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1 Introduction

1.1 Motivation
Since the establishment of cars as a main means of transportation and the corresponding increase of

traffic, road safety has become a major development area for manufacturers and politicians to cope with

multiplying numbers of fatal traffic accidents. While most of the improvements made so far mainly

benefit the driver and his passengers inside the car, the urban accident figures of the world’s growing

metropolises have shifted attention towards the weaker participants of modern traffic. As urbanization

is increasing, the development focus of today’s automotive safety systems has moved to the complex

scenarios of built-up areas and protecting the driver and the non-occupants from the physical and

psychological aftermath of pedestrian accidents has not only become a profitable competitive advantage

but also the subject of legislative discussion.

1.1.1 Accident Statistics
To be able to relate to this trend we will state some statistical observations from different sources

([WHO09] from Europe and [NHT08] as well as [IIH09] from the U.S.) that are among those illustrat-

ing its foundations. They show the relevance of pedestrian accidents in modern traffic as well as some

important situational data that is connected.

"Pedestrians constitute the most important non-occupant victim group." All investi-

gated studies show that accidents with pedestrians make for a significant amount of total traffic acci-

dents. Our sources claim figures of 12% for the U.S., 18% for the EU and 14% in Germany. All of these

numbers are above those for cyclists or other non-occupant movement methods such as rollerblading

or skateboarding.

Figure 1.1: Deaths by road user category for the European Union
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1 Introduction

Figure 1.2: Deaths by road user category for Germany

"Most pedestrian casualties occur in urban scenarios." According to the latest U.S. study

from 2009, 71% of pedestrian deaths occured in urban areas with 58% on major roads. 53% of all

victims were hit on roads with an allowed speed of 40mph or less. This corresponds to the general

traffic accidents figures. Germany, for example, reports about two thirds of all accidents inside built-up

areas and even though the amount of deaths is higher outside the cities, the number of injuries inside

urban areas is roughly 62% higher than anywhere else.

"Each traffic accident costs every citizen a significant amount of money." The Euro-

pean study shows that every death in traffic on its soil costs the state of Germany around 1.162.000e.

Figure 1.3 shows the cost for the annual injuries and deaths per person for different states.

Figure 1.3: Costs (in e) of road traffic deaths and injuries per person in selected countries in the WHO
European Region
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1.2 The Objective

"Pedestrian accidents happen because of perception failures." Even though the weather

conditions were clear in 89% of the accidents, the U.S. study shows that visibility was hindered by

night-time in 70%. However, all investigated resources support the claim that not only the drivers lack

perception as the victims are often at the age over 70 (62% higher victim rate than lower ages in the

U.S.) or under the influence of alcohol (53% of killed pedestrians over 16 years in the U.S. had blood

alcohol concentrations of at least 0.08%).

1.2 The Objective
With the sensor technologies available inside a modern car and its development towards a connected

multimedial information system, new ideas to fill the gaps of human perception and assist the driver

of the future inside the ever-growing complexity of urban traffic situations are in technological reach.

Vehicles are on their way to master the identification of traffic participants, road signs, lane borders and

their location on the map. Modern communication technologies enable them to spread their findings

and receive information perceived by other cars and local structures in the environment.

This enables current active safety systems to mitigate some collisions when they are unavoidable. Due

to the fixed and nearly exhausted physical limits regarding maneuvers like braking or avoiding, turning

increasingly available information into situational prediction is the key to gain the extra time needed to

further lower the rates of injured and died pedestrians.

This thesis is part of a project that moves the focus of study from the car to the pedestrians and takes the

situational context of the scene into account to achieve a secure assessment of the appropriate reaction

earlier than current models. To be able to predict pedestrian behavior within critical traffic situations

it has to be examined and analyzed for existing patterns first. Our project presents proof that such

patterns exist and introduces an effective framework to exploit this knowledge for a better prediction of

an identified pedestrian’s future movement. One of the foundations to implement such a model based

on recorded information across different scenarios is to answer the question tackled by this thesis:

"Given a vast amount of movement data gathered for a traffic scene, how do you find and efficiently

represent the dominant routes taken by pedestrians?"
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2 Background

 Generierung von Verletzungsrisikofunktionen für Fußgängerkollisionen 

1 Einleitung 

Der Fußgängerschutz stellt in der EU und weltweit ein bedeutendes Feld der Fahrzeugsicherheit 
dar. Die europäische Gesetzgebung hat bereits im Jahr 2005 eine erste Gesetzesphase zum 
Fußgängerschutz in Kraft gesetzt, 2013 wird in Europa die zweite Phase des Gesetzes umzuset-
zen sein. Im Euro NCAP Verbraucherschutztest wird bereits seit längerem der Fußgängerschutz 
am Fahrzeug mitbewertet. Sowohl bei dieser Bewertung als auch in der Phase 1 des Gesetzes 
wird in den Tests nur die passive Schutzwirkung von Fahrzeugmaßnahmen bewertet. Die An-
forderungen, die aus der Fußgängerschutzgesetzgebung und den Verbraucherschutztests in die 
Fahrzeugentwicklung eingeflossen sind, haben erheblichen Einfluss auf die Entwicklung. Da-
raus resultieren viele Zielkonflikte im Entwicklungsprozess, um die passiven Anforderungen 
lösen zu können. Ferner ist das Schutzpotential der passiven Schutzmaßnahmen wegen der 
hohen Massenunterschiede der Kollisionsgegner und der möglichen Sekundärkollisionen des 
Fußgängers mit der Umgebung begrenzt. Diese Tatsache hat die europäische Gesetzgebung bei  
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Abbildung 1: Prozess der Unfallentstehung und Wirkstrategien des 
integralen Sicherheitsansatzes [4] 

 

der Definition der Phase 2 berücksichtigt. In umfangreichen Studien auf Basis von Realunfall-
daten wurde nachgewiesen, dass der Einsatz von Bremsassistenzsystemen (BAS) und die damit 
verbundene Verringerung der Kollisionsgeschwindigkeit starken Einfluss auf eine Reduktion 
der Verletzungsschwere der verunfallten Fußgänger besitzt. Daher wurde der Einbau des BAS 
im Fußgängerschutzgesetz Phase 2 vorgeschrieben [8]. Eine weitere Reduktion der verletzten 
Fußgänger lässt sich aus dem aktuellen Trend der Fahrzeugsicherheit ableiten. Dieser bewegt 
sich in Richtung eines integralen Ansatzes. Das heißt das Wirkfeld der Fahrzeugsicherheit 
erstreckt sich über den ganzen Prozess der Unfallentstehung (Abbildung 1). In der normalen 
Fahrsituation besteht das Ziel darin, die Konditionssicherheit des Fahrers durch Assistenz- und 
Komfortfunktionen zu erhalten. In der folgenden kritischen und instabilen Fahrsituation kann 
die Kollision durch geeignete Gegenmaßnahmen vom Fahrer oder von autonomen Systemen 
noch verhindert bzw. in deren Schwere gemildert werden. Tritt eine Kollision  

 

Figure 2.1: Process of accident development and strategies of the integral safety approach [Gol]

2.1 Integral Automotive Safety
To understand the context of our work, let us first introduce the basic design of today’s approach to

automotive safety. The participating safety features can be classified by their aims and the situtation

in which they become active. The integral design considers the system as a whole which can be

aligned to the development process of an accident as shown in figure 2.1. Therefore, we will present

the characteristics and typical systems for each part of an integral safety system while following the

example of a road accident with a wild animal.

2.1.1 Driver Conditioning
Driver conditioning systems include the comfort and driver assistant funtions active during usual driv-

ing conditions. They gather, filter and present information for the driver and issue warnings if the

measured data shows uncommon behavior. Examples include:

• Low temperature warning - issued below 4 ◦C because of possible slippery conditions

• Lane departure warning - monitors the car’s lateral position within its lane and warns if a line

is crossed

• Light sensor - is coupled with headlights to automatically react to dusk or tunnels

• Adaptive Cruise Control - laser- or radar-based system to track objects ahead and adjust vehicle

speed

Within our rural road scenario, let us assume we have an upper class car driving through foggy sur-

roundings. The car has automatically switched the lights on and its navigation system has informed the

driver of the currently allowed top speed.
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2 Background

2.1.2 Collision Avoidance and Mitigation
If the situation becomes uncommon and dangerously unstable, a class of safety systems that is often

referred to as "active safety" seeks to avoid a possible crash or to limit its aftermath. These systems are

listening to their sensors and have actuators that have a direct effect on the car’s driving behavior. The

following are among those found in modern cars:

• Antilock Braking System - ensures maneuverability during full brake application by releasing

brake pressure in a defined interval

• Electronic Stability Control - prevents oversteer and understeer by braking individual wheels

according to the driver’s desired steering angle

• Emergency Brake Assist - interprets the velocity of the brake pedal to issue maximum brake

pressure earlier

Our driver hears the warning from the distance radar and sees the animal in front of his car. As he

quickly lifts his foot from the gas to the brake pedal, a modern ESC system identifies a "panic brake"

pattern and prepares the brake by already attaching the blocks the brake disc. As the brake pedal is

pushed down rapidly, the brake assist overrides with maximum pressure after only a few millimeters

down to ensure faster deceleration. However, once the wheels begin to block, the brake is limited by

ABS so our driver can steer the car to avoid the animal.

Generierung von Verletzungsrisikofunktionen für Fußgängerkollisionen 

AktorikAktorikSensorikSensorik FunktionsalgorithmusFunktionsalgorithmus Passive MaßnahmenPassive Maßnahmen  

Abbildung 2: Systemaufbau integraler Sicherheitssysteme  

 

ein, wirken die Systeme der passiven Sicherheit. Damit ein integrales Sicherheitssystem kriti-
sche Fahrzustände oder eine drohende Kollision erkennen kann, ist ein definierter Systemauf-
bau notwendig. Dieser ist in Abbildung 2 dargestellt und setzt sich neben den passiven Maß-
nahmen aus den Komponenten Sensorik zur Aufnahme von Informationen aus dem Eigenfahr-
zeug oder der Umwelt, einem Funktionsalgorithmus zur Berechnung des aktuellen Fahrzustands 
und Aktoren, welche den weiteren Verlauf der Fahrsituation beeinflussen können zusammen. 
Dieser Trend wurde ebenfalls in der zweiten Phase zur Fußgängerschutzgesetzgebung berück-
sichtigt, welche den Ausblick auf eine integrale Fußgängerschutzauslegung gibt [2]. Diesbezüg-
lich ist jedoch der Nachweis zu erbringen, dass die integralen Systeme die gleiche Feldeffekti-
vität besitzen wie die aktuellen passiven Anforderungen. Zur Bewertung der Feldeffektivität 
derartiger Systeme sind neue Methoden erforderlich. Das Verfahren PreEffect-iFGS zur Be-
rechnung der Feldeffektivität integraler Fußgängerschutzsysteme nach [10] stellt ein solches 
Bewertungsverfahren dar. Darin werden Verletzungs-Risiko-Funktionen herangezogen, um von 
den allgemeinen Unfallparametern auf die neuen Verletzungsschweren der Fußgänger durch 
den Einsatz eines integralen Sicherheitssystems zu schließen. Die Entwicklung von Verlet-
zungs-Risiko-Funktionen erfolgt daher als Teil des Gesamtbewertungsprozesses, der im nach-
folgenden Kapitel kurz dargestellt. wird. 

 

2 Prozess der Feldeffektivitätsbewertung 

Die Bewertungsmethode PreEffect-iFGS [10] stellt ein Verfahren zur Bewertung der Feldeffek-
tivität integraler Fußgängerschutzsysteme dar. Das schematische Vorgehen ist in Abbildung 3 
dargestellt. Daraus ist ersichtlich, dass durch PreEffect-iFGS die Wirkungsweise eines integra-
len Sicherheitssystems im Realunfallgeschehen analysiert wird. Hierfür werden die Realunfall-
daten zunächst in eine Systemsimulation importiert, so dass der ursprüngliche Kollisionsverlauf 
als Simulationsszenario vorhanden ist [11].  

Im nächsten Schritt wird untersucht, wie sich dieser originäre Unfallverlauf durch den Einsatz 
eines integralen Systems verändert. Um eine realitätsnahe Feldeffektivität ausweisen zu können,  

Figure 2.2: System design for integral safety with sensors, algorithm, actuators and passive features
[RSK10]

2.1.3 Passive Safety
Should a crash be unavoidable, the passive safety systems are the last line of defense not only for the

driver and his passengers but also for potential collision opponents. These systems range from simple

static or mechanical constructions to sensor-activated countermeasures. Some examples populate the

following list:

• Airbags - crash sensors around the car trigger explosion-inflated nylon fabric bags to prevent

occupants from hitting interior parts like the steering wheel or windows

• Seatbelt fastener - automatically strengthens and locks the application of the seatbelt for all

passengers

6



2.2 Clustering

• Car body systems - specially manufactured body parts have a wide range of applications in-

cluding side impact protection or soft hoods to mitigate pedestrian impacts

In our common road scenario, the vehicle leaves the road because of the driver’s dodging maneuver

and diagonally hits a large rock. The vehicle determines which seats within the car are occupied and

fastens their seatbelts and enables airbag functionality. In the moment of collision, the front and side

airbags inflate within 0.04s to protect the driver’s head. The car body absorbs impact energy because

of its specific manufacturing process and preserves the room for passengers inside by channeling the

impact energy to outer parts of the frame.

2.1.4 Rescue
After the crash, modern cars employ rescue systems to enhance the chances of finding the vehicle

and evacuating the driver from the inside. This stage of integral safety can consist of the following

mechanisms and more:

• Unlocking all doors - to ensure easy entry for rescuers the central locking of the car will release

all door locks

• Enabling the warning lights - activating the blinking orange lights on the car’s front and back

increases awareness of the wrecked car

• Automatic emergency call - systems like "eCall"[Inf10] call the closest emergency central and

transmit GPS position and number of passengers

Our crashed vehicle dials the unified emergency number via its GSM module and transmits the values

from its GPS antenna and the seats’ occupancy data. While the warning lights are turned on and the

doors are unlocked, an audio connection to the rescue service is established that enables the driver to

speak to the emergency central and give information about the nature of the accident and his injuries.

The central can issue warnings to local radio stations and over the traffic information frequencies that

warn other drivers about the crash site.

2.2 Clustering
Our goal of grouping pedestrian movements by their recorded data moves the focus of our thesis to

the field of data mining. Therefore, this chapter will cover the theoretical foundation of the automatic

partitioning of data into groups, known as clustering.

2.2.1 Definition
Clustering (or "Cluster Analysis") is a form of unsupervised learning and is largely used as a method

for statistical data analysis. It describes ways to split a set of measured data into subsets that contain

observations which are similar by some criterion. [TSK05] divides the aim of clustering into two

situational goals: to find groups of data within the set that are either meaningful ("Clustering for

Understanding") or useful ("Clustering for Utility").
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2 Background

Clustering for Understanding

Clustering for Understanding tries to find the natural underlying structure of the given data. It resembles

the human talent to group observations into meaningful classes and to assign new observations to these

"labels". In this context a cluster is seen as a potential class and cluster analysis can be defined as

"the study of techniques for automatically finding classes" [TSK05]. Early examples can be found

in Biology, mainly in the classification of living things into the biological taxonomy. Today’s market

research, information retrieval or medical virus analysis also makes heavy use of said methods.

Clustering for Utility

Clustering for Utility creates classes to be able to represent individual observations of data by a more

abstract (and often coarser) label. These methods will often try to find a single data object that is then

used to represent each measurement of its own cluster. "Therefore, in the context of utility, cluster

analysis is the study of techniques for finding the most representative cluster prototypes" [TSK05]. As

it finds a simpler representation for the data set, typical applications are compression (such as vector

quantization) or performance optimization of algorithms for large data sets by performing calculations

only on the representatives without losing much accuracy.

Cluster Analysis can be broken down into further categories based on the shape of its outcome (a

"clustering"). We will follow the categorization from [TSK05] that specifies the following distinct

feature characteristics:

• Hierarchical or Partitional:

When clustering the data, the method can either produce a nested or unnested structure. Partin-

ional clustering is the simple division of the data into categories. If we allow a category to have

subcategories, we are building a tree structure in which every node of the tree is a cluster and

each node (except for leaf nodes) holds the union of its children ("subclusters"). This is called

Hierarchical Clustering. Both results can be transformed to the other form by trivial set theory.

• Exclusive or Overlapping or Fuzzy:

Considering a data point’s form of membership in a clustering, we have different possibilities.

Exclusive means that each observation is a member of exactly one cluster as opposed to allowing

multiple memberships ("overlapping"). A reason to favor a non-exclusive method might be to

avoid the creation of new classes that are characterized just by a combination of already known

features (leading to "overshooting" the data). A distinct method from these two is to treat clusters

as fuzzy sets. This means every data point is a member of every cluster with a weight between 0

and 1. If we apply the constraint that these weights must sum up to 1, we define a probabilistic

way of clustering the data with each weight being an observation’s probability to belong to a

certain cluster. De facto, this is often transformed back to an exclusive system again by assigning

the data point to its most likely cluster only.

8



2.2 Clustering

• Complete or Partial:

Regarding the amount of points of the underlying base set of data that has to be in a membership,

we can choose to allow ("partial") or disallow ("complete") data points not being assigned to any

cluster at all. A reason to do so is the avoidance of very small or even singleton clusters that could

be classified as not being part of any well-defined structure within the data but as representing

noise or outliers. However, note that if we were to use cluster analysis to retrieve data points by

their class, this technique would have the potentially undesirable effect of making some of the

data inaccessible.

Furthermore, the form of a single cluster itself can be used to separate different methods of cluster

analysis. A detailed definition of the categorization into "well-separated", "prototype-based", "graph-

based", "density-based" or "shared-property" clusters is beyond our scope. Feel free to refer to [TSK05]

which also gives some examples. We will proceed with the introduction of the actual algorithmic base

that is later used to achieve our goals by cluster analysis.

2.2.2 K-Means

By the definitions made earlier, the k-Means clustering algorithm can be classified as a complete

prototype-based exclusive partitioning technique. It is typically applied on data in a continuous n-

dimensional feature space, because the resulting prototypes are found as centroids (usually the mean

of a cluster) and are not part of the data set per se. For feature spaces that do not define a method

to average a cluster to a prototype one would have to use a different algorithm like k-Medoid which

chooses an actual participant as representative. Following [TSK05] the algorithm can be described as

in 2.1. Let us have a look at each step in detail.

Algorithm 2.1 k-Means algorithm
0: Select k points as initial centroids.

repeat
Form K clusters by assigning each point to its closest centroid.
Recompute the centroid of each cluster.

until Centroids do not change.

Selecting the initial centroids Distributing the representatives before the first run is a non-trivial

but crucial step for the end result of clustering with k-Means. Even though the method produces

deterministic results for the same distribution of initial centroids, results can significantly vary for

different placements. The classical way to begin k-Means is by distributing the centroids randomly.

As mentioned, this may yield poor clusterings as random distribution may as well be unfortunate. A

way to achieve a better partitioning is to repeat the procedure with random initial centroids each time

and then chose the k-Means run that resulted in the least sum of the squared error (SSE, also "scatter").

This is the global squared sum of all distances of the data points to their assigned centroid which can

9



2 Background

be formally written as

SSE =
K

∑
i=1

∑
x∈Ci

dist(ci,x)2 (2.1)

Assigning data points to clusters The measurement of similarity used to assign data points to

centroids is some form of distance norm within the feature space. Apart from the obvious Euclidean

distance or the Manhattan norm, [TSK05] also mentions cosine similarity or the Jaccard measure as

possibilities for non-Euclidian feature spaces. Depending on the problem at hand, other distance mea-

sures like the Mahalanobis or Hamming [Ham50] distance have been suggested. An important factor

for practical use is the computational complexity of the distance measure as it needs to be calculated

repeatedly for each data point and centroid.

Recomputing the centroids For continuous spaces it can be shown that choosing the mean of

a cluster as its centroid minimizes the SSE and therefore generates the best result at this step of the

algorithm. It is defined as

ci =
1
ni

∑
x∈Ci

x (2.2)

This property also holds for other distances in the Euclidian space.

Abort criterion of the algorithm What is formulated quite generally in our algorithm description

as "centroids do not change" actually translates to a lack of change in membership of any data point.

This strict criterion is often softened by already stopping if less than a certain percentage of the data

have been reassigned. This is practical because most of the algorithm’s convergence happens during

the first steps and some combinations of initial centroid distribution and chosen distance measure can

cause small oscillations in memberships in the final stage of the algorithm.

2.2.3 Finding k

A significant drawback of the standard k-Means algorithm is that you have to specify k in advance.

Choosing a "wrong" value prevents the method from finding a meaningful partitioning and in most

scenarios the correct number of clusters is unknown beforehand. As we have seen in 2.2.2 running

k-Means multiple times and trying to maximize a performance measure can help to choose the best

distribution of initial centroids and the same can be done to decide on k. Based on this technique, other

algorithms have been suggested that make use of different performance measures and some changes in

structure to tackle the problem of automatically finding the natural fit of k for the underlying data set.

X-Means

X-Means is such an algorithm. It uses k-Means as a building block and increases k by splitting certain

clusters into two and reevaluating the achieved clustering using the Bayesian information criterion

(BIC).
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BIC scoring This performance measure maps the chosen model and its underlying data to a scalar

score value by considering its posterior probability. Based on [PM00] it uses the following approxima-

tion for the j-th model M j also known as the Schwarz-criterion:

BIC(M j) = l̂ j(D)−
p j

2
· logR (2.3)

where l̂ j is the log-likelihood of the data D according to model M j from the maximum-likelihood point,

p j the amount of free parameters and R the size of the data set. We can express the maximum-likelihood

estimation (MLE) for the variance under the identical spherical Gaussian assumption as

σ
2 =

1
R−K ∑

i
(xi−µ(i))

2 (2.4)

and the point probabilities as

P̂(xi) =
R(i)

R
· 1√

2πσ̂M
exp(− 1

2σ̂2 ‖xi−µ(i)‖2) (2.5)

Then the log-likelihood of the data can be written as

l(D) = log∏
i

P(xi) = ∑
i
(log

1√
2πσM

− 1
2σ2 ‖xi−µ(i)‖2 + log

R(i)

R
) (2.6)

Fixing 1≤ n≤ K and only focusing the data points Dn belonging to cluster n yields

l̂(Dn) =−
Rn

2
log(2π)− Rn ·M

2
log σ̂

2)− Rn−K
2

+Rn logRn−Rn logR (2.7)

The authors of [PM00] define the free parameters p j as the sum of K− 1 class probabilities, M ·K
centroid coordinates and one variance estimate. To calculate the global log-likelihood for all clusters

we can simply sum up the local log-likelihoods for each cluster and use the number of data points of

the complete set as the value for R.

As described in [PM00] the X-Means algorithm goes through the steps shown in algorithm descrip-

tion 2.2. As before, we will inspect each part of the algorithm in detail. However, the suggested

Algorithm 2.2 X-Means algorithm
repeat

Improve Parameters
Improve Structure

until K > Kmax

return the best-scoring model found during the search

performance optimizations are not in our focus and will not be discussed. The interested reader is

pointed to [PM00] for some recommendable insights.
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Improving parameters The "Improve-Param" phase consists of just running usual k-Means to its

convergence. Therefore, it takes care of recalculating data point assignments and centroid positions as

described in 2.2.2.

Improving structure Changing the structure of the clustering basically means deciding on the

birth and location of new clusters. X-Means achieves this by splitting existing partitions in two and

comparing the resulting BIC score against the one determined for the undivided one. In detail, this is

done by splitting each cluster of the previous run and spawning two new centroids within its borders.

Their location is calculated by moving them "a distance proportional to the size of the region"[PM00]

in opposite directions on a random axis. Then for each previous cluster 2-Means is run locally, in a

sense that only the data points of the parent region are reassigned to the new children. Now the model

test mentioned earlier is performed and (depending on the score) either the parent or its children are

dismissed. This way, regions of the data set that are not yet well-fit by the model receive finer clustering

while others remain unchanged. After making these local decisions, the model is evaluated by a global

BIC test, which means scoring the overall fit of all centroids to the complete set of underlying data.

Abort criterion of the algorithm X-Means demands the specification of a maximum value for k

beforehand to stop iterating through the improvement of parameters and structure. If Kmax is reached,

it returns the model (and therefore the value of k) that has scored the highest global BIC score.

G-Means
The G-Means algorithm has a similar structure compared to X-Means. As its competitor, it uses recur-

ring runs of k-Means on that data that is step-by-step partitioned into more and more clusters depending

on the local outcome of its performance measure, the Anderson-Darling test for Gaussian fit. We will

describe this criterion as well as some other peculiarities of this algorithm suggested by its authors in

[HE03].

The Anderson-Darling test This statistical test will determine between the following two hy-

potheses for a given set of input data and a confidence level α:

• H0: The data around the center are sampled from a Gaussian.

• H1: The data around the center are not sampled from a Gaussian.

We will see later that choosing H1 and rejecting H0 for the data of a single cluster will cause the

algorithm to split this cluster into two instead of keeping the larger one. The test is based on the

one-dimensional Anderson-Darling statistic and tests for normality based on the empirical cumulative

distribution function (ECDF). Given a sorted list of input data xi with mean 0 and variance 1, defining

z(i) = F(x(i)) with F being the N(0,1) cumulative distribution function the statistic is defined as

A2(Z) =−1
n

n

∑
i=
(2i−1)(log(zi)+ log(1− zn+1−i))−n (2.8)
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Considering the results of [Ste74] we need to correct the statistic because in our cluster analysis the

values for µ and σ are estimated:

A2
∗(Z) = A2(Z)(1+

4
n
− 25

n2 ) (2.9)

Put in the same format as in [PM00] we can specify the outer structure of G-Means as in algorithm 2.3.

Algorithm 2.3 G-Means algorithm
repeat

Improve Parameters
Improve Structure

until K = Kprevious (No more clusters were added.)

As the improvement of parameters again only means running k-Means to convergence (just as with X-

Means) and the abort criterion is trivial, we will just focus on the details of the structural improvement

step.

Improving structure To decide on the possible birth of new centroids, we have to make a local

comparison of the data’s representations by a single parent cluster or its two children c1 and c2. There-

fore we need to spawn two child centroids within the data of their parent and run 2-Means to make new

assignments. The spawn process of G-Means is far more sophisticated than just using a random axis

for their displacement. The authors of [HE03] suggest a method based on the main principal compo-

nent s of the data with Eigenvalue κ , which chooses the children’s locations around the center c of the

data as c± s ·
√

2κ

π
. This way the centroids are spawned in their expected location under the Anderson-

Darling test’s hypothesis H0. See [Cor97] for a powerful way to calculate these values. Once we have

run 2-Means to convergence, we can reduce the data to a single dimension by projecting it onto the

connection v = c1− c2 of the final child centroid locations via x′i = 〈xi,v〉/‖v‖2. Afterwards, the list

of projected values acquired is transformed to have mean 0 and variance 1. We then form the list of

cumulative values Z by calculating zi = F(x′(i)) and then test it using Anderson-Darling. If A2
∗(Z) is

among the non-critical values at confidence level α we discard the children and keep the parent cluster,

because we accept H0. Otherwise, we replace the original cluster with its children c1 and c2.

2.3 Edit Distances
An edit distance in information theory is a distance metric to measure the amount of difference between

two sequences. Usually a set of elementary operations that transform one sequence into another is

defined for such a metric and then the number of operations needed for the given case is determined.

They can be used within a variety of domains where no geometric distance can be defined. As any other

kind of distance metric, edit distances need to have some specific properties to make them practical (see

[Keo]):
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• D(A,B) = D(B,A) (Symmetry)
Otherwise you could claim "Alex looks like Bob, but Bob looks nothing like Alex."

• D(A,A) = 0 (Constancy of Self-Similarity)
Otherwise you could claim "Alex looks more like Bob, than Bob does."

• D(A,B) = 0 iff A = B (Positivity / Separation)
Otherwise there are objects in your world that are different, but you cannot tell apart.

• D(A,B)≤ D(A,C)+D(B,C) (Triangular Inequality)
Otherwise you could claim "Alex is very like Bob, and Alex is very like Carl, but Bob is very

unlike Carl."

2.3.1 Levenshtein Distance

The prime example of an edit distance is the one suggested for two strings by Vladimir Levenshtein in

[Lev66]. It is defined as the minimum number of edit operations to transform one string into the other.

The operations available are insertion, deletion and substitution of a character. For two strings u and v

we can specify a distance matrix D by the following rules using m = |u| and n = |v|:

D0,0 = 0 (2.10)

Di,0 = i,1≤ i≤ m (2.11)

D0, j = j,1≤ j ≤ n (2.12)

Di, j = min



Di−1, j−1 +0 if ui = v j

Di−1, j−1 +1 (substitution)

Di, j−1 +1 (insertion)

Di−1, j +1 (deletion)

,1≤ i≤ m,1≤ j ≤ n (2.13)

The bottom right value of this matrix is the final value for the Levenshtein distance. The matrix at hand

also contains all information needed to determine the minimal sequence of operations by a backtracking

algorithm. In some applications, it is helpful to consider the following upper and lower bounds for the

Levenshtein distance:

• It is always at least the difference of the sizes of the two strings.

• It is at most the length of the longer string.

• It is zero if and only if the strings are identical, see 2.3.
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• If the strings are the same size, the Hamming distance [Ham50] is an upper bound for the Lev-

enshtein distance.

2.3.2 Damerau-Levenshtein Distance
Working in the field of spell-checking, Frederick J. Damerau defined a distance metric for strings

that considered not only insertion, deletion and substitution, but also the transposition of two adjacent

characters. In [Dam64] he also claimed that these operations correspond to 80 percent of all human

misspellings. As the distance measure used is almost identical to Levenshtein’s suggestion, the addition

of transposition to the algorithm is called the Damerau-Levenshtein distance. Instead of the definitions

made in formula 2.13 we need to write

Di, j = min



Di−1, j−1 +0 if ui = v j

Di−1, j−1 +1 (substitution)

Di, j−1 +1 (insertion)

Di−1, j +1 (deletion)

,(1≤ i≤ 2,1≤ j ≤ n)∨ (1≤ i≤ m,1≤ j ≤ 2) (2.14)

and

Di, j = min



Di−1, j−1 +0 if ui = v j

Di−1, j−1 +1 (substitution)

Di, j−1 +1 (insertion)

Di−1, j +1 (deletion)

Di−2, j−2 +c if ui = v j−1∧ui−1 = v j (transposition)

,3≤ i≤ m,3≤ j ≤ n (2.15)

to include transposition.
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3.1 Measured Data
To determine the right methods to process it, we should first look at the data that has been measured

in the course of this thesis and how it has been acquired. To gain meaningful insights into pedestrian

movement in traffic, it is of utmost importance to study it in relevant situations and record movements

in a way that simplifies further analysis.

3.1.1 Locations

Following the arguments made in 1.1.1 our work is concerned with pedestrians in crossing situations.

To be able to make more general statements, the team chose three locations that offered a good per-

spective on zebra crossings. The most important beneficial features these areas have in common are:

• A frequented zebra crossing over a wide street (at least two lanes)

• Access to an indoor location with electricity and a window on higher ground with a nearly

orthogonal alignment to the crossing path

• Allowance to record anonymous pedestrian movement data, see 3.3.1

We ended up favoring the following three candidates:

Private property, Ingolstadt With an explicit authorization to record pedestrians, it was possible

to use the private property of a local production plant for our purposes. It featured a highly-frequented

zebra crossing and high camera perspective. Being a workplace, traffic movements offered on week-

ends were expectedly few.

University campus, Kaiserslautern A narrow street intersecting two main areas of the TU

Kaiserslautern’s campus guaranteed a high amount of pedestrians crossing. A taller building nearby

helped to create a good view over the area that produced interesting movement patterns heavily influ-

enced by some natural attraction points like a bus stop or staircases.

Public street corner, Aachen This large crossing of two roads within the city area of Aachen

provided us with some special scene properties including a refuge island in the middle of the pedestrian

crossing as well as a pedestrian light that organized traffic flow. A rather flat perspective made this a

tricky measuring station to set up and evaluate.
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Figure 3.1: Camera view on our Kaiserslautern scenario

3.1.2 Setup

In the rooms available we installed a camera and a workstation for each scenario. The camera is

built into a frame that protected it from direct illumination and then fixed on the window pane by

using vacuum cups. The connection to the measuring workstation is established over a gigabit LAN

connection. The cameras had to be intrinsically and extrinsically calibrated using a large calibration

object in the form of a board with black dots on white ground. Proper calibration is crucial for the

correct projection from pixel to 3D real-world coordinates. The machines used as workstations are

powered by two quadcore Intel Xeon processors and have 8GBs of RAM at their disposal. They have

been equipped with the Automotive Data- and Time-triggered Framework (ADTF [Ele10]) and are

running a 64bit installation of Windows 7. Detailed descriptions of the calculations done on the data

within ADTF are given later in 3.3.1.

3.1.3 Volume

Ingolstadt Kaiserslautern Aachen
Days 106 100 28
Hours 1272 1200 336
Image data (GB) 1330 368 342
Serialized data (GB) 400 61 95
Volume reduction 0.70 0.83 0.72
Pedestrians total 148598 14757 7584
Pedestrians per day 1401.87 147.57 270.86
Pedestrians per hour 116.82 12.30 22.57

Table 3.1: Volume statistics of measured data
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3.2 Tool Chain
To understand the context of this thesis and its significance to our pedestrian safety system, let us first

give an overview of the overall system design and the involved components. As described earlier, our

approach to improve current systems consists of a ground-based part that analyzes pedestrian behavior

and derives a model for their movement and a mobile one that uses this model to draw environmental-

based conclusions about the current safety situation within the car. The exact communication methods

for the model are not discussed here as well as the technical issues regarding the car’s reaction on

possible threats. We will sketch the flow of data from a large amount of tracked pedestrian paths

to a network representation of characteristic trajectory segments that can be used for a probability-

based movement prediction of a person tracked by the car’s sensors. Mind that this thesis’ work is

concentrated on the first of the following steps and we will therefore not go into the depths of each

block. Details about the structure of data consumed and produced by the component in focus are given

in 3.3.1 followed by specific algorithmic solutions.

3.2.1 Bundle Extraction
As this part is this thesis’ addition to the system, we will leave detailing it to upcoming chapters. It

deals with replacing human specification of filters to extract similar structures from the data with a

fully autonomous data mining system that automatically determines meaningful groups of movements

through the scene. We will use an approach based on evolved clustering techniques coupled with a

meta-logic to generate each of these bundles and a corresponding rough graph that mimics a group’s

main direction.

3.2.2 Isolation
The isolation step uses the information on bundles and their outlines to generate a true representative

trajectory (called a master trajectory) from each of them. This allows concentrating the data of a main

stream of movement through the scene into a very small and handy format for further analysis. It is

calculated by building slices that are orthogonal to the outline direction through the bundle’s trajectories

and then averaging each measurement. This requires resampling the given outline and the underlying

tracks to generate approximately equidistant measurements as the raw trajectories have completely

arbitrary amounts of corner points. The sampling rate is usually increased which requires interpolation

to generate data between two measurements. For this study, linear interpolation is used, but nonlinear

methods are likely to improve the result and should be the object of further research.

3.2.3 Segmentation
Because each measurement does not only hold position coordinates of a pedestrian, there might still be

heavy divergences within a recognized bundle. The segmentation step tries to find features that allow

splitting a given master trajectory into segments of different characteristics. A good example would

be the velocity distribution among the underlying trajectories of a bundle. There may be different

profiles of movements that should be considered distinct, like pedestrians stopping before crossing

and those proceeding without lowering their speed. Generally, the system is able to calculate even
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more features than the object tracker records. Some of them might be scene-related, such as velocity

in direction of a certain object or distance to a line specified by the user. Segmentation can identify

different behavior within a master trajectory’s scope by clustering such features and can then construct

a tree of master trajectory segments that models separation in more than just the local dimensions.

Links between the segments hold the assigned transition probabilities that mirror the distribution of

trajectories participating in a segment.

3.2.4 Prediction
To use this tree of master trajectory segments for a given scene for prediction, we need a method to

decide which initial segment a pedestrian is to be assumed on. In our system this decision is made by

classifiers which are defined for each segment. Using the measured data from the static camera system,

they are trained for the characteristic feature dimensions determined in the segmentation step. Early

studies suggest that correlation of features over a sliding window can significantly improve separability

and thereby classifying performance. The resulting parameters from training are verified against a test

data set, to see whether decisions by the learned feature combinations hold to be sufficiently correct.

This step of the system completes the ground-based and long-term situation analysis. The tree is then

made available to the car in some form and can there be compared to incoming sensor data of current

pedestrian movement. As a human is tracked in the car’s range, the measurements are matched to data

points on possible master trajectories via interpolation. Then the corresponding classifiers calculate

their decision on the likelihood of the sequence of measurements matching their segment and the

pedestrian is assumed to be on the segment with most certainty. From there, the transition probabilities

are evaluated to construct the likelihood for the person to be on any following segment. Should a

graph through the tree that is intersecting with the road receive a sufficient conditional probability, the

pedestrian’s time to reach each segment along the way is calculated to construct his likely movement

path in the three relevant dimensions to determine the vehicle’s optimal reaction: latitude, longitude

and time.

3.2.5 Action Concept
The collision detection algorithm determines whether or not the determined probable pedestrian move-

ment trajectory intersects with the car’s extrapolated path and what time to collision (TTC) is left. It

also calculates the cross-section of car and human to assess the relative collision spot on the vehicle’s

front. These parameters are input to a decision logic that chooses between three possible reactions to

the witnessed sensor data:

1. Warning the driver about the potential threat caused by the presence of a pedestrian determined

to cross the street. This action should be undertaken if the probability is the highest of all

possibilities but its absolute value is still rather low or if the TTC is high enough to let the

driver decide freely.

2. Giving a steering recommendation with an impulse on the steering wheel. This reaction is de-

signed for medium TTCs and cases where the cross-section shows that the impact location of
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the pedestrian will be on the side of the front bumper rather than central. Collision avoidance by

steering has the chance of leaving the target completely unharmed even if the distance is rather

close, but it also has unresolved technical and legal issues regarding the direction of steering

without creating a different danger situation.

3. Apply emergency braking without any action by the driver. This is reserved for cases in which

the TTC is below the time needed to stall the car and the classification significantly certain.

Ignoring prior steering recommendations will also lead to this reaction.

3.3 Applying Clustering

Figure 3.2: Projected top-down view with trajectory grid (Kaiserslautern)

3.3.1 Inputs and Outputs
The task of this thesis’ algorithmic implementation is the identification, filtering and preparation of

the main groups of pedestrian movement in a given scene. Before detailing the inner structure of the

algorithm, we will define its position in the data flow through the system.

Input
As mentioned earlier, the initial data source is a static camera system aiming at a pedestrian crossing

from a higher angle. The connected workstation receives a video stream in a resolution of 1280 by

1024 pixels. These images are not recorded directly for two reasons:

1. Privacy:

To be granted permission to study human behavior in public situations you must ensure anonymity

to be able to use the data without the explicit consent of each individual that has been recorded.
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Furthermore, other scene components (especially cars) have recognizable features that are linked

to individuals or companies and are not be monitored or tracked either. For one of the scenes the

system had to obey particularly strong secrecy constraints as the camera was placed inside Audi’s

production plant and was likely to produce footage of publicly unknown products or activities.

2. Storage Volume:

Recording a video stream this large requires a significant amount of memory per second. This

poses a challenge on the workstation’s hard drive writing bandwidth as well as the actual amount

of disk space required per day. As the measurement systems were designed to operate without

network connectivity in buildings that offered mainly a good view over the scene and access to

electricity, the data had to be transferred by hand using external drives. The goal of maintaining

organizational effectivity made a longer interval between data acquisitions desirable.

Performance improvements of an earlier work have allowed the real-time conversion into a foreground-

background-segmented black and white stream of the same size at 30Hz. This solution leaves little

room for identification of individuals and is directly compressed using a run-length coding scheme and

therefore satisfies both requirements.

The recorded data is afterwards fed into a time-consuming object tracking algorithm that produces

binary serialized trajectory files. Object tracking is Kalman-filtered and ignores objects over a maxi-

mum size. The objects created from the tracking algorithm are identifiable by a unique ID and mainly

consist of an array of measurements holding float values for position, velocity, acceleration, size of the

object and more. It should be noted that this datatype is included from the Automotive Data and Time

triggered Framework (ADTF), which has the benefit of direct compatibility to objects tracked by car

sensors. The tracking and binary serialization process reduce the volume of data by a factor of about

four compared to the segmented video stream.

Within the analysis framework these C++ structures for the traces of moving objects are held in a

pool that automates their transitions between persistent and volatile memory as well as wrapping them

into managed .NET objects for easier handling and automatic garbage collection. Trajectories can be

grouped and retrieved using string tags to simplify access within the large amounts of data recorded.

They are then filtered to keep only pedestrian movements in the pool for further processing. This is

achieved by an extensible XML-defined filtering framework allowing for tree-structured logical com-

positions of different Boolean filter components such as "has crossed a line in the scene" or "had a

maximum velocity of". Integrated into an efficient user interface, this solution can be used to avoid

noise like trees shaking in the wind and to eliminate car trajectories from the scene. The remaining

trajectories form the input set for clustering and bundle extraction.

Output
As described in the system overview, the clustering step is succeeded by master trajectory isolation

which reduces a bundle of similar trajectories to one representative trajectory by resampling and aver-

aging their measurements. These averages are to be calculated over slices through the bundle roughly
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orthogonal to the bundle’s tangent direction. This defines the required output of the clusterer as two

main structures:

1. Groups of trajectories that are classified as similar and as significant for the overall character-

ization of pedestrian movement in the scene. Their number should be minimal and strongly

correlated to the mainly used combinations of entry and exit points of the scenario. Generat-

ing too many bundles results in master trajectories that carry less information and makes the

decision of the classifier 3.2.4 both more expensive and more error-prone. Obviously divergent

trajectories should still not be within the same bundle as should be outliers diverging from the

overall scene characterization. Both cases are likely to spoil or even prevent the calculations of

the isolation phase.

2. A single sequence of points in the scene (called an outline) for each group of trajectories that was

distinguished by step 1. This outline is used by the isolation algorithm as the tangent approxima-

tion for the bundle needed to generate the locations and directions of said slices for averaging.

For a meaningful master trajectory the outline should lie within the bundle’s dimensions and

should smoothly follow the common direction of the underlying trajectories. Hard corners, op-

posite direction or zig-zag-patterns cause isolation to use single measurements within the group

more than once or to stop prematurely because a slice did not cut through all participating tra-

jectories.

Technically, the trajectory bundles are realized by tagging all trajectories belonging together with a

common name that can be linked to their outline. The outline itself is given as a sequence of cluster

centroids with their scene coordinates.

3.3.2 Clusterer Implementation

Preceding the solution to bundle extraction and outline generation downstream we will examine the

design and optimization of the algorithm’s main building block - the clusterer itself. The theoretic

foundations studied earlier in 2.2 introduce a variety of approaches to cluster data in a space of fea-

tures. This chapter will describe the peculiarities of the given environment and the decisions made to

recombine and adjust the underlying methods to find a meaningful partitioning for the given inputs.

Comparison of different street scenes has led to the assumption that the reasonable number of clusters

should be treated as unknown beforehand and should be determined by the algorithm itself without

human supervision. This constraint rules out the basic k-means algorithm and instead demands a

higher-order logic on top of it to find a proper value of k for the set of input data. Examples of such

structures have been examined in 2.2.3 and a derivate of their core idea will be used to tackle the given

problem.

Structure
As analyzed earlier, the common approach behind k-Means successors like X-Means or G-Means is

their approach to find the right amount of clusters by clustering by k-means, changing the value for k
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and then deciding whether the new model represents the data better than before. This is repeated as

long as a more suitable fit has been found compared to the run before.

This method is partly adopted for this project. However, we change the structure from iteration to

hierarchical recursion. Instead of running a global clustering step and evaluating the new partitioning

on all the data, the algorithm presented here uses 2-Means within a cluster and decides by a so-called

split criterion whether or not to force a local split of this cluster into two new ones. This is inspired

by X-Means, but we do not use a global refinement step after a split has occurred. The described

procedure is then started on the complete base set and repeated until no further splits have occurred.

Then the assignment step is recalculated again once to refine the partitions. The algorithm is outlined

in description 3.1.

The split itself is suggested by randomly choosing a normalized direction vector in the dimension

of the feature space and spawning two new centroids in positive and negative distance of the base set’s

standard deviation from the base centroid. This method has also been suggested by [PM00].

Algorithm 3.1 Outer structure of our algorithm
0: C0← D

C←C∪C0
repeat
|C|previous← |C|
for all Ci ∈C do

Spawn c1 and c2
Run 2-Means
if Criterion(c1,c2,Ci) = true then

C←C \Ci

C←C∪ c1∪ c2
end if

end for
until |C|= |C|previous

Reassign points to centroids

The presented technique has been chosen for its good parallelizability in comparison to its minor

accuracy drawbacks. As only a local subset of the data is considered by the inner clustering steps, the

algorithm is prone to slightly overshooting the data with respect to the final count of clusters. This

is because of the theoretical possibility of splitting through a part of the base set that would be well

represented as one cluster. The subsequent steps are likely to create smaller partitions on both sides of

the border without any means to connect them. However, in the course of this thesis we will see that

these effects do not harm the results as the data’s structure as well as the algorithm’s goal tolerates the

error. How parallelism in structure is exploited for better performance is discussed in 3.3.3.

As within the group of algorithms mentioned earlier, differences in their performance on various

shapes of measured data are mainly the result of their evaluation criterion. For a number of reasons,

our clusterer will be determined by its own approach to make this decision. The development stages

and final characteristics of this split criterion will be discussed in 3.3.2.
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Algorithm 3.2 Inner 2-Means structure
0: Select c1,c2 as initial centroids.

repeat
previous1← c1
previous2← c2
Form 2 clusters by assigning each point to its closest centroid.
Recompute the centroid of each cluster.

until (d(c1, previous1)< dt)∧ (d(c2, previous2)< dt)

The structure of the inner k-means block remains unchanged with a single exception: The abort cri-

terion has been relaxed for faster convergence without a significant loss in accuracy. As you can see,

the condition for stopping has been shifted from "no data point has changed its cluster membership" to

"no cluster centroid has traveled further than a certain threshold" in comparison to the last pass through

the loop. Since the concept of outlines is a simplification by itself and merely a base for further exact

calculations, the small error in centroid positions is acceptable at this stage. Early tests have shown that

the speed of convergence increases by magnitudes especially since small oscillations of membership

in the final stage of the algorithm are avoided. Furthermore, having a threshold parameter allows for

manual adjustment in the trade-off between speed and accuracy in real-world units.

Split Criteria
The previous chapter has already pointed out the significance of the split criterion. Its task is to review

the larger base cluster and the newly suggested child clusters and make the binary decision which model

represents the underlying data in a better way. The recursive structure limits the available factors that

can be considered in the process to those that are directly related to those three clusters (see Parallelism

3.3.3). The decision made should therefore be characterized as local rather than global. The following

list gives an overview of the more meaningful quantities at hand:

• Members count

• Standard deviation from centroid

• Centroid position

• ID of source trajectory for each member

As the performance of this criterion is vital to a meaningful partitioning of the feature space, we can

compile a wish list of desirable behaviors. These need to be transformed into solid mathematical terms

that translate to a single Boolean.

• Convergence: The criterion should lead the algorithm to a deterministic stop in a reasonable

amount of time.

• Cluster size: The data should neither be split into too small groups that carry little information

and cause centroid counts to rise over a representational number, nor should clusters with a high

member count assimilate smaller groups that are clearly separated geometrically.
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• Distance: For meaningful outlines and a more correct partitioning of end points later, centroid

distance should not decrease below a critical measure as this has proven to be limiting undesir-

able effects on bundle-shaped data.

G-Means suggests that the criterion should take a cluster’s member count as a normalizing factor to

avoid "bad decisions about clusters with few data points" (see [HE03]). This thesis’ implementation

uses this advice, but not within a distribution-dependent statistical test like Anderson-Darling or BIC.

Evaluations of these techniques have shown them to be too strict for use with connected data like ours.

Instead, the standard deviation of the members with respect to their centroid has been chosen as the

measure of fit within a cluster. This leads to the first version of our own split criterion:

Split iff:
φ1
n1
+ φ2

n2

2
·b <

φP

nP
(3.1)

with standard deviation φi within cluster i and member count ni for the children and 2 and their parent

P.

At first glance, this equation leads to desired behavior in terms of the first two points of our wish

list. As the data is divided into smaller and smaller clusters, the standard deviation of each of them is

decreasing as desired. However, at the same time, they lose members with every split, which ultimately

leads to convergence because the standard deviation of the parent is normalized over a member count

of twice the size of a child’s fellowship on average.

The factor b introduced between parent and child allows shifting the balance by penalizing the

children. It became necessary as a one to one ratio has led to far too many splits during initial tests.

This shows the main downside of this formula as a universal split criterion for our task: There is an

artificial weight factor that can only be humanly determined for a given set of data and has no real-

world meaning across different scenes. This sort of trial-and-error approach to splitting is inacceptable

for an algorithm designed to automatically decide on the number of clusters needed for any pedestrian

movements recorded.

Further exploration of mathematical possibilities has led to a solution that incorporated the third

wish from our list into the formula. Since weighing the two sides of the equation has been proven

necessary, linking the factor to real-world distance seemed to have potential. Of course, the factor is

hard to normalize to fit all possible scenarios. That’s why it has been composed as the ratio between

a given nominal distance and the actual centroid distance of the two children. The improved criterion

has the shape of

Split iff:
φ1
n1
+ φ2

n2

2
· dnominal

dactual
<

φP

nP
(3.2)

and makes use of the ratio between a given nominal distance dnominal and the current euclidian distance

dactual between children 1 and 2.

This change transfers the abstract and rather arbitrary weighting factor from before into a value of

physical meaning. Setting a nominal value in meters will cause the criterion to penalize the children’s
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side whenever the suggested split results in a centroid distance below this value. On the other hand,

children of a longer distance stand a chance of being spawned even if their member count is small

compared to their parent. We will see in the results (see 4.2) that adjusting this factor is easy and even

universal across different scenarios and leads to anticipated behavior of the clusterer.

ID-awareness
As described before, the data we are dealing with in this project is of specific shape. Clustering the

local coordinates in two dimensions to find the "hot spots" of pedestrian movement within a scene

leaves valuable information unconsidered: the links. As every trajectory can be tracked by a unique

identifier within the application, the clusterer can be made aware of a measurement’s source using a

simple dictionary. Maintaining said dictionaries leads to both memory and performance costs, so one

should ask whether this will actually solve a problem.

Looking at our data, we faced the following scenario. Two pedestrians cross the street, but at dif-

ferent speeds. The camera system tracks both persons at the same defined frequency and generates

measurements for their track. This obviously leads to the slower person being measured more often

per distance unit than the quicker. Generally this behavior is tolerated and unavoidable. However, it

causes undesirable outcomes if you then apply clustering on local coordinates. The reason is the al-

gorithm’s way of updating the representative’s position to the center of gravity within a cluster. This

treats every measurement equally, causing a trajectory with more measurements per distance to gain

more influence than others and to divert the meaningful position of the centroid.

Using the dictionary approach, we can solve this problem and make our algorithm more resistant

against outliers. Instead of shifting centroid positions into the mean coordinates of all members, we

introduce an intermediate step and first average the position of the participating measurements that

belong to the same trajectory. Afterwards, the representative is moved into the center of these averages.

The effect on the resulting outlines can be seen in 4.2 and is discussed in the evaluation (see 5.2.2).

3.3.3 Performance Optimizations

Making the clusterer aware of the source of measurements can be seen as a means of result optimiza-

tion. This chapter deals with the raw computational performance of the algorithm and its memory

demands. We will describe how both can be balanced out and how some geometrical and structural

properties can be exploited to achieve the best throughput for great amounts of data.

Partial Distances
The nature of k-Means requires a lot of distance calculations. Each iteration consists of a large number

of nearest neighbor queries that grow with the number of measurements and even exponentially with

the number of clustering dimensions. Therefore, avoiding unnecessary distance comparisons can save

a good amount of CPU time.

Different approaches have been suggested to accelerate the search for the nearest neighbor to signif-

icantly improve clustering performance. Examples include using the triangle inequality as described

in [Elk03], tree structures like Kd-trees [KMN+02] or R-trees [PF00] that are impractical in higher di-
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mensions and finally partial distances [CGRS84]. The latter is a smart method to end a single distance

calculation prematurely. It changes the inner core of k-means to use the steps described in algorithm

3.3. It is evident that this technique can save unnecessary calculations whenever the exit condition

Algorithm 3.3 Partial distances algorithm
0: dmin = 0

for i = 1 to N do
d = 0
for j = 1 to K do

d = d +(x j− ci j)
2

if d > dmin then
Next i

end if
Next j

end for
dmin = d
min = i
Next i

end for

d > dmin is fulfilled before the distance calculation has finished. This is possible because the complete

Euclidian norm is not needed for a mere comparison calculation since monotony holds for the sum of

squares below.

The drawback of this simple method is that time savings are heavily dependant on the currently

found dmin. If it is large, most of the calculations will still be completed. Again, some approaches have

introduced that can precondition the problem by finding a better dmin beforehand to lead the algorithm

into the profit zone earlier. We will use an elegant method by [AZHHH08] that has evolved from other

solutions as described in their studies. It trades memory for speed by saving the previously smallest

distance dprev to its nearest neighbor for each data point. Under the assumption that the nearest centroid

has moved a small amount since the last iteration, dprev is a good value for dmin. The structure of the

PD algorithm is therefore changed to mimic the description in 3.4.

As described, we have to assign each measurement to its nearest centroid once initially before the

improved method can be used. But this step can still employ usual partial distances, which saves time at

the beginning. Generally, it should be noted that this shortcut is most successful for higher dimensions

of data, but we will see that it effectively improves performance even in our two-dimensional case.

Parallelism

Exploiting parallelism within algorithmic structures is a powerful tool to multiply the throughput of a

calculation. We will examine our possibilities in two stages.
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Algorithm 3.4 Optimized partial distances algorithm
0: run PD (initial step using PD as before)

dmin = dprev

for i = 1 to N do
d = 0
for j = 1 to K do

d = d +(x j− ci j)
2

if d > dmin then
Next i

end if
Next j

end for
dmin = d
min = i
Next i

end for

Outer Structure The more obvious parallelizing task concerns the X-Means-like structure on top

of the k-Means blocks within the algorithm. We have shown in 3.3.2 that the method re-runs itself on

parts of the data again and again without any global information needed for each step down the tree.

Therefore, it can be written recursively as:

Algorithm 3.5 ClusterRecursive(D)
0: C0← D

Spawn C1 and C2
Run 2-Means
if Criterion(C1,C2,C0) = true then

return C← ClusterRecursive( MembersOf(C1) ) ∪ ClusterRecursive( MembersOf(C1) )
else

return C←C0
end if

The transition from recursive to multithreaded is then trivially achievable by spawning new threads

for each call of the recursive function. A barrier needs to be implemented afterwards that puts the

thread on hold until its children have returned their results. The parallel version of the outer structure

consequently has the form of algorithm 3.6.

This will cause the number of running threads to grow exponentially with the number of splits and

enables multicore systems to utilize their potential. However, the effect only kicks in after the first few

splits have occurred, which is a major drawback because the first stages of the algorithm operate on the

largest numbers of data points and therefore offer the best gain when parallelized. Luckily, we do not

have to treat the inner k-Means block as atomic with respect to parallelization.

Inner Structure Any k-Means-based algorithm is parallelizable at its very core. This property rises

from the fact that the most time-consuming operations within the algorithm are completely independent

from each other. Finding the smallest distance to any centroid for a given measurement has no influ-
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Algorithm 3.6 ClusterParallel(D)
0: C0← D

Spawn C1 and C2
Run 2-Means
if Criterion(C1,C2,C0) = true then

T hread1← ClusterParallel( MembersOf(C1) )
T hread2← ClusterParallel( MembersOf(C2) )
return C← ResultOf(T hread1) ∪ ResultOf(T hread2)

else
return C←C0

end if

ence at all on the answer to the same question for another data point. Shared memory access during

these operations is read-only or can be organized in a way that cross-writing can be avoided. Simply

distributing the for-loop calculating these distances among multiple threads almost divides calculation

time by their number1. The changed structure is made aware of the count of participating threads and

the number of the current thread running and automatically determines the indices of data points falling

into its part of the work.

Employing inner parallelism greatly enhances multicore performance of the whole algorithm, espe-

cially during the first splits. The method is able to provide the architecture with a sufficient number of

threads to utilize a modern system’s full capacity and achieve a respectable throughput on large data

sets. Measurements of the algorithm’s raw performance in different configurations are presented in 4.1.

3.3.4 Bundle Extraction

Now that we have introduced our implementation of the clusterer, we will show which strategies can

be applied to use it as a powerful building block to find the bundle structures within our pedestrian

movement data. Let us first define the characteristics of a bundle.

It should be

• grouping all pedestrian paths that would be humanly classified as "going the same way" or could

be seen as leading to a trail on softer ground.

• consisting of those tracks that lead from similar beginnings to similar ends.

• of limited thickness to be able to represent its trail as a single trajectory with limited standard

deviation.

• one-directional only.

The following pages will present two different clustering-based strategies to find these properties in

our measurements and a third one that synthesizes both into a hybrid approach.

1Notice that APIs like [Mic10] let the developer define a loop as parallel and handle threading themselves.
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Centroid Sequence Tracking

The idea behind our first strategy is that typical movements within the scene will lead to areas of

higher measurement density, no matter which trajectories were involved. The whole system is based

on the assumption that these characteristic paths through the scene exist and therefore there must be a

resulting density distribution that can be modeled using clustering.

As our clusterer autonomously determines a meaningful number of partitions and positions its cen-

troids in a meaningful center of gravity within each cluster (as described in 3.3.2), it is able to put out

the points that characterize the whole scene by clustering two-dimensional coordinates of the data. We

can then treat them as nodes to build a graph of paths taken, simply by finding the ordered sequence

of clusters that each trajectory has contributed measurements to. Trajectories of equal cluster sequence

can then be grouped and rightfully be called a bundle by the standards defined earlier.

The correct sequence is found by considering the trajectory’s first measurement’s coordinates and

from there iterating through the list of clusters that have reported to contain its traces, always choos-

ing the nearest neighbor. This ensures proper comparability between different sequences in the later

process.

A major benefit of using cluster sequences is the trivial detection and distinction of movement di-

rections. Usually clustering would have to consider the direction angle as a third dimension to separate

trajectories moving along similar paths but with opposing orientation. Using our approach this is re-

duced to an efficient comparison of ordered sequences that is far less prone to noise than the direction

of the velocity vector saved for each measurement.

Early tests have shown that this exhaustive search approach is fast enough in relation to the clustering

process. Note that it is also independent from the starting point of its search as opposed to possible

back-tracking algorithms that could be found. The examination of performance optimization potentials

or alternatives to this technique is therefore not in the focus of this project.

Simplification Methods Still there is a drawback of this simple method that spoils the results’

usefulness for the overall system. Perfect sequence equality is a very strict condition that leads to far

more bundles being separated than necessary. Examine the following scenario: In a corner situation,

three clusters A, B and C have been found that are arranged in an L-shape. Now there are trajectories

that have traces in all three clusters, going from A to B to C and then there are others who go directly

from A to C without actually diverting much from the course of the others - they rather take a small

shortcut.

It is obvious to the human eye that these trajectory sets should be called a single bundle. Yet the

algorithm finds two sequences of clusters that have been taken. This behavior of the clusterer in forking

points is hard to avoid and therefore we need to solve this problem in the meta-logic. This is why we

introduce a similarity measure for cluster sequences to soften the perfect equality criterion for grouping

them. Different methods have been examined out of which an approach from the field of determining

string differences has been chosen as a promising base: the formerly introduced Damerau-Levenshtein

distance.
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However, this does not hold as a good bundling criterion without changes, because it just counts

the edit operations needed to turn a given sequence into another one without taking their length into

account. We have fixed this by dividing the outcome by the two sequences’ mean length. Using this

to decide whether or not to join two bundles by checking for a fixed threshold results in some similar

bundles being joined but still not all of them. Performance has been improved by awarding bonus if

the first or last cluster passed has been equal. This forms the following criterion for sequences a and b:

join sequences iff:
d(a,b)−β (a0,b0)−β (a|a|,b|b|)

|a|+|b|
2

< t (3.3)

with

β (xi,y j) =

1 if xi = y j

0 if xi 6= y j

(3.4)

The threshold t can be fixed for all scenes and gives a measure of the allowed relative divergence of

the two sequences tested.

End Point Clustering

The positive effects of specifically considering the end points on the simplification process of cluster

sequences found (and therefore on bundle extraction itself) have motivated a different strategy. Their

equality has proven to be a strong statement about similarity in pedestrian movement. Usually, a

scene could be defined by a number of entry and exit opportunities. The amount of persons entering

and leaving the area can be considered equal (with very limited room for exceptions), so the different

binary links between entry and exit points could very well define all characteristic groups of paths taken

through the scene. The appeal of this technique is increased by the observation that most scenes show

high densities in these areas as entering or exiting the scenario often involves some form of bottleneck

(like a staircase or sidewalk not as wide as the crossing area).

Assuming this we have changed the input to our clusterer to hold only start and end points of all

trajectories recorded. It should then determine the correct number of entry and exit points (without

considering the difference) and provide us with a partitioning of the end points. We can then easily

find the binary cluster sequences belonging to the trajectories and group them by exact equality.

This method has proven very powerful for our input data as it can be shown that pedestrians going

from the same start to the same end direction stick to very similar movement paths during the way.

It is resistant against minor deviations along the way and tends to rather undershoot than overshoot

the number of bundles. Problems arise when trajectories end in unexpected places due to the tracking

breaking off or if the density assumption fails to hold and end points are scattered across larger areas.

However, the most damaging case is the one where there are two or more distinct bundles leading from

the same start to the same end point. Such pedestrian behavior can be caused by environmental objects

like refuge islands in the middle of the street and should be covered by our algorithm.
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Hybrid Approach
A strategy to eliminate this drawback has been found in the combination of the prior two. As end

point clustering operates on a very small fraction of the measured data, it needs very little time to

calculate. Therefore, we use it as a first step to find all groups characterized only by similar entry and

exit points. To avoid disregarding distinct bundles within such a link we then cluster again using the

centroid sequence tracking method which will find splits along the way that fail to obey the similarity

criterion defined in formula 3.3.

3.3.5 Trajectory Outlines
As discussed earlier bundle extraction is only one part of the expected work of our algorithm. Having

found the groups of paths within our scene we want to construct a polygon graph that roughly represents

the common form of each bundle and complies to the constraints of the following isolation stage as

described in 3.3.1.

One could argue that our centroid sequence tracking approach actually produces such outlines and

it is able to in many cases. However, experience has shown that clustering yields much better results if

the input data is already more sharply defined rather than scattered. The amount of clusters generated

and the quality of adaptation of the sequence to a bundle’s shape increases significantly when clustering

only one prefiltered group.

As with end point clustering, the size of the input set for bundle-internal clustering is reduced and

the computational effort is small compared to the base set. Therefore, it is reasonable to add a further

clustering step to our algorithm and enhance the resulting outlines significantly. Clustering within a

bundle should in nearly all cases result in clusters that look like the base set was orthogonally cut

into slices. The distance split criterion is designed to enforce that no two clusters ever lie besides one

another, which avoids zigzag schemes of the outline later.

Like in centroid sequence tracking, the correct sequence for the outline is found using a nearest

neighbor scheme beginning from a trajectory’s first measurement. The assumptions made and the

constraints held by the previous steps guarantee the construction of a valid sequence. Examples of

outlines generated with different values for the distance criterion can be found in figures 4.1 and 4.2.
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Figure 3.3: Hybrid bundle extraction performed on the Ingolstadt scenario
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To evaluate the algorithms developed in the course of this thesis, they have been tested for compu-

tational speed and performnce regarding their goal. The data presented in the following sections has

been measured on a PC equipped with two Intel Xeon quadcore CPUs and 8GB of system memory.

The underlying data is taken from the Kaiserslautern and Ingolstadt scenarios.

4.1 Calculation Time Comparison

The performance data in 4.1 has been measured by clustering two data sets of different sizes with dif-

ferent combinations of switches for the clusterer. Outer threading and the use of partial distances have

been enabled or disabled and the number of threads used to distribute the inner distance calculations

has been changed. Each combination has been repeatedly calculated 20 times to average out the non-

deterministic outcomes caused by random centroid spawning. The average cluster count determined

is given as a median, but has been calculated arithmetically into the average time needed per created

cluster. This value is presented to honor the fact that more split decisions generally result in a higher

total calculation time. All times are given in seconds.

Data Points Outer threading Inner threads Avg. time Median clusters Avg. time per cluster
166409 enabled 16 38615.3 4 9267.29
166409 enabled 8 37393.05 4 9606.01
166409 enabled 1 46829.7 3 14493.83
166409 enabled 1, PD disabled 51783 3 16452.76
166409 disabled 1 141122.85 3 46559.98
290659 enabled 16 147669.1 6 24309.41
290659 enabled 8 193923.2 6 31785.71
290659 enabled 1 145149.1 3 49905.84
290659 enabled 1, PD disabled 201804.85 3 57677.15
290659 disabled 1 768795.95 4 199857.37

Table 4.1: Computational performance measurements on two data sets
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4.2 Split Behavior

Nominal distance dnominal Median cluster count Average distance from master
3.0 16 0.0940
4.0 11 0.1131
5.0 9 0.2101
6.0 8 0.1431
7.0 7 0.2396

Table 4.2: Split behavior measurements, first set (40 trajectories)

For tables 4.2 and 4.3 two bundles of crossing pedestrians have been clustered with different values

(in meters) for our distance split criterion. Each setting has been applied 9 times as base for the

given averages. The distance value presented is the arithmetic average of the mean distance between

corresponding samples of the master trajectory for the bundle and the calculated outline resampled to

match the master trajectory’s sample count.

Nominal distance dnominal Median cluster count Average distance from master
3.0 24 0.1286
4.0 21 0.2284
5.0 13 0.3248
6.0 11 0.2437
7.0 8 0.3779

Table 4.3: Split behavior measurements, second set (80 trajectories)

36



4.2 Split Behavior

Figure 4.1: Outline (black) for a bundle generated with dnominal = 3.0 (Ingolstadt)
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Figure 4.2: Outline (black) for a bundle generated with dnominal = 5.0 (Ingolstadt)
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5 Conclusion

In the context of an advanced driver assistant system we have tackled a fundamental problem in the

field of data mining: the cluster analysis of traces of connected data points by a similarity measure.

In this chapter, we will discuss the qualitative achievements of this thesis and evaluate the quantitative

analysis of our method.

5.1 Practical Achievements
We have shown a concept for the use of classical clustering algorithms as a building block to cluster a

data set that contains link information. As planned, we have found ways to isolate the main directional

bundles within our measured trajectories and generate a representative outline to be used in following

stages of the overall system. This has required an in-depth look into the discipline of data mining

and the analysis and comparison of different algorithms to inspire our own approach. The paragraphs

below cover some of the lessons learned during this project and give examples of their application.

Domain Knowledge

Even though it is desirable for a method to be general and universally valid, never forget that solving the

problem at hand with the information you are given is the main goal of the project. From the example

of split criteria we can see that knowing the shape of the data in advance can motivate the rejection of

established research and lead to simpler yet in this domain more powerful logic. Statistical tests like

Anderson-Darling may have proven useful in astronomic applications and other areas with Gaussian

data distribution, but they seem to ask the wrong questions regarding bundled trajectories. However,

we have been able to define our resulting criterion in a way that renders it valid outside the borders of

our scenario as the balance factor required carries a domain-specific meaning and can remain constant

across different instances of the same problem.

Dimension Reduction

As the studies of G-Means [HE03] have taught us, the key to apply complicated calculations on large

sets of data can be the reduction of the problem to a lower dimension. At first glance, clustering our

data for similar movements is a three-dimensional problem of latitude, longitude and direction. But

cluster analysis on those three features does not only lead to the problems of normalization and noisy

direction vectors, it also comes with a major performance drop. Therefore, our suggestion of using end

point clustering and centroid sequence tracking simplifies the procedure by avoiding calculations and

sensor errors without losing precision in bundle recognition.
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Parallelism

Performance and memory optimization are often considered a refinement and placed in the "tidy up"

section of projects in science and business environments. Our experience during this study tells us

that this should be considered bad practice in data mining or applications of similar input complexity.

Optimizing algorithms for speed and space consumption early leads to a far better overview of their

usefulness on larger data sets and the ability to test their performance without simplifying reality too

much. Especially the identification of parallelization opportunities within the structure of the chosen

methods is always worth a closer look and the effort of implementation.

5.2 Evaluation of Performance Results
5.2.1 Computational Performance

The data presented in table 4.1 shows the benefits of performance optimization by exploiting paral-

lelism. We see that an increasing number of threads used results in significantly lower calculation time

up to the point of saturation because of the increasing scheduling costs for the operating system. We

can also see the better impact of increasing thread counts on larger data sets because of a better ratio

between the amounts of work and scheduling costs (23.5 percent speed-up from 8 to 16 inner threads

compared to 3.5 percent on the smaller data set). The speed-up by using partial distances averaged at

12.7 percent in the given tests for a single distance calculation thread.

5.2.2 Split Behavior

The values from tables 4.2 and 4.3 show an inversely proportional relationship between the nominal

distance and the number of clusters suggested by the algorithm. We can see that from the tested values

a nominal distance of 3m results in the lowest divergence to the master trajectory. Higher values

generally lead to higher mean distances, even though the algorithm might also be lucky with a lower

cluster count if the centroids are well-positioned. Future studies could include a measure of the angles

inside the outline to find a good ratio between mean distance and zig-zag patterns.

5.3 Future Potential
During this thesis we have touched on many subjects from the fields of traffic safety, human behavior,

movement tracking and data mining. However, the techniques implemented and presented here are by

no means exhaustive as time constraints have prevented many chances of further research directions

that have occurred to us. Some promising additions are introduced in this section to inspire future

studies.

5.3.1 Clustering in a Space of Trajectories

While clustering in two dimensions only and finding bundles by centroid tracking or end point sim-

ilarity yields benefits and simplifies subtasks, it still remains a two-staged approach that ignores link

information once and applies it later on a much coarser level. If an appropriate technique was found

to cluster complete trajectories, it could have a great impact on computational effort and especially on
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the quality of the results. An approach based on k-Medoid seems reasonable, since there is no trivial

solution to build a mean trajectory inside a bundle. The success of cluster analysis in a trajectory space

comes down to the choice of an effective similarity measure.

Possible Distance Measures
To be meaningful, the distance measure chosen should fulfill the basic requirements for distances as

specified in 2.3. We will examine two of the more promising candidates.

Surface between Trajectories A possible indicator for similarity among different trajectories

could be based on the surface spanned between them. As with integral methods for functions, the

distance becomes zero when both images are of equal shape. The big advantage of using the surface

is the lack of necessity to resample the trajectories. Instead, simple triangle-based techniques from the

field of 2D/3D visualization can be applied directly on the data points. To avoid equal distance scores

for the two cases of both trajectories running in parallel at a given distance and both of them running in

opposite directions half of the time and exactly on top of each other afterwards, we could incorporate

the variance over the individual triangle sizes. Low variance would be a strong indicator for similar

path shape. It might also solve the problem of determining the walking direction among similar shaped

paths.

Gesture Recognition Methods The problem at hand could also be seen from the perspective of

gesture recognition, as established methods from this field should be applicable to trajectories and be

able to evaluate shape similarity. A simple technique could split the trajectory into equidistant pieces

and assign each piece to a direction class, e.g. by rounding it into 45 ◦C steps. The trajectories can then

be compared by the editing distance of their sequences of direction classes. This way similar shape

results in low distances and the movement direction is clearly distinguishable, but both paths could be

displaced by a large distance within the scene. Therefore, we would need to incorporate a translation

distance factor to determined significant shift differences on both axes. For simplicity, considering

endpoints only is sufficient to solve the problem as shape similarity dictates similar distances along the

way.

5.3.2 Genetic Algorithms for Sequence Distances
If we stick to our approach of clustering data points without link information, the following step of

centroid sequence tracking could be improved by replacing the Damerau-Levenshtein distance with

algorithms from the field of genetic sequence alignment. Distances calculated by techniques such as

Needleman-Wunsch [NW70] or Smith-Waterman [SW81] are based on a penalty matrix that awards

different scores for edit operations depending on the elements involved. In our case, this matrix could

be constructed to mirror the physical distances between centroids to avoid joins of severely different

paths that look similar to the current algorithm because they only differ in one edit.
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