
Language-Integrated Queries in Scala

Kaichuan Wen
20729335

December 2009

supervised by
Prof. Dr. Sibylle Schupp

Prof. Dr. Friedrich Mayer-Lindenberg
Dr. Miguel Garcia

Hamburg University of Technology(TUHH)
Institute of Software Technology and Systems(STS)

Declaration

I declare that:
this work has been prepared by myself,
all literal or content based quotations are clearly pointed out,
and no other sources or aids than the declared ones have been used.

Hamburg, Germany
Dec. 20th, 2009

Kaichuan Wen

Acknowledgements

First of all, I would like to thank Prof. Dr. Sibylle Schupp, the head of
Institute of Software Technology and Systems(STS), for offering me this
interesting Master Thesis topic, and her precious support, valuable advice
and encouragement for my work.

I would also like to thank my second supervisor Prof. Dr. Friedrich
Mayer-Lindenberg, head of Institute of Computer Technology, for his inter-
est in my Master Thesis work.

Many thanks are to my co-supervisor Dr. Miguel Garcia, for his generous
suggestions and guidance. I really enjoyed the moments when we exchanged
ideas.

Thanks are also to other staffs in STS, for providing me with comfortable
working conditions and friendly atmosphere.

Last but not least, special gratitude goes to my parents and grandparents
in China. I can never thank you enough for all your endless support and
love.

Abstract

The integration of modern programming language and functional database
query languages brings in new innovation in data access mechanism. On the
one hand, programming languages combine object-orientation paradigm and
functional programming style, benefiting from the joint advantage and con-
venience of both. On the other hand, functional database query languages
like LINQ provide a manner of language-integrated query, which enables deep
participation of the host-language in query processing.

This Master Thesis investigates and implements this integration. It goes
one step further by achieving another integration of object model and rela-
tional model. This O/R mapping is implemented through the translation
into an intermediate language. The resulting prototype enables a scenario
where queries in functional query language(LINQ), embedded in program-
ming language(Scala), are triggered on object model(EMF), which has been
persisted in relational model(DBMS). In this scenario, each party acts out
its own expertise respectively.

In this thesis it is also argued why (a) the persistent representation(in the
RDBMS) is isomorphic to its programming language counterpart(in main-
memory); and (b) similarly for queries at the programming and query lan-
guage level.

Keywords: Language-integrated, Query, ORM, Object model, Relational
model, Isomorphism, EMF, LINQ, Ferry, Scala

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 2

1.2.1 Involved Technologies 2
1.2.2 Related work . 3

1.3 Overview . 3
1.3.1 Supported use case . 3
1.3.2 Outline of this report 4

2 Persistence: EMF to Relational Model 5
2.1 Required data structures . 5

2.1.1 Ferry Types . 5
2.1.2 Table Nodes and Table Information Nodes 7

2.2 Overview of the persistence 9
2.2.1 The separated phases 9
2.2.2 ORM scheme . 9
2.2.3 Assumptions and restrictions 10

2.3 Persistence of EMF class schema 11
2.3.1 Rules and algorithm 11
2.3.2 Implementation and result 17

2.4 Persistence of object population 19
2.4.1 Algorithm . 19
2.4.2 Implementation and result 23

3 Query: LINQ to Ferry 25
3.1 Overview of the translation 25

3.1.1 Syntax of LINQ . 25
3.1.2 Syntax of Ferry . 28
3.1.3 Supported LINQ subset 33
3.1.4 Translation phases . 34

3.2 Normalization . 35
3.2.1 Functional syntax of SQO 35
3.2.2 Normalization of SQO overloads 35

i

ii CONTENTS

3.3 Translation . 39
3.3.1 Translation rules . 39

3.4 Implementation and result . 51
3.4.1 From one tree to another 51
3.4.2 Type checking of the translation 52
3.4.3 Translating transparent identifier 53
3.4.4 Resolving member access 54
3.4.5 Result . 54

3.5 Next step . 55

4 Relational Query Plans 57
4.1 Relational Algebra . 57

4.1.1 Projection (πa1:b1,...,an:bn) 57
4.1.2 Selection (σp(R)) . 58
4.1.3 Cartesian Product (R× S) 59
4.1.4 Equi Join (R ./a=b S) 60
4.1.5 Disjoint Union (R ∪ S) 61
4.1.6 Difference (R\S) . 62
4.1.7 Distinct (δR) . 63
4.1.8 Attach (@) . 64
4.1.9 Row Rank (%c,a) . 65
4.1.10 Row Number (#a:<b1,...,bn>/c) 66
4.1.11 Aggregation (agga,b,c) 67
4.1.12 Operation-Application (⊗) 68
4.1.13 Table Reference . 69
4.1.14 Table Literal . 69

4.2 Query Plan . 70
4.3 Implementation . 72

4.3.1 Classes of ASTs . 72
4.3.2 Transforming to SQL 74
4.3.3 Well-formedness Checking 76

4.4 Automated Testing . 77

5 Isomorphism 81
5.1 Isomorphism between object model and relational model . . . 81
5.2 Semantic equivalence of queries on different models 84

6 Conclusions 87
6.1 Contributions . 87
6.2 Future work . 87

Bibliography 89

List of Figures

2.1 Types of Ferry . 6
2.2 UML diagram of Ferry types 6
2.3 Tree of Table Nodes . 7
2.4 Tree of Table Information Nodes 8
2.5 Two phases of the persistence 9
2.6 UML diagram of supported EMF core metamodel 11
2.7 Diamond-shaped class hierarchy 16
2.8 UML diagram of a simple EMF class schema 19
2.9 Table Information Nodes of a simple EMF class schema . . . 19
2.10 UML object diagram of a sample object 24
2.11 Database tables after persistence 24

3.1 LINQ-related production rules 27
3.2 Syntax of Ferry . 29
3.3 Phases of translation from LINQ to Ferry 34

4.1 Example: Projection Operator 58
4.2 Example: Selection Operator 59
4.3 Example: Cartesian Product Operator 59
4.4 Example: Equi Join Operator 61
4.5 Example: Disjoint Union Operator 62
4.6 Example: Difference Operator 63
4.7 Example: Distinct Operator 63
4.8 Example: Attach Operator 64
4.9 Example: Row Rank Operator 65
4.10 Example: Row Number Operator 66
4.11 Example: Aggregation Operator 67
4.12 Example: Operation-Application Operator 68
4.13 Example: relations CUSTOMERS and ORDERS 70
4.14 Tree Diagram of Query Plan 71
4.15 UML Diagram of Classes Representing Relational Algebra . . 73

5.1 Preservation of isomorphism 81

iii

iv LIST OF FIGURES

Chapter 1

Introduction

1.1 Motivation

Modern development of programming languages and database technologies
raises higher demand on the integration of them. On the one hand, pro-
gramming languages like Scala and F# combine object-orientation paradigm
and functional programming style. With this combination, object model
now also benefits from the advantage and convenience provided by func-
tional programming, including the enriched support for immutable collec-
tions and list comprehensions, one foundation of query processing. On the
other hand, functional database query languages like LINQ provide a man-
ner of language-integrated query to query on object model, also based on
the support of functional operations and list comprehensions. This inte-
gration enables deep participation of host-language in query processing, in
particular, regarding type checking and type inference.

However, from an abstract point of view, this integration does not elim-
inate the mismatch between object model and relational model. Besides
that, Object-Relational-Mapping(ORM) should also play its role. The open
question of O/R mismatch can be addressed by low-level processing of both
models. This processing can also benefit from the integration of functional
programming and the support of list comprehensions. For example, in O/R
mapping, collections in object model can be expanded and processed as
comprehensions in order to adhere to 1NF(First Normal Form) in relational
model.

This Master Thesis achieves an O/R mapping prototype in a language-
integrated manner, through the application of functional programming as
well as processing of list comprehensions. This mapping is bi-directional,
supporting both persistence from object model to relational model, and the
reformulation of query results from relational model back to object model.
We also preserve the isomorphism between models in both directions of
mappings, so as to ensure the correctness and applicability of this prototype.

1

2 CHAPTER 1. INTRODUCTION

1.2 Background

1.2.1 Involved Technologies

• EMF

Eclipse Modeling Framework (EMF) is a data modeling and code genera-
tion facility for building tools and other applications based on a structured
object-oriented data model. From a model specification described in XMI,
EMF provides tools and runtime support to produce a set of Java classes
for the object-oriented model in question.

In our project, we adopt a subset of EMF to construct our object model
as the departure point of our journey of translation and query. This subset
mainly involves its static modeling facility, meaning that we use EMF to
model classes, fields of them, as well as relationship and interplay among
them, rather than their runtime behaviors. Also for the persistence, we will
address the problem of static object population, which is instance of classes
modeled by EMF, but do not consider any dynamic object instantiation as
part of the chosen EMF subset.

• LINQ

Under the term “LINQ”, actually several related technologies are involved,
including (a) a language-embedded functional query language, which is the
foundation for LINQ to be a query language; (b) Query Provider, allowing
possibly third-party back-end specific query implementation; (c) a software
component (ADO.Net Entity Framework), which provides O/R mapping fa-
cility by introducing a new conceptual data model[1]; and (d) a LINQ-aware
Integrated Development Environment (IDE), offering usability features such
as syntax completion(IntelliSense in the newest versions of Microsoft Visual
Studio).

The concept underlying LINQ, in particular the query language itself,
is however platform-independent. This enables us to employ LINQ as the
query language on object model(in particular, on the one generated with
EMF), and to implement the translation from it based on publicly available
specifications only.

• Ferry

Developed by the team at University of Tübingen1, Ferry is an intermediate
language that provides the possibility of generating relational query language
by translating from query languages of other model, such as LINQ, LINKS
or Ruby. Ferry runs on data model of a relatively lower level, supporting
comprehensions of records, lists and tuples. Ferry’s syntax foundation is
the for-where-group by-order by-return construct, which is also that

1http://www-db.informatik.uni-tuebingen.de/research/ferry

http://www-db.informatik.uni-tuebingen.de/research/ferry

1.3. OVERVIEW 3

of most functional query languages supporting list comprehensions. This
provides the advantage of translating query language on higher data level(in
our project, LINQ on object model) to a lower one with high level guarantee
of syntax preservation.

We translate LINQ query into Ferry, from which it can then be fur-
ther translated and optimized into relational algebra and then into target
language SQL:1999.

• Scala

We use Scala as our host language because it is a functional language with
rich libraries supporting list comprehensions, yet it also seamlessly supports
object-orientation paradigm. Further, it provides a more flexible compiler-
extension architecture, which enables deeper participation of compiler in the
translation process of queries, and hence yielding a higher level of language
integration.

1.2.2 Related work

Language-integrated query on object models is a relatively large topic and
several related works have been reported. A previous Student Project Work
by the same author [2] implements a prototype that enables embedded LINQ
query in Java. The resulting prototype LINQExpand4Java2 further expands
the embedded query through the participation of a compiler-plugin. Rather
than performing a translation on object model, Master Thesis [3] implements
the translation of records and comprehensions from LINQ to Scala then to
Ferry, also adopting the compiler-plugin mechanism. Also, Master Thesis
[4] implements a LINQ-SQL query provider to allow evaluation of LINQ
query in a DBMS. Because of the nature of LINQ-SQL Query Provider, the
underlying data model is thta of SQL’92, ie. object orientation is also not
addressed. Technical report [5] aims at achieving a automatic translation
between database and a more convenient representation in the software by
providing generic versions of the elementary CRUD(Create, Read, Update,
Delete) operations.

1.3 Overview

1.3.1 Supported use case

Being a proof of concept rather than commercial product, the reported pro-
totype supports such a use case: it takes EMF model along with the object
population underlying this model as input. During the persistence phase,
this input is stored in DBMS, and necessary information and meta data are

2http://www.sts.tu-harburg.de/people/mi.garcia/LINQExpand4Java/

http://www.sts.tu-harburg.de/people/mi.garcia/LINQExpand4Java/

4 CHAPTER 1. INTRODUCTION

created for the preparation of query phase. After the persistence, queries on
this model in terms of LINQ are available. These queries are first translated
to Ferry expressions, with the help of the meta data provided above. Using
Ferry compiler ferryc, the resulted Ferry expressions can then be translated
to relational algebra, from where target SQL:1999 expressions are generated
for database evaluation.

1.3.2 Outline of this report

The rest of this Master Thesis is organized as follows.
Chapter 2 examines the phase of persistence from EMF object model

to relational model. Section 2.1 introduces some necessary data structures
used in the persistence phase and later also in the query phase. Section 2.2
gives an overview of the persistence phase, as well as its two sub-phases.
Section 2.3 and 2.4 explain in detail these sub-phases in regarding to the
adopted algorithm, implementation and results.

Chapter 3 moves ahead to the query phase by discussing the translation
from LINQ to Ferry. After an overview of the translation in Section 3.1, a
normalization step is discussed in Section 3.2. The actual translation rules
will then be investigated in Section 3.3. Section 3.4 presents some imple-
mentation issues and the final result of this phase. Section 3.5 concludes
this chapter by a brief introduction to the following step.

Chapter 4 focuses on relational query plans in terms of relational algebra.
First each operator of relational algebra will be given in Section 4.1, following
by Section 4.2 that introduces query plans by combining these operators.
Section 4.3 explains the implementation aspect, including translation from
relational algebra into SQL statements and the well-formedness checking.
Section 4.4 shows a method and tooling for generation of query plans for
automated testing.

Chapter 5 argues the isomorphism between object model and relational
model in both persistence and query phases, followed by Chapter 6, which
gives the conclusions from this Master Thesis, and proposes possible future
works.

The source code of the prototype can be found at http://www.wen-k.
com/msc as well as in the attached CD.

http://www.wen-k.com/msc
http://www.wen-k.com/msc

Chapter 2

Persistence: EMF to
Relational Model

This chapter covers the aspect of persistence of EMF model into relational
data model.

First in Section 2.1, some important data structures that are used in
this process are introduced. These data structures are also referred to in
Chapter 3.

In Section 2.2, two main steps of the persistence are introduced, as well
as the reason why this process are divided into 2 steps: the persistence of
EMF class schema and that of EMF object population. The term EMF class
schema refers to the classes, the structures of them as well as inter-class re-
lationships such as inheritance, interface implementation and so on. On the
other hand, the term EMF object population refers to actual runtime objects
that are instances of the EMF class schema. This section also clarifies the
chosen ORM schemes and makes explicit some assumptions and restrictions
during the persistence process.

In Section 2.3 and Section 2.4, persistences of both EMF class schema
and EMF object population are explained in detail, respectively.

2.1 Required data structures

2.1.1 Ferry Types

All data that Ferry can process must be of the types illustrated in Figure
2.1.

Tuple type of Ferry represents records or objects that other languages
like LINQ can process. Each element of a Tuple type is of type boxed
type, which is an abstract type that can be either atomic type or list of
Ferry type. There is no distinction at the level of relational representation
between a 1-tuple of atomic and the atomic itself. Similar to List in most

5

6 CHAPTER 2. PERSISTENCE: EMF TO RELATIONAL MODEL

t ::= (b, b, . . . , b) Tuple Type
| b Boxed Type

b ::= [t] List Type
| a Atomic Type

a ::= int | string | bool | . . . Atomic Basic Type

Figure 2.1: Types of Ferry

programming language, Ferry list type represents a collection of elements,
each of which is of the abstract Ferry type, as defined recursively. Atomic
type, as the terminal of the recursive definition, can be one of the primitive
types such as Int, Boolean, String, and so on. Figure 2.2 illustrates the UML
diagram of the type hierarchy of Ferry types.

FerryType

FerryTupleType FerryBoxedType

FerryAtomicTypeFerryListType

-elemTypes

1 *

-itemType

1

1

Figure 2.2: UML diagram of Ferry types

Although a Ferry tuple is used to represent a record or an object, ac-
cording to the above definition, the element of a Ferry tuple cannot be of
Ferry tuple type in turn. This restriction ensures that a Ferry tuple can
only contain plain value but not nested structure, and hence be able to fit
into a row of a table. To represent nested structure(for example, reference
in an object), the nested tuple should be located within a list, regardless
of whether it is the unique element within the list, and the pointer to the
list, a surrogate value, is then included as one element of the nesting tuple.
The following sections cover more detail about the mapping technique of
references within objects, as well as the loop-lift algorithm used to process

2.1. REQUIRED DATA STRUCTURES 7

nested list within a tuple.

2.1.2 Table Nodes and Table Information Nodes

Conceptually, an object population is stored in instances of a data structure
called Table Node. Similar to tables in database, each node of this kind
corresponds to one class, holding one instance of this class in a row. Through
the loop-lift algorithm, different table nodes of this kind are connected with
each other due to references and list expanding, hence leading to a tree-
shaped topology. Figure 2.3 illustrates an example, showing how a tuple
("a",["b","c"], [("d","e"), ("f", "g")]) is mapped into such a tree.
More details about this encoding can be found in Section 2.3 and 2.4.

iter pos item1 item2 item3
1 1 a 1 1

iter pos item1
1 1 b
1 2 c

iter pos item1
1 1 1
1 2 2

iter pos item1 item2
1 1 d e
1 2 f g

Tuple ("a",["b","c"],[("d","e"),("f", "g")])

Figure 2.3: Tree of Table Nodes

Analogous with tables in database, each of which has its own table
schema, each Table Node also has its descriptive meta data, specifying for
example the names and types of all columns, as well as the key information
that specifies the link between one node and another via reference and list
expanding. A data structure called Table Information Node is defined, as
illustrated in Listing 2.1. Also in Listing 2.1 the definition of key is given,
which specifies how these nodes are connected with each other.

1 case class TableInfoNode(
2 var cols:List[(String,FerryType)],var keys:List[key]){}
3 case class key(
4 var name:String, var order:Int,
5 var pointTo:TableInfoNode,var keyType:FerryType){}

Listing 2.1: Definition of Table Information Node

8 CHAPTER 2. PERSISTENCE: EMF TO RELATIONAL MODEL

Since each Table Information Node corresponds to one Table Node, group
of related Table Information Nodes therefore build up the same tree-shaped
topology as that built up by their corresponding Table Nodes. Figure 2.4
shows the tree of Table Information Nodes corresponding to the tree of Table
Nodes in Figure 2.3.(Given that no column names are specified, the default
names “item1”,“item2”,. . . are assigned.)

cols(iter, pos, item1, item2, item3), keys(item2, item3)

cols(iter, pos, item1), keys() cols(iter, pos, item1), keys(item1)

cols(iter, pos, item1, item2), keys()

6

7

8
9

10 11 12

This tree of Table Information Nodes corresponds to tree of Table Nodes in
Figure 2.3. Circled numbers illustrate the actions of transformation rules,
which will be introduced in Section 2.3.1.

Figure 2.4: Tree of Table Information Nodes

However, on the level of implementation, it is not practical nor scalable to
hold the entire object population in main memory, especially when dealing
with object models of large scale. Instead, only the meta data of these
Table Nodes, the Table Information Nodes, are hold in main memory, and
the values of object population are stored in tables in database. In this
sense, instance of Table Node does not need to exist at all.

To sum up, the data structure Table Information Node serves as the
meta data of a conceptual data structure Table Node, the relation between
which are identical to that between database table schema and database
table. Due to scalability concern, Table Nodes are not kept in main memory.
Nevertheless, Table Information Node is still adopted, since Table Node
and database table should be semantically equal, and the meta data of the
former should also be competent in describing the latter. Therefore, Table
Information Node is used as the meta data of database tables. It is such
kind of meta data that, unlike normal database schema, is in terms of Ferry
Type and hence ready to participate in queries that are written in LINQ
and later translated into Ferry expressions. Details about translating queries
from LINQ to Ferry expression will be covered in Chapter 3.

2.2. OVERVIEW OF THE PERSISTENCE 9

2.2 Overview of the persistence

2.2.1 The separated phases

Persistence of EMF model includes two phases, first mapping the EMF
class schema into database and get the meta data of it at the same time,
and second mapping the object population that are instances of the EMF
class model into the database.

One reason of this separation is the scalability concern, as mentioned
in Section 2.1.2. Furthermore, persistence of EMF class schema involves
the construction of trees of Table Information Node and a number of table
creation operations onto the database, which are to be executed only once,
given no modification to the model. Persistence of the EMF object pop-
ulation, on the other hand, involves then the insertion operations into the
tables and these are to be executed more frequently when new objects are
introduced.

Figure 2.5 illustrates both phases of the sketched persistence process.
Persistence of EMF class schema will be introduced in detail in Section 2.3,
followed by persistence of EMF object population in Section 2.4.

EMF Class
Schema

EMF Object
Population

Reified Ferry
Types

Tree of Table
Information Nodes

Database

① ②

③

④

EMF Model

① Translation
② Translation
③ Table Creation

④ Row Insertion

Phase 1: Persistence of EMF Class Schema

Phase 2: Persistence of Object Population

Figure 2.5: Two phases of the persistence

2.2.2 ORM scheme

There are many different object-relational mapping schemes, none of which
is ideal for all situations. The scheme, by which one class is mapped to
one table, is adopted in our work. With this scheme, inheritance can be
handled straightforwardly, in that new table is merely to be added once new

10 CHAPTER 2. PERSISTENCE: EMF TO RELATIONAL MODEL

sub-class is introduced in the hierarchy. What’s more, data size grows in
direct proportion to growth in the number of objects, hence yielding good
scalability for large data model.

With one-table-per-class scheme, each table only holds values within
the “class-frame” of the corresponding class. For each class, its class-frame
comprises the attributes and references(called fields together) declared in
this class. Values of fields declared in super-class are within another class
frame, and hence stored in the table corresponding to that super class. As
a consequence, different parts of one object may be stored separately in
different tables. While this enables better support to polymorphism, it also
results in potential performance drawback, in that single object access may
require access to multiple tables.

General ORM techniques also cover other aspects, such as how to map
associations with high multiplicity. These techniques are relatively fixed
and widely applicable, and they will be mentioned in the following sections
about rules and algorithms of persistence of both EMF class schema and
EMF object population.

2.2.3 Assumptions and restrictions

Before persistence of EMF class schema and EMF object population can be
explained in detail, some assumptions and restrictions should be clarified
first.

First, it is assumed that all classes in an EMF model inherit from either
EObject or other class within the same EMF model, although they can be
within different packages declared in the EMF model. In other words, it
is impossible to process classes that are inherited from any class in Java or
Scala API or other external APIs. This restriction is in fact derived from
EMF, in that one can only declare class inherited from classes within EMF
framework or those within the same EMF model.

Second, similar to the first restriction, referenced objects can only be of
EMF built-in types or types declared within the same EMF model. This
restriction is again derived from EMF itself.

Further, we do not accept Data Type as part of the input. Data Type
is another kind of classifier other than Class introduced in EMF. The dis-
tinction between Class and Data Type is somewhat similar to that between
classes and primitive types in Java. Another main difference between them is
how equality testing is performed. Two values v and w of the same datatype
are compared for structural equality in the expression v == w, that is, pairs
of fields in v and w are compared accordingly. In contrast, v == w in the
case when v and w are instances of Class results in comparing their object
identities. EMF has defined a group of Data Types that wrap the primitive
types in Java, and these Data Types can serve as the type of attributes.
While EMF allows user to define their own Data Type, we suggest and as-

2.3. PERSISTENCE OF EMF CLASS SCHEMA 11

sume our user to declare Class instead to represent relatively complicated
structure. This ensures that attributes can only be of primitive types whose
value can be persisted into DBMS directly. User trying to include Data Type
in the input EMF model will receive an error message, prompting that the
input should be adjusted to avoid Data Type. Figure 2.6 shows the UML
diagram of EMF core metamodel that our prototype supports.

EObject

EModelElement

ENamedElement

EPackage EClassifier

EClass

ETypedElement

EStructuralFeature

EAttribute EReference

Figure 2.6: UML diagram of supported EMF core metamodel

2.3 Persistence of EMF class schema

2.3.1 Rules and algorithm

The persistence of EMF class schema involves three steps, first to generate
instances of Ferry Types, then from which to generate trees of Table Infor-
mation Nodes, followed by the creation of empty tables in database. These
steps are illustrated in Steps 1,2 and 3 in Figure 2.5.

Given the following notations(Here we follow the Scala notation for col-
lections, instead of the usual mathematic one like A{a1, · · · , an}.):

• Classes(c1, · · · , cn): the set of all classes and interfaces defined within
the EMF model.

• c
imp−−→ i: class c implements interface i.

• Types(name1 → type1, · · · , namen → typen): a map to hold the re-
sults, having names of the classes as keys, and instances of Ferry Tuple
Type as values.

• Types.keys = (name1, · · · , namen): list of all keys within map Types

12 CHAPTER 2. PERSISTENCE: EMF TO RELATIONAL MODEL

• Types(key): retrieves the value in the map Types according to key
key.

The following rules and algorithm are applied when translating EMF class
schema into Ferry Types:

1. Each class(or interface) c, if not yet been translated, is translated into
an instance of Ferry Tuple Type f̂ tt. Pair (c.name→ f̂ tt) is added
to map Types.

∀c (c ∈ Classes ∧ c.name /∈ Types.keys)

c 7→ f̂ tt,
Types + = (c.name, f̂ tt)

2. Each attribute a in c with upper bound=1 is translated into an in-
stance of Ferry Atomic Type f̂a, whose name and atomic type are
set accordingly. f̂a is added to list of columns of f̂ tt.

∀a (a ∈ c.Atts ∧ a.UpperBound = 1)

a 7→ f̂a,

f̂a.type = a.type, f̂a.name = a.name, f̂ tt.cols + = f̂a

3. Each attribute a′ in c with upper bound>1 is translated into an in-
stance of Ferry List Type f̂ l and an instance of Ferry Atomic Type
f̂a′, the element type of the former is f̂a′, whose name and type are
set to those of a′. f̂ l is added to the list of columns in f̂ tt.

∀a (a ∈ c.Atts ∧ a.UpperBound > 1)

a′ 7→ (f̂ l, f̂a′),
f̂a′.name = a′.name, f̂a′.type = a′.type, f̂ l.type = f̂a′, f̂ tt.cols + = f̂ l

4. Each class of reference cR, if there exists no element in Types whose
key equals to cR.name, is translated into an instance of Ferry Tuple
Type f̂ ttR and a bridging instance of Ferry List Type f̂ lbr. Element
type of f̂ lbr is set to f̂ ttR. f̂ lbr is added to the list of columns in f̂ tt.
Pair (cR.name→ f̂ ttR) is added to map Types.

∀cR (cR ∈ Classes ∧ cR ∈ c.Refs ∧ cR.name /∈ Types.names)

a′ 7→ (f̂ ttR, f̂ lbr),
f̂ lbr.type = f̂ ttR, f̂ tt.cols + = f̂ lbr, T ypes + = (cR.name, f̂ ttR)

2.3. PERSISTENCE OF EMF CLASS SCHEMA 13

5. Each class of reference c′R, if there already exists an element in Types
whose key equals to c′R.name, is translated into a bridging instance
of Ferry List Type f̂ l′br. Given that the element Ferry Tuple Type
with key c′R.name in Types is denoted as f̂ tt′R, the element type of
f̂ l′br is set to f̂ tt′R. f̂ l′br is added to the list of columns in f̂ tt.

∀cR (cR ∈ Classes ∧ cR ∈ c.Refs ∧ cR.name ∈ Types.names),

f̂ tt′R = Types(cR.name)

a′ 7→ (f̂ l′br),

f̂ l′br.type = f̂ tt′R, f̂ tt.cols + = f̂ l′br

6. If c implements any interface, an instance of Ferry List Type f̂ li
and an instance of Ferry Tuple Type f̂ ti are created. Ferry Atomic
Type String and Int are inserted as element types of f̂ ti, with names
“interface” and “obj_id”, respectively. Element type of f̂ li is set to
f̂ ti. f̂ li is added to columns of f̂ tt.

∃i (c imp−−→ i)

i 7→ (f̂ li , f̂ ti)
f̂ ti.cols = (“interface”,“obj_id”), f̂ li.type =f̂ ti, f̂ tt.cols+ =f̂ li

Once the reified Ferry Types have been obtained, trees of Table Infor-
mation Nodes can be constructed from them. For this, following rules and
algorithm are applied:

Given the following notations:

• InfoNodes(name1 → node1, · · · , namen → noden): a map holding
the pairs of class names and the resulting Table Information Nodes.

• InfoNodes.names: a list holding all the keys in map InfoNodes.

• Rulen(node): Apply Rulen to node node.

• InfoNodes(key): retrieves the value in the map InfoNodes according
to key key.

7. Each instance of Ferry Tuple Type f̂ tt in Types, if has not been trans-
lated, is translated into one instance of Table Information Node n.
n is added in InfoNodes.

14 CHAPTER 2. PERSISTENCE: EMF TO RELATIONAL MODEL

∀f̂ tt (f̂ tt ∈ Types ∧ f̂ tt.names /∈ InfoNodes.names)

f̂ tt 7→ n,
InfoNodes + = n

8. Names of columns in n are taken from those in f̂ tt. If these optional
names are absent, default names “item1”,“item2”,· · · , “itemn” will be
assigned.

f̂ tt, n

IF f̂ tt.names EXISTS (n.name1 = f̂ tt, · · · , n.namen = f̂ tt.namen
)

ELSE (n.name1 =“item1”, · · · , n.namen =“itemn”)

9. For each column c in f̂ tt whose type is Ferry Atomic Type f̂a, type
of corresponding column in n is set to f̂a.

∀c(c.type = Ferry Atomic Type), f̂a = c.type, n,

{ i | n.cols[i].name = c.name }

n.cols[i].type = f̂a

10. For each column l in f̂ tt whose type is Ferry List Type f̂ lt, a new Table
Information Node n′ is created. Key(name = l.name, pointTo = n′)
is added to n.keys. Type of corresponding column(surrogate value) in
n is set to Ferry Atomic Type.

∀l(l.type = Ferry List Type), n, { i | n.cols[i].name = l.name }

l 7→ n′, key = (l.name, n′), n.keys+ = key,

n.cols[i].type = Ferry Atomic Type

11. For each l whose elements are of Ferry Atomic Type l̂a, n′ should
contain only one column which is set to l̂a.

{ l | l.type = Ferry Atomic Type}, l̂a = l.type, n′

n′.cols = (l̂a)

2.3. PERSISTENCE OF EMF CLASS SCHEMA 15

12. For l whose elements are of Ferry Tuple Type l̂t, if l̂t has not been
translated, apply Rule 7 to l̂t and replace n′ with this result.

{ l | l̂t = l.type, (l.type = Ferry Tuple Type ∧ l̂t.name /∈
InfoNodes.names)}, n′

n′ = Rule7(l̂t)

13. For l whose elements are of Ferry Tuple Type l̂t′, if l̂t′ has already
been translated into Table Information Node n′′, replace n′ with n′′.

{ l | l̂t = l.type, (l.type = Ferry Tuple Type ∧ l̂t.name ∈
InfoNodes.names)}, n′, n′′ = InfoNodes(l̂t.name)

n′ = n′′

14. For l whose elements are of Ferry List Type l̂l,a new Table Information
Node n′′′ is created. Key(name=“item1“, pointTo=n′′′) is added to
n′.keys. Type of corresponding column in n′ is set to Ferry Atomic
Type. Apply Rule 11, 12, 13 or 14 according to type of elements of
l̂l, and replace n′′′ with this result.

∀l(l.type = Ferry List Type), l̂l = l.type, n′,

{ i | n′.cols[i].name = l̂l.name }

l 7→ n′′′, key = (“item1”, n′′′), n′.keys+ = key,

n′.cols[i].type = Ferry Atomic Type,

n′′′ = (Rule11 | Rule12 | Rule13 | Rule14)(l̂l)

To sum up, Rule 1 is the entry point for each class. According to dif-
ferent types of its fields, Rule 2 to Rule 5 are applied accordingly. Rule 2
and Rule 3 handle single and multiple attributes respectively, while Rule
4 and Rule 5 handle references. Rule 4 handles the case where the type of
the reference target has not yet been processed. Otherwise, Rule 5 takes ef-
fect to ensure that one class is only mapped to one instance of Ferry Tuple
Type. This issue will be covered again under Point 2 in Section 2.3.2.

The fact that table cells can only contain atomic value lead to the neces-
sity of applying the loop lifting algorithm[6] for nested structures, namely
in Rule 3, Rule 4 and Rule 5.

16 CHAPTER 2. PERSISTENCE: EMF TO RELATIONAL MODEL

After loop-lifting, bridging tables are created, whose iter column speci-
fies the round of iteration, and the pos column specifies the current position
within that round. Intuitively, a multiple attribute in an object is encoded
as a list, the elements of which are stored in that bridging table, each having
its own value of column pos but sharing the same value of column iter.
This value of iter is also stored in the node of the containing class as a
surrogate value, showing that all rows in the bridging tables that share this
particular value belong to that containing object. In the case of reference,
only object IDs are stored in the bridging table. Similarly, value iter groups
up all these IDs that belong to the containing object, and this value is also
stored as a surrogate value. That means this reference can be either single
or multiple, in the latter case each ID having its own value of pos. Because
of this, single and multiple references result in the same tree topology of Ta-
ble Information Node(only one bridging table between referring and referred
classes).

Rule 6 creates a node of Ferry Tuple Type to hold the list of interfaces
a class implements. Unlike single inheritance, one class may implement
multiple interfaces. It suffices to have one element in a tuple to specify its
super-class in a surrogate value, an additional node is however necessary in
order to keep the surrogate values for all the implemented interfaces.

With the one-class-per-table scheme, each table only stores fields de-
clared in this class. This also applies to the case of diamond-shaped class
hierarchy, as shown in Figure 2.7.

+a : int

<Interface> A

CB

D

Figure 2.7: Diamond-shaped class hierarchy

In Figure 2.7, interface A declares field a. At least one of types B and C
is also interface because of single inheritence of class D. In the persistence

2.3. PERSISTENCE OF EMF CLASS SCHEMA 17

result, field a only presents in the table for A, although class D can inherit
it from both paths.

The last step of persistence of EMF class schema is to create the empty
tables in database according to the resulting Table Information Nodes. This
step is straightforward, in that each instance of Table Information Node is
mapped to one table in database, and the columns are also mapped accord-
ingly regarding to their names and types. Listing 2.2 shows the code snippet
that create the empty tables in database.

1 def createTable(name:String, node:TableInfoNode){
2 conn.createStatement.execute("DROP TABLE IF EXISTS " + name + "

;\n")
3 var sql = "create table " + name + "("
4 sql = sql + (
5 (
6 for {
7 col <- node.cols
8 } yield (COLUMN_NAME_PREFIX + col._1 + " " + getDBDataType(col

._2) + {if (col._1=="id") " UNSIGNED NOT NULL
AUTO_INCREMENT " else ""})

9) mkString(",")
10)
11 sql = sql + ", PRIMARY KEY (" + COLUMN_NAME_PREFIX + "id));"
12 conn.createStatement.execute(sql)
13 }

Listing 2.2: Snippet that creates the empty tables in database

2.3.2 Implementation and result

According to the rules and algorithms described above, a visitor-like pattern
is followed in the implementation process due to the tree-shaped topology
of both EMF class schema and trees of Table Information Nodes.

Furthermore, some details regarding implementation are explained here:

1. In Step 1, besides the columns defined in each class, additional auxil-
iary columns are added to each resulting nodes of Ferry Tuple Type.
These columns include “object-id”, “superclass-id”, “superobj-id”, “subclass-
id”, “subobj-id”. These columns are necessary to keep track of differ-
ent parts of individual objects located in different table nodes. These
columns are introduced in Step 1 and are propagated through Step 2
and 3 to become part of the table schema in database. Also in Listing
2.2 one can see that column _wen_id is assigned as the primary key
of the created table.

2. Objects of one class should be mapped to only one Table Node if
that had existed, ensuring that objects of this type could be located

18 CHAPTER 2. PERSISTENCE: EMF TO RELATIONAL MODEL

from one uniform place, regardless whether they had been created
isolated or through association with other objects. Despite only the
conceptual existence of Table Node, this uniqueness should also be
maintained in its meta data: the corresponding Table Information
Node. In terms of the Rules described above, there should exist only
one Table Information Node corresponding to one class, regardless of
whether it is created from Ferry Tuple Types created by Rule 1 or 4.
The replacement operations in Rule 12, 13 and 14 result in the single
instance of Table Information Node in the map.
Practically, the implementation of this unification acts a bit different.
All Table Information Nodes being referred to are collected in a map
first. After all classes have been translated, each node within that
map is checked if they are within the result map. If not, the pointTo
field of that reference key is updated to point to its counterpart within
the result map. The one outside the result map is therefore discarded.
The snippet in Listing 2.3 illustrates this process.

1 refTypeMap.keys.foreach(
2 key => {
3 val from = infoNodes(key._1)
4 val to = infoNodes(refTypeMap(key))
5 var found = from.keys.find(_.name == key._2).get
6 found.pointTo.keys(0).pointTo = to
7 }
8)

Listing 2.3: Snippet that performs the unification of reference class

3. In the creation of empty tables in database, a prefix “_wen_” is added
to each column names in order to avoid any potential conflict with any
SQL keywords or predefined SQL functions.

In Figure 2.8 on page 19, UML diagram of a simple EMF class schema
is given, which will be translated in the resulting trees of Table Information
Nodes shown in Figure 2.9 on page 19.

In Figure 2.8, concepts of inheritance(class Employee inherits from class
Person) and interface implementation (class Employee implements interface
SpeaksEnglish) are demonstrated. Furthermore, reference (class Address
by class Employee), multiple attribute(email) and single attribute(the other
fields) are also included. From the translation result in Figure 2.9, one
can see how these features are represented in the Table Information Nodes.
Columns in blue are also included in the keys, which points to bridging
tables resulted from the loop lifting algorithm. Note that in Figure 2.9,
node for class Person is not yet connected with node for class Employee.
Rather, this connection will be done in the persistence of object population,

2.4. PERSISTENCE OF OBJECT POPULATION 19

+name : String
+age : int

Person

+email : String
+add : Address
+phone : String

Employee

+level : int

<Interface>
SpeaksEnglish +city : String

+street : String
+number : int

Address

1 1

Figure 2.8: UML diagram of a simple EMF class schema

Figure 2.9: Table Information Nodes of a simple EMF class schema

in that column superClass and subClass will be filled accordingly to tie
up different parts of an object.

At this point, the translation from EMF class schema to trees of Infor-
mation Nodes is completed.

2.4 Persistence of object population

2.4.1 Algorithm

The persistence of EMF object population involves Step 4 in Figure 2.5.
After the empty tables in database have been created by Step 3, data of
these objects is inserted into these tables accordingly, in such a way that
different parts of data that belong to different class frames are stored in

20 CHAPTER 2. PERSISTENCE: EMF TO RELATIONAL MODEL

the corresponding tables, and surrogate values are generated and inserted
properly so that to tie up these parts across multiple tables.

In Listing 2.4, the algorithm for this step is given as Scala-styled pseu-
docode, with the comments in blue as explanation.

1 // persists an object in class-frame ofType, returning the ID of o
in the table of ofType.

2 def persist(o:Object, ofType:String):Int = {
3 //if o in class-frame ofType has already been persisted
4 if (population contains (o, ofType)
5 return population((o, ofType))
6 var node = getTableInfoNode(ofType)
7 var sql
8 node.cols.foreach(col => {
9 // for columns of surrogate values, first insert null, and update

later(line 31 and 39) with surrogate values
10 if (col._1==‘‘superClass_id’’) || (col._1==‘‘superObj_Id’’)||
11 (col._1==‘‘suubClass_id’’)||(col._1==‘‘subObj_id’’)||
12 (cols._1==‘‘interfaces’’)
13 sql += ‘‘null’’
14 // for columns of references, first insert null, and update later(

line 27) with surrogate value of bridging tables
15 if (col is reference)
16 sql += ‘‘null’’
17 // for columns of attributes, call method persistAttr(line 58) and

add the return value to sql
18 if (col is attribute)
19 sql += persistAttr(o, ofType, col)
20 }
21)
22 //execute the insertion of current object
23 var where = executeInsert(sql)
24 //keep that o in class frame ofType has been persisted, with ID

number where in its corresponding table.
25 population += ((o, fixedType) -> where)
26 //call method persistRefs(line 78) to persist all references of o in

class frame ofType.
27 persistRefs(trans, o, ofType, where)
28 //if class ofType has super type, call persistSuper(line 46)
29 var superType = getSuperClassFromName(ofType)
30 if (superType != None)
31 persistSuper(o, superType, ofType, where)
32 //call persist(line 2) on each interface that class ofType

implements to get result interID(line 35), insert interID into
bridging table(line 37) to get bridgingID, and update the
surrogate value in table ofType with bridgingID(line 39).

33 interfaces.foreach(
34 inter => {
35 var interID = persist(o, inter)

2.4. PERSISTENCE OF OBJECT POPULATION 21

36 var sql = "..." //SQL statements inserting interID into
bridging table

37 var bridgingID = executeInsert(sql)
38 sql = "..." //SQL statements updating table of ofType with

value bridgingID
39 executeUpdate(sql)
40 }
41)
42 //return the ID of current object in table ofType
43 where
44 }
45 //persist object o within class-frame superType, returning the ID of

o in the table of superType.
46 def persistSuper(o:Object, superType:String, subType:String, subID:

Int):Int = {
47 // call persist(line 2) on o with class-frame superType
48 var superID = persist(o, superType, trans)
49 //update surrogate values in table of superType
50 var sql = "UPDATE...id=" + superID;
51 executeUpdate(sql)
52 //update surrogate values in table of subclass
53 sql = "UPDATE...id=" + subID;
54 executeUpdate(sql)
55 superID
56 }
57 //persist columns of object o within class-frame superType,

returning a String representing either the iter value in
bridging table(for multiple attributes) or the primitive value(
for single attributes).

58 def persistAttrs(o:Object, ofType:String, col:String):String = {
59 //if current column is also in key, it is a multiple attribute
60 if (infoNodes.contains(ofType) infoNodes(ofType).keys.exists(key

=> key.name==col)) {
61 // get multiple attribute as a list
62 var list = ...
63 //get the next available value of iter, by adding 1 to the maximal

existing value
64 var iter = getMax(col, ofType) + 1
65 for (i <- 1.to(list.size)) {
66 //SQL statement to insert each value in the list, having iter as the

common value of column iter, and each i as each value of column
pos

67 var sql = "...iter, i, ..."
68 executeInsert(sql)
69 }
70 //return value of iter, so that to update the surrogate value in the

containing table
71 iter.toString
72 }

22 CHAPTER 2. PERSISTENCE: EMF TO RELATIONAL MODEL

73 //single attribute
74 else
75 //get primitive value of column col
76 o.getClass.getMethod(getMethodName(col)).invoke(o).toString
77 }
78 //persist all references of object o within class-frame ofType
79 def persistRefs(o:Object, ofType:String, where:Int) = {
80 for each reference (
81 //get target object of reference
82 var target = ...
83 //when target is a multiple reference
84 if (target.isInstanceOf[EList[Object]]){
85 for each object in target {
86 var obj = target.asInstanceOf[EList[Object]].get(i)
87 //call persist(line 2) on each object obj, getting its ID in

corresponding table
88 var newID = persist(obj, getEMFTypeName(obj))
89 //SQL statement to insert newID into bridging table
90 var sql = "INSERT ... newID ...";
91 executeInsert(sql)
92 }
93 }
94 //when target is single reference, or target is null
95 else {
96 if (target == null)
97 newID = -1
98 else
99 //call persist(line 2) on object target, getting its ID in

corresponding table
100 newID = persist(target, getEMFTypeName(target))
101 //SQL statement to insert newID into bridging table
102 var sql = "INSERT ... newID ... "
103 executeInsert(sql)
104 }
105 //update referring table
106 var sql = "UPDATE ... where ... "
107 executeUpdate(sql)
108 }
109)
110 }
111 //execute an SQL insertion, returning the ID of rows that has just

been inserted
112 def executeInsert(sql:String) :Int = { ... }
113 //execute an SQL update
114 def executeUpdate(sql:String) = { ... }

Listing 2.4: Pseudocode that perform the persistence of object population

To sum up, this algorithm iterates through all objects. By visiting each

2.4. PERSISTENCE OF OBJECT POPULATION 23

object, it always limits itself in one particular class-frame at a time, storing
data of columns and references within this class-frame into the database.
Then fields belonging to interfaces that this class-frame directly implements
are also persisted. At this time, object of this class-frame has been com-
pletely persisted. If it has superclass, the same procedure will be repeated
in the class-frame of its superclass, until it reaches the top class of the entire
hierarchy.

2.4.2 Implementation and result

According to the algorithm described above, a visitor-like pattern is followed
to implement the persistence of object population. Furthermore, some de-
tails regarding implementation are explained here:

1. As described above, surrogate values are essential in tying up different
parts of objects as well as keeping track of references, interfaces and so
on. In our work, objects are stored in database as rows, therefore IDs
of rows can be used as identifiers of objects, that is, as the surrogate
values. After each insertion operation, a query operation is performed
immediately to retrieve the ID of the row that has just been inserted.
It is necessary to ensure that always the correct ID representing that
particular object is retrieved.

2. Although one object can be persisted in different tables in database,
the entire process should be atomic. That is, it is not allowed to
have some parts of object persisted successfully while others are failed
due to for example runtime exception or database access error, which
would otherwise lead to inconsistency within different tables.

3. Summing up point 1 and point 2, the entire persistence process of
object population is included in a database transaction.

4. By default objects in EMFmodel have “private” modifier for fields, and
hence don’t support the member access syntax of obj.field. Rather,
all these classes implement setters and getters for each field, through
which to access them. For example, to access single reference address
in object o of class Person, one should call method o.getAddress()
instead of o.address. In the persistence process, we used Java reflec-
tion mechanism to invoke these getter methods.

Figure 2.10 gives a sample object emp1, which is instance of class Employee
illustrated in Figure 2.8 on page 19. After persisted, this object is stored
in database, whose layout is depicted in Figure 2.11. Dashed arrows in Fig-
ure 2.11 show how surrogate values point to rows in other tables to tie up
objects.

24 CHAPTER 2. PERSISTENCE: EMF TO RELATIONAL MODEL

emp1:Employee
name: String = “Tom”
age: Int = 30
email:List[String]=[“tom@tuhh.de”,
email:List[String]=[“tom@gmail.com”]
add: Address = add1
phone: String = “13572468”
level: Int = 10

add1: Address
city: String = “Hamburg”
street: String = “Foostr.”
number: Int = 5

Object emp1 of type Employee, having fields declared in different
class-frames. field add refers to object add1 of type Address

Figure 2.10: UML object diagram of a sample object

id name age superCls superObj subCls subObj
1 “Tom” 30 (null) (null) “Employee” 1

id emails add phone interfaces superCls superObj subCls subObj
1 1 1 “13572468” 1 “Person” 1 (null) (null)

iter pos item0
1 1 “tom@tuhh.de”
1 2 “tom@gmail.com”

iter pos item0
1 1 1

id iter pos interface obj
1 1 1 “SpeaksEnglish” 1

id city street number superCls superObj subCls subObj
1 “Hamburg” “Foostr.” 5 (null) (null) (null) (null)

id iter pos level
1 1 1 10

Figure 2.11: Database tables after persistence

Chapter 3

Query: LINQ to Ferry

In the previous chapters, we set out to persist EMF data model into database
with a Ferry-aware result. Being Ferry-aware, the persistence result can be
queried with Ferry and hence the original object in EMF model can be
retrieved back.

Nevertheless, Ferry is a lower-level query language than LINQ on object-
oriented level. To also enable its query facility on object model, we need
to perform a translation from an object-oriented query language into Ferry.
This chapter reports this translation process from LINQ to Ferry.

In Section 3.1, overview of the translation will be given. It covers the
syntax of source and target languages: LINQ and Ferry, which subset of
LINQ will be supported in this project, as well as the different translation
phases that are involved. In Section 3.2, the normalization step will be
explained in detail, which is a prerequisite step to the following translation.
Section 3.3 explains in detail the translation rules for all supported LINQ
SQOs, followed by the implementation aspect and the result. Finally, further
step following the arrival at Ferry target is discussed briefly in Section 3.5.

3.1 Overview of the translation

3.1.1 Syntax of LINQ

In this chapter, the term “LINQ” refers only to the LINQ query language
and ignores other technologies such as LINQ Query Provider and Entity
Framework.

Query Expressions(or textual LINQ query) was first introduced since
Microsoft .Net Framework 3.5, which provides a language integrated syntax
for queries that is similar to relational and hierarchical query languages such
as SQL and XQuery. Query Expressions is one of the two ways to compose
a LINQ query (The other way is using Standard Query Operators (SQO)[7],
which will be introduced later).

25

26 CHAPTER 3. QUERY: LINQ TO FERRY

Each query expression begins with a from clause and ends with either
a select or group clause. The initial from clause can be followed by zero or
more from, let, where, join or orderby clauses, which are altogether called
query body clauses.

A from clause defines the data source of a query or sub-query and a range
variable that defines each single element to query from that data source. In
terms of list comprehension, the source sequence is the input set, and the
range variable represents each member of that set. The syntax of the form
clause is:
from range-variable in data-source

Each let clause introduces a range variable representing a value com-
puted by means of previous range variables or a result list of sub-query.
Once defined, the new variable is always in scope in the rest of the query.
As expected, the syntax of the let clause is:
let name =expression

A where clause is a function that filters items on the input list, keeping
only items that satisfies the predicate. A single query can have multiple
where clauses or a where clause with multiple predicates that are combined
by logical operators. Here is the syntax of the where clause:
where boolean-expression

Each join clause compares specified keys of the inner-sequence with keys
of the outer-sequence, yielding matching pairs. The predicates outerKeySe-
lector and innerKeySelector define how to extract the identifying keys from
both sequence items. Here is the syntax of the join clause:
join range-var in inner
on outerKeySelector equals innerKeySelector

Each orderby clause reorders items by using one or more keys that com-
bines different sorting directions and comparator functions. When not spec-
ified, Ascending will be the default direction. The syntax of the orderby
clause is:
orderby sort-on direction

The ending select or group clause specifies the shape of the result in
terms of the range variables in scope. A select clause specifies what the
query outputs, based on a projection that determines what to select from
the result of the evaluation of all the clauses and expressions that precede it.
A group clause projects a result grouped by a key, providing an effective way
to retrieve data that is organized into sequences of related items. Following
are the syntax of the select clause and group clause:
select expression

3.1. OVERVIEW OF THE TRANSLATION 27

Q ∈ QueryExp ::= Ffrom QBqbody

F ∈ FromClause ::= from T 0..1
type Vvar in Ein

QB ∈ QueryBody ::= B0..∗
qbclauses SGsel_gby QC0..1

qcont

B ∈ BodyClause = (FromClause ∪ LetClause ∪ WhereClause
∪ JoinClause ∪ JoinIntoClause ∪ OrderByClause)

QC ∈ QueryCont ::= into Vvar QBqbody

H ∈ LetClause ::= let Vlhs = Erhs

W ∈ WhereClause ::= where Ebooltest

J ∈ JoinClause ::= join T 0..1
type Vinnervar in Einnerexp

on Elhs equals Erhs

K ∈ JoinIntoClause ::= Jjc into Vresult

O ∈ OrderByClause ::= orderby U1..∗ <separator:,>
orderings

U ∈ Ordering ::= Eord Directiondir

Direction ∈ { ascending, descending }
S ∈ SelectClause ::= select Eselexp

G ∈ GroupByClause ::= group Ee1 by Ee2

Figure 3.1: LINQ-related production rules

group range-variable by key

Finally, an optional into clause can be used to connect queries by treat-
ing the results of one query as a generator in a subsequent query. This is
called a query continuation. Here is the syntax of the into clause:
into name query-body

The detailed LINQ grammar is captured in Figure 3.1, with QueryExp
being the entry rule. The notation conventions in the grammar follow Tur-
bak and Gifford[8].

The other alternative to compose query besides textual query is using
Standard Query Operators (SQO), defined as extension methods[9]. In terms
of .Net Framework, these methods can work with any object that implements
either the IEnumerable<T> or IQueryable<T> interface. In fact, being the
syntactic sugar of SQOs, the textual LINQ syntax has been designed for
good readability but not for direct evaluation[10]. Rather, textual LINQ
query is internally translated to SQOs. For example, the query
from p in Persons where p.age>20 select p.name

28 CHAPTER 3. QUERY: LINQ TO FERRY

is translated into its SQO equivalence:
Person.Where(p=>p.age>20).Select(p=>p.name).

LINQ accepts queries in both kinds of syntax. Despite that all queries in
textual syntax can be translated into SQOs successfully and deterministically[2][11],
one should however note that both of them have different expressive power.
In particular, many SQOs have various method overloadings, some of which
can only be called directly but not translated from textual syntax. Section
3.2 will examine this issue again.

As described in [2], some translation rules from textual LINQ to SQOs
produce so-called transparent identifiers that have not occurred in the orig-
inal textual query. Such kind of identifiers represents items in sequence of
so-called anonymous types, which are generated by the preceding clause. For
example, a textual query in Line 1 in Listing 3.1 is translated into SQOs in
Line 3 to 5.

1 from e in Emp from t in e.task where t.level>10 select e.name
2
3 Emp.SelectMany(e => e.task, (e, t) => {e = e, t = t}).
4 Where(TransID_0 => TransID_0.t.level >10).
5 Select(TransID_0 => TransID_0.e.name)

Listing 3.1: Example of translating transparent identifier

Method SelectMany in Line 3 produces a sequence of anonymous type
new {e = e, t = t} for the following methods (Where and Select) to con-
sume. To represent items of this type, transparent identifier TransID_0 is
generated, allowing further references to items of that type, as well as fields
declared in it(e and t in this example).

3.1.2 Syntax of Ferry

The syntax of Ferry is given in Figure 3.2(reproduced from page 6 in [6]).
Notice that the grammar in Figure 3.2 is the surface-syntax of Ferry. In

Tom Schreiber’s implementation, programs in Ferry are internally desugared
to Ferry Core, which will be then type-checked and translated to relational
algebra[6]. In our implementation, we take Ferry as our translation target
from LINQ, taking the advantage of similar semantics of language constructs
in both LINQ and Ferry.

In the following, syntax and semantic of each Ferry expression will be
explained, along with its typing rule. For that, the following notation is
defined:[6]

Γ ` e :: t

which means that expression e is of type t in the type environment Γ, where
e represents a Ferry Expression defined in Figure 3.2, and t represents one of
the Ferry types defined in Figure 2.1. Additionally, v represents a variable.

3.1. OVERVIEW OF THE TRANSLATION 29

Ferry Expressions
e := l|v Literal, variable

| (e, e, . . . , e) | e.c | e.n Tuple, Tuple access
| [] | [e, . . . , e] (Empty) lists
| table R(c a, . . . , c a) Table access

with keys (k, . . . , k) Key specification
[with order (c, . . . , c)] Optional order specification

| let v = e, . . . , v = e in e Variable bindings
| if e then e else e Conditional evaluation
| for v in e, . . . , v in e List comprehension

[where e] Optional predicate
[group by e, . . . , e [where e]] Optional grouping
[order by e, . . . , e] Optional ordering
return e Head of the list comprehension

| e ∗ e | f(e, . . . , e) | f(v → e, e) Application_
_

Meta Variables
e Ferry Expression l Literal (of atomic type a)
v Variable name n Tuple position (n ∈ {1, 2, . . .})
c Column name R Table name
a Atomic basic type k Keys ((c, . . . , c))
f Function name ∗ Binary operator (∗ ∈ {+, <, and, . . .})

Figure 3.2: Syntax of Ferry

3.1.2.1 Literal Expression (l)

Literal Expression is evaluated directly, whose result is its corresponding
Ferry Atomic Type. Here’s the typing rule of a Literal Expression.

l ∈ IntLiteral l⇒

Γ ` l :: int

l ∈ StringLiteral l⇒

Γ ` l :: string

l ∈ BoolLiteral l⇒

Γ ` l :: bool

30 CHAPTER 3. QUERY: LINQ TO FERRY

3.1.2.2 Binary Operator (∗)

Binary operator is evaluated directly with its two operands. Different Bi-
nary Operator requires operands of different types, yielding results of differ-
ent types. Nevertheless, each binary operator requires its operands of the
same type. Here’s the typing rule of a Binary Expression.

e1 ∗ e2 ⇒
∗ ∈ { and, or } Γ ` e1 :: bool Γ ` e2 :: bool

Γ ` e1 ∗ e2 :: bool

e1 ∗ e2 ⇒
∗ ∈ { +, -, *, / } Γ ` e1 :: int Γ ` e2 :: int

Γ ` e1 ∗ e2 :: int

e1 ∗ e2 ⇒
∗ ∈ { ==, != } Γ ` e1 :: a Γ ` e2 :: a

Γ ` e1 ∗ e2 :: bool

e1 ∗ e2 ⇒
∗ ∈ { <, >, <=, >= } Γ ` e1 :: int Γ ` e2 :: int

Γ ` e1 ∗ e2 :: bool

3.1.2.3 Tuple Expression ((e, . . . , e))

Tuple expression represents a record-like structure, having each element in
the tuple evaluated individually. The type of the result is a tuple with types
of each individual result(i.e. boxed type, which can be list type or atomic
type). Here’s the typing rule of a Tuple Expression.

e = (e1, ..., en) ⇒
∀ni=1 Γ ` ei :: bi

Γ ` e :: (b1, . . . , bn)

3.1.2.4 Positional access of Tuple (e.c)

An element of a tuple e can be accessed through a one-based position c.
Here’s the typing rule of a positional access of Tuple.

e = (e1, ..., em), c ∈ N, c ≤ m e⇒
Γ ` e :: (. . . , ec, . . .)

Γ ` e.c :: (bc)

3.1. OVERVIEW OF THE TRANSLATION 31

3.1.2.5 Nominal access of Tuple (e.n)

An element of a tuple e can be accessed through the column name c of that
element. Here’s the typing rule of a nominal access of Tuple.

e = (e1, ..., em), c ∈ N, c ≤ m,n 7→ c e⇒
Γ ` e :: (. . . , ec, . . .), n 7→ c

Γ ` e.n :: (bc)

3.1.2.6 List Expression ([e, . . . , e])

A list expression produces a list, whose elements are of Ferry type t. El-
ements of a ferry List type is homogeneous, meaning all elements of a list
should have the same concrete type. Here’s the typing rule of a List Expres-
sion.

e = [e1, ..., en] ⇒
∀ni=1 Γ ` ei :: t

Γ ` e :: [t]

3.1.2.7 If Expression (e = if e1 then e2 else e3)

If Expression in Ferry is nothing else than its counterpart in other program-
ming languages. Expression e1 must be of type bool, and e2 e3 can be any
Ferry type. Note that e2 and e3 must be of he same type, which will also
be the type of e. Here’s the typing rule of a If Expression.

e = if e1 then e2 else e3 ⇒
Γ ` e1 :: bool, Γ ` e2 :: t, Γ ` e3 :: t

Γ ` e :: [t]

3.1.2.8 Let Expression (e = let e1 = v1, . . . , em = vm in en)

In a Let expression, each expression ei in the binding clauses will be first
evaluated, and its result is bonded to the corresponding variable vi. After-
wards, em is evaluated, whose result is taken as the result of e. Here’s the
typing rule of a Let Expression.

e = let e1 = v1, . . . , em = vm in en ⇒
∀mi=1 Γ ` ei :: ti, ∀mi=1(Γ + [vi 7→ ti] `:: tn)

Γ ` e :: [tn]

32 CHAPTER 3. QUERY: LINQ TO FERRY

3.1.2.9 Table reference expression

A table reference expression with schema (c1a1, . . . , cnan) will be evaluated
as a list [(a1, . . . , an)]. The mandatory key specification is important for
the optimization phase([6],p.108, Optimization will not be discussed in this
thesis.) The optional ordering specification gives the key, on which the list
taken from database table should be sorted. Prerequisite for this expres-
sion is that column specification [c1, . . . , cn] are distinct from each other.
This is checked by Ferry internally through a built-in macro distinct. Fur-
ther, all items in key specification and order specification should be within
[c1, . . . , cn]. Here’s the typing rule of a Table Reference Expression.

e = table (c1 a1, . . . , cn an)
with keys (k1, . . . , kn)
with order (o1, . . . , on) ⇒

distinct([c1, . . . , cn]),
[k1, . . . , kn] ⊆ [c1, . . . , cn],
[o1, . . . , on] ⊆ [c1, . . . , cn]

Γ ` e :: [(a1, . . . , an)]

3.1.2.10 For expression

For expression is the central building block of Ferry with the following syn-
tax.

e = for v1 in e1, . . . , vn in en
[where ew]
[group by eg1, . . . , egm [where egw1, . . . , egwp]]
[order by eo1, . . . , eoq]
[return er]

Representing a list comprehension, e1 to en represent the input sequences,
each of whose individual elements are represented as variable v1 to vn. ew
acts as a predicate to filter out items that could go into the result. The
result are clustered and sorted according to the optional group by clause
and order by clause. Expression er shapes the return sequence. Therefore
the evaluated type of er is also that of e. Besides this, we do not dive into
the detailed typing rules of every other clauses. One should notice that in
Ferry ordering can only be applied to atomic values[3], hence we do not
support ordering on custom comparer. The same also applies to custom
comparer for grouping. Further, since the optional embedded where clause
within group by cannot be translated by any LINQ statement, we do not
discuss that either. Here’s the typing rule of a For Expression as a whole.

e⇒
∀ni=1(Γ ` ei :: ti),

∀ni=1(Γ′ = Γ + [vi 7→ ti]),

3.1. OVERVIEW OF THE TRANSLATION 33

Γ′ ` er :: tr,Γ′ ` ew :: tw,
∀mi=1(Γ′ ` egi :: tgi),∀qi=1(Γ′ ` eoi :: toi),

Γ ` er :: tr

3.1.3 Supported LINQ subset

A subset of LINQ is supported in our translation. As described in Section
3.1.1, queries can be composed in either textual syntax or SQO syntax, and
the former is then translated into the latter. Therefore, when introducing
the supported LINQ subset, we are talking about which SQO methods are
supported.

Note that in C# Code Convention, method names are started with up-
percase letters. Although this is not the convention for Java and Scala, we
still adopt the C# one for the names of SQO methods in the following.

1. SQO methods that are translated from textual LINQ syntax are all
supported. These methods include Select, SelectMany, Where, OrderBy,
OrderByDescending, ThenBy, ThenByDescending, GroupBy, Join and
GroupJoin. Some of these methods have several overloadings, but not
all of them are supported. Exact coverages of these overloadings will
be explained in Section 3.2 and Section 3.3.

2. Some other extended operators for collection, including aggregation
operators Sum, Average, Min, Max and Count, partitioning operator
Take and casting operator Cast.

3. Single and multiple field access(for both attributes and references)
across other class-frames as well. This only applies to the case of up-
casting(to super-class or interfaces). Any downcasting might raise a
wrong casting exception, and this cannot be checked until runtime.
Therefore, in our case we are conservative about which queries are
allowed, and thus reject queries involving down-castings. For up-
castings, we support both implicit(by accessing fields declared in su-
per class or interfaces directly) and explicit castings(by calling method
Cast, mentioned in point 2 above).

4. By enabling point 1, queries that may generate transparent identifiers
are also supported.

On the other hand, some features that we do not support should be pointed
out clearly here. A selected list of these includes:

1. For methods Group, Join, GroupJoin and OrderBy, ThenBy, OrderByDescending,
ThenByDescending, we do not support custom comparers. In other
words, comparison can only be performed on primitive types.

34 CHAPTER 3. QUERY: LINQ TO FERRY

2. Any kind of down-casting, as mentioned in point 3 above.

3. We do not support method invocation on object within query. User-
defined classes may declare methods that behaves differently, or re-
turns unpredictable results under different circumstances that might
corrupt the query. Actually, we do not support defining methods in the
input EMF model(called “behaviour” in EMF) for the same reason.

3.1.4 Translation phases

The entire translation process involves several phases, as depicted in Fig-
ure 3.3. As shown, different translation phases are activated depending on

Functional
Syntax
Of SQO

Normalized
SQO

SQO
LINQ Query

User-input
Textual

LINQ Query

Ferry
Expression

User-input
SQO LINQ

Query

Figure 3.3: Phases of translation from LINQ to Ferry

what kind of query is provided by user. Steps 1, 2 and 3 have been imple-
mented in Project work Translation of Java-Embedded Database Query, with
a Prototype Implementation for LINQ [2] and LinqExpand4Java 1. Hence,
functional syntax of SQO is the departure point of the rest of the translation.
Step 4 Normalization will be covered in Section 3.2, and Step 5 Translation
in Section 3.3.

1http://www.sts.tu-harburg.de/people/mi.garcia/LINQExpand4Java/

http://www.sts.tu-harburg.de/people/mi.garcia/LINQExpand4Java/

3.2. NORMALIZATION 35

3.2 Normalization

3.2.1 Functional syntax of SQO

Functional syntax of SQO is merely another representation of sequence of
calls to SQO methods. Briefly speaking, by converting to functional syntax,
object on which a method is called(the whole “part” preceding the “ . ” of
a method calling syntax) becomes the first argument of that method. For
example, given the following query:
from c in Customers where c.age>30 select c.name
whose SQO counterpart will be:
Customers.Where(c=>c.age>30).Select(c=>c.name)
whose functional syntax expression then looks like:
Select(Where(Customers, c=>c.age>30),c=>c.name)
This translation simplifies the further steps in evaluating the SQO expres-
sion, because in this way all that need to be evaluated first will have been
evaluated(this time including the input sequence of a method call, as it has
become the first argument), by the time the current method is visited.

In terms of the CST metamodel implemented in Project[2], a chain of
SQOs is a node of type DotSeparated, one of its child is another node of
type DotSeparated, in case the length of the chain exceeds 2. The resulting
SQO in functional syntax will be a node of type MethodCall, one of its
arguments is also a node of MethodCall in the same case.

Besides, this step of translation also replaces any occurrence of method
ThenBy and ThenByDescending by a new method named OrderByMultiKey,
which provides a more convenient way to evaluate oderings with multiple
keys at one time. Detail of this will be covered in the following subsection.

3.2.2 Normalization of SQO overloads

Many SQO methods have several overloadings, some of which have different
expressive power but cannot be translated from any textual syntax of LINQ.
Those with more expressive power usually take more arguments than the
others. To handle this great variety of possible overloadings, a normalization
phase is introduced here. It tries to reduce the total numbers of overloadings
by adding some trivial arguments to those methods taking less arguments,
and therefore provides the next step with particular SQO methods with
unified signatures. In the following, all methods that require normalization
are explained.

3.2.2.1 Normalization of SelectMany

The supported method SelectMany have the following overloadings:

1. public static IEnumerable<TResult> SelectMany<Tsource, TResult>(

36 CHAPTER 3. QUERY: LINQ TO FERRY

this IEnumerable<TSource> source,

Func<Tsource, IEnumerable<TResult> > selector);

2. public static IEnumerable<TResult> SelectMany<Tsource, TCollection, TResult>(

this IEnumerable<TSource> source,

Func<Tsource, IEnumerable<TCollection> > collectionSelector,

Func<Tsource, TCollection, TResult> resultSelector);

The first overloading enumerates the source sequence, applies the selector
projection on it, and merges the resulting items into a single sequence of
items of type TResult.

If a custom result is needed instead of merely merging the items from
the source sequence, the second overloading should be used. It invokes
the collectionSelector projection over the source sequence, applies the
resultSelector projection to each item of the above resulting sequence,
and returns the merged result. Because reseultSelector applies to the
sequence resulting from collectionSelector, the final result is also a se-
quence of items of type TResult. Textual syntax of LINQ can only be
translated to the second overloading.

The difference between them is, whether the temporary sequence is
merged and returned directly(in the first overloading), or further shaped
by resultSelector(in the second overloading) before being merged and re-
turned. Therefore, the first overloading can be normalized as the second by
introducing a resultSelector that simply returns items of that sequence
unmodified.

The normalization of method SelectMany is given as following:

Γ ` src::TSource, col ∈ src.CollSel
SelectMany(Source, src=>selector) 7→

SelectMany(Source, src=>source.CollSec, (src, col)=>col)

3.2.2.2 Normalization of OrderBy and OrderByDescending

The supported method OrderBy has the following overloading:
public static IOrderedEnumerable<TSource> OrderBy<Tsource, TKey>(

this IEnumerabe<TSource> source,
Func<Tsource, TKey> keySelector);

The supported method OrderByDescending has the following overload-
ing:
public static IOrderedEnumerable<TSource> OrderByDescending<Tsource, TKey>(

this IEnumerabe<TSource> source,

Func<Tsource, TKey> keySelector);

In the translation from SQO to functional syntax of SQO, method ThenBy
and ThenByDescending resulted from multiple key occurrences are elimi-
nated by introducing a new method OrderByMultiKey, in order to have

3.2. NORMALIZATION 37

all keys evaluated at a time. In particular, the first argument of method
OrderByMultiKey is the source sequence being sorted. Each key and the
direction on this key(encoded as a Boolean value, where true for ascending
and false for descending) composite the following 2 arguments. Therefore,
method OrderByMultiKey takes 2∗n+ 1 arguments, where n is the number
of keys. But in functional syntax of SQO, orderings with single key still
remain as the method OrderBy and OrderByDescending.

The normalization goes one step further, in that it translate method
OrderBy and OrderByDescending into method OrderByMultiKey, although
it only has one key. The resulting OrderByMultiKey hence has 3 arguments,
the first one being the source and the last two being the key specification.
This simplifies the following translation phase in that the translator does not
need to distinguish method OrderBy (eventually OrderByDescending) and
OrderByMultiKey, which would otherwise require two pieces of very similar
translation code. Nevertheless, method name OrderByMultiKey actually
loses its original meaning in the case of single key.

The normalization of method OrderByMultiKey is given as follows.

Γ ` src::TSource
OrderBy(Source, src=>key) 7→

OrderByMultiKey(Source, src=>key, true)

Γ ` src::TSource
OrderByDescending(Source, src=>key) 7→
OrderByMultiKey(Source, src=>key, false)

3.2.2.3 Normalization of GroupBy

Excluding those involving custom comparers, method GroupBy has two over-
loadings, one including and one without an argument elementSelector, as
shown below.

1. public static IEnumerable<IGrouping<TKey, TSource> > GroupBy<Tsource, TKey>(

this IEnumerable<Tsource> source,

Func<Tsource, TKey> keySelector);

2. public static IEnumerable<IGrouping<TKey, TElement> > GroupBy<Tsource, TKey,
TElement>(

this IEnumerable<Tsource> source,

Func<Tsource, TKey> keySelector);

Func<Tsource, TElement> elementSelector);

Both overloadings have a common argument keySelector, which is a
predicate used to extract the key value from each item to group results based
on the different key values.

38 CHAPTER 3. QUERY: LINQ TO FERRY

In textual syntax of LINQ, group by clause is another clause besides
select that can conclude a query. There should be a way for group by
clause to shape the output result as select clause does. For this, the second
overloading is needed. The argument elementSelector shapes the items
of output sequence that has been clustered by argument keySelector. In
fact, in textual syntax of LINQ, if the variable between keywords group and
by is the same as the source variable representing items in source sequence
being grouped, the first overloading is generated, otherwise the second is
generated. For example, the following query:
from c in customers group c by c.country
is translated into the first overloading as:
customers.GroupBy(c=>c.country)
while the following query:
from c in customers group c.name by c.country
is translated into the second overloading as:
customers.GroupBy(c=>c.country, c.name)
The first query does not specify how the result should be shaped, while in
the second it is specified that only the field c.name is projected in the result.
Based on this difference, we can normalize the first overloading to the second
by providing an argument elementSelector which is the same as the source
sequence, meaning items of the source go into the result unmodified. In this
case, types TElement and TSource would be the same.

The normalization rule for method GroupBy is given below.
Γ ` src::TSource

GroupBy(Source, src=>key) 7→
GroupBy(Source, src=>key, src=>src)

The other SQO methods do not need to be normalized and can be con-
sumed directly by the translation phase afterwards. However, for complete-
ness, the supported(excluding those requiring custom comparers) overload-
ings of methods Join and GroupJoin will also be given here.

1. public static IEnumerable<TResult> Join<TOuter, TInner, TKey, TResult>(

this IEnumerable<TOuter> outer,

IEnumerable<TInner> inner,

Func<TOuter, TKey> outerKeySelector,

Func<TInner, TKey> innerKeySelector,

Func<TOuter, TInner, TResult> resultSelector);

1. public static IEnumerable<TResult> GroupJoin<TOuter, TInner, TKey, TResult>(

this IEnumerable<TOuter> outer,

IEnumerable<TInner> inner,

Func<TOuter, TKey> outerKeySelector,

Func<TInner, TKey> innerKeySelector,

Func<TOuter, IEnumerable<TInner>, TResult> resultSelector);

3.3. TRANSLATION 39

3.3 Translation
In this section, detail of translation from LINQ to Ferry will be given. Input
to the translation phase is functional syntax of LINQ, while output is block
of Ferry expressions which is semantically equivalent to the input query.
In Section 3.3.1, translation rules regarding to different building blocks of
functional syntax of LINQ are given.

3.3.1 Translation rules

A LINQ query in its functional syntax contains some or all of these build-
ing blocks: method invocation, literal expression, dot-separated expression,
binary expression, unary expression, and object initialization(invocation of
object constructor or new expression for anonymous type).

To define the translation rules, the translation function T is defined:

el =
[MethodCall|Literal|DotSeparated|BinaryExpr|UnaryExpr|NewExprWithInit]

T[el]Γ = [ef]Γ
′

Function T takes argument el which is one of the building blocks of functional
syntax of LINQ, and a variable environment Γ, returns Ferry expression ef
and updates Γ to Γ′.

Additionally, two auxiliary functions G and V are defined as follows:

Ntab[(col1, . . . , coln), (key1, . . . , keym)]
G[tab]Γ = [table tab(col1 t1, . . . , coln tn)

with keys (key1, . . . , keym)]Γ

Function G takes argument tab and generates a table reference expression
in Ferry according to the Table Information Node Ntab, whose column spec-
ifications are (col1, . . . , coln) with types (t1, . . . , tn) respectively, and key
specifications are (key1, . . . , keym).

Function V returns a variable with the next available fresh name.

3.3.1.1 Translation of literal expression

Literal expression in functional syntax of LINQ can represent either a lit-
eral or access to a source sequence(for example, after the from keyword).
Translation of literal expression is straightforward. In the CST metamodel
implemented in Project[2], class Literal has a field literalKind of type
LiteralKind, which is an enumeration type that can distinguish whether
the literal is of type Int, String or Boolean or ID. In the first three cases,
it is translated to the corresponding literal expression in Ferry. In the last
case, it is translated to a Table Reference expression in Ferry.

40 CHAPTER 3. QUERY: LINQ TO FERRY

The translation rule for literal expression is given below:

l.literalKind = LiteralKind.INT_LIT
T[l]Γ = IntLiteral(l)Γ

l.literalKind = LiteralKind.STRING_LIT
T[l]Γ = StringLiteral(l)Γ

l.literalKind = LiteralKind.BOOLEAN_LIT
T[l]Γ = BooleanLiteral(l)Γ

l.literalKind = LiteralKind.ID_LIT
T[l]Γ = G[l]Γ

3.3.1.2 Translation of binary expression

In a binary expression, both operands are translated first. Prerequisite for
this is that both operands are of the same type. A binary expression in Ferry
is then created, by connecting the translation results of both operands with
the same binary operator. The translation rules for binary expression are
given below, separated by different kinds of operators:

BinOp = [+ | − | ∗ | / | > | < | == | >= | <= | ! =]
t = Int

Γ ` e1 :: t
Γ ` e2 :: t

T[e1]Γ = e′1
T[e2]Γ = e′2

T[e1 BinOp e2]Γ = (e′1 BinOp e′2)Γ

BinOp′ = [== | ! =]
t′ = String
Γ ` e1 :: t
Γ ` e2 :: t

T[e1]Γ = e′1
T[e2]Γ = e′2

T[e1 BinOp′ e2]Γ = (e′1 BinOp′ e′2)Γ

BinOp′′ = [and | or]
t′′ = Boolean

Γ ` e1 :: t
Γ ` e2 :: t

T[e1]Γ = e′1
T[e2]Γ = e′2

T[e1 BinOp′′ e2]Γ = (e′1 BinOp′′ e′2)Γ

3.3. TRANSLATION 41

3.3.1.3 Translation of unary expression

In a unary translation, operand is translated first. A unary expression in
Ferry is then created, by prefixing the translation result of the operand with
the same binary operator. The translation rules for unary expression are
given below:

UnOp = [not]
Γ ` e1 :: Boolean

T[e1]Γ = e′1
T[UnOp e1]Γ = (UnOp e′1)Γ

UnOp′ = [-]
Γ ` e1 :: Int
T[e1]Γ = e′1

T[UnOp′ e1]Γ = (UnOp′ e′1)Γ

3.3.1.4 Translation of dot-separated expression

Since we exclude method invocation on object, dot-separated expression
can only occur in field access. Field access involves the access to single
or multiple attribute or reference. Also, these access can either be within
the own class-frame, or within the class-frame of superclass or implemented
interfaces. Here a rule for each of these situations will be given, assuming
that we have already determined whether the field access in question is
single or multiple attribute or reference access. How this is determined will
be explained in Section 3.4 about implementation.

o.f, where object o is of class C and f is a single attribute declared in
class C, is translated into a nominal access of Tuple in Ferry. Since o.f
can only occur within context of Lambda expression which is argument of
SQO method, it can be guaranteed that variable o is in scope. Following is
the translation rule for o.f in the case of single attribute. Here a slightly
different notation is used: C in T[o.f]ΓC means that this translation assumes
that field f is declared in class C.

Γ ` o::C
T[o.f]ΓC = (o.f)Γ

o.f, where object o is of class C and f is a multiple attribute declared
in class C, is translated into a Let expression in Ferry. Recalling Section
2.3, Section 2.4 and the example shown in Figure 2.11, values of multiple
attribute are stored in the bridging table called C_f. The resulted Let ex-
pression in Ferry accesses that bridging table, iterates through it and filters
out those rows that belong to object o. The filtering takes place based on
the matching between the surrogate value in column f in table C and the

42 CHAPTER 3. QUERY: LINQ TO FERRY

values of column iter in table C_f. Since o.f can only occur within context
of Lambda expression which is argument of SQO method, it can be guaran-
teed that variable o is in scope. Following is the translation rule for o.f in
the case of multiple attribute.

v1 = V(), v2 = V()
Γ ` o::C

T[o.f]ΓC = (let v1 = G(C_f)
in for v2 in v1

where C.f = v2.iter
return v2)Γ

o.f, where object o is of class C and f is a reference(regardless of its
multiplicity) of type R declared in class C, is translated into a Let expres-
sion in Ferry. Recalling Section 2.3, Section 2.4 and the example shown in
Figure 2.11, id of object(s) being referred to are stored in column item0 in
the bridging table called C_f. In the case of single reference, each row in
table C_f has individual value of column iter, while in the case of mul-
tiple reference, rows in table C_f that belong to the same reference share
the same value of column iter. This value, as a surrogate value, is then
stored in column f of the row representing object o in table C. The resulted
Let expression in Ferry accesses that bridging table, iterates through it and
filters out those rows that belong to object o based on the matching between
the surrogate value in column f in table C and the values of column iter
in table C_f. Within each iteration, an embedded Let expression accesses
table R and locates the object(s) being referred to based on the matching of
column item0 in table C_f and the id of objects in table R. Since o.f can
only occur within context of Lambda expression which is argument of SQO
method, it can be guaranteed that variable o has already been in scope.
This translation also update the variable environment by adding a binding
indicating that field f is of type R. This is to handle the possible case of
chained references like o.f1 . . . fn.

v1 = V(), v2 = V(), v3 = V(), v4 = V()
Γ `o::C

Γ′ = Γ + [f 7→ R]
T[o.f]ΓC = (let v1 = G(c_f)

in for v2 in v1
return (
let v3 = G(B)
in for v4 in v3

where o.f = v2.iter and v2.item0 = v4.id
return v4

)
)Γ′

3.3. TRANSLATION 43

In the case of o.f, where object o is of class C and f is a field(either
attribute or reference) which is not declared in class C, the translator first
attempts to apply the same rules to f on class S, the superclass of C. If f
is not declared in class S either, it will then try every interfaces In that C
implements, until it finds an interface that declared f. This also applies to
interfaces that these interfaces implement. Following is the translation rules
for member access within class-frame of super-class or interface.

Γ `o::C
T[o.f]ΓC = T[o.f]ΓS

Γ `o::C
T[o.f]ΓC = T[o.f]ΓIn

3.3.1.5 Translation of MethodCall

MethodCall is the root node of a functional syntax of LINQ. SQO methods
are not defined as sub-classes of MethodCall. Rather, each instance of
MethodCall has a string field to specify the name of this method call, and
a list to specify its arguments. In the following, the translation rules for all
methods within functional syntax of LINQ will be given.

• Select(src, v=>prj)

A Select method in functional syntax of LINQ takes two arguments,
the first one src being the source sequence and the second one a lambda ex-
pression v=>prj that represents a projection operator. This method applies
the projection on the source sequence to produce another sequence. Source
sequence src can be a table access or other expressions that are translated
from other methods of functional syntax of LINQ. Variable v represents each
element within src, and projection prj shapes out each output element in
terms of v. Projection prj can be member access, initial expression or some
other expression.

A Select method is translated into a Let expression in Ferry, whose
embedded For expression iterates through the source sequence and returns
the resulted sequence being shaped by the projection. Also, it updates the
variable environment Γ by adding a mapping from v to the type of items in
src.

v1 = V()
T[src]Γ = src′

T[prj]Γ = prj′

Γ + [v::tsrc] = Γ′
T[Select(src, v=>prj)]Γ = (let v1 = src′

in for v in v1
return prj′)Γ′

44 CHAPTER 3. QUERY: LINQ TO FERRY

• Where(src, v=>pred)

A Where method in functional syntax of LINQ filters source sequence src
based on a predicate pred, and returns another sequence whose items fulfill
the predicate. Source sequence src can be a table access or other expressions
that are translated from other methods of functional syntax of LINQ. Vari-
able v represents each element within src, and predicate pred is a boolean
expression in terms of v.

A Where method is translated into a Let expression in Ferry, whose
embedded For expression iterates through the source sequence. The optional
where clause in this For expression is generated from the predicate pred.
Also, it updates the variable environment Γ by adding a mapping from v to
the type of items in src.

v1 = V()
T[src]Γ = src′

T[pred]Γ = pred′

Γ + [v::tsrc] = Γ′
T[Where(src, v=>pred)]Γ = (let v1 = src′

in for v in v1
where pred′

return v)Γ′

• SelectMany(src, v=>collSel, (v,col)=>resSel)

After normalization, a SelectMany method in functional syntax of LINQ
uses the second argument collsel to retrieve a collection selector from
each item of source sequence src, and applies the resSel projection on the
sequence taken from collection selector. Items from this sequence are then
merged together to form the final result. Source sequence src can be a
table access or other expressions that are translated from other methods
of functional syntax of LINQ. Variable v represents each element within
src, and variable col represents each element(a sequence itself) within the
sequence retrieved by collection selector. Please note that although the
result projection resSel applies on items of sequences which is in turn items
of the source sequence, the output result is a flattened sequence, instead of
a sequence of embedded sequences.

A SelectMany method is translated into a Let expression in Ferry which
calls the concat method to merge the sequence resulted from an embedded
For expression. That For expression iterates through the source sequence
src. For each round of iteration, it applies another loop over the collection
selector, and performs the resSel projection on each item taken from the
collection selector. The call to method concat ensures that the result is one
single flattened sequence. Also, it updates the variable environment Γ by
adding two mappings: from v to the type of items in src, and from col to
the type of items in collSel.

3.3. TRANSLATION 45

v1 = V(), v2 = V()
T[src]Γ = src′

T[collSel]Γ = collSel′

T[resSel]Γ = resSel′

Γ + [v::tsrc] = Γ′
Γ + [col::tcollSel] = Γ′

T[SelectMany(src, v=>collSel, (v,col)=>resSel)]Γ =
(let v1 = src′

in concat (
for v in v1
return (

let v2 = collSel′

in for col in v2
return resSel′

)
)

)Γ′

• OrderByMultiKey(src, v=>key1, dir1, . . . , v=>keyn, dirn)

After normalization, an OrderByMultiKey method in functional syntax of
LINQ always consumes 2 ∗ n + 1 arguments, the first one being the source
sequence and the followings pairs being the key specifications (in each pair,
the first one is the column name to specify the sorting criterion, and the
second one the direction of that criterion, encoded as true for ascending and
false for descending). Source sequence src can be a table access or other
expressions that are translated from other methods of functional syntax of
LINQ. Variable v represents each element within src. Each key specification
keyn can be member access or other expression which is in terms of v.

An OrderByMultkKeymethod is translated into a Let expression in Ferry,
whose embedded For expression iterates through the source sequence src.
The optional order by clause within that For expression is generated from
the translation result of key specifications, with ascending as the default
direction. After sorted, each item v within the sequence is returned. Also,
it updates the variable environment Γ by adding a mapping from v to the
type of items in src.

v1 = V()
T[src]Γ = src′

T[key1]Γ = key′1
...

T[keyn]Γ = key′n
Γ + [v::tsrc] = Γ′

T[OrderByMultiKey(src, v=>key1, dir1, . . . , v=>keyn, dirn)]Γ =

46 CHAPTER 3. QUERY: LINQ TO FERRY

(let v1 = src′

in for v in v1
order by key′1[descending], . . . , key

′
n[descending]

return v)Γ′

• GroupBy(src, v=>key, v=>eleSel)

After normalization, a GroupBy method in functional syntax of LINQ takes
three arguments, the first one being the source sequence src, the second
one being the key on which to cluster the source sequence based on different
value of key, and the third one being the element selector that shapes out
the resulted sequence. Source sequence src can be a table access or other
expressions that are translated from other methods of functional syntax of
LINQ. Variable v represents each element within src. Key specification key
can be member access or other expression which is in terms of v. Element
selector eleSel can be member access, initial expression or other expression
which is in terms of v.

A GroupBy method is translated into a Let expression in Ferry, whose
embedded For expression iterates through the source sequence src. The op-
tional group by clause in that For expression is generated from the transla-
tion result of the key specification. This translation also updates the variable
environment Γ by adding a mapping from v to the type of items in src.

v1 = V()
T[src]Γ = src′

T[key]Γ = key′

T[eleSel]Γ = eleSel′

Γ + [v::tsrc] = Γ′
T[GroupBy(src, v=>key, v=>eleSel)]Γ =

(let v1 = src′

in for v in v1
group by key′

return eleSel′)Γ′

• Join(outer, inner, o=>okey, i=>ikey, (o, i)=>resSel)

A Join method in functional syntax of LINQ takes two source sequences,
represented as outer and inner, finds matching pairs from them based on
keys okey and ikey extracted from both sequences, and return a sequence
composed with elements that fulfill the match. Both source sequences outer
and inner can be table access or other expressions that are translated from
other methods of functional syntax of LINQ. Variables o and i represents
elements in sequences outer and inner, respectively. Result selector resSel
performs a projection to shapes the output in terms of o and i. Please note

3.3. TRANSLATION 47

that items in sequence outer that have no matching counterpart in sequence
inner will not go into the resulted sequence, and vice versa.

A Join method is translated into a Let expression in Ferry, which has
an embedded method call to concat that merges the resulted sequence of a
For expression. That For expression iterates through the outer sequence.
In each iteration, another For expression loops over the inner sequence, and
returns items that fulfill the equivalence of items from both sequences based
on key specifications okey and ikey. The resulted sequence are shaped by
result selector resSel. Also, this translation updates the variable environ-
ment Γ by adding mappings from o to type of items in outer, and from i
to type of items in inner.

v1 = V(), v2 = V()
T[outer]Γ = outer′

T[inner]Γ = inner′

T[okey]Γ = okey′

T[ikey]Γ = ikey′

T[resSel]Γ = resSel′

Γ + [o::touter] = Γ′
Γ + [i::tinner] = Γ′

T[Join(outer, inner, o=>okey, i=>ikey, (o, i)=>resSel)]Γ =
(let v1 = outer′

in concat (
for o in v1
return (

let v2 = inner′

in for i in v2
return (
if o.okey == i.ikey then resSel′

else []
)

)
)

)Γ′

• GroupJoin(outer, inner, o=>okey, i=>ikey, (o, into)=>resSel)

A GroupJoin method in functional syntax of LINQ is similar to method
Join, with the different signature of result selector resSel. resSel requires
an object of type IEnumerable[inner], instead of a single object of the
type of elements in inner, because it projects a hierarchical result of type
IEnumerable[TResult], where TResult is the type of translation result of
resSel. Each item of type TResult consists of an item extracted from the
source sequence outer and a group of items of type TInner, joined from
another source sequence inner. As a result of this behavior, the output

48 CHAPTER 3. QUERY: LINQ TO FERRY

is not a flattened sequence like the one of method Join, but a hierarchical
sequence of items. Nevertheless, both methods GroupJoin and Join will
produces equivalent result if the mapping is a one-to-one relationship. In
cases in which a corresponding element group in the inner sequence is ab-
sent, the GroupJoin method extracts the outer sequence element paired
with an empty sequence, which also behaves differently from method Join.

Method GroupJoin is translated into a Let expression in Ferry, whose
embedded For expression iterates through the outer source outer. For each
iteration, another embedded Let expression defines the into variable and
embeds another For expression to loop over inner sequence inner. This
inner iteration returns a sequence extracted from inner, filtered by the
equivalence of keys okey and ikey. This result is then assigned to variable
into and shaped out by the result selector resSel to produce the final
result. This translation also updates the variable environment Γ by adding
mappings from o to type of items in outer, from i to type of items in inner,
and from into to type IEnumerable[inner].

v1 = V(), v2 = V()
T[outer]Γ = outer′

T[inner]Γ = inner′

T[okey]Γ = okey′

T[ikey]Γ = ikey′

T[resSel]Γ = resSel′

Γ + [o::touter] = Γ′
Γ + [i::tinner] = Γ′

Γ + [into::tIEnumerable[inner]] = Γ′
T[GroupJoin(outer, inner, o=>okey, i=>ikey, (o, into)=>resSel)]Γ =

(let v1 = outer′

in for o in v1
return (

let into = (
let v2 = inner′

in for i in v2
where okey′ = ikey′

return i
)

in resSel′

)
)Γ′

• Cast<T>(o)

Method Cast performs a casting on object o of type C to type T. Recalling
Section 2.3, Section 2.4 and the example shown in Figure 2.11, this involves
the access to different tables that store objects of different type, and the

3.3. TRANSLATION 49

location of the different parts of one particular object through the surrogate
values in columns SuperCls, SuperObj, subCls and subObj. Note that
Cast is a node of type MethodCall, meaning that the following translation
rules are only applicable to explicit casting. When introducing the transla-
tion rules for member access, the case of implicit casting has already been
covered.

Because the translation rules for casting to super-class and to interface
are different, they will be explained here separately. For this, a new notation
is defined:

C→ T

meaning that class C is inherited from class T if T is a normal class, or class
C implements T if T is an interface.

A casting to super-class is translated to a Let expression in Ferry, which
access the table for the super-class and iterates it with its embedded For
expression. In this For expression, the optional where clause is generated
filter out the correct row. This row should have C as its value in column
SubCls, and the id of o as its value in column SubObj. This row is return
to where this method Cast is called, which can be the declaration of source
variables, member access, result projector or any other expression.

v1 = V(), v2 = V()
Γ ` o::C
C→ T

T[Cast<T>(o)]Γ = (let v1 = G(T)
in for v2 in v1

where v2.SubCls = C and v2.SubObj = o.id
return v2)Γ

A casting to interface is translated to a Let expression in Ferry, which access
the table for interfaces of C and iterates it with its embedded For expression.
In this For expression, the optional where clause is generated filter out the
correct row. This row should have T as its value in column interface,
and the id of o as its value in column iter. Then another embedded For
expression iterates through table T and filters out rows matching its value in
column obj and the id of that row in the bridging table. This row is return
to where this method Cast is called, which can be the declaration of source
variables, member access, result projector or any other expression.

v1 = V(), v2 = V(), v3 = V(), v4 = V()
Γ ` o::C
C→ T

50 CHAPTER 3. QUERY: LINQ TO FERRY

T[Cast<T>(o)]Γ = (let v1 = G(C+“interfaces“)
in for v2 in v1

where v2.iter = o.id and v2.interface = T
return

let v3= G(T)
in for v4in v3

where v4.id = v2.obj
return v4)Γ

• Min(s)

• Max(s)

• Sum(s)

These aggregation methods are self-explained, and they can be translated di-
rectly into their Ferry counterparts. prerequisite is, type of items in operand
sequence s should be Int.

ts = Int
T[Min(s)]Γ = [min(s)]Γ

ts = Int
T[Max(s)]Γ = [max(s)]Γ

ts = Int
T[Sum(s)]Γ = [sum(s)]Γ

• Count(s)

Method Count is translated into a function application length in Ferry,
which has a different name but identical semantic: to retrieve the number
of items in a source sequence s.

T[Count(s)]Γ = [length(s)]Γ

• Average(s)

Method Average is translated into Ferry expression in which method sum
is called and the result is divided by the result of another method call to
length. prerequisite is, type of items in operand sequence s should be Int.

ts = Int
T[Average(s)]Γ = [sum(s)/length(s)]Γ

• Take(src, n)

3.4. IMPLEMENTATION AND RESULT 51

Method Take takes the first n items from source sequence src. It is trans-
lated into a function application take in Ferry. If n exceeds the size of src,
all items in src are returned.

n ∈ N
T[Take(src, n)]Γ = [take(n, src)]Γ

3.4 Implementation and result

The translation rules defined above are the foundation of this process. Yet
for completeness, there are still several points regarding to the implementa-
tion aspects that should be explained and clarified.

3.4.1 From one tree to another

The translation from functional syntax of LINQ to Ferry expression is essen-
tially a process that visits an input concrete syntax tree(CST), and generates
another one. For both ends of this translation, CST metamodels are needed.
Project [2] has implemented the entire CST metamodels for both textual and
functional syntax of LINQ. As the input of our translation, functional syn-
tax of LINQ is represented as a CST, with a node of type MethodCall as
its root.

On the other end of the translation, we reused and refactored the CST
metamodel for Ferry syntax which is defined by Project ScalaQL 2. The
refactor mostly lies in the definition of a “pretty-printer”, which generates
the string representation of a tree of Ferry expression in a more structurally
indented and hence more readable manner. This will be examined in more
detail in Section 3.4.5. This metamodel defined each syntax element of
Ferry shown in Figure 3.2 on page 29, as case classes in Scala. During
the translation, nodes and leaves of a CST, which are instances of these case
classes, are instantiated accordingly, and the CST is built in this way. Listing
3.2 shows how method Where is translated according to the translation rule,
and how the corresponding CST of Ferry is built.

1 case "Where" => {
2 var source = getSource(fs.getArgs.get(0))
3 var paramVar = fs.getArgs.get(1).asInstanceOf[LambdaExpr].

getParams.get(0)
4 bindings += (paramVar -> source._2.asInstanceOf[IEnumerable].

elemType)
5 var sourceVar = VarIDDecl(getNextVar)
6 var forVar = VarIDDecl(fs.getArgs.get(1).asInstanceOf[LambdaExpr].

getParams.get(0))

2http://www.sts.tu-harburg.de/people/mi.garcia/ScalaQL/

http://www.sts.tu-harburg.de/people/mi.garcia/ScalaQL/

52 CHAPTER 3. QUERY: LINQ TO FERRY

7 var pred = translate(fs.getArgs.get(1).asInstanceOf[LambdaExpr].
getBody)

8 var res = LetExpr(LetBindingClause(List((sourceVar, source._3))),
9 ForExpr(ForBindingClause(List((forVar, sourceVar))),

10 Some(FerrySyntax.WhereClause(pred._3)),None,None,None,
11 forVar)
12) //end of LetExpr
13 (sourceVar.toString, source._2, res)
14 }

Listing 3.2: Snippet that translates Where method and builds the
corresponding CST of Ferry expressions

3.4.2 Type checking of the translation

As shown in Line 13, Listing 3.2, the return type of the translation is a triple
value. Generally, the first item of that triple is a name that can identify the
node of the resulted Ferry expressions in the final result, and the second item
is the type of the result, and the third one is the resulted Ferry expressions.
This sub-section focuses on the resulted type of each translation.

Each translation rule applies to a particular element in the functional
syntax of LINQ, returning a block of Ferry expressions that has a partic-
ular type. This type is dependent on the syntax element from which it is
translated, and in some cases also on the source sequence that this syntax
element consumes.

In particular, literals in LINQ are translated to literal in Ferry with the
identical types. Member access is translated into different kinds of Ferry
expressions, whose type is taken from the type of that member being ac-
cessed. Special case is for multiple attributes and references, resulting in
Ferry expression with type IEnumerable, which then has the same element
type as that of attribute/reference. For MethodCall, the resulting Ferry
expression is produced with type IEnumerable, with various possibilities of
element types. For method Select and Selectmany, this type is taken from
type TResult in the SQO signature. These two methods return sequences
of elements that are shaped by the projections, therefore type TResult is
dependent on this projector. For method OrderBy, the result is a sequence
of type IOrderedEnumerable, whose element type is TSource, which is the
type of elements of the source sequence. Similarly, method GroupBy results
in a sequence of type Grouping, which consists a member of type TKey,
given by the key specification, and another member of type TSource, the
element type of the source sequence. For methods Join and GroupJoin, the
resulting Ferry expressions are of type IEnumerable, whose element type is
TResult, determined by the argument resultSelector. For other aggre-
gation operators such as Min, Max, the returns type is set to Int, which is
the one of their operands.

3.4. IMPLEMENTATION AND RESULT 53

This type information is important during the translation process, be-
cause translation needs to type check if arguments of particular method are
of the correct types, or if they are of identical types. These arguments can in
turn be other MethodCalls that are to be translated, therefore the resulting
blocks of Ferry expressions should themselves have the correct types.

For this, return types are modelled in the snippet shown in Listing 3.3.
Type IEnumerable, along with its two sub-classes OrderedEnumerable and
Grouping, represents sequence returned by some SQO methods(and there-
fore from the resulted blocks of Ferry expressions), while type OtherType
represents other individual types, for example, returned by a single member
access.

1 abstract case class ReturnType() {}
2 case class IEnumerable(elemType:ReturnType) extends ReturnType{
3 override def toString = "IEnumerable<" + elemType.toString + ">"
4 }
5 case class OrderedEnumerable(override val elemType:ReturnType) extends

IEnumerable(elemType) {}
6 case class Grouping(key:String, override val elemType:ReturnType)

extends IEnumerable(elemType) {
7 override def toString = "Grouping<" + key + ", " + elemType.

toString + ">"
8 }
9 case class OtherType(ofType:String) extends ReturnType {
10 override def toString = ofType
11 }

Listing 3.3: Snippet that models the return types of SQO methods

3.4.3 Translating transparent identifier

Each transparent identifier is an instance of one anonymous type which is
generated when particular textual LINQ queries are translated into their
corresponding SQO methods[2]. Recalling the example shown in Listing
3.1 on page 28, this anonymous type contains fields that are declared in
the initial expression in terms of any variables that are in scope at the
moment. Once declared, these fields can be accessed through the transparent
identifier, and these fields themselves can contain any other transparent
identifier. Therefore, the critical step in translating transparent identifier is
to keep the binding between transparent identifier and the anonymous type
it is of.

Before the translation, Table Information Nodes for all types in the EMF
model have already been generated during the persistence phase. These
nodes are also taken over to the translation phases. When anonymous types
come into being, they should also be treated the same way as the others.
Therefore, temporary Table Information Nodes for these types should also

54 CHAPTER 3. QUERY: LINQ TO FERRY

be generated and included in this set of nodes. These nodes are temporary
in that they are dependent on particular queries being proceeded, and only
exist during the translation phases but should not affect the persistence
result after this phase. For each anonymous type, a Table Information Node
is generated. If any of its fields are references or multiple attributes, nodes
of bridging tables for them are also generated. For reference, key from
such newly-generated bridging tables points to the Table Information Node
representing the type of that reference, or to the Table Information Node
representing another anonymous type, in the case when this field is another
transparent identifier.

Once these nodes are generated and the hierarchies are constructed, the
binding from the transparent identifier to its related anonymous type will
be added to the variable environment. After that, this transparent identifier
and member access with it can be treated as usual.

3.4.4 Resolving member access

When introducing the translation rules for member access in Section 3.3.1,
we assumed that it had been determined whether this member access in-
volves single or multiple attribute or reference.

This can be determine by accessing the corresponding Table Information
Node. Within each Table Information Node, only values of single attributes
are stored in it. For multiple attributes and references, only surrogate values
are stored in the table, plus a corresponding entries in field keys. What’s
more, during the persistence phases, a map called ref (C, ref) 7→ R is
maintained, meaning that in class C there is a reference named ref whose
type is R. Having these pieces of information, we can determine what kind a
member access is. When there is no related entry in field key, it can only be
a single attribute. Otherwise, it can be either multiple attribute or reference,
which can be distinguished through the presence of the corresponding item
in map ref.

This also applies to member access from transparent identifier, since as
described in Section 3.4.3, Table Information Node for anonymous type is
also generated, and any eventual reference is added to map ref.

3.4.5 Result

The result of this translation phase is CST of Ferry expressions, whose string
representation is blocks of Ferry expressions. To make this string represen-
tation more readable, another group of stringify methods indentToString
are defined for all kinds of nodes of Ferry syntax. Each of these methods
takes an integer argument, specifying how “deep” the current expression
should be indented. This method calls the method indentToString of its
sub-clauses, passing an argument for the depth of one level higher. In our

3.5. NEXT STEP 55

project, we use string constant “ |” as one level of indentation, hence yield-
ing the result shown in Listing 3.4. With this, it’s convenient to match up
keywords or phrases that belongs to the same expression.

from p in Person where p.age>30 select p.name
is translated into the following block of Ferry expressions, shown in a
structural manner. To save space, the column specification in the table

reference expression is truncated.

| let
| |_wen_variable_2 =
| | | let
| | | |_wen_variable_1 =
| | | | |table Person (_wen_iter Int,_wen_pos Int,...)
| | | | | |with keys (_wen_id)
| | |in
| | | |for p in _wen_variable_1
| | | | |where p.age > 30
| | | |return p
|in
| |for p in _wen_variable_2
| |return p.name

Listing 3.4: Resulted block of Ferry expressions

3.5 Next step
The ferryc compiler for Ferry has been implemented by the database team
at University of Tübingen, which takes Ferry expressions as input and gener-
ates equivalent expressions in relational algebra after optimization[12]. We
do not repeat this work again. Rather, we have implemented the translation
from relational algebra to SQL:1999 statements, as described in Chapter 4.

56 CHAPTER 3. QUERY: LINQ TO FERRY

Chapter 4

Relational Query Plans

4.1 Relational Algebra
As the destination language of Ferry, a dialect of classical relational algebra
is adopted. It is said to be a dialect because the primitive operators in the
chosen relational algebra are not exactly conform to those of classical rela-
tional algebra[6]. These operators are chosen in a way that, no significant
lost of expressive power in terms of the SQL statements will be shown despite
the removal of some primitive operators in classical relational algebra(for
example, by excluding rename operator), and that with this relational al-
gebra, some extra convenience can be obtained when processing a com-
plicated query plan(for example, by introducing aggregate, application
operator, attach and row rank operators). The operators in the rela-
tional algebra of interest are Projection, Selection, Cartesian Product,
Equi-Join, Disjoint Union, Difference, Distinct, Attach, Row Rank,
Row Number, Aggregation and Application Operators. In the following
subsections, each of these operators will be explained in detail with their
meanings, prerequisites, examples as well as what SQL statements they will
be transformed into.

4.1.1 Projection (πa1:b1,...,an:bn)

Description:
Projection is an operator that results in a limited set of columns b1, . . . ,b1
from a relation R, and all other columns that are not presented in the set
are excluded. If the argument a1, . . . , a1 present, corresponding columns in
the result will be renamed as specified in an.

Prerequisite:
All elements in set b1, . . . ,bn should be contained in the schema of R (short
for sch(R)). That is, [b1, . . . ,bn] ⊆ sch(R).

57

58 CHAPTER 4. RELATIONAL QUERY PLANS

Example:

πa1:b1,a2:b2,b3

b1 b2 b3 b4
1 “a” 4.5 true
2 “b” 5.5 false
3 “c” 6.5 true

=⇒

a1 a2 b3
1 “a” 4.5
2 “b” 5.5
3 “c” 6.5

Figure 4.1: Example: Projection Operator

In this example, columns b1 and b2 are projected and renamed to a1 and
a2, column b3 is projected without renamed, and column b4 is excluded in
the result.

SQL: The projection operator will be translated into the following SQL
statement. Note that New_Table is the name for a temporary table repre-
senting the result of the operator. Detail about how to generate this name
will be explained in Section 4.3.

WITH New_Table (a1,...,an) AS
(SELECT b1 AS a1, ..., bn AS an FROM R)

Listing 4.1: SQL statements for Projection Operator

4.1.2 Selection (σp(R))

Description:
Selection is a unary operator with a predicate p. This operator selects all
tuples in R for which predicate p holds. Selection operator is sometimes
called restriction, in order to avoid confusion with the SELECT clause in SQL
context.

Prerequisite:
Predicate p should be a propositional formula that only consists of elements
in sch(R) and/or constants.

Example:

In this example, only employees who’s ages are larger than 30 are se-
lected from the relation EMPLOYEE.
SQL: The selection operator will be translated into the following SQL state-
ment, where a1, . . . , an represent all elements in sch(R).

4.1. RELATIONAL ALGEBRA 59

σAge>30(EMPLOYEES)
ID Name Age
1 Tom 25
2 Bill 35
3 Kate 45

=⇒
ID Name Age
2 Bill 35
3 Kate 45

Figure 4.2: Example: Selection Operator

WITH New_Table (a1,...,an) AS
(SELECT (a1,...,an) FROM R WHERE p)

Listing 4.2: SQL statements for Select Operator

4.1.3 Cartesian Product (R× S)

Description:
Cartesian Product is a binary operator that takes two relations R and S
as its arguments. The resulting relation T = R × S is a set of all possible
combinations of ordered pairs, whose first component comes from relation
R and the second component from relation S. In this context, set does not
imply any elimination of possible duplicate result, and component refers to
an atomic tuple(row) from a relation.

Prerequisite:
In order that the Cartesian product T = R×S is well-formed, relation R and
relation S must be disjoint. That is, for any column c in R, there should not
exist any column d in S such that c and d have the same name.

Example:

T = R× S

A B
1 “a”
2 “b”

×

C D
3 “c”
4 “d”
5 “e”

=

A B C D
1 “a” 3 “c”
1 “a” 4 “d”
1 “a” 5 “e”
2 “b” 3 “c”
2 “b” 3 “d”
2 “b” 3 “e”

Figure 4.3: Example: Cartesian Product Operator

In this example, all possible combinations from relation R and relation
S are presented in the resulting relation.

60 CHAPTER 4. RELATIONAL QUERY PLANS

SQL: The Cartesian Product operator will be translated into the follow-
ing SQL statement, where a1, . . . , an represent all elements in sch(R), and
b1, . . . ,bn represent all elements in sch(S).

WITH New_Table (a1,...,an, b1,...,bn) AS
(SELECT * FROM R,S)

Listing 4.3: SQL statements for Cartesian Product Operator

4.1.4 Equi Join (R ./a=b S)

Description:
Equi Join is a binary operator that takes two relations R and S as its argu-
ments. The resulting relation T = R ./ S is a set of all possible combinations
of odered pairs, in that a specified column a in relations R must equal an-
other specified column b in S.

Although Equi Join is a special case of Theta Join, where the predication
to connect both relations can be other than equality, Equi Join has still be
taken as one of the primitive operators. Other kinds of join-like operations
can be achieved by combining Equi Join with other operator such as Selec-
tion, so as to further specify a more sophisticated prediction.

Prerequisite:
In order that the Equi Join T = R ./ S is well-formed, relation R and relation
S must be disjoint. That is, for any column c in R, there should not exist
any column d in S such that c and d have the same name. Further more,
column c and d must be of the same data type. This second restriction can
be achieved in our implementation, since in our data structure representing
the schema of a relation, not only the names of the columns but also their
data types are specified. Detail about the implementation will be explained
in Section 4.3.

Example:

In this example, relation Employee and relation Department are joined
together through their common columns DID and DepID. Usually, it suffices
to present only one of these common columns in the result relation, which
can be achieved by a projection operation afterwards.

SQL: The Equi Join operator will be translated into the following SQL
statement, where a1, . . . , an represent all elements in sch(R), and b1, . . . ,bn
represent all elements in sch(S). ao and bp are the common columns from

4.1. RELATIONAL ALGEBRA 61

Employee ./DID=DepID Department
EmpID EmpName DID

1 “Tom” “1001"
2 “Bill” “1002"
3 “Kate” “1001"

./

DepID DepName
1001 “IT”
1002 “Sale”

=

EmpID EmpName DID DepID DepName
1 “Tom” 1001 1001 “IT”
2 “Bill” 1002 1002 “Sale”
3 “Kate” 1001 1001 “IT”

Figure 4.4: Example: Equi Join Operator

both relations that perform the actual join operation.

WITH New_Table (a1,...,an, b1,...,bn) AS
(SELECT R.a1, ... , R.an , S.b1 , ... , S.bn
FROM R,S
WHERE R.ao = S.bp
)

Listing 4.4: SQL statements for Equi Join Operator

4.1.5 Disjoint Union (R ∪ S)

Description:
Disjoint Union is a binary operator that connect both relations from ar-
gument into one relation. This operation does not eliminate any possible
duplicated tuples in the resulting relation.

Prerequisite:
In order that the Disjoint Union T = R ∪ S is well-formed, relation R and
relation S must be compatible. That means, sch(R) and sch(S) must have
identical numbers of columns, and each corresponding columns should have
identical names as well as types.

Example:

In this example, relation R and relation S are connected vertically to
produce a new relation, which contains all tuples from relation R and all
tuples from relation S.

SQL: The Disjoint Union operator will be translated into the following
SQL statement, where a1, . . . , an represent all elements in sch(R). They are

62 CHAPTER 4. RELATIONAL QUERY PLANS

R ∪ S

A B C
1 “b1” “c1"
2 “b2” “c2"
3 “b3” “c3"

∪

A B C
4 “b4” “c4"
5 “b5” “c5"
6 “b6” “c6"

=

A B C
1 “b1” “c1"
2 “b2” “c2"
3 “b3” “c3"
4 “b4” “c4"
5 “b5” “c5"
6 “b6” “c6"

Figure 4.5: Example: Disjoint Union Operator

also all elements from sch(S) since both relations have identical schema.

WITH New_Table (a1,...,an) AS
(
SELECT * FROM R

UNION ALL
SELECT * FROM S
)

Listing 4.5: SQL statements for Disjoint Union Operator

4.1.6 Difference (R\S)

Description:
Difference is a binary operator that produces the difference between the first
operand R and the second operand S. The resulting relation T contains all
tuples from relation R, but excludes all that are contained in relation S.

Prerequisite:
In order that the Difference operation T = R\S is well-formed, relation R
and relation S must be compatible. That means, sch(R) and sch(S) must
have identical numbers of columns, and each corresponding columns should
have identical names as well as types.

Compared with Disjoint Union operator, Difference operator also re-
quires that the first (left) operand does not contain any duplicated tuples.
The resulting relation hence does not contain any duplicated tuples as well.

Example:

In this example, the resulting relation contains elements that are only in
relation R but not in relation S.

SQL: The Difference operator will be translated into the following SQL

4.1. RELATIONAL ALGEBRA 63

R\S
A B C
1 “b1” “c1"
2 “b2” “c2"
3 “b3” “c3"

\ A B C
2 “b2” “cc" =

A B C
1 “b1” “c1"
3 “b3” “c3"

Figure 4.6: Example: Difference Operator

statement, where a1, . . . , an represent all elements in sch(R). They are also
all elements from sch(S) since both relations have identical schema.

WITH New_Table (a1,...,an) AS
(
SELECT * FROM R
WHERE NOT EXISTS
(SELECT * FROM S WHERE R.a1 = S.a1, ..., R.an = S.an)

)

Listing 4.6: SQL statements for Difference Operator

4.1.7 Distinct (δR)

Description:
Distinct is a unary operator that eliminates any possible duplicated tuples
from the relation R in argument.

Prerequisite:
The Distinct operator does not have any prerequisite in order to be well-
formed. If the input relation R does not contain any duplicated tuple, the
output relation remains the same as the input.

Example:

δR

δ

A B C
1 “b1” “c1"
2 “b2” “c2"
2 “b2” “c2"
3 “b3” “c3"

=

A B C
1 “b1” “c1"
2 “b2” “c2"
3 “b3” “c3"

Figure 4.7: Example: Distinct Operator

In this example, the duplicated tuple is eliminated.

64 CHAPTER 4. RELATIONAL QUERY PLANS

SQL: The Difference operator will be translated into the following SQL
statement, where a1, . . . , an represent all elements in sch(R).

WITH New_Table (a1,...,an) AS
(
SELECT DISTINCT * FROM R
)

Listing 4.7: SQL statements for Distinct Operator

4.1.8 Attach (@)

Description:
Attach operator is a unary operator that attaches to a relation R an addi-
tional column a with constant value v.

This operator has the identical result as a Cartesian Product operation,
having relation R as the first operand, and a temporary relation that con-
tains only one column a with value v as the second operand. However, the
Attach operation is more efficient than its corresponding Cartesian Product
operation, in that instead of performing any actual production operation,
each tuple in the input relation merely needs to be extended by a constant
value to produce the result relation.

Prerequisite:
The Attach operator does not have any prerequisite in order to be well-
formed. However, because of the set nature of a valid relational schema, the
new column being attached should not have the same name as that of any
columns in the input relation.

Example:

@R,c:v
A B
1 “b1”
2 “b2”
3 “b3”

@ C
v =

A B C
1 “b1” v
2 “b2” v
3 “b3” v

Figure 4.8: Example: Attach Operator

In this example, the new column c is attached to the input relation, and
the value v is attached to each column.

SQL: The Attach operator will be translated into the following SQL state-

4.1. RELATIONAL ALGEBRA 65

ment, where a1, . . . , an represent all elements in sch(R).

WITH New_Table (a1,...,an,c) AS
(
SELECT R.a1,...,R.a2, v AS c FROM R
)

Listing 4.8: SQL statements for Attach Operator

4.1.9 Row Rank (%c,a)

Description:
Row Rank operator is a unary operator that attaches to a relation R an
additional column a, whose value is the order of the corresponding tuple
within the relation. The argument c specifies the column name, by which
the ordering takes place.

If more than one tuples have the same value on the specified column,
the same value for Row Rank will be assigned. The following tuple will be
assigned a continuous row rank. Therefore, it may be possible that the row
rank value of the last tuple may be smaller than the total number of tuples.

Example:

%B,RANK

%

A B
1 10
2 20
3 20
4 30

=

A B RANK
1 10 1
2 20 2
3 20 2
4 30 3

Figure 4.9: Example: Row Rank Operator

In this example, due to the duplicated values in column B, the row rank
value has only been increased to 3 despite that the input relation contains
4 tuples.

SQL: The Row Rank operator will be translated into the following SQL
statement, where a1, . . . , an represent all elements in sch(R).

WITH New_Table (a1,...,an,A) AS
(

SELECT R.a1,...R.an, DENSE_RANK() OVER (ORDER BY c) AS A
FROM R

66 CHAPTER 4. RELATIONAL QUERY PLANS

)

Listing 4.9: SQL statements for Row Rank Operator

4.1.10 Row Number (#a:<b1,...,bn>/c)
Description:
Row Number operator is a unary operator that attaches to a relation R
an additional column a, whose value is the order of the corresponding tu-
ple within the relation. The argument b1, . . . , bn specifies the column for
partitioning(grouping). For each new partition, the result starts from 1.
Optional argument c specifies the key of the ordering. If this argument is
absent, default oder of the tuples will be adopted.

Different value for Row Number will be assigned, even though more than
one tuples within one partition may have the same value on the specified
column. Therefore, contrary to how the Row Rank operator behaves, the
Row Number value of the last tuple is the same as the total number of tuples
within the same partition.

Example:

#ROW_NUM :<B1,...,b4>/A

A B
1 “aa”
2 “bb”
3 “aa”
4 “bb”

=⇒

A B ROW_NUM
1 “aa” 1
3 “aa” 2
2 “bb” 1
4 “bb” 2

Figure 4.10: Example: Row Number Operator

In this example, values of Row Number operator are reset between dif-
ferent partitions(Column B here).

SQL: The Row Number operator will be translated into the following SQL
statement, where a1, . . . , an represent all elements in sch(R), and ORDER BY
clause within square brackets is optional.

WITH New_Table (a1,...,an,A) AS
(

SELECT R.a1,...R.an, ROW_NUMBER() OVER (PARTITION BY b [ORDER
BY c]) AS A

FROM R
)

4.1. RELATIONAL ALGEBRA 67

Listing 4.10: SQL statements for Row Number Operator

4.1.11 Aggregation (agga,b,c)

Description:
Aggregation operator is an operator that attaches to a relation R an addi-
tional column c, whose value is the result of the application of one of the
aggregation operators agg on column a, by aggregating (grouping) the val-
ues in column b. Column b specifies the partitions of tuples to which the
aggregation function applies to.

Aggregation function agg is defined as:

agg ∈ {average,max,min, sum, count}

Details about implementation of these operators will be provided in Section
4.3.

Example:

MAXAGE,DEP,MAX_AGE

%

ID NAME DEP AGE
1 “TOM” “IT” 30
2 “BILL” “SALE” 35
3 “KATE” “SALE” 27
4 “JIM” “IT” 32

=
DEP MAX_AGE
“IT” 32

“SALE” 35

Figure 4.11: Example: Aggregation Operator

This example is to find out the maximal age of employees in each de-
partment. The function Max is applied to the column AGE by grouping to
column DEP, hence yielding the the desired result in column MAX_AGE.

SQL: The Aggregation operator agga,b,c will be translated into the following
SQL statement.

WITH New_Table (b, c) AS
(

SELECT b, agg(a) AS c FROM R
GROUP BY b

)

Listing 4.11: SQL statements for Aggregation Operator

68 CHAPTER 4. RELATIONAL QUERY PLANS

4.1.12 Operation-Application (⊗)
Description:
Operation-Application operator is an operator that attaches to a relation R
an additional column c, whose value is the result of the application of an
operator o, which takes one or two columns as its arguments. The operator
o is defined as:

o ∈ {+,−, ∗, /,==, ! =, <,>,<=, >=, and, or, not}

According to different operators, the resulting column can be of different
types. Further, these operators are divided into two groups: binary opera-
tors and unary operators. This is for the convenience of our implementation.
Details about implementation of these operators will be provided in Section
4.3.

Example:

+A,B,D
A B C
1 10 “aa”
2 20 “bb”
3 30 “cc”
4 40 “dd”

=⇒

A B C D
1 10 “aa” 11
2 20 “bb” 22
3 30 “cc” 33
4 40 “dd” 44

Figure 4.12: Example: Operation-Application Operator

This example demonstrates that a new column named D is added to each
column, by summing up column A and column B in each tuple.

SQL: The Operation-Application operator with binary operator will be
translated into the following SQL statement, where a1, . . . , an represent all
elements in sch(R), and ao, ap are the operands for the binary operator.

WITH New_Table (b, c) AS
(

SELECT a1,...,an, (ao OPER ap) AS c
FROM R

)

Listing 4.12: SQL statements for Operation-Application Operator(binary
operator)

The Operation-Application operator with unary operator will be trans-
lated into the following SQL statement, where a1, . . . , an represent all ele-

4.1. RELATIONAL ALGEBRA 69

ments in sch(R), and ao is the operand for the unary operator.

WITH New_Table (b, c) AS
(

SELECT a1,...,an, OPER(ao) AS c
FROM R

)

Listing 4.13: SQL statements for Operation-Application Operator(unary
operator)

4.1.13 Table Reference

Description:
Table Reference Operator represents the access to a persisted relation R in
a Database Management System(DBMS).

SQL: The Table Reference operator will be translated into the following
SQL statement, where R is the relation being referenced, and a1, . . . , an rep-
resents all columns in sch(R).

WITH New_Table (a1,...an) AS
(

SELECT a1,...,an FROM R
)

Listing 4.14: SQL statements for Table Reference Operator

4.1.14 Table Literal

Description:
Table Literal Operator represents a new relation that is generated in run-
time. Also the rows of this relation are generated in runtime.

SQL: The Table Literal operator will be translated into the following SQL
statement, where a1, . . . , an represents all columns in the new relation, and
v1,1, . . . , vn,n represents the rows generated and inserted to the relation.

Note also that since we are going to ship our query into IBM DB2, one
special table called SYSIBM.SYSDUMMY1 is being used. This table is used
for SQL statements in which a table reference is required, but the contents
of the table are not important. Therefore it’s used in our translation here
as a place-holder for the FROM clause in order to get a well-formed SQL
statement.

70 CHAPTER 4. RELATIONAL QUERY PLANS

WITH New_Table (a1,...an) AS
(

(SELECT v1,1 AS a1, ... , v1,n AS an
FROM sysibm.sysdummy1

)
UNION ALL

(SELECT v2,1 AS a1, ... , v2,n AS an
FROM sysibm.sysdummy1

)
...

UNION ALL
(SELECT vn,1 AS a1, ... , vn,n AS an

FROM sysibm.sysdummy1
)

)

Listing 4.15: SQL statements for Table Literal Operator

4.2 Query Plan
A query plan is a sequence of steps used to perform a query on a DBMS. A
particular query may be executed with different query plans, with different
performance and efficiency. Query plan provides a way to examine the actual
execution process of a query in a lower-level view, and hence provides the
possibility to fine-tune a query through the adoption of different query plans.

In our work, query plan is also used to illustrate the factorization of
a complicated query into primitive operators. For example, given that we
have two relation schemas sch(CUSTOMERS) and sch(ORDERS).

CUSTOMERS
CID CNAME CORDER_ID
1001 “TOM” 2002
1002 “BILL” 2003
1003 “JIM” 2001

ORDERS
OID ONAME OPRICE
2001 “IPHONE” 179
2002 “IPOD” 89
2003 “WIN7_PRO” 119

Figure 4.13: Example: relations CUSTOMERS and ORDERS

In order to find out the names of the customers and the names of the
products they ordered, one would compose the SQL statement in Listing
4.16.

4.2. QUERY PLAN 71

SELECT customers.NAME, orders.NAME
FROM customers, orders
WHERE customers.ORDER_ID = orders.ID

Listing 4.16: SQL statements to find out names of customers and products

This query can be factorized into a query plan with three steps of primitive
operators: first Table Reference, and then Equi Join, and finally Projection,
as illustrated in Figure4.14.

Equi Join

Table Ref 1 Table Ref 2

Projection

Figure 4.14: Tree Diagram of Query Plan

Each of these operators are translated to its corresponding SQL state-
ment. In order to take the output of preceding step as the input of the
following step, WITH statement is used. Each clause within a WITH state-
ment generates a temporary relation as its result.[13] These temporary re-
lations are visible and can be referenced by further clauses afterwards. To
identifier these temporary relations, names are assigned at runtime. Detail
about how to assign to them valid and conflict-free names will be described
in Section 4.3.

Listing 4.17 shows how this query is factorized and cascaded into several
individual SQL statements corresponding to one of the primitive operators,
and then connected with a WITH statement.

WITH
-- Table Reference: Customers
New_Table001(CID, CNAME, ORDER_ID) AS (

SELECT * FROM CUSTOMERS
) ,

72 CHAPTER 4. RELATIONAL QUERY PLANS

-- Table Reference: Orders
New_Table002(OID, ONAME, OPRICE) AS(

SELECT * FROM ORDERS
) ,
-- Equi Join on New_Table001.ORDER_ID and New_Table002.OID
New_Table003(CID, CNAME, ORDER_ID, OID, ONAME, OPRICE) AS(

SELECT * FROM New_Table001, New_Table002
WHERE New_Table001.ORDER_ID = New_Table002.OID

)
-- Projection to get the desired columns
SELECT CNAME, ONAME FROM New_Table003

Listing 4.17: factorized SQL statements with WITH

4.3 Implementation

4.3.1 Classes of ASTs

To implement Relation Algebra in Scala, we first design the class hierarchy
to represent the operators and the relations between them. Although these
classes are named after the operators, they actually represent the nodes
in query plans. Therefore, each class has a field schema, representing the
schema of the relation that this operator results in. Also, different kinds of
operators may require different number of operands, and these operands are
children of the operator node in the tree of query plan.

The class hierarchy is shown in Figure 4.15 and each class has a self-
explaining name. Class RAExpr is the super class for all operators. Although
it is an abstract class, it contains a field schema of type List[Column].
Type column represents a column in a schema, containing a field cName,
representing the name of a column, and a field cType, representing the type
of that column. The latter field is of Type Type, an enumeration type
containing all the possible data types in SQL:99 standard.

Each operator takes one or more operators as its children, implying that
the operands can either be a table(either Table Reference or Table Literal) or
a subtree of operands. Class Table is also an abstract class that generalizes
class TableRef and class TableLit.

The operators are declared as case classes. In Scala, a class declared
with the case modifier has some syntactic conveniences. First, the Scala
compiler adds automatically a factory method with the name of the class,
meaning that one can construct an object of this class without the keyword
new. For example, instead of having a sequence of new keywords, one can
construct an object of type TableRef in a way shown in Listing 4.18. This
is a more intuitive way to instantiate a tree-shaped construct.

1 val employee = TableRef("emp",

4.3. IMPLEMENTATION 73

RAExpr

Aggr Attach Table Diff DisjUni

DistinctEquiJoin

Proj RowNum

SelectUnaAppBinApp

TableRef TableLit

Figure 4.15: UML Diagram of Classes Representing Relational Algebra

2 List[Column]
3 (Column("eId",Type.VARCHAR),Column("eName",Type.VARCHAR),Column

("e_dId",Type.VARCHAR)
4)
5)

Listing 4.18: Constructing an object of case class

Other conveniences include that all arguments in the parameter list of a
case class are implicitly treated as fields, and the compiler also adds the
implementations of methods toString, hashCode and equals to it. These
are helpful especially for tree-shaped object, while children in depth can be
processed recursively as well.

In the constructors of these case classes, all fields are specified, including
their names, schemas and some special field such as the joining keys for Equi
Join operator, the predicate for Select operator. The schema of an operator
can be determined from those of its children, and by some operators also
from other arguments. For example, the schema of Cartesian Product
Operator has the schema that is the combination of its both children, while
the schema of Different are directly taken from one of its children(both
children should have the same schema). The schema of Projection operator
contains columns that are of the same types as those of its child, but with
probably different names due to the renaming. Thanks to the functional

74 CHAPTER 4. RELATIONAL QUERY PLANS

style of Scala, the constructor of Projection operator can be written as
shown in Listing 4.19.

1 case class Proj(left:RAExpr,names:List[NamesPair]) extends RAExpr{
2 val schema = names map (col=>Column(col.newName,
3 (left.schema find (x => x.cName == col.

oldName)).get.cType
4)
5)
6 }

Listing 4.19: Constructor of Projection Class

The operation map takes as operands a list l of type List[T] and a func-
tion f of type T=>U, and returns a list resulting from applying the function
f to each element of list l. In the example in Listing 4.19, list of NamesPair
are mapped to a list of Column, with the new name as value of field cName,
and the type found with the old name from the old schema as value of field
cType.

There are also other classes that are defined to assist the implementation.
NamesPair defines a pair of Strings that are used in Projection operator,
reflecting the possible process of renaming of original name in the schema
to a new name.

Binary operators and unary operators for operator Operation Application
are defined as enumeration types. These two groups are defined separately
because they need to be transformed into two different style of SQL syntax:
binary operators are located between the operands, such as a + b, while
unary operators are preceding the operand, such as not(c).

4.3.2 Transforming to SQL

Having all the classes for Relational Algebra as well as all the transforma-
tion rules defined, we are ready to perform the actual transformation from
Relational Algebra to SQL statements.

A query plan is a tree-shaped construct, which require a recursive tra-
verse from leaves to root, since the results of the transformation of children
are arguments for the transformation of parent node.

For this, a post-ordered visitor is used. An abstract class Visitor is
defined as the super class for all kinds of implementations, including the
transformer to perform the transformation from Relational Algebra to SQL,
and the well-formedness checker that visits all nodes of a query plan to
check their well-formedness. Detail about the well-formedness checker will
be given in subsection 4.3.3.

Further, a walker class is implemented that can navigate the tree recur-
sively and exhaustively. This class has only one public method walk that
takes an instance of RAExpr, which is the root of a tree or a sub tree to

4.3. IMPLEMENTATION 75

be walked, and an instance of an implementation of Visitor, which is the
visitor that is being sent to visit each node, as its two arguments.

Listing 4.20 shows part of this class. One can see that in Line 4 the left
child of a Projection operator has been visited before the Projection operator
itself is visited, taking the result of the previous visit as an argument. In
the case of Cartesian Product Operator, both left and right children have
been visited first in Line 8 and 9.

1 class Walker[T] (v:Visitor[T]) {
2 def walk (node : RAExpr) : T = node match {
3 case proj : Proj => {
4 val resLeft = this walk proj.left
5 v.visit(proj,resLeft,proj.names)
6 }
7 case cart : CartProd => {
8 val resLeft = this walk cart.left
9 val resRight = this walk cart.right
10 v.visit(cart,resLeft,resRight)
11 }
12
13 }
14 }

Listing 4.20: Snippet of Class Walker

Having the abstract class Visitor and the Walker ready, we can imple-
ment the visitor for the transformation.

A local variable sql of type List[String] is maintained to save the
visiting result from each node. To visit each node, the visiting result of
its children(here is the names of the relations), along with the schema in-
formation of current node(the schema is already determined by the con-
structor), are combined to generate the SQL statements according to the
transformation rules, and these statements are appended to the variable
sql. Listing 4.21 shows the method to visit nodes of Equi Join Opera-
tors. Method getQualNames(RAExpr, List[Column]):String are used to
generate string of qualified names of columns in a schema. For instance, for
relation R with columns a1, . . . , an, string R.a1 ,...,R.an will be generated.

1 override def visit(ej:EquiJoin, resLeft:String, resRight:String,
leftCol:String, rightCol:String) : String = {

2 val name:String = getNextFreeName()
3 comments += "-- " + name + ": EquiJoin(" + resLeft + "," +

resRight + ")\n"
4 sql += (name + " (" + ej.schema.mkString(", ") + ") AS\n" +
5 " (SELECT " + getQualNames(resLeft, ej.left.schema

) + ", " + getQualNames(resRight, ej.right.
schema) +

6 " FROM " + resLeft + ", " + resRight +

76 CHAPTER 4. RELATIONAL QUERY PLANS

7 " WHERE " + resLeft + "." + leftCol + " = " + resRight
+ "." + rightCol + ")")

8 return name
9 }

Listing 4.21: Method to Visit Equi Join

After the root node has been visited, the variable sql has collected all
the SQL statements from the query plan. In order to for the final output
to be well-formed, this sequence of string should be prefixed with a WITH
keyword, all string should be separated with comma(,). Last but not least,
the table heading of the last SQL statement should be removed. This last
step is necessary because by visiting each node, the resulting statement
always starts with a table declaration such as NEW_Table0001 (a1,a2) AS,
which should however not be presented in the final statement, as shown in
the last line of Listing 4.17.

Up to now, the transformation from Relational Algebra to SQL state-
ments is finished. The output statements are ready to ship to a DBMS for
evaluation.

4.3.3 Well-formedness Checking

The well-formedness checker not only checks a query plan to make sure (a)
if it conforms to SQL standard, but also checks (b) if the prerequisite for
each operator in the Relational Algebra has been met.

For (a) mentioned above, it suffices to have one single checker for all op-
erators. For (b), individual checkers for each operator of Relational Algebra
are needed due to the variety of the requirements.

Based on the abstract visitor and the walker we have already had, the
well-formedness checker is just another implementation of the visitor. Some
operators only have to be checked whether there is any duplication in the
schemas. Such operators include Projection, Distinction, Attach, Row Num-
ber and Operation Application. Since this kind of checking is performed
after any possible additional column has been added to the schema(for ex-
ample, by Attach Operator), introduction of duplication through appending
new column can be avoided.

Two operators require that both operands have disjoint schemas. These
operators are Cartesian Product and Equi Join. This check is performed by
a utility method that checks if there exists any element in one schema that
is contained in another schema. In Scala there is a method exists that
can perform a predicate over each element in a list. Using this method, this
checking can be realized in a relatively concise way, as shown in Listing 4.22.

1 def disjoint(list1:List[Column], list2:List[Column]):Boolean =
2 !(list1 exists (col => list2.contains(col)))

4.4. AUTOMATED TESTING 77

Listing 4.22: Method to Determine Disjoint Schemas

Additionally, Equi Join operator also requires that leftCol and rightCol,
two columns that are specified to be the joining key, should exist in both left
and right children. Similar rule also apples to Aggregation operator, where
the target column of the aggregating function and the grouping column
should both exist in the schema.

Contrarily, two other operators that requires both children to have com-
patible schemas are Dsijoint Union and Different. This compatibility is also
checked by a utility method to see if two schemas are equal in terms of their
names and data types of corresponding columns.

4.4 Automated Testing

Once the transformer as well as the well-formedness checker are finished, we
need to conduct some testing. One of the important aspects of performing
test is the generation of test cases that simulate as many possibilities as
possible. Because of the tree-shaped characteristic of query plan, manually
constructing the test cases is challenging yet difficult to cover a wide spec-
trum of varieties. What is worse, this method would only make the testing
code error-prone and difficult to read. For example, Listing 4.23 shows how
to manually construct a query plan with two Table Literals and one Equi
Join as its root.

1 val employee = TableLit("emp",List[Column(Column("eId",Type.VARCHAR)
,Column("eName",Type.VARCHAR),Column("e_dId",Type.VARCHAR)))

2 val department = TableLit("dep",List[Column](new Column("dId",Type.
VARCHAR),new Column("dName",Type.VARCHAR)))

3 val ej = EquiJoin(employee, department, "e_dId","dId")

Listing 4.23: Manually Constructed Query Plan

One can imagine that how difficult it can be to manually generate more
sophisticated and complicated test cases, which are however necessary. There-
fore, a mechanism to generate test cases automatically is desired.

Scala Check1 is exactly what we need here. With Scala Check, one
can obtain test cases with randomly-generated values(or as desired, within
a specific range) for different types of identifiers, constants or containers.
When generating tree-shape construct, one can pick randomly one of the
generators for each node. By having instances of case classes generated, we
can generate fully random yet customized query plan trees as test cases as
many and complicated as we need.

1http://code.google.com/p/scalacheck/

78 CHAPTER 4. RELATIONAL QUERY PLANS

Scala Check is a complicated framework for unit testing, and a detailed
introduction to it is beyond the scope of this thesis. Instead, two examples
will be given here to explained how Scala Check is used in our work: one is
the generator for a node of type BinApp, as shown in Listing 4.24, and the
other is the generator to construct the root node, as shown in Listing 4.25.

1 private def genBinApp:Gen[BinApp] = {
2 val left = getChild(Gen.choose(3,10).sample.get)
3 val oper = (BinAppOper((Gen.choose(0,BinAppOper.maxId - 1)).sample.

get))
4 for {
5 val operand1 <- Gen.pick(1, left.schema map (_.cName))
6 val operand2 <- Gen.pick(1, left.schema map (_.cName))
7 val name <- for (n<-Gen.identifier) yield n.take(10)
8 } yield BinApp(left, oper, operand1.toList.head, operand2.toList.

head, name)
9 }

Listing 4.24: Generator for Node of Type BinApp

In Line 2 of Listing 4.24, the left operand of a node BinApp is obtained
by calling method getChild, which randomly picks one generator of an
operator(which can also be a Table). Therefore, the left operand of the
current node can be either an arbitrary operator as a subtree, or a table as
a leaf. In our implementation, method getChild can return table only, once
the total number of non-table operators generated so far exceeds a threshold
specified by the user. This can limit the maximal depth of the query plan
tree generated. In Line 3, one of the binary function is chosen. In Line 5
and Line 6, both operands are picked up from the schema of left child(by
picking 1 element from all the cName fields of the schema of left child). In
Line 7, a random identifier with 10 digits is generated to be the name of the
new column. In Line 8, all the elements generated above are combined to
achieve the final node of type BinApp.

1 private def genRoot(maxDepth:Int) :Gen[RAExpr] = {
2 this.maxDepth = maxDepth
3 val col:Int = Gen.choose(1,10).sample.get
4 return Gen.oneOf(genProj, genEquiJoin, genDisjUni, genDiff,

genAttach, genRowRank, genRowNum, genBinApp, genUnaApp,
genAggr)

5 }

Listing 4.25: Generator for Root Node

In the same way as implementing the generator for BinApp, we can have
generators for all other types of nodes. Once they are ready, method genRoot
can generate the root node by choosing one of these generators, as shown
in Line 4 in Listing 4.25. As long as the root node is generated, its child or

4.4. AUTOMATED TESTING 79

children are also generated automatically, ending up with tables as leaves.
In this way, a query plan tree is completely randomly generated as our test
case.

80 CHAPTER 4. RELATIONAL QUERY PLANS

Chapter 5

Isomorphism

In this chapter, we will argue the preservation of isomorphism in both per-
sistence phase and query phase.

O R

O′ R′

QO QR

bijective

bijective

semantically equivalent

Figure 5.1: Preservation of isomorphism

Consider Figure 5.1. Given an object model O, it is persisted to yield its
corresponding relational model R. The bijection between O and R implies
that a particular O can only be mapped to one R, and a particular R can
only be mapped from one O. We can perform different operations on O and
R, which in our project are queries QO and QR, respectively. If queries QO
and QR are semantically equivalent, we can conclude that their results O′
and R′ are also bijective.

In Section 5.1, we will explain the bijection between O and R due to
persistence. In Section 5.2, we will discuss about keeping the semantic
equivalence between queries QO and QR.

5.1 Isomorphism between object model and rela-
tional model

In order to justify the isomorphism between object model and relational
model, we adopt a compositional way: we sum up different aspects and

81

82 CHAPTER 5. ISOMORPHISM

characteristics of object models as “features”, and investigate if all of these
features are preserved in their corresponding relational models. The preser-
vation of all these features implies the preservation of the composition of
them. Therefore, the size of this set of features determines whether the
isomorphism between object model and relational model holds.

For object model, we define this set as including these features:

1. Data types

2. Object-oriented characteristics(including attribute, reference and the
multiplicity of them)

3. Hierarchy of object population(including inheritance, interface and
polymorphism)

This covers most static features of object model, which is also our supported
EMF subset.

1. Data types

Here we are referring to primitive types. Defined by EMF, fields of
primitive types are declared as attributes. References, instead, point only
to classes. All classes can declare and be factored into attributes and ref-
erences, and the latter can be further factored until eventually there are
only attributes left. Therefore, in order to argue the isomorphism of data
types, it suffices to argue that of primitive types between object model and
relational model. The relation and combination of them, which form Point
2 and Point 3 mentioned above, is another level of isomorphism that we
will discuss later.

In particular, primitive types include Int, Double, String and Boolean.
Except Double, each of other primitive types has its direct counterpart as
Ferry’s atomic type.(At the time of writing, support to Double is absent
in Ferry, but it could have been implemented in a similar way as Int.) A
primitive value of one of these types in object model can only be translated
to a value of its corresponding type in relational model without ambiguity,
and also a primitive value in relational model can only be translated from
a value of that type in object model. Therefore we can conclude that data
types between object model and relation model are bijective. Of course we
assume that there is no difference between both models regarding numeric
precision, and hence no overflow would occur due to precision issue.

2. Object-oriented characteristics

This category of features includes attribute, reference and multiplicity of
them. Combining them, we have single attribute, multiple attribute, single
reference and multiple reference in EMF model.

5.1. ISOMORPHISM BETWEEN MODELS 83

These four kinds of fields are persisted in four different ways. Value of
single attribute is directly stored in the table of its containing class. Values
of multiple attributes are stored in a bridging table, and a surrogate value
representing them is stored in the table of containing class. For (single or
multiple) reference, surrogate value(s) representing the referred object(s) are
stored in a similar bridging table, and another surrogate value for them is
stored in the table of containing class.

On the other hand, each individual layout in the resulting tables can
only be mapped from one of these kinds of fields. In particular, the direct
storage of value in a table can only be mapped from single attribute. A
surrogate value pointing to a bridging table with actual values stored in it
can only be mapped from multiple attribute. A surrogate value pointing to
a bridging table, which in turn contains surrogate values pointing to table
of other classes can only be resulted from the persistence of reference. The
multiplicity of values in this bridging table further distinguishes the cases of
single reference or multiple reference.

Therefore, these features of object orientation can be persisted in the
relational model without ambiguity, and the result can only be produced
uniquely from these features. We can conclude that, regarding this category
of features, the encodings between object model and relational model are
bijective.

3. Hierarchy of object population

Another category of features of which we aim at keeping isomorphism include
inheritance, interface and polymorphism.

Similarly, they are persisted in different ways. Recall the example shown
in Figure 2.11 on page 24. Through the presence of columns SuperCls,
SuperObj, SubCls and SubObj in every tables, each object can be persisted
in one or more tables, based on whether its class inherits from another class.
This mapping is unique because each class can only have at most one super-
class, and values for columns SuperObj and SubObj are taken from the ID
of rows which are also unique. On the other hand, based on the information
provided by these columns, an object can be reconstructed uniquely from
its encoding in relational model. In the case of interface, surrogate value for
each object points to the bridging table for interfaces, which in turn contain
surrogate values pointing to tables representing the implemented interfaces.
This layout in relational model can only be achieved by the persistence of
interfaces, it provides enough information for recovering the original object
in object model regarding interfaces.

Polymorphism in object model involves the access of fields declared in
other class-frames, which are super-class and interfaces. This is a runtime
issue in query phase. Nevertheless, the isomorphic persistence of inheri-
tance and interfaces does enable a success and unique orientation of these

84 CHAPTER 5. ISOMORPHISM

fields across different classes and interfaces, hence achieving a isomorphic
polymorphism.

Based on these, we can also conclude that the features of inheritance,
interface and polymorphism are isomorphic between object model and rela-
tional model.

5.2 Semantic equivalence of queries on different
models

To prove the semantic equivalence of queries, one possible method would be
to expand them as query plans and examine each atomic operator within
these plans. However, we cannot adopt this method because we have no
access to the detailed implementation of both query languages, and hence
the query execution plans are unknown to us. In fact, LINQ and Ferry
themselves can be seen as implementation-independent languages, implying
that we can instead consider both kinds of queries as black boxes, and only
concern about what they produce based on what they consume, as long as
the queries adhere to their well-defined grammar(both well-formedness of
syntax and typing). Further, we again adopt the compositional way, in that
semantic equivalence of individual query operators can imply the semantic
equivalence of the combination of them. This can be ensured by the non-
destructive nature of both LINQ and Ferry.

In Section 3.3.1 Translation rules, we have explained the semantics of
both SQO methods in LINQ and the resulting Ferry expressions. Here we
will further examine the semantic equivalence of both languages regarding
the input and output as well as the types of them.

• Select(src, v=>prj)

Method Select consumes a sequence src of type IEnumerable<TSource>
and returns a sequence of type TResult. The resulting Ferry expression
takes the translation result of src as input, which is of type IENumerable<TSource>,
and produces another sequence of type TResult, which is translated from
projection prj.

• Where(src, v=>pred)

Method Where consumes a sequence src of type IEnumerable<TSource>.
The filtering only excludes out items that does not fulfill the predicate,
therefore this method returns a sequence of the same type as source. The
resulting Ferry expressions takes the translation result of src as input, which
is of type IENumerable<TSource>, and returns another sequence of the same
type by excluding unsatisfying items.

5.2. SEMANTIC EQUIVALENCE 85

• SelectMany(src, v=>collSel, (v,col)=>resSel)

Method SelectMany consumes a sequence src of type IEnumerable<TSource>
and returns a sequence of type TResult. The resulting Ferry expression
takes the translation result of src as input, which is of type IENumerable<TSource>,
and returns another sequence of type TResult, which is the translation re-
sult of projector resSel, by concatenating the translation results of a inner
loop.

• OrderByMultiKey(src, v=>key1, dir1, . . . , v=>keyn, dirn

Method OrderByMultiKey consumes a sequence src of type IEnumerable<TSource>,
and returns another sequence of the same type in a specific order. The result-
ing Ferry expression takes the translation result of src of type IEnumerable<TSource>
as input. The result is another sequence with items directly taken from the
input in a specific order. The sorting does not modify the type of the result,
which is hence the same as that of the input.

• GroupBy(src, v=>key, v=>eleSel)

Method GroupBy consumes a sequence src of type IEnumerable<TSource>,
and returns another sequence of type TElement, specified by eleSel. The re-
sulting Ferry expression takes the translation result of src of type IEnumerable<TSource>
as input. The result is another sequence with items directly taken from the
input, clustered by key, followed by a projection. The clustering does not
modify the type of the source. The projection is translated into a sequence
of type TElement, which is the final result of this method.

• Join(outer, inner, o=>okey, i=>ikey, (o, i)=>resSel)

• GroupJoin(outer, inner, o=>okey, i=>ikey, (o, into)=>resSel)

Both methods Join and GroupJoin take two sequences of types IEnumerable<TOuter>
and IEnumerable<TInner> respectively and produce another sequence of
type TResult, type of result selector resSel. The resulting Ferry expres-
sions of both methods differ in handling the inner loop, but in both cases they
consume two sequence of types IEnumerable<TOuter> and IEnumerable<TInner>,
and return the final sequence of type resSel, which is the translation result
of the result selector.

Summing up the above discussion, we can conclude that the LINQ query
QO and the resulting Ferry expression QR are semantically equivalent. Re-
calling Figure 5.1 on page 81, this equivalence plus the bijection of O and R
argued in Section 5.1 imply that the query results of them, O′ and R′, are
also bijective.

86 CHAPTER 5. ISOMORPHISM

Chapter 6

Conclusions

6.1 Contributions

This Master Thesis has shown two kinds of integrations that bring in new
innovation to data access scenarios.

On the one hand, the integration of programming language and func-
tional query language provides developers with enhanced expressive power
and conciseness(by having functional query in programming language), as
well as improved correctness and robustness(by having programming lan-
guage and its compiler participate in query evaluation).

On the other hand, the integration of different data models takes ad-
vantage of each. Through the adoption of intermediate language in the
translation, model of representation layer(in this work object model) and
model of evaluation and storage layer(in this work relational model) can
still be kept transparent to each other.

The implemented prototype showcases that despite the gap between ob-
ject model and relational model, persistence from the former to the latter
can still be performed in a precise manner. It also shows that fully object-
oriented queries can be evaluated seamlessly in an object-oriented host lan-
guage, despite the storage of data in relational model.

Last but not least, this thesis also gives the argument on the preservation
of isomorphism on both persistence and query phases.

6.2 Future work

1. We have not implemented the translation from Ferry expressions to
relation algebra due to the lack of Ferry compiler ferryc. Instead, we
have skipped this step and implemented the translation from relational
algebra to SQL statements. The reimplementation and eventually ex-
tension of Ferry(for example, by supporting nested tuples) can further
raise its expressive power.

87

88 CHAPTER 6. CONCLUSIONS

2. Our rules for translation from LINQ to Ferry are rather semantic-
oriented. This strict adhering to original LINQ semantics in fact re-
sults in some optimization spaces in the resulting Ferry expressions.
Therefore the Ferry optimizer can also participate in our setting to
achieve better evaluation performance.

3. Our implementation carries out query in LINQ. Nevertheless, the un-
derlying techniques reported here are generally applicable, and other
functional query language can also be supported in a similar way.

4. Further, with the similar motivation, translation from other data model
(for example, XML)[14] to relational model are also feasible.

Bibliography

[1] Atul Adya, José A. Blakeley, Sergey Melnik, and S. Muralidhar.
Anatomy of the ADO.NET Entity Framework. In SIGMOD ’07: Pro-
ceedings of the 2007 ACM SIGMOD international conference on Man-
agement of data, pages 877–888, New York, NY, USA, 2007. ACM.

[2] Kaichuan Wen. Translation of Java-embedded database queries with
a prototype implementation for LINQ. Project Work(Studienarbeit),
Technische Universität Hamburg-Harburg(TUHH), March 2009. http:
//www.sts.tu-harburg.de/pw-and-m-theses/2009/wen09.pdf.

[3] Anastasia Izmaylova. Program transformation in Scala. Master’s
thesis, Technische Universität Hamburg-Harburg, Sep 2009. On-
line version at http://www.sts.tu-harburg.de/people/mi.garcia/
ScalaQL/MScThesis-final(A.Izmaylova).pdf.

[4] Simone Bonetti. The construction of a type-directed LINQ
to SQL provider. Master’s thesis, Universität Tübingen, Oct
2009. http://www-db.informatik.uni-tuebingen.de/files/
publications/linq.thesis-sb.pdf.

[5] Bas Lijnse and Rinus Plasmeijer. Between types and tables - us-
ing generic programming for automated mapping between data types
and relational databases. In IFL’08 : Proceedings of the 20th Inter-
national Symposium on the Implementation and Application of Func-
tional Languages, pages 115–130, 2008. http://repository.ubn.ru.
nl/handle/2066/71972.

[6] Tom Schreiber. Übersetzung von List Comprehensions für rela-
tionale Datenbanksysteme. Master’s thesis, Technische Universität
München, 2008. http://www-db.informatik.uni-tuebingen.de/
files/publications/ferry.thesis-ts.pdf.

[7] Paolo Pialorsi and Marco Russo. Programming Microsoft LINQ. Mi-
crosoft Press, 2008.

[8] Franklyn A. Turbak and David K. Gifford. Design Concepts in Pro-
gramming Languages. The MIT Press, 2008.

89

http://www.sts.tu-harburg.de/pw-and-m-theses/2009/wen09.pdf
http://www.sts.tu-harburg.de/pw-and-m-theses/2009/wen09.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaQL/MScThesis-final(A.Izmaylova).pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaQL/MScThesis-final(A.Izmaylova).pdf
http://www-db.informatik.uni-tuebingen.de/files/publications/linq.thesis-sb.pdf
http://www-db.informatik.uni-tuebingen.de/files/publications/linq.thesis-sb.pdf
http://repository.ubn.ru.nl/handle/2066/71972
http://repository.ubn.ru.nl/handle/2066/71972
http://www-db.informatik.uni-tuebingen.de/files/publications/ferry.thesis-ts.pdf
http://www-db.informatik.uni-tuebingen.de/files/publications/ferry.thesis-ts.pdf

90 BIBLIOGRAPHY

[9] Microsoft Corporation. The .NET Standard Query Operators, February
2007. http://msdn.microsoft.com/en-us/library/bb394939.aspx.

[10] Microsoft Corporation. C# Language Specification 3.0, March 2007.
http://msdn.microsoft.com/en-us/library/bb308966.aspx.

[11] Miguel Garcia. Compiler plugins can handle nested languages: AST-
level expansion of LINQ queries for Java. In Moira C. Norris and
Michael Grossniklaus, editors, Proceedings of the 2nd Intnl Conf
ICOODB 2009, pages 41–58, July 2009. ISBN 978-3-909386-95-
6, http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/
icoodb/compplugin.pdf.

[12] Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber.
Ferry: database-supported program execution. In Proceedings
of the 28th ACM SIGMOD Int’l Conference on Management
of Data (SIGMOD 2009), June 2009. Providence, Rhode Is-
land (USA) http://www-db.informatik.uni-tuebingen.de/files/
publications/ferry-sigmod2009.pdf.

[13] Manuel Mayr. Ein SQL:99 Codegenerator für Pathfinder. Diplo-
marbeit, Technische Universität München, April 2007. http:
//www-db.informatik.uni-tuebingen.de/files/publications/
sql-code-generator.thesis-mm.pdf.

[14] James F. Terwilliger, Sergey Melnik, and Philip A. Bernstein.
Language-integrated querying of XML data in SQL server. Proc.
VLDB Endow., 1(2):1396–1399, 2008. http://doi.acm.org/10.1145/
1454159.1454182.

http://msdn.microsoft.com/en-us/library/bb394939.aspx
http://msdn.microsoft.com/en-us/library/bb308966.aspx
http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/icoodb/compplugin.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/icoodb/compplugin.pdf
http://www-db.informatik.uni-tuebingen.de/files/publications/ferry-sigmod2009.pdf
http://www-db.informatik.uni-tuebingen.de/files/publications/ferry-sigmod2009.pdf
http://www-db.informatik.uni-tuebingen.de/files/publications/sql-code-generator.thesis-mm.pdf
http://www-db.informatik.uni-tuebingen.de/files/publications/sql-code-generator.thesis-mm.pdf
http://www-db.informatik.uni-tuebingen.de/files/publications/sql-code-generator.thesis-mm.pdf
http://doi.acm.org/10.1145/1454159.1454182
http://doi.acm.org/10.1145/1454159.1454182

	Introduction
	Motivation
	Background
	Involved Technologies
	Related work

	Overview
	Supported use case
	Outline of this report

	Persistence: EMF to Relational Model
	Required data structures
	Ferry Types
	Table Nodes and Table Information Nodes

	Overview of the persistence
	The separated phases
	ORM scheme
	Assumptions and restrictions

	Persistence of EMF class schema
	Rules and algorithm
	Implementation and result

	Persistence of object population
	Algorithm
	Implementation and result

	Query: LINQ to Ferry
	Overview of the translation
	Syntax of LINQ
	Syntax of Ferry
	Supported LINQ subset
	Translation phases

	Normalization
	Functional syntax of SQO
	Normalization of SQO overloads

	Translation
	Translation rules

	Implementation and result
	From one tree to another
	Type checking of the translation
	Translating transparent identifier
	Resolving member access
	Result

	Next step

	Relational Query Plans
	Relational Algebra
	Projection (a1 :b1 , …, an : bn)
	Selection (p(R))
	Cartesian Product (R S)
	Equi Join (R -3mua=b S)
	Disjoint Union (R S)
	Difference (R \S)
	Distinct (R)
	Attach (@)
	Row Rank (c,a)
	Row Number (#a:<b1,…,bn>/c)
	Aggregation (agga,b,c)
	Operation-Application ()
	Table Reference
	Table Literal

	Query Plan
	Implementation
	Classes of ASTs
	Transforming to SQL
	Well-formedness Checking

	Automated Testing

	Isomorphism
	Isomorphism between object model and relational model
	Semantic equivalence of queries on different models

	Conclusions
	Contributions
	Future work

	Bibliography

