the abbreviated form is T int

Patrick Un Master’s Thesis

92 4 Foundations of Service Matching and Composition

Let E be a service and T int be the internal execution tree and T ext be the external execution tree of E, a
service is well-formed if its T int conforms to its T ext.

Lemma 4.3.12 (Projection Operation). Given T int of a service E and an execution path p starting from
root ε in T int, the projection operation on instance ei of serviceEi of an execution path is defined as the path
p obtained by removing each edge of T int on the path whose labeled pair (a, I) with the set I not containing
instance ei. After every removal, the start and end node of the removed edge is collapsed.

Proof. (sketch) Straightforward from topological transformation using projection of the labeled execution
tree defined in definition (4.3.7).

Theorem 4.3.13 (Service Coherency). The internal execution tree T int(E) of a service E is coherent with
a service community C if:

• for each labeled edge (a, I), the action a is defined in the community alphabet ΣC and for each pair
within set I , Ei ∈ C

• for each execution path p in T int(E) from the root node ε to a node x on p, and for each pair I =
(Ei, ei) appearing in labeled edges on p that are not this27, the projection of p on instance ei is a path
in the corresponding external execution tree T ext(Ei) of service Ei from root to a node y in T ext(Ei).
Additionally, if node x is final in T int(E), then node y in T ext(Ei) is final.

Proof. (sketch) Straightforward from topological transformation using projection of the labeled execution
tree. It can be shown that the projection operation returns a path in T int(E) that corresponds to a path in
T ext(Ei). In fact the path in T ext(Ei) shows that execution can be delegated to service Ei.

Theorem 4.3.14 (Service Delegation). A service E in a service community C correctly delegates execution
of actions to other services in C if the internal execution tree T int(E) of E is coherent with C.

Proof. (sketch) Straightforward from the last proof.

Definition 4.3.15 (Service Community Well-Formedness). A service community C is well-formed if each
service in C is well-formed and the internal execution tree of each service is coherent with C.

4.3.2 Formalization of Service Interaction Dynamics

A service instance represents the dynamical aspect of a service running an interacting with its client. A
running instance corresponds to an execution tree a highlighted current node within the execution tree, rep-
resenting the point reached by execution up to a moment.

Definition 4.3.16 (Service Instance). A service instance is the tuple ei = (eiid , V iewext, V iewint, nodecur)
and is characterized by :

• eiid is an instance identifier;

• V iewext denotes the external view of the instance which is represented as an external execution tree
with a current node;

27i.e. the identifier for the instance itself

Master’s Thesis Patrick Un

4.3 The Roman Model 93

• V iewint denotes the internal view of the instance which is represented as an internal execution tree
with a current node;

• nodecur is the current node denoting the state of the service within the execution tree.

2. choice and execution

of action

1. activation

3. termination

running

Fig. 2. Life cycle of an e-Service instance

the e-Service schema as constituted by two different parts, called external schema
and internal schema, respectively representing an e-Service from the external
point of view, i.e., its behavior, and from the internal point of view.

In order to execute an e-Service, the client needs to activate an instance from
a deployed e-Service: the client can then interact with the e-Service instance by
repeatedly choosing an action and waiting for the fulfillment of the specific task
by the e-Service and (possibly) the return of some information. On the basis of
the information returned the client chooses the next action to invoke. In turn,
the activated e-Service instance executes (the computation associated to) the
invoked action and then is ready to execute new actions. Note that, in general,
not all actions can be invoked at a given point: the possibility of invoking them
depends on the previously executed ones, according to the external schema of
the e-Service. Under certain circumstances, i.e., when the client has reached his
goal, he may explicitly end (i.e., terminate) the e-Service instance. The state
diagram in Figure 2 shows the life cycle of an e-Service instance.

Note that, in principle, a given e-Service may need to interact with a client
for an unbounded, or even infinite, number of steps, thus providing the client
with a continuous service. In this case, no operation for ending the e-Service is
ever executed.

For an instance e of an e-Service E, the sequence of actions that have been
executed at a given point and the point reached in the computation, as seen by
a client, are specified in the so-called external view of e. Besides that, we need to
consider also the so-called internal view of e, which describes also which actions
are executed by e itself and which ones are delegated to which other e-Service
instances, in accordance with the internal schema of E.

To precisely capture the possibility that an e-Service may delegate the execu-
tion of certain actions to other e-Services, we introduce the notion of community
of e-Services, which is formally characterized by:

– a common set of actions, called the alphabet of the community;
– a set of e-Services specified in terms of the common set of actions.

Hence, to join a community, an e-Service needs to export its service in terms of
the alphabet of the community. The added value of a community of e-Services
is the fact that an e-Service of the community may delegate the execution of

5

Figure 4.4: Life cycle of a service instance

The life cycle of a service is characterized by:

1. activation the service instance,

2. offer of choice of the evocable actions,

3. termination of the service instance.

While the steps (1) and (3) of the life cycle is performed
once, step (2) can be repeatedly performed. In the fol-
lowing these life cycle steps are described cursorily as a
conceptual interaction protocol. Figure 4.4 shows this life
cycle.

Activation: It is required to create the service instance.
The client invokes activates the instance by sending a command:

activate Ei

A new instance ej of service Ei is created and necessary resources for the execution of ej are allocated.
Each created service instance creates a copy of internal and external execution tree representing the service
schema to which the instance belongs. After activation, the current node associated with ej is the root node
ε. The instance is ready to execute and responds to the client with the message:

ej started : choose a1|| . . . ||ai|| . . . ||an

The purpose is first to acknowledge the client that the instance is activated and is ready for interaction. Sec-
ondly, the client receives the correct service instance identifier, i.e. ej to interact with. Third, a initial set of
choices of possible atomic actions is presented to the client.

Choice: This is the step indicating the interaction between the client and the service instance. To the client
the service instance is characterized by its external execution tree in terms of possible actions according
to the action alphabet of the service. In each execution step, the service instance offers the client a set of
possible actions to execute next:

ej : choose a1|| . . . ||ai|| . . . ||an

where || indicates choice. A client chooses an action and sends the message

do ai, Ei, ej

indicating that the client solicit the instance ej of service Ei to perform the action ai next. After receiving
the message, instance ej executes ai transparently from the client who is informed only the execution is
finish when the instance offers the client to make another choice. If a client of service Ei is another service
E which itself acts on behalf of its client, the transparent delegation of client’s choice by E to Ei is an
advantage because the client does not have to keep track of the execution, E acts as a server towards the

Patrick Un Master’s Thesis

94 4 Foundations of Service Matching and Composition

client while activating an instance ej of service Ei and forwards the request to ej to execute. E becomes a
client of ej and interacts with the external view of instance ej . E decides on which action to execute itself28

or delegate to another service according to its internal execution tree.

Termination: If the current node on the external execution tree is a final node, i.e. the client is allowed to
terminate interaction with the service, the service instance proposes a choice for termination with the action
end among the evocable actions

ej : choose end||a1|| . . . ||ai|| . . . ||an

if the client has reached its goal and decides to terminate, it sends the message:

do end,Ei, ej

to deallocate all the resources associated with the instance ej of service Ei. The service finishes by respond-
ing with

ej : ended

to acknowledge termination is successful.
ation with the action end among the evocable actions

ej : choose end||a1|| . . . ||ai|| . . . ||an

if the client has reached its goal and decides to terminate, it sends the message:

do end,Ei, ej

to deallocate all the resources associated with the instance ej of service Ei. The service finishes by respond-
ing with

ej : ended

to acknowledge termination is succesful.

The following examples illustrates scenarios of interactions involving a client, a composite service29 and
component services from a service community C based on the described conceptual interaction protocol.
The examples are shown with this setup:

• the client is shown in the left column, it interacts with one instance e of the composite service E;

• the interaction of the composite service with the client and other component services is shown in the
middle column;

• in these examples for brevity, there are at most 2 instances of component services simultaneously
active whose interactions with the composite service is shown on the right column;

• since execution steps of the different execution trees can be interleaved temporally, it is necessary to
number these steps globally to indicate the relative order of execution for the involved services. This
is shown on the left side of each column in the examples.

28for instance according to the this identifier of its internal execution tree
29i.e. one virtual service which exports its behavior as a composite behavior of all component services in the community which it

uses to synthesize an overall behavior.

Master’s Thesis Patrick Un

4.3 The Roman Model 95

It paves the way to describe service composition and synthesis in the Roman Model which is based on the
central idea of using a synthesized (virtual) composite service for delegation of actions to available com-
munity services and suitably orchestrating the component service instances in the community to execute the
delegated actions.

Example 4.3.17. Figure 4.5 [Berardi et al., 2003c] shows an example of interactions between an instance e
of service E and its client. E is a (virtual) composite service obtained by executing two service instances, e1

and e2 in a non-interleaved way, i.e., either e1 or e2 is active no action of other service instances is executed.
Full delegation means here E completely delegates the execution of actions to its component services E1

and E2 and E itself becomes a pure orchestrator. To the component services, the composite service exposes
its behavior to them via its external execution tree, therefore its own implementation, i.e., its interaction with
the other component services is not divulged to the service community. To the client, composite service
instance e forwards the actions offers by e1 and e2 transparently without divulging knowledge to the client
of which instance of component service it is interacting with. Analogously e forwards the client’s request to
e1 and e2.
A clear interaction between the instances can be studied in steps 1 to 10 where the transparency of interaction
is obvious. The client initiates interaction with the composite service E by sending an activation request to
E to create an instance e of E. After e has been created it offers the client the actions end||a1||a2; it is
worth to notice that in the initial state (root note ε of the external execution tree of E) the action end is an
option because ε is also final, i.e., the client is allowed to terminate without further interaction. The other two
offered actions a1, a2 are possible actions which correspond to the state of the node of the external execution
tree of E. E’s internal execution tree contains the information about the actions and therefore E ’knows’
that service E1 can execute a1 from the information of the external execution tree of service E1, therefore
E sends an activation command to E1 since no instance of E1 has been created yet. In step 5 instance e1 of
E1 is created and instance e1 acknowledges E by offering with its actions for E to choose (notice also in the
initial state of E1, the end action is also possible). Composite service instance e then transparently forwards
the client’s request for executing action a1 to instance e1 in step 6. Notice e transparently substitutes the
instance e with e1 in the client’s command indicating the client should and need not know which component
service instance actually executes the action. In step 7 e1 finishes the execution of a1 and replies to e by
offering the actions a4 or a5 (according to E1’s external execution tree for allowed actions in that state) for e
to choose to execute next. In step 8 e forwards this choice to the client. Since the client only interacts with e,
it chooses to execute a5 and sends doa5, E, e to e in step 9 who further forward this choice to e1 by sending
doa5, E1, e1 to e1. In step 10, notice that e ’remembers’ the offered actions by e1 to which it is interacting,
therefore it substitutes the instance with e1 in the command it sends to e1.
Non-interleaved interaction in this example can be understood as a ’serialization’ of interaction between
the composite service and the component services where a component service instance must have executed
from its activation until its end before another component services can be activated to execute subsequent
actions. For instance, in step 12 where component service instance e1 is active and e must interact with e1 to
termination before interacting with another instance. In the previous step, e1 has offered the choices either
to terminate or execute action a6 next. Notice that component service instance e2 is not active in step 12 and
e ’knows’ from its external execution tree that e2 can offer the execution of actions end||a7 once e2 can be
created. Therefore e forwards e1’s choices together with the action a7 (offered byE2) to the client to choose.
In step 13 the client chooses to execute action a7 of E2 who is still not activated because e1 is still active
then. Therefore after receiving the client’s request in step 14, emust terminate e1 first; notice the termination
of e1 is possible because it has offered end in step 11 to e. A termination message is sent to e1 and in step 15
e1 replies with ended before being evicted. In step 16 e activates an instance of E2 and forwards the client’s
request to the component instance e2 in step 18.

Patrick Un Master’s Thesis

96 4 Foundations of Service Matching and Composition

Client C
1. activate E
3. do a1, E, e
9. do a5, E, e
13. do a7, E, e
21. do end, E, e

e-Service E: instance e
2. started:

choose end||a1||a2

4. activate E1

6. do a1, E1, e1

8. choose a4||a5

10. do a5, E1, e1

12. choose end||a6||a7

14. do end, E1, e1

16. activate E2

18. do a7, E2, e2

20. choose end||a8

22. do end, E2, e2

24. ended

e-Service E1: instance e1

5. started:
choose end||a1||a3

7. choose a4||a5

11. choose end||a6

15. ended

e-Service E2: instance e2

17. started:
choose end||a7

19. choose end||a8

23. ended

Fig. 8. delegation level: fully delegation; composition of component e-Services: non-
interleaved; number of active instances for each component e-Service: at most one in
the whole execution.

Example 4. Figure 8 shows an example of interactions between an instance e
of an e-Service E and its client C, where E is a composite e-Service obtained
by executing two e-Services instances, e1 and e2, in a non-interleaving way, i.e.,
when e1 (or e2) is active, no action offered by another active e-Service instance is
executed. E fully delegates the execution of actions to its component e-Services,
therefore it does not offer any action. In other words, E can be seen as a “pure”
orchestrator of e-Services. This notion of composite e-Service is not new: it can
be found in [4], where the authors describe an engine for enacting an e-Service
obtained by coordination of different e-Services.

Note that a composite e-Service E is a kind of “wrapper” of the component
e-Service, indeed since its client interacts with the external execution tree of a
composite e-Service, he is not aware whether he is interacting with a composite
or a simple e-Service. Therefore, the interactions with the client C, involving the
choice of which action to invoke next, have always the form “do ai, E, e” where
ai represents any action chosen on instance e of e-Service E. Also, e forwards to
C the actions offered by e1 and e2, and to e1 and e2 the requests of C.

Consider interaction 12, where component e-Service instance e1 is active:
since a component e-Service has to be executed in a non-interleaving way from
its activation to its end, e can offer to its client the action a7, offered by e-
Service instance e2, only if e1 is (and can be) ended. Note that since the root
of the execution tree is final, the end action belongs to the first set of offered
actions. !

Example 5. Figure 9 shows an example of interaction when interleaving of com-
ponent e-Services is allowed. Also, E partially delegates its actions to E1. Given
that, after activating E1, at any time E can offer both its own actions and those
offered by E1.

16

Figure 4.5: Full delegation with non-interleaved execution: composite serviceE delegates to at most one active instance
e1 or e2 of service E1 or E2 respectively

Client C
1. activate E
3. do a1, E, e
5. do a5, E, e
11. do a8, E, e
15. do a7, E, e
19. do a13, E, e
21. do end, E, e

e-Service E: instance e
2. started:

choose end||a1||a2

4. choose a4||a5

6. activate E1

8. do a5, E1, e1

10. choose a6||a7||a8

12. choose a6||a7||a11

16. do a7, E1, e1

18. choose a12||a13

20. choose end||a12

22. do end, E1, e1

24. ended

e-Service E1: instance e1

7. started:
choose end||a1||a5

9. choose a6||a7

17. choose end||a12

23. ended

Fig. 9. delegation level: partial delegation; composition of component e-Services: in-
terleaving; number of active instances for each component e-Service: at most one in
the whole execution.

Consider interactions 9-12: in interaction 10 instance e offers actions a6 and a7

from e1 and action a8 from itself; since the client invokes a7, the current position
on the execution tree of e1 does not change, therefore in the next interaction (12)
e offers the same actions from e1, i.e., a6 and a7. Note that this is not the case
for the execution tree of the composite e-Service instance e, since it keeps track
of all the operations that can be invoked through it, i.e., both those offered by
e, and those offered by e1, and therefore the current position on the execution
tree of the composite e-Service always changes, also if the actions offered by e1

are invoked.
Consider interaction 18: e1 offers actions end and a12, but e offers only a12

from e1 (and a13 from itself). This is because the current position on the exe-
cution tree of e does not coincide with a final node. e offers the end action in
interaction 20, when the current position on its execution tree corresponds to a
final node. Finally, note that e correctly makes e1 end, before ending itself. !

7 Composition Synthesis

When a user requests a certain service from an e-Service community, there may
be no e-Service in the community that can deliver it directly. However, it may
still be possible to synthesize a new composite e-Service, which suitably dele-
gates action execution to the e-Services of the community, and when suitably
orchestrated, provides the user with the service he requested. Hence, a basic
problem that needs to be addressed is that of e-Service composition synthesis,
which can be formally described as follows: given an e-Service community C
and the external execution tree te of a target e-Service E expressed in terms
of the alphabet of C, synthesize an internal execution tree ti such that (i) ti

17

Figure 4.6: Partial delegation with interleaved execution: composite service E executes actions itself or delegates to at
most one active instance of a component service

This interaction characterizes services that are deterministic because they are fully controllable. It means
that the execution of a specific operation among those allowed in a certain state will always reach a cer-
tain deterministic successor state [Berardi et al., 2003a, Berardi et al., 2005c]. By suitably assigning oper-
ation execution, it is possible to fully control the transitions of the available services. The Roman Model
has been extended to handle non-deterministic services [Berardi et al., 2005d, Berardi et al., 2006a] which
are not fully controllable because the result of interaction with the client sometimes cannot be foreseen
due to non-deterministic outcome of execution of component services. Thus the behavior of the avail-
able services are only partially controllable. Non-determinism is intrinsic to the nature of real-world ser-
vices [Berardi et al., 2006b], for instance, the client of such non-deterministic services can invoke them
without the ability to control the results they produce.

Example 4.3.18. Figure 4.6 shows an example of interaction with partial delegation and interleaved action
execution. Interleaving means that a component service instance does not need to be terminated and partial
delegation means that the composite service can choose to either execute a requested action itself or delegate
it to a component service instance.

Master’s Thesis Patrick Un

4.3 The Roman Model 97

We can notice the effect of partial delegation in step 9 to 12. After an instance e of service E has created
component service instance e1, execution of client’s requested actions has been delegated to instance e1 in
the previous steps. In step 9 e1 has reached a position of its external execution tree where it offers e the
actions end, a1 or a5 to execute next. Together with its own action a8 offered by e itself, it offers the client
a8 and the actions of instance e1 to the client to execute next in step 10. In step 11 the client chooses to
execute action a8 by sending e the command doa8, E, e. Since a8 is the executable action of e itself, it does
not have to delegate it to the component instance e1; instead e executes action a8 immediately and this is
an effect of partial delegation by e. It is worth notice that since the client requests to execute a8 which is
handled by e, only e’s position in its external execution tree progresses while the current position on the
external execution tree of component service instance e1 does not change. Therefore in the next step, e
still offers the same executable actions a6, a7 together with its own a11 (which reflects the changed current
position on e’s external execution tree) to the client to choose.
It is also worth mentioning that the current position on the external execution tree of the composite service
instance e always changes because beside keeping track of its own offered actions, it must also keep track
of those offered by component service instance which in this case is those of e1. Therefore the step number
increments from 12 to step 15 because it must delegate a7 to e1 to invoke and keep track of progress in the
current position of the execution trees in an interleaved manner.
Another point is the termination issue based on the existence of final node on the external execution tree.
Since e is a composite service instance which delegates the execution of actions in an interleaved manner, it
can only terminate execution if its own current position of the external execution tree coincides with a final
node position of the external execution tree of its component service instance. Put it differently, a position
(node) of the external execution tree of e can be final iff the current position is final on all external execution
trees of its used component service instances. This characteristics on requirement for termination is obvious
in step 18 of this example where e1 has offered the actions end and a12 in the previous step. However since
the current position on the external execution tree of e does not coincide with a final node, it cannot offer
the client to terminate and therefore it offers only a12 (from e1) together with its possible action a13 to the
client to choose. We also observe that e has to make e1 terminate before ending itself in step 24. Another
point is the termination issue which is based on the existence of final node on the external execution tree.
Since e is a composite service instance which delegates the execution of actions in an interleaved manner, it
can only terminate execution if its own current position of the external execution tree coincides with a final
node position of the external execution tree of its component service instance. Put it differently, a position
(node) of the external execution tree of e can be final iff the current position is final on all external execution
trees of its used component service instances. This characteristics on requirement for termination is obvious
in step 18 of this example where e1 has offered the actions end and a12 in the previous step. However since
the current position on the external execution tree of e does not coincide with a final node, it cannot offer the
client to terminate and therefore it offers only a12 (from e1) together with its possible action a13 to the client
to choose. We also observe that e has to make e1 terminate before ending itself in step 24.

Example 4.3.19. In this example shown in figure 4.7, the interactions involve a composite service instance
e that partially delegates actions to a component service instance e1. In the interaction step 13 to 16 e1 offers
the actions end and a8 for e while e offers the actions a8, a9 or end for the client to choose. The client
chooses to execute action a9. e can offer end because the current position on its external execution tree and
that of the component service instance coincides with a final node. In the non-interleaved interaction, e has
to first terminate its interaction with e1 before it can execute its own action a9. e cannot offer its own action
while e1 is still executing and has to wait for e1 to offer an end action.

Patrick Un Master’s Thesis

98 4 Foundations of Service Matching and Composition

A Appendix

Next, we show some other examples of interactions.

Example 6. Figure 11 shows an example of interactions involving a composite
e-Service instance e that partially delegates its actions, i.e., it offers both its own
actions and actions actually offered by another e-Service instance (e.g., e1). The
other features are as in example 4.

Consider interactions 13-16: e1 offers a choice between end and a8, whereas
e offers a choice between actions a8, a9, end, and the client chooses to execute
action a9.

– e offers end because the current position on both its execution tree and on
its component e-Services’ execution tree coincides with a final node.

– Given the client’s choice and given the non-interleaving of composition, e has
to first terminate the interactions with e1 and then it can execute the action
a9. Indeed, e cannot offer its own actions (e.g., a9) while e1 is executing, but
can do it only after e1 has offered an end action.

Note that the same interaction protocol might take place if the delegation level
was of type “fully delegation” and there were two or more active instances of
component e-Service E1. !

Example 7. Figure 12 shows an instance e of a composite e-Service E interacting
with 2 simultaneously active instances of component e-Service E1, namely e1 and
e2.

Consider interaction 13: when the client chooses to execute a3, both e1 and
e2 can execute it. However, the instance that will execute a3 is already decided
and this information is encoded in the execution tree of E. In this case, a3 is
executed by e1 through the command “do a3, E1, e1”, indeed it is necessary to
specify which instance has to execute a3. !

Client C
1. activate E
3. do a1, E, e
5. do a5, E, e
11. do a7, E, e
15. do a9, E, e
19. do end, E, e

e-Service E: instance e
2. started:

choose end||a1||a2

4. choose a4||a5

6. activate E1

8. do a5, E1, e1

10. choose a6||a7

12. do a7, E1, e1

14. choose end||a8||a9

16. do end, E1, e1

18. choose end||a10

20. ended

e-Service E1: instance e1

7. started:
choose end||a1||a5

9. choose a6||a7

13. choose end||a8

17. ended

Fig. 11. delegation level: partial delegation; composition of component e-Services: non-
interleaving; number of active instances for each component e-Service: at most one in
the whole execution.

22

Figure 4.7: Partial delegation with non-interleaved execution: composite service E executes actions itself or delegates
to at most one active instance of a component service

Client C
1. activate E
3. do a1, E, e
9. do a1, E, e
15. do a3, E, e
19. do a4, E, e
23. do end, E, e

e-Service E: instance e
2. started:

choose end||a1||a2

4. activate E1

6. do a1, E1, e1

8. choose a3||a4||a1

10. activate E1

12. do a1, E1, e2

14. choose a3||a4

16. do a3, E1, e1

18. choose a5||a3||a4

20. do a4, E1, e2

22. choose a5||end
24. do end, E1, e1

26. do end, E1, e2

28. ended

e-Service E1: instance e1

5. started:
choose end||a1||a3

7. choose a3||a4

17. choose a5||end
25. ended

e-Service E1: instance e2

11. started:
choose end||a1||a3

13. choose a3||a4

21. choose end
27. ended

Fig. 12. delegation level: partial delegation; composition of component e-Services: in-
terleaving; number of active instances for each component e-Service: more than one
used and simultaneously active.

Client C
1. activate E
3. do a1, E, e
9. do a6, E, e
11. do a3, E, e
17. do a1, E, e
23. do a9, E, e
25. do a4, E, e
29. do a5, E, e
33. do end, E, e

e-Service E: instance e
2. 2. started:
choose end||a1||a2

4. 4. activate E1

6. 6. do a1, E1, e1

8. 8. choose a3||a4||a6

10. 10. choose a3||a4||a7

12. 12. do a3, E1, e1

14. 14. do end, E1, e1

16. 16. choose a1||a2||end
18. 18. activate E1

20. 20. do a1, E1, e2

22. 22. choose a9

24. 24. choose a3||a4||a10

26. 26. do a4, E1, e2

28. 28. choose a5

30. 30. do a5, E1, e2

32. 32. choose a11||end
34. 34. do end, E1, e2

36. 36. ended

e-Service E1: instance e1

5. started:
choose end||a1||a3

7. choose a3||a4

13. choose end
15. ended

e-Service E1: instance e2

19. started:
choose end||a1||a3

21. choose a3||a4

27. choose a5

31. choose a6||end
35. ended

Fig. 13. delegation level: partial delegation; comopsition of component e-Services: in-
terleaved; number of active instances for each component e-Service: more than one
used, at most one active.

23

Figure 4.8: Partial delegation with interleaved execution: composite service E executes actions itself or delegates to
two simultaneously active component service instances

Master’s Thesis Patrick Un

4.3 The Roman Model 99

Client C
1. activate E
3. do a1, E, e
9. do a1, E, e
15. do a3, E, e
19. do a4, E, e
23. do end, E, e

e-Service E: instance e
2. started:

choose end||a1||a2

4. activate E1

6. do a1, E1, e1

8. choose a3||a4||a1

10. activate E1

12. do a1, E1, e2

14. choose a3||a4

16. do a3, E1, e1

18. choose a5||a3||a4

20. do a4, E1, e2

22. choose a5||end
24. do end, E1, e1

26. do end, E1, e2

28. ended

e-Service E1: instance e1

5. started:
choose end||a1||a3

7. choose a3||a4

17. choose a5||end
25. ended

e-Service E1: instance e2

11. started:
choose end||a1||a3

13. choose a3||a4

21. choose end
27. ended

Fig. 12. delegation level: partial delegation; composition of component e-Services: in-
terleaving; number of active instances for each component e-Service: more than one
used and simultaneously active.

Client C
1. activate E
3. do a1, E, e
9. do a6, E, e
11. do a3, E, e
17. do a1, E, e
23. do a9, E, e
25. do a4, E, e
29. do a5, E, e
33. do end, E, e

e-Service E: instance e
2. 2. started:
choose end||a1||a2

4. 4. activate E1

6. 6. do a1, E1, e1

8. 8. choose a3||a4||a6

10. 10. choose a3||a4||a7

12. 12. do a3, E1, e1

14. 14. do end, E1, e1

16. 16. choose a1||a2||end
18. 18. activate E1

20. 20. do a1, E1, e2

22. 22. choose a9

24. 24. choose a3||a4||a10

26. 26. do a4, E1, e2

28. 28. choose a5

30. 30. do a5, E1, e2

32. 32. choose a11||end
34. 34. do end, E1, e2

36. 36. ended

e-Service E1: instance e1

5. started:
choose end||a1||a3

7. choose a3||a4

13. choose end
15. ended

e-Service E1: instance e2

19. started:
choose end||a1||a3

21. choose a3||a4

27. choose a5

31. choose a6||end
35. ended

Fig. 13. delegation level: partial delegation; comopsition of component e-Services: in-
terleaved; number of active instances for each component e-Service: more than one
used, at most one active.

23

Figure 4.9: Partial delegation with interleaved execution: composite service E delegates to two component service
instances with at most one instance being active at a time

Example 4.3.20. Figure 4.8 shows a composite service instance e in interaction with two simultaneously
active instances e1 and e2 of the same component service E1. Since both instances has offered to execute
action a3 and both are active in step 13, which component service instance e delegates the execution to will
be decided according to the information encoded in e’s internal execution tree. When the client chooses to
execute the action in step 15, the composite service instance e delegates it to instance e1 according to the
current position on e’s internal execution tree in step 16.

Example 4.3.21. Figure 4.9 shows a composite service instance e in interaction with two instances e1 and
e2 of the same component service E1 that are active one at a time. It is different than the previous example
in the sense that over time the external execution trees of both instances e1 and e2, despite they belong to
the same component service E, will evolve differently in terms of the change in current position on their
respective trees. This is due to the fact that the client has made different choices on the actions to execute
on them via the solicitation of e. The path from the root to the current position on the external execution
trees of the component service instances is different over time. It is worth mentioning that at some point, for
instance, in step 21 to 24, emay decide to offer part of or none of the actions of the component services to the
client to choose. We observe that e decides to ’mask out’ the choices of e2 of step 21 and offer the client in
step 22 only its own action a9. This is also due to the state transition discussed in the intrinsic characteristics
of e’s internal execution tree to encode the information of interleaved interaction with the component service
instance e2 which is the single active component service instance momentarily30.

Definition 4.3.22 (Service Orchestrator). Let C be a service community with a set of component services
{E1, E2, . . . , En}, each component service possesses it action alphabet ΣEi and the community C shares

30e1 has been terminated already

Patrick Un Master’s Thesis

100 4 Foundations of Service Matching and Composition

a common community action alphabet ΣC with ΣC =
⋃n
i=1 ΣEi . A service orchestrator is a component

w.r.t. C which is able to activate, stop and resume each of the available component services using the
described abstract conceptual interaction protocol and select service instances to perform action execution.
It shares the community action alphabet ΣC and has full observability on available service states at runtime
by keeping track of the execution states of the component services in C using the information encoded in
their external execution trees. A service orchestrator exposes a desired target behavior to the client and is
the target component of service composition. Therefore the orchestrator is characterized by:

• its functionality of offering the correct set of actions to the client according to the external schema of
the target service;

• delegation of action chosen by the client to the service that offers it;

• termination of execution of service instances belonging to services in the service community.

4.3.3 Target Service Specification

The fact that a service community can be coordinated by using an orchestrator component to effectively or-
chestrate the runtime interaction between a delegating service and a set of delegable services in a community
has inspired the notion of using a formal specification to represent a client request w.r.t. the service func-
tionality desired. In case that a client request can be satisfied by a single service which has the functionality
enough to cater the client. On the other hand if there is no single service satisfying the requested function-
ality, then services in the community can be combined and coordinated to satisfy the request. The notion of
client specification reflected in the specification of a virtual target service to guide functionality synthesis of
the available and suitable services. It is thus quintessential to the notion of service composition.

Definition 4.3.23 (Target Service). A target service Etarget is a formal specification of a client request con-
taining the external schema AEext of the desired service which the client intends to activate and interaction
with.

A target service is a virtual service which represents an abstract specification of the desired behavior of
a service desired by the client. A target service is not executed per se by simply activating an instance of
it because there is no underlying implementation for it yet. Therefore a target service must be realized by
using the available component services in a service community. A service composer synthesizes the partial
functionality of the component services suitably into a target service schema at design time and uses a service
orchestrator as a coordination component to steer the component service instances at runtime.

Definition 4.3.24 (Service Composition). Let C be a well-formed service community and AEext be the
external schema of the target service Etarget expressed in the community alphabet ΣC of C. A composition
of Etarget is an internal schema AEint of the target service with the following characteristics:

• The internal execution tree T int(Etarget) of the target service conforms to its external execution tree
T ext(Etarget);

• The internal execution tree T ext(Etarget) fully delegates all actions to the available services in the
community C, i.e., the target service employs full delegation and the instance identifier this31 is not
encoded in the target service’s internal execution tree T int(Etarget);

31it is the identifier to reference the own service (target service in this case)

Master’s Thesis Patrick Un

4.3 The Roman Model 101

• T int(Etarget) is coherent with C.

Corollary 4.3.25 (Composition Existence). Given a service community C and the external execution tree
T int(Etarget) of a target serviceEtarget described in definition (4.3.24), composition existence is the problem
of checking whether there is a composition of Etarget w.r.t. C.

Definition 4.3.26 (Composition Synthesis). Given a service community C and the external execution tree
T int(Etarget) of a target service Etarget, a composition synthesis is the process of synthesizing an internal
schema AEint for Etarget which realizes the composition of Etarget w.r.t. C. It is characterized by dualistic
manifestation of:

• the external schema AEext expressed in a suitable formalism32 and represented by T ext(Etarget) as
the exported behavior of the target service;

• the internal schemaAEint expressed in a suitable formalism and represented by T int(Etarget) realizing
and implementing the composition w.r.t. C using the concept of a service orchestrator defined in
definition (4.3.22).

4.3.4 Automatic Composition Synthesis

Finite state automata have been adopted in academia [Bultan et al., 2003, Mecella et al., 2004] as a means
to model the exported conversational behavior of services since their external and internal schema can be
expressed with finite number of states using deterministic finite state machines (FSM).

Behavior Description with Finite State Machine

As a guiding example for the following description of service composition, we introduce a target service
E0 as described in definition (4.3.23) as a client specification of the desired functionality. Here the target
is represented as a deterministic FSM which is shown is figure 4.10. This example target service is based
on a simplified view of an stock investment and quoting service. Though many services on the internet

Figure 4.10: FSM external schema Aext(E0) of
the target service E0

support only one operation per service, we call these services
monolithic. There are nevertheless many multi-operational ser-
vices which support more than one (often of a process oriented
nature) operation in each service. We can also model the for-
mer monolithic type of services using the finite state machine
approach easily since the prerequisite of number of states and
state transitions as well as number of atomic operation are very
limited (usually one action and two states per service). There-

fore it is our modeling of the latter type of services using deterministic finite state machine that can unleash
the full potential of the FSM modeling of these services because they can underly complex processes which
support many operations and therefore require considering more atomic actions and larger number of states
transitions in the model. In this example the service operations (modeled as labeled and abbreviated atomic
actions) of the target service are:

32i.e. a formal language

Patrick Un Master’s Thesis

102 4 Foundations of Service Matching and Composition

1. label “a” is a shorthand for the atomic action request_up_to_date_stock_quote in which a client
can ask for current stock quote data regarding a specific stock;

2. label “t” is a shorthand for the atomic action request_stock_quote_history in which a client can
request past stock quote data regarding a certain stock;

3. label “l” is a shorthand for the atomic action list_and_chart_data which displays the requested data
in charts on the broker’s terminal screen.

The action alphabet of the target service E0 contains these atomic actions Σ = {a, t, l}. Beside the
atomic actions, we notice that the states of the FSM are represented as nodes with subscript indicating
affiliation to a specific service. Conventionally the subscript “0” for instance in E0 is used to indicate
the target service while the subscripts 1 to n are used to indicate services in a community of size n.

Figure 4.11: FSM external schema Aext(E1) of
component service E1

Indices of the state notation is used to enumerate the differ-
ent states of a finite state machine starting from 0. Every real
world service is and can be modeled with a finite set of states
since there exists no service consisting of infinite number of
states. Double circular node denotes final states meaning that
interaction with the service can be terminated in that state, for
instance, the FSM of E0 contains the state s0

0 which is inciden-
tally the start state as well as a final state in figure 4.10. Notice
that a start state does not need to be a final state and a final state

does not always coincide with a start state. There are two component services E1 and E2 in the community
that are available and contains relevant operations which can satisfy our purpose.

Figure 4.12: FSM external schema Aext(E2) of
component service E2

The external schemas of service E1 and E2 are shown in
figure 4.11 and 4.12 respectively. Service E1 offers the opera-
tions request_up_to_date_stock_quote as its directed edge
indicates. From state s1

1 the outbound edge of E1 labeled
with l offers the operation list_and_chart_data to chart the
requested data. This sequence of operations of E1 is reason-
able and represents a service semantics that E1 is intended for listing and charting current stock quotes.
Service E2 offers the operations to execute request_stock_quote_history first to request a history of past
performance of a certain stock and then to chart the history data, supporting the semantics of a history-based
view of the performance of a company’s stocks. Since the target service specifies a request for the function-
ality of both obtaining the current data as well as a historic performances of a specific company’s stock, none
of these community services can satisfy our request alone. However they constitute the necessary function-
ality which can be synthesized and coordinated so that the request can be satisfied.

Definition 4.3.27 (FSM External Schema). Let C be a service community with the community action
alphabet ΣC and E be a service in C. The external schema of E is a finite state machine FSM AEext =
(ΣC , SE , s

0
E , δE , FE) with:

• ΣC is the alphabet of the FSM; since E is in C its FSM has the common alphabet as the community
action alphabet;

• SE is the finite set of states of the FSM, representing the finite set of states of E;

• s0
E is the initial state of the FSM, representing the initial state of E;

• δE : SE × ΣC → SE is the partial transition function of the FSM, that when given a state s with
s ∈ SE and an action a with a ∈ ΣC returns the successor state resulting from execution of a in the
state s;

Master’s Thesis Patrick Un

4.3 The Roman Model 103

• FE ⊆ SE is the set of final states of the FSM, i.e. the set of legal states where the interaction with E
can be terminated.

For brevity the FSM external schema AEext can be abbreviated and written as Aext(E) where E ∈ C.

Corollary 4.3.28 (FSM External Execution Tree). LetAext(E) be the FSM external schema of a serviceE
in community C as described in definition (4.3.27) and θ(·) be an auxiliary state mapping function. An FSM
external schema Aext(E) can be unfolded into an FSM external execution tree T (Aext(E)) by assigning
each node of the tree a state of the FSM using the auxiliary state mapping function θ(·). We contruct
T (Aext(E)) by:

• assigning the root node ε of T (Aext(E)) the initial state s0
E using θ(ε) ;

• given a node x in T (Aext(E)) that is assigned the state s with s ∈ SE using θ(x), then for the action
a that is possible and executable from that state s, we define the successor state s′ of executing a using
the transition function s′ = δE(s, a) and assign s′ to the next node on the trajectory by θ(x · a) = s′;

• assigning a node x the final state iff θ(x) ∈ FE .

Figure 4.13: Target service external execution
tree T ext(A0)

The FSM external execution tree T (Aext(E0)) or ab-
breviated T (A0) of our taget service E0 is obtained by
unfolding its FSM external schema shown in figure 4.10
into an external execution tree as described in defini-
tion (4.3.8) using the auxiliary mapping function θ(·) to
assign each node a state along every execution trajec-
tory:
θ(ε) = s0

0;
θ(a) = θ(t) = s1

0;
θ(a · l) = θ(t · l) = s0

0;
θ(a · l · a) = θ(a · l · t) = θ(t · l · a) = θ(t · l · t) = s1

0;
. . .
Figure 4.13 shows the external execution tree of the target ser-
vice E0.

Definition 4.3.29 (Mealy FSM Internal Schema). Let C be
a service community whose community action alphabet is ΣC and E be a service in C. The Mealy internal
schema of E is a Mealy finite state machine33 (MFSM)AEint = (ΣC , σC , S

int
E , s0

E
int
, δintE , ωintE , F intE) with:

• ΣC , S
int
E , s0

E
int
, δintE , F intE is defined analogously with the meaning of definition (4.3.27);

• σC is the output alphabet of the Mealy finite state machine MFSM that is used to denote which services
execute each action;

• ωintE (s, a) : SintE × ΣC → σC is the output function of the MFSM; given a state s with s ∈ SE and an
action a with a ∈ ΣC the output function returns a subset of services in C in terms of output alphabet
σC that can execute action a when the service E is in state s. If the returned subset is empty, then this
is returned implying that the service E executes a itself. It is assumed that ωintE is defined if δintE is
defined.

33A Mealy finite state machine is defined as a finite state machine with output.

Patrick Un Master’s Thesis

104 4 Foundations of Service Matching and Composition

For brevity the MFSM internal schema can be abbreviated to Aint(E) where E ∈ C.

Figure 4.14 shows an MFSM internal schema for the example target service E0 as depicted in fig-
ure 4.10. With the community action alphabet ΣC consisting of the union of executable atomic actions a, t, l,

Figure 4.14: MFSM internal
schema Aint(E0) of target service
E0

its output function ωintE (s, a) returns the delegable service as follows:
ωintE (s0

0, a) = {1} means action “a” is delegable to E1 in state s0
0;

ωintE (s1
0, l) = {1} means action “l” is delegable to E1 in state s1

0;
ωintE (s0

0, t) = {2} means action “t” is delegable to E2 in state s0
0;

ωintE (s2
0, l) = {2} means action “l” is delegable to E2 in state s2

0.
In fact the output function ωintE (s, a) is defined if the corresponding tran-
sitions w.r.t. the transition function δintE is defined. Here the MFSM
can be viewed to have two main delegable trajectories: one which is
realized by the executable actions of the component service E1 and the
other by E2 which together synthesize the functionality of the target ser-
vice.

Corollary 4.3.30 (MFSM Internal Execution Tree). Let Aint(E) be the Mealy FSM internal schema of
a service E in community C as described in definition (4.3.29) and θint(·) be an auxiliary state mapping
function. The Mealy FSM internal schema Aint(E) can be unfolded into an Mealy FSM internal execution
tree T (Aint(E)) by assigning each node of the tree a state of the Mealy FSM using the auxiliary state
mapping function θint(·). We contruct T (Aint(E)) by:

• assigning the root node ε of T (Aint(E)) the initial state θint(ε) = s0
E
int;

• given a node x in T (Aint(E)) that is assigned the state s with s ∈ SintE using θint(x), then for the
action a that is possible and executable from that state s, we define the successor state s′ of executing
a using the transition function s′ = δintE (s, a) and assign s′ to the next node on the trajectory by
θint(x · a) = s′;

• labeling each edge in T (Aint(E)) with a pair (a,Ei) by using the output function ωintE (s, a) = {Ei}
to obtain the subset Ei with Ei ∈ σC to indicate which subset of services to delegate the action a to
when the Mealy FSM is in state s;

• assigning a node x the final state iff θint(x) ∈ F intE .

Figure 4.15 shows the internal execution tree of our target service illustrated in figure 4.10

Figure 4.15: Target service internal
execution tree T int(A0)

by induction on the node level. The edges are labeled with tuples (a, n)
where “a” is an atomic action and “n” with n ∈ N the identifier of the del-
egable service. This labeling scheme resembles that of an abstract internal
execution tree as described in definition (4.3.9). In the abstract labeling
schema the emphasis is on the instance level delegation where the edges
are labeled with pairs of (a, I), i.e. an action “a” is delegable to a tuple
I representing an instance that belongs to a service. Here in the MFSM
internal execution tree, it is only necessary to represent delegable service
with its identifier which is denoted by “n”. We observe that an FSM exter-
nal schema and its corresponding Mealy FSM internal schema sometimes
may have different topological structures and therefore the Mealy FSM

Master’s Thesis Patrick Un

4.3 The Roman Model 105

internal schema cannot be obtained by simply labeling the FSM external
schema with services in a service community.

Deterministic Propositional Dynamic Logic

Based on the previous description of service behavior of a composite service using finite state machine FSM
and Mealy finite state machine MFSM, it can be shown that a composition exists for the composite service if
there is a Mealy internal schema that is constituted by a MFSM for the composite service. The basic idea is to
use a modal logic formalism34 called deterministic propositional dynamic logic (DPDL) [Perrin et al., 1990,
Fischer & Ladner, 1979, van Emde Boas et al., 1990] to reduce the problem of finding a composition to the
process of formulation of a suitable DPDL logic formula and checking satisfiability of it, in order to prove
existence of a composition and synthesize this composition for the composite service.

Deterministic propositional dynamic logic DPDL formulas are built from a set of atomic propositions
denoted with P and a set of deterministic atomic actions denoted with A. The syntax of the logic is as
follows:

φ −→ true | false | P | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈r〉φ | [r]φ
r −→ a | r1 ∪ r2 | r1; r2 | r∗ | φ?

where φ is a DPDL atomic logical formula, P is an atomic proposition in P and a is an atomic action in
A with r as a regular expression over the set of actions in A. The logical operators have their conventional
meaning, for instance, “¬” is used for negation of a formula, binary operator “∧” is a logical connective
used for logical-AND conjunction of two DPDL formulas and “∨” is used for logical-OR conjunction of
two formulas. For logical implication we can rewrite the logical expression from φ1 → φ2 to ¬φ1 ∨ φ2 as a
shorthand. The two special propositional atomic terms true and false are used to represent the constant
truth and falsehood of a proposition respectively.
The modal logic operator 〈r〉φ means that there exists an execution of r reaching a state where the DPDL
formula φ holds35. The other modal logic operator [r]φ universally quantifies over r when evaluating φ
stating that all terminating executions of r reach a state where φ holds. The binary connective “∪” in r1 ∪ r2

means choosing non deterministically between r1 or r2, while “;” has a meaning of sequential execution in
r1; r2 stating that the execution of r1 must precede r2. The expression r∗ means that r is executed a non
deterministically chosen number of times (zero or more) and φ? means that the condition expressed in the
DPDL formula φ must be tested and if the test succeeds, execution can proceed or otherwise not.
The semantics of a DPDL formula is based on the foundation of deterministic Kripke structure. A deter-
ministic Kripke structure denoted with I is a tuple of the form I = (4I ,

{
aI
}
a∈A ,

{
P I
}
P∈P), where4I

denotes a non-empty set of states called worlds;
{
aI
}
a∈A is a family of partial functions aI : 4I → 4I

mapping from a definition domain of4I to a value domain of4I which specifies the state transition caused
by the atomic action a; the third component of the Kripke structure

{
P I
}
P∈P ⊆ 4

I denotes all the propo-
sitional elements P I of4I where P is true.
Logical entailment defines the semantics of the Kripke structure which states a formula φ holds (true) at a
state s within a Kripke structure I. By logical induction on φ, entailment I, s |= φ is based on interpretation
of φ using Kripke structure I. The interpretation semantics of DPDL propositions is shown as follows:

34In modal logic a modality is a connective which takes a formula or a set of formulas and produces a new formula with a new
meaning. The semantics of DPDL formulas must be defined over a Kripke structure because of modality.

35The modal logic operator 〈r〉φ existentially quantifies over r when evaluating φ.

Patrick Un Master’s Thesis

106 4 Foundations of Service Matching and Composition

I, s |= true >
I, s |= false ⊥
I, s |= P iff s ∈ P I
I, s |= ¬φ iff I, s 2 φ
I, s |= φ1 ∧ φ2 iff I, s |= φ1 and I, s |= φ2

I, s |= φ1 ∨ φ2 iff I, s |= φ1 or I, s |= φ2

I, s |= 〈r〉φ iff ∃s′ such that (s, s′) ∈ rI and I, s′ |= φ
I, s |= [r]φ iff ∀s′, (s, s′) ∈ rI → I, s′ |= φ

where for the executable regular expressions r constituted by a, the second component of the Kripke structure{
aI
}
a∈A : 4I →4I is extended to include rI defined by induction on the form of r:

(r1 ∪ r2)I = rI1 ∪ rI2
(r1; r2)I = rI1 ◦ rI2
(r∗)I = (rI)∗

(φ?)I =
{

(s, s′) ∈ 4I ×4I | I, s |= φ
}

where an interpretation of the Kripke structure over a non-deterministic choice of execution of r1 and r2

in (r1 ∪ r2)I can be view as the non-deterministic choice of the interpretation of the respective individual
execution as expressed in rI1 ∪rI2 ; analogously the sequential execution has a corresponding interpretation of
the individual sequential execution threads r1 and r2 shown with the connective “◦” in the above expression.
The non-deterministically chosen number of iterative execution of r is the interpretation of the execution of
each iteration cycle.
Given a DPDL formula φ, the Kripke structure I = (4I ,

{
aI
}
a∈A ,

{
P I
}
P∈P) is a model of φ if there

exists a state s ∈ 4I such that I, s |= φ.
The logical semantics of inference is described as follows:

• a formula φ is satisfiable if there is a model of phi and vice versa if there is no model, the formula φ is
unsatisfiable;

• a formula φ is valid in its defining Kripke structure I if ∀s | s ∈ 4I | I, s |= φ, i.e., all the models
of I is also model of φ;

• axioms are formulas which are used to select the subset of formulas of interpretational interest. A
Kripke structure I is a model of an axiom φ

′
if φ

′
is valid in I;

• a Kripke structure I is a model of a finite set of axioms Γ with φ
′ ∈ Γ if I is a model of all axioms in

Γ, therefore an axiom is satisfiable if it has a model;

• we observe that a finite set of axioms Γ entails or logically implies a formula φ, written as Γ |= φ if φ
is valid in every model of Γ.

Definition 4.3.31 (DPDL Tree Model Property). Let φ be a deterministic propositional dynamic logic
(DPDL) formula, Γ be a set of relevant DPDL domain axioms and let there exists a model of φ such that
Γ |= φ. The tree model property of a DPDL formula states that every model of phi can be unwound
(unfolded) to a tree-shaped model consisting of domain elements as nodes and (partial) transition functions
interpreting actions as edges.

Definition 4.3.32 (DPDL Small Model Property). Let φ be a deterministic propositional dynamic logic
(DPDL) formula, Γ be a set of relevant DPDL domain axioms and let there exists a model of φ such that
Γ |= φ. The small model property of a DPDL formula states that every satisfiable formula admits a finite
model which size such as the number of domain elements is at most exponential to the size of the formula
itself.

Master’s Thesis Patrick Un

4.3 The Roman Model 107

Corollary 4.3.33 (DPDL Satisfiability Checking Complexity). From the small model property described
in definition (4.3.32), we derive the complexity of checking satisfiability of a deterministic propositional
dynamic logic (DPDL) formula is EXPTIME-complete [Ben-Ari et al., 1982].

Existence of Composition

In order to derive a composition if one exists, we proceed by formulating the problem of composition exis-
tence to reduction into a suitable deterministic propositional dynamic logical (DPDL) formula Φ which is
built by conjunction of a set of atomic propositions P in DPDL and subsequently checking satisfiability of
Φ w.r.t. a target service Etarget and a service community C = {E1, . . . , En} consisting of n component
services.

Lemma 4.3.34 (DPDL Atomic Propositions Encoding). Let Etarget be a target service in the sense de-
scribed in definition (4.3.23) with the FSM external schema Aext(Etarget) which is abbreviated to A0 for
brevity and C be a service community consisting of n component services whose FSM external schemas are
A1, . . . , An respectively. For describing the states and state transitions of an FSM, a set of atomic DPDL
propositions P consisting of individual atomic proposition Ψ is built which contains:

• one state proposition sj for each state sj in the FSM service schemas Aj with j = 0, . . . , n of each
service (target service and the component services), denoting whether the respective service is in state
sj;

• final propositions Fj with j = 0, . . . , n for all FSM service schemas, denoting whetherAj is in a final
state;

• transitional propositions movedj with j = 0, . . . , n for all FSM service schemas, denoting whether a
Aj has performed a transition within the FSM.

• a set of possible atomic actions A for all FSM service schemas where A coincide with the community
action alphabet ΣC and the action alphabet ΣE0 of the target service, i.e., A = Σ = ΣC ∪ ΣE0 .

Example 4.3.35. This example illustrates the encoding of atomic propositions with the guiding examples
shown in the figures 4.10, 4.11 and 4.12 of section 4.3.4 which introduce the encoding of the set of proposi-
tions P . With regard to lemma (4.3.34), P is the set consisting of:

P =
{
s0

0, s
1
0, s

0
1, s

1
1, s

0
2, s

1
2, F0, F1, F2,moved1,moved2

}
The states syx with x = 0, 1, 2 and y = 0, 1 directly correspond to the states of the FSM external schemas
of the target service and component services. The set of all final states F0, F1 and F2 for the mentioned
services which correspond to the double circular nodes of the FSM of the services. The predicate movedi
with i = 1, 2 specifies the transitions of the component services stating that only either one service performs
a transition in a single step. Finally the set of atomic actions belongs to the action alphabet Σ = {a, t, l} with
“a” being a shorthand for request_up_to_date_stock_quote, “t” for request_stock_quote_history and
“l” for list_and_chart_data.

Patrick Un Master’s Thesis

108 4 Foundations of Service Matching and Composition

Definition 4.3.36 (DPDL Formula Encoding for Composition). Let Etarget be a target service with the
FSM external schema Aext(Etarget) which is abbreviated to A0 for brevity; let C be a service community
consisting of n component services whose FSM external schemas are A1, . . . , An respectively and Σ be
the community action alphabet which is also shared by the target service; let P be a set of atomic DPDL
propositions. For formal encoding of the service composition problem, a DPDL formula Φ consisting of a
finite number of P with master modality36 is obtained by conjunction of the following DPDL formulas:

• a set of formulas denoted by ΦA0 which encode the target service external schemaA0 = (Σ, S0, s
0
0, δ0, F0);

• sets of formulas denoted by ΦAi each set for a component service, encoding each component FSM
schema Ai = (Σ, Si, s0

i , δi, Fi);

• formulas denoted by Φindependent which encode domain independent conditions which specify general
universal assertions,

so that Φ = ΦA0 ∧ (
∧n
i=1 ΦAi) ∧ Φindependent.

The individual component DPDL formulas constituting the main formula Φ will be described in the fol-
lowing. Each Φ consists of a set of DPDL atomic proposition Ψ. We use the master modality “u” in Ψ to
encode the states and state transitions of the FSM which underlies each FSM external schema. Each for-
mula Ψ has the general form [a] Ψ and 〈a〉Ψ37 where a is an atomic action with a ∈ Σ and master modality
u = (a1 ∪ ... ∪ am)∗.

Definition 4.3.37 (DPDL Formula for Target Service). Let ΦA0 be the set of DPDL formulas encoding
the target service which contains individual atomic propositions Ψ w.r.t. the FSM external schema A0 of the
target service. ΦA0 contains the following Ψ propositions:

• [u] (s→ ¬s′) for all pairs of states of the FSM: s ∈ S0 and s′ ∈ S0 with s 6= s′; this is important for
encoding the disjointness of states of the FSM stating that no pair of states can be true simultaneously
in the same FSM;

• [u] (s → 〈a〉 true ∧ [a] s′) is the modal transition proposition defined over the transition function
s′ = δ0(s, a) of the FSM specifying the transition of executing a and reaching successor state s′;

• [u] (s → [a] false) is the prohibition of transition definition which specifies given a state s and action
a such that δ0(s, a) is not defined;

• [u] (F0 ↔
∨
s∈F0

s) specifying the final states of FSM, i.e., any legal state s that belongs to F0.

Example 4.3.38. We illustrate definition (4.3.37) to encode our target service as shown in figure 4.10 by
using the master modality u = (a∪ t∪ l)∗ to unify the atomic actions. Recalling that the master modality is
used in combination of a DPDL proposition φ such that [u]φ whether the proposition holds when an action
is executed (among those defined in the master modality). First we must define the disjointness of states:

[u] (s0
0 → ¬s1

0)

36The master modality “[u]” represents a reflexive transitive closure of the union of all atomic actions belonging to the action
alphabet Σ of all services, i.e., ∀ai ∈ Σ;u = (

⋃m
i=1 ai)

∗ or u = (a1 ∪ ... ∪ am)∗ with the Kleene star “∗” denoting the master
modality to encode universal assertions in the domain of interest.

37The 〈a〉 modality is used only in atomic proposition true.

Master’s Thesis Patrick Un

4.3 The Roman Model 109

We then encode possible transitions for the target service:

[u] (s0
0 → 〈a〉 true ∧ [a] s1

0)

[u] (s0
0 → 〈t〉 true ∧ [t] s1

0)

[u] (s1
0 → 〈l〉 true ∧ [l] s0

0)

Subsequently the impossible transitions, i.e., those that are undefined must be encoded:

[u] (s0
0 → [l] false)

[u] (s1
0 → [a] false)

[u] (s1
0 → [t] false)

where the total number of propositions for defined and undefined state transitions is usually equal. Final
state for the target service is encoded by:

[u] (F0 ↔ s0
0)

Definition 4.3.39 (DPDL Formula for Component Services). Let ΦAi be the set of DPDL formulas con-
sisting of atomic propositions Ψ which encodes a component service in the community C with size n, i.e.
i = 1, . . . , n w.r.t. the FSM external schema Ai. The set ΦAi consists of the following Ψ propositions:

• [u] (s→ ¬s′) for all pairs of states of the FSM: s ∈ S0 and s′ ∈ S0 with s 6= s′, this formula specifies
analogously the disjointness of states of an FSM;

• [u] (s→ [a] (movedi∧ s′∨¬movedi∧ s)) encodes transition proposition semantics of the FSM with
s′ = δi(s, a); it specifies that Ai is required either to make a transition of state if a is executed or the
original state s must hold and no transition takes place;

• [u] (s → [a] (¬movedi ∧ s)) specifies the state when transition is not defined and therefore a in this
state is not executed;

• [u] (Fi ↔
∨
s∈Fi

s) specifies the final states of FSM external schema Ai.

Example 4.3.40. We illustrate with this example the definition (4.3.39) encoding the external schema of our
example component services shown in the figures 4.11 and 4.12. For component service E1 analogous to the
previous example we first encode the state disjointness propositions:

[u] (s0
1 → ¬s1

1)

With account on state transition using the predicate movedi where i = 1, 2 to encode the required state
transitions with the semantic that only one component service performs a transition in a single step and that
in each step at least one step must be proceeded. For E1:

[u] (s0
1 → [a] (moved1 ∧ s1

1 ∨ ¬moved1 ∧ s0
1))

[u] (s1
1 → [l] (moved1 ∧ s0

1 ∨ ¬moved1 ∧ s1
1))

Similar to the previous example we encode propositions specifying the undefined transitions for E1:

[u] (s0
1 → [l] (¬moved1 ∧ s0

1))

[u] (s0
1 → [t] (¬moved1 ∧ s0

1))

Patrick Un Master’s Thesis

110 4 Foundations of Service Matching and Composition

[u] (s1
1 → [a] (¬moved1 ∧ s1

1))

[u] (s1
1 → [t] (¬moved1 ∧ s1

1))

Finally for E1 final state is asserted in state s0
1 and encoded in the proposition:

[u] (F1 ↔ s0
1)

For parsimonious reason, we give the propositions briefly for component service E2 here in a group:

[u] (s0
2 → ¬s1

2)
[u] (s0

2 → [t] (moved2 ∧ s1
2 ∨ ¬moved2 ∧ s0

2))
[u] (s1

2 → [l] (moved2 ∧ s0
2 ∨ ¬moved2 ∧ s1

2))
[u] (s0

2 → [l] (¬moved2 ∧ s0
2))

[u] (s0
2 → [a] (¬moved2 ∧ s0

2))
[u] (s1

2 → [t] (¬moved2 ∧ s1
2))

[u] (s1
2 → [a] (¬moved2 ∧ s1

2))
[u] (F2 ↔ s0

2)

Definition 4.3.41 (DPDL Formula for Domain Independent Conditions). Let ΦAindependent
be the set

of DPDL formulas consisting of atomic propositions Ψ which encodes domain independent conditions and
general universal assertions about the domain. It consists of the following Ψ propositions:

• s0
0 ∧ (

∧n
i=1 s

0
i) specifies that all services are in their initial state before any interaction begins;

• ∀a ∈ Σ at least one transition step has proceeded (has moved) in every execution of an action a in the
FSM; this condition is encoded with [u] (〈a〉 true→ [a]

∨n
i=1 movedi);

• [u] (F0 →
∧n
i=1 Fi) specifies the target service is in a final state if all component services are in a final

state.

´

Example 4.3.42. Domain independent conditions are the constraints which must hold not only for single ser-
vices but for the overall composition. These constraints for our composition problem regarding the example
services shown in the figures 4.10, 4.11 and 4.12 are encoded as DPDL propositions:

s0
0 ∧ s0

1 ∧ s0
2

This proposition specifies that all services start in the initial state. On the other hand final state of the target
service implies that the component services must be in final state also:

[u] (F0 → F1 ∧ F2)

These last propositions encode the fact that in each single processing step at least one service performs a
transition:

[u] (〈a〉 true → [a] (moved1 ∨moved2))
[u] (〈t〉 true → [t] (moved1 ∨moved2))
[u] (〈l〉 true → [l] (moved1 ∨moved2))

Master’s Thesis Patrick Un

4.3 The Roman Model 111

Reduction of the service composition problem to a DPDL formula Φ makes it possible to check satisfi-
ability of this formula which contains propositions about the dynamic aspects of the finite state transitions
systems encoded with their actions, corresponding states and state transitions as well as other relevant domain
independent conditions. The formula Φ is a conjunctions of the individual formulas ΦA0 ∧ (

∧n
i=1 ΦAi) ∧

Φindependent as seen previously in definition (4.3.36). It is satisfiable if a finite model I exists so that the
formula Φ is entailed, i.e., iff I,ΦA0 ∧ (

∧n
i=1 ΦAi) ∧ Φindependent |= Φ.

Lemma 4.3.43 (DPDL Formula Satisfiability). Given a target service E0 w.r.t. a community of component
services E1, . . . , En and a DPDL formula Φ encoded as described in definition (4.3.36). If Φ is satisfiable,
there exists finite model I with I,ΦA0∧(

∧n
i=1 ΦAi)∧Φindependent |= Φ such that any such model represents

a composition of E0 w.r.t. E1, . . . , En.

Proof. (sketch) A proof as sketch is referenced in [Berardi et al., 2005c].

Theorem 4.3.44 (Service Composition Existence). The DPDL formula Φ is satisfiable iff there exists a
composition of E0 w.r.t. E1, . . . , En. Checking the existence of composition is EXPTIME-complete with a
complexity lower bound recently proved in [Muscholl & Walukiewicz, 2007, Muscholl & Walukiewicz, 2008].

Mealy Composition Synthesis

In order to realize a composition by synthesis, we reiterate the idea of a service orchestrator described in
definition (4.3.22). We observe in theorem (4.3.44) that if Φ is satisfiable it admits a model which is the
composition of the target service Etarget (E0); else if Φ is not satisfiable, no model exists. From a model
an internal schema for the target service E0 can be extracted which is a Mealy finite state machine (MFSM)
composition of E0 w.r.t. the community of component services E1, . . . , En where E0 acts as the orchestra-
tor. The size of the model is at most exponential in the size of Φ which is a characteristic of the small model
property described in definition (4.3.32).

Definition 4.3.45 (Mealy Composition). Given a finite model Ifm of the Kripke structure with Ifm =
(4Ifm ,

{
aIfm

}
a∈Σ

,
{
P Ifm

}
P∈P) iff Φ is satisfiable and admits the model. A Mealy composition AMealy

is the Mealy finite state machine (MFSM) of the Mealy internal schema of the target service with AMealy =
(Σ, σMealy, SMealy, s

0
Mealy, δMealy, ωMealy, FMealy). The Mealy composition can be extracted from the

model Ifm obtained by:

• SMealy = 4Ifm specifying the set of possible states of the MFSM is derived from the domain model
of the Kripke structure;

• s0
Mealy ∈ (s0

0 ∧
∧n
i=1 s

0
i)
Ifm specifying the initial state of the MFSM;

• s′ = δMealy(s, a) iff the pair (s, s′) ∈ aIfm holds, i.e., the state and the successor state is defined in
the action propositions of the model which specifies action a and the corresponding state transition;

• σMealy = ωIfm
iff (s, s′) ∈ aIfm and ∀i ∈ σMealy, s

′ ∈ movedIfm

i ; j /∈ σMealy, s
′ /∈ movedIfm

j

specifying the state transitions via the Mealy output function stating which transitions are defined and
those that are not;

• FMealy = F
Ifm

0 specifying the final state of the MFSM.

Patrick Un Master’s Thesis

112 4 Foundations of Service Matching and Composition

Corollary 4.3.46 (Mealy Composition Synthesis). Any finite model of the DPDL formula Φ denotes a
synthesized Mealy composition of target service E0 w.r.t. component services E1, . . . , En. The size of
the Mealy composition is at most exponential in the size of the FSM external schemas A0, A1, . . . , An of
the corresponding services respectively; which is a characteristic of the small model property of a DPDL
formula as defined in definition (4.3.32).

Algorithm 4.3.1 Algorithm for synthesizing Mealy composition
1: INPUT: A0 /* FSM external schema of target service */
2: A1, . . . , An /* FSM external schema of community component services */
3:

4: OUTPUT: AMealy |nil /* Algorithm returns a Mealy composition if one exist, else returns nil */
5:

6: BEGIN
7: Φ := External_FSM_to_DPDL_Formula(A0, A1, . . . , An);
8: Ifm := DPDL_Tableau(Φ);
9: if (Ifm == nil) then

10: return nil;
11: else
12: AMealy := Extract_MFSM(Ifm);
13: AMealymin := Minimize_MFSM(AMealy);
14: return AMealymin;
15: end if
16: END

The pseudocode shown in algorithm listing ?? describes the synthesis of Mealy composition. Input
to the algorithm is the FSM external schema A0 for the target service and the FSM external schemas for
the community component services. A DPDL formula Φ as described in definition (4.3.36) is built using
the function External_FSM_to_DPDL_Formula. Taking into account the target service requested by the
client, the available services of the community and the domain independent conditions, Φ encodes all real
services (community services) and virtual service (target service) participating in the composition, char-
acterizing which service in the community can take on a transition (moved) in correspondence with each
transition of the target service so that the domain independent conditions are satisfied. The next step is to
find out if a finite model (a Mealy composition) of Φ exists, this is done by using the DPDL_Tableau func-
tion which exploits tableau algorithms38 [Giacomo & Massacci, 2000, Giacomo & Massacci, 1996] to check
satisfiability of Φ. The function takes Φ as input argument and returns a finite model if Φ is satisfiable; oth-
erwise the special placeholder nil is returned indicating no model exists. According to definition (4.3.45),
the function Extract_MFSM transforms from the finite model Ifm into a MFSM internal schema of the
target service AMealy by discarding from each state of Ifm the information about the current states of each
component service and keeping in Ifm only the information about the final states or the state transitions.
Such a model could contain redundant information such as unreachable or unnecessary states. The function
Minimize_MFSM is used to perform minimization on the model. The minimized MFSM is returned as
synthesized Mealy composition where each action of the target service is annotated with the service in the
community that executes it. An implementation of the algorithm can be found in [Berardi et al., 2004a].

38A general account on tableau reasoning for optimized satisfiability checking can be found in [Baader et al., 2007,
Baader & Sattler, 2001].

Master’s Thesis Patrick Un

4.3 The Roman Model 113

4.3.5 Characterization of Services Composition in the Situation Calculus

To shed light on the composition problem and the technique to check the existence of a composition described
in section 4.3.4 from another perspective which attempts to characterize dynamic aspects of services in terms
of actions and state changes by the effect that the actions bring about. The situation calculus can be used as
a formalism to reason about actions representing service operations. In particular it can be used to build an
action theory about the external schema of the target service, external schemas of the component services and
the domain independent conditions in order to check satisfiability of the theory as described in section 4.3.4
about the problem and techniques of service composition. We focus on Reiter’s situation calculus basic
action theory [Reiter, 2001a, Levesque et al., 1998, Lin & Reiter, 1997, Pirri & Reiter, 1999] to tackle the
known and discussed aspects of the service composition problem.

Behavior Description in the Situation Calculus

The external schema of a service as described in definition (4.3.5) can be expressed in a situation calculus
basic action theory D in which each atomic action a is represented by a named situation calculus action.
The DPDL atomic propositions can be expressed as situation calculus fluents whose trueness depends on the
situation encoded in the parameter (situation variable) of the fluent. In this sense a state s in the previous
encoding a DPDL proposition is analogous to a situation s in the situation calculus action theory and each
DPDL proposition can be encoded as a situation calculus fluent whose trueness depends on the specific state
of the finite state machine (FSM) external schema of a service described in the previous sections. Therefore
a situation calculus basic action theory D consists of:

1. situation calculus axioms describing the initial situation S0 where we have complete information in
the initial situation;

2. one fluent Fa for each action a with the semantics that Fa is true in situation s iff it is possible to
execute a in s w.r.t. a current state in the FSM;

3. one situation calculus action precondition axiom for each atomic action a in the form ∀s.Poss(a, s) ≡
Ψa(s) where Ψa(s)) is a situation calculus formula with s as the only free variable where Poss itself
does not appear;

4. one situation calculus successor state axiom for each fluent Fa of the form ∀a, s.F (do(a, s)) ≡
ΦF (a, s) where ΦF (a, s) is a situation calculus formula with a and s as the only free variables;

5. a special devised fluent Final which denotes the execution of a service can stop in the situation
associated with the fluent. It corresponds to the specification of a final state in a DPDL proposition;

6. unique name axioms for the atomic actions and some domain independent axioms.

We observe the situation calculus action precondition axioms and successor state axioms together character-
ize the semantics of a corresponding state transition proposition over an executable action. We also notice
that we have complete information in every situation on the state transitions defined over atomic actions in
the action alphabet a ∈ Σ because of action precondition axioms and successor state axioms.
A situation tree in the situation calculus [Reiter, 2001a] formed by executable actions, i.e., where the action
precondition axiom for the respective action holds, directly relates to the external execution tree of the ser-
vice where the nodes with a final state (interaction with the service can be terminated) are the situations in
which the fluent Final is true. The situation calculus basic action theory can be unfolded into a situation tree
with each node denoting a situation s and each edge an executable atomic action a where Poss(a, s) holds.
The tree therefore characterizes actions that are possible to execute as a set of action trajectories from the
root and its topology resembles that of the previously described external execution tree of a service external

Patrick Un Master’s Thesis

114 4 Foundations of Service Matching and Composition

schema.

Definition 4.3.47 (Situation Calculus Execution Tree). Given an FSM external execution tree T (Aext(E))
of a service as described in corollary (4.3.28), a corresponding situation calculus execution tree T (D) w.r.t.
a service community is formally defined inductively using a mapping function map(·) starting from the
root node ε (where no action has been performed yet) to associate each successive node with a situation s
and an action (or a set of actions if there is more than one action possible) that is executable from s. This
approach directly maps out the execution of atomic actions of a service based on the FSM external schema
representing the service as a tree of execution steps where the only defined possible actions are those actions
whose action precondition axioms ∀s.Poss(a, s) hold. We define a special placeholder fluent undef for
undefined situation and proceed with the construction of the situation tree:

• the root node ε is obtained from the situation calculus initial situation S0 with ε = map(S0);

• the immediate successive node(s): map(do(a, S0)) = map(S0) · a iff Poss(a, S0) ∧ map(S0) 6=
undef holds;

• for all other nodes: ∀s′ = do(a, s)∧s 6= S0 → map(do(a, s)) = map(s)·a iff Poss(a, s)∧map(s) 6=
undef holds;

• where action precondition axioms do not hold, assign the node map(do(a, s)) = undef where
¬Poss(a, s);

• mark nodes as final if Poss(a, s) ∧map(s) 6= undef ∧ Final(s) holds;

the part of the situation tree formed by executable actions is finitely representable.

Automatic Service Composition in the Situation Calculus

To recapitulate, the essence of composition in the Roman Model is the idea of delegating of atomic actions
to a community of available services to execute and coordinate interactions between the client, target service
and the component services using the concept of an orchestrator. In this sense the characterization of auto-
matic composition and composition synthesis is also based on the notion of a target service E0 and a set of
component services E1, . . . , En. The idea is to represent which services are executed when a action of the
target service is performed w.r.t. its external execution tree. A special situation calculus fluent Stepi(a, s)
is added with the subscript identifier i indicating the specific service which executes an action a in situation
s. For the target service we formulate a situation calculus action theory D0 and for the component services
D1, . . . ,Dn. The union of these axioms represents the holistic basic action theory DC ↔ D0 ∪ (

⋃n
i=1Di)

for the service composition problem.

Definition 4.3.48 (Situation Calculus Action Theory Encoding for Composition). Let D0 be the set of
axioms constituting the situation calculus basic action theory for the target service and D1, . . . ,Dn be the
sets of axioms for the component services. The situation calculus action theory for the composition problem
is the union of these axioms DC with:

• D0 is axiomatized as described previously;

• the union (
⋃n
i=1Di) with each set of axioms Di corresponding to a component service in the commu-

nity characterizes the action theory of each component service. Di is obtained by:

1. renaming each fluent F in Di including the Final axiom to Fi and Finali thus associating the
fluents to the component service for identification;

Master’s Thesis Patrick Un

4.3 The Roman Model 115

2. renaming the set of action precondition axioms Poss to Possi for similar reason;

3. modifying the set of successor state axioms with:
∀a, s.Fi(do(a, s)) ≡ (Stepi(a, s) ∧ ΦFi(a, s)) ∨ (¬Stepi(a, s) ∧ Fi(s)) augmenting the action
theory with information on which service executes an action encoded with the fluents Stepi, i.e.,
either a component service executes action a by delegation and a successor situation is reached
or the component service does not execute the action and the situation does not change39;

• ∀a, s.(Poss(a, s) ∧ ¬Final(s)) ⊃
∨n
i=1 Stepi(a, s) ∧ Possi(a, s) this axiom belongs to the domain

independent axioms and constraints the value of Stepi specifying that at least one of the component
service steps forward (is delegated an action and executes it) if an action is executable and the state is
not final;

• ∀s.F inal(s) ⊃
∧n
i=1 Finali(s) specifies if target service is in a final state, all the component services

are too in a final state;

the mentioned axioms of initial situation, unique name axioms and domain independent axioms are implicit
and must be present in each set of axioms for the services.

Example 4.3.49. We consider our guiding example of a stock investment scenario including a target ser-
vice and two component services as shown in the figures 4.10, 4.11 and 4.12 of section 4.3.4. We recall
that the set of atomic actions belongs to the action alphabet Σ = {a, t, l} with “a” being a shorthand for re-
quest_up_to_date_stock_quote, “t” for request_stock_quote_history and “l” for list_and_chart_data
for these services. On the basis of example (4.3.38) of the illustration of a DPDL encoding of our target ser-
vice E0, we show the axiomatization of the involved finite state machine of E0 using the situation calculus
formalism to encode axioms in D0:

∀s.Poss(a, s) ≡ Final(s)
∀s.Poss(t, s) ≡ Final(s)
∀s.Poss(l, s) ≡ ¬Final(s)
∀α, s.F inal(do(α, s)) ≡ (α = ∃act.Poss(act, s) ∧ ¬Final(s))∨

(Final(s) ∧ α 6= a ∧ α 6= t)

For the component service E1 due to parsimonious reason D1 axioms are shown briefly as follows:

∀s.Poss1(a, s) ≡ Final1(s)
∀s.Poss1(t, s) ≡ false
∀s.Poss1(l, s) ≡ ¬Final1(s)
∀α, s.F inal1(do(α, s)) ≡ (Step1(α, s) ∧ α = ∃act.Poss(act, s) ∧ ¬Final1(s))∨

(¬Step1(α, s) ∧ Final1(s) ∧ α 6= a)

and for E2 the action theory axioms D2 are:

∀s.Poss2(a, s) ≡ false
∀s.Poss2(t, s) ≡ Final2(s)
∀s.Poss2(l, s) ≡ ¬Final2(s)
∀α, s.F inal2(do(α, s)) ≡ (Step2(α, s) ∧ α = ∃act.Poss(act, s) ∧ ¬Final2(s))∨

(¬Step2(α, s) ∧ Final2(s) ∧ α 6= a)

39Therefore the modified successor state axioms do not only depend on the previous situation but also on the trueness of Stepi. We
observe that this proposition resembles the predicates moved and ¬moved in the previous DPDL proposition description.

Patrick Un Master’s Thesis

116 4 Foundations of Service Matching and Composition

Initial situation is encoded as Dinit:
Final(S0)

Domain independent conditions are encoded in Dindependent as follows:

∀a, s.(Poss(a, s) ∧ ¬Final(s)) ⊃ (Step1(a, s) ∧ Poss1(a, s))∨
(Step2(a, s) ∧ Poss2(a, s))

∀s.F inal0(s) ⊃ Final1(s) ∧ Final2(s)

With this situation calculus characterization of the services, the problem of checking for existence of a
composition can be reduced to checking satisfiability of the situation calculus action theory DC .

Theorem 4.3.50 (Situation Calculus Action Theory Satisfiability). Let DC be the union of situation cal-
culus basic action theories axiomatizing the target service, a community of component services of size n as
described in definition (4.3.48) and the domain independent axioms. The theory DC is satisfiable if it admits
a model and:

Dinit ∪ Dindependent ∪ D0 ∪ (
n⋃
i=1

Di) |= DC

Theorem 4.3.51 (Situation Calculus Action Theory Composition). Let DC be the situation calculus ba-
sic action theory axiomatization representing a target service E0 and a community of component services
E1, . . . , En respectively. A composition of services exists if DC is satisfiable and admits a finite model. By
the constraints posed to the interpretation of Stepi(a, s) fluents for each component service Ei, the admitted
model of the basic action theory is a composition in the sense that an internal execution tree of the target
service E0 can be constructed from the action trajectory containing for each action a and situation s the
delegable services where Stepi(a, s) holds and therefore E0 can be composed using E1, . . . , En.

Master’s Thesis Patrick Un

117

5 Action Theories for Service Composition

We turn our attention to a process scenario which serves as a guiding example through this chapter. The re-
quirement of integration of existing process oriented enterprise services should meet the goal of synthesizing
a process scenario for registration of a business with a public administration. The existing enterprise services
are not semantically interoperable with intelligent agents because there is no logical axiomatization of their
behavior to model preconditions and effects of these services. The dynamical aspects as well as constraints
of the enterprise services and their underlying processes must be axiomatized in an appropriate way.

We can make use of the theoretical foundations described in chapter 4, especially using the action theory
of the situation calculus to model the constraints of the services as action precondition and successor state
axioms. The service composition problem can be reduced to a theorem proving task of the axiomatized
application domain, in our case a guiding process scenario of business registration at a government public
administrative organization which is further described in this chapter. To make the problem approachable
to focus on the service synthesis aspect, we do ignore the aspects of dataflow of process oriented enterprise
services under the assumption that dataflow is appropriately modeled and that the required types of the input
parameters and outputs are captured semantically in enterprise service ontology that exists internally.

In fact deriving logical inferential information of process order and obtaining a correct execution se-
quence for the services to solve the composition problem is more challenging task to us because no single
enterprise service can satisfy the functional requirements of the process scenario alone. The situation cal-
culus appeals to us strongly as a powerful tool to implement the dynamical process scenario for describing
enterprise service composition. The situation calculus action theory proves to be an ideal formalism for
functional synthesis because we can abstract away from dataflow and concentrate on the dynamical aspects
of specification, i.e., answering the question of how to combine components to get resulting functionality in
due consideration of the existing process and service constraints. The issue of semantic service matching is
not a central requirement to our process integration scenario because the advertisements and documentations
of service capability exist already and enterprise services are well bundled according to their application do-
main objectives such that it is rather intuitive to understand their designation. Furthermore the total number
is finite since we are not dealing with volatile service repositories where service configuration changes often.
The fact that we are subject to composition synthesis of service functionalities using a set of existing services
which are registered in a repository has motivated us to tackle composition directly. For the process scenario,
we have selected to integrate a finite set of services from the CRM bundle1, business service application do-
main and banking application domain bundles to get the partial functionality that we desire. What these
services lack is detailed descriptions of their application semantic such as formal definitions of invocation
semantics, preconditions which enable invocation and postconditions of execution. There is also little appar-
ent about application domain constraints when combining the existing services. Fortunately we can obtain
partial information for our axiomatization effort from the status and action management runtime informa-
tion as described previously in chapter 2, in order to figure out rather cursorily the required service semantics.

1An assorted CRM-related group of enterprise services are bundled together in an enterprise service module for efficient deploy-
ment.

118 5 Conceptual Functional Synthesis of Enterprise Services

5.1 Guiding Process Scenario

We start with a guiding process scenario that represents a business process for business registration at gov-
ernmental administrative organization. Motivation comes from business requirement nowadays to automate
public sector administrative processes.

5.1.1 Supporting Automated Business Registration with Enterprise Services

Figure 5.1 illustrates this business process scenario in the business process modeling notation (BPMN).
It is a kind notational diagram to visualize process components and process activities and as such it does
not represent execution syntax but it can be transformed to a specific process execution language using
appropriate process modeling tools.

This business process consists of four main phases with each one contained in a labeled phase box as
depicted in the figure:

i) creation phase: the main activity is to receive incoming cases of application for business registration.
A citizen intends to start a business and a business record must be created in the registries of the
governmental administrative department for commerce. Assume that there exists installation of SAP
enterprise services of the customer relationship management (CRM) bundle which has the following
functionality

a) check whether a case of registration is open in the CRM system;

b) check whether a citizen exists in the CRM system;

c) creation of record for a new citizen if she is not yet covered by the system;

d) for each citizen check whether bank account details exist so that governmental agency can bill
the citizen for using the registration service2;

e) if no bank detail of a citizen exists currently, a CRM process activity is initialized to create a
corresponding record in the CRM system.

ii) pre-check phase: the purpose of pre-checking is to scrutinize the application case to examine essential
benchmarks of an application case approximately, for instance, clearance of the applicant’s taxation
register to review lawfulness, checking business location in the application and checking applicant’s
record of conduct clearance with police department, etc. A parallel denial phase can be chosen to
deny application case if pre-check criteria and conditions are not complied with. The denial phase
consists of the activities to send denial and archive the denied case on the registration application
system. Process activities of the pre-check phase are:

a) check applicant’s business location to evaluate availability of a requested location. If such busi-
ness location is already occupied, reject the application;

b) examine the lawfulness of the nature of the requested business registration, for instance, checking
whether a conflict situation exists due to antitrust accusation, distortion of competition, violation
of existing patents or violation of copyright, etc. Each business executive must also be scrutinized
for past record of conduct.

2It is assumed that beside the CRM aided process phase in the current process scenario, other registration procedures of a gov-
ernmental agency must be subject to other process activities under supervision of financial administration to evaluate credit
worthiness and solvency of a citizen as well as lawfulness of her capital financing must be scrutinized. These related process
activities must be performed for security reasons not on an enterprise system but manually by government agents. Therefore no
automated support via business process activities for these procedures is required.

Master’s Thesis Patrick Un

5.1 Guiding Process Scenario 119

Enterprise Service

Document &

Records Mgt.

check

location

check

lawfulness

check

identity

send

denial

check

legal form

check

operation

allowance

archive

(C
)

M
a

in
 C

h
e

c
k

(C
N

)
D

e
n

ia
l

search for tax office

to register charge

send confirmation

create invoice for

registration service

(D
)

R
e

g
is

tr
a

ti
o

n

archive

Pre-Check

failed
Pre-Check

successful

Business Registration Process

Identification

Services

receive application

form

(A
)

C
re

a
te

B
u

s
in

e
s

s
 C

a
s

e
in

 C
R

M

Enterprise Service for

Create Business Registration

Process activity

based on service

Explanation

Process start

Process end

Control flow

Process activity

involves human task

Process activity

based on service

Explanation

Process start

Process end

Control flow

Process activity

involves human task

find citizen

in CRM system

create citizen

in CRM

read bank details

of citizen

Enterprise Service

Document &

Records Mgt.

Main Check

successful

Main Check

failed

(B
)

P
re

-C
h

e
c
k

create bank

details for citizen

In CRM

Citizen not

in CRM
citizen already

in CRM

citizen‘s bank details

not available

CRM

Enterprise

Services

citizen bank details

available

Enterprise Services for

Create Business Registration

Enterprise Services for

Create Business Registration

Identification

Services

Figure 5.1: Process scenario for business registration at governmental administration

Patrick Un Master’s Thesis

120 5 Conceptual Functional Synthesis of Enterprise Services

iii) main check phase: the purpose of main check phase is to investigate detailed profile of applicants as
well as legal form of the business. If conditions in this phase are not complied with, the denial phase
is entered. Activities of the main check phase are:

a) an agent uses identification services to check identification information of the business execu-
tives, business holders. Due to protection of privacy, these services are not enterprise services
and are accessed only within the governmental administrative network;

b) the legal form of the business must be checked according to scope of business, operational ac-
tivities, business areas, import and export regulations, etc. Only governmental agent can access
legal internal data for these activities and it is not modeled with SAP processes;

c) other legal issues must be resolved on the operational activities of a business before license of
entitlement to entrepreneurship can be granted.

iv) registration phase: this last phase of the business process establish the persistent business registration
of a case in the following activities:

a) search for the tax office responsible for applicant’s business location and connect through record
registries with it. If there is no appropriate registry for the case, enterprise service on the central
registry is used in order to establish profile for collecting registration service charges;

b) create invoice to bill business registration service by charging the applying citizen;

c) if registration process is successful, send applicant confirmation and archive the case for possible
review later.

5.1.2 Composite Process Functional Requirements

Our scenario is represented in the mentioned business phases which integrates functionalities across several
enterprise services bundles, for instance, the customer records management services and banking record ser-
vices of the CRM bundle and business registration of the government services bundle.

Requirements of process phase (A) in figure 5.1 consist of a holistic view of the functionalities:

a) capability to receive application form and verify well-formedness and validity of key value fields in
the form;

b) ability to correctly extract the entire set of relevant data from the form for further processing;

c) capable of checking syntax correctness and formatting of the extracted data;

d) storing this information in an internal database on the SAP ERP system;

e) ability to access CRM database to determine whether the applying citizen3 has already been captured
in CRM system;

f) capable of implicitly deriving existing applicant profile and business history from the CRM system;

g) capable of visualizing this profiling information when required for internal scrutiny;

h) ability to create an applicant record and initialize it appropriately;

i) ability to connect to enterprise services of the banking industry bundle to examine required business
accounting information for billing purpose;

3For brevity the applying citizen entity will be referred to as applicant hereafter.

Master’s Thesis Patrick Un

5.1 Guiding Process Scenario 121

j) capable of creating new business accounting profile for applicants;

k) ability to search for information of an applicant’s banking account payable and receivable profile;

l) if necessary, ability to modify an applicant’s bank details such as bank key, additional account number,
solvency ranking, etc.;

m) ability to synchronize bank details with master data of application process component.

Since process phases (B) and (C) in figure 5.1 are processed predominantly manually and must not
be realized via enterprise service due to previously mentioned reasons, we can assume that their required
functionalities can be realized accordingly and view them as some sort of black-box process components
to consolidate the control flow further. In this sense these phases can be viewed as individual consolidated
functional unit that, when inputs are provided appropriately in the form of application data and documents,
they will execute and reach their phase goals without having the enterprise services participating. We should
see that these phases can be modeled subsequently as single action respectively which when executed by an
agent just interleaved with other operators and controller actions in the composition, i.e., abstracting away
from the constituting process activities or involved services therein.

Process phase (D) in figure 5.1 represents the business activities that support registration process at
governmental agency and requires these functionalities:

a) interoperable with enterprise services of the financial bundle at taxation agency;

b) capable of accessing taxation record of individual applicant;

c) ability to extract from existing taxation records relevant fields for registration, for instance name of
taxation authority responsible for a district, applicant’s taxation number, types of taxation due and
whether certain relief conditions apply;

d) ability to transfer the taxation record information to an applicant’s case profile and store it persistently;

e) capable of updating taxation profiles in database of the financial module to reflect new conditions after
setting up business;

f) ability to register and persist a business opening and determine the type of business in the applicant’s
profile;

g) capable of determining the correct amount of due taxes for the specific business type;

h) capable of creating invoice and with appropriate amount of service charges accordingly to bill the
customer;

i) capable of archiving processed registration for future review and auditing.

The process goal can be defined therefore as: adapting a subset of functionalities of several process bun-
dles to satisfy the need to register business semi-automatically by coordinating external discrete governmen-
tal processes or services. The plethora of diverse functional requirements dictate a necessary combination of
existing functionalities of enterprise services to produce the overall required functionality. Since no single
enterprise process can solely satisfy our process goal, we resort to synthesizing selected enterprise services
and coordinating them to achieve the goal.

Patrick Un Master’s Thesis

122 5 Conceptual Functional Synthesis of Enterprise Services

5.1.3 Selected Enterprise Services

For synthesis purpose a set of selected enterprise services across several enterprise services bundles are de-
scribed in the following sections. We describe definition, technical data, business usage context and known
constraints for each enterprise service. We will explicitly specify and describe these selected services4 where
for simplicity exceptions are provisionally trimmed in the current scenario. Due to often large enterprise ser-
vice operations defined in enterprise service interfaces which require long list of input parameters, we have
chosen to mask out a series of insignificant and optional input parameters that do not directly influence cor-
rect execution of the service operations.

Process Phase A

The selected services satisfy the current functional requirements partially. The enterprise service for techni-
cal processing and capturing application data is described in table 5.1.

Enterprise service which handles search of applicant’s information according to the extracted application
profile in CRM is carried out by the service described in table 5.2.

If there is no corresponding applicant profile in the CRM system, the enterprise service described in
table 5.3 is responsible for creating it.

After CRM system has been updated, the enterprise service described in table 5.4 attempts to read bank
details of the applicant if it exists.

For each applicant who has not deposited valid bank details in the CRM system, the enterprise service
described in table 5.5 is used to create and initialize a corresponding bank detail profile.

Process Phase CN

Since phases (B) and (C) are not supported through public enterprise services, in phase (CN) denied appli-
cants can be notified using the enterprise service described in table 5.6.

For archival of denied cases, the same enterprise service can be used as in final archival of processed
application cases.

Process Phase D

Taxation matters are handled by the service described in table 5.7 where it obtains input from the process
operation results of phase (C), assuming the same business application business object is continuously used
in the internal business dataflow.

After a business registration application is processed and corresponding data is persisted, invoice can be
created to bill the applicant using the service described in table 5.8.

4In the following tables, ’MEP’ is a shorthand for message exchange pattern and the label ’Multi-operational’ describes whether a
service contains more than one operation defined in its service interface.

Master’s Thesis Patrick Un

5.1 Guiding Process Scenario 123

Service Aspects Description

Definition
Accepting submitted application form electronically and extracting
predefined attributes with handling of validation of captured data

Technical Data
Technical Name InboundNWSUITE_RDM_ProcessBRApplDoc_In_Sync
Namespace http://sap.com/xi/NW/APPL/Global
MEP inbound
Mode synchronous
Change/Update Behavior ACID transactional
Idempotency N.A.
Multi-operational N.A.
Bundle Association RecordDocumentManagementBundle

Parameters & Return Object

Inputs
BusiRegEDocument, BusiRegType, BusiRegLocation, BusiRegIndus-
try

Output PublicRecordDocument

Business Context
This inbound service extracts application form and extracts informa-
tion related to a specific predefined business goal. It validates data
related to specific business scenario of business application and regis-
tration.

Related Business Objects
PublicRecordDocument, BusiRegEDocument, BusiRegActor

Constraints

• Process does not support concurrent extraction and validation of
application;

• precondition of the operation is that there exists a submitted
electronic application for registration;

• postcondition is that a new application case in form of the as-
sociated business object is updated in the record and document
management backend system;

• erroneous application must be handled by different service.

Table 5.1: Enterprise service: Process application of inbound business registration

Patrick Un Master’s Thesis

124 5 Conceptual Functional Synthesis of Enterprise Services

Service Aspects Description

Definition
From the extracted applicant’s profile information, this service
searches the backend CRM system to determine whether the input pro-
file information already exists. If is exists, the dataflow is relayed;
otherwise CRM data is not forwarded.

Technical Data
Technical Name InboundNWSUITE_CRM_SearchByIDBRAppl_In_Sync
Namespace http://sap.com/xi/NW/APPL/Global
MEP inbound
Mode synchronous
Change/Update Behavior N.A.
Idempotency idempotent
Multi-operational N.A.
Bundle Association CRMBundle

Parameters & Return Object
Inputs BusiRegActorID
Output BusiRegCustomer

Business Context
An agent or an official at a business registration administration can use
this service to examine whether an applicant’s profile is captured.

Related Business Objects
PublicRecordDocument, BusiRegCustomer

Constraints

• precondition is that a new application case is correctly capture
so that the CRM system can access the document and record
management backend system to get information of the case and
use the application id to search in the CRM system;

• postcondition is that an agent has obtained the knowledge that
either an applicant’s profile exists in CRM already or it does
not;

• invariance is that if a record already exists in CRM, its state and
internal data structure is not changed.

Table 5.2: Enterprise service: Search profile of applicants in CRM

Master’s Thesis Patrick Un

5.1 Guiding Process Scenario 125

Service Aspects Description

Definition
This service takes the extracted applicant’s profile information as input
and create a corresponding applicant in the backend CRM system. Af-
ter creation values are initialized and dataflow object can be forwarded
to subsequent process component.

Technical Data
Technical Name InboundNWSUITE_CRM_CreateInitBRAppl_In_Sync
Namespace http://sap.com/xi/NW/APPL/Global
MEP inbound
Mode synchronous
Change/Update Behavior ACID transactional
Idempotency N.A.
Multi-operational N.A.
Bundle Association CRMBundle

Parameters & Return Object
Inputs BusiRegActorID, automated and human input
Output BusiRegCustomer

Business Context
Applicant’s profile data is essential for the registration process. It con-
tains the application actor identifier to identify an applicant uniquely.
Moreover, it contains the actor id which is used to initiate certain pro-
cess internal tasks. Further information of the applicant such as tax-
ation number and bank information can be attached to an applicant’s
profile. This operation creates a record for the applicant’s profile per-
sistently within the CRM backend application system.

Related Business Objects
BusiRegCustomer, BusiRegCustomerID, BusiRegActorID, BusiReg-
CustomerBankInfo, BusiRegCustomerTaxID

Constraints

• The service operates only on general, insensitive customer data;

• no duplicated profile will be created in the backend;

• once an applicant’s profile has been created, this operation will
not be able to delete it, instead when registration process has
finished, it can be transformed to the dormant state;

• precondition is that no identical applicant profile exists in CRM;

• postcondition is that a profile corresponding to the applicant is
created and accessible in CRM.

Table 5.3: Enterprise service: Create and initialize CRM applicant profile

Patrick Un Master’s Thesis

126 5 Conceptual Functional Synthesis of Enterprise Services

Service Aspects Description

Definition
This service attempts to access applicant’s bank detail in financial
accounting module’s backend database and returns a public view of
the applicant’s bank and financial information such as bank institute,
bank account number, clearance number, taxation number, IBAN/BIC
codes, etc.

Technical Data
Technical Name InboundNWSUITE_FI_SearchViewBankInfoByCRMID_In_Sync
Namespace http://sap.com/xi/NW/APPL/Global
MEP inbound
Mode synchronous
Change/Update Behavior N.A.
Idempotency idempotent
Multi-operational N.A.
Bundle Association FinancialAccountingBundle

Parameters & Return Object
Inputs BusiRegCustomerID
Output BusiRegCustomerBankInfo

Business Context
An agent or an official at a business registration administration can use
this service to examine whether an applicant has deposited valid bank
account information.

Related Business Objects
BusiRegCustomerID, BusiRegCustomerAccount, BusiRegCustomer-
AccountID, BusiRegCustomerAccountHolder

Constraints

• precondition is that there is an application case associated with
an applicant in the CRM system and the applicant’s id can be
used to search for her bank account information in the backend
financial accounting system;

• postcondition is that an agent has gained knowledge to know
either an applicant’s back account information is captured or not;

• invariance is that if a set of bank detail for the applicant already
exists in the financial accounting system, its state and internal
data structure is not changed.

Table 5.4: Enterprise service: Read bank information in CRM

Master’s Thesis Patrick Un

5.1 Guiding Process Scenario 127

Service Aspects Description

Definition
This enterprise service attempts to create a new profile of applicant’s
bank detail in the financial accounting module’s backend database and
link this profile with a record in CRM backend for the applicant’s reg-
istration case.

Technical Data
Technical Name InboundNWSUITE_FI_CreateInitBankInfoBRAppl_In_Sync
Namespace http://sap.com/xi/NW/APPL/Global
MEP inbound
Mode synchronous
Change/Update Behavior ACID transactional
Idempotency N.A.
Multi-operational N.A.
Bundle Association FinancialAccountingBundle

Parameters & Return Object
Inputs BusiRegCustomerID, automated and human input
Output BusiRegCustomerBankInfo

Business Context
Applicant’s bank account information is essential for the registration
process. According to this information, taxation issues are resolved
and the registration service is charged. This operation creates a record
for the applicant’s bank account information persistently in the back-
end financial accounting application system.

Related Business Objects
BusiRegCustomer, BusiRegCustomerBankInfo

Constraints

• As usual this service operates on public accessible view of in-
sensitive bank account information of the applicant;

• no duplicated bank detail will be created in the backend;

• precondition is that there is an application case (business reg-
istration or other chargable services) with associated applicant
created and stored in the CRM system so that the created bank
detail is associated with the applicant by applicant’s id;

• postcondition is that an applicant’s bank detail is created and
accessible in the bankend financial accounting system.

Table 5.5: Enterprise service: Create bank information of applicant in CRM

Patrick Un Master’s Thesis

128 5 Conceptual Functional Synthesis of Enterprise Services

Service Aspects Description

Definition
This enterprise service sends a denial to reject an applicant’s registra-
tion.

Technical Data
Technical Name InboundNWSUITE_CRM_RejectBRApplByCRMID_In_Sync
Namespace http://sap.com/xi/NW/APPL/Global
MEP inbound
Mode synchronous
Change/Update Behavior ACID transactional
Idempotency N.A.
Multi-operational N.A.
Bundle Association CRMBundle

Parameters & Return Object
Inputs BusiRegCustomerID, BusiRegEDocument
Output denial in paper and electronic form

Business Context
An agent is informed of denial of a specific application case and sends
a denial in both paper and electronic form to an applicant.

Related Business Objects
BusiRegEDocument, PublicRecordDocument, BusiRegCustomer

Constraints

• precondition of this operation is that there exists a rejection of
the specified business registration application;

• postcondition is that agent has notified the applicant that her case
is rejected and closed.

• invariant condition is that after the notification, the CRM and FI
systems will not change the stored applicant’s profile and bank
detail and that the application case persists in the backend record
and document management system.

Table 5.6: Enterprise service: Process application denial of inbound business registration

Master’s Thesis Patrick Un

5.1 Guiding Process Scenario 129

Service Aspects Description

Definition
This service searches for the applicant’s taxation register to declare
registration service charges.

Technical Data
Technical Name InboundNWSUITE_BRPA_SearchByIDBRApplTaxRA_In_Sync
Namespace http://sap.com/xi/NW/APPL/Global
MEP inbound
Mode synchronous
Change/Update Behavior ACID transactional
Idempotency N.A.
Multi-operational N.A.
Bundle Association BusinessRegistrationPublicAdminBundle

Parameters & Return Object

Inputs
BusiRegCustomerID, BusiRegEDocument, BusiRegCustomerBank-
Info

Output BusiRegCustomerTaxID

Business Context
An agent or tax department official can use this service to levy a tax on
the charges of business registration service performed.

Related Business Objects
BusiRegCustomer, BusiRegEDocument, BusiRegCustomerBankInfo,
BusiRegCustomerTaxID

Constraints

• precondition is that there exists an applicant’s profile in CRM
and her bank detail in FI so that one can search the applicant’s
taxation register to record the service charge;

• postcondition is that a taxation register is located and the bank
clearance is successful for charging the registration service and
taxation department has recorded the transaction;

• business registration charge is taxed only once and that the pro-
cess must guarantee this property.

Table 5.7: Enterprise service: Search taxation register for charging service

Patrick Un Master’s Thesis

130 5 Conceptual Functional Synthesis of Enterprise Services

Service Aspects Description

Definition
This enterprise service initiates billing the applicant and outputs an
invoice for the performed registration service.

Technical Data
Technical Name InboundNWSUITE_BRPA_BillByIDBRApplInvoicing_In_Sync
Namespace http://sap.com/xi/NW/APPL/Global
MEP inbound
Mode synchronous
Change/Update Behavior ACID transactional
Idempotency N.A.
Multi-operational N.A.
Bundle Association BusinessRegistrationPublicAdminBundle

Parameters & Return Object

Inputs
BusiRegCustomerID, BusiRegCustomerBankInfo, BusiRegCustomer-
TaxID

Output electronic and printed invoice

Business Context
An agent or registration official can use this service to bill and send an
invoice for having perform a business registration service on behalf of
an applicant.

Related Business Objects
BusiRegCustomer, BusiRegCustomerBankInfo, BusiRegCustomer-
TaxID, PublicRecordDocument

Constraints

• precondition is that there exists an applicant’s profile in CRM
and her bank detail is in FI so that an agent can record billing in-
formation for the applicant and initiate external payment process
to debit an applicant’s account;

• postcondition is that an external payment process to debit an ap-
plicant’s account is initiated and that the transaction is recorded
in the applicant’s profile as history in CRM as well as in the
specific registration record;

• business registration service is billed only once and that the pro-
cess must guarantee this property.

Table 5.8: Enterprise service: Charge registration service and send invoice

Master’s Thesis Patrick Un

5.2 Action Theory Applied 131

Simultaneously government agency can choose to send registration confirmation to the applicant using
service described in table 5.9.

Subsequently, successfully registered business is contained in the internal dataflow which can be perma-
nently or temporarily archived using service referred in table 5.10.

5.2 Action Theory Applied

In the spirit of [McIlraith, 1999, Giacomo & Sardina, 2009] and based on the solid foundations on the basic
action theory of the situation calculus described in section 4.2 of chapter 4, we attempt to derive a correct
axiomatization of our process domain.

5.2.1 Preliminary Action Theory Axiomatization

The required complex functionalities can be synthesized by resorting to model-based programming which
comprises reusable high level programs that capture sufficient procedure knowledge of how tasks or pro-
cess activities can be accomplished without specifying all system specific details. A model-based program
consists of (i) a model which is an accurate and integrated representation in terms of formal appropriate
axiomatization of the abstract problem domain. The model explicates behavior of the process components in
the domain that are being programmed, the operators and controller actions that affects the model and states
of the process components; (ii) a program which describes the model with high level procedures such as us-
ing the languages GOLOG/ConGolog5 to realize the model using the defined operators or controller actions
and states of the domain. We adopt the proven approach of representing process activities, supported with
operations of existing enterprise services, as these operators and controller actions in the high level generic
procedures are also reusable.

5In the following text we include the term ConGolog also when we mention GOLOG.

Patrick Un Master’s Thesis

132 5 Conceptual Functional Synthesis of Enterprise Services

Service Aspects Description

Definition
This service performs confirmation and sends notification.

Technical Data
Technical Name InboundNWSUITE_BRPA_ConfirmByIDBRAppl_In_Sync
Namespace http://sap.com/xi/NW/APPL/Global
MEP inbound
Mode synchronous
Change/Update Behavior ACID transactional
Idempotency N.A.
Multi-operational N.A.
Bundle Association BusinessRegistrationPublicAdminBundle

Parameters & Return Object
Inputs BusiRegCustomerID
Output electronic mail and official printed confirmation

Business Context
An agent uses this service to send notification to an applicant to con-
firm the business registration process is completed successfully.

Related Business Objects
BusiRegCustomer

Constraints

• precondition is that there exists an applicant’s profile in CRM so
that an agent can look up contact information;

• postcondition is that a confirmation is sent by an agent to in-
form the applicant and that the applicant’s profile and registra-
tion record is marked as notified in the backend CRM system;

• invariant condition is that the finished registration transaction is
not changed;

• multiple confirmations are not desirable but will not have influ-
ence on the complete business registration process.

Table 5.9: Enterprise service: Process registration send confirmation

Master’s Thesis Patrick Un

5.2 Action Theory Applied 133

Service Aspects Description

Definition
This enterprise service transforms the finished business registration
process and relevant documents to dormant on the enterprise document
and record management system.

Technical Data
Technical Name InboundNWSUITE_RDM_DormantApplDocByIDBRAppl_In_Async
Namespace http://sap.com/xi/NW/APPL/Global
MEP inbound
Mode asynchronous
Change/Update Behavior N.A.
Idempotency N.A.
Multi-operational N.A.
Bundle Association RecordDocumentManagementBundle

Parameters & Return Object
Inputs BusiRegEDocument
Output N.A. (application acknowledgement)

Business Context
An agent uses this service to archive a processed business registration
case which means that the record is transferred to a dormant state in
order to store it permanently for bookkeeping purpose. If necessary it
can be retrieved later for review or scrutiny.

Related Business Objects
BusiRegEDocument, PublicRecordDocument

Constraints

• precondition is that there exists an applicant’s profile and a cer-
tain associated registration record that is finished in CRM so that
an agent can transferred it into dormant state;

• postcondition is that the record is dormant but not deleted;

• invariant condition is that the applicant’s relevant bank account
information or taxation information is not changed;

• the characteristical interaction mode is asynchronous. An agent
lets the document management system proceed with the archival
while it moves on and is subsequently notified when archival is
finished.

Table 5.10: Enterprise service: Process dormant registration application for archival

Patrick Un Master’s Thesis

134 5 Conceptual Functional Synthesis of Enterprise Services

Se
rv

ic
e

O
pe

ra
tio

ns
C

om
pl

ex
A

ct
io

ns
in
L
si
tc
a
lc

In
bo

un
dN

W
SU

IT
E

_R
D

M
_P

ro
ce

ss
B

R
A

pp
lD

oc
_I

n_
Sy

nc
[t

ab
le

5.
1]

R
ec

vR
eg

A
pp

lD
oc

(R
eg

A
pp

lD
oc

,R
eg

Ty
pe

,R
eg

L
oc

,R
eg

In
du

st
)

In
bo

un
dN

W
SU

IT
E

_C
R

M
_S

ea
rc

hB
yI

D
B

R
A

pp
l_

In
_S

yn
c

[t
ab

le
5.

2]
Se

ar
ch

A
pp

lP
ro

fil
e(

B
us

iR
eg

A
ct

or
ID

)

In
bo

un
dN

W
SU

IT
E

_C
R

M
_C

re
at

eI
ni

tB
R

A
pp

l_
In

_S
yn

c
[t

ab
le

5.
3]

C
re

at
eA

pp
lP

ro
fil

e(
B

us
iR

eg
A

ct
or

ID
)

In
bo

un
dN

W
SU

IT
E

_F
I_

Se
ar

ch
V

ie
w

B
an

kI
nf

oB
yC

R
M

ID
_I

n_
Sy

nc
[t

ab
le

5.
4]

Se
ar

ch
A

pp
lB

an
kI

nf
o(

B
us

iR
eg

C
us

to
m

er
ID

)

In
bo

un
dN

W
SU

IT
E

_F
I_

C
re

at
eI

ni
tB

an
kI

nf
oB

R
A

pp
l_

In
_S

yn
c

[t
a-

bl
e

5.
5]

C
re

at
eA

pp
lB

an
kI

nf
o(

B
us

iR
eg

C
us

to
m

er
ID

)

In
bo

un
dN

W
SU

IT
E

_C
R

M
_R

ej
ec

tB
R

A
pp

lB
yC

R
M

ID
_I

n_
Sy

nc
[t

a-
bl

e
5.

6]
R

ej
B

us
iR

eg
(B

us
iR

eg
C

us
to

m
er

ID
,R

eg
A

pp
lD

oc
)

In
bo

un
dN

W
SU

IT
E

_B
R

PA
_S

ea
rc

hB
yI

D
B

R
A

pp
lT

ax
R

A
_I

n_
Sy

nc
[t

a-
bl

e
5.

7]
R

ec
A

pp
lT

ax
In

fo
(B

us
iR

eg
C

us
to

m
er

ID
,R

eg
A

pp
lD

oc
,C

us
tB

an
kI

nf
o)

In
bo

un
dN

W
SU

IT
E

_B
R

PA
_B

ill
B

yI
D

B
R

A
pp

lI
nv

oi
ci

ng
_I

n_
Sy

nc
[t

a-
bl

e
5.

8]
B

ill
A

pp
l(B

us
iR

eg
C

us
to

m
er

ID
,C

us
tB

an
kI

nf
o,

C
us

tT
ax

ID
)

In
bo

un
dN

W
SU

IT
E

_B
R

PA
_C

on
fir

m
B

yI
D

B
R

A
pp

l_
In

_S
yn

c
[t

a-
bl

e
5.

9]
C

on
fir

m
R

eg
(B

us
iR

eg
C

us
to

m
er

ID
)

In
bo

un
dN

W
SU

IT
E

_R
D

M
_D

or
m

an
tA

pp
lD

oc
B

yI
D

B
R

A
pp

l_
In

_A
sy

nc
[t

ab
le

5.
10

]
A

rc
hi

ve
R

eg
(R

eg
A

pp
lD

oc
)

Ta
bl

e
5.

11
:

M
ap

pi
ng

of
se

rv
ic

e
op

er
at

io
ns

to
co

rr
es

po
nd

in
g

co
m

pl
ex

ac
tio

ns
in

th
e

si
tu

at
io

n
ca

lc
ul

us

Master’s Thesis Patrick Un

5.2 Action Theory Applied 135

The fact that all our selected enterprise services are not multi-operational, i.e., they expose only one
operation for each service interface is favorable for axiomatization since each operation corresponds to one
service which can be modeled as one generic procedure consisting of world-altering complex action in the
situation calculus domain action theory. Otherwise we would have used multiple complex actions to repre-
sent all operations within the same service; as a result necessarily complicating our model. Consequently
we have taken this fact as an advantage in our model that each service possesses exactly one world-altering
complex action.

Each complex action in our domain action theory encapsulates procedural knowledge in Lsitcalc and
comprises a set of primitive actions in the situation calculus that when performed exhibit the behavior of the
procedural complex action. The technical name of each service is therefore taken and mapped to a corre-
sponding complex action with input parameters in the argument list. This mapping of actions to services are
listed in table 5.11. Naturally the complex actions will be defined as generic procedures and further broken
down into their situation calculus primitive actions so that we can build an action theory that axiomatizes our
scenario.

5.2.2 Building Domain Model

We recall that an axiomatization in the situation calculus language Lsitcalc consists of the following axioms:

• foundational axioms of the situation calculus Σ

• set of unique names axioms for actions and domain closure axioms Duna,

• set of axioms DS0 describing the initial situation S0,

• action precondition axioms, one for each primitive action Dap,

• successor state axioms, one for each fluent defined Dss.

We define the essential primitive actions that are necessary to constitute the procedural complex actions,
with the primitive actions at our disposal a set of state constraints can be derived to characterize the business
registration process scenario in a formal way.

Primitive Actions

For brevity the parameters taken by primitive actions are abbreviated and mentioned when necessary.

• receive(rd) → Receive an applicant’s document RegApplDoc into system buffer where rd is an
abbreviated form.

• return(rd) → Return and ignore a business registration application document rd.

• check_syntax(rd) → Check well-formedness of syntax and data in the business registration appli-
cation document.

• validate_rd(rd) → Validate the data in the business registration application document.

• create_rdbo(rd) → Create an instance of SAP Business Object (BO) in system.

• store_rdbo → Persistently store the registration application document BO instance in backend database.

• retrieve_rdbo(id) → Retrieve an applicant’s registration application case using an id.

Patrick Un Master’s Thesis

136 5 Conceptual Functional Synthesis of Enterprise Services

• login_crm → Login to CRM (customer relationship management) application module.

• access_crm → Initialize to access information on the CRM module.

• login_fi → Login to FI (financial accounting) application module.

• access_fi → Initialize to access information on FI module.

• lookup_cusprof(apid) → Lookup an applicant’s profile using an customer (applicant’s) id.

• create_cusprofbo(apid) → Create an applicant profile BO to contain profile information identified
with applicant’ id apid in CRM.

• add_cusprofbo(val) → Add a value to the applicant profile BO.

• store_cusprofbo → Persistently store the applicant profile BO instance in backend database.

• display_cusprof(apid) → Display information in a specific applicant’s profile by id.

• lookup_binfo(apid) → Lookup an applicant’s bank account information by id.

• display_binfo(apid) → Display bank detail of applicant by id.

• create_binfobo(apid) → Create a BO to contain new bank account information in FI associated
with an applicant identified with apid.

• add_binfobo(val) → Append a value to bank detail BO.

• store_binfobo → Persistently store the bank detail BO instance in backend database.

• deny → Reject registration.

• archive(rd) → Make a business registration application dormant and archive it.

• read_tax(apid) → Read tax information by id.

• record_tx(taxid) → Record tax to levy in current charge.

• bill(apid) → Charge an applicant for service.

• send_invoice(apid) → Send out invoice to applicant by id.

• notify → Send confirmation notification to applicant.

Assuming that all these primitive actions have their unique name axioms correctly specified which for
parsimonious reason is not shown here. We recall that fluents are dependent on situation to take either true
or false value with the general form F (s) or F (~x, s).

Fluents

• exist_rd(s) → in situation s there exists a business registration application,

• received(rd, s) → in situation s the business registration application document rd is received in the
system buffer,

• syntax_ok(rd, s) → in situation s the syntax is correct and compliant,

• is_valid(rd, s) → in situation s the data contained in rd is valid and checked,

Master’s Thesis Patrick Un

5.2 Action Theory Applied 137

• has_rdbo(rd, s) → in situation s the registration application document BO identified with rd exists
in backend,

• stored(bk, s) → in situation s the a backend bk has performed a store operation,

• accessible(bk, s) → in situation s the backend named with variable bk is accessible,

• logged_on(bk, s) → in situation s agent is logged on the backend named with variable bk,

• has_cusprofbo(apid, s) → in situation s the applicant’s profile BO identified with apid exists in
backend,

• has_binfobo(apid, s) → in situation s the applicant’s bank detail BO identified with apid exists in
backend,

• has_data(bk, s) → in situation s the named backend contains data,

• writable(bk, s) → in situation s the agent can write/update date on the named backend,

• rejectable(s) → in situation s a registration application can be rejected,

• is_dormant(rd, s) → in situation s the business registration application document in rd is dormant,

• is_taxed(apid, s) → in situation s the service charge for applicant with id apid is taxed,

• avail_taxno(apid, s) → in situation s tax information is available for applicant with id apid,

• charged(apid, s) → in situation s the applicant with apid is charged,

• registered(apid, s) → in situation s the applicant identified with apid is successfully registered for
a business,

• located(apid, s) → in situation s the address of applicant with id apid can be located,

• notified(apid, s) → in situation s notification is sent to applicant with id apid.

Action Precondition Axioms

We recall that preconditions for the primitive actions are expressed in action precondition axioms which take
the general form:

Poss(a, s) ⊃ necessary_conditions

The essential primitive actions are axiomatized as follows6:

Poss(receive(rd), s) ⊃ exist_rd(s) ∧ ¬received(rd, s) (5.2.1)

Poss(return(rd), s) ⊃ >(true) (5.2.2)

Poss(check_syntax(rd), s) ⊃ exist_rd(s) (5.2.3)

Poss(validate_rd(rd), s) ⊃ exist_rd(s) (5.2.4)

6The parameter rdms is a shorthand for backend record and document management system.

Patrick Un Master’s Thesis

138 5 Conceptual Functional Synthesis of Enterprise Services

Poss(create_rdbo(rd), s) ⊃ logged_on(rdms, s)
∧ accessible(rdms, s)
∧ exist_rd(s)
∧ ¬has_rdbo(rd, s)

(5.2.5)

Poss(store_rdbo, s) ⊃ logged_on(rdms, s)
∧ accessible(rdms, s)
∧ writable(rdms, s)

(5.2.6)

Poss(retrieve_rdbo(id), s) ⊃ has_rdbo(rd, s)
∧ accessible(rdms, s)

(5.2.7)

Poss(login_crm, s) ⊃ accessible(crm, s) (5.2.8)

Poss(access_crm, s) ⊃ logged_on(crm, s)
∧ accessible(crm, s)
∧ has_data(crm, s)

(5.2.9)

Poss(login_fi, s) ⊃ accessible(fi, s) (5.2.10)

Poss(access_fi, s) ⊃ logged_on(fi, s)
∧ accessible(fi, s)
∧ has_data(fi, s)

(5.2.11)

Poss(lookup_cusprof(apid), s) ⊃ logged_on(crm, s)
∧ accessible(crm, s)
∧ has_data(crm, s)
∧ has_cusprofbo(apid, s)

(5.2.12)

Poss(create_cusprofbo(apid), s) ⊃ logged_on(crm, s)
∧ accessible(crm, s)
∧ has_data(crm, s)
∧ ¬has_cusprofbo(apid, s)

(5.2.13)

Poss(add_cusprofbo(val), s) ⊃ logged_on(crm, s)
∧ accessible(crm, s)
∧ has_cusprofbo(apid, s)

(5.2.14)

Master’s Thesis Patrick Un

5.2 Action Theory Applied 139

Poss(store_cusprofbo, s) ⊃ logged_on(crm, s)
∧ accessible(crm, s)
∧ writable(crm, s)

(5.2.15)

Poss(display_cusprof(apid), s) ⊃ logged_on(crm, s)
∧ accessible(crm, s)
∧ has_cusprofbo(apid, s)

(5.2.16)

Poss(lookup_binfo(apid), s) ⊃ logged_on(crm, s)
∧ accessible(crm, s)
∧ has_cusprofbo(apid, s)
∧ logged_on(fi, s)
∧ accessible(fi, s)
∧ has_data(fi, s)

(5.2.17)

Poss(display_binfo(apid), s) ⊃ logged_on(crm, s)
∧ accessible(crm, s)
∧ has_cusprofbo(apid, s)
∧ logged_on(fi, s)
∧ accessible(fi, s)
∧ has_binfobo(apid, s)

(5.2.18)

Poss(create_binfobo(apid), s) ⊃ logged_on(crm, s)
∧ accessible(crm, s)
∧ has_cusprofbo(apid, s)
∧ logged_on(fi, s)
∧ accessible(fi, s)
∧ has_data(fi, s)
∧ ¬has_binfobo(apid, s)

(5.2.19)

Poss(add_binfobo(val), s) ⊃ logged_on(crm, s)
∧ accessible(crm, s)
∧ has_cusprofbo(apid, s)
∧ logged_on(fi, s)
∧ accessible(fi, s)
∧ has_binfobo(apid, s)

(5.2.20)

Poss(store_binfobo, s) ⊃ logged_on(fi, s)
∧ accessible(fi, s)
∧ writable(fi, s)

(5.2.21)

Patrick Un Master’s Thesis

140 5 Conceptual Functional Synthesis of Enterprise Services

Poss(deny, s) ⊃ rejectable(s) (5.2.22)

Poss(archive(rd), s) ⊃ received(rd, s)
∧ has_rdbo(rd, s)
∧ ¬is_dormant(rd, s)

(5.2.23)

Poss(read_tax(apid), s) ⊃ logged_on(fi, s)
∧ accessible(fi, s)
∧ avail_taxno(apid, s)

(5.2.24)

Poss(record_tx(taxid), s) ⊃ logged_on(fi, s)
∧ accessible(fi, s)
∧ avail_taxno(apid, s)
∧ ¬is_taxed(apid, s)

(5.2.25)

Poss(bill(apid), s) ⊃ logged_on(fi, s)
∧ accessible(fi, s)
∧ has_binfobo(apid, s)
∧ is_taxed(apid, s)
∧ ¬charged(apid, s)

(5.2.26)

Poss(send_invoice(apid), s) ⊃ logged_on(fi, s)
∧ accessible(fi, s)
∧ has_binfobo(apid, s)
∧ is_taxed(apid, s)
∧ charged(apid, s)

(5.2.27)

Poss(notify, s) ⊃ logged_on(fi, s)
∧ accessible(fi, s)
∧ has_binfobo(apid, s)
∧ is_taxed(apid, s)
∧ charged(apid, s)
∧ registered(apid, s)
∧ located(apid, s)
∧ ¬notified(apid, s)

(5.2.28)

Master’s Thesis Patrick Un

5.2 Action Theory Applied 141

Successor State Axioms

We recall that for each fluent a successor state is specified using successor state axiom which takes the
general form:

Poss(a, s) ⊃ [fluent(~x, do(a, s)) ≡ action_making_it_true

∨ a_state_constraint_made_it_true

∨ it_was_already_true

∧ neither_an_action_nor_a_state_made_it_false]

where the fluent can be in the form fluent(~x, do(a, s)) with arguments as shown or without argument
fluent(do(a, s)) and with only situation.

The successor state axioms for our domain are axiomatized as follows:

Poss(a, s) ⊃ [exist_rd(do(a, s)) ≡
a = receive(rd)
∨ received(rd, s)
∨ exist_rd(s)
∧ a 6= return(rd)]

(5.2.29)

Poss(a, s) ⊃ [received(rd, do(a, s)) ≡
a = receive(rd)
∨ received(rd, s)
∧ a 6= return(rd)]

(5.2.30)

Poss(a, s) ⊃ [syntax_ok(rd, do(a, s)) ≡
a = check_syntax(rd)
∨ syntax_ok(rd, s)
∧ a 6= return(rd)]

(5.2.31)

Poss(a, s) ⊃ [is_valid(rd, do(a, s)) ≡
a = validate_rd(rd)
∨ is_valid(rd, s)
∧ a 6= return(rd)]

(5.2.32)

Poss(a, s) ⊃ [has_rdbo(rd, do(a, s)) ≡
a = create_rdbo(rd)
∨ has_rdbo(rd, s)
∧ a 6= return(rd) ∧ a 6= deny]

(5.2.33)

Poss(a, s) ⊃ [stored(rdms, do(a, s)) ≡
a = store_rdbo

∨ stored(rdms, s)
∧ a 6= deny]

(5.2.34)

Patrick Un Master’s Thesis

142 5 Conceptual Functional Synthesis of Enterprise Services

Poss(a, s) ⊃ [accessible(bk, do(a, s)) ≡
a = login_crm ∨ a = login_fi ∨ a = login_rdms

∨ accessible(bk, s)
∨ logged_on(bk, s)
∧ a 6= log_out(bk)]

(5.2.35)

Poss(a, s) ⊃ [logged_on(bk, do(a, s)) ≡
a = login_crm ∨ a = login_fi ∨ a = login_rdms

∨ logged_on(bk, s)
∧ a 6= log_out(bk)]

(5.2.36)

Poss(a, s) ⊃ [has_cusprofbo(apid, do(a, s)) ≡
a = create_cusprofbo(apid)
∨ has_cusprofbo(apid, s)
∧ a 6= delete_cusprofbo(apid)]

(5.2.37)

Poss(a, s) ⊃ [has_binfobo(apid, do(a, s)) ≡
a = create_binfobo(apid)
∨ has_binfobo(apid, s)
∧ a 6= delete_binfobo(apid)]

(5.2.38)

Poss(a, s) ⊃ [has_data(bk, do(a, s)) ≡
a = create_cusprofbo(apid)
∨ a = create_binfobo(apid)
∨ has_data(bk, s)
∧ a 6= delete_cusprofbo(apid) ∧ a 6= delete_binfobo(apid)]

(5.2.39)

Poss(a, s) ⊃ [writable(bk, do(a, s)) ≡
(a = login_crm ∨ a = login_fi ∨ a = login_rdms) ∧ privileged_write(s)
∨ writable(bk, s)
∧ a 6= log_out(bk)]

(5.2.40)

Poss(a, s) ⊃ [rejectable(do(a, s)) ≡
a = deny

∨ rejectable(s)
∧ a 6= notify]

(5.2.41)

Poss(a, s) ⊃ [is_dormant(rd, do(a, s)) ≡
a = archive(rd)
∨ is_dormant(rd, s)
∧ a 6= reactivate]

(5.2.42)

Master’s Thesis Patrick Un

5.2 Action Theory Applied 143

Poss(a, s) ⊃ [is_taxed(apid, do(a, s)) ≡
a = read_tax(apid) ∧ record_tx(taxid)
∨ is_taxed(apid, s)
∧ a 6= deny]

(5.2.43)

Poss(a, s) ⊃ [avail_taxno(apid, do(a, s)) ≡
a = read_tax(apid)
∨ avail_taxno(apid, s) ∨ is_taxed(apid, s)
∨ ¬is_dormant(rd, s)]

(5.2.44)

Poss(a, s) ⊃ [charged(apid, do(a, s)) ≡
a = bill(apid)
∨ charged(apid, s)
∧ a 6= deny]

(5.2.45)

Poss(a, s) ⊃ [registered(apid, do(a, s)) ≡
a = bill(apid) ∧ payment_trans(s)
∨ registered(apid, s)
∧ charged(apid, s)
∧ ¬rejectable(s)]

(5.2.46)

Poss(a, s) ⊃ [located(apid, do(a, s)) ≡
a = display_cusprof(apid)
∨ located(apid, s)
∧ ¬moved(apid, s)]

(5.2.47)

Poss(a, s) ⊃ [notified(apid, do(a, s)) ≡
a = send_invoice(apid) ∨ a = notify

∨ registered(apid, s)
∧ notified(apid, s)]

(5.2.48)

Effect Axioms

We recall that for a certain action, an effect axiom states that if Poss(a, s), i.e., when it is possible to perform
a in situation s under some conditions, then fluent will be true resulting from doing a in s. Effect axioms
take this general form:

Poss(a, s) ∧ conditions ⊃ fluent(~x, do(a, s))

Some relevant effect axioms are axiomatized as follows:

Poss(a, s) ∧ a = deny ∨ a = return(rd) ⊃ rejectable(do(a, s)) (5.2.49)

Patrick Un Master’s Thesis

144 5 Conceptual Functional Synthesis of Enterprise Services

Poss(a, s) ∧ (a = login_crm ∨ a = login_fi) ⊃ accessible(bk, do(a, s)) (5.2.50)

Poss(a, s) ∧ a = bill(apid) ⊃ charged(apid, do(a, s)) (5.2.51)

Poss(a, s) ∧ (a = bill(apid) ∧ send_invoice(apid) ∧ notify) ⊃ registered(apid, do(a, s)) (5.2.52)

Axioms for Initial Situation

We also recall that for a basic action theory of a domain, we specify axioms for the initial situation S0 which
state what is known of the truth value of predicates and fluents relativized to the initial situation S0:

exist_rd(S0) ∧ received(rd, S0) ∧ syntax_ok(rd, S0) ∧ is_valid(rd, S0) (5.2.53)

¬is_dormant(rd, S0) ∧ ¬charged(apid, S0)∧
¬registered(apid, S0) ∧ ¬notified(apid, S0) ∧ ¬rejectable(S0)

(5.2.54)

logged_on(crm, S0) ∧ accessible(crm, S0)∧
logged_on(fi, S0) ∧ accessible(fi, S0)∧
logged_on(rdms, S0) ∧ accessible(rdms, S0)

(5.2.55)

writable(crm, S0) ∧ writable(fi, S0)∧
writable(rdms, S0) ∧ privileged_write(S0)

(5.2.56)

5.2.3 Model-based Program

A Model-based program is an instance of GOLOG program that is based on the basic action theory domain
model M that we have developed in the previous section. We recall the fundamental constructs and formal
semantics of GOLOG program which are described in section 4.2.4 in chapter 4. Consequently a GOLOG
program consists of a set of procedural complex actions such as those we have formalized in table 5.11 where
each procedural complex action can be implemented using the building blocks of the basic action theory
in Lsitcalc for our business registration scenario. In definition (4.2.39) we have defined that a composition of
enterprise service is obtained from an action execution trajectory ~A = [a1, . . . , an] which is a model-based
program instance and the trajectory represents a solution to a web service composition problem iff

M |= Do(δ, S0, do([a1, . . . , an] , S0))

Generation of such an instance ~A from the model M is the theorem proving task to prove that the basic
action theory entails:

D = Σ ∪ DS0 ∪ Dap ∪ Dss ∪ Duna

D |= ∃s′.Do(δ, S0, do(~A, S0))

An agent is capable of executing world-altering and knowledge-gathering actions accordingly given an or-
dered generated execution plan for these actions. The complex actions for the corresponding service oper-
ations can be implemented with the situation term as shown in the axiomatizations abbreviated. A fluent is

Master’s Thesis Patrick Un

5.2 Action Theory Applied 145

written in this shorthand form without situation s and can be macro-expanded to restore the situation term if
necessary [Levesque et al., 1997, Reiter, 2001a]. Procedures that implement the complex actions are shown
as follows:

proc
RecvRegApplDoc(rd, type, loc, ind)
∀(rd)[exist_rd ∨ received_rd]?;

check_syntax(rd); validate_rd(rd);
π(rd)[syntax_ok(rd) ∧ is_valid(rd) ∧ ¬has_rdbo(rd)]?;

create_rdbo(rd); store_rdbo ||
π(rd)[¬has_rdbo(rd) ∨ ¬stored(rdms)∨
¬syntax_ok(rd) ∨ ¬is_valid(rd)]?; return(rd).

endproc

(5.2.57)

proc
SearchApplProfile(apid)

login_crm;
∀(apid)
while ((∃apid).has_cusprofbo(apid) ∧ [access_crm]?) do

lookup_cusprof(apid);
display_cusprof(apid);

endwhile
endproc

(5.2.58)

proc
CreateApplProfile(apid)

login_crm;
if

[access_crm]? | ∀(apid)(¬∃apid ∈ has_cusprofbo(apid))
then

create_cusprofbo(apid);
endif

endproc

(5.2.59)

Patrick Un Master’s Thesis

146 5 Conceptual Functional Synthesis of Enterprise Services

proc
SearchApplBankInfo(apid)

login_fi;
∀(apid)
while ((∃apid).has_binfobo(apid) ∧ [access_fi]?) do

lookup_binfo(apid);
display_binfo(apid);

endwhile
endproc

(5.2.60)

proc
CreateApplBankInfo(apid)

login_fi;
if

[access_fi]? | ∀(apid)(¬∃apid ∈ has_binfobo(apid))
then

create_binfobo(apid);
endif

endproc

(5.2.61)

proc
RejBusiReg(apid, rd)

if
[rejectable]?

then
deny; return(rd);
call proc ArchiveReg(rd) ||
(login_crm; lookup_cusprof(apid); add_cusprofbo(deny))

endif
endproc

(5.2.62)

Master’s Thesis Patrick Un

5.2 Action Theory Applied 147

proc
RecApplTaxInfo(apid, rd, binfobo)

login_crm || login_fi || read_tax(apid)
if

[¬is_taxed ∧ avail_taxno(apid)]?
then

lookup_cusprof(apid) || lookup_binfo(apid)
record_tx(binfobo); add_cusprofbo(taxed)

endif
endproc

(5.2.63)

proc
BillAppl(apid, binfobo)

login_crm || login_fi

if
[¬charged(apid) ∧ ¬registered(apid)]?

then
lookup_cusprof(apid); bill(apid); send_invoice(apid);
store_cusprofbo || store_binfobo

endif
endproc

(5.2.64)

proc
ConfirmReg(apid)

login_crm;
if

[registered(apid) ∧ located(apid)]?
then

notify; store_cusprofbo
endif

endproc

(5.2.65)

Patrick Un Master’s Thesis

148 5 Conceptual Functional Synthesis of Enterprise Services

proc
ArchiveReg(rd)

if
[¬is_dormant(rd) ∧ (registered(apid) ∨ rejectable)]?

then
archive(rd);

endif
endproc

(5.2.66)

proc
main_controller()

while ((∃ apid).¬registered(apid) ∨ ¬rejectable) do
[(π apid, rd)RecvRegApplDoc;
(SearchApplProfile(apid) |CreateApplProfile(apid));
(SearchApplBankInfo(apid) |CreateApplBankInfo(apid));
RecApplTaxInfo(apid);BillAppl(apid);ConfirmReg(apid);ArchiveReg(rd)]
〉〉 < rejectable→ RejBusiReg(apid, rd) >

endwhile
endproc

(5.2.67)

As a matter of fact, these GOLOG/ConGolog procedures can be directly mapped to GOLOG/Con-
Golog programs using the Prolog programming language syntax. For parsimonious reasons, it is chosen
to show the more neat and brief high level procedures using the expression syntax which can be referenced
in [Reiter, 2001a]. Readers should have no problem to map these procedures to code easily and an excerpt is
shown in listing C.1 in appendix C.

Master’s Thesis Patrick Un

5.3 Discussion 149

5.3 Discussion

The main controller in listing (5.2.67) serves as a controller service for the composite service which supports
rejection which is modeled as exogenous actions in the ConGolog language.

By and large one can compare this approach of high level logic programming based on the situation cal-
culus action theory to the Roman approach described in section 4.3 in chapter 4 in the following generalized
aspects:

• a high level concept of community ontology which represents the common understanding of a shared
conceptualized reference semantics between services, regarding the meaning of the offered operations,
the semantics of the data flowing through the service operations;

• a set of available services which are the actual operational units available in a community;

• a mapping from the available services to the community ontology which describes how service behav-
ior is exposed in terms of the community ontology;

• and a client request specification which expresses the client’s functional or non-functional require-
ments that are articulated using the community ontology.

In the approach of the Roman Model, the community ontology is the set of actions shared among the
action alphabet; the available web services are those services in the service community; the mapping from
the available services to the community ontology is represented by the finite state transition systems that
represent the available services and the distinct client request specification is the target service. The Roman
approach is built upon foundations that mainly takes into account the client, independent from the available
services. Thus it can be regarded as a client driven approach.

Comparing to the Roman approach, the current applied approach in this chapter which originates from
the seminal research works by Reiter [Reiter, 2001a], McIlraith et al., represents a slightly different view
of the problem by doing without a distinct client specification. The community ontology is derived mainly
from the account of the available services by suitably coordinating and reconciling them. Therefore it can be
viewed as a service centric approach. Services are seen as transition systems and the common community
ontology is the basic action theory in the situation calculus. Having the advantage of high expressiveness
in characterizing dynamical systems, service names and concepts mapping in the common ontology is as-
sociated with a generic procedure (service) that is a GOLOG/ConGolog procedural program. The client’s
service request specification is in fact yet another GOLOG/ConGolog program which acts as controller and
with the help of agent executable actions, it specifies acceptable sequences of actions for the agent to execute.
However this does not represent a transition system that the client wants to realize nor can it influence its
realization much.

For our scenario, due to the presence of a comprehensive process oriented service configuration back-
drop, it is not necessary to characterize additional client request specification. In fact in the enterprise
services world, the complex and often heavyweight services are better treated with the service centric ap-
proach because oftentimes exisiting available services can be combined suitably to achieve a synthesized set
of functional requirements that can already suffice a range of desired goals.

Patrick Un Master’s Thesis

150 5 Conceptual Functional Synthesis of Enterprise Services

Master’s Thesis Patrick Un

151

6 Conclusion and Outlook

In this thesis we study integration of existing SAP enterprise services in a guiding business process scenario
for SOA4All. Knowing the goals of the SOA4All project [Domingue et al., 2008] to provide a service deliv-
ery platform to integrate vast number of existing services on the web for both expert and laymen. We have
studied the possibility of integrating existing SAP enterprise services of the SAP NetWeaver Suites products
within the current project context. With the main idea of SOA4All to integrate such wide-band of differently
conditioned services, from simple toy services to transaction-aware enterprise service, which often have very
different semantics, information requirements in terms of inputs and outputs and inherent constraints, we are
assured that the complex enterprise services require semantically expressive framework to handle integration
sufficiently.

6.1 Summary

We have given characterization of the fundamentals of process oriented enterprise services and answered the
following:

a) What is the technical nature of enterprise services with their underlying process models and con-
straints?

b) What information model and behavior model exist for SAP enterprise processes that are relevant to
our business scenario?

c) How are process constraints characterized and enforced when process activities perform actions that
change process states?

d) How can one compose desired functionality from existing enterprise services to satisfy process goal
with due observance to process constraints?

e) What sufficiently expressive formalism and semantic framework can be used to characterized dynam-
ical and automatic composition of enterprise services?

In a guiding business process integration scenario we have identified that the desired process can be
realized functionally by a set of existing enterprise services, therefore we realize that in fact our integration
scenario of existing enterprise services can be reduced to the well-known and sufficiently researched service
composition problem as a means of functional synthesis.

We have given brief descriptions and in-depth literature summary to relevant existing approaches and
practices from industry and academia researching the issues of service modeling, matching, discovery and
composition. We deliver a critical appraisal of these approaches based on selected dimensions and relevant
properties on completeness, correctness, observability, type of interaction model, client involvement and
handling of process artifacts such as dataflows, control flows.

Knowing of the appropriateness of formal methods of knowledge representation such as the situation
calculus [Reiter, 2001a] for reasoning in terms of expressiveness, completeness, decidability and favorable
runtime properties, we further internalize works in the domain of intelligent rational agent programming

152 6 Endnotes

theory for composition of services. We are convinced that we can approach the current integration problem
at best with this means.

We have laid down grounded logical foundations for

I) formalized service selection based on signature with observance to covariant and contravariant type
handling issues;

II) formal approach of semantic exposition of service capabilities, functional and non-functional proper-
ties;

III) studying semantic matching of services based on semantical capability descriptions;

IV) fundamentals of the situation calculus as a useful action theory to model dynamical system and the
related logic programming languages GOLOG/ConGolog;

V) an in-depth survey of an automatic service composition framework that is able to admit client func-
tional specification and capable of automatic service synthesis based on proper and correct delegation
of actions to available services.

Altogether they represent useful tools at our disposal to tackle our problem.

We have shown an appropriate axiomatization of the guiding business process scenario using the situa-
tion calculus basic action theory, thereby we have modeled the process as a domain and enterprise service
operations as world-altering operations in the situation calculus action theory. We have axiomatized the
inherent business process constraints with

i) situation calculus axioms of the initial states;

ii) action precondition axioms for each executable actions (operations);

iii) effects axioms;

iv) successor state axioms;

v) domain independent axioms.

With the approach initially proposed Reiter and McIlraith for service functional synthesis through adapting
and composing GOLOG/ConGolog generic procedures to mimic an agent based service controller to realize
the composition, we have provided the GOLOG/ConGolog realization of our domain action theory given
the fact that agents are capable of executing knowledge-gathering actions to realize our composition plan
derived from the resulting sequence of executable actions which represents the order in which the service
operations are executed in our domain.

6.2 Discussion of Lesson Learned

First of all the current enterprise services are not semantically annotated. In fact semantic enterprise services
are not prevailing in the enterprise service arena due to many reasons. We do not assume that existing in-
tegration approaches are inferior, nevertheless if there were the necessary semantic information in form of
metadata to explicate process intrinsic semantics, if process constraints were formulated explicitly, we would
have had a shortcut to real integration in the enterprise in two ways: (i) services would be more available
due to better service description, discovery and selection utilizing proven logical reasoning and inference

Master’s Thesis Patrick Un

6.3 Outlook 153

mechanisms to locate services. (ii) Services would be more interoperable due to possibility to use intelli-
gent service composition and synthesis techniques as we have reviewed to automatically combine existing
services to achieve more complex goals. The ubiquitous challenge of the project lies in the fact that we con-
stantly lack information which we require in the course of an attempt to axiomatize our process in a domain
theory. Existing business process integration approach is heavily based on syntactic language such as BPEL
and WS-BPEL which lack well-defined semantics regarding intrinsic process constaints and therefore cannot
suffice the requirement of automatic process composition without intervention. Since the industry has not
moved forward in a direction that favors the more expressive and knowledgeable approach which we desire.

No business process management software vendor has seriously offered more intelligent process prod-
ucts yet. Consequently, process integration often stays in a low level in terms of automatism and intelligence.
We still have to append semantic metadata to existing services so that we can characterize them accordingly.
It is obvious that such manual approach is to a large extent tedious and it is impractical to annotate every SAP
enterprise service this way because of the sheer number of available services; nor is it necessary to do so.
If a more favorable development in future release would incorporate semantics explication at design time, it
would definitely enhance the value and usability of the SAP enterprise applications as a whole.

Nevertheless serious domain knowledge is required in the substance and topics which we have discussed
extensively in this thesis. In order to strike a balanced solution to current process integration, our conceptual
approach serves as a proof-of-concept demonstration that a formalized and yet very expressive approach can
handle many of the heavyweight, implicit semantics of the enterprise services better. At the core it helps to
achieve our goal. Nevertheless we also realize that we must strike a balance between expressiveness and the
computational properties of such an approach, so that we can still ensure decidability.

One of the advantages of our conceptual approach in real integration is that services as generic proce-
dures can be easily reused. We can store them together with the existing services and access them whenever
necessary. From our formal characterization of service matching, we can obtain more precise matches to
service queries. We believe that that business process experts should understand these complex issues when
they approach a task to reengineer processes or combine services before making the conclusion that one
certain widely used process language alone will be a panacea to all integration problems.

6.3 Outlook

There are several ways to improve the current approach presented here. Regarding the current composition
approach to integrate existing services, future research can be stimulated to

• incorporate dataflow: a dataflow is a network of concurrently executing processes or automata that
communicate by exchanging messages over message passing channels. It represents the routes which
data can take during process execution. In order to take dataflow into account, the current service
composition framework based on action theory of the situation calculus and GOLOG logic program
can be extended in a way that can handle dataflow in processes. For instance one possible approach
to incorporate handling of dataflow is to model dataflow as concurrent, first-class actions which can
be executed interleaved with world-altering actions. This approach resembles the interleaved concur-
rency of knowledge-gathering actions executed by an agent [McIlraith & Son, 2002]; likewise an agent
can execute concurrently dataflow actions representing concurrent processes with message passing. A
dedicated channel connecting processes which serves as a route for a certain dataflow can be modeled
using a relational fluent with an appropriate arity: the first argument, for instance, can represent a
source process that is also modeled as a primitive action, the second argument takes the target (pro-

Patrick Un Master’s Thesis

154 6 Endnotes

cess), the dataflow object can be referenced in the subsequent argument with the last argument having
type situation by conventional. When a dataflow process engages an channel, i.e., passes through the
channel, it induces the relational fluent representing the channel to become true. Other dataflow shar-
ing the same channel will not interfere with the existing occupant since a different dataflow object is
passed to the relational fluent. Whenever the channel is idle or dataflow has stop using the channel,
the fluent has a false value;

• automatic generation of process execution language artifacts: from a resulting execution plan obtained
from the agent executing the actions over a situation tree, a mapping should be defined that allow to
output the actual process or service to a execution plan that is represented by certain templates. A gen-
erator for instance can read a set of sequences of these actions from GOLOG/ConGolog interpreter and
fill in the templates in order to output the execution plan in a concrete syntax, for instance, generating
WS-BPEL artifacts so that a BPEL engine can use it as immediate input to execute the sequence of
services. Since GOLOG/ConGolog is high level program that captures procedural knowledge of how
to accomplish a composition task through the entailed sequence of generic procedures representing
service actions without having to specify all system specific details; such programs are too abstract for
execution directly and must therefore appeal to agent instantiating and executing them with a known
state of the world. Consequently, automatic generating these implicitly captured procedural knowl-
edge into business process execution language output can instantaneously enable an execution engine
of that language to execute the related services, as a matter of fact, it is a reasonable step to bridge the
knowledge representation formalism with more widely adopted tools;

• support client request specification: in the current approach client specification is not distinctly ac-
counted for. In contrary to the Roman approach where client specification of the desired target service
represents a central concept in service composition. The current approach does not distinguish this,
instead the client service specification is exactly the GOLOG/ConGolog program which specifies ac-
ceptable sequence of actions as in AI planning. However it is not necessarily the situation based
transition system which a client intends to realize. The advantage of having dedicated client request
in form of a specification can enable a composition transition system to be synthesized exactly as de-
sired by the client as described in the Roman approach. Another advantage is the possibility to allow
client specification to be incompletely specified (as a form of desired non-determinism by the client)
so that a composition system can take more responsibility to synthesize a less strictly specified request.
Such a property in client specification proves to be helpful in dealing with non-deterministic situations
regarding uncertainty in outcomes of certain operation executions of services;

• better handle failure in behavior composition: failure situations are inherent to real world services.
The fact that failure can strike asynchronously has a significant impact on modeling behavior of com-
position. Exogenous actions are suitable in modeling failure in terms of generalizing failures as asyn-
chronously arriving events. The peril of this model is that it will require interrupts to handle the failure,
which in ConGolog is a (possibly prioritized) loop that repeatedly executes a partial program once an
interrupt gets control until a test condition becomes false. The caveat thereby is that first when the in-
terrupt finishes and releases control, any actions that are executable can execute. This property impacts
failure handling in the sense that control is not resumed after handling is finished where the procedure
left off but instead any possible concurrently executed actions. Secondly, to guarantee terminating the
loop corresponding to an interrupt we need extra interrupt enabling and disabling actions which have
the effects of block all other interrupts with lower priority. Consequence of this property can impact
the runtime efficiency of failure handling with interrupts.

These points mentioned represent possible directions for extending the current approach of situation calculus
theory on composition. It seems that the first and second point are of utmost interest to business processes

Master’s Thesis Patrick Un

6.3 Outlook 155

while the last two can be complemented with features by other frameworks.

Patrick Un Master’s Thesis

156 6 Endnotes

Master’s Thesis Patrick Un

157

A GOLOG Interpreter

1 %%
2 %
3 % A GOLOG INTERPRETER IN SWI−PROLOG
4 %
5 % T h i s s o f t w a r e was d e v e l o p e d by t h e C o g n i t i v e R o b o t i c s Group under t h e
6 % d i r e c t i o n o f Hec tor Levesque and Ray R e i t e r .
7 %
8 % Do n o t d i s t r i b u t e w i t h o u t p e r m i s s i o n .
9 % I n c l u d e t h i s n o t i c e i n any copy made .

10 %
11 %
12 % C o p y r i g h t (c) 1992−1997 by The U n i v e r s i t y o f Toronto ,
13 % Toronto , Ontar io , Canada .
14 %
15 % A l l R i g h t s R e s e r v e d
16 %
17 % P e r m i s s i o n t o use , copy , and modi fy , t h i s s o f t w a r e and i t s
18 % d o c u m e n t a t i o n f o r r e s e a r c h purpose i s h e r e by g r a n t e d w i t h o u t f e e ,
19 % p r o v i d e d t h a t t h e above c o p y r i g h t n o t i c e appears i n a l l c o p i e s and
20 % t h a t bo th t h e c o p y r i g h t n o t i c e and t h i s p e r m i s s i o n n o t i c e appear i n
21 % s u p p o r t i n g documen ta t ion , and t h a t t h e name o f The U n i v e r s i t y o f
22 % Toron to n o t be used i n a d v e r t i s i n g or p u b l i c i t y p e r t a i n i n g t o
23 % d i s t r i b u t i o n o f t h e s o f t w a r e w i t h o u t s p e c i f i c , w r i t t e n p r i o r
24 % p e r m i s s i o n . The U n i v e r s i t y o f Toron to makes no r e p r e s e n t a t i o n s abou t
25 % t h e s u i t a b i l i t y o f t h i s s o f t w a r e f o r any purpose . I t i s p r o v i d e d " as
26 % i s " w i t h o u t e x p r e s s or i m p l i e d wa r r a n t y .
27 %
28 % THE UNIVERSITY OF TORONTO DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
29 % SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
30 % FITNESS , IN NO EVENT SHALL THE UNIVERSITY OF TORONTO BE LIABLE FOR ANY
31 % SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
32 % RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN AN ACTION OF
33 % CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF OR IN
34 % CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE . ∗ /
35 %%
36 :− s t y l e _ c h e c k (− d i s c o n t i g u o u s) .
37 :− s e t _ p r o l o g _ f l a g (o p t i m i s e , t rue) .
38
39
40 :− dynamic p roc / 2 ,
41 r e s t o r e S i t A r g / 3 . /∗ Compi ler d i r e c t i v e s . Be s u r e ∗ /
42
43 :− op (8 0 0 , xfy , [&]) . /∗ C o n j u n c t i o n ∗ /
44 :− op (8 5 0 , xfy , [v]) . /∗ D i s j u n c t i o n ∗ /
45 :− op (8 7 0 , xfy , [= >]) . /∗ I m p l i c a t i o n ∗ /
46 :− op (8 8 0 , xfy , [<= >]) . /∗ E q u i v a l e n c e ∗ /
47 :− op (9 5 0 , xfy , [:]) . /∗ A c t i o n s e q u e n c e ∗ /
48 :− op (9 6 0 , xfy , [#]) . /∗ N o n d e t e r m i n i s t i c a c t i o n c h o i c e ∗ /
49
50 do (E1 : E2 , S , S1) :− do (E1 , S , S2) , do (E2 , S2 , S1) .
51 do (? (P) , S , S) :− h o l d s (P , S) .
52 do (E1 # E2 , S , S1) :− do (E1 , S , S1) ; do (E2 , S , S1) .

158 A GOLOG Interpreter

53 do (i f (P , E1 , E2) , S , S1) :− do ((? (P) : E1) # (?(−P) : E2) , S , S1) .
54 do (s t a r (E) , S , S1) :− S1 = S ; do (E : s t a r (E) , S , S1) .
55 do (w h i l e (P , E) , S , S1) :− do (s t a r (? (P) : E) : ?(−P) , S , S1) .
56 do (p i (V, E) , S , S1) :− sub (V, _ , E , E1) , do (E1 , S , S1) .
57 do (E , S , S1) :− p roc (E , E1) , do (E1 , S , S1) .
58 do (E , S , do (E , S)) :− p r i m i t i v e _ a c t i o n (E) , pos s (E , S) .
59
60 /∗ i n t r o d u c e d a p r e d i c a t e t o h and l e t e m p o r a l d e s c r i p t i o n by R e i t e r ∗ /
61 s t a r t (do (A, S) ,T) :− t ime (A, T) .
62
63 /∗ sub (Name , New , Term1 , Term2) : Term2 i s Term1 w i t h Name r e p l a c e d by New . ∗ /
64
65 sub (_ , _ , T1 , T2) :− var (T1) , T2 = T1 .
66 sub (X1 , X2 , T1 , T2) :− \+ var (T1) , T1 = X1 , T2 = X2 .
67 sub (X1 , X2 , T1 , T2) :− \+ T1 = X1 , T1 = . . [F | L1] , s u b _ l i s t (X1 , X2 , L1 , L2) ,
68 T2 = . . [F | L2] .
69 s u b _ l i s t (_ , _ , [] , []) .
70 s u b _ l i s t (X1 , X2 , [T1 | L1] , [T2 | L2]) :− sub (X1 , X2 , T1 , T2) , s u b _ l i s t (X1 , X2 , L1 , L2) .
71
72 /∗ The h o l d s p r e d i c a t e i m p l e m e n t s t h e r e v i s e d Lloyd−Topor
73 t r a n s f o r m a t i o n s on t e s t c o n d i t i o n s . ∗ /
74
75 h o l d s (P & Q, S) :− h o l d s (P , S) , h o l d s (Q, S) .
76 h o l d s (P v Q, S) :− h o l d s (P , S) ; h o l d s (Q, S) .
77 h o l d s (P => Q, S) :− h o l d s (−P v Q, S) .
78 h o l d s (P <=> Q, S) :− h o l d s ((P => Q) & (Q => P) , S) .
79 h o l d s (−(−P) , S) :− h o l d s (P , S) .
80 h o l d s (−(P & Q) , S) :− h o l d s (−P v −Q, S) .
81 h o l d s (−(P v Q) , S) :− h o l d s (−P & −Q, S) .
82 h o l d s (−(P => Q) , S) :− h o l d s (−(−P v Q) , S) .
83 h o l d s (−(P <=> Q) , S) :− h o l d s (− ((P => Q) & (Q => P)) , S) .
84 h o l d s (− a l l (V, P) , S) :− h o l d s (some (V,−P) , S) .
85 h o l d s (−some (V, P) , S) :− \+ h o l d s (some (V, P) , S) . /∗ N e g a t i o n ∗ /
86 h o l d s (−P , S) :− isAtom (P) , \+ h o l d s (P , S) . /∗ by f a i l u r e ∗ /
87 h o l d s (a l l (V, P) , S) :− h o l d s (−some (V,−P) , S) .
88 h o l d s (some (V, P) , S) :− sub (V, _ , P , P1) , h o l d s (P1 , S) .
89
90 /∗ The f o l l o w i n g c l a u s e t r e a t s t h e h o l d s p r e d i c a t e f o r non f l u e n t s , i n c l u d i n g
91 Pro log s y s t e m p r e d i c a t e s . For t h i s t o work p r o p e r l y , t h e GOLOG programmer
92 must p r o v i d e , f o r a l l f l u e n t s , a c l a u s e g i v i n g t h e r e s u l t o f r e s t o r i n g
93 s i t u a t i o n arguments t o s i t u a t i o n −s u p p r e s s e d terms , f o r example :
94 r e s t o r e S i t A r g (o n t a b l e (X) , S , o n t a b l e (X , S)) . ∗ /
95
96 h o l d s (A, S) :− r e s t o r e S i t A r g (A, S , F) , F ;
97 \+ r e s t o r e S i t A r g (A, S , F) , isAtom (A) , A.
98
99 isAtom (A) :− \+ (A = −W ; A = (W1 & W2) ; A = (W1 => W2) ;

100 A = (W1 <=> W2) ; A = (W1 v W2) ; A = some (X,W) ; A = a l l (X,W)) .
101
102 %r e s t o r e S i t A r g (pos s (A) , S , pos s (A , S)) .
103
104 %%
105 % EOF: go log . p l
106 %%

Listing A.1: A GOLOG interpreter implemented in SWI Prolog

Master’s Thesis Patrick Un

159

B ConGolog Interpreter

1 %%
2 % A ConGolog INTERPRETER BASED ON TRANSITION SEMANTIC
3 %
4 % T h i s s o f t w a r e was d e v e l o p e d by Hec tor J . Levesque , Yves L e s p e r a n c e &
5 % Giuseppe de Giacomo , S h e i l a M c I l r a i t h − A l l R i g h t s R e s e r v e d
6 %
7 % I t i s p u b l i s h e d i n t h e j o u r n a l a r t i c l e :
8 % ConGolog : a C o n c u r r e n t Programming Language Based on t h e S i t u a t i o n C a l c u l u s
9 %

10 % THE UNIVERSITY OF TORONTO DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
11 % SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
12 % FITNESS , IN NO EVENT SHALL THE UNIVERSITY OF TORONTO BE LIABLE FOR ANY
13 % SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
14 % RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN AN ACTION OF
15 % CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF OR IN
16 % CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE . ∗ /
17 %%
18 :− s t y l e _ c h e c k (− d i s c o n t i g u o u s) .
19 :− s e t _ p r o l o g _ f l a g (o p t i m i s e , t rue) .
20 :− dynamic p roc / 2 ,
21 r e s t o r e S i t A r g / 3 . /∗ Compi ler d i r e c t i v e s . Be s u r e ∗ /
22 :− op (8 0 0 , xfy , [&]) . /∗ C o n j u n c t i o n ∗ /
23 :− op (8 5 0 , xfy , [v]) . /∗ D i s j u n c t i o n ∗ /
24 :− op (8 7 0 , xfy , [= >]) . /∗ I m p l i c a t i o n ∗ /
25 :− op (8 8 0 , xfy , [<= >]) . /∗ E q u i v a l e n c e ∗ /
26 :− op (9 5 0 , xfy , [:]) . /∗ A c t i o n s e q u e n c e ∗ /
27 :− op (9 6 0 , xfy , [#]) . /∗ N o n d e t e r m i n i s t i c a c t i o n c h o i c e ∗ /
28 /∗ ∗∗∗ ∗ /
29 /∗ T r a n s b a s e d ConGolog I n t e r p r e t e r ∗ /
30 /∗ ∗∗∗ ∗ /
31 /∗ t r a n s (Prog , S i t , Prog_r , S i t _ r) ∗ /
32 t r a n s (a c t (A) , S , n i l , do (AS , S)) : sub (now , S , A, AS) , pos s (AS , S) .
33 t r a n s (t e s t (C) , S , n i l , S) : h o l d s (C , S) .
34 t r a n s (seq (P1 , P2) , S , P2r , Sr) : f i n a l (P1 , S) , t r a n s (P2 , S , P2r , Sr) .
35 t r a n s (seq (P1 , P2) , S , seq (P1r , P2) , Sr) : t r a n s (P1 , S , P1r , Sr) .
36 t r a n s (c h o i c e (P1 , P2) , S , Pr , Sr) : t r a n s (P1 , S , Pr , Sr) ; t r a n s (P2 , S , Pr , Sr) .
37 t r a n s (p i c k (V, P) , S , Pr , Sr) : sub (V, _ , P , PP) , t r a n s (PP , S , Pr , Sr) .
38 t r a n s (i t e r (P) , S , seq (PP , i t e r (P)) , Sr) : t r a n s (P , S , PP , Sr) .
39 t r a n s (i f (C , P1 , P2) , S , Pr , Sr) : h o l d s (C , S) , t r a n s (P1 , S , Pr , Sr) ; h o l d s (neg (C) , S) , t r a n s (P2 , S

, Pr , Sr) .
40 t r a n s (w h i l e (C , P) , S , seq (PP , w h i l e (C , P)) , Sr) : h o l d s (C , S) , t r a n s (P , S , PP , Sr) .
41 t r a n s (conc (P1 , P2) , S , conc (P1r , P2) , Sr) : t r a n s (P1 , S , P1r , Sr) .
42 t r a n s (conc (P1 , P2) , S , conc (P1 , P2r) , Sr) : t r a n s (P2 , S , P2r , Sr) .
43 t r a n s (p r c o nc (P1 , P2) , S , p r c o nc (P1r , P2) , Sr) : t r a n s (P1 , S , P1r , Sr) .
44 t r a n s (p r c o nc (P1 , P2) , S , p r c o nc (P1 , P2r) , Sr) : not t r a n s (P1 , S , _ , _) , t r a n s (P2 , S , P2r , Sr) .
45 t r a n s (i t e r c o n c (P) , S , conc (PP , i t e r c o n c (P)) , Sr) : t r a n s (P , S , PP , Sr) .
46 t r a n s (p c a l l (P_Args) , S , Pr , Sr) : sub (now , S , P_Args , P_ArgsS) , p roc (P_ArgsS , P) , t r a n s (P , S ,

Pr , Sr) .
47
48 /∗ f i n a l (Prog , S i t) ∗ /
49 f i n a l (n i l , S) .
50 f i n a l (seq (P1 , P2) , S) : f i n a l (P1 , S) , f i n a l (P2 , S) .

160 B ConGolog Interpreter

51 f i n a l (c h o i c e (P1 , P2) , S) : f i n a l (P1 , S) ; f i n a l (P2 , S) .
52 f i n a l (p i c k (V, P) , S) : sub (V, _ , P , PP) , f i n a l (PP , S) .
53 f i n a l (i t e r (P) , S) .
54 f i n a l (i f (C , P1 , P2) , S) : h o l d s (C , S) , f i n a l (P1 , S) ; h o l d s (neg (C) , S) , f i n a l (P2 , S) .
55 f i n a l (w h i l e (C , P) , S) : h o l d s (neg (C) , S) ; f i n a l (P , S) .
56 f i n a l (conc (P1 , P2) , S) : f i n a l (P1 , S) , f i n a l (P2 , S) .
57 f i n a l (p r c on c (P1 , P2) , S) : f i n a l (P1 , S) , f i n a l (P2 , S) .
58 f i n a l (i t e r c o n c (P) , S) .
59 f i n a l (p c a l l (P_Args)) : sub (now , S , P_Args , P_ArgsS) , p roc (P_ArgsS , P) , f i n a l (P , S) .
60
61 /∗ t r a n s ∗ (Prog , S i t , Prog_r , S i t _ r) ∗ /
62 t r a n s ∗ (P , S , P , S) .
63 t r a n s ∗ (P , S , Pr , Sr) : t r a n s (P , S , PP , SS) , t r a n s ∗ (PP , SS , Pr , Sr) .
64
65 /∗ do (Prog , S i t , S i t _ r) ∗ /
66 do (P , S , Sr) : t r a n s ∗ (P , S , Pr , Sr) , f i n a l (Pr , Sr) .
67
68 /∗ h o l d s (Cond , S i t) : as d e f i n e d i n [34] ∗ /
69 h o l d s (and (F1 , F2) , S) : h o l d s (F1 , S) , h o l d s (F2 , S) .
70 h o l d s (or (F1 , F2) , S) : h o l d s (F1 , S) ; h o l d s (F2 , S) .
71 h o l d s (a l l (V, F) , S) : h o l d s (neg (some (V, neg (F))) , S) .
72 h o l d s (some (V, F) , S) : sub (V, _ , F , Fr) , h o l d s (Fr , S) .
73 h o l d s (neg (neg (F)) , S) : h o l d s (F , S) .
74 h o l d s (neg (and (F1 , F2)) , S) : h o l d s (or (neg (F1) , neg (F2)) , S) .
75 h o l d s (neg (or (F1 , F2)) , S) : h o l d s (and (neg (F1) , neg (F2)) , S) .
76 h o l d s (neg (a l l (V, F)) , S) : h o l d s (some (V, neg (F)) , S) .
77 h o l d s (neg (some (V, F)) , S) : not h o l d s (some (V, F) , S) . /∗ N e g a t io n by f a i l u r e ∗ /
78
79 h o l d s (P_Xs , S) : P_Xs \= and (_ , _) , P_Xs \= or (_ , _) , P_Xs \= neg (_) , P_Xs \= a l l (_ , _) , P_Xs \= some (_ .

_) , sub (now , S , P_Xs , P_XsS) , P_XsS .
80 h o l d s (neg (P_Xs) , S) : P_Xs \= and (_ , _) , P_Xs \= or (_ , _) , P_Xs \= neg (_) , P_Xs \= a l l (_ , _) , P_Xs \=

some (_ . _) , sub (now , S , P_Xs , P_XsS) , not P_XsS . /∗ N e g a t io n by f a i l u r e ∗ /
81
82 /∗ sub (Const , Var , Term1 , Term2) : as d e f i n e d i n [34] ∗ /
83 sub (X, Y, T , Tr) : var (T) , Tr = T .
84 sub (X, Y, T , Tr) : not var (T) , T = X, Tr = Y.
85 sub (X, Y, T , Tr) : T \= X, T = . . [F | Ts] , s u b _ l i s t (X, Y, Ts , Trs) , Tr = . . [F | Trs] .
86 s u b _ l i s t (X, Y , [] , []) .
87 s u b _ l i s t (X, Y , [T | Ts] , [Tr | Trs]) : sub (X, Y, T , Tr) , s u b _ l i s t (X, Y, Ts , Trs) .
88
89 /∗ M c I l r a i t h and Son ’ s e x t e n s i o n s ∗ /
90 /∗ User C o n s t r a i n t s C u s t o m i z a t i o n ∗ /
91 t r a n s (A, S , R , S1) :− p r i m i t i v e _ a c t i o n (A) , (Poss (A, S) , d e s i r a b l e (A, S) , R= n i l , S1=do (A, s)) ;

f a i l .
92 d e s i r a b l e (A, S) :− \+ n o t _ d e s i r a b l e (A, S) .
93
94 /∗ o r d e r c o n n e c t i v e c o n s t r u c t ∗ /
95 f i n a l (P :A, S) :− a c t i o n (A) , f i n a l ([P , a c h i e v e (pos s (A) , 0) ,A] , S) .
96 t r a n s (P :A, S , R , S1) :− a c t i o n (A) , t r a n s ([P , a c h i e v e (pos s (A) , 0) ,A] , S , R , S1) .
97
98 /∗ s e n s i n g a c t i o n s ∗ /
99 h o l d s (f (X) , do (a (X) , S)) :− exec (a (X) , S) .

100 exec (a (X) , S) :− < e x t e r n a l c a l l >
101 %%
102 % EOF: congo log . p l
103 %%

Listing B.1: A ConGolog interpreter implemented published in [Giacomo et al., 2000]

Master’s Thesis Patrick Un

161

C ConGolog Model-Based Program Instance

1 %%
2 %
3 % A ConGolog Model−Based Program I n s t a n c e
4 %
5 %%
6 %
7 % p r i m i t i v e a c t i o n d e c l a r a t i o n s
8 %
9 p r i m i t i v e _ a c t i o n (r e c e i v e (Rd)) .

10 p r i m i t i v e _ a c t i o n (r e t u r n (Rd)) .
11 p r i m i t i v e _ a c t i o n (c h e c k _ s y n t a x (Rd)) .
12 p r i m i t i v e _ a c t i o n (v a l i d a t e _ r d (Rd)) .
13 p r i m i t i v e _ a c t i o n (c r e a t e _ r d b o (Rd)) .
14 p r i m i t i v e _ a c t i o n (s t o r e _ r d b o) .
15 p r i m i t i v e _ a c t i o n (r e t r i e v e _ r d b o (Id)) .
16 p r i m i t i v e _ a c t i o n (l o g i n _ c r m) .
17 p r i m i t i v e _ a c t i o n (a c c e s s _ c r m) .
18 p r i m i t i v e _ a c t i o n (l o g i n _ f i) .
19 p r i m i t i v e _ a c t i o n (a c c e s s _ f i) .
20 p r i m i t i v e _ a c t i o n (l o o k u p _ c u s p r o f (Apid)) .
21 p r i m i t i v e _ a c t i o n (c r e a t e _ c u s p r o f b o (Apid)) .
22 p r i m i t i v e _ a c t i o n (d e l e t e _ c u s p r o f b o (Apid)) .
23 p r i m i t i v e _ a c t i o n (a d d _ c u s p r o f b o (Val)) .
24 p r i m i t i v e _ a c t i o n (s t o r e _ c u s p r o f b o) .
25 p r i m i t i v e _ a c t i o n (d i s p l a y _ c u s p r o f (Apid)) .
26 p r i m i t i v e _ a c t i o n (l o o k u p _ b i n f o (Apid)) .
27 p r i m i t i v e _ a c t i o n (d i s p l a y _ b i n f o (Apid)) .
28 p r i m i t i v e _ a c t i o n (c r e a t e _ b i n f o b o (Apid)) .
29 p r i m i t i v e _ a c t i o n (d e l e t e _ b i n f o b o (Apid)) .
30 p r i m i t i v e _ a c t i o n (a d d _ b i n f o b o (Val)) .
31 p r i m i t i v e _ a c t i o n (s t o r e _ b i n f o b o) .
32 p r i m i t i v e _ a c t i o n (deny) .
33 p r i m i t i v e _ a c t i o n (a r c h i v e (Rd)) .
34 p r i m i t i v e _ a c t i o n (r e a c t i v a t e) .
35 p r i m i t i v e _ a c t i o n (r e a d _ t a x (Apid)) .
36 p r i m i t i v e _ a c t i o n (r e c o r d _ t x (Taxid)) .
37 p r i m i t i v e _ a c t i o n (b i l l (Apid)) .
38 p r i m i t i v e _ a c t i o n (s e n d _ i n v o i c e (Apid)) .
39 p r i m i t i v e _ a c t i o n (n o t i f y) .
40 p r i m i t i v e _ a c t i o n (l o g _ o u t (Bk)) .
41
42 %
43 % f l u e n t d e c l a r a t i o n s
44 %
45 r e s t o r e S i t A r g (e x i s t _ r d , S , e x i s t _ r d (S)) .
46 r e s t o r e S i t A r g (r e c e i v e d (Rd) , S , r e c e i v e d (Rd , S)) .
47 r e s t o r e S i t A r g (s y n t a x _ o k (Rd) , S , s y n t a x _ o k (Rd , S)) .
48 r e s t o r e S i t A r g (i s _ v a l i d (Rd) , S , i s _ v a l i d (Rd , S)) .
49 r e s t o r e S i t A r g (h a s _ r d b o (Rd) , S , h a s _ r d b o (Rd , S)) .
50 r e s t o r e S i t A r g (s t o r e d (Bk) , S , s t o r e d (Bk , S)) .
51 r e s t o r e S i t A r g (a c c e s s i b l e (Bk) , S , a c c e s s i b l e (Bk , S)) .
52 r e s t o r e S i t A r g (logged_on (Bk) , S , logged_on (Bk , S)) .

162 C ConGolog Model-Based Program Instance

53 r e s t o r e S i t A r g (h a s _ c u s p r o f b o (Apid) , S , h a s _ c u s p r o f b o (Apid , S)) .
54 r e s t o r e S i t A r g (h a s _ b i n f o b o (Apid) , S , h a s _ b i n f o b o (Apid , S)) .
55 r e s t o r e S i t A r g (h a s _ d a t a (Bk) , S , h a s _ d a t a (Bk , S)) .
56 r e s t o r e S i t A r g (w r i t a b l e (Bk) , S , w r i t a b l e (Bk , S)) .
57 r e s t o r e S i t A r g (r e j e c t a b l e , S , r e j e c t a b l e (S)) .
58 r e s t o r e S i t A r g (i s _ d o r m a n t (Rd) , S , i s _ d o r m a n t (Rd , S)) .
59 r e s t o r e S i t A r g (i s _ t a x e d (Apid) , S , i s _ t a x e d (Apid , S)) .
60 r e s t o r e S i t A r g (a v a i l _ t a x n o (Apid) , S , a v a i l _ t a x n o (Apid , S)) .
61 r e s t o r e S i t A r g (c h a r g e d (Apid) , S , c h a r g e d (Apid , S)) .
62 r e s t o r e S i t A r g (r e g i s t e r e d (Apid) , S , r e g i s t e r e d (Apid , S)) .
63 r e s t o r e S i t A r g (l o c a t e d (Apid) , S , l o c a t e d (Apid , S)) .
64 r e s t o r e S i t A r g (n o t i f i e d (Apid) , S , n o t i f i e d (Apid , S)) .
65 r e s t o r e S i t A r g (p r i v i l e g e d _ w r i t e , S , p r i v i l e g e d _ w r i t e (S)) .
66
67 %
68 % i n i t i a l s i t u a t i o n d e c l a r a t i o n s
69 %
70 e x i s t _ r d (s0) , r e c e i v e d (Rd , s0) , s y n t a x _ o k (Rd , s0) , i s _ v a l i d (Rd , s0) .
71 not i s _ d o r m a n t (Rd , s0) , not c h a r g e d (Apid , s0) , not r e g i s t e r e d (Apid , s0) ,
72 not n o t i f i e d (Apid , s0) , not r e j e c t a b l e (s0) .
73 logged_on (Crm , s0) , a c c e s s i b l e (Crm , s0) .
74 logged_on (Fi , s0) , a c c e s s i b l e (Fi , s0) .
75 logged_on (Rdms , s0) , a c c e s s i b l e (Rdms , s0) .
76 w r i t a b l e (Crm , s0) , w r i t a b l e (Fi , s0) .
77 w r i t a b l e (Rdms , s0) , p r i v i l e g e d _ w r i t e (s0) .
78
79 %
80 % a c t i o n p r e c o n d i t i o n axioms
81 %
82 poss (r e c e i v e (Rd) , S) :− e x i s t _ r d (S) , not r e c e i v e d (Rd , S) .
83 poss (r e t u r n (Rd) , S) .
84 poss (c h e c k _ s y n t a x (Rd) , S) :− e x i s t _ r d (S) .
85 poss (v a l i d a t e _ r d (Rd) , S) :− e x i s t _ r d (S) .
86 poss (c r e a t e _ r d b o (Rd) , S) :− l ogged_on (Rdms , S) , a c c e s s i b l e (Rdms , S) , e x i s t _ r d (S) , not

h a s _ r d b o (Rd , S) .
87 poss (s t o r e _ r d b o , S) :− l ogged_on (Rdms , S) , a c c e s s i b l e (Rdms , S) , w r i t a b l e (Rdms , S) .
88 poss (r e t r i e v e _ r d b o (Id) , S) :− h a s _ r d b o (Rd , S) , a c c e s s i b l e (Rdms , S) .
89 poss (log in_crm , S) :− a c c e s s i b l e (Crm , S) .
90 poss (access_crm , S) :− l ogged_on (Crm , S) , a c c e s s i b l e (Crm , S) , h a s _ d a t a (Crm , S) .
91 poss (l o g i n _ f i , S) :− a c c e s s i b l e (Fi , S) .
92 poss (a c c e s s _ f i , S) :− l ogged_on (Fi , S) , a c c e s s i b l e (Fi , S) , h a s _ d a t a (Fi , S) .
93 poss (l o o k u p _ c u s p r o f (Apid) , S) :− l ogged_on (Crm , S) , a c c e s s i b l e (Crm , S) , h a s _ d a t a (Crm , S) ,

h a s _ c u s p r o f b o (Apid , S) .
94 poss (c r e a t e _ c u s p r o f b o (Apid) , S) :− l ogged_on (Crm , S) , a c c e s s i b l e (Crm , S) , h a s _ d a t a (Crm , S) ,

not h a s _ c u s p r o f b o (Apid , S) .
95 poss (d e l e t e _ c u s p r o f b o (Apid) , S) :− l ogged_on (Crm , S) , a c c e s s i b l e (Crm , S) , h a s _ d a t a (Crm , S) ,

h a s _ c u s p r o f b o (Apid , S) .
96 poss (a d d _ c u s p r o f b o (Val) , S) :− l ogged_on (Crm , S) , a c c e s s i b l e (Crm , S) , h a s _ c u s p r o f b o (Apid , S) .
97 poss (s t o r e _ c u s p r o f b o , S) :− l ogged_on (Crm , S) , a c c e s s i b l e (Crm , S) , w r i t a b l e (Crm , S) .
98 poss (d i s p l a y _ c u s p r o f (Apid) , S) :− l ogged_on (Crm , S) , a c c e s s i b l e (Crm , S) , h a s _ c u s p r o f b o (Apid ,

S) .
99 poss (l o o k u p _ b i n f o (Apid) , S) :− l ogged_on (Crm , S) , a c c e s s i b l e (Crm , S) , h a s _ c u s p r o f b o (Apid , S) ,

logged_on (Fi , S) , a c c e s s i b l e (Fi , S) , h a s _ d a t a (Fi , S) .
100 poss (d i s p l a y _ b i n f o (Apid) , S) :− l ogged_on (Crm , S) , a c c e s s i b l e (Crm , S) , h a s _ c u s p r o f b o (Apid , S)

, logged_on (Fi , S) , a c c e s s i b l e (Fi , S) , h a s _ b i n f o b o (Apid , S) .
101 poss (c r e a t e _ b i n f o b o (Apid) , S) :− l ogged_on (Crm , S) , a c c e s s i b l e (Crm , S) , h a s _ c u s p r o f b o (Apid , S

) , logged_on (Fi , S) , a c c e s s i b l e (Fi , S) , h a s _ d a t a (Fi , S) , not h a s _ b i n f o (Apid , S) .
102 poss (d e l e t e _ b i n f o b o (Apid) , S) :− l ogged_on (Crm , S) , a c c e s s i b l e (Crm , S) , h a s _ c u s p r o f b o (Apid , S

) , logged_on (Fi , S) , a c c e s s i b l e (Fi , S) , h a s _ d a t a (Fi , S) , h a s _ b i n f o (Apid , S) .

Master’s Thesis Patrick Un

163

103 poss (a d d _ b i n f o b o (Val) , S) :− l ogged_on (Crm , S) , a c c e s s i b l e (Crm , S) , h a s _ c u s p r o f b o (Apid , S) ,
logged_on (Fi , S) , a c c e s s i b l e (Fi , S) , h a s _ b i n f o b o (Apid , S)

104 poss (s t o r e _ b i n f o b o , S) :− l ogged_on (Fi , S) , a c c e s s i b l e (Fi , S) , w r i t a b l e (Fi , S) .
105 poss (deny , S) :− r e j e c t a b l e (S) .
106 poss (a r c h i v e (Rd) , S) :− r e c e i v e d (Rd , S) , h a s _ r d b o (Rd , S) , not i s _ d o r m a n t (Rd , S) .
107 poss (r e a c t i v a t e , S) :− i s _ d o r m a n t (Rd , S) .
108 poss (r e a d _ t a x (Apid) , S) :− l ogged_on (Fi , S) , a c c e s s i b l e (Fi , S) , a v a i l _ t a x n o (Apid , S) .
109 poss (r e c o r d _ t x ((Taxid) , S) :− l ogged_on (Fi , S) , a c c e s s i b l e (Fi , S) , h a s _ b i n f o b o (Apid , S) ,

i s _ t a x e d (Apid , S) , not c h a r g e d (Apid , S) .
110 poss (b i l l (Apid) , S) :− l ogged_on (Fi , S) , a c c e s s i b l e (Fi , S) , h a s _ b i n f o b o (Apid , S) , i s _ t a x e d (

Apid , S) , c h a r g e d (Apid , S) .
111 poss (s e n d _ i n v o i c e (Apid) , S) :− l ogged_on (Fi , S) . a c c e s s i b l e (Fi , S) , h a s _ b i n f o b o (Apid , S) ,

i s _ t a x e d (Apid , S) , c h a r g e d (Apid , S) .
112 poss (n o t i f y , S) :− l ogged_on (Fi , S) , a c c e s s i b l e (Fi , S) , h a s _ b i n f o b o (Apid , S) , i s _ t a x e d (Apid , S)

, c h a r g e d (Apid , S) , r e g i s t e r e d (Apid , S) , l o c a t e d (Apid , S) , not n o t i f i e d (Apid , S) .
113 poss (l o g _ o u t (Bk) , S) :− l ogged_on (Bk , S) .
114
115 %
116 % s u c c e s s o r s t a t e ax ioms
117 %
118 e x i s t _ r d (do (A, S)) :− A = r e c e i v e (Rd) ; r e c e i v e d (Rd , S) ; (e x i s t _ r d (S) , A \= r e t u r n (Rd)) .
119 r e c e i v e d (Rd , do (A, S)) :− A = r e c e i v e (Rd) ; (r e c e i v e d (Rd , S) , A \= r e t u r n (Rd)) .
120 s y n t a x _ o k (Rd , do (A, S)) :− A = c h e c k _ s y n t a x (Rd) ; (s y n t a x _ o k (Rd , S) , A \= r e t u r n (Rd)) .
121 i s _ v a l i d (Rd , do (A, S)) :− A = v a l i d a t e _ r d (Rd) ; (i s _ v a l i d (Rd , S) , A \= r e t u r n (Rd)) .
122 h a s _ r d b o (Rd , do (A, S)) :− A = c r e a t e _ r d b o (Rd) ; (h a s _ r d b o (Rd , S) , A \= r e t u r n (Rd) , A \=

deny) .
123 s t o r e d (Rdms , do (A, S)) :− A = s t o r e _ r d b o ; (s t o r e d (Rdms , S) , A \= deny) .
124 a c c e s s i b l e (Bk , do (A, S)) :− A = l o g i n _ c r m ; A = l o g i n _ f i ; A = l o g i n _ r d m s ; a c c e s s i b l e (Bk

, S) ; (logged_on (Bk , S) , A \= l o g _ o u t (Bk)) .
125 logged_on (Bk , do (A, S)) :− A = l o g i n _ c r m ; A = l o g i n _ f i ; A = l o g i n _ r d m s ; (logged_on (Bk ,

S) , A \= l o g _ o u t (Bk)) .
126 h a s _ c u s p r o f b o (Apid , do (A, S)) :− A = c r e a t e _ c u s p r o f b o (Apid) ; (h a s _ c u s p r o f b o (Apid , S) , A

\= d e l e t e _ c u s p r o f b o (Apid)) .
127 h a s _ b i n f o b o (Apid , do (A, S)) :− A = c r e a t e _ b i n f o b o (Apid) ; (h a s _ b i n f o b o (Apid , S) , A \=

d e l e t e _ b i n f o b o (Apid)) .
128 h a s _ d a t a (Bk , do (A, S)) :− A = c r e a t e _ c u s p r o f b o (Apid) ; A = c r e a t e _ b i n f o b o (Apid) ; (

h a s _ d a t a (Bk , S) , A \= d e l e t e _ c u s p r o f b o (Apid) , A \= d e l e t e _ b i n f o b o (Apid)) .
129 w r i t a b l e (Bk , do (A, S)) :− (A = l o g i n _ c r m ; A = l o g i n _ f i ; A = l o g i n _ r d m s) ,

p r i v i l e g e d _ w r i t e (S) ; (w r i t a b l e (Bk , S) , A \= l o g _ o u t (Bk)) .
130 r e j e c t a b l e (do (A, S)) :− A = deny ; (r e j e c t a b l e (S) , A \= n o t i f y) .
131 i s _ d o r m a n t (Rd , do (A, S)) :− A = a r c h i v e (Rd) ; (i s _ d o r m a n t (Rd , S) , A \= r e a c t i v a t e) .
132 i s _ t a x e d (Apid , do (A, S)) :− A = r e a d _ t a x (Apid) , r e c o r d _ t x (Taxid) ; (i s _ t a x e d (Apid , S) , A \=

deny) .
133 a v a i l _ t a x n o (Apid , do (A, S)) :− A = r e a d _ t a x (Apid) ; (a v a i l _ t a x n o (Apid , S) ; i s _ t a x e d (Apid ,

S) ; not i s _ d o r m a n t (Rd , S)) .
134 c h a r g e d (Apid , do (A, S)) :− A = b i l l (Apid) ; (c h a r g e d (Apid , S) , A \= deny) .
135 r e g i s t e r e d (Apid , do (A, S)) :− A = b i l l (Apid) , p a y m e n t _ t r a n s (S) ; (r e g i s t e r e d (Apid , S) ,

c h a r g e d (Apid , S) , not r e j e c t a b l e (S)) .
136 l o c a t e d (Apid , do (A, S)) :− A = d i s p l a y _ c u s p r o f (Apid) ; (l o c a t e d (Apid , S) , not moved (Apid , S

)) .
137 n o t i f i e d (Apid , do (A, S)) :− A = s e n d _ i n v o i c e (Apid) ; A = n o t i f y ; (r e g i s t e r e d (Apid , S) ,

n o t i f i e d (Apid , S)) .
138
139 %
140 % g e n e r a l i z e d e f f e c t s
141 %
142 poss (A, S) , A = deny ; A = r e t u r n (Rd) :− r e j e c t a b l e (do (A, S)) .
143 poss (A, S) , (A = l o g i n _ c r m ; A = l o g i n _ f i) :− a c c e s s i b l e (Bk , do (A, S)) .
144 poss (A, S) , A = b i l l (Apid) :− c h a r g e d (Apid , do (A, S)) .

Patrick Un Master’s Thesis

164 C ConGolog Model-Based Program Instance

145 poss (A, S) , (A = b i l l (Apid) , A = s e n d _ i n v o i c e (Apid) , A = n o t i f y) :− r e g i s t e r e d (Apid , do (A
, S)) .

146
147 %
148 % p r o c e d u r e d e c l a r a t i o n s
149 %
150 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
151 % RecvRegApplDoc
152 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
153 p roc (recvRegApplDoc (Rd , Type , Loc , Ind) , (? (a l l (Rd , e x i s t _ r d # r e c e i v e d _ r d))) :

c h e c k _ s y n t a x (Rd) : v a l i d a t e _ r d (Rd) ,
154 conc (
155 (
156 p i (Rd , ? (s y n t a x _ o k (Rd) & i s _ v a l i d (Rd) & −h a s _ r d b o (Rd))) :
157 p i (Rd , ? (r e c e i v e d (Rd)) : c r e a t e _ r d b o (Rd)) :
158 p i (Rd , ? (r e c e i v e d (Rd)) : s t o r e _ r d b o)
159) ,
160 (
161 p i (Rd , ?(− h a s _ r d b o (Rd) # −s t o r e d (Rdms) # −s y n t a x _ o k (Rd) # − i s _ v a l i d (Rd))) :
162 p i (Rd , ? (r e c e i v e d (Rd)) : r e t u r n (Rd)
163)
164)) .
165
166 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
167 % S e a r c h A p p l P r o f i l e
168 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
169 p roc (s e a r c h A p p l P r o f i l e (Apid) ,
170 log in_crm ,
171 (? (a l l (Apid))) :
172 w h i l e (? (some (Apid , h a s _ c u s p r o f b o (Apid))) & t e s t (a c c e s s _ c r m)) :
173 l o o k u p _ c u s p r o f (Apid) :
174 d i s p l a y _ c u s p r o f (Apid)
175) .
176
177 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
178 % C r e a t e A p p l P r o f i l e
179 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
180 p roc (c r e a t e A p p l P r o f i l e (Apid) ,
181 log in_crm ,
182 i f (
183 t e s t (a c c e s s _ c r m) , (? (a l l (Apid , ? (some (Apid , −h a s _ c u s p r o f b o (Apid)))))) ,
184 c r e a t e _ c u s p r o f b o (Apid)
185)
186) .
187
188 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
189 % S e a r c h A p p l B a n k I n f o
190 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
191 p roc (s e a r c h A p p l B a n k I n f o (Apid) ,
192 l o g i n _ f i ,
193 (? (a l l (Apid))) :
194 w h i l e (? (some (Apid , h a s _ b i n f o b o (Apid))) & t e s t (a c c e s s _ f i)) :
195 l o o k u p _ b i n f o (Apid) :
196 d i s p l a y _ b i n f o (Apid)
197) .
198
199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
200 % C r e a t e A p p l B a n k I n f o
201 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
202 p roc (c r e a t e A p p l B a n k I n f o (Apid) ,

Master’s Thesis Patrick Un

165

203 l o g i n _ f i ,
204 i f (
205 t e s t (a c c e s s _ f i) , (? (a l l (Apid , ? (some (Apid , −h a s _ b i n f o b o (Apid)))))) ,
206 c r e a t e _ b i n f o b o (Apid)
207)
208) .
209
210 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
211 % RejBus iReg
212 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
213 p roc (r e j B u s i R e g (Apid , Rd) ,
214 i f (
215 t e s t (r e j e c t a b l e) ,
216 (
217 conc (
218 (deny , r e t u r n (Rd) , p c a l l (a r c h i v e R e g (Rd))) ,
219 (log in_crm , l o o k u p _ c u s p r o f (Apid) , a d d _ c u s p r o f b o (deny))
220)
221)
222)
223) .
224
225 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
226 % R e c A p p l T a x I n f o
227 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
228 p roc (r e c A p p l T a x I n f o (Apid , Rd , Binfobo) ,
229 conc ((log in_crm , l o g i n _ f i) , r e a d _ t a x (Apid)) ,
230 i f (
231 t e s t (p i (Apid , (− i s _ t a x e d & a v a i l _ t a x n o (Apid)))) ,
232 (
233 conc (
234 l o o k u p _ c u s p r o f (Apid) ,
235 l o o k u p _ b i n f o (Apid)
236) ,
237 r e c o r d _ t x (b i n f o b o) ,
238 a d d _ c u s p r o f b o (t a x e d)
239)
240)
241) .
242
243 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
244 % B i l l A p p l
245 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
246 p roc (b i l l A p p l (Apid , Binfobo) ,
247 conc (
248 log in_crm ,
249 l o g i n _ f r
250) ,
251 i f (
252 t e s t (p i (Apid , (− c h a r g e d (Apid) & − r e g i s t e r e d (Apid)))) ,
253 (
254 l o o k u p _ c u s p r o f (Apid) ,
255 b i l l (Apid) ,
256 s e n d _ i n v o i c e (Apid) ,
257 conc (
258 s t o r e _ c u s p r o f b o ,
259 s t o r e _ b i n f o b o
260)
261)
262)

Patrick Un Master’s Thesis

166 C ConGolog Model-Based Program Instance

263) .
264
265 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
266 % ConfirmReg
267 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
268 p roc (conf i rmReg (Apid) ,
269 log in_crm ,
270 i f (
271 t e s t (p i (Apid , (r e g i s t e r e d (Apid) & l o c a t e d (Apid)))) ,
272 (
273 n o t i f y ,
274 s t o r e _ c u s p r o f b o
275)
276)
277) .
278
279 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
280 % Arch iveReg
281 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
282 p roc (a r c h i v e R e g (Rd) ,
283 i f (
284 t e s t (p i (Rd , (− i s _ d o r m a n t (Rd) & (r e g i s t e r e d (Apid) # r e j e c t a b l e)))) ,
285 (a r c h i v e (Rd))
286)
287) .
288
289 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
290 % c o n t r o l l e r
291 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
292 p roc (m a i n _ c o n t r o l l e r ,
293 w h i l e (? (some (Apid , − r e g i s t e r e d (Apid) # − r e j e c t a b l e))) :
294 p rc on c (
295 (
296 p i (Apid , p i (Rd , p c a l l (recvRegApplDoc (Rd , _ , _ , _)))) ,
297 p i (Apid , p i (Rd , p c a l l (c h o i c e (
298 p c a l l (s e a r c h A p p l P r o f i l e (Apid)) ,
299 p c a l l (c r e a t e A p p l P r o f i l e (Apid))
300)))) ,
301 p i (Apid , p i (Rd , p c a l l (c h o i c e (
302 p c a l l (Sea rchApp lBankIn fo (Apid)) ,
303 p c a l l (C r e a t e A p p l B a n k I n f o (Apid))
304)))) ,
305 p i (Apid , p i (Rd , p c a l l (r e c A p p l T a x I n f o (Apid)) ,
306 p c a l l (B i l l A p p l (Apid)) ,
307 p c a l l (conf i rmReg (Apid)) ,
308 p c a l l (a r c h i v e R e g (Rd))
309))
310
311) ,
312 % exogenous i n t e r r u p t
313 (i f (t e s t (r e j e c t a b l e) , r e j B u s i R e g (Apid , Rd)))
314)
315)
316
317 %%
318 % EOF: b u s i n e s s _ r e g _ b a s i c _ a c t i o n _ t h e o r y _ d o m a i n _ m o d e l . p l (b u s i n e s s r e g i s t r a t i o n)
319 % P a t r i c k Un
320 %%

Listing C.1: A ConGolog model-based program instance for the synthesized composite service for business registration

Master’s Thesis Patrick Un

167

Bibliography

[Agarwal, 2007] Agarwal, S. (2007). Formal Description of Web Services for Expressive Matchmaking.
PhD thesis, Universitaet Karlsruhe (TH), Fakultaet fuer Wirtschaftwsissenschaften.

[Agarwal & Studer, 2006] Agarwal, S. & Studer, R. (2006). Automatic matchmaking of web services. In
Proceedings of IEEE 2006 the International Conference on Web Services (ICWS2006) (pp. 45–54).

[Alonso et al., 2003] Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2003). Web Services, Concepts,
Architecture and Applications. Number ISBN 3-540-44008-9. Tiergartenstrasse 17, D-69121 Heidelberg,
Germany: Springer Verlag, 1 edition.

[Alves et al., 2007] Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M., Goland,
Y., Guizar, A., Kartha, N., Liu, C. K., Khalaf, R., Koenig, D., Marin, M., Mehta, V., Thatte, S., van der
Rijn, D., Yendluri, P., & Yiu, A. (2007). Web Services Business Process Execution Language Version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. OASIS standard.

[Arkin et al., 2002] Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K., Orchard, D., Pogliani, S.,
Riemer, K., Struble, S., Takacsi-Nagy, P., Trickovic, I., & Zimek, S. (2002). Web Service Choreography
Interface (WSCI) 1.0. http://www.w3.org/TR/wsci/. W3C Note.

[Arroyo et al., 2005] Arroyo, S., Cimpian, E., Domingue, J., Feier, C., Fensel, D., Koenig-Ries, B.,
Lausen, H., Polleres, A., & Stollberg, M. (2005). Web Service Modeling Ontology Primer.
http://www.w3.org/Submission/WSMO-primer/. W3C Member Submission.

[Austin et al., 2004] Austin, D., Barbir, A., Peters, E., & Ross-Talbot, S. (2004). Web Services Choreogra-
phy Requirements. http://www.w3.org/TR/ws-chor-reqs/. W3C Working Draft.

[Baader et al., 2007] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., Horrocks, I.,
Moeller, R., Haarslev, V., & Sattler, U. (2007). The Description Logic Handbook: Theory, Implementation
and Applications. Number ISBN 0-521-87625-7. Edinburgh Building, Shaftesbury Road, Cambridge,
CB2 8RU, UK: Cambridge University Press, 2 edition.

[Baader & Sattler, 2001] Baader, F. & Sattler, U. (2001). An overview of tableau algorithms for description
logics. Studia Logica, 69, 5–40.

[Baier et al., 2006] Baier, J. A., Hussell, J., Bacchus, F., & McIlraith, S. A. (2006). Planning with temporally
extended preferences by heuristic search. In Proceedings of the ICAPS06 Workshop on Planning with
Preferences (pp. 7–10). Lake District, UK. A version of this paper also appeared in the Fifth International
Planning Competition (IPC-5) Booklet.

[Baier & McIlraith, 2006a] Baier, J. A. & McIlraith, S. A. (2006a). On planning with programs that sense.
In Proceedings of the 10th International Conference on Principles of Knowledge Representation and
Reasoning (KR2006) (pp. 492–502). Lake District, UK.

[Baier & McIlraith, 2006b] Baier, J. A. & McIlraith, S. A. (2006b). Planning with temporally extended
goals using heuristic search. In Proceedings of the 16th International Conference on Automated Planning
and Scheduling (ICAPS06) (pp. 342–345). Lake District, UK.

168 Bibliography

[Baier & Pinto, 1999] Baier, J. A. & Pinto, J. A. (1999). Integrating true concurrency into the robot pro-
gramming language. In Proceedings of the 9th International Conference of the Chilean Computer Society
(SCCC 1999), Talca, Chile (pp. 179–186).: IEEE Computer Society.

[Banerji et al., 2002] Banerji, A., Bartolini, C., Beringer, D., Chopella, V., Govindarajan, K., Karp, A.,
Kuno, H., Lemon, M., Pogossiants, G., Sharma, S., & Williams, S. (2002). Web Services Conversation
Language (WSCL) 1.0. http://www.w3.org/TR/wscl10/. W3C Note.

[Barreto et al., 2007] Barreto, C., Bullard, V., Erl, T., Evdemon, J., Jordan, D., Kand, K., Koenig,
D., Moser, S., Stout, R., Ten-Hove, R., Trickovic, I., van der Rijn, D., & Yiu, A. (2007).
Web Services Business Process Execution Language Version 2.0: Primer. http://www.oasis-
open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm.

[Battle et al., 2005a] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M.,
Martin, D., McIlraith, S., McGuinness, D., Su, J., & Tabet, S. (2005a). Semantic Web Services Language
(SWSL). http://www.w3.org/Submission/SWSF-SWSL/. W3C Member Submission.

[Battle et al., 2005b] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M.,
Martin, D., McIlraith, S., McGuinness, D., Su, J., & Tabet, S. (2005b). Semantic Web Services Ontology
(SWSO). http://www.w3.org/Submission/SWSF-SWSO/. W3C Member Submission.

[Battle et al., 2005c] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M.,
Martin, D., McIlraith, S. A., McGuinness, D., Su, J., & Tabet, S. (2005c). Semantic Web Services
Framework (SWSF) Overview. http://www.w3.org/Submission/SWSF/. W3C Member Submission.

[Bechhofer et al., 2004] Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness,
D. L., Patel-Schneider, P. F., & Stein, L. A. (2004). OWL Web Ontology Language Reference.
http://www.w3.org/TR/owl-ref/. W3C Recommendation.

[Ben-Ari et al., 1982] Ben-Ari, M., Halpern, J. Y., & Pnueli, A. (1982). Deterministic propositional dynamic
logic: Finite models, complexity, and completeness. Journal of Computer and System Science, 25(3),
402–417.

[Berardi et al., 2005a] Berardi, D., Calvanese, D., Giacomo, G. D., Hull, R., & Mecella, M. (2005a). Auto-
matic composition of transition-based semantic web services with messaging. In Proceedings of the 31st
International Conference on Very Large Databases (VLDB 2005), Trondheim, Norway (pp. 613–624).

[Berardi et al., 2005b] Berardi, D., Calvanese, D., Giacomo, G. D., Hull, R., & Mecella, M. (2005b). To-
wards automatic web service discovery and composition in a context with semantics, messages and inter-
nal process flow (a position paper). In Proceedings of the W3C Workshop on Frameworks for Semantics
in Web Services (SWSF 2005).

[Berardi et al., 2003a] Berardi, D., Calvanese, D., Giacomo, G. D., Lenzerini, M., & Mecella, M. (2003a).
Automatic composition of e-services that export their behavior. In Proceedings of the 1st International
Conference on Service-Oriented Computing (ICSOC2003), Trento, Italy (pp. 43–58).

[Berardi et al., 2003b] Berardi, D., Calvanese, D., Giacomo, G. D., Lenzerini, M., & Mecella, M. (2003b).
e-service composition by description logics based reasoning. In Proceedings of the 2003 International
Workshop on Description Logics (DL2003), Rome, Italy.

[Berardi et al., 2003c] Berardi, D., Calvanese, D., Giacomo, G. D., Lenzerini, M., & Mecella, M. (2003c).
A Foundational Framework for e-Services. Technical report, Dipartimento di Informatica e Sistemistica
Università di Roma La Sapienza, Via Salaria 113, 00198 Roma, Italy.

Master’s Thesis Patrick Un

Bibliography 169

[Berardi et al., 2004a] Berardi, D., Calvanese, D., Giacomo, G. D., Lenzerini, M., & Mecella, M. (2004a).
ESC: A tool for automatic composition of e-services based on logics of programs. In Proceedings of the
5th International Workshop on Technologies for E-Services (TES 2004), revised selected papers, Toronto,
Canada (pp. 80–94).

[Berardi et al., 2004b] Berardi, D., Calvanese, D., Giacomo, G. D., Lenzerini, M., & Mecella, M. (2004b).
Synthesis of composite e-services based on automated reasoning. In Proceedings of the ICAPS 2004
Workshop on Planning and Scheduling for Web and Grid Services (P4WGS2004).

[Berardi et al., 2005c] Berardi, D., Calvanese, D., Giacomo, G. D., Lenzerini, M., & Mecella, M. (2005c).
Automatic service composition based on behavioral descriptions. International Journal of Cooperative
Information Systems (IJCIS), 14(4), 333–376.

[Berardi et al., 2005d] Berardi, D., Calvanese, D., Giacomo, G. D., & Mecella, M. (2005d). Composition of
services with nondeterministic observable behavior. In Proceedings of the 3rd International Conferenceon
on Service-Oriented Computing (ICSOC2005), Amsterdam, The Netherlands (pp. 520–526).

[Berardi et al., 2008] Berardi, D., Cheikh, F., Giacomo, G. D., & Patrizi, F. (2008). Automatic service
composition via simulation. International Journal of Foundations of Computer Science (IJFCS), 19(2),
429–451.

[Berardi et al., 2004c] Berardi, D., Giacomo, G. D., Lenzerini, M., Mecella, M., & Calvanese, D. (2004c).
Synthesis of underspecified composite e-services based on automated reasoning. In M. Aiello, M.
Aoyama, F. Curbera, & M. P. Papazoglou (Eds.), Proceedings of the 2nd International Conference on
Service-Oriented Computing (ICSOC2004), New York, NY, USA (pp. 105–114).: ACM.

[Berardi et al., 2006a] Berardi, D., Giacomo, G. D., Mecella, M., & Calvanese, D. (2006a). Automatic Com-
position of Web Services with Nondeterministic Behavior. Technical report, Dipartimento di Informatica e
Sistemistica Universita di Roma La Sapienza and Libera Universit a di Bolzano/Bozen Facolta di Scienze
e Tecnologie Informatiche, Via Salaria 113, 00198 Roma, Italy and Piazza Domenicani 3, 39100 Bolzano,
Italy.

[Berardi et al., 2006b] Berardi, D., Giacomo, G. D., Mecella, M., & Calvanese, D. (2006b). Composing
web services with nondeterministic behavior. In Proceedings of the 2006 IEEE International Conference
on Web Services (ICWS2006), Chicago, Illinois, USA (pp. 909–912).

[Bray et al., 2008] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (2008). Extensible
Markup Language (XML) 1.0 (Fifth Edition). http://www.w3.org/TR/xml/. W3C Recommendation.

[Bultan et al., 2003] Bultan, T., Fu, X., Hull, R., & Su, J. (2003). Conversation specification: a new approach
to design and analysis of e-service composition. In Proceedings of the 12th International World Wide Web
Conference (WWW2003), Budapest, Hungary (pp. 403–410).: ACM Press.

[Burdett & Kavantzas, 2004] Burdett, D. & Kavantzas, N. (2004). Web Service Choreography Model
Overview. http://www.w3.org/TR/ws-chor-model/. W3C Working Draft.

[Bussler et al., 2005] Bussler, C., Cimpian, E., Fensel, D., Gomez, J. M., Haller, A., Haselwanter,
T., Kerrigan, M., Mocan, A., Moran, M., Oren, E., Sapkota, B., Toma, I., Viskova, J., Vit-
var, T., Zaremba, M., & Zaremba, M. (2005). Web Service Execution Environment (WSMX).
http://www.w3.org/Submission/WSMX/. W3C Member Submission.

[Calvanese et al., 2007] Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2007).
Tractable reasoning and efficient query answering in description logics: The DL-lite family. Journal
of Automated Reasoning, 39(3), 385–429.

Patrick Un Master’s Thesis

170 Bibliography

[Calvanese et al., 2006] Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., & Rosati, R. (2006).
Data complexity of query answering in description logics. In Proceedings of the 10th International Con-
ference on Principles of Knowledge Representation and Reasoning, Lake District, UK (pp. 260–270).

[Calvanese et al., 2008a] Calvanese, D., Giacomo, G. D., & Lenzerini, M. (2008a). Conjunctive query
containment and answering under description logic constraints. ACM Transactions on Computational
Logic (TOCL), 9(3), 22:1–22:3.

[Calvanese et al., 2008b] Calvanese, D., Giacomo, G. D., Lenzerini, M., Mecella, M., & Patrizi, F. (2008b).
Automatic service composition and synthesis: the roman model. IEEE Data Engineering Bulletin, 31(3),
18–22.

[Cardoso, 2007] Cardoso, J. (2007). Semantic Web Services, Theory, Tools and Applications. Number ISBN
159904045X. 701 E. Chocolate Avenue, Hershey, PA 17033, USA: IGI Global Publishing, 1 edition.

[Castagna, 1994] Castagna, G. (1994). Covariance and contravariance conflict without a cause.

[Chinnici et al., 2007a] Chinnici, R., Haas, H., Lewis, A. A., Moreau, J.-J., Orchard, D., & Weer-
awarana, S. (2007a). Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts.
http://www.w3.org/TR/wsdl20-adjuncts/.

[Chinnici et al., 2007b] Chinnici, R., Moreau, J.-J., Ryman, A., & Weerawarana, S. (2007b). Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language. http://www.w3.org/TR/wsdl20/.

[Colucci et al., 2003a] Colucci, S., Noia, T. D., Sciascio, E. D., Donini, F. M., & Mongiello, M. (2003a).
Concept abduction and contraction in description logics. In Proceedings of the 2003 International Work-
shop on Description Logics (DL2003), Rome, Italy.

[Colucci et al., 2003b] Colucci, S., Noia, T. D., Sciascio, E. D., Donini, F. M., & Mongiello, M. (2003b).
Description logics approach to semantic matching of web services. Journal of Computing and Information
Technology, 11(3), 217–224. Invited paper.

[Colucci et al., 2005a] Colucci, S., Noia, T. D., Sciascio, E. D., Donini, F. M., & Mongiello, M. (2005a).
Concept abduction and contraction for semantic-based discovery of matches and negotiation spaces in an
e-marketplace. Electronic Commerce Research and Applications, 4(4), 345–361.

[Colucci et al., 2004] Colucci, S., Noia, T. D., Sciascio, E. D., Donini, F. M., Mongiello, M., Piscitelli, G.,
& Rossi, G. (2004). An agency for semantic-based automatic discovery of web services. In Proceedings
of Artificial Intelligence Applications and Innovations (AIAI2004): Kluwer.

[Colucci et al., 2005b] Colucci, S., Noia, T. D., Sciascio, E. D., Donini, F. M., & Ragone, A. (2005b).
Automated task-oriented team composition using description logics. In Proceedings of 5th International
Conference on Knowledge Management (I-KNOW2005), Graz, Austria.

[de Bruijn, 2008] de Bruijn, J. (2008). WSML Abstract Syntax and Semantics. Final Draft d16.3, WSML
Working Group.

[de Bruijn et al., 2005a] de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Kifer, M.,
Koenig-Ries, B., Kopecky, J., Lausen, H., Oren, E., Polleres, A., Roman, D., Scicluna, J., & Stollberg,
M. (2005a). Web Service Modeling Ontology (WSMO). http://www.w3.org/Submission/WSMO/. W3C
Member Submission.

[de Bruijn et al., 2005b] de Bruijn, J., Fensel, D., Keller, U., Kifer, M., Lausen, H., Krummen-
acher, R., Polleres, A., & Predoiu, L. (2005b). Web Service Modeling Language (WSML).
http://www.w3.org/Submission/WSML/. W3C Member Submission.

Master’s Thesis Patrick Un

Bibliography 171

[de Bruijn et al., 2005c] de Bruijn, J., Fensel, D., Kifer, M., Kopeck, J., Lausen, H., Polleres, A., Ro-
man, D., Scicluna, J., & Toma, I. (2005c). Relationship of WSMO to Other Relevant Technologies.
http://www.w3.org/Submission/WSMO-related/. W3C Member Submission.

[de Bruijn & Heymans, 2007] de Bruijn, J. & Heymans, S. (2007). A semantic framework for language
layering in WSML. In Proceedings of the 1st International Conference on Web Reasoning and Rule
Systems (RR2007) (pp. 103–117). Innsbruck, Austria: Springer.

[de Bruijn et al., 2008] de Bruijn, J., Kopecky, J., Toma, I., Steinmetz, N., Foxvog, D., Keller, U., Kerrigan,
M., Krummenacher, R., Lausen, H., Sirbu, A., Roman, D., Scicluna, J., Fensel, D., & Kifer, M. (2008).
WSML/RDF. http://www.wsmo.org/TR/d32/v1.0/. WSML Final Draft D32v1.0.

[de Bruijn et al., 2005d] de Bruijn, J., Lausen, H., Polleres, A., & Fensel, D. (2005d). The WSML rule lan-
guages for the semantic web. In Proceedings of the W3C Workshop on Rule Languages for Interoperability
Washington DC, USA. Position paper.

[Deutsch et al., 2009] Deutsch, A., Hull, R., Patrizi, F., & Vianu, V. (2009). Automatic verification of
data-centric business processes. In R. Fagin (Ed.), Proceedings of the 12th International Conference on
Database Theory (ICDT), St. Petersburg, Russia, volume 361 of ACM International Conference Proceed-
ing Series (pp. 252–267).: ACM Press.

[Deutsch et al., 2004] Deutsch, A., Sui, L., & Vianu, V. (2004). Specification and verification of data-driven
web services. In A. Deutsch (Ed.), Proceedings of the 23rd ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems PODS 2004, Paris, France, number ISBN 1-58113-858-X (pp. 71–82).

[Deutsch et al., 2007] Deutsch, A., Sui, L., & Vianu, V. (2007). Specification and verification of data-driven
web applications. Journal of Computer and System Sciences (JCSS), 73(3), 442–474.

[Deutsch et al., 2006a] Deutsch, A., Sui, L., Vianu, V., & Zhou, D. (2006a). A system for specification
and verification of interactive, data-driven web applications. In S. Chaudhuri, V. Hristidis, & N. Poly-
zotis (Eds.), Proceedings of the ACM SIGMOD 2006 International Conference on Management of Data,
Chicago, Illinois, USA, number ISBN 1-59593-256-9 (pp. 772–774).: ACM Press.

[Deutsch et al., 2006b] Deutsch, A., Sui, L., Vianu, V., & Zhou, D. (2006b). Verification of communicating
data-driven web services. In S. Vansummeren (Ed.), Proceedings of the 25th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems PODS 2006, Chicago, Illinois, USA, number
ISBN 1-59593-318-2 (pp. 90–99).: ACM Press.

[Domingue et al., 2008] Domingue, J., Fensel, D., & Gonzalez-Cabero, R. (2008). Soa4all, enabling the soa
revolution on a world wide scale. International Conference on Semantic Computing, 0, 530–537.

[Erl, 2005] Erl, T. (2005). Service-Oriented Architecture (SOA) Concepts, Technology, and Design. Number
ISBN 0-131-85858-0 in Prentice Hall PTR Service-Oriented Computing Series. Upper Saddle River, NJ
07458, USA: Prentice Hall, Pearson Education, Inc., 1 edition.

[Erl, 2007] Erl, T. (2007). SOA Principles of Service Design. Number ISBN 0-132-34482-3 in Prentice Hall
PTR Service-Oriented Computing Series. Upper Saddle River, NJ 07458, USA: Prentice Hall, Pearson
Education, Inc., 1 edition.

[Erl, 2009] Erl, T. (2009). SOA Design Patterns. Number ISBN 0-136-13516-1 in Prentice Hall PTR
Service-Oriented Computing Series. Upper Saddle River, NJ 07458, USA: Prentice Hall, Pearson Ed-
ucation, Inc., 1 edition.

Patrick Un Master’s Thesis

172 Bibliography

[Fadel & McIlraith, 2002] Fadel, R. & McIlraith, S. A. (2002). Planning with complex actions. In Proceed-
ings of the Ninth International Workshop on Non-Monotonic Reasoning (NMR2002) Toulouse, France
(pp. 356–364). Toulouse, France.

[Fagin et al., 2003] Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (2003). Reasoning About Knowl-
edge. Number ISBN 0-262-56200-6. 292 Main Street, Cambridge, MA 02142, USA: The MIT Press, 1
edition.

[Fischer & Ladner, 1979] Fischer, M. J. & Ladner, R. E. (1979). Propositional dynamic logic of regular
programs. Journal of Computer and System Science, 18(2), 194–211.

[Gerede et al., 2004] Gerede, C. E., Hull, R., Ibarra, O. H., & Su, J. (2004). Automated composition of
e-services: Lookaheads. In M. Aiello, M. Aoyama, F. Curbera, & M. P. Papazoglou (Eds.), Proceedings
of the 2nd International Conference on Service-Oriented Computing (ICSOC2004), New York, NY, USA
(pp. 252–262).

[Ghandeharizadeh et al., 2003] Ghandeharizadeh, S., Knoblock, C. A., Papadopoulos, C., Shahabi, C., Al-
wagait, E., Ambite, J. L., Cai, M., Chen, C.-C., Pol, P., Schmidt, R. R., Song, S., Thakkar, S., & Zhou,
R. (2003). Proteus: A system for dynamically composing and intelligently executing web services. In
Proceedings of the International Conference on Web Services (ICWS2003), Las Vegas, Nevada, USA (pp.
17–21).

[Giacomo et al., 1997] Giacomo, G. D., Lesperance, Y., & Levesque, H. J. (1997). Reasoning about concur-
rent execution, prioritized interrupts, and exogenous actions in the situation calculus. In M. Pollack (Ed.),
Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI1997), Nagoya,
Japan (pp. 1221–1226). San Francisco: Morgan Kaufmann Publishers.

[Giacomo et al., 2000] Giacomo, G. D., Lesperance, Y., & Levesque, H. J. (2000). ConGolog, a concurrent
programming language based on the situation calculus. Journal of Artificial Intelligence, 121(1-2), 109–
169.

[Giacomo et al., 2009] Giacomo, G. D., Lesperance, Y., Levesque, H. J., & Sardina, S. (2009). IndiGolog:
A High-Level Programming Language for Embedded Reasoning Agents, chapter 1, (pp. 389). Number
ISBN 978-0-387-89298-6. Springer Verlag.

[Giacomo & Massacci, 1996] Giacomo, G. D. & Massacci, F. (1996). Tableaux and algorithms for propo-
sitional dynamic logic with converse. In Proceedings of the 13th International Conference on Automated
Deduction (CADE1996), volume 1104 of Lecture Notes in Computer Science (pp. 613–628).: Springer
Verlag.

[Giacomo & Massacci, 2000] Giacomo, G. D. & Massacci, F. (2000). Combining deduction and model
checking into tableaux and algorithms for converse-PDL. Elsevier Journal of Information and Computa-
tion, 160, 117–137.

[Giacomo & Sardina, 2009] Giacomo, G. D. & Sardina, S. (2009). Composition of ConGolog programs. In
Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI2009), Pasadena,
California, USA.

[Grimm & Hitzler, 2008] Grimm, S. & Hitzler, P. (2008). Semantic matchmaking of web resources with
local closed-world reasoning. International Journal of e-Commerce, 12(2), 89–126.

[Grimm et al., 2004] Grimm, S., Motik, B., & Preist, C. (2004). Variance in e-business service discov-
ery. In D. Martin, R. Lara, & T. Yamaguchi (Eds.), Proceedings of the 3rd International Semantic Web

Master’s Thesis Patrick Un

Bibliography 173

Conference (ISWC2004), Workshop on Semantic Web Services: Preparing to Meet the World of Business
Applications, Hiroshima, Japan, volume 119 of CEUR Workshop Proceedings Hiroshima, Japan.

[Grimm et al., 2006] Grimm, S., Motik, B., & Preist, C. (2006). Matching semantic service descriptions
with local closed-world reasoning. In Y. Sure & J. Domingue (Eds.), Proceedings of the 3rd European
Semantic Web Conference (ESWC 2006), The Semantic Web: Research and Applications, Budva, Mon-
tenegro, volume 4011 of Lecture Notes in Computer Science (pp. 575–589).: Springer Verlag.

[Grosof et al., 2003] Grosof, B. N., Horrocks, I., Volz, R., & Decker, S. (2003). Description logic programs:
Combining logic programs with description logic. In Proceedings of the 12th International World Wide
Web Conference (WWW 2003), number ISBN 1-58113-680-3 (pp. 48–57).: ACM Press.

[Grüninger et al., 2008] Grüninger, M., Hull, R., & McIlraith, S. A. (2008). A short overview of flows: A
first-order logic ontology for web services. IEEE Data Engeering Bulletin, 31(3), 3–7.

[Gu & Soutchanski, 2006] Gu, Y. & Soutchanski, M. (2006). The two-variable situation calculus. In Pro-
ceedings of the 3rd European Starting AI Researcher Symposium (STAIRS-06) at ECAI06, Riva del Garda,
Italy (pp. 144–161).

[Haarslev & Möller, 2001a] Haarslev, V. & Möller, R. (2001a). Description of the racer system and its ap-
plications. In Working Notes of the 2001 International Description Logics Workshop (DL2001), Stanford,
CA, USA.

[Haarslev & Möller, 2001b] Haarslev, V. & Möller, R. (2001b). Racer system description. In Proceedings of
the 1st International Joint Conference of Automated Reasoning (IJCAR 2001), Siena, Italy (pp. 701–706).

[Haarslev & Möller, 2003] Haarslev, V. & Möller, R. (2003). Racer: A core inference engine for the se-
mantic web. In Proceedings of the 2nd International Workshop on Evaluation of Ontology-based Tools
(EON2003) at the 2nd International Semantic Web Conference (ISWC 2003), Sundial Resort, Sanibel
Island, Florida, USA.

[Haas, 1987] Haas, A. R. (1987). The case for domain-specific frame axioms. In The Frame Problem in
Artificial Intelligence: Proceedings of the 1987 Workshop: Morgan Kaufmann Publishers Inc.

[Hoare, 1969] Hoare, S. C. A. R. (1969). An axiomatic basis for computer programming. Communications
of the ACM, 12(10), 576–580.

[Hobbs & Pan, 2004] Hobbs, J. R. & Pan, F. (2004). An ontology of time for the semantic web. ACM
Transactions on Asian Language Information Processing (TALIP), 3(1), 66–85.

[Hobbs & Pan, 2006] Hobbs, J. R. & Pan, F. (2006). Time Ontology in OWL. World wide web consortium
(w3c) working draft, W3C World Wide Web Consortium. http://www.w3.org/TR/2006/WD-owl-time-
20060927/.

[Hobbs & Pustejovsky, 2003] Hobbs, J. R. & Pustejovsky, J. (2003). Annotating and reasoning about time
and events. In P. Doherty, J. McCarthy, & M.-A. Williams (Eds.), Working Papers of the AAAI 2003 Spring
Symposium on Logical Formalization of Commonsense Reasoning (pp. 74–82). University of Southern
California, Menlo Park, California: AAAI Press.

[Hull et al., 2006] Hull, D., Horrocks, I., Zolin, E., Bovykin, A., Sattler, U., & Stevens, R. (2006). Deciding
semantic matching of stateless services. In Proceedings of the 21st International Conference on Artificial
Intelligence (AAAI-06) (pp. 1319–1324).

Patrick Un Master’s Thesis

174 Bibliography

[Hull, 2005] Hull, R. (2005). Web services composition: A story of models, automata, and logics. In
Proceedings of the 2005 IEEE International Conference on Web Services (ICWS 2005), Orlando, FL,
USA.

[Hull et al., 2003] Hull, R., Benedikt, M., Christophides, V., & Su, J. (2003). E-services: a look behind the
curtain. In Proceedings of the 22nd ACM SIGACT-SIGMOD-SIGART 2003 Symposium on Principles of
Database Systems, San Diego, CA, USA (pp. 1–14).

[Hustadt et al., 2005] Hustadt, U., Motik, B., & Sattler, U. (2005). Data complexity of reasoning in very
expressive description logics. In Proceedings of 19th International Joint Conference on Artificial Intelli-
gence (IJCAI 2005) (pp. 466–471).: Morgan Kaufmann Publishers.

[Kashyap et al., 2008] Kashyap, V., Moran, M., & Bussler, C. (2008). The Semantic Web, Semantics for
Data and Services on the Web. Number ISBN 978-3-540-76451-9 in Data-Centric Systems and Applica-
tions. Tiergartenstrasse 17, D-69121 Heidelberg, Germany: Springer Verlag, 1 edition.

[Kavantzas et al., 2005] Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., & Barreto, C.
(2005). Web Services Choreography Description Language Version 1.0. http://www.w3.org/TR/ws-cdl-
10/. W3C Candidate Recommendation.

[Kifer et al., 1995] Kifer, M., Lausen, G., & Wu, J. (1995). Logical foundations of object-oriented and
frame-based languages. Journal of the Association for Computing Machinery (ACM), 42(4), 741–843.

[Knoblock et al., 2005] Knoblock, C. A., Thakkar, S., & Ambite, J. L. (2005). Composing, optimizing, and
executing plans for bioinformatics web services. VLDB Journal, Special Issue on Data Management,
Analysis and Mining for Life Sciences, 14(3), 330–353.

[Lausen et al., 2006] Lausen, H., de Bruijn, J., Keller, U., & Lara, R. (2006). Semantic web services with
wsmo. Upgrade, European Journal for the Informatics Professional, Special issue on Web Services,
VII(5), 34–37.

[Lausen et al., 2005] Lausen, H., de Bruijn, J., Polleres, A., & Fensel, D. (2005). WSML - a language
framework for semantic web services. In Proceedings of the W3C Workshop on Rule Languages for
Interoperability Washington DC, USA. Position paper.

[Lécué & Delteil, 2007] Lécué, F. & Delteil, A. (2007). Making the difference in semantic web service com-
position. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI2007), Vancouver,
British Columbia, Canada (pp. 1383–1388).

[Lécué & Leger, 2006] Lécué, F. & Leger, A. (2006). A formal model for semantic web service composition.
In I. F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold, & L. Aroyo (Eds.),
Proceedings of the 5th International Semantic Web Conference (ISWC 2006), Athens, GA, USA (pp. 385–
398).

[Lesperance et al., 2008] Lesperance, Y., Giacomo, G. D., & Ozgovde, A. N. (2008). A model of contingent
planning for agent programming languages. In Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2008), Estoril, Portugal (pp. 477–484).

[Lesperance et al., 2000] Lesperance, Y., Levesque, H. J., Lin, F., & Scherl, R. B. (2000). Ability and
knowing how in the situation calculus. Studia Logica, 66(1), 165–186.

[Lesperance et al., 1999] Lesperance, Y., Levesque, H. J., & Reiter, R. (1999). A situation calculus approach
to modeling and programming agents. In M. J. Wooldridge & A. Rao (Eds.), Foundations of Rational
Agency (pp. 275–299). Dordrecht: Kluwer Academic Publishers.

Master’s Thesis Patrick Un

Bibliography 175

[Levesque & Brachman, 2004] Levesque, H. J. & Brachman, R. (2004). Knowledge Representation and
Reasoning. Number ISBN 1-558-60932-6 in The Morgan Kaufmann Series in Artificial Intelligence. 340
Pine St, 6th floor. San Fransisco, CA 94104, USA: Morgan Kaufmann Publishers Inc.

[Levesque & Lakemeyer, 2001] Levesque, H. J. & Lakemeyer, G. (2001). The Logic of Knowledge Bases.
Number ISBN 0-262-12232-4. 292 Main Street, Cambridge, MA 02142, USA: The MIT Press.

[Levesque et al., 1998] Levesque, H. J., Pirri, F., & Reiter, R. (1998). Foundations for the situation calculus.
Electronic Transaction on Artificial Intelligence (ETAI), 2, 159–178.

[Levesque et al., 1997] Levesque, H. J., Reiter, R., Lesperance, Y., Lin, F., & Scherl, R. B. (1997). GOLOG:
A logic programming language for dynamic domains. Journal of Logic Programming, 31(1-3), 59–83.

[Li, 2004] Li, L. (2004). A software framework for matchmaking based on semantic web technology. In-
ternational Journal of Electronic Commerce, 8(4), 1.

[Li & Horrocks, 2003a] Li, L. & Horrocks, I. (2003a). Matchmaking using an instance store: Some prelim-
inary results. In Proceedings of the 2003 International Workshop on Description Logics (DL2003), poster
paper.

[Li & Horrocks, 2003b] Li, L. & Horrocks, I. (2003b). A software framework for matchmaking based on
semantic web technology. In Proceedings of the 12th International World Wide Web Conference (WWW
2003), Budapest, Hungary (pp. 331–339).: ACM.

[Lin & Reiter, 1997] Lin, F. & Reiter, R. (1997). Rules as actions: A situation calculus semantics for logic
programs. Journal of Logic Programming, 31(1-3), 299–330.

[Lynch, 1997] Lynch, N. A. (1997). Distributed Algorithms. Number ISBN 1558603484 in Morgan Kauf-
mann Series in Data Management Systems. 340 Pine St, 6th floor. San Fransisco, CA 94104, USA:
Morgan Kaufmann Publishers Inc., 1 edition.

[Manna & Waldinger, 1980] Manna, Z. & Waldinger, R. J. (1980). A deductive approach to program syn-
thesis. ACM Transactions on Programming Languages and Systems, 2(1), 90–121.

[Martin et al., 2004a] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S. A.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., & Sycara, K. (2004a). OWL-S:
Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S/. W3C Member Submission.

[Martin et al., 2007] Martin, D. H., McIlraith, S. A., Burstein, M., McDermott, D., Paolucci, M., Sycara, K.,
McGuinness, D. L., Sirin, E., & Srinivasan, N. (2007). Bringing semantics to web services with OWL-S.
World Wide Web Journal, 10(3), 243–277. Special Issue: Recent Advances in Web Services.

[Martin et al., 2004b] Martin, D. H., Paolucci, M., McIlraith, S. A., Burstein, M., McDermott, D., McGuin-
ness, D. L., Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., & Sycara, K. (2004b). Bringing
semantics to web services: The OWL-S approach. In Proceedings of the 1st International Workshop
on Semantic Web Services and Web Process Composition (SWSWPC2004) (pp. 26–42). San Diego, CA,
USA. Revised Selected Papers.

[McCarthy, 1963] McCarthy, J. (1963). Situations, Actions and Causal Laws. Stanford University Artificial
Intelligence Project 13, Department of Computer Science, Stanford University, Stanford, CA 94305, USA.
Accession number: AD0785031.

[McCarthy, 2001a] McCarthy, J. (2001a). Actions and other events in situation calculus. In Proceedings of
the 8th International Conference on Principles of Knowledge Representation and Reasoning (KR2002),
Toulouse, France.

Patrick Un Master’s Thesis

176 Bibliography

[McCarthy, 2001b] McCarthy, J. (2001b). Situation calculus with concurrent events and narrative. Technical
Report of Stanford, 1, 1.

[McCarthy & Hayes, 1969] McCarthy, J. & Hayes, P. J. (1969). Some philosophical problems from the
standpoint of artificial intelligence. In B. Meltzer & D. Michie (Eds.), Machine Intelligence 4 (pp. 463–
502). Edinburgh University Press. reprinted in McC90.

[McGuinness & van Harmelen, 2004] McGuinness, D. L. & van Harmelen, F. (2004). OWL Web Ontology
Language Overview. http://www.w3.org/TR/owl-features/. W3C Recommendation.

[McIlraith, 1999] McIlraith, S. A. (1999). Model-based programming using golog and the situation calculus.
In Proceedings of the Tenth International Workshop on Principles of Diagnosis (DX’99) (pp. 184–192).
Loch Awe Hotel, Scotland, UK.

[McIlraith & Son, 2001] McIlraith, S. A. & Son, T. C. (2001). Adapting golog for programming the seman-
tic web. In Proceedings of the 5th Symposium on Logical Formalizations of Commonsense Reasoning
(Common Sense 2001) (pp. 195–202). Warren Weaver Hall, room 109, 251 Mercer St., between 3rd and
4th Streets, New York City, NY, USA.

[McIlraith & Son, 2002] McIlraith, S. A. & Son, T. C. (2002). Adapting golog for composition of semantic
web services. In Proceedings of the 8th International Conference on Knowledge Representation and
Reasoning (KR2002), Toulouse, France (pp. 482–493). Toulouse, France.

[McIlraith et al., 2001] McIlraith, S. A., Son, T. C., & Zeng, H. (2001). Semantic web services. IEEE
Intelligent Systems. Special Issue on the Semantic Web, 16(2), 46–53.

[Mecella et al., 2004] Mecella, M., Berardi, D., Rosa, F. D., & Santis, L. D. (2004). Finite state automata as
conceptual model for E-services. Journal of Integrated Design and Process Science.

[Meyer, 1990] Meyer, B. (1990). Introduction to the Theory of Programming Languages. Number ISBN 01-
3498510-9 in Prentice-Hall International Series in Computer Science. Prentice Hall, Pearson Education,
Inc., 1st edition.

[Milner, 1971] Milner, A. J. R. G. (1971). An algebraic definition of simulation between programs. In D. C.
Cooper (Ed.), Proceedings of the 2nd International Joint Conference on Artificial Intelligence (IJCAI
1971), London, UK, number ISBN 0-934613-34-6 (pp. 481–489).: William Kaufmann.

[Milner, 1999] Milner, R. (1999). Communicating and Mobile Systems: the Pi-Calculus. Number ISBN
0-521-65869-1. Cambridge University Press, 1 edition.

[Möller & Haarslev, 2003] Möller, R. & Haarslev, V. (2003). Description logics for the semantic web: Racer
as a basis for building agent systems. Zeitschrift der Künstliche Intelligenz (KI), 17(3), 10ff.

[Muscholl & Walukiewicz, 2007] Muscholl, A. & Walukiewicz, I. (2007). A lower bound on web services
composition. In Proceedings of the 10th International Conference on Foundations of Software Science
and Computational Structures FOSSACS 2007, Braga, Portugal (pp. 274–286).

[Muscholl & Walukiewicz, 2008] Muscholl, A. & Walukiewicz, I. (2008). A lower bound on web services
composition. Journal of Logical Methods in Computer Science, abs/0804.3105, 1–14.

[Narayanan & McIlraith, 2002] Narayanan, S. & McIlraith, S. A. (2002). Simulation, verification and auto-
mated composition of web services. In Proceedings of the 11th International World Wide Web Conference
(WWW-11) (pp. 77–88). Honolulu, Hawaii, USA.

Master’s Thesis Patrick Un

Bibliography 177

[Narayanan & McIlraith, 2003] Narayanan, S. & McIlraith, S. A. (2003). Analysis and simulation of web
services. Computer Networks, 42(5), 675–693.

[Noia et al., 2007] Noia, T. D., Sciascio, E. D., & Donini, F. M. (2007). Semantic matchmaking as non-
monotonic reasoning: A description logic approach. Journal of Artificial Intelligence Research (JAIR),
29, 269–307.

[Noia et al., 2008] Noia, T. D., Sciascio, E. D., & Donini, F. M. (2008). A nonmonotonic approach to
semantic matchmaking and request refinement in e-marketplaces. International Journal of Electronic
Commerce (IJEC), 12(2), 127–154.

[Noia et al., 2005] Noia, T. D., Sciascio, E. D., Donini, F. M., Ragone, A., & Colucci, S. (2005). Auto-
mated semantic web services orchestration via concept covering. In Proceedings of the 14th International
Conference on World Wide Web (WWW2005), Chiba, Japan (pp. 1160–1161).: ACM Press.

[Ortiz et al., 2006a] Ortiz, M., Calvanese, D., & Eiter, T. (2006a). Characterizing data complexity for con-
junctive query answering in expressive description logics. In Proceedings of the 21st National Conference
on Artificial Intelligence (AAAI 2006) (pp. 275–280).

[Ortiz et al., 2006b] Ortiz, M., Calvanese, D., & Eiter, T. (2006b). Data complexity of answering unions of
conjunctive queries in SHIQ. In Proceedings of the 2006 International Workshop on Description Logics
(DL2006), Lake District, UK, volume 189.

[Ortiz et al., 2008] Ortiz, M., Calvanese, D., & Eiter, T. (2008). Data complexity of query answering in
expressive description logics via tableaux. Journal of Automated Reasoning, 41(1), 61–98.

[Pan, 2007] Pan, F. (2007). Representing Complex Temporal Phenomena for the Semantic Web and Natural
Language. Phd thesis, Faculty of the Graduate School, University of Southern California, Los Angeles,
USA.

[Pan & Hobbs, 2005] Pan, F. & Hobbs, J. R. (2005). Temporal aggregates in OWL-time. In I. Russell &
Z. Markov (Eds.), Proceedings of the 8th International Florida Artificial Intelligence Research Society
Conference, Clearwater Beach, Florida, USA, number ISBN 1-57735-234-3 (pp. 560–565).: AAAI Press.

[Pan et al., 2006] Pan, F., Mulkar-Mehta, R., & Hobbs, J. R. (2006). Learning event durations from event
descriptions. In Proceedings of the 21st International Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational Linguistics (ACL 2006), Sydney, Australia.

[Paolucci et al., 2002] Paolucci, M., Kawamura, T., Payne, T. R., & Sycara, K. P. (2002). Semantic matching
of web services capabilities. In Proceedings of the 1st International Semantic Web Conference (ISWC
2002), Sardinia, Italy, volume 2342 of Lecture Notes in Computer Science (pp. 333–347).: Springer
Verlag.

[Patel-Schneider et al., 2004] Patel-Schneider, P. F., Hayes, P., & Horrocks, I. (2004). OWL Web Ontology
Language Semantics and Abstract Syntax. http://www.w3.org/TR/owl-semantics/. W3C Recommenda-
tion.

[Patrizi & Giacomo, 2009] Patrizi, F. & Giacomo, G. D. (2009). Composition of services that share an
infinite-state blackboard. In Proceedings of IJCAI-2009 Workshop on Information Integration on the Web
(IIWEB2009).

[Perrin et al., 1990] Perrin, D., Berstel, J., Boasson, L., Salomaa, A., Thomas, W., Courcelle, B., Der-
showitz, N., Jouannaud, J. P., Barendregt, H., Mitchell, J., Courcelle, B., Apt, K., Mosses, P., Gunter,
G., & Scott, D. (1990). Handbook of Theoretical Computer Science, Volume B: Formal Models and
Semantics. Number ISBN 0-444-88074-7. Elsevier Science.

Patrick Un Master’s Thesis

178 Bibliography

[Pinto, 1994] Pinto, J. A. (1994). Temporal Reasoning in the Situation Calculus. PhD thesis, Department of
Computer Science, University of Toronto, Toronto, Canada.

[Pinto & Reiter, 1993] Pinto, J. A. & Reiter, R. (1993). Temporal reasoning in logic programming: A case
for the situation calculus. In D. S. Warren (Ed.), Proceedings of the 10th International Conference on
Logic Programming (pp. 203–221). Budapest, Hungary: The MIT Press.

[Pinto & Reiter, 1995] Pinto, J. A. & Reiter, R. (1995). Reasoning about time in the situation calculus.
Annal of Mathematics and Artificial Intelligence, 14(2-4), 251–268.

[Pirri & Reiter, 1999] Pirri, F. & Reiter, R. (1999). Some contributions to the metatheory of the situation
calculus. ACM Transactions on Computational Logics, 46(3), 325–361.

[Pirri & Reiter, 2000] Pirri, F. & Reiter, R. (2000). Planning with natural actions in the situation calculus. In
J. Minker (Ed.), Logic-Based Artificial Intelligence (pp. 213–231). Norwell, MA, USA: Kluwer Academic
Publishers.

[Pistore et al., 2004] Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., & Traverso, P. (2004). Planning
and monitoring web service composition. In D. F. Christoph Bussler (Ed.), Proceedings of the 11th
International Conference, Artificial Intelligence: Methodology, Systems, and Applications, AIMSA 2004,
Varna, Bulgaria, volume 3192 of Lecture Notes in Computer Science: Springer.

[Pistore et al., 2005a] Pistore, M., Marconi, A., Bertoli, P., & Traverso, P. (2005a). Automated composition
of web services by planning at the knowledge level. In L. P. Kaelbling & A. Saffiotti (Eds.), Proceedings
of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, Scotland,
UK, number ISBN 0938075934 (pp. 1252–1259).: Professional Book Center.

[Pistore et al., 2005b] Pistore, M., Traverso, P., & Bertoli, P. (2005b). Automated composition of web ser-
vices by planning in asynchronous domains. In S. Biundo, K. L. Myers, & K. Rajan (Eds.), Proceedings
of the 15th International Conference on Automated Planning and Scheduling (ICAPS2005), Monterey,
California, USA, number ISBN 1-57735-220-3 (pp. 2–11).: AAAI.

[Ragone et al., 2007] Ragone, A., Noia, T. D., Sciascio, E. D., Donini, F. M., Colucci, S., & Colasuonno, F.
(2007). Fully automated web services discovery and composition through concept covering and concept
abduction. International Journal of Web Services Research (JWSR), 4(3), 85–112.

[Reiter, 1991] Reiter, R. (1991). The frame problem in the situation calculus: a simple solution and a
completeness result for goal regression. In V. Lifschitz (Ed.), Artificial Intelligence and Mathematical
Theory of Computation: Papers in Honor of John McCarthy (pp. 359–380). New York: Academic Press.

[Reiter, 1996] Reiter, R. (1996). Natural actions, concurrency and continuous time in the situation calcu-
lus. In L. C. Aiello, J. Doyle, & S. C. Shapiro (Eds.), Proceedings of the 5th International Conference
on Principles of Knowledge Representation and Reasoning (KR1996), Cambridge, Massachusetts, USA,
number ISBN 1-55860-421-9 (pp. 2–13).: Morgan Kaufmann Publishers.

[Reiter, 1998] Reiter, R. (1998). Sequential, temporal GOLOG. In A. G. Cohn, L. K. Schubert, & S. C.
Shapiro (Eds.), Proceedings of the 6th International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR1998), Trento, Italy (pp. 547–556).: Morgan Kaufmann.

[Reiter, 2001a] Reiter, R. (2001a). Knowledge in Action, Logical Foundations for Specifying and Imple-
menting Dynamical Systems. Number ISBN 0-262-18218-1. 292 Main Street, Cambridge, MA 02142,
USA: The MIT Press, 1 edition.

Master’s Thesis Patrick Un

Bibliography 179

[Reiter, 2001b] Reiter, R. (2001b). On knowledge-based programming with sensing in the situation calculus.
ACM Transactions on Computational Logics, 2(4), 433–457.

[Reiter & Pinto, 1993] Reiter, R. & Pinto, J. (1993). Temporal reasoning in logic programming: A case for
the situation calculus. In Proceedings of the 10th International Conference on Logic Programming 1993,
Budapest, Hungary, number ISBN 0-262-73105-3 (pp. 203–221).: MIT Press.

[Ross-Talbot & Fletcher, 2006] Ross-Talbot, S. & Fletcher, T. (2006). Web Services Choreography Descrip-
tion Language: Primer. http://www.w3.org/TR/ws-cdl-10-primer/.

[Russell & Norvig, 2002] Russell, S. J. & Norvig, P. (2002). Artificial Intelligence A Modern Approach.
Number ISBN 0-130-80302-2 in Prentice Hall PTR Series in Artificial Intelligence. Upper Saddle River,
NJ 07458, USA: Prentice Hall, Pearson Education, Inc., 2 edition.

[Sardina et al., 2004] Sardina, S., Giacomo, G. D., Lesperance, Y., & Levesque, H. J. (2004). On the seman-
tics of deliberation in IndiGolog from theory to implementation. Annuals of Mathematics and of Artificial
Intelligence, 41(2-4), 259–299.

[Sardina et al., 2007] Sardina, S., Patrizi, F., & Giacomo, G. D. (2007). Automatic synthesis of a global
behavior from multiple distributed behaviors. In J. Collins, P. Faratin, S. Parsons, J. A. Rodriguez-Aguilar,
N. M. Sadeh, O. Shehory, & E. Sklar (Eds.), Proceedings of the 22nd National Conference on Artificial
Intelligence (AAAI), Vancouver, British Columbia, Canada, number ISBN 978-1-57735-323-2 (pp. 1063–
1069).: AAAI Press.

[Sardina et al., 2008] Sardina, S., Patrizi, F., & Giacomo, G. D. (2008). Behavior composition in the pres-
ence of failure. In Proceedings of the 11th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR 2008), Sydney, Australia (pp. 640–650).

[Scherl & Levesque, 1993] Scherl, R. B. & Levesque, H. J. (1993). The frame problem and knowledge-
producing actions. In Proceedings of the Eleventh National Conference on Artificial Intelligence
(AAAI1993), Washington, DC, USA (pp. 689–695). Menlo Park: The MIT Press/AAAI Press.

[Scherl & Levesque, 2003] Scherl, R. B. & Levesque, H. J. (2003). Knowledge, action and the frame prob-
lem. Journal of Artifical Intelligence, 144(1-2), 1–39.

[Schöning, 2008] Schöning, U. (2008). Logic for Computer Scientists. Number ISBN 010-0817647627 in
Modern Birkhäuser Classics. Birkhäuser Boston.

[Schubert, 1990] Schubert, L. K. (1990). Monotonic solution of the frame problem in the situation calculus:
an efficient method for worlds with fully specified actions. In H. E. Kyburg, R. P. Loui, & G. N. Carlson
(Eds.), Knowledge Representation and Defeasible Reasoning, volume 5 of Studies in Cognitive Systems
(pp. 23–67). Boston: Kluwer Academic Publishers.

[Shen & Su, 2007a] Shen, Z. & Su, J. (2007a). On automated composition for web services. In Proceedings
of the 16th International Conference on World Wide Web (WWW 2007), Banff, Alberta, Canada (pp.
1261–1262).

[Shen & Su, 2007b] Shen, Z. & Su, J. (2007b). On completeness of web service compositions. In Proceed-
ings of the 2007 IEEE International Conference on Web Services (ICWS2007), Salt Lake City, Utah, USA
(pp. 800–807).

[Sirin, 2006] Sirin, E. (2006). Combining Description Logic Reasoning with (AI) Planning for Composition
of Web Services. PhD thesis, Department of Computer Science, Faculty of the Graduate School of the
University of Maryland.

Patrick Un Master’s Thesis

180 Bibliography

[Sirin et al., 2003a] Sirin, E., Hendler, J. A., & Parsia, B. (2003a). Semi-automatic composition of web
services using semantic descriptions. In Proceedings of the 1st Workshop on Web Services Modeling,
Architecture and Infrastructure (WSMAI2003) in conjuction (ICEIS2003), Angers, France (pp. 17–24).

[Sirin et al., 2004a] Sirin, E., Kuter, U., Nau, D., Parsia, B., & Hendler, J. (2004a). Information gathering
during planning for web service composition. In Proceedings of the Workshop on Planning and Schedul-
ing for Web and Grid Services (ICAPS04), Whistler, Canada.

[Sirin et al., 2004b] Sirin, E., Parsia, B., & Hendler, J. (2004b). Composition-driven filtering and selection
of semantic web services. In Proceedings of the AAAI Spring Symposium on Semantic Web Services.

[Sirin et al., 2005a] Sirin, E., Parsia, B., & Hendler, J. (2005a). Template-based composition of semantic
web services. In Proceedings on Agents and the Semantic Web of AAAI Fall Symposium, Virginia, USA.

[Sirin et al., 2005b] Sirin, E., Parsia, B., & Hendler, J. A. (2005b). Template-based composition of semantic
web services. In AAAI 2005 Fall Symposium on Agents and the Semantic Web (pp. 85–92).

[Sirin et al., 2004c] Sirin, E., Parsia, B., Wu, D., Hendler, J. A., & Nau, D. S. (2004c). HTN planning for
web service composition using SHOP2. Journal of Web Semantics: Science, Services and Agents on the
World Wide Web, 1(4), 377–396.

[Sirin et al., 2003b] Sirin, E., Wu, D., Parsia, B., Hendler, J., & Nau, D. (2003b). Automatic web services
composition using SHOP2. In Proceedings of Planning for Web Services Workshop (ICAPS 2003) in
Trento, Italy.

[Smith et al., 2004] Smith, M. K., Welty, C., & McGuinness, D. L. (2004). OWL Web Ontology Language
Guide. http://www.w3.org/TR/owl-guide/. W3C Recommendation.

[Snabe et al., 2009] Snabe, J. H., Rosenberg, A., Moeller, C., & Scavillo, M. (2009). Business Process
Management the SAP Roadmap. Number ISBN 978-1-59229-231-8 in SAP Press Series. Galileo Press,
1 edition.

[Sohrabi et al., 2008] Sohrabi, S., Baier, J., & McIlraith, S. A. (2008). HTN planning with quantitative
preferences via heuristic search. In Proceedings of the 18th International Conference on Automated Plan-
ning and Scheduling (ICAPS) Workshop on Oversubscribed Planning and Scheduling, Sydney, Australia
Sydney, Australia. To appear.

[Sohrabi & McIlraith, 2008] Sohrabi, S. & McIlraith, S. A. (2008). On planning with preferences in HTN.
In Proceedings of the 4th Multidisciplinary Workshop on Advances in Preference Handling (M-PREF
2008) (pp. 103–109). Chicago, IL, USA: AAAI. A longer version of this paper appeared at NMR08.

[Sohrabi et al., 2006] Sohrabi, S., Prokoshyna, N., & McIlraith, S. A. (2006). Web service composition via
generic procedures and customizing user preferences. In Proceedings of the 5th International Semantic
Web Conference (ISWC2006) (pp. 597–611).

[Steinmetz et al., 2008] Steinmetz, N., Toma, I., Foxvog, D., Keller, U., Kerrigan, M., Kopecky, J., Krum-
menacher, R., Lausen, H., Sirbu, A., Roman, D., Scicluna, J., Fensel, D., Kifer, M., & de Bruijn, J. (2008).
WSML Language Reference. http://www.wsmo.org/TR/d16/d16.1/v1.0/. WSML Final Draft D16.1v1.0.

[Studer et al., 2007] Studer, R., Grimm, S., Hitzler, P., Abecker, A., Preist, C., Lausen, H., Lara, R., Polleres,
A., de Bruijn, J., Roman, D., Fischer, S., & Paolucci, M. (2007). Semantic Web Services, Concepts, Tech-
nologies and Applications. Number ISBN 978-3-540-70893-3 in Semantic Web Services. Tiergarten-
strasse 17, D-69121 Heidelberg, Germany: Springer Verlag, 1 edition.

Master’s Thesis Patrick Un

Bibliography 181

[Thakkar et al., 2002] Thakkar, S., Ambite, J. L., & Knoblock, C. A. (2002). Dynamically composing web
services from on-line sources. In Proceedings of the 18th National Conference on Artificial Intelligence
(AAAI), Workshop on Intelligent Service Integration, Edmonton, Alberta, Canada.

[Thakkar et al., 2003] Thakkar, S., Ambite, J. L., & Knoblock, C. A. (2003). A view integration approach to
dynamic composition of web services. In Proceedings of the 13th International Conference on Automated
Planning & Scheduling (ICAPS 2003), Workshop on Planning for Web Services, Trento, Italy.

[Thakkar et al., 2004] Thakkar, S., Ambite, J. L., & Knoblock, C. A. (2004). A data integration approach
to automatically composing and optimizing web services. In Proceeding of Workshop on Planning and
Scheduling for Web and Grid Services (ICAPS2004).

[Toma et al., 2008] Toma, I., Steinmetz, N., Foxvog, D., Keller, U., Kerrigan, M., Kopecky, J., Krummen-
acher, R., Lausen, H., Sirbu, A., Roman, D., Scicluna, J., Fensel, D., Kifer, M., & de Bruijn, J. (2008).
WSML/XML. http://www.wsmo.org/TR/d36/v1.0/. WSML Final Draft D36v1.0.

[van der Aalst et al., 2005] van der Aalst, W., Benatallah, B., Casati, F., & Curbera, F., Eds. (2005). Business
Process Management: Procedings of 3rd International Conference, BPM 2005, Nancy, France, number
ISBN 3540282386 in Lecture Notes in Computer Science LNCS 3649, Springer-Verlag GmbH, Tier-
gartenstrasse 17, D-69121 Heidelberg, Germany. International Conference of BPM 2005, Springer Ver-
lag.

[van der Aalst et al., 2003] van der Aalst, W., ter Hofstede, A., & Weske, M., Eds. (2003). Business Pro-
cess Management: Procedings of 1st International Conference, BPM 2003, Eindhoven, The Netherlands,
number ISBN 3540403183 in Lecture Notes in Computer Science LNCS 2678, Springer-Verlag GmbH,
Tiergartenstrasse 17, D-69121 Heidelberg, Germany. International Conference of BPM 2003, Springer
Verlag.

[van Emde Boas et al., 1990] van Emde Boas, P., Johnson, D., Seiferas, J., Li, M., Vitanyi, P., Aho, A.,
Mehlhorn, K., Tsakalidis, A., Schwartz, F. Y. J., Sharir, M., Vitter, J., & Flajolet, P. (1990). Handbook of
Theoretical Computer Science, Volume A: Algorithms and Complexity, volume A. Elsevier Science.

[Weske, 2007] Weske, M. (2007). Business Process Management, Concepts, Languages, Architectures.
Number ISBN 3540735216 in Business Process Management. Tiergartenstrasse 17, D-69121 Heidelberg,
Germany: Springer Verlag, 1 edition.

[Wooldridge & Jennings, 1994] Wooldridge, M. & Jennings, N. R. (1994). Agent theories, architectures and
languages: A survey. In ECAI Workshop on Agent Theories, Architectures and Languages (pp. 1–39).

[Wooldridge & Jennings, 1995] Wooldridge, M. & Jennings, N. R. (1995). Intelligent agents: Theory and
practice. Knowledge Engineering Review, 10(2), 115–152.

Patrick Un Master’s Thesis

182 Bibliography

Master’s Thesis Patrick Un

183

Index

π-calculus, 32, 39

ABox, see assertion box
abstract state machine, 34, 35

state transition, 34, 35
aggregated data type

SAP, 25
AI, see artificial intelligence
application logic, 22
ARIS, see ARIS modeling platform

model, 24, 25
ARIS modeling platform, 24
artificial intelligence, 17, 39, 58

frame problem, 61
frame problem solution, 62
planning, 36, 39, 41, 71, 80, 81

knowledge effect, 81
knowledge precondition, 81

search
search space, 81, 83
undirected search, 83

automated theorem proving, 39, 40

basic action theory, see situation calculus
BPEL, see Business Process Execution Language
BPMN, see business process modeling notation
buffered message queue, 40
business activity, 22
business logic, 21, 22, 27
business object, 24–28

attribute, 26, 27
consistency, 27
duration, 24
life cycle, 26, 27
master data, 24
modeling, 24
process object, 24
state, 26, 27
view of enterprise service, 25

business process, 15–17, 22–27, 118
component, 24
constraints, 17, 27

dataflow, 22, 23
enactment, 22
expert, 16
functionality, 22
instance, 22
management, 15, 22
management system, 22
model, 22, 25
modeling, 15, 24
object, 24
process phase, 118
workflow, 23

Business Process Execution Language, 33, 38
business process modeling notation, 118

closed world assumption, 36
closed world reasoning, 36
composite service, 21, 38
ConGolog, 39, 58, 74, 76–78, 80, 131, 148, 149

concurrency, 74
interleaved concurrency, 74
interpreter, 78
interrupt handling, 74
language constructs, 76
transition semantic, 74, 75

core data type
SAP, 25

DAML-S, see OWL-S Semantic Markup for Web
Services

decidable logical inference, 47
description logic

conjunctive query, 56
description logic programs, 34
description logics, 34–37, 41, 52
ALC, 52
SHIQ(D), 52
ABox, 37
assertion box, 52
atomic concept, 52
atomic role, 52
concept abduction, 37

184 Index

concept classification, 53
concept contraction, 37
concept covering, 37
conjunctive query, 37
conjunctive query containment, 37
constructor, 52
inference, 37, 41
knowledge base, 37, 52
reasoner, 52, 55
subsumption axioms, 53
tableau method, 52
TBox, 37
terminology box, 52

deterministic propositional dynamic logic, 40, 105
atomic proposition, 105
Kripke structure, 105

DL, see description logics
DLP, see description logic programs
DPDL, see deterministic propositional dynamic logic

enterprise resource planning, 16
process oriented, 18
system, 17, 23

enterprise service, 16–18, 23–28, 31, 47, 48
architecture, 23
characteristics, 28
common perception, 16
composition, 18, 19, 29
constraints, 18
control flow, 26
dataflow, 25, 26
definition, 16
discovery, 47
dynamical aspect, 18
information model, 26
integration, 17, 19
matching, 47
middleware, 23
modeling, 24
operation, 18
process oriented, 16, 17
property, 18
SAP, 19, 21, 23, 27
selection, 47
semantics, 18

enterprise service instance, 28, 48
signature, 49

ERP, see enterprise resource planning
ESI, see enterprise service instance

finite state transition system, 32, 35, 39–41, 87,
149

deterministic, 40, 89, 101
non-deterministic, 41

First-Order Logic Ontology for Web Services, 33
FLOWS, see First-Order Logic Ontology for Web

Services
frame axiom, 61
frame logic, 34

GCI, see general concept inclusion axioms
general concept inclusion axioms, 53
generic web procedure, 48
global data type

SAP, 25
GOLOG, 39, 58, 68–76, 80–86, 131, 144, 148,

149
generic procedure, 80
interpreter, 72, 73, 83

middle-ground interpreter, 85
offline interpreter, 85
online interpreter, 85

kernel initial state, 84
knowledge self-sufficient program, 85
language constructs, 73
model-based program, 86, 144
physically self-sufficient program, 85
predicate, 73
procedure, 73, 148
self-sufficient program, 84
semantics, 75
sensing action, 85
transition semantic, 80, 83
tree program, 81, 82
variable, 73

hierarchical task network, 41
hierarchical task network planning, 41
Hoare logic, 34
Horn logic, 34
HTN, see hierarchical task network

intelligent agent, 17, 36, 39, 81, 117
belief state, 39, 84

knowledge representation, 17, 79
formalism, 18

logic programming, 34–36
logical reasoning, 17, 18, 36

Master’s Thesis Patrick Un

Index 185

decidable, 17
non-monotonic, 36
of metadata, 17
technique, 18
tractable, 17

Mealy finite state transition system, 40, 41
deterministic, 35
non-deterministic, 35
state transition, 35

modal logic, 105
master modality, 108
modality, 105

model-based program, 81
instance, 86

negation as failure, 36

OWL, see Web Ontology Language
OWL-S Semantic Markup for Web Services, 33–

36, 41, 42
process model, 41
service grounding, 33
service model, 33
service ontology, 39, 41
service profile, 33, 36

process
integration, 18

process component
asynchronous access, 24
data access, 24
modeling, 24
SAP, 24, 27
semantic structure, 25
synchronous access, 24

process oriented
application logic, 15, 87
business logic, 15
enterprise service, 47, 117

process oriented application logic, 87

RACER, see Renamed ABox and Concept Expres-
sion Reasoner

RacerPro, see Renamed ABox and Concept Ex-
pression Reasoner

rational agent, see intelligent agent
RDF, see Resource Description Framework
Renamed ABox and Concept Expression Reasoner,

52
Resource Description Framework, 34

Roman Model, 87, 88, 95, 96, 114, 149
action alphabet, 87, 113, 149
action delegation, 87
checking satisfiability of DPDL formula, 111
deterministic service, 96
DPDL formula finite model, 111
external execution tree, 90, 91, 103
external schema, 89, 102, 103
internal execution tree, 91, 104
internal schema, 89, 104
Kripke structure, 105
Kripke structure interpretation, 105
labeled execution tree, 89
Mealy composition synthesis, 112
Mealy finite state external schema, 104
Mealy finite state internal execution tree, 104
Mealy finite state internal schema, 104
non-deterministic service, 96
reduction of service composition problem, 111
service community, 87, 100, 149
service composer, 100
service implementation, 88
service instance, 88
service life cycle, 93

activation, 93
choice, 93
termination, 94

service orchestrator, 100, 111, 114
service schema, 88
target service, 87, 100, 101, 114, 149

SEE, see semantic execution environment
semantic execution environment, 33
semantic service, 19, 29

composition synthesis, 29
discovery, 37, 56
matching, 36, 37, 52

exact match, 36, 56
intersection match, 36, 57
non-match, 36, 57
plug-in match, 36, 56
subsume match, 36, 57
variance, 37, 47
variance due to complete knowledge, 37
variance due to intended diversity, 37

matching algorithm, 36, 37
matching goal, 36
matching model, 36, 37, 56

Patrick Un Master’s Thesis

186 Index

Semantic Web Service Language SWSL, see First-
Order Logic Ontology for Web Services

Semantic Web Service Ontology SWSO, see First-
Order Logic Ontology for Web Services

service, 15, 16, 23
annotation, 21, 31
as black box, 26
autonomy, 21
behavior, 26, 28, 34, 35, 40, 41
behavioral model, 33, 34
capability, 52
capability advertisement, 47, 55
client, 28
coarse-grained, 23
coherency, 21
composability, 21
composition, 17, 19, 31, 33, 35, 37–42, 58
constraints, 18
consumption, 15, 16
contract, 21
conversation, 32
conversational state, 32
cross dependencies, 21
delivery, 15, 16, 18
delivery platform, 16
description, 31

rich semantics, 47
deterministic, 32
discovery, 15, 16
encapsulation, 22
execution, 26
framework, 28
integration, 15, 16, 18
interface, 24
internal state, 32
large integration, 15
matching, 17, 19, 31, 37
matching algorithm, 51
modeling, 17, 31, 42

controllability, 31
dataflow awareness, 32
interaction model, 31, 35, 38, 39, 41
monolithic interaction model, 31, 32, 35,

39, 41
sequential interaction model, 31, 33, 35, 38,

39, 41
state observability, 32
tree-based interaction model, 31, 35, 39, 40

non-deterministic, 32

ontology, 26
operations, 24, 31
orientation, 22, 23
platform, 16
process oriented, 16, 22
reusable, 22
semantics, 26
signature matching, 49
stateful, 21
stateless, 21
synthesis, 31, 37

service modeling
interaction model, 40

service oriented, 15, 22
application, 22
computing, 15
paradigm, 15, 16, 22, 23

service oriented architecture, 15, 21–23
SHOP2, see Simple Hierarchical Ordered Planner
Simple Hierarchical Ordered Planner, 41
simulation preorder, 40
situation calculus, 17, 18, 39, 42, 58, 60, 80, 113,

117, 131
action, 58
action function, 60
action history, 59
action precondition axiom, 60, 64, 69, 113,

117, 135, 137
atomic action, 113
axiom, 60
axiomatization, 131, 135
basic action theory, 60, 64, 80, 82, 85, 113,

114, 131, 144, 149
complex action, 82, 85

physical executability, 82
do binary function, 59
effect axiom, 60, 143
fluent, 58, 59, 113, 135, 136, 143
foundational axioms, 64, 135
functional fluent, 60
initial situation, 59
initial situation axioms, 63, 64, 113, 135, 144
instantaneous durationless action, 79
language Lsitcalc, 58, 59, 135
model-based program, 131
object, 58
Poss binary fluent, 59
predicate, 59
primitive action, 83, 135

Master’s Thesis Patrick Un

Index 187

process, 79
regressable formula, 65
regression, 64
relational fluent, 59, 79
semantics, 69
sensing action, 85
situation, 58
situation tree, 81, 82, 86, 113
situation tree trajectories, 86, 113
successor state axiom, 62, 64, 69, 113, 117,

135, 141
functional fluent, 62
relational fluent, 62

temporal reasoning, 79
unique name axioms, 63, 64, 113, 135
world-altering action, 85

SOA, see service oriented architecture
platform, 15

specialization of type, 50
status and actions management

action, 27, 28
action implementation, 27
constraints, 27, 28
data, 28
runtime system, 27, 28
SAP system, 27
schema, 28
status, 27, 28
status transition, 27, 28
status variable, 28

substitutivity of type, 50

tableau logical decision procedure, 52
TBox, see terminology box
theorem prover, 72
type contravariance, 50
type contravariance rule, 50
type covariance, 50
type covariance rule, 50

UDDI, see Universal Description, Discovery and
Integration

Universal Description, Discovery and Integration,
36, 47

registry, 36, 47

Web Ontology Language, 33
Web Service Choreography Description Language,

32, 39
process model, 39

specification, 39
Web Service Choreography Interface, 32
Web Service Conversation Language, 32
Web Service Description Language, 32, 36, 39

interface, 32
service description, 36
service message, 33

web services, 16, 22, 23, 31, 32
standards, 23
technologies, 16, 22, 23
transaction standards, 23

Web Services Business Process Execution Language,
38, 39

WS-BPEL, see Web Services Business Process Ex-
ecution Language

WS-CDL, see Web Service Choreography Descrip-
tion Language

WSCI, see Web Service Choreography Interface
WSCL, see Web Service Conversation Language
WSDL, see Web Service Description Language
WSML Web Service Modeling Language, 33–35

serialization, 34
WSMO Web Service Modeling Ontology, 33–35

expressiveness, 34
goal, 34
mediator, 34
ontology, 34
semantic web services, 34
semantics, 34

WSMX Web Service Execution Environment, 33,
34

Patrick Un Master’s Thesis

188 Index

Master’s Thesis Patrick Un

	Introduction
	SOA4All Project Background
	Motivation and Thesis Statement
	Motivation
	Objective
	Contributions

	Thesis Structure

	SAP Enterprise Services
	SOA Enterprise Service Characteristics
	Service Oriented Computing
	Business Process Fundamentals and Enterprise Services

	SAP Enterprise Service Information Model
	Business Objects and Process Components
	Core and Global Data Types

	SAP Enterprise Service Behavior Model
	Service Constraints
	Status and Actions Model

	Survey of Related Works
	Service Modeling
	Service Characterization Aspects
	Service Description and Modeling
	Service Matching and Discovery

	Service Composition Synthesis
	Industrial Approaches
	Academic Approaches

	Comparative Juxtapositions

	Foundations of Service Matching and Composition
	Semantic Service Matching and Discovery
	Formal Abstract Service Description
	Formal Abstract Service Matching
	Notion of Semantic Service Description and Matching
	Deciding Matching Level of Services

	Action Theoretic Foundations for Service Composition
	Situation Calculus
	Basic Action Theories
	Action Metatheory for the Situation Calculus
	Action Dynamic Logic Language GOLOG
	Concurrency with ConGolog
	Sequential Temporal Extension of Situation Calculus
	Service Composition in the Situation Calculus

	The Roman Model
	Characterizing Services
	Formalization of Service Interaction Dynamics
	Target Service Specification
	Automatic Composition Synthesis
	Characterization of Services Composition in the Situation Calculus

	Conceptual Functional Synthesis of Enterprise Services
	Guiding Process Scenario
	Supporting Automated Business Registration with Enterprise Services
	Composite Process Functional Requirements
	Selected Enterprise Services

	Action Theory Applied
	Preliminary Action Theory Axiomatization
	Building Domain Model
	Model-based Program

	Discussion

	Endnotes
	Summary
	Discussion of Lesson Learned
	Outlook

	GOLOG Interpreter
	ConGolog Interpreter
	ConGolog Model-Based Program Instance

