
Translation of Java-Embedded Database Queries

with a Prototype Implementation for LINQ

submitted by
Kaichuan Wen

20729335

supervised by
Prof. Dr. Ralf Möller

Dr. Miguel Garcia

Hamburg University of Technology
Software Systems Institute (STS)

March 16th, 2009

Declaration

I declare that:
this work has been prepared by myself,
all literal or content based quotations are clearly pointed out,
and no other sources or aids than the declared ones have been used.

Hamburg, March 16th, 2009
Kaichuan Wen

Contents

1 Introduction 1
1.1 Background and motivation . 1
1.2 Outline and scope . 2

2 LINQ Grammar 5
2.1 Original LINQ grammar . 5
2.2 Production rules for LINQ grammar 7

3 CST Metamodel 13
3.1 Class hierarchy of CST metamodel 13
3.2 Semantic actions building CST 16
3.3 Testing using visitors . 17

4 Transformation into SQO 21
4.1 Necessity and purpose of transformation into SQO 21
4.2 Transformation rules . 21
4.3 Implementation of the transformation with visitors 36
4.4 Transparent identifiers . 36

5 Conclusions 41

Bibliography 43

List of Figures

1.1 Grammar diagram of unary expression 2
1.2 Hierarchy and members of interface BinaryExpr 3

2.1 Grammar diagram of value . 7
2.2 Screenshot of ANTLRWork . 8
2.3 Grammar diagram of query expression 9
2.4 Grammar diagram of query body 9
2.5 Grammar diagram of primary expression 10
2.6 Grammar diagram of normal method call 10
2.7 Fragment of parsing diagram of query expression 11

3.1 Fragment of the class diagram of CST metamodel (clauses) . . . 14
3.2 Outline of interface QueryExpr 15
3.3 Outline of interface QueryBody 15
3.4 Fragment of the class diagram of CST metamodel (expresions) . 16
3.5 Screenshot of Debug perspective of Eclipse during a test 19

4.1 Screen shot of expression tree viewer 35
4.2 Resulting subtree after resolution of transparent identifier 39

List of Tables

4.1 Overview of transformation rules 22
4.2 Transformation Rule 1 . 23
4.3 Transformation Rule 2 . 23
4.4 Transformation Rule 3 . 24
4.5 Transformation Rule 4 . 24
4.6 Transformation Rule 5 . 25
4.7 Transformation Rule 6 . 25
4.8 Transformation Rule 7 . 26
4.9 Transformation Rule 8 . 27
4.10 Transformation Rule 9 . 28
4.11 Transformation Rule 10 . 29
4.12 Transformation Rule 11 . 30
4.13 Transformation Rule 12 . 31
4.14 Transformation Rule 13 . 31
4.15 Transformation Rule 14 . 32
4.16 Transformation Rule 15 . 32
4.17 Transformation Rule 16 . 33
4.18 Transformation Rule 17 . 33
4.19 Transformation Rule 18 . 34

Chapter 1

Introduction

1.1 Background and motivation

Nowadays, enterprise data can be found in different kinds of sources: from an
in-memory array, to XML documents, to relational databases. Each kind of data
source has its own data access model and query mechanism. This diversity not
only requires programmers to learn and compose various queries individually
(as part of a single business use case), but also leads to problems such as weak
typing and tight coupling.

Progress has been made in recent years, by introducing a thin middle layer
between data sources and programming language, which on the one hand pro-
vides a unified query mechanism over different data sources, and on the other
hand achieves Object/Relational Mapping (ORM) by integrating queries them-
selves into programming language with features like compile-time type checking,
navigational cursors and so on.

On this direction, Microsoft has introduced LINQ (Language Integrated
Query) in Visual Studio 2008 and .Net Framework version 3.5, bridging the
gap between the world of objects and the world of data. Queries formulated
using LINQ can run against various data sources such as in-memory data struc-
tures, XML documents and databases. While some of these use different imple-
mentations under the covers, all of them expose the same syntax and language
constructs. As a groundbreaking innovation, LINQ is yet limited to those pro-
gramming languages supported by .Net Framework 3.5. Therefore frameworks
such as NLINQ1 have come about, aiming at providing LINQ functionality in
older versions of Visual Studio (C# and VB .Net) by providing a LINQ grammar
parser and a ”LINQ To Objects” execution environment.

With a similar motivation but different implementation techniques, this
project work attempts to embed highly expressive, functional-style database
queries into Java. Although the query language supported in the reported
prototype is (a large subset of) LINQ, the underlying approach is in general
applicable to other data query mechanisms as well (XQuery, JPQL, to name a
few examples).

1http://www.codeplex.com/nlinq

1

1.2 Outline and scope

The main use case supported by the prototype is as follows: (a) the developer
enters a LINQ query as a String in Java source code; (b) a compiler plug-in gets
activated, participating in the compilation task; (c) this plug-in parses, checks,
and generates a series of Java statements that build the abstract syntax tree
(AST) for the input query; and (d) these statements are added to the Java com-
pilation unit being processed, reporting any well-formedness errors that might
have been detected over the API for communication between compiler plug-in
and compiler. The next subsections explore in more detail each component in-
volved in realizing this use case.

1. Grammar for LINQ

A parser for the LINQ syntax is necessary to transform LINQ queries into
structural syntax trees. For this, the parser generator ANTLR (ANother Tool
for Language Recognition) is used, which can generate lexer and parser for a
DSL (Domain-Specific Language) into Java or C#, in addition to providing a
grammar visualizer. Listing 1.1 and Figure 1.1 show as an example the gram-
mar rule unaryExpression and its grammar diagram:

1 unaryExpress ion r e tu rn s [CSTExpr value]
2 : unaSta1=statement { $value = $unaSta1 .

va lue ; }
3 | ’ ! ’ unaSta2=statement
4 { $value = fa c t o ry . createUnaryExpr () ;
5 ((UnaryExpr) $value) . setHasBang (true) ;
6 ((UnaryExpr) $value) . setDotSepPrimExpr (

$unaSta2 . va lue) ;
7 }
8 | ’− ’ unaSta3=statement
9 { $value = fa c t o ry . createUnaryExpr () ;

10 ((UnaryExpr) $value) . setHasMinus (true) ;
11 ((UnaryExpr) $value) . setDotSepPrimExpr (

$unaSta3 . va lue) ;
12 }
13 ;

Listing 1.1: Grammar rule of unary expression

Figure 1.1: Grammar diagram of unary expression

2

Details about the LINQ grammar are described in Chapter 2.

2. CST metamodel

So that our query expander can represent each part and clause of LINQ
syntax, a Concrete Syntax Tree (CST) metamodel is necessary. Modeling with
EMF2, class hierarchies as well as aggregations can reflect the relations and the
interplay among different syntax elements[5]. For example, BinaryExpr, which
represents a binary expression, should have two expressions as its left operand
and right operand, as well as the setter and getter for them respectively. What’s
more, arithmetic expression and Boolean expression should be subinterfaces of
binary expression. Figure 1.2 shows the type hierarchy of interface BinaryExpr
(upper pane) and its members (lower pane):

Figure 1.2: Hierarchy and members of interface BinaryExpr

Once the metamodel has been finished, there should be a way to construct a
CST (i.e., an object graph where nodes have been instantiated from the classes
in the CST metamodel), according to what the parser matches from a query.
ANTLR provides a mechanism of semantic action, which is ideal to accomplish
this task. Semantic actions tell the generated parser what code should be ex-
ecuted when a specific production in the grammar is matched. The semantic
action consists of executable statements of the target language (Java). In our
case, semantic actions mainly consist of calls to factory methods as well as
assignments of fields, resulting in CSTs where non-leaf nodes are instances of
metamodel classes, and leaf-nodes are query tokens. Listing 1.2 shows the se-
mantic action for grammar rule groupClause: (Semantic actions are those Java
statements within a pair of curly brackets)

1 groupClause r e tu rn s [GroupClause va lue]
2 : ’ group ’ grpSrc=expr e s s i on ’ by ’ grpBy=

expr e s s i on {
2http://www.eclipse.org/modeling/emf/?project=emf

3

3 $value = fa c t o ry . createGroupClause () ;
4 $value . s e tSource ($grpSrc . va lue) ;
5 $value . setBy ($grpBy . va lue) ;
6 }
7 ;

Listing 1.2: Grammar rule for groupClause and its semantic action

Details about CSTs and semantic actions used to build CSTs are given in
Chapter 3.

3. Transforming CST into standard query operations

As specified in the C# Language Specification in Sec. 7.15[1], all textual
LINQ query expressions are transformed into a series of method calls. For
this, the C# Language Specification defines 18 transformation rules so that
syntactically well-formed LINQ queries are guaranteed to be transformed into
their corresponding series of method calls. Each of these transformation rules
also defines its precondition (that a subtree of the CST must fulfill) in order for
this rule to be applicable to it.

Details about why and how to transform concrete syntax tree into standard
query operations, as well as some important aspects in the process of transform-
ing are the focus of Chapter 4.

4. Conclusion

Chapter 5 gives a summary of the project and describes about what conclu-
sions can be drawn, what has been learnt from the project, as well as the future
work that can be done to extend the use case and functionality of this project
work.

4

Chapter 2

LINQ Grammar

2.1 Original LINQ grammar

Query Expressions was introduced since .Net Framework 3.5, which provides
a language integrated syntax for queries that is similar to relational and hier-
archical query languages such as SQL and XQuery. Query Expressions is one
of the two ways to compose a query (The other way is using Standard Query
Operators (SQO)[8], which will be introduced later).

Each query expression begins with a from clause and ends with either a
select or group clause. The initial from clause can be followed by zero or more
from, let, where, join or orderby clauses, which are called query body clauses.

A from clause defines the data source of a query or subquery and a range
variable that defines each single element to query from that data source. The
syntax of the form clause is:
from range-variable in data-source

Each let clause introduces a range variable representing a value computed
by means of previous range variables, allowing to store the result of a subex-
pression that can be used somewhere else in the query. With let clause, the
same expression that needs to be used many times in the same query does not
have to be defined every single time. As expected, the syntax of the let clause
is:
let name =expression

A where clause is a filter that excludes items from the result. It specifies a
condition that an element in the data source must meet in order to be included
in the results. A single query can have multiple where clauses or a where clause
with multiple predicates that are combined by logical operators. Here is the
syntax of the where clause:
where boolean-expression

Each join clause compares specified keys of the source sequence with keys
of another sequence, yielding matching pairs. The predicates outerKeySelector
and innerKeySelector define how to extract the identifying keys from the outer
and inner source sequence items. Here is the syntax of the join clause:

5

join range-var in inner

on outerKeySelector equals innerKeySelector

Each orderby clause reorders items by using one or more keys that combines
different sorting directions. Directions can be either ascending or descending.
Ascending is the default direction that applies when no direction is explicitly
specified. Here is the syntax of the orderby clause:
orderby sort-on direction

The ending select or group clause specifies the shape of the result in terms of
the range variables. A select clause specifies precisely what is obtained by the
query, based on a projection that determines what to select from the result of
the evaluation of all the clauses and expressions that precede it. A group clause
projects a result grouped by a key, providing an effective way to retrieve data
that is organized into sequences of related items. Following are the syntax of
the select clause and group clause:
select expression

group range-variable by key

Finally, an into clause can, though this is not mandatory, be used to connect
queries by treating the results of one query as a generator in a subsequent query.
Here is the syntax of the into clause:
into name query-body

The other alternative to compose query besides Query Expressions is using
Standard Query Operators (SQO), defined as extension methods. In terms of
.Net Framework, these methods can work with any object that implements
either the IEnumerable<T> or IQueryable<T> interface.

In fact, in the .Net implementation of LINQ, all queries written in Query Ex-
pressions are translated by the language compilers into invocations of extension
methods that are sequentially applied to the target of the query. For example,
a LINQ query:

from c in customers where c.country == counties.Italy orderby c.name
descending, c.city select new {c.name, c.city}

is translated to the following method invocations:

customers.Where(c => c.country = Countries.Italy)
.OrderByDescending(c => c.name).ThenBy(c => c.City)
.Select(c=>new{c.name, c.city} .

The above method invocation contains two more new features: lambda ex-
pression and anonymous types. Lambda expressions are more powerful syntax
with which to write an anonymous method. Before the => token are param-
eters, which can be explicitly or implicitly typed. After the => is either a
statement or an expression body. In the example above,
OrderByDescending(c => c.name)
is equivalent to
OrderByDescending(delegate (Customer c){return c.name}) .

6

Anonymous types has this general form:
new { nameA = valueA, nameB = valueB, ...}

The primary use of this syntax of object initialization is to create an object
returned by the select clause. The outcome of a query is often a sequence of
objects that is either a composite of two or more data sources, or a subset of the
members of one data source. The type being returned is often needed nowhere
else other than the query. In this case, anonymous type helps eliminate the need
to declare a separate class just to hold the result of the query[6].

In our project, we support all these LINQ-related features: query expres-
sions, query operators, lambda expressions and anonymous type.

2.2 Production rules for LINQ grammar

Representing LINQ grammar with ANTLR production rules is rather straight-
forward with ANTLRWork, a graphical development environment for developing
and debugging ANTLR grammars. Figure 2.2 on page 8 shows an screenshot
of ANTLRWork.

value

We first define the production rules for the most bottom elements of the syntax
such as integer, float, string, identifier, and so on. These elements are then
generalized into production of value, as shown in Figure 2.1

Figure 2.1: Grammar diagram of value

7

F
ig

ur
e

2.
2:

Sc
re

en
sh

ot
of

A
N

T
L
R
W

or
k

8

The remaining grammar rules can be roughly divided into two categories:
expressions and clauses.

query expression

Clauses are the actual building blocks for a query expression. Every query
expression starts with a from clause followed by a query body. A query body
starts optionally with one or more query body clauses, followed by a select clause
or a group clause, then followed optionally by a query continuation. A query
continuation clause, starting with an into keyword, allows to store the result of
the preceding query that provides the source to the further query. Figure 2.3
and Figure 2.4 show the grammar diagrams of query expression and query body.

Figure 2.3: Grammar diagram of query expression

Figure 2.4: Grammar diagram of query body

query body

Each query body clause will then match with one or more of the following
clauses: from clause, let clause, where clause, join clause and order by clause.
Because arbitrary number of query body clauses can repeat itself in arbitrary
order within each query body, sophisticated and complicated queries can be
composed and refined easily.

primary expression

Once we have the clauses defined, we need to define the expressions that fill
the gaps between them. Primary expression is the bridge connecting expres-
sions and query clauses by defining query expression as one of its matching
alternative. Furthermore, primary expression also matches method call, which
represents a method invocation, new expressions, which initiates an object, as
well as expression, recursively. Figure 2.5 shows the grammar diagram of pri-
mary expression.

method call

A method call clause can match either a normal method call or a casting method
call. A normal method call invokes a method on its receiver, taking one or
more expression or lambda expression as parameter. Besides it can be used
to compose query with standard query operation. This clause is vital for the

9

Figure 2.5: Grammar diagram of primary expression

next phase, where we need to transform each textual query expression into a
sequence of invocations of standard query methods, the same job as the C#
compiler does behind the scenes. Figure 2.6 shows the grammar diagram of
normal method call.

Figure 2.6: Grammar diagram of normal method call

A casting method call is used solely in the second phase of a transformation
to produce a Cast<T>() invocation for from clause, join clause and join into
clause with explicit type declaration T. More details about transforming textual
query expression into standard query expressions will be described in Chapter 4.

new expression

A new expression instantiates an object in both traditional way where a type
name of which the object being instantiated is provided, and in anonymous way
where the type name is absent. The latter form of anonymous type is a new
feature introduced in C# 3.0 and we also include it in our project. When in-
stantiating with anonymous type, parameters are given within a pair of braces
({and}).

Each other kind of expression rules can match a certain expression accord-
ing to its specific usage and characteristic. Up to now, the LINQ grammar is
reproduced with ANTLR grammar rules, which can then generate a concrete
syntax tree in terms of the metamodel described in Chapter 3.

Figure 2.7 on page 11 shows fragment of an interpretation diagram of ANTL-
RWork on how it parses a simple LINQ query:

from c in Customers
from o in Orders
select new {c.name, o.orderID}

10

F
ig

ur
e

2.
7:

Fr
ag

m
en

t
of

pa
rs

in
g

di
ag

ra
m

of
qu

er
y

ex
pr

es
si

on

11

ANTLR can then generate the code of a lexer and a parser for the DSL in a
specified target language, which is in our project Java. When launching the lexer
and parser, the lexer first transfer the input string representing the query into
string stream, and consequently into token stream. The token stream is then
taken as the input of the parser, which finally produces the concrete syntax tree
by matching its root rule. Listing 2.1 gives the code that launches the lexer and
parser to generate the concrete syntax tree corresponding to the input string.

1 public stat ic CSTExpr getCST(St r ing toParse)
2 {
3 JLinq with Act ionLexer l ex = new

JLinq with Act ionLexer (new
4 ANTLRStringStream(toParse)) ;
5 CommonTokenStream tokens = new CommonTokenStream(l ex)

;
6 JLinq with Act ionParser par s e r = new

JLinq with Act ionParser (tokens) ;
7 try
8 {
9 l i nqExp r e s s i on r e tu rn pars ingRes = par s e r .

l i nqExpre s s i on () ;
10 CSTExpr c s t = pars ingRes . va lue ;
11 return c s t ;
12 } catch (Recognit ionExcept ion e)
13 {
14 e . pr intStackTrace () ;
15 }
16 return null ;
17 }

Listing 2.1: Launch of the lexer and parser

12

Chapter 3

CST Metamodel

3.1 Class hierarchy of CST metamodel

The CST (Concrete Syntax Tree) metamodel mainly serves the purpose of an
intermediate representation of each LINQ query as a tree. With the help of
a concrete syntax tree, a query in either textual syntax or method-invocation
syntax, composed in whatever manner, as long as it is a legal and syntactically
well-formed one, can be represented in a structural and normalized way.

Converting a query into the corresponding concrete syntax tree can be con-
sidered a process of normalization. This intermediate step is vital for the next
phase when transforming the concrete syntax tree into a sequence of standard
query operations (SQO), because that phase requires the application of some
transformation rules that take normalized query as their input, and this nor-
malization is a guarantee that the transformation can succeed.

Therefore, the metamodel should be able to well reflect all the logical units
and elements of the LINQ grammar, as well as the interplay and relationship
between them. In terms of an object-oriented programming language, the former
are the interfaces and classes in a specific hierarchy, and the latter are the
association and multiplicity between them.

We first define the base interface of all other interfaces: ExprOrLambdaExpr
that has two direct sub interfaces: CSTExpr and LambaExpr. This is to differenti-
ate the newly introduced Lambda expression that implements LambdaExpr, and
all the other kinds of expressions that implement the sub interfaces of CSTExpr.
Figure 3.1 shows a fragment of the class diagram of the CST metamodel. Since
the class diagram is relatively large, Figure 3.1 only shows those classes that rep-
resent the grammar element of LINQ. As further constructs are discussed (e.g.
Boolean and arithmetic expressions) their corresponding metamodel fragment
will also be shown.

Interface QueryExpr represents a query expression, which is the entry point
of a query expression, and also the root node in a concrete syntax tree when
the query is composed in textual syntax.

When the query is composed in method-invocation syntax, the entry point
and the root node of the concrete syntax tree will be an instance of interface
DotSeparated. DotSeparated represents the kind of structures that is sepa-
rated by dots. A typical method invocation looks like:

13

<<interface>>

CSTExpr

<<interface>>

QueryExpr
<<interface>>

FromClause

1 1

<<interface>>

QueryBody

1 1

body

1

1

<<interface>>

varDecl

1

1

<<interface>>

QueryContinuation

1

1

1111

<<interface>>

SelectOrGroupClause

1

1

<<interface>>

SelectClause
<<interface>>

GroupClause

<<interface>>

CSTExpr

1

1

1

1

1
1

<<interface>>

JoinClause
<<interface>>

EqComp

1

1

1 1

1

1

<<interface>>

JoinClauseInto
1

1

1
1

1
1

1

<<interface>>

WhereClause
1 1

from

result

rhs

var

inExpr

Body

into

1

body

by

sourceresult

innerVar

inner

On

lhs

rhs

Ord

Figure 3.1: Fragment of the class diagram of CST metamodel (clauses)

x1.Select(a=>a)

where Select(a=>a) is an instance of interface MethodCall taking the lambda
expression a=>a as its arguments. The above expression as a whole is an instance
of DotSeparated, in which the identifier x1 and the method invoked to x1 is
separated by a dot.

To maintain the association and multiplicity relationship between nodes,
each interface defines getters and setters of other interfaces that will be children
nodes of it. For those nodes with multiplicity of exactly one a single getter
and a setter suffice, while for those with multiplicity of more than one, a list
of children nodes will be kept. For example, a node of QueryExpr should have
two children, each of type FromClause and QueryBody. Each QueryBody then
has an optional list of QueryBodyClause, a mandatory result expression of type
SelectOrGroupClause, and an optional QueryContinuation. Figure 3.2 shows
the outline of QueryExpr and Figure 3.3 shows that of QueryBody.

There are another group of expressions that are not part of the grammar
elements of LINQ, but can be used within these elements. These expressions
include for example UnaryExpr, BinaryExpr, BoolExpr and so on. The uses
and purposes of these expressions are quite self-explanatory. Figure 3.4 shows
the fragment of the class diagram of CST metamodel where these expressions

14

Figure 3.2: Outline of interface QueryExpr

Figure 3.3: Outline of interface QueryBody

are located.
Note that not all interfaces in the metamodel are implemented. Some in-

terfaces just have the goal of generalization of some other interfaces, and they
therefore do not need to and cannot be implemented. Such interfaces include
PrimaryExpr, BinaryExpr, QueryBodyClause and SelectOrGroupClause. For
example, SelectOrGroupClause generalizes both interfaces SelectClause and
GroupClause. In this way, the setResult() method in QueryBody will take
an object of type SelectOrGroupClause as its argument, reflecting the LINQ
grammar rule that the result of a query body must be either a select clause or
a group clause. PrimaryExpr generalizes Literal, MethodCall, NewExpr and
QueryExpr, BinaryExpr generalizes ArithExpr (representing arithmetic expres-
sion) and BoolExpr (representing Boolean expression), while QueryBody gener-
alizes FromClause, LetClause, JoinClause, OrderByClause and WhereClause.

Finally there is a factory class in our metamodel, which can be used to create
various types of nodes of the concrete syntax tree in a unified way. This class
is being used mainly in the semantic actions to build the nodes, which will be
described in Section 2. Moreover, the factory class is also used in the cloning

15

<<interface>>

CSTExpr

<<interface>>

Indexer

1

1

1

1

<<interface>>

Stmt

<<interface>>

PrimaryExpr

<<interface>>

InitExpr

1

1

<<interface>>

BinaryExpr

1

1

1 1

<<interface>>

BoolExpr

<<interface>>

ArithExpr

<<interface>>

UnaryExpr

1

1

1

<<interface>>

Literal

1

ArrIndex

Init

left

right

1
*

dotSeparated

Stmt

Args

Figure 3.4: Fragment of the class diagram of CST metamodel (expresions)

visitor, which will be described in Section 3, Chapter 4.

3.2 Semantic actions building CST

Now that we have the metamodel that can describe a query as a tree, the next
step is to build this concrete syntax tree as the query syntax is being recognized
by the ANTLR parser. ANTLR provides a mechanism called semantic actions.
With semantic actions, we can specify which code should be executed when a
particular grammar rule is matched. These action codes are executable Java
statements. In our case therefore, we can place in semantic action blocks the
codes that should be executed to build the node of the concrete syntax tree
when the recognition of the corresponding grammar rule occurs.

The factory class mentioned in 3.1 is used to instantiate corresponding nodes.
Once a node is constructed, its children nodes are also specified with the results
matched, by the respective setters.

We will now examine in detail the semantic action of the grammar rule for
query body as an example. The other semantic actions are formulated in a
similar way. Listing 3.1 shows the grammar for query body with its semantic
actions within the curly braces.

1 queryBody re tu rn s [QueryBody value]
2 @in i t {
3 $value = fa c t o ry . createQueryBody () ;
4 Lis t<QueryBodyClause> c l a u s e s =$value . ge tClauses () ;
5 SelectOrGroupClause selOrGroup = null ;
6 QueryContinuation qc = null ;
7 }

16

8 : (qbc=queryBodyClause { c l a u s e s . add ($qbc . va lue) ; }
) ∗

9 (queryBodySel=s e l e c tC l au s e { selOrGroup =
$queryBodySel . va lue ; } | queryBodygrp=
groupClause { selOrGroup = $queryBodygrp . va lue
; })

10 (queryBodyQuCon=queryContinuat ion { qc =
$queryBodyQuCon . va lue ; }) ?

11 {
12 $value . s e tRe su l t (selOrGroup) ;
13 $value . s e t I n t o (qc) ;
14 }
15 ;

Listing 3.1: Grammar rule for query Body and its semantic action

We already know that each query body has an optional list of query body
clauses, followed by the resulting mandatory group clause or select clause, and
then followed by an optional query continuation. At line 3 an object of type
QueryBody is created by the factory, which will be the return value of this
grammar rule. At line 4 the list of query body clauses is returned, so that we
can add at line 8 the following query body clauses we will meet. At line 9, either
an object of type SelectClause or GroupClause will be assigned to variable
selOrGroup, depending on which one is matched. This value is assigned to the
result field of the query body through the setter at line 12. At line 13 the query
continuation is also assigned regardless of being null or not.

The object value will be returned at the end of the semantic action and will
be used in the matching of a query body in another grammar rule. In this way,
a complete concrete syntax tree can be constructed according to the input query
string.

3.3 Testing using visitors

The concrete syntax tree can also be used to verify that a query is syntactically
well-formed, that is, a query is conformant to the LINQ grammar defined in the
C# Language Specification. To verify that our parser and our unparser (i.e. to
unparse a CST into a string) are actually inverses of each other, the following
testing methodology can be followed:

1. parse input string s1 into concrete syntax tree e1

2. unparse e1 into string s2

3. parse string s2 into concrete syntax tree e2

4. compare e1 and e2

In order to implement the above test, we need to get a string representation
of a concrete syntax tree in a way that the resulting string should syntactically
equal to the original query. Further, since the query expression can have nested
queries and other kinds of expressions at different locations in itself, we also
need a way to walk through the generated concrete syntax tree recursively.

17

Visitor design pattern is applied here. The visitor interface contains declara-
tions of methods that will be called before and after visiting each kind of node.
A specific implementation of this interface can then determine which of or both
of the pre-visiting and post-visiting methods should be overridden.

To actually walk through the concrete syntax tree, a walker class is im-
plemented that can navigate the tree recursively and exhaustively. This class
has only one public method walk that takes an instance of ExprOrLambdaExpr,
which is a concrete syntax tree or a sub tree to be walked, and an instance of
an implementation of LinqtextualVisitor, which is the visitor that is being
sent to visit the tree, as its two arguments. In all other private methods that
visit different kinds of nodes, algorithm shown in Listing 3.2 is followed.

1 private T VisitTypeA (TypeA tree , V i s i t o r <T> v) {
2 I f (t r e e instanceof FirstSubTypeOfA) {
3 FirstSubTypeOfA a1 = (FirstSubTypeOfA) t r e e ;
4 v . preFirstSubTypeOfA (a1) ;
5 T resFie ldA = walk (a1 . getFie ldA () , v) ;
6 T resF ie ldB = walk (a1 . getFie ldB () , v) ;
7 . . .
8 return v . postFirstSubTypeOfA (a1 , resFie ldA ,

resFie ldB , . . .)
9 } else i f (t r e e instanceof SecondSubTypeOfA) {

10 . . .
11 }
12 . . .
13 }

Listing 3.2: Algorithm of walkers of different kinds of nodes

As in Listing 3.2 shown, each node will be visited after all of its children
nodes have been visited. The visit result of children nodes will hence be used
as the parameters for the visit of current node.

To fulfill the task of parsing a concrete syntax tree into string, a class
LinqtextualToString is written that implements the visitor interface. In each
post-method, the string result is constructed in accordance with the query syn-
tax itself, using the parsing result of its children nodes. Because of this post-
order navigating behavior, we only need to overwrite all the post-methods in
the interface, and all the pre-methods are kept blank.

Listing 3.3 shows the post-method for visiting a from clause. Recall the
algorithm shown in Listing 3.2, we can see that the arguments resIn and
resvarDecl are the results of visiting the two children of a from clause: the
inner expression and the variable declaration, which are assigned before the
method postFromClause is being called, and are referenced in that method to
produce the final string result.

1 public St r ing postFromClause (FromClause fc ,
2 S t r ing res In , S t r ing resVarDecl) {
3 St r ing r e s = ”from ” + resVarDecl + ” in ” + re s In ;
4 return r e s ;
5 }

Listing 3.3: Method postFromClause

18

Now that we have the walker and the visitor prepared, we are ready to do
the test. Figure 3.5 shows the screenshot of the Debug perspective of Eclipse
during a test. The upper window shows that an object of the concrete syntax
tree e1, which has been parsed from the string query input s1, is expanded so
that the node result, child node of node body is shown.

Figure 3.5: Screenshot of Debug perspective of Eclipse during a test

19

20

Chapter 4

Transformation into SQO

4.1 Necessity and purpose of transformation into
SQO

In LINQ, queries can be authored in either textual query expression style or
method-call style. In fact, the C# compiler transforms internally all textual
query expressions into series of method calls, also called Standard Query Oper-
ations (SQO), before performing further process[2]. Once the transformation is
finished, the compiler will bind the queries with the actual method bodies.

This transformation is vital and necessary in that it provides consider-
able flexibility to the query implementers. Specifically, query expressions are
translated into invocations of methods named Where, Select, SelectMany,
Join, GroupJoin, OrderBy, OrderByDescending, ThenBy, ThenByDescending,
GroupBy, and Cast. These methods are expected to have particular signatures
and return types, as described in the query expression pattern. The C# com-
piler does not care about who provides these methods, or how these methods
behave. They can be called as long as they adhere to that pattern. They can
be instance methods of the object being queried or extension methods that are
external to the object, and they implement the actual execution of the query.
Different providers then can have their own definition for these methods, allow-
ing implementation-specific query behavior. Because of this flexibility, different
LINQ implementations like LINQ to Objects, DLINQ, and LINQ to Entities
can coexist under the same LINQ syntax.

The transformation from query expressions to method invocations is a syn-
tactic mapping that occurs before any type binding or overload resolution has
been performed. Following transformation of query expressions, the resulting
method invocations are type-checked as regular method invocations, and this
may in turn uncover errors, for example if the methods do not exist, if arguments
have wrong types, or if the methods are generic and type inference fails.

4.2 Transformation rules

There are eighteen rules that define how queries are transformed. A query
expression is processed by repeatedly applying these transformation rules until

21

no further reductions are possible. The transformations are listed in order of
application and divided into four phases. The start of each phase assumes that
the transformations in the preceding phases have been performed exhaustively.
Once exhausted, a phase will not later be revisited in the processing of the same
query expression. Table 4.1 gives an overview of the query patterns for each
transformation rule.

Phase Rule Query Expression Pattern
Phase 1 Rule 1 inline query continuation

Phase 2
Rule 2 FromClause

annotation to castRule 3 JoinClause
Rule 4 JoinIntoClause

Phase 3 Rule 5 identity query (degenereate)

Phase4

Rule 6

FromClause

FromClause
SelectClause

Rule 7 Non-SelectClause
Rule 8

JoinClause
SelectClause

Rule 9 Non-SelectClause
Rule 10

JoinIntoClause
SelectClause

Rule 11 Non-SelectClause
Rule 12 OrderByClause
Rule 13 WhereClause
Rule 14 LetClause
Rule 15 non-identity SelectClause
Rule 16 identity SelectClause
Rule 17 non-identity GroupbyClause
Rule 18 identity GroupbyClause

Table 4.1: Overview of transformation rules

Each transformation rule is listed in Table 4.2 to Table 4.19, specifying the
patterns of the queries before and after the transformation is applied, the pre-
condition of the transformation, and the transformation algorithm.

Transformation Rule 7, 9, 11 and 14 introduce range variables with trans-
parent identifiers denoted by *. More details about transparent identifiers are
discussed in Section 4.

The first phase comprises only Transformation Rule 1, which removes in-
line query continuation. It will be applied repeatedly until there is no query
continuation in any subtree of the resulting tree.

22

pattern from x1 in e1 ... into x2 ...
→ from x2 in (from x1 in e1 ...) ...

precondition

function T1 (q : QueryExpr) : QueryExpr
when q.body.into != null

algorithm

new QueryExpr {
from = new FromClause{

var = q.body.into.var,
in = new QueryExpr {

from = q.from,
body = new QueryBody {

clauses = q.body.clauses,
result = q.body.result
}

}
}
body = q.body.into.body

}

Table 4.2: Transformation Rule 1

The second phase comprises Transformation Rule 2 to Rule 4, which reformu-
late all explicit type annotations in terms of casting method calls. It will be
applied repeatedly until there is no explicit type annotation in any FromClause,
JoinClause or JoinIntoClause in any subtree of the resulting tree.

pattern from T x1 in e1
→ from x1 in e1.Cast<T>()

precondition

function T2 (q : QueryExpr) : QueryExpr
when q.from.var.type != null

algorithm

new QueryExpr {
from = new FromClause{

var = q.from.var,
in = q.from.in

}
body = q.qbody.Cast<q.from.var.type>()

}

Table 4.3: Transformation Rule 2

23

pattern join T x1 in e1 on k1 equals k2
→ join x1 in e1.Cast<T>() on k1 equals k2

precondition

function T3 (j : JoinClause) : JoinClause
when j.innerVar.type != null

algorithm

new JoinClause {
innerVar = j.innerVar,
inner = j.inner.Cast<j.type>(),
on = j.on

}

Table 4.4: Transformation Rule 3

pattern join T x1 in e1 on k1 equals k2 into g
→ join x1 in e1.Cast<T>() on k1 equals k2 into g

precondition

function T4 (ji : JoinClauseInto) : JoinClauseInto
when ji.innenVar.type != null

algorithm

new JoinClauseInto{
innenVar = ji.innerVar,
inner = ji.inner.Cast<ji.type>(),
on = ji.on,
resultVar = ji.resultVar

}

Table 4.5: Transformation Rule 4

24

The third phase comprises Transformation Rule 5 to rewrite degenerate query.
According to the C# Language Specification, A degenerate query expression
is “one that trivially selects the elements of the source”. A later phase of the
translation removes degenerate queries introduced by other translation steps by
replacing them with their source. “It is important however to ensure that the
result of a query expression is never the source object itself, as that would reveal
the type and identity of the source to the client of the query. Therefore this step
protects degenerate queries written directly in source code by explicitly calling
Select on the source[1].”

pattern from x1 in e1 select x1
→ e1.Select(x1 => x1)

precondition

function T5 (q : QueryExpr) : QueryExpr
when q.from.var == q.qbody.result.result

algorithm

q.from.in.Select((q.from.var) => (q.from.var))

Table 4.6: Transformation Rule 5

The fourth phase comprises Transformation Rule 6 to Rule 18 which
iteratively reduce the query clauses until none of their preconditions
holds for any subtree of the resulting standard query operation query.
This phase performs the actual reduction on the query expression.

pattern from x1 in e1 from x2 in e2 select e3
→ e1.SelectMany(x1 => e2, (x1, x2) => e3)

precondition

function T6 (q : QueryExpr) : QueryExp
when q.body.clauses[0] instanceof FromClause and

q.body.clauses.size == 1 and
q.body.result instanceof SelectClause

algorithm

x1 = q.from.var;
x2 = q.body.clauses[0].var;
e2 = q.body.clauses[0].in;
e3 = q.body.result;
q.from.in.SelectMany(x1 = >e2, (x1, x2) => e3)

Table 4.7: Transformation Rule 6

25

pattern from x1 in e1 from x2 in e2...
→ from * in e1.SelectMany(x1->e2, (x1, x2)=>new x1, x2)...

precondition

function T7 (q : QueryExpr) : QueryExpr
when q.body.clauses[0] instanceof FromClause
and (q.body.clauses.size()==1 and
q.body.result instanceof GroupbyClause) or

q.body.clauses.size()>1)

algorithm

x1 = q.from.var;
e1 = q.from.in;
x2 = q.body.clauses[0].var;
e2 = q.body.clauses[0].in;
transId = newTransId(q);
QueryExpr newIn=e1.SelectMany(x1=>e2,(x1,x2)=>new {x1,x2});
newfrom = new FromClause {

var = transId,
in = newIn

}
QueryExpr result = new QueryExpr {
from = newFrom,
body = q.body
}

Table 4.8: Transformation Rule 7

26

pattern from x1 in e1join x2 in e2 on k1 equals k2
select e3
→ e1.Join(e2, x1=>k1, x2=>k2, (x1, x2)=>e3)

precondition

function T8 (q : QueryExpr) : QueryExpr
when q.body.bclauses = JoinClause
and
q.body.clauses.size()==1
and
q.body.result instanceof SelectClause

algorithm

x1 = q.from.var;
e1 = q.from.in;
x2 = q.body.qbclauses.join.innervar;
e2 = q.body.qbclauses.join.innerexp;
k1 = q.body.clauses[0].on.lhs;
k2 = q.body.clauses[0].on.rhs;
e3 = q.body.result;
e1.Join(e2, x1=>k1, x2=>k2, (x1, x2)=>e3)

Table 4.9: Transformation Rule 8

27

pattern from x1 in e1 join x2 in e2 on k1 equals k2...
→from * in e1.Join(e2,x1=>k1,x2=>k2,(x1,x2)=>new x1, x2)

precondition

function T9 (q : QueryExpr) : QueryExpr
when q.body.clauses[0] instanceof JoinClause
and (q.body.clauses.size()==1 and
q.body.result instanceof GroupbyClause) or

q.body.clauses.size()>1)

algorithm

x1 = q.from.var;
e1 = q.from.in;
x2 = q.body.clauses[0].innerVar;
e2 = q.body.clauses[0].inner;
k1 = q.body.clauses[0].on.lhs;
k2 = q.body.clauses[0].on.rhs;
transId = newTransId(q);
QueryExpr newIn = e1.Join(e2, x1=>k1, x2=>k2,

(x1,x2) => new{x1,x2});
newFrom = new FromClause {

var = transId,
in = newIn

}
QueryExpr result = new QueryExpr {
from = newFrom,
body = q.body
}

Table 4.10: Transformation Rule 9

28

pattern from x1 in e1 join x2 in e2 on k1 equals k2 into g
select e3
→ e1.GroupJoin(e2, x1=>k1, x2=>k2, (x1, g)=>e3)

precondition

function T10 (q : QueryExpr) : QueryExpr
when q.body.bclauses = JoinClauseInto
and
q.body.clauses.size()==1
and
q.body.result instanceof SelectClause

algorithm

x1 = q.from.var;
e1 = q.from.in;
x2 = q.body.clauses[0].innerVar;
e2 = q.body.clauses[0].inner;
k1 = q.body.clauses[0].on.rhs;
k2 = q.body.clauses[0].on.lhs;
g = q.body.clauses[0].resultVar
e3 = q.body.result;
e1.GroupJoin(e2, x1=>k1, x2=>k2, (x1, g)=>e3)

Table 4.11: Transformation Rule 10

29

pattern from x1 in e1 join x2 in e2 on k1 equals k into g...
→from * in e1.GroupJoin(e2, x1=>k1, x2=>k2,
(x1,g)=>new x1, g)...

precondition

function T11 (q : QueryExpr) : QueryExpr
when q.body.clauses[0] instanceof JoinClauseInto
and (q.body.clauses.size()==1 and
q.body.result instanceof GroupbyClause) or

q.body.clauses.size()>1)

algorithm

x1 = q.from.var;
e1 = q.from.in;
x2 = q.body.clauses[0].innerVar;
e2 = q.body.clauses[0].inner;
k1 = q.body.clauses[0].on.lhs;
k2 = q.body.clauses[0].on.rhs;
g = q.body.clauses[0].resultVar;
transId = newTransId(q);
QueryExpr newIn = e1.Join(e2, x1=>k1, x2=>k2,

(x1,g) => new{x1,g });
newFrom = new FromClause {

var = transId,
in = newIn

}
QueryExpr result = new QueryExpr {
from = newFrom,
body = q.body
}

Table 4.12: Transformation Rule 11

30

pattern from x1 in e1 orderby k1, k2, k3...
→ from x1 in e1. OrderBy(x1=>k1). ThenBy(x1=>k2).ThenBy
(x1=>k3)...

precondition

function T12 (q : QueryExpr) : QueryExpr
when q. body.clauses[0] instanceof OrderByClause

algorithm

x1 = q.from.var;
e1 = q.from.in;
k1 = q.body.clauses[0].orderings[0];
QueryExpr temp = e1.OrderBy(x1 => k1);
for (int i=1, i < (q.body.clauses.orderings. length), i++){
temp.ThenBy(x1 => (q.body.clauses[i]. orderings[i]));

}
new QueryExpr {
from = new FromClause {

var = q.from.var;
in = temp;

}
body = q.body;

}

Table 4.13: Transformation Rule 12

pattern from x1 in e1 where e2...
→ from x1 in e1.Wher(x1=>e2)...

precondition

function T13 (q : QueryExpr) : QueryExpr
when q.body.clauses[0] = WhereClause

algorithm

MethodCall temp = new MethodCall {
q.from.in.Where((q.from.var)=>

(q.body.Clauses[0].booltest) ;
new QueryExpr {
from = new FromExpr {

var = q.from.var;
in = temp;

}
qbody = q.qbody;

}

Table 4.14: Transformation Rule 13

31

pattern from x1 in e1 let x2 = e2...
→ from * in e1.Select(x1=>new x1, x2=>e2)...

precondition

function T14 (q : QueryExpr) : QueryExpr
when q.body.clauses[0] = Let

algorithm

x1 = q.from.var;
e1 = q.from.in;
x2 = q.body.clauses[0].lhs;
e2 = q.body.clauses[0].rhs;
transId = newTransId(q);
QueryExpr newIn = e1.Select (x1=>new{x1,x2=e2});
newFrom = new FromClause {

var = transId,
in = newIn

}
QueryExpr result = new QueryExpr {
from = newFrom,
body = q.body
}

Table 4.15: Transformation Rule 14

pattern from x1 in e1 select e2
→ e1.Select(x1=>e2)

precondition

when q.body.clauses.size() == 0 and
q.body.result instanceof SelectClause and

q.from.var != q. body.result.result

algorithm

x1 = q.from.var;
e1 = q.from.in;
e2 = q.body.result.result;
e1.Select(x1 => e2)

Table 4.16: Transformation Rule 15

32

pattern from x1 in e1 select e2
→ e1

precondition

when q.body.clauses.size() == 0 and
q.body.result instanceof SelectClause and

q.from.var == q. body.result.result

algorithm

e1

Table 4.17: Transformation Rule 16

pattern from x1 in e1 group e2 by e3
→ e1.GroupBy(x1=>e3, x1=>e2)

precondition

when q.body.clauses.size() == 0 and
q.body.result instanceof GroupbyClause and
q.from.var != q. body.result.result.source

algorithm

x1 = q.from.var;
e1 = q.from.in;
e2 = q.body.result.source;
e3 = q.body.result.by;
e1.GroupBy(x1=>e3, x1=>e2)

Table 4.18: Transformation Rule 17

33

pattern from x1 in e1 group x1 by e3
→ e1.GroupBy(x1=>e2)

precondition

when q.body.clauses.size() == 0 and
q.body.result instanceof GroupbyClause and

q.from.var == q. body.result.result.source

algorithm

x1 = q.from.var;
e1 = q.from.in;
e2 = q.body.result.source;
e1.GroupBy(x1=>e2)

Table 4.19: Transformation Rule 18

Through the application of Rule 6 to Rule 18 repeatedly and recursively, a query
in textual syntax can always be reduced completely to a series of SQO method
calls. This is guaranteed because of the following:

1. After the application of Rule 1, there exists no query continuation in any
sub query.

2. A legal query expression always starts with an initial from clause. Because
of 1, a legal query expression can now only end with either a select clause
or a groupby clause.

3. Any other optional query body clauses are located between the initial from
clause and the ending select/groupby clause. These clauses include from
clause, join clause, join-into clause, order-by clause, where clause and let
clause.

4. Among those optional clauses mentioned in 3 (i.e. those located after the
mandatory initial from clause), Rule 6 or Rule 7 applies to the first of
them if that is a from clause. In either case, this from clause is removed,
reducing the total number of clauses by 1.

5. Cases are similar when the first of them are clauses other than from clause.
Rule 8 or Rule 9 reduces a join clause, Rule 10 or Rule 11 reduces a join-
into clause, Rule 12 reduces an orderby clause, Rule 13 reduces a where
clause, and Rule 14 reduces a let clause. Therefore, all these optional
clauses can be eventually reduced, leaving only an initial mandatory from
clause and the ending mandatory select/groupby clause.

6. Rule 15 or Rule 16 rewrites a query with only initial from clause and
ending select clause into a method call. So does Rule 17 or Rule 18 when
the ending clause is a groupby clause.

34

Consider the following example query:

from x in foo where x>0 from y in bar select x+y

To transform this query, we first see if Rule 1 to Rule 5 apply. Since it has no
query continuation, no explicit type annotation and is not a degenerate query,
none of these rules applies. Entering phase 4, the first applicable rule is Rule
13, which reduces the where clause and results in the following:

from x in foo.Where(x>0) from y in bar select x + y

Repeating phase 4, the next applicable rule is Rule 6, reducing the second from
clause and resulting in the following:

foo.Where(x>0).SelectMany(x=>bar, (x,y)=>x + y)

Up to now, we have only a series of method calls and not any query clause. The
transformation can stop here and the above is the final result.

It is not easy to ”manually” check whether a transformation is correct. For-
tunately, there is a LINQ example project called ”expression tree viewer” that
comes with Visual Studio 2008[7]. This tool originally serves the purpose of
being an example of LINQ queries and can represent an expression as a tree,
but it can also be a plug-in to the Visual Studio Debugger. Because the C#
compiler always transforms any query into Standard Query Operations, and
this tool also shows the result of this transformation, we can make use of it by
giving a textual LINQ query as input and compare the result with ours. Figure
4.1 shows the expression tree viewer using the following query as its input:

from i in items.AsQueryable() from s in statuses.AsQueryable()
where i.ItemNumber==s.ItemNumber select new
{i.Name,s.InStock}

Figure 4.1: Screen shot of expression tree viewer

The upper window shows the result of the transformation, and the lower
window shows the tree representation of the resulting SQO query.

35

4.3 Implementation of the transformation with
visitors

The transformation rules introduced above are applicable to query expressions.
When demonstrating them, variables like e1 are used to denote source collections
within query expressions. This notation is just a simplification and should not
be misleading, because such expressions can in turn be query expressions, which
also require the application of transformation rules in order that a transformed
query does not contain any textual query expression in any subtree.

Because of this fact that a query should be transformed recursively, visitor
design pattern is applied again. This time we implement the visitor interface
with a so-called “cloning visitor”. Cloning visitor returns a duplicate object of
the node being visited. This duplication copies not only the node itself, but also
all of its children nodes. We use a cloning visitor here because the algorithms
of the transformation rules involve changing the shape of a concrete syntax tree
by moving some particular sub trees from one place to another. Most of the
other sub trees need to be copied to their new place as is. What’s more, using a
cloning visitor reduces the chance of having reference issues when manipulating
a tree (i.e. portions of a new tree pointing to subtrees in the old one).

The cloning visitor implements all the post-visiting methods of the visitor
interface. When visiting each node, a new object is created by the factory class,
and all of its field will be then assigned to results of the visit to those nodes.

Each transformation rule can be considered a special case of the cloning visi-
tor, in that when visiting one node, it returns the resulting node after the trans-
formation, instead of simply a copy of it. Hence, each transformation visitor sub-
classes the cloning visitor, and each only needs to override the post methods for
the nodes where the transformation rule should apply. In the overriding method,
the transformation is performed once the precondition is fulfilled. For example,
the visitor for Transformation Rule 1 overrides method PostQueryExpr, the vis-
itor for Transformation Rule 2 overrides method PostFromClause, the visitor
for Transformation Rule 3 overrides method PostJoinClause and the visitor
for Transformation Rule 4 overrides method PostJoinClauseInto.

4.4 Transparent identifiers

Transformation Rules 7, 9, 11 and 14 introduce transparent identifiers to their
outputs. Each transparent identifier has exactly one associated anonymous type,
which is introduced during the same rewrite step as the transparent identifier.
Consider the following example1. We now want to transform the following query
into standard query operators.

from x in foo let y=f(x) let z=g(x,y) select (x,y,z)

Applying Rule 14 once will result in the following intermediate query:

from * in foo.Select(x => new { x, y = f(x) }) let z = g(x, y)
select h(x, y, z)

1Yet Another Language Geek, http://blogs.msdn.com/wesdyer/archive/2006/12/22/transparent-
identifiers.aspx

36

Here a transparent identifier is introduced, associating with the anonymous type
new { x, y = f(x)}. Applying Rule 14 again we will get

from * in foo
.Select(x => new { x, y = f(x) }) .Select(* => new { *, z = g(x, y)
}) select h(x, y, z)

Again a new transparent identifier is introduced, associating with the anony-
mous type new {*, z = g(x, y)}, in which the * denotes the first transparent
identifier introduced earlier. To distinguish the two transparent identifiers, we
denote them as *1 and *2. Now we know that *1 binds to new anonymous type
{ x, y = f(x)}, while *2 binds to new anonymous type { *1, z = g(x, y)}.
Rewrite the result above with Rule 15 and we get this result:

foo.Select(x =>new{x,y=f(x)}).Select(*1=>new{*1,z=g(x, y)})
.Select(*2 => h(x, y, z))

Next step we need to resolve the transparent identifiers. When a transparent
identifier is in scope, its members are also in scope. For the above result, *2 is
in scope so that *1 and z are in scope. Therefore we rewrite z as *2.z, and *1
as *2.*1. Moreover, *1 is in scope so that x and y are in scope, so we can in
turn rewrite x as *1.x and y as *1.y. Since we have rewritten *1 as *2.*1, all
the occurrences of members of *1 should also be rewritten. Finally we rewrite x
as *1.x then as *2.*1.x. The same applies to *y to get *2.*1.y. Replacing *1
with name transId 1 and *2 with name transId 2, we get the following final
result:

foo.Select(x => new { x, y = f(x) })
.Select(transId_1 => new
{transId_1, z = g(transId_1.x, transId_1.y) })

.Select(transId_2=>
h(transId_2.transId_1.x, transId_2.transId_1.y, transId_2.z))

Using the term “scope” above, it looks like as if an environment should
be maintained to keep track of the valid scope of each transparent identifier.
Using environment, different transparent identifiers can have the same name,
as long as they are located in different environment. Certain programming
languages like Pascal have the similar situation where different variables with
the same name can coexist as long as they are declared in different blocks.
While this feature does provide some level of flexibility, it also introduces some
ambiguity and compromises readability of the source code. Therefore, variables
with the same name, as long as they are all visible within a certain scope, are
not allowed by the C# Compiler. This rule also applies to LINQ query. When
processing transparent identifier, this means that we do not need to maintain
an environment. Without an environment, all identifiers declared in a query,
including transparent identifier, must have unique name within the whole query.

We first define a class that represents one transparent identifier.

1 public class TransId extends VarDeclImpl {
2 private int index ;
3 private L i s t l i s t ;
4 public TransId (S t r ing p r e f i x , int ind) {

37

5 index = ind ;
6 this . setName (p r e f i x + ind) ;
7 l i s t = new ArrayList () ;
8 }
9 public int getIndex () {return index ;}

10 public L i s t g e tL i s t () {return l i s t ;}
11 public TransId addParam(Object va lue) {
12 i f (va lue instanceof TransId | | value

instanceof VarDecl)
13 l i s t . add (value) ;
14 return this ;
15 }
16 }

Listing 4.1: Class TransId

Listing 3.4 shows the class declaration of TransId. Each object of this
class has its prefix and index combined as its name, and a list keeping all the
variables in its scope. In the example above, transId 1 has x and y in its list,
and transId 2 has transId 1 and z in its list.

Each object of QueryExpr has a field of type TransIdList, which has a list
of all the TransId occurring within the query expression and the prefix to be
used for all these transparent identifiers.

Having these data structures in hand, we can now have the general algorithm
to process transparent identifiers:

1. Before applying any transformation, find a string that is “safe” to be the
prefix of any transparent identifier within this query.

2. Apply the transformations rules in order.

3. When Rule 7, Rule 9, Rule 11 or Rule 14 is applied, a new transparent
identifier is created, assigned a unique name and added to the list. All its
members are also added to the list of that transparent identifier.

4. Transparent identifiers are resolved at the end of the application of this
transformation rule.

Two points should be clarified: how to find the “safe” string in step 1, and how
to resolve the transparent identifiers in step 4.

A variable name is considered safe if its name does not conflict with any
other variable names within the same query. A “fresh” name is therefore safe
if its length exceeds the length of the longest variable name in the query. We
name the transparent identifier with a prefix that is safe, followed by an index,
so that each transparent identifier has a unique name.

To find out the longest variable name, we use a visitor to visit all the variable
occurrences within the syntax tree of a query. An initial prefix for a query is
set to “TransparentID ”.Whenever it visits a variable, it compares the length
of the name of this variable with the length of the current prefix. When the
former is longer, it updates the current prefix by concatenating another string
“TransparentID ” to the end of the current prefix. At the end of the entire
visit, the prefix is the longest one among all the variables in the query.

38

Another question is how to resolve the transparent identifier. At the end of
each transformation rules that can introduce transparent identifier, the resolu-
tion takes place. Another visitor is sent to the transformed query expressions,
and checks if a variable is the member of any transparent identifier in the list.
If it is, rewrite the variable with the name of its parent (preceding) transparent
identifier. For example, rewrite x with TransparentID 0.x. In terms of the
CST metamodel, a node of type DotSeparated replaces the original variable
node. The transparent identifier is also checked in the same way, so that in
this example it results in TransparentID 1.TransparentID 0.x. This process
is repeated until no single variable or no variable that is in front of the any
DotSeparated can be found in the list. Figure 4.2 shows the resulting subtree
of the above example.

DotSeparated

Variable

TransparentID_1

DotSeparated

Variable Variable

TransparentID_0 x

Figure 4.2: Resulting subtree after resolution of transparent identifier

After the transparent identifiers are resolved, the transformation can con-
tinue with the following transformation rules. Finally, all textual query expres-
sions can be transformed into series of method calls.

39

40

Chapter 5

Conclusions

There is no doubt that LINQ represents an important improvement in the way
we write code. This is also one of the reasons why we choose LINQ as the data
query mechanism that we were trying to embed into Java. Because of the time
limit of the project work, we have to stop the implementation at the point of
finishing the transformation into SQO.

A larger use case consists in the situations where, once we have transformed
the query into SQO, we have to make sure that it is sent to a database for
evaluation. This can be achieved by implementing a plug-in for the Java Com-
piler so that it can expand embedded queries. Additionally, implementations
for the eleven SQO methods (Where, Select, SelectMany, Join, GroupJoin,
OrderBy, OrderByDescending, ThenBy, ThenByDescending, GroupBy and Cast)
would also be needed. Depending on the source collections (such as Java array,
Java Collection and XML), the implementation should take care of accessing
that data in its native format. Other data models will likely have different
implementations for these methods, and this work should be up to the data
model providers. The prototype developed in this project (including parsing
and transforming any LINQ query into SQO) is a pre-requisite for the more ad-
vanced evaluation functionality. The work reported here can be generally used
without the user’s concerning about the particular implementations.

We can also learn from the project that, we can apply similar techniques to
embed in Java other query languages, such as JPQL (Java Persistence Query
Language) or XQuery. The reported technique can thus be summarized (for
reuse) in terms of the following steps:

1. Use ANTLR or other similar language recognizing tools to generate a
language parser that can recognize the query syntax of the embedded
query language.

2. Construct a CST metamodel in Java according to the grammar structure
of that query mechanism.

3. Use semantic actions in ANTLR or similar way in other parser generators
to build the CST corresponding to a query in that language.

4. Apply some mechanism-specific process if necessary. (In terms of our
project, this step involves the transformation into SQO, as this is a LINQ-
specific process).

41

5. Construct a plug-in for Java compiler that can handle the query in Java.
Making use of the Annotation introduced in Java 5 and JSR 269, the
Pluggable Annotation Processing API, a customized annotation processor
can be plugged-in to the compilation in order to process query[4]. More-
over, further issues such as semantic analysis and type-checking should be
considered when implementing this[3].

42

Bibliography

[1] C# Language Specification 3.0. http://msdn.microsoft.com/en-
us/library/bb308966.aspx, March 2007.

[2] The .NET Standard Query Operators. http://msdn.microsoft.com/en-
us/library/bb394939.aspx, February 2007.

[3] Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in
Java. Cambridge University Press, second edition, 2002.

[4] David Erni and Adrian Kuhn. The Hacker’s Guide to Javac.
http://www.iam.unibe.ch/ scg/Archive/Projects/Erni08b.pdf, March 2008.

[5] Miguel Garcia and Rakesh Prithiviraj. Rethinking the Architecture
of O/R Mapping for EMF in terms of LINQ. In Eclipse Modeling
Symposium at Eclipse Summit Europe 2008, Stuttgart, Germany, 2008.
http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2008/ese/linq4emf.pdf.

[6] Paolo Pialorsi and Marco Russo. Programming Microsoft LINQ. Microsoft
Press, 2008.

[7] Rakesh Prithiviraj. IDE Customization to Support Language Embeddings.
Master’s thesis, Hamburg University of Technology (TUHH), 2008.

[8] Herbert Schildt. C# 3.0: A Beginner’s Guide. McGraw-Hill, 2009.

43

