
Query Generation for High-Level
Interpretation of Multimedia

Documents

Student Project Work

March 2010

submitted by:
Karsten Martiny

supervised by:
Prof. Dr. Ralf Möller

Dipl.-Ing. Maurice Rosenfeld

Technische Universität Hamburg-Harburg
Institute for Software Systems

Schwarzenbergstraße 95
21073 Hamburg

Statement of authorship

I hereby certify that this thesis has been composed by myself and describes my own work,
unless otherwise acknowledged in the text. All references and verbatim extracts have been
quoted, and all sources of information have been specifically acknowledged. It has not been
accepted in any previous application for a degree.

Hamburg,
March 29, 2010
Karsten Martiny

i

Contents

1 Introduction 1

2 About CASAM 3
2.1 Project overview . 3
2.2 The approach of CASAM . 4
2.3 Architecture of the RMI module . 5
2.4 The CASAM Abduction Engine . 6

2.4.1 Preliminary definitions and functions 7
2.4.2 The ABox abduction algorithm . 9
2.4.3 CAE’s main procedure . 10

3 Interpretation of Multimedia Documents 13
3.1 Structure of multimedia documents . 13
3.2 The environmental domain ontology . 14
3.3 Sample scenarios . 15

3.3.1 Example 1: construction at the river 15
3.3.2 Example 2: smoke in the sky . 20
3.3.3 Example 3: car-related events . 26

4 Query-generation 33
4.1 An interpretation step in RacerPro . 33

4.1.1 Function call for explanation retrieval 33
4.1.2 RacerPro’s reply . 33
4.1.3 Query generated by RacerPro . 35

4.2 Approaches of knowledge communication to HCI 35
4.2.1 A dedicated RacerPro instance with unmodified ABox transfers . . . 35
4.2.2 A dedicated RacerPro instance with ABox delta transfers 36
4.2.3 A supplementary communication channel to RMI’s RacerPro instances 37
4.2.4 Compensating RacerPro with enriched queries 37

4.3 Queries: syntax and semantics . 38
4.3.1 Queries generated by the current prototype 38
4.3.2 Enriched queries . 40
4.3.3 High-level queries . 40

4.4 Prioritizing queries . 42
4.4.1 Communication during the interpretation process 42
4.4.2 Runtime priorities . 45
4.4.3 A posteriori priorities . 47

5 Summary and outlook 51

Bibliography 53

List of Figures 55

List of Tables 57

iii

Contents

Supplementary CD 59

iv

1 Introduction

In modern multimedia archives there is a huge variety of different multimedia objects (e. g.
videos, audio clips, photos). There is a wealth of multimedia databases with an incredibly
high potential that currently is barely exploited at all due to the lack of efficient annotation.
In order to exploit the full potential of the available multimedia files, it is crucial to

have searchable annotations. Today there are two different approaches to generate these
annotations:
One option is to let humans perform the job of annotating the resources. Although they

have the means to produce high quality annotations, this approach has a major drawback:
A well-done human annotation of a multimedia file is very time-consuming and so the
manual approach will either lead to extremely high annotation costs or it will generate a
rather unreliable set of annotations. Also, if users take on the job of annotation, each user
might have different ideas for categorizing the content and use a variety of spelling, which
consequently leads to a much more difficult retrieval process.
The other option available today is to solely rely on machine intelligence for the anno-

tation task. Compared to the manual approach, this method does not require high costs
for the annotation. However, current approaches for a machine-only annotation are not
mature enough to produce an annotation database with the desired quality.
Based on this situation the project CASAM (Computer-Aided Semantic Annotation

of Multimedia) aims to provide a solution to this problem by facilitating the synergy of
human and machine intelligence in order to significantly raise the speed and quality of
multimedia content annotation. This will be achieved by an annotation tool based on
Description Logics that will feature a human-machine interaction loop targeting a fast
convergence of human and machine knowledge.
The aproach of a human-machine interaction loop gives rise to the challenge of estab-

lishing an efficient and ergonomic communication protocol among participating modules:
machine-produced knowledge has to be communicated towards the user in a comprehen-
sible form and requests for additional information should be generated in a user-friendly
way. In order to illustrate the communication requirements, this work introduces a set of
exemplary scenarios and discusses their courses of interpration in detail. The identifica-
tion of requirements for the kind of additional information to be obtained from the user
emerges from this discussion. Based on those findings, this work proposes feasible syntax
and semantics for the generation of queries, as well as strategies for handling these queries
in order to enable efficient processing.
This work is structured into five chapters:
After this introduction, the second chapter starts with a general overview of the CASAM

project and a description of the approach pursued in this project. Also, that chapter con-
tains a more detailed description of the Reasoning for Multimedia Interpretation component
(RMI) used for the abduction of additional knowledge. This description focuses especially
on CASAM’s abduction engine within RMI, since this work’s setting is determined by the
abduction engine’s functionality.
In chapter three, the structure of multimedia documents is introduced, as well as the

targeted domain of interpretation scenarios. In succession, this chapter describes a set of
sample scenarios from the modeled domain, specifies appropriate rules for their interpre-
tation, and provides a detailed depiction of their respective interpretation courses. Next
to a practical demonstration of the procedures described in chapter two, these examples

1

1 Introduction

identify the situations in which queries are created and hereby introduce first hints on the
queries’ requirements.
Chapter four analyses the information provided by RMI’s reasoner, as well as the in-

formation required at the user interface. Based upon this analysis, different approaches
for the knowledge communication to the user interface are discussed. After determining a
suitable approach, this chapter examines requirements for the query’s content and proposes
an appropriate format. Finally, schemes for query prioritizing are discussed, which allow
for an ergonomic and efficent way of handling the queries.
A summary of this work’s results is given in chapter five, as well as an outlook for future

work.

2

2 About CASAM

2.1 Project overview

The CASAM (Computer Aided Semantic Annotation of Multimedia) project is being de-
veloped by a multinational consortium of commercial, academic, and non-profit partners.
The group consists of three research institutes, two software companies and three media
organizations representing the prospective users of the system. CASAM is co-funded by
the European Union under the Seventh Framework Programme for Research (FP7) and
supervised by the European Commission’s Information Society and Media Directorate-
General.1

The main objective of CASAM is the development of an annotation tool that facilitates
the synergy of human and computer intelligence in order to significantly accelerate the
annotation process of multimedia content.
While the project’s initial scope will be the modeled domain of news production of News

Agencies and Broadcasters, the developed methods aim for a general application on any
kind of multimedia content databases.
In order to understand the need for such a semiautomatic tool, it is helpful to have a

brief look at the two approaches for the process of multimedia content annotation available
today:

1. Manual Annotation: Currently this is the standard approach. The job of tagging
each content item individually is performed by humans entirely.

This job can be performed by specialists (for example archivists and librarians). Al-
though this option usually yields to high-quality annotations, there are obviously
major drawbacks: since each item is tagged individually by a specialist, the annota-
tion process takes a lot of time and expertise and thus is very cost-intensive. Also,
since the result of this process is strictly limited by the number and performance
of the available specialists, this approach is only suitable for rather small content
databases.

The other option for manual annotation is the community approach (social tagging
like Delicious or Flickr). This approach has the potential to overcome some of the
limitations of the specialist’s approach: since the annotation process is performed by
a (usually large and voluntarily working) crowd it has the potential to annotate large
amounts of content without requiring high costs. On the other hand, since there are
no hard requirements for the quality and quantity of annotations, the result may
vary on a large scale. Also, this introduces a new problem: each individual user may
have a different opinion on categories or spelling for the same tag and thereby new
obstacles for the retrieval process are being created.

2. Automatic Annotation: With this approach, the analysis and annotation of the
content items is performed by computers entirely, relying solely on machine intelli-
gence. Since today’s technology is still not sophisticated enough to produce optimal
annotation results autonomously, this approach cannot yield the desired results:

1 www.casam-project.eu

3

2 About CASAM

If the annotations were limited to what a computer is able to produce with a rea-
sonable error rate, the annotations would be limited to low level content features.
Although this approach might create annotations of a certain quality, there will be a
huge difference between what a user is able to see with a high level interpretation of
the content and what a computer is able to recognize with a low level analysis and
thus this approach leads to a so-called semantic gap.

It might appear desirable to let the computer perform the high level analysis, also,
but since today’s technology in this area is very limited, this approach would be
highly error prone.

CASAM aims to overcome the mentioned obstacles in the annotation processes by com-
bining these two approaches: CASAM will use all available sources to infer as much infor-
mation as possible. Its structure (called Ontology) is based on a set of concepts and their
relations to each other. It uses human input on a case-by-case basis to learn by itself and
to expand and upgrade its ontology. It adds new concepts and relations when needed and
is thus becoming increasingly “intelligent”, i. e. it does not require human interaction for
the analysis process once it has gained knowledge from similar cases.

2.2 The approach of CASAM

The project is divided into three separate modules:

∙ KDMA (Knowledge-Driven Multimedia Analysis)
a knowledge database and analysis tool that looks directly at the content in order to
retrieve low-level assertions,

∙ RMI (Reasoning for Multimedia Interpretation)
a module that processes the information derived from the initial knowledge-based
analysis, tries to retrieve high-level explanations for the obtained observations, asks
for user input where necessary, and integrates that input into the ontology as well as
the annotation, and

∙ HCI (Human-Computer Interface)
the user interface.

As described in [CAS], these modules form a human-machine interaction loop that will
lead to a highly accelerated annotation process:

1. KDMA analyzes the multimedia content (video, image, natural language) and ex-
tracts the low level information. This information consists of basic image character-
istics such as key objects, presence and number of people, context identification etc.,
as well as speech recognition and simple concepts derived from text processing.

2. At the same time, the user enters a small number of keywords that describe the
high-level concepts present in the multimedia content. Note that the keywords need
not belong to a predefined set.

3. RMI augments the KDMA-derived and user-provided information, instantiating ap-
propriately an ontology. Moreover, RMI infers new concept instances and reassesses
the context and previous input from KDMA. Results are then fed back to KDMA for
multimedia analysis driven by the renewed information. This RMI-KDMA internal
information exchange loop continues until nothing more can be inferred by RMI or
recognized by KDMA.

4

2.3 Architecture of the RMI module

4. RMI reasons about what information is needed in order to add missing instances
to the ontology or resolve any ambiguities that have arisen in the previous step. If
the annotation target has been achieved, the loop exits, otherwise the information
requirements are fed to HCI.

5. HCI transforms the information requirements into input requests towards the user.
HCI optimizes the user interaction using an effort-cost model, possibly by augment-
ing requirements to a single input request, using user-modelling to adapt to user
information input patterns, etc. Furthermore, the user interface provides the user
with the opportunity to alter the knowledge acquisition path devised by the system.

6. HCI input is transferred to RMI and the loop continues from step 3.

A visualization of the interaction loop is depicted in the following figure:

Figure 2.1: Interaction loop between the user and the CASAM modules (from [CAS])

2.3 Architecture of the RMI module

Since this work contributes to CASAM’s RMI module, this module is introduced in more
detail. For a comprehensive description of the RMI component see [GMN+09].
As described in the previous section, the initial input for RMI consists of low-level

content information extracted by KDMA, as well as a set of keywords provided by the user
via HCI. This input is initially transformed into an ABox.2

In Addition to this content-specific input, the RMI component has background knowl-
edge (a TBox and a set of rules) at its disposal. The signature of this knowledge base
contains appropriate names required for representing the knowledge of the domain used
by CASAM (edo, Environmental Domain Ontology), namely environmental issues and po-
litical interviews, as well as names required for representing information about document
structures (mco, Media Content Ontology). Also, the TBox contains appropriate axioms
to relate these names to one another.
After the input assertions received from KDMA and HCI have been transformed into an

ABox,3 this ABox is being processed by three subsequent units as described in [GMN+09]:

∙ World Generator: Based on the TBox and the preprocessed input ABox this
component produces all Markov logic worlds, (indicated in 2.2 by w1, w2, ..., wn). A

2 It is assumed that the reader is familiar with the fundamentals of knowledge representation and De-
scriptions Logics. A comprehensive guide can be found in [BCM+07], for instance.

3 In fact, some supplementary preprocessing for performance enhancements is performed on this ABox
before RMI actually starts processing the data. However, since this preprocessing step does not influence
the procedure’s results, it is not described here.

5

2 About CASAM

Figure 2.2: Conceptual architecture of the reasoning-based media interpretation engine
(from [GMN+09])

possible world is a vector of ground atoms. If one world consists of m ground atoms,
the number of possible worlds consequently is 2m. These generated worlds are the
input for the following component.

∙ World Filter: This component takes the output of the previous stage and removes
impossible worlds. For this, the subsumption axioms and domain and range re-
strictions in the TBox are considered for world elimination. The remaining worlds
w1, w2, ...wj (also known as possible worlds) are the input to the next component.

∙ World Selector: This component selects the most-probable world among the set
of possible worlds. The most-probable world has the highest probability based on
Markov logic. The most-probable world wk is transformed into an intermediate ABox
(called ABoxwk

).

After the input data passed through the three Markov logic stages, the resulting ABoxwk

is used as input for the Explanation Generator. This unit’s goal is the derivation of
further evidence for the received observations (i. e. the generation of new (“hypothesized”)
assertions from which the input assertions can be derived). This unit may return multiple
output ABoxes (i. e. explanations), all of which are fed back to the three-step process
subsequently.
Since the functionality of the Explanation Generator plays a key role in this work, its

implementation with the CASAM Abduction Engine is described in more detail in the
following section. For more information on functionality and implementation of RMI’s
other components see [GMN+09].

2.4 The CASAM Abduction Engine

The RMI module contains a component called CASAM Abduction Engine (CAE) which
performs an abductive reasoning task in order to generate so-called explanations for the
assertions found in the Input ABox. The goal of computing explanations is to derive
additional support for ABox assertions which should be satisfied in all models. The core
of the CAE component is the reasoner RacerPro 2.04 and its abduction engine.

4www.racer-systems.com

6

2.4 The CASAM Abduction Engine

Formally speaking, the abduction process is formalized as

Σ ∪Δ ∣=ℛ Γ (2.1)

where background knowledge (Σ), rules (ℛ) and observations (Γ) are given and explana-
tions (Δs) are to be computed.
The abduction engine used in the CASAM project is based on the engine already used

in the BOEMIE5 project. Since the functionality of this engine is of utmost importance
for this work, this chapter will give a summary of necessary prerequisites and the current
implementation’s procedures as described in [Kay] and [GMN+09].
The current implementation of CAE adapts this algorithm directly in order to pro-

vide first results. However, as described in [GMN+09], the runtime performance of the
procedures discussed below do not scale up very well with large rule sets. For future im-
plementations of the Abduction Engine, a modified approach with probabilistic reasoning
is planned. Hence, the presented procedures only reflect the working prototype currently in
use, rather than the efficiency-optimized engine that is going to be implemented in future
versions.

2.4.1 Preliminary definitions and functions

Variable Substitutions

Let V ars = {X,Y, ...} be a set of variables, where variables are denoted by capital letters
and Inds = {i, j, ...} be a set of individuals, where individuals are denoted by lower-case
letters. Furthermore, let V1, ..., V2 be sequences ⟨...⟩ of variables from V and z be a
sequence of individuals from Inds.
A mapping [X → i, Y → j] from variables to individuals is called variable substitution

and is denoted by �. � associates an individual from Inds to each variable from V ars. If
a substitution is applied to a variable X for which no mapping of the form [X → i] exists,
then the result is undefined. A variable X for which all required mappings are defined is
called admissible.

Grounded Conjunctive Queries

Let H,V1, ..., Vn be sequences of variables and individuals, and let Q1, ..., Qn denote con-
cept or role names. Then a conjunctive query q has the form

q : {H ∣ Q1(V1), ..., Qn(Vn)} (2.2)

The concept or role names Q1, ..., Qn define a conjunction of so-called query-atoms.
The variables to the left of the ∣ sign are called distinguished variables. They form the head
of the query q and define the query result. The variables on the right of the ∣ sign form
the body of the query. Although the head may be of arbitrary length, each variable in H
must appear in at least one of the V1, ..., Vn. Variables that appear only in the query’s
body are called non-distinguished variables and are existentially quantified.
Within this work only grounded conjunctive queries are used, i. e. all (both distinguished

and non-distinguished) variables are only bound to explicitly named individuals in the
knowledge base.
Finding an answer to a given query with respect to a knowledge base Σ means finding

admissible variable substitutions for all variables in the query such that

Σ ∣= {�(Q1(V1), ..., �(Qn(Vn)} (2.3)

5www.boemie.org

7

2 About CASAM

A special case is the boolean conjunctive query: this is a conjunctive query with a head
H of length zero. If a variable substitution � exists such that the relation (2.3) holds, the
query result will be true, otherwise the answer will be false.
Furthermore, the function transform is defined that will convert a set of ABox assertions

into a boolean conjunctive query.

Rules

A rule r has the following form:

r : P (H)← Q1(V1), ..., Qn(Vn) (2.4)

where P , Q1, ..., Qn denote concept or role names. Rules can be applied to an ABox A
in order to derive new ABox assertions. Thus the function apply(Σ, r,A) returns a set of
ABox assertions {�(P (H)}) if there exists an admissible variable substitution � such that
the answer to the query

{() ∣ Q1(V1), ..., Qn(Vn)} (2.5)

is true with respect to Σ∪A. If no such � can be found, the function apply will return the
empty set. The formal application of a set of rules ℛ = {r1, ..., rn} is defined as follows:

apply(Σ,ℛ,A) =
∪
ri∈ℛ

apply(Σ, ri,A) (2.6)

When the function apply(Σ,ℛ,A) is called, it is said that the rules in ℛ are applied to
an ABox A in a forward-chaining way.

Scoring of an explanation

Although the use of a set of rules will guarantee a finite number of generated explanations,
the size of the space of abducibles may still lead to a tremendous number of possible ex-
planations. In order to reduce the number of results, only “preferred explanations” will
be delivered. For the determination of each explanation’s preference, the abduction algo-
rithm contains a scoring function that evaluates an explanation Δ according to two criteria
originally introduced by Thagard [Tha78]: the less hypothesized assertions an explanation
contains (simplicity) and the more ground assertions (observations) an explanation con-
tains (consilience) the higher its preference score. Based on those criteria the preference
score S of an explanation can be calculated as follows:

Sf (Σ,ℛ,A,Δ) := #{� ∈ A∣Σ ∪Δ ∣=ℛ �} (2.7)
Sℎ(Δ) := #Δ (2.8)

S(Σ,ℛ,A,Δ) := Sf (Σ,ℛ,A,Δ)− SH(Δ) (2.9)

In other words, the preference score of an explanation is determined by subtracting the
number of assertions in an explanation (denoted by Sℎ) from the number of assertions in
the explanation that follow from Σ ∪Δ (denoted by Sf).
In the following algorithm the preference scoring is performed by the function select-

preferred-explanations(Δs). It takes a set of explanations Δs as an input and returns only
those explanations with a maximal preference score according to the described scoring
function.

8

2.4 The CASAM Abduction Engine

Additional Functions

For the functionality of the algorithm two more functions are needed. They should not
need any comment since they are rather self-explanatory but for the sake of completeness
they are defined here as follows:
generate-new-individuals generates a set of new individuals and ind-from(A) returns the

set of individuals from a given ABox A.

2.4.2 The ABox abduction algorithm

The Casam Abduction Engine uses the abduction algorithm provided by RacerPro’s func-
tion retrieve-with-explanation. This function implements the ABox abduction algorithm
as a non-standard retrieval service in DLs. As mentioned in the beginning of this section,
abduction is formalized as

Σ ∪Δ ∣=ℛ Γ (2.10)

where the background knowledge Σ and an observation Γ are given and explanations Δs
are to be computed. Σ is a knowledge base that consists of a TBox T as well as an ABox
A, Γ is an ABox assertion of the form P (I) (with P being a concept or role name from T
and I being a set of individuals from A).
Since the abduction algorithm is implemented as a retrieval inference service in DLs, it

requires a boolean query as input. Thus the aforementioned function transform is applied
to the ABox assertion P (I) in order to obtain a boolean query {()∣P (I)}.
The algorithm will return a set of hypothesized ABox assertions (called abducibles).

Hence, the space of abducibles has to be defined previously which will be done in terms
of a set of rules ℛ. According to these rules, the goal of the algorithm is to compute all
explanations Δs (i. e. a set of concept and role assertions) with respect to ℛ.
Assertions from the input ABox are divided into two different categories: depending on

the application context there may be some assertions that can be taken for granted (i.
e. no explanation needs to be derived). Those assertions are called bonafide assertions.
The other assertions are called fiat assertions and require an explanation. In order to
decide which assertions are to be explained, the algorithm takes a strategy function Ω as
an additional input.
This leads to RacerPro’s abduction algorithm shown in Algorithm 1 as it is presented

in [Kay]:

Algorithm abduce(T ,A,ℛ, {()∣P (I)},Ω)

Input: T , A, ℛ, {()∣P (I)}, Ω
Output: set of explanations: Δs = {Δ1, ..., Δn}
NewInds ⇐ generate-new-individuals
ExtInds ⇐ inds-from(A)
ℬQ ⇐ expand({()P (I)},ℛ)
foreach {()∣Q1(V1), ..., Qn(Vn)} ∈ ℬQ do

Δi = {Q1(�(V1,Ω)), ..., Qn(�(Vn,Ω))}
if T ∪ A ∪Δi ∕∣= ⊥ then

Δs ⇐ Δs ∪{Δi}
end

end
Δs ⇐ select-preferred-explanations(Δs)
return Δs

Algorithm 1: The ABox Abduction Algorithm

9

2 About CASAM

Additionally, [Kay] gives the following informal description of the steps performed by
the abduction algorithm:

1. Generate a set of new individuals called NewInds.

2. Get individuals from A into a set called ExtInds.

3. Expand the query {()∣P (I)} to obtain the set of sets of boolean conjunctive queries
called ℬQ.

4. Instantiate variables of each boolean conjunctive query in ℬQ with individuals from
ExtInds ∪ NewInds. The parameter Ω defines the strategy in finding bindings for a
variable. Each boolean conjunctive query with instantiated variables is an explana-
tion Δi.

5. Check for each explanation Δi whether A∪Δi is consistent with respect to T . If Δi

is consistent, then add it to the set of explanations Δs.

6. Filter out explanations from Δs with respect to some criteria such that Δs contains
preferred explanations only.

7. Return the set of preferred explanations (Δs) for the boolean query {()∣P (I)}

2.4.3 CAE’s main procedure

With the knowledge about the ABox abduction algorithm, it is now possible to describe
the main procedure of the CASAM Abduction engine currently used for the explanation
of ABox assertions. Explaining ABox assertions with respect to a set of rules means the
construction of some high-level explanation such that the ABox assertions are entailed.
The explanation of an ABox will result in another ABox. The procedure’s input will be
an ABox Γ containing a set of observations whose assertions are to be explained. Within
the algorithm the function requires fiat is used to determine whether an assertion is to be
explained.
Also, a termination function Ξ is being used. This function provides termination condi-

tions for the procedure and may be used to take resource limitations into account.
According to the previous sections, the further input parameters are a strategy function

Ω, the background knowledge consisting of a TBox T and an ABox A, and a set of Rules
ℛ.
Putting all of this together leads to the main procedure of the CASAM Abduction Engine

as it is currently implemented:

Algorithm CAE(Ω,Ξ, T ,A,ℛ, {()∣P (I))

Input: Ω,Ξ, T ,A,ℛ, {()∣P (I)}
Output: J
J ′ := {Γ}
repeat
J ′ := J
(A, �) := Ω(J) // A ∈ J , � ∈ A, so that requires_fiat(�) holds
J ′ := (J ∖{A}) ∪ abduce(T ,A,ℛ, �,Ω)

until Ξ(J) or no J and � can be selected such that J ′ ∕= J ;
return J

Algorithm 2: CAE’s main function

10

2.4 The CASAM Abduction Engine

Informally speaking, this procedure loops through all fiat assertions and explains them
via the abduction algorithm. After the procedure has finished there will be a set of ABoxes
J . Each of the resulting ABoxes will contain one combination of explanations that entails
the observation with respect to the given rules. ℐ will contain one ABox each for all
combinations of hypothesized assertions Φ that meet the following two criteria6:

∙ The explanation together with the background knowledge entails the observation
with respect to the given rules (Σ ∪Δ ∪ Φ ∣=ℛ Γ)

∙ The explanation received a maximum preference score with respect to simplicity and
consilience.

Although both criteria are an evident consequence of the algorithms discussed above it
is important to note that a maximum preference score is not necessarily a unique criterion
for a single combination of explanations. In fact, the procedure might return a considerable
large amount of ABoxes which all passed the function select-preferred-explanations.
The remainder of this work is set within the scope of the CASAM Abduction Engine:

when the term “Input ABox” is used subsequently, it refers to CAE’s input ABox Γ and
accordingly, “Result ABox” denotes an element from CAE’s result set J .

6Of course this is only true if the procedure was able to retrieve all explanations. If a termination condition
from Ξ has been met during runtime the results are obviously not complete. For the remainder of this
work it is assumed that the procedure does not terminate early.

11

2 About CASAM

12

3 Interpretation of Multimedia
Documents

If the RMI component can clearly annotate the multimedia document (i. e. the abduction
engine introduced in the previous chapter returns only a single ABox), the explanations
are fed back to KDMA and HCI.
However, if RMI is not able to complete the annotation process with its given knowledge

(i. e. multiple ABoxes are returned by CAE and thus no unambiguous result can be
obtained), it sends certain queries to the HCI component. Those queries are generated
during the abduction process and have the goal of augmenting the system’s knowledge
base by dissolving any ambiguities that may have arisen within the reasoning process.
Based on those queries, the HCI component will prompt the user to answer a set of

questions concerning the multimedia document. Any answers a user may provide to these
questions are fed back to the RMI component. Based on these answers RMI should be
able to eliminate a subset of ABoxes from the abduction engine’s result.
In order to illustrate the function of CASAM’s Abduction engine described in the pre-

vious chapter, this chapter introduces a set of sample scenarios. First, each scenario is
described with a set of input assertions (i. e. observations obtained from KDMA and
HCI) as well as a set of rules which may be used to explain the given observations. In
succession, the process of explanation retrieval is discussed in detail. This shows how RMI
generates different high-level interpretations and presents the situations in which additional
information has to be requested via the generation of queries.
The first example is rather small and will be introduced with complete rule definitions

used by RacerPro. For the sake of simplicity, the later examples will only be presented by
an informal description of the necessary steps and rules.

3.1 Structure of multimedia documents

All examples used within this work are multimedia documents built from video and audio
clips. The structure of these documents is defined in the Multimedia Content Ontology
(mco). Figure 3.1 shows the relevant portion of mco’s classes used for the structural de-
scription of these documents.

Figure 3.1: mco’s classes for the description of audio and video documents

The following list gives a brief description of the classes used within this work as well as
important relations that may apply to these classes:

13

3 Interpretation of Multimedia Documents

∙ mco:MultimediaDocument
This is the root class for multimedia documents. This class can be logically decom-
posed into AudioContent as well as VideoContent. (Actually, this class offers some
more content decompositions, but those are not used within this work.)

∙ mco:AudioContent
This class is the root class for the audio elements within the multimedia document.
An object of this class may have one or more audio segments as media decompositions.

∙ mco:VideoContent
Analogously to the AudioContent class, this is the root class for all video elements.

∙ mco:MultimediaSegment
Each MultimediaSegment may be a VideoSegment or an AudioSegment. Each seg-
ment represents a part of the clip and has the following properties: mco:hasSegment-
Locator provides an association between a MultimediaSegment and the corresponding
SegmentLocator. mco:depicts provides an association between a VideoSegment and
an individual depicted by this segment. Each segment needs to have exactly one
SegmentLocator, but may depict several individuals.

∙ mco:SegmentLocator
A SegmentLocator (of the subclass AudioLocator or VideoLocator) is associated with
exactly one MultimediaSegment and provides the means to identify the segment’s
position within the document via the properties mco:hasStart as well as mco:hasEnd.

∙ mco:overlaps
This property describes a temporal relation between a VideoLocator and an Audio-
Locator: it holds if the time interval of a video locator overlaps the time interval of
an AudioLocator.

∙ mco:meets
This property describes a temporal relation between two video locators: a VideoLo-
cator vl2 meets a VideoLocator vl1 if the end time of vl1 has the same value as the
start time of vl2.

∙ mco:hasInterpretation
This property applies to multimedia segments that have been interpreted, i. e. some
individual has been created based upon this segment. This relation links the segment
to the newly created individual.

∙ mco:builtFrom
This property applies to individuals created throughout the interpretation process
and links this new individual to those individuals it is built upon.

3.2 The environmental domain ontology

All examples presented in this work are modeled within the Environmental Domain On-
tology (edo). This ontology provides a hierarchical collection of classes for all kinds of
individuals that might occur in this domain’s scope. All of this domain’s classes are sub-
classes of Thing. Due to its size, edo’s definitions are not presented here as a whole, but
a single example should be sufficient to present the idea of edo’s hierachical organization:
for instance, there’s a class RingingTone as a subclass of SoundOfTechnology as a subclass
of Sound as a subclass of PhysicalThing as a subclass of EDO_Thing as a subclass of
owl:Thing (see Figure 3.2).

14

3.3 Sample scenarios

Figure 3.2: Example for the hierarchical organization: edo’s classes for RingingTone

As can be seen in this example, edo’s classes are defined rather intuitively. Hence, the
classes used for the following scenarios will not be formally defined with respect to edo.
Only if more than the obvious properties are needed to comprehend the interpretation
process, those additional properties are stated explicitly.
In addition to the class definitions, edo defines relations between certain classes. For

instance, it contains a relation interviews that links two persons (an interviewer and an
interviewee) together.
The subsequent examples follow the naming convention that class names start with

capital letters and individual names are created by their corresponding most specific class’s
name (starting with a lower-case letter for distinction) followed by an index number.

3.3 Sample scenarios

3.3.1 Example 1: construction at the river

Input and Rules

Segment depicts

vs1 digger1 (ConstructionVehicle)

brickpile1 (ConstructionResource)

river1
as1 constructionNoise1

overlaps

Table 3.1: relevant properties of the first example’s input

In this example, the input ABox contains only two MultimediaSegments: A video seg-
ment vs1 and an overlapping audio segment al1. Within the video segment three things
were identified: a digger, a pile of bricks and a river. In order to understand the rules
used within this example, it is important to know that in the used domain “Digger” is a
subclass of “ConstructionVehicle” and “BrickPile” is a subclass of “ConstructionResource”.
Within the audio segment, the noise of some kind of construction work was identified. The
important properties of these assertions are summarized in Table 3.1, the complete ABox
Graph created by RacerPorter1 based upon those assertions is depicted in Figure 3.3.2

A few comments are necessary on this input ABox: in this example the input asser-
tions are described as a single ABox that is loaded into RMI. In practice, the situation is
somewhat different: KDMA starts analyzing the document and communicates all low-level

1 RacerPorter is a graphical, interactive interface to RacerPro.
2 Note that the relations meets and overlaps are not actually part of the input assertions but they
rather have to be inferred by RacerPro via the information about start and end times and a set of
corresponding rules. However, since the correlation of different segments is easier to identify through
these relations, they are already marked in the input data’s summary here. Also, within the reasoning
process, those relations are in fact not used on segments but rather on locators. Since each segment is
associated with exactly one locator it is possible for the discussion of these examples to augment the
relations of locators to their corresponding segments. This prevents the need for a separate listing of
each segment’s locator.

15

3 Interpretation of Multimedia Documents

Figure 3.3: The input’s ABox Graph for the first example

analysis results to the RMI and HCI components immediately. At the same time, the
user may provide some tags to describe the high-level content of the document. These
assertions are communicated to KDMA and RMI as well. As a consequence, RMI’s input
consists of a set of ABoxes with partial information sets about the document, which arrive
in different points of time and the knowledge is built up incrementally by merging the dif-
ferent ABoxes into RMI’s knowledge base. Also, as described in chapter 2.3, RMI’s input
assertions are processed by the world generator, filter, and selector stages resulting in an
intermediate ABox Awk

. However, since neither the actual source of an assertion nor the
exact arrival time at RMI is of any relevance for this work, it is assumed for the sake of
simplicity that all assertions in the given sample scenarios are provided as a single ABox
which forms CAE’s input. Therefore, the term “input assertions” actually refers to Awk

for the remainder of this work.
The presented scenario can be interpreted according to the following rules:

1. <1-> If a video segment shows some construction resource as well as some construc-
tion vehicle, there are two possible explanations: the video either shows a construc-
tion yard or a construction site. This can be formulated as the following rule:
inSameSegment(ConstructionVehicle, ConstructionResource)
⇒ ConstructionYard OR ConstructionSite

2. <2-> If a video segment shows a construction site and an overlapping audio segment
contains construction noises, these observations can be explained in two ways: they
are either caused by construction or by demolition. These explanations can be for-
mulated as the following rule:
overlaps(ConstructionSite, ConstructionNoise)
⇒ Construction OR Demolition

3. <3-> If a construction is detected and the same video segment also depicts a river,
this can be explained via either a DamBuilding or a BridgeBuilding:
inSameSegment(Construction, River)
⇒ DamBuilding OR BridgeBuilding

Note that the above definitions are a rather informal way to present the rules’ essence.
For the corresponding implementation of this scenario with RacerPro the rules are divided
into two parts: The forward-rules (Figure 3.4) are applied in a forward-chaining way to the
ABox in order to identify relations between the given individuals. Based on those relations
the backward-rules (Figure 3.5) are used to find explanations for the observations. The
retrieval of explanations is implemented by RacerPro’s function retrieve-with-explanation
(see Section 2.4.2 for details).
An examination of RacerPro’s rules shows that there is in fact a distinction between in-

put assertions and hypothesized explanations: assertions that are part of the input ABox
are object to some depicts relationship and thus they are tightly coupled to a certain mul-
timedia segment. For individuals hypothesized during the interpretation, this relationship

16

3.3 Sample scenarios

;;; rules that are applied in a forward-chaining way:

;;; Construction and River in one videosegment => constructionToRiver
(define-rule (?co ?ri |http://www.casam-project.eu/edo.owl#constructionToRiver|)

(and (?vs |http://www.casam-project.eu/mco.owl#VideoSegment|)
(?vs ?co |http://www.casam-project.eu/mco.owl#hasInterpretation|)
(?vs ?ri |http://www.casam-project.eu/mco.owl#depicts|)
(?co |http://www.casam-project.eu/edo.owl#Construction|)
(?ri |http://www.casam-project.eu/edo.owl#River|))
:backward-rule-p nil)

;;; ConstructionResource and ConstructionVehicle in one videosegment => constructionResourceToConstructionVehicle
(define-rule (?cr ?cv |http://www.casam-project.eu/edo.owl#constructionResourceToConstructionVehicle|)

(and (?vs1 |http://www.casam-project.eu/mco.owl#VideoSegment|)
(?vs1 ?cr |http://www.casam-project.eu/mco.owl#depicts|)
(?vs1 ?cv |http://www.casam-project.eu/mco.owl#depicts|)
(?cr |http://www.casam-project.eu/edo.owl#ConstructionResource|)
(?cv |http://www.casam-project.eu/edo.owl#ConstructionVehicle|))

:backward-rule-p nil)

;;; Construction-videosegment overlaps ConstructionNoise-audiosegment => constructionSiteToConstructionNoise
(define-rule (?cs ?cn |http://www.casam-project.eu/edo.owl#constructionSiteToConstructionNoise|)

(and (?as |http://www.casam-project.eu/mco.owl#AudioSegment|)
(?vs |http://www.casam-project.eu/mco.owl#VideoSegment|)

(?as ?al |http://www.casam-project.eu/mco.owl#hasSegmentLocator|)
(?vs ?vl |http://www.casam-project.eu/mco.owl#hasSegmentLocator|)
(?vl ?al |http://www.casam-project.eu/mco.owl#overlaps|)
(?vs ?cs |http://www.casam-project.eu/mco.owl#hasInterpretation|)
(?as ?cn |http://www.casam-project.eu/mco.owl#depicts|)
(?cs |http://www.casam-project.eu/edo.owl#ConstructionSite|)
(?cn |http://www.casam-project.eu/edo.owl#ConstructionNoise|))

:backward-rule-p nil)

Figure 3.4: RacerPro’s forward-rules for the first example

is not provided directly. Instead of using the depicts property, a hypothesized individual
is object to hasInterpration relationsships with all segments involved in the explanation.
This difference has to be considered when creating the actual rules; hypothesized individ-
uals have to be treated differently from input individuals. Again, the rules’ depiction in
this work neglects this difference to simplify their presentation. If hypothesized individuals
are created based upon multiple segments, they are considered to have a start value of the
first segment’s start time and an end value of the last segment’s end time.
The rules actually used for the implementation with RacerPro are only listed once for this

example to give an idea about their functionality. For the sake of simplicity, the following
examples will be discussed only based upon the more informal rule’s presentation as shown
above.

Interpretation

Based on the provided assertions and rules it is now possible to describe the interpretation
process as performed by RMI: Initially the ABox assertions fulfill only the preconditions
of the first rule. Hence, this rule is applied to explain digger1 and brickPile1, the other
assertions and rules do not have any influence on this interpretation step.3 Application
of rule 1 leads to two different explanations: the video depicts a construction yard or a
construction site.4

Since the interpretation engine obviously lacks some necessary information at this point,
3 Note that this explains the aforementioned statement that it is not necessary to consider source or
temporal order of the assertions: as long as the preconditions of the first rule are not met, the inter-
pretation process is not able to start. However, as soon as the preconditions are met these assertions
can be explained independently of the number or kind of any other possible assertions.

4Also, it is always possible that none of the explanations found is right.

17

3 Interpretation of Multimedia Documents

;;; Rules applied backwards:

;;; Rule 1, Part 1:
;;; ConstructionResource + ConstructionVehicle => ConstructionSite
(define-rule (?cr ?cv |http://www.casam-project.eu/edo.owl#constructionResourceToConstructionVehicle|)

(and (?cr |http://www.casam-project.eu/edo.owl#ConstructionResource|)
(?cv |http://www.casam-project.eu/edo.owl#ConstructionVehicle|)
(?cs ?cr |http://www.casam-project.eu/mco.owl#builtFrom|)

(?cs ?cv |http://www.casam-project.eu/mco.owl#builtFrom|)
(?cs |http://www.casam-project.eu/edo.owl#ConstructionSite|))
:forward-rule-p nil)

;;; Rule 1, Part 2:
;;; ConstructionResource + ConstructionVehicle => ConstructionYard
(define-rule (?cr ?cv |http://www.casam-project.eu/edo.owl#constructionResourceToConstructionVehicle|)

(and (?cr |http://www.casam-project.eu/edo.owl#ConstructionResource|)
(?cv |http://www.casam-project.eu/edo.owl#ConstructionVehicle|)
(?cs ?cr |http://www.casam-project.eu/mco.owl#builtFrom|)

(?cs ?cv |http://www.casam-project.eu/mco.owl#builtFrom|)
(?cs |http://www.casam-project.eu/edo.owl#ConstructionYard|))
:forward-rule-p nil)

;;; Rule 2, Part 1:
;;; ConstructionSite + ConstructionNoise => Construction
(define-rule (?cr ?cv |http://www.casam-project.eu/edo.owl#constructionSiteToConstructionNoise|)

(and (?cr |http://www.casam-project.eu/edo.owl#ConstructionSite|)
(?cv |http://www.casam-project.eu/edo.owl#ConstructionNoise|)
(?cs ?cr |http://www.casam-project.eu/mco.owl#builtFrom|)

(?cs ?cv |http://www.casam-project.eu/mco.owl#builtFrom|)
(?cs |http://www.casam-project.eu/edo.owl#Construction|))
:forward-rule-p nil)

;;; Rule 2, Part 2:
;;; ConstructionSite + ConstructionNoise => Destruction
(define-rule (?cr ?cv |http://www.casam-project.eu/edo.owl#constructionSiteToConstructionNoise|)

(and (?cr |http://www.casam-project.eu/edo.owl#ConstructionSite|)
(?cv |http://www.casam-project.eu/edo.owl#ConstructionNoise|)
(?cs ?cr |http://www.casam-project.eu/mco.owl#builtFrom|)

(?cs ?cv |http://www.casam-project.eu/mco.owl#builtFrom|)
(?cs |http://www.casam-project.eu/edo.owl#Destruction|))
:forward-rule-p nil)

;;; Rule 3, Part 1:
;;; Construction + River => DamBuilding
(define-rule (?cr ?cv |http://www.casam-project.eu/edo.owl#constructionToRiver|)

(and (?cr |http://www.casam-project.eu/edo.owl#Construction|)
(?cv |http://www.casam-project.eu/edo.owl#River|)
(?cs ?cr |http://www.casam-project.eu/mco.owl#builtFrom|)

(?cs ?cv |http://www.casam-project.eu/mco.owl#builtFrom|)
(?cs |http://www.casam-project.eu/edo.owl#DamBuilding|))
:forward-rule-p nil)

;;; Rule 3, Part 2:
;;; Construction + River => BridgeBuilding
(define-rule (?cr ?cv |http://www.casam-project.eu/edo.owl#constructionToRiver|)

(and (?cr |http://www.casam-project.eu/edo.owl#Construction|)
(?cv |http://www.casam-project.eu/edo.owl#River|)
(?cs ?cr |http://www.casam-project.eu/mco.owl#builtFrom|)

(?cs ?cv |http://www.casam-project.eu/mco.owl#builtFrom|)
(?cs |http://www.casam-project.eu/edo.owl#BridgeBuilding|))
:forward-rule-p nil)

Figure 3.5: RacerPro’s backward-rules for the first example

18

3.3 Sample scenarios

it will send a query to HCI in order to decide whether the scene depicts a construction
yard or a construction site (or neither). Details of the queries are described in the following
chapter.
Although it is not possible to compute an unambiguous explanation at this point, due

to efficiency considerations it would not be wise to pause the interpretation process until
the necessary information is obtained. Instead of waiting for the query’s answer, RMI will
consider both possibilities and proceed with the interpretation on different paths. Hence,
the current ABox is cloned and one of the possible explanations is added to each of the
ABoxes subsequently. As a result, RMI maintains two ABoxes in parallel: ABox1 contains
the interpretation ConstructionYard while ABox2 contains ConstructionSite.5

Note that the interpretation step does not always have to return two different explana-
tions. Depending on the given assertions and rules the number of generated explanations
may vary. Only if more than one explanation can be found it is necessary to clone the
ABox. Obviously, the number of ABox clones is determined by the number of possible
explanations.
In the next step RMI tries to continue the explanation of each ABox: The Assertions

of ABox1 do not meet the preconditions of any unprocessed rule. Thus, no further inter-
pretation is possible and this interpretation path ends. Through the additional assertion
ConstructionSite in ABox2 and the initial assertion constructionNoise1, the preconditions
of rule 2 are met and therefore this rule is applied. Again, this leads to two possible expla-
nations. Thus, a new query is generated, the ABox is cloned again, and the explanation
Demolition is added to the resulting ABox3, while Construction is added to ABox4.
RMI continues to search for interpretations for each of the ABoxes: ABox3 does not

meet the precondition for any other rule and thus marks another end of an interpretation
path. The additional assertion Construction together with the assertion river1 in ABox4
fulfills the preconditions for rule 3 and thereby this ABox can be explained further. Ap-
plication of this rule leads to two different explanations yet again. Hence, another query is
generated, the ABox is cloned again, and the explanation DamBuilding is added to ABox5
and Bridgebuilding is added to ABox6.
At this point none of the ABoxes can be interpreted any further (i. e. all ABoxes form

leaves in the interpretation tree) and thus the interpretation process for this scenario is
finished.
A visualization of the described interpretation process is shown in Figure 3.6: ABoxes

are depicted as white ellipses, final ABoxes (i. e. ABoxes which cannot be explained any
further) are marked with an underlying shade additionaly. Interpretation steps are repre-
sented as green diamonds and their captions denote the observations which are explained
in each particular step. The corresponding rules for each explanation step are specified
within the blue rectangles, any queries that may arise during the interpretation are denoted
as red arrows. The resulting hypotheses of an explanation (i. e. the additional assertions
that have to be added to subsequent ABoxes) are marked on the arrows originating from
the explanation step, respectively.
As depicted, the interpretations (and the corresponding queries) are categorized into

different levels: first-level interpretations are built directly from the input observations,
second-level interpretations are built from first-level interpretations and so on. Note that
it is not necessary for a high-level interpretation to be built completely from interpretations
of the next-lower lever, but it can also include assertions from lower levels. The actual level
of each interpretation is one level above the highest level of the assertions it is built from.
For instance, the interpretation DamBuilding in the above example is of level three because

5 Actually, the individuals created by RacerPro during the interpretation process are named IND-1, IND-
2, and so on. However, in order to achieve an easier comprehension of the examples, the interpretation
results are presented via their corresponding class names rather than their actual (quite expressionless)
individual names.

19

3 Interpretation of Multimedia Documents

3

2

1

0 InputABox

Explain:

 digger1, brickpile1

ABox1
ABox1 ABox2

ConstructionSiteConstructionYard

Explain:

ConstructionSite,

constructionNoise1

ABox3
ABox3 ABox4

ConstructionDemolition

Explain:

Construction, river1

ABox5
ABox5

ABox6
ABox6

BridgeBuildingDamBuilding

Rule 1:

inSameSegment(ConstructionVehicle,

ConstructionResource)

ð ConstructionYard OR ConstructionSite

Rule 2:

Overlaps(ConstructionSite,

ConstructionNoise)

ð Construction OR Demolition

Rule 3:

inSameSegment(Construction,

River)

ð DamBuilding OR BridgeBuilding

Query3 to HCI

Query2 to HCI

Query1 to HCI

Figure 3.6: Tree view of the first example’s interpretation process

it involves the second-level interpretation Construction as well as the input (or “level zero”)
assertion river1. Formally speaking, the level of an interpretation is determined by its
longest chain of builtFrom relations.

3.3.2 Example 2: smoke in the sky

Input and Rules

This example is a bit more complex than the previous one. The input consists of three
video segments and one audio segment. In the first video segment vs1 some smoke and the
sky is detected. The next segment vs2 depicts some kind of vehicle while the last segment
vs3 depicts a crowd. In the audiosegment the sound of a siren could be detected. While
it is not necessary to know the exact timing of each segment it is important to note that
vs2 meets vs1 and vs3 meets vs2. Also, the audio segment is supposed to overlap with the
second video segment. The input’s relevant properties are summarized in Table 3.2, the
corresponding ABox graph is shown in Figure 3.7.
For the interpretation of this scenario, the following set of rules is being used:

1. If a video segment depicts the sky, it can be concluded that some kind of outdoor
location is shown.
Sky
⇒ OutdoorLocation

2. If a videosegment shows an outdoor location and smoke is depicted within this seg-
ment, there might be two explanations for the smoke’s source: there is either a fire
or a factory.

20

3.3 Sample scenarios

Segment depicts

vs1 sky1
smoke1

vs2 vehicle1
vs3 crowd1
as1 soundOfSiren1

meets

meets
overlaps

Table 3.2: relevant properties of the second example’s input

inSameSegment(OutdoorLocation, Smoke)
⇒ Factory OR Fire

3. If a video segment shows a vehicle and at the same time an audio segment depicts a
siren sound, it can be reasoned that the vehicle is either a police car or a fire engine.
overlaps(Vehicle, SoundOfSiren)
⇒ PoliceCar OR FireEngine

4. If one video segment depicts a crowd and the following segment depicts a police car (i.
e. the police car meets the crowd), there are two explanations for this scenario: this
event either depicts a demonstration observed by the police, or it is a conference (for
example with a prominent person attenting or with an explosive topic and therefore
requiring attendance of the police).
meets(PoliceCar, Crowd)
⇒ Conference OR Demonstration

5. If the crowd is met by a fire engine instead of a police car, it can be assumed that
some kind of emergency happened that required the presence of a fire engine and
that the crowd is made up by curious onlookers.
meets(FireEngine, Crowd)
⇒ EmergencyEvent

6. If a video segment is interpreted as a fire and this segment is met by some kind of
emergency event, it is likely that the fire engine is present to extinguish the fire.
meets(EmergencyEvent, Fire)
⇒ FireExtinguishEvent

7. If a video segment is interpreted as a factory and this segment is met by a demon-
stration, it can be assumed that there is a demonstration against the factory.
meets(Demonstration, Factory)
⇒ DemonstrationAgainstFactory

Note that the rules presented here impose a rather tight coupling of the assertions’
temporal relations. In order to capture the meaning of this scenario such a tight coupling
is not necessary. In fact, the rules actually implemented might be triggered by several
similar relations. Take a look at rule 4 for an instance: the order of appearance of the
police car and the crowd may be switched around without changing the meaning of the
scene. Also, it could happen that both observations are depicted within the same segment.
Obviously, a reliable interpretation algorithm should come to the same conclusions in this
case independently of the exact order. However, in order to keep the rules clear, only
preconditions occuring in this example are presented, while the expedient rule set used by
RacerPro actually contains several supplementary rules in order to capture situations with
obersavations of equivalent substance.

21

3 Interpretation of Multimedia Documents

Figure 3.7: The input’s ABox Graph for the second example

Interpretation

Now it is possible to describe the interpretation process of this scenario as depicted in
Figure 3.8: since the first video segment depicts the sky, it can be concluded by rule 1
that an outdoor location is shown. Since no other explanation is possible, this assertion is
directly added to the current ABox.6 Also, the assertions vehicle1 and sirensound1 meet
the preconditions of rule 3. Since this rules lead to two possible explanations, the current
ABox is cloned, a query is send to HCI and the assertion PoliceCar is added to ABox2
and FireEngine is added to ABox3.
In the next step rule 2 is examined: both of the existing ABoxes meet the rule’s precondi-

tions (OutdoorLocation and smoke1), so the same interpretation step has to be performed
on both ABoxes. Since the interpretation leads to two possible explanations, each of the
ABoxes is cloned and a corresponding query is send for each cloning process, respectively.
As a result, there are now four different ABoxes: ABox4 gets the assertion Factory and
ABox5 gets the assertion Fire, both of them contain the previous assertion PoliceCar. In
the same way, the explanations are added to ABox6 and ABox7 respectively, but they
contain the assertion FireEngine instead of PoliceCar.
In the following, rule 4 is examined: two of RMI’s currently maintained ABoxes (ABox4

and ABox5) fulfill the preconditions of this rule (PoliceCar and crowd1). As a result,
both of these ABoxes are cloned, a corresponding query is send to HCI for each cloning
process, and the rule’s possible explanation Conference is applied to ABox8 and ABox10
and Demonstration is applied to the ABox10 and ABox11 respectively.
In a similar way rule 5 is applied to ABox6 and ABox7: both of them meet the rule’s pre-

condition (FireEngine and crowd1). This leads to the single explanation EmergencyEvent,
which is applied to both ABoxes resulting in ABox12 and ABox13.
At this point, all second level interpretations have been performed and RMI currently

maintains six different ABoxes. Only two of them offer an option to continue the interpre-
tation process:
ABox9 contains the assertions Demonstration and Factory in adjacent video segments

and thus the preconditions for rule 7 are met. Hence, this situation leads to the third level
interpretation DemonstrationAgainstFactory.

6 Since only a single explanation could be retrieved, no ambiguities arise during this step and RMI is able
to continue the interpretation process on a unique path. Hence, no query is necessary at this point to
proceed towards a unique solution. However, the occurrence of only a single explanation to a certain
observation does not necessarily guarantee the correctness of this explanation. Since the continuation
of the interpretation process will rely on this explanation, it might still be desirable to verify this result
via a query to HCI. The question whether this situation should produce a query or not will be discussed
in the next chapter.

22

3.3 Sample scenarios

3

2

1

0 InputABox

Explain:

 sky1

ABox1

OutdoorLocation

Explain:

soundOfSiren1, vehicle1

ABox2 ABox3

FireEngine
PoliceCar

Explain:

OutDoorLocation,

smoke1

ABox4

ABox5

Fire

Factory

Rule 1:

Sky

ð OutdoorLocation

Rule 3:

overlaps: Vehicle, SoundOfSiren

ð PoliceCar OR FireEngine

Rule 2:

inSameSegment: OutdoorLocation,

Smoke

ð Factory OR Fire

Query3 to HCI

Query2 to HCI

Explain:

OutDoorLocation,

 smoke1

ABox7ABox6

Fire Factory

Rule 2:

inSameSegment: OutdoorLocation,

Smoke

ð Factory OR Fire

Query4 to HCI

Explain:

PoliceCar, crowd1

ABox8
ABox8 ABox9

Demonstration
Conference

Rule 4:

meets: PoliceCar, Crowd

ðConference OR Demonstration

Query5 to HCI

Explain:

PoliceCar, crowd1

ABox10
ABox10

ABox11
ABox11

DemonstrationConference

Rule 4:

meets: PoliceCar, Crowd

ðConference OR Demonstration

Query6 to HCI

Explain:

Demonstration,

Factory

ABox14
ABox14

DemonstrationAgainstFactory

Rule 7:

meets: Demonstration, Factory

ðDemonstrationAgainstFactory
Query9 to HCI

Query1 to HCI

Explain:

FireEngine, crowd1

ABox12

EmergencyEvent

Rule 5:

meets: FireEngine, Crowd

ð EmergencyEvent

Explain:

EmergencyEvent,

Fire

ABox15
ABox15

FireExtinguishEvent

Rule 6:

meets: EmergencyEvent, Fire

ð FireExtinguishEvent
Query10 to HCI

Query7 to HCI

Explain:

FireEngine, crowd1

Rule 5:

meets: FireEngine, Crowd

ð EmergencyEvent

ABox13
ABox13

EmergencyEvent

Query8 to HCI

Figure 3.8: Tree view of the second example’s interpretation process

23

3 Interpretation of Multimedia Documents

ABox12 fulfills the criteria for rule 6 (EmergencyEvent and Fire), which consequently
leads to the interpretation FireExtinguishEvent.
Since at this point nothing more can be inferred from the given assertions and rules,

RMI’s interpretation process terminates here.

Optimization of the Interpretation Process

The interpretation process discussed above is the result of CAE’s main procedure as de-
scribed in Section 2.4.3. While this algorithm worked flawlessly for the first example, this
example exposes some drawbacks of the current implementation: every interpretation that
produces multiple results yields to a branch in the interpretation path and an independent
interpretation is performed on each branch subsequently. This is not a problem as long as
only one of the available rules is applicable to each ABox (as it was the case in example
1). However, if more than one rule is applicable to the current ABox, one of the rules has
to be applied first and thus a branch is created. In the next step, another rule that has
been applicable before is applied to all of the previous interpretation’s results. Hence, the
same interpretation is performed multiple times and thus computing resources are wasted
and (probably even worse) multiple queries with the same content will be sent to the user.
For instance, take a look at the police car branch in the previous example: for ABox1

rule 3 is applicable as well as rule 2. Since rule 3 has been applied first, the interpretation
based on rule 2 has to be carried out twice, although it could have been applied to ABox1
also.7

A possible solution to this problem could be a different way of handling the interpretation
branching: if at some point more than one rule is applicable to the current ABox, RMI
would branch the interpretation into different paths before the first rule is applied. Each
possible rule is applied subsequently and the generated explanations lead to ABox-clones
as they have done before. This way, RMI already has knowledge about further additions
to the currently maintained ABoxes without actually adding this knowledge yet. Instead,
the ABoxes are interpreted as far as possible with the current rules and assertions. Only
if nothing more can be inferred from the current set of assertions, the assertions from the
other branch are added. Although this method of holding back assertions might not appear
desirable at first glance, since some rules could be fired sooner with the missing assertions,
a closer look at the process shows that the number of required interpretation steps could
possibly be reduced significantly.
The modified process for the second example is shown in 3.9: instead of applying rule 3

to ABox1 and subsequently applying rule 2 to the resulting ABoxes of rule 3, both rules are
actually directly applied to ABox1. As a result, two different major branches evolve whose
hypotheses are not mutually exclusive (i. e. explanations from one branch are also possible
explanations in the other branch). Without actually adding the resulting explanations to
each branch, both of them are separately interpreted as far as possible, while at the same
time the knowledge about the existence of additional hypotheses is maintained. Once all
possible interpretations have been carried out, the different branches are merged together
into all possible combinations of explanations. This merging step (depicted by the colored
arrows) substitutes the “clone-and-add-explanations-step” that has been skipped for rule
3. Subsequently, the resulting ABoxes after the merging step can be subject to further
interpretations.
Note that the results of this method are the same as before, but three out of ten inter-

pretation steps (and thereby three corresponding queries to the user) were saved.

7 There is no specification as to which rule has to be applied first. Of course, rule 2 could have been
applied to ABox1 first. However, this would not have any effect on the problem, since the algorithm’s
functionality would apply rule 3 twice subsequently.

24

3.3 Sample scenarios

2

1

3

0 InputABox

Explain:

 sky1

ABox1

OutdoorLocation

Explain:

soundOfSiren1, vehicle1

ABox2

Rule 1:

Sky

ð OutdoorLocation

Rule 3:

overlaps(Vehicle, SoundOfSiren)

ð PoliceCar OR FireEngine
Query2 to HCI

Explain:

PoliceCar, crowd1

ABox7

DemonstrationConference

Rule 4:

meets(PoliceCar, Crowd)

ðConference OR Demonstration

Query4 to HCI

Explain:

Demonstration,

Factory

ABox15
ABox15

DemonstrationAgainstFactory

Rule 7:

meets(Demonstration, Factory)

ðDemonstrationAgainstFactory
Query6 to HCI

Query1 to HCI

Explain:

EmergencyEvent,

Fire

ABox16
ABox16

FireExtinguishEvent

Rule 6:

meets(EmergencyEvent, Fire)

ð FireExtinguishEvent
Query7 to HCI

Explain:

FireEngine, crowd1

Rule 5:

meets(FireEngine, Crowd)

ð EmergencyEvent

EmergencyEvent

Query5 to HCI

Explain:

OutdoorLocation,

smoke1

Rule 2:

inSameSegment(OutdoorLocation, Smoke)

ð Factory OR Fire
Query3 to HCI

ABox3

ABox5ABox4

PoliceCar

FireEngine

Factory Fire

ABox8ABox6

ABox10
ABox13

ABox13
ABox12

ABox12
ABox11

ABox11
ABox9

ABox9 ABox14

Figure 3.9: Tree view of the second example’s optimized interpretation process

25

3 Interpretation of Multimedia Documents

Audio Content

Video Content

00:10 00:20 00:30 00:40 00:50 01:0 01:10 01:20

as3 as4 as1 as2 as5

vs3 vs4 vs1 vs2 vs5

Figure 3.10: Timeline for example 3

3.3.3 Example 3: car-related events

Input and Rules

The last example presented here is a film sequence that consists of five audio segments
and five video segments. All observations come as pairs of overlapping audio and video
segments: the first segment shows a car overlapping with the noise of a door slam. The
second pair shows a car also, this time overlapping with the sound of an engine. In the
third pair, a building is depicted that overlaps with the sound of another door slam. The
fourth pair shows a person and the noise of foot steps is present. In the last pair the video
segment shows a crowd while the audio segment depicts applause.
Also, there are important temporal relations between the video segments: vs3 is the first

segment in this document, directly followed by vs4. vs4 is followed by vs1, vs1 is followed
by vs2, and vs2 is followed by vs4. These properties are summarized in the following table.
Since the timing is rather important in this example, the information from Table 3.3 is
additionally visualized on a time line in Figure 3.10. The corresponding graph is depicted
in Figure 3.11.

Segment depicts
vs1 car1
vs2 car2
vs3 building1

vs4 person1
vs5 crowd1
as1 doorSlam1
as2 engineSound1
as3 doorSlam2
as4 footstepsSound1

as5 applause1

meets

overlaps

overlaps

Table 3.3: relevant properties of the third example’s input

This ABox is going to be interpreted according to the following rules:

1. If a car depicted in a video segment overlaps with the noise of a slammed door, this
event may be either a car entry or a car exit.
overlaps(Car, DoorSlam)
⇒ CarEntry OR CarExit

2. If a car overlaps with some kind of engine sound, it can be assumed that it is a car

26

3.3 Sample scenarios

ride.
overlaps(Car, EngineSound)
⇒ CarRide

3. The overlapping of a building with the noise of a slammed door can be interpreted
either as a building entry or a building exit.
overlaps(Building, DoorSlam)
⇒ BuildingEntry OR BuildingExit

4. If the video shows a person and the audio depicts the sound of footsteps, its probably
a person walking.
overlaps(Person, FootstepsSound)
⇒ Walk

5. A crowd in the video segment overlapping with the sound of applause in the audio
segment could be explained as a cheering crowd.
overlaps(Crowd, Applause)
⇒ CheeringCrowd

6. If a car entry is followed by a car ride, this can be explained with the event of
somebody getting into a car and driving away.
meets(CarRide, CarEntry)
⇒ LeavingEvent

7. If a car ride is followed by a car exit, it could be a car arriving and the driver leaving
the car.
meets(CarExit, CarRide)
⇒ ArrivingEvent

8. The two rules defined above seem to be the obvious observations for either an arrival
or an departure. However, it might be possible that the person entering or exiting
the car is not identical to the driver. In this case, two different events are thinkable
(e. g. imagine the car being a cab). If a car exit is followed by a car ride, this could
be explained by somebody being dropped off and the car driving on afterwards.
meets(CarRide, CarExit)
⇒ DriveOnEvent

9. Also, it might be possible that somebody is picked up by car, in this case the car
entry would be preceded by a car ride.
meets(CarEntry, CarRide)
⇒ PickUpEvent

10. If a walk is followed by a building entry, it can be interpreted as a person entering a
building.
meets(BuildingEntry, Walk)
⇒ PersonEntersBuilding

11. In the same way as shown in the previous rule, a building exit followed by a walk
can be interpreted as a person leaving a building.
meets(Walk, BuildingExit)
⇒ PersonLeavesBuilding

12. The Explanations from the previous rules can be used to obtain interpretations on a
higher level: If a person leaves a building and in the following a leaving event takes
place, it can be assumed that a person left a building, got into a car, and drove away.

27

3 Interpretation of Multimedia Documents

meets(LeavingEvent, PersonLeavesBuilding)
⇒ PersonLeavesBuildingAndDrivesAway

13. Since according to the previous rules a person might leave via a pick up event as
well, the same event as before might be inferred by a different input:
meets(PickUpEvent, PersonLeavesBuilding)
⇒ PersonLeavesBuildingAndDrivesAway

14. If an arriving event or a drive on event is followed by a person entering a building
this can be interpreted similarly to the previous scenarios leading to two more rules:
meets(PersonEntersBuilding, ArrivingEvent)
⇒ PersonArrivesAndEntersBuilding

15. meets(PersonEntersBuilding, DriveOnEvent)
⇒ PersonArrivesAndEntersBuilding

16. If somebody arrives by car (either depicted via an arriving event or a drive on event)
and this event is followed by a cheering crowd, it can be explained by the arrival of
some prominent person that is greeted by the crowd. This leads to two more rules:
meets(CheeringCrowd, ArrivingEvent)
⇒ ProminentPersonArrives

17. meets(CheeringCrowd, DriveOnEvent)
⇒ ProminentPersonArrives

Before proceeding to this example’s interpretation, a few comments on the described
scenario are necessary. Note that the examples presented previously were fairly indepen-
dent of their exact temporal relations. Opposed to those examples, the current scenario’s
rules heavily rely on exact timing. For instance, the observations of a building overlapping
with a door slam followed by a person walking are considered. According to the presented
rules, this could be interpreted as a person leaving a building. However, if the same ob-
servations would occur in a different order (i. e. a person walking, followed by a building
overlapping with a door slam) the previous interpretation would not hold any longer, but
instead this observation could be interpreted as the event of a person entering a building
instead. Obviously those two explanations have quite a different meaning and could lead
to different higher-level interpretations that are highly dissimilar to each other (as shown
later on in the discussion of possible interpretations).
If a switched order of events would lead to a different interpretation, the correspond-

ing rules for both situations are presented. This shows how the interpretation of given
observations might lead into different directions solely depending on the observations’ or-
der. In order to maintain an easy overview of the rules necessary for the described input’s
interpretation, rules that do not apply to this example are listed in gray.

Interpretation

In order to keep the presentation of the interpretation’s process as simple as possible, this
example is processed only according to the optimization suggested in the previous example.
See Figure 3.12 for a visualization of the process.
In this example, there are quite a few explanations that can be directly inferred from

the input’s data: from car2 and engineSound1 rule 2 can lead to a CarRide, person1
and footstepsSound1 produce a Walk via rule 4, and crowd1 and applause1 lead to a
CheeringCrowd through rule 5. All of these rules only lead to a single explanation each
and thus can be applied conveniently in an arbitrary order to the input ABox.

28

3.3 Sample scenarios

Figure 3.11: The input’s ABox Graph for the third example

29

3 Interpretation of Multimedia Documents

3

2

3

13

1

0 InputABox

Explain:

car1,doorslam1

ABox3

Rule 1:

overlaps(Car, DoorSlam)

ð CarEntry OR CarExit

ABox4

CarEntry CarExit

Explain:

car2, engineSound1

ABox1

Rule 2:

overlaps(Car, EngineSound)

ð CarRide

CarRide

Query1 to HCI

Explain:

person1,

footstepsSound1

ABox2

Rule 4:

overlaps(Person, Footstepssound)

ð Walk

Walk

Explain:

crowd1, applause1

ABox3

Rule 5:

Overlaps(Crowd, Applause)

ð CheeringCrowd

CheeringCrowd

Query2 to HCI
Query3 to HCI

Query4 to HCI
Explain:

building1,

doorslam2

Rule 3:

overlaps(Building, DoorSlam)

ð BuildingEntry OR BuildingExit

BuildingEntry

BuildingExit

Explain:

CarRide, CarEntry

ABox7

Rule 6:

meets(CarRide, CarEntry)

ð LeavingEvent

LeavingEvent

Query6 to HCI

Explain:

CarRide, CarExit

ABox8

Rule 8:

meets(CarRide, CarExit)

ð DriveOnEvent

DriveOnEvent

Query7 to HCI

ABox5

ABox6

Explain:

Walk, BuildingExit

Rule 11:

meets(Walk, BuildingExit)

ð PersonLeavesBuilding

PersonLeavesBuilding

Query8 to HCI

Query5 to HCI

ABox9

Explain:

CheeringCrowd,

DriveOnEvent

Rule 17:

meets(CheeringCrowd, DriveOnEvent)

ð ProminentPersonArrives

ProminentPersonArrives

Query9 to HCI

ABox10

ABox11
ABox11 ABox13

ABox14
ABox14

ABox12
ABox12

Explain:

LeavingEvent,

PersonLeaves-

Building

ABox16
ABox16

PersonLeavesBuildingAndDrivesAway

Rule 12:

meets(LeavingEvent, PersonLeavesBuilding)

ð PersonLeavesBuildingAndDrivesAway
Query10 to HCI

Figure 3.12: Tree view of the third example’s interpretation process

30

3.3 Sample scenarios

Also, the input assertions fulfill the preconditions of two further rules. Since both of those
rules yield to more than one explanation, the interpretation branches into two different
paths as described in Section 3.3.2.
From car1 and the overlapping doorSlam1 it can be concluded via rule 1 that this event

depicts either a CarEntry or a CarExit (stored in ABox3 and ABox4, respectively). In the
same way building1 and doorSlam2 combined with rule 3 lead to either a BuildingEntry
or a BuildingExit (ABox5 and ABox6).
Continuing on the path containing the car entry (in ABox3), rule 6 is applicable now

to the sequence of CarEntry and CarRide and thus this sequence can be explained as a
LeavingEvent. The resulting ABox7 cannot be further explained by the rules available.
The situation on the car exit path is quite similar, the sequence of the CarEntry and

CarRide can be explained through rule 8 as a DriveOnEvent and this is stored in ABox8.
Now the interpretation goes back up one level and switch to the other path where rule 3

had been applied. For ABox5 (containing the BuildingEntry) no more rules are applicable
so this path can not be continued for the moment.
For the next ABox (ABox6 containing the BuildingExit) rule 11 is now applicable because

the BuildingExit is met by the Walk. Thus, application of rule 11 leads to PersonLeaves-
Building. For the resulting ABox9 no more rules apply either, so the whole path containing
the building-related events can be disregarded for now.
Switching back to the path with the car-related events, only ABox8 can be further

interpreted: since this ABox contains CheeringCrowd as well as DriveOnEvent, rule 17 can
be used for its interpretation and the event ProminentPersonArrives is obtained.
Now all currently maintained ABoxes are interpreted as far as possible. Hence, the two

different paths are merged together, leading to the following four ABoxes: ABox11 con-
tains LeavingEvent and BuildingEntry, ABox12 LeavingEvent and PersonLeavesBuilding
(and thereby also BuildingExit), ABox13 contains ProminentPersonArrives (and thereby
also DriveOnEvent), and finally ABox 14 contains ProminentPersonArrives and Person-
LeavesBuilding.
Of the resulting set of ABoxes, only ABox12 is applicable to further rules: from the

sequence of PersonLeavesBuilding and LeavingEvent it can be inferred via rule 12 that
this sequence depicts the event PersonLeavesBuildingAndDrivesAway.
Now all ABoxes are interpreted exhaustively with respect to the available rule-set. Hence,

RMI terminates the interpretation process here.

31

3 Interpretation of Multimedia Documents

32

4 Query-generation

As discussed in the previous chapter, RMI creates a query for each explanation step that
leads to multiple explanations. This chapter will discuss details about those queries. First
of all, it should be noted that a query is created automatically within RacerPro for each
interpretation step (see section 2.4.3) that returns multiple explanations. In order to
describe the initial situation, this chapter starts with the discussion of the information
about an interpretation step that can be directly obtained by RacerPro.

4.1 An interpretation step in RacerPro

To describe the information provided by RacerPro a sample interpretation step is examined
here in more detail. Consider the first interpretation step from the “Construction at the
River”-Example: this step searches for an explanation for the occurrence of a brick pile
and a digger within the same video segment.

4.1.1 Function call for explanation retrieval

The corresponding function call sent to RacerPro is depicted in the following figure. It
instructs RacerPro to start the abduction algorithm as described in Section 2.4.2 in order
to retrieve explanations for the specified observations.

(retrieve-with-explanation nil
(#!KDMA:brickPile1 #!KDMA:digger1
#!edo:constructionResourceToConstructionVehicle)

:final-consistency-checking-p t :only-best-p t :show-score-p t
:order-by :new-paper-fn :equi-order-by :prefer-new-inds)

Figure 4.1: RacerPro’s function call to obtain explanations for the co-occurrence of the
digger and brick pile in the same video segment

4.1.2 RacerPro’s reply

After completing the abduction algorithm, RacerPro replies with a description of possible
explanations that would entail the given observation. RacerPro’s reply to the aforemen-
tioned explanation step is listed in Figure 4.2.
This answer has the following meaning: each explanation found by RacerPro starts with

the keyword (:tuple), ergo two explanations were found: lines 2-21 describe the first
explanation, lines 22-41 describe the second one. To explain the relevant parameters of
this answer, the first example is examined in more detail. The most important part of this
answer is found in lines 3-7: line 3 states that one new individual has been created and
named IND-3. The following lines name the assertions that had to be hypothesized in order
to create the new individual, namely that IND-3 is of the class ConstructionSite (line 6)
and that is has been built from the brick pile and the digger (lines 5 and 7, respectively).
The following lines provide details about the explanation’s scoring (see Section 2.4.1

for details on the scoring function): two assertions are entailed (lines 12-15) and three
assertions are hypothesized (lines 17-21). Hence, this explanation’s score is -1.

33

4 Query-generation

1 (t
2 (((:tuple)
3 (:new-inds IND-3)
4 (:hypothesized-assertions
5 (related IND-3 #!KDMA:brickPile1 #!mco:builtFrom)
6 (instance IND-3 #!edo:ConstructionSite)
7 (related IND-3 #!KDMA:digger1 #!mco:builtFrom))
8 (:score
9 -1

10 :new-paper-fn
11 ((:old-inds 2 #!KDMA:brickPile1 #!KDMA:digger1)
12 (:entailed-assertions
13 2
14 (:instance #!KDMA:digger1 #!edo:ConstructionVehicle)
15 (:instance #!KDMA:brickPile1 #!edo:ConstructionResource))
16 (:new-inds 1 IND-3)
17 (:hypothesized-assertions
18 3
19 (related IND-3 #!KDMA:brickPile1 #!mco:builtFrom)
20 (instance IND-3 #!edo:ConstructionSite)
21 (related IND-3 #!KDMA:digger1 #!mco:builtFrom)))))
22 ((:tuple)
23 (:new-inds IND-2)
24 (:hypothesized-assertions
25 (related IND-2 #!KDMA:brickPile1 #!mco:builtFrom)
26 (instance IND-2 #!edo:ConstructionYard)
27 (related IND-2 #!KDMA:digger1 #!mco:builtFrom))
28 (:score
29 -1
30 :new-paper-fn
31 ((:old-inds 2 #!KDMA:brickPile1 #!KDMA:digger1)
32 (:entailed-assertions
33 2
34 (:instance #!KDMA:digger1 #!edo:ConstructionVehicle)
35 (:instance #!KDMA:brickPile1 #!edo:ConstructionResource))
36 (:new-inds 1 IND-2)
37 (:hypothesized-assertions
38 3
39 (related IND-2 #!KDMA:brickPile1 #!mco:builtFrom)
40 (instance IND-2 #!edo:ConstructionYard)
41 (related IND-2 #!KDMA:digger1 #!mco:builtFrom)))))))

Figure 4.2: RacerPro’s reply to the explanation-retrieval

34

4.2 Approaches of knowledge communication to HCI

The second explanation is very similar to the first one, except that the new individual
created here is IND-2 of the class ConstructionYard.

4.1.3 Query generated by RacerPro

When RacerPro performs the action retrieve-with-explanation it automatically cre-
ates a corresponding query that contains all information necessary to add the result-
ing explanations to the knowledge base. Namely, the query contains information about
new individuals and hypothesized assertions for each explanation. RacerPro’s command
(add-explanation-assertions :queryid i) adds explanation number i from the speci-
fied query to the current knowledge base.
While this information obviously contains everything needed by RacerPro for the cor-

responding knowledge base augmentation, the situation might be somewhat different for
the queries sent to HCI: since those queries are supposed to provide the user with different
choices for interpretations of the document, it is crucial to let the user know what the
query actually relates to. Without any enhancements, the information directly provided
by RacerPro’s queries is rather useless to the user.
If, for instance, a user at HCI was in the process of tagging a video that might be

of considerable length and contains the previously described situation somewhere, the
user would be asked at some point whether IND-3 is a construction site or IND-2 is a
construction yard, given that no additional information was presented to him. In this case,
it is very likely that the user does not even know where in the video he should look for
the corresponding explanation. The presented individual names would not be of any help,
since they are rather arbitrary names (at least from the user’s point of view) and therefore
do not allow any conclusion about their actual references to the video content.
On the other hand, RacerPro’s queries contain supplementary information that is needed

for the addition of explanations to the knowledge base but which is rather unnecessary
for HCI to present the explanation’s meaning to the user. Hence, instead of using the
queries natively used within RacerPro, it is desirable to use a different query format for
the communication to HCI. Details on this query format will be introduced later on in this
chapter, but before a suitable query format is discussed, it is necessary to have a closer
look at the information available with HCI.

4.2 Approaches of knowledge communication to HCI

HCI will provide the user with the multimedia files that are going to be interpreted.
Additionally, all assertions from KDMA and HCI are mutually exchanged between all
participating components (and of course, later on, RMI will contribute additional assertions
that have been derived during the interpretation process). Hence, it can be safely assumed
that at the interpretation process’s start HCI has the same set of assertions available that
make up RMI’s initial ABox. As discussed in the previous section, this information by itself
is not yet sufficient to provide a correlation between the actual content and the information
on inferred explanations as it is communicated by RacerPro’s queries. Different approaches
are thinkable to overcome this issue at the client’s side:

4.2.1 A dedicated RacerPro instance with unmodified ABox transfers

One approach of making the necessary information available to the user could be the
maintenance of a dedicated RacerPro instance within the HCI component. This way, RMI
could perform the explanation retrieval and subsequently transfer its complete knowledge
base (i. e. a set of ABoxes A1, ..., An) to HCI. Hence, all operations on the ABoxes
that are required to obtain additional information regarding the explanations could be

35

4 Query-generation

encapsulated within HCI. Thus, any queries raised during the interpretation process could
remain merely unchanged and directly forwarded to HCI.1 As a consequence, HCI could
enhance the queries locally as needed to meet the discussed requirements regarding the
relationship between explanation and content.
While this approach might seem appealing because of its rather simple concept, it would

come with to some major drawbacks:
First of all, it is quite obvious that this approach would lead to an undesired communi-

cation overhead since the resulting ABoxes produced by RMI would be transferred to the
client as a whole although only a fraction of this data is needed in order to specify the
derived explanations.
Also, it is highly questionable whether it is really necessary to maintain a dedicated

RacerPro instance at the HCI component. Although this might enhance HCI’s flexibility
of operations, the additional RacerPro instance would increase maintenance efforts and also
it might lead to raised computing performance requirements at HCI since supplementary
information retrieval operations are to be performed. Hence, the separate installation of
RacerPro at the client should be avoided if possible.
Additionaly, there is a practical reason to avoid a RacerPro instance at the HCI com-

ponent: an implementation based on RacerPro requires profound knowledge in the field of
knowledge engineering. The different components of CASAM are being developed by sep-
arate teams and the experts on knowledge engineering are gathered at TUHH’s Institute
for Software Systems which is responsible for RMI’s development. Therefore it is advisable
to encapsulate all tasks related to RacerPro within the RMI component instead of dis-
tributing those tasks among different components and thereby among different developer
teams.

4.2.2 A dedicated RacerPro instance with ABox delta transfers

The approach regarding a dedicated RacerPro instance described above can be optimized in
order to reduce the mentioned communication overhead. Instead of transferring the ABoxes
A1, ..., An without any modification to the client, RMI could use one resulting ABox Aref =
A1 as a reference and compute a set of ABox differences Δ+

ref,2, Δ−ref,2, ..., Δ+
ref,n, Δ−ref,n.

Those differences Δ+
ref,k and Δ−ref,k provide means for the switching between different

resulting ABoxes by specifying all assertions that need to be added and subtracted respec-
tively to Aref in order to obtain Ak.
Consequently, instead of transferring n ABoxes from RMI to HCI, only one complete

ABox Aref and 2 ⋅ (n− 1) Δs have to be sent. Since in practice the Δs’ size is only a small
fraction of the ABox’s size, the communication overhead can be reduced by a considerable
amount.
Except for the communication needs, the same considerations from the previously dis-

cussed scenario apply here: the queries to HCI may be sent without any previous enhance-
ments, but a dedicated RacerPro instance is necessary to retrieve additional information.
(Actually, in this scenario RacerPro would even be assigned with the additional task of
computing the resulting ABoxes from the set of Δs, although there might be options to
implement the ABox additions alternatively without using RacerPro).
For further optimization, it might be possible to compute the Δs with respect to the

input ABox instead of one of the results. Since this ABox is already present at HCI, no
complete ABox would have to be transferred but only a set of 2 ⋅ n differences. However,
while it is possible that different results only exhibit small differences with respect to each
other, it might very well be that all of them are of great difference to the input ABox.

1 As mentioned before, those queries are not perfectly suitable for the intended use. However, since the
information required for this scenario is basically a subset of the information provided by RacerPro’s
queries, minor query changes are neglected here.

36

4.2 Approaches of knowledge communication to HCI

As a consequence, waiving of the single complete ABox transfer might lead to Δ’s that
are larger in size and thus the amount of data transferred overall will be not necessarily
reduced.
For instance, see Example 3: before the interpretation process branches for the first

time, three assertions have been hypothesized already. If differences were computed with
respect to the input ABox, those assertions would have to be transferred in each Δ+; if
one of the resulting ABoxes was used as a reference, those assertions would be transferred
only once.
Hence, the best choice of reference cannot be clearly determined on a general basis but

is rather dependent on the individual situation. However, since even an optimal choice
would only lead to minor improvements with respect to the communication overhead while
leaving the other drawbacks untouched, this approach is not followed further.
Additionally, it should be noted that the ABoxes produced by RMI in fact contain more

information than actually required for HCI’s tasks (for instance, see Figure 4.2: while the
builtFrom-relation is important for the interpretation process, it is not necessary to make
this information available to HCI). Since the Δs contain all information necessary for a
reconstruction of RMI’s resulting ABoxes, there is obviously more data transferred than
necessary and thus there is further potential for the reduction of communication overhead.

4.2.3 A supplementary communication channel to RMI’s RacerPro
instances

The considerations from the previously discussed scenario lead to a different possible ar-
chitecture that maintains the same operational principles but overcomes the need for a
separate RacerPro instance at the client: since RMI maintains several RacerPro instances
anyway with the current knowledge at their disposal, the presence of those instances can
be exploited by establishing a supplementary communication channel to them, instead of
performing necessary information retrieval tasks locally at the client.
In this scenario, the initial communication needs from RMI to HCI can be reduced to

just the set of queries. Any further data that is needed by HCI in order to augment the
query to a user-friendly presentation can be obtained via this channel. Since additional
properties can be requested in a target-oriented way, the amount of transferred data is
significantly reduced and only information essential to HCI’s tasks is communicated.
This approach reduces the traffic between RMI and HCI on such a large scale that any

potential further reduction on the data’s size would not yield to a noticeable performance
gain. However, opposed the approaches discussed previously, which were based on a uni-
directional communication scheme (if HCI’s answer to a query is neglected), this approach is
subject to a bi-directional request-response-scheme that might introduce additional delays
due to several messages sent back and forth between the components. Even though with
modern communication networks it is rather unlikely that those delays probably will have
a huge impact on the overall performance, they should be avoided if possible.

4.2.4 Compensating RacerPro with enriched queries

As could be seen from the previous scenario, it is possible to eliminate the necessity for
a dedicated RacerPro instance within the HCI component. Pursuing the approach of
exploiting knowledge already present on RMI’s side leads to a further optimization:
The types of supplementary information required by HCI for the purpose of presenting

meaningful choices to the user are not really situation-depended, but rather they are always
of the same type and thus can be known beforehand. Namely this information consists of
the linking between an explanation and its actual position within the multimedia document.
While the actual content of this information will obviously vary for each query, it will

37

4 Query-generation

1 QuerySetType
2 {
3 QueryType id=1 importance=1
4 {
5 LogicalCompoundType logicalOperatorType=OR
6 {
7 AssertionType
8 {
9 subject="http://www.sts.tu-harburg.de/casam/abox.owl#IND-3",

10 relation="http://www.w3.org/1999/02/22-rdf-syntax-ns#type",
11 object="http://www.sts.tu-harburg.de/edo.owl#ConstructionSite",
12 actiontype=ADD
13 certainty=0.5
14 }
15 AssertionType
16 {
17 subject="http://www.sts.tu-harburg.de/casam/abox.owl#IND-2",
18 relation="http://www.w3.org/1999/02/22-rdf-syntax-ns#type",
19 object="http://www.sts.tu-harburg.de/edo.owl#ConstructionYard",
20 actiontype=ADD
21 certainty=0.5
22 }
23 }
24 }
25 }

Figure 4.3: Sample query created by RMI’s current prototype

always be obtained from the segment locators corresponding to the segments involved in
the current interpretation.
Thus, as soon as a query is generated by RacerPro, RMI is able to know where to find

the additional properties that will be needed by HCI. Hence, instead of providing these
properties on demand, it is possible to enrich the queries with this information before they
are sent to HCI. As a result, HCI can directly exploit the query’s content in order to present
the relevant choices to the user and thus the need for any additional ABox operations on
the client side dissolves.
Also, since the data transferred between RMI and HCI is reduced to the essentials, this

approach is highly efficient with regard to communication aspects as well.
Consequently, the remainder of this work is based on this scenario.

4.3 Queries: syntax and semantics

4.3.1 Queries generated by the current prototype

As an introduction to the queries created by RMI, Figure 4.3 depicts the query correspond-
ing to the previously discussed construction example as it is created by RMI’s current
prototype.

The query’s frame

For the creation of queries, CASAM has a data type QuerySetType (line 1) in which the
query is embedded. The query itself is of type QueryType (line 3) with the properties
id and importance. The id is a unique number that is created by RMI for each query in
order to provide means for the identification of different queries and hence a correlation
between certain interpretation steps and corresponding answers from HCI. The importance
property enables RMI to assign differentiated priorities to different queries depending on
the information gain RMI might obtain by a query’s answer. HCI can exploit the impor-
tance value to alter the order in which queries are presented to the user. Details on query
priorities will be discussed later on in this chapter.

38

4.3 Queries: syntax and semantics

Different assertions within a query are bundled via the LogicalCompoundType with the
property logicalOperatorType (line 5). Basically, the locialOperatorType can take two
different values: OR signals that a choice of different alternatives is presented, while AND
denotes an aggregation of multiple assertions into a single explanation.

Assertion essentials

Each assertion within a logical compound is exhibited by an AssertionType (e. g. lines
7-14) that contains detailed information about each assertion, namely a subject, an object,
and a relation between those; the subject provides an individual’s name as it is used within
the knowledge base, the object and its relation will provide an additional property of this
individual. Although future implementations of RMI will make use of different query
types (namely Concept Assertion Queries, Role Assertion Queries, and Same-As Queries,
see [TUH] for details), currently only queries of the type Concept Assertion Query are
being generated. For this query type, the assertion’s object always denotes a class from
edo and the assertion’s relation declares the specified individual as a type of this class.
Consequently, all examples presented in this work only yield to this query type. However,
the principles discussed for this query type might be applied to the other types as well.

Assertion actiontypes

In addition to the assertion’s elementary properties the assertion type contains a value
actiontype. This value specifies how the provided assertion should be treated: the value
ADD signals that this assertion should be added to the current knowledge base. The
contrary value DEL would instruct HCI to remove the specified assertion from the current
knowledge base. Thus, those actiontypes enable HCI to alter its current knowledge base if
some kind of delta-transference approach is being pursued.
Since the approach selected for this work in fact does not require HCI to perform oper-

ations on the knowledge base at all, this parameter is not being used. Since the assertions
contained within the queries are results of RMI’s interpretation process (and thus rep-
resent additional knowledge compared to HCI’s currently available knowledge) it might
be assumed (if this property’s existence is desired) that those queries always contain the
operator ADD, although there is actually no addition performed at HCI.

Assertion certainties

The final supplement to each assertion is a certainty property. This property may take
values in the range from 0 to 1 and represents how certain RMI is about a particular ex-
planation. Currently, this value is subject to an equipartition among all possible assertions
(for n explanations, the certainty value for each explanation yields to 1/n). As can be seen
directly from those values, RMI currently is not able to assign differentiated certainties to
different explanations and thus every explanation yields to the same certainty.
Obviously, an equipartition in this context is not able to provide any information gain at

all. However, it should be noted that the currently used equipartition is only a placeholder
for later developments: as already announced in [GMN+09], future implementations of
RMI will exhibit a probalistic approach for an explanation’s scoring. Once this approach
is being used, it is rather likely that different certainties evolve for different explanations
and thus this property might contain quite meaningful information.
Even though this property might contain meaningful information in the future, it will

still not be necessary to transmit this information to HCI: if the explanation’s certainty
has an impact on RMI’s priority to obtain the query’s answer, this can be incorporated
into the importance value that is being transmitted anyway. Beyond the query’s priority

39

4 Query-generation

there is no need to share this information at all, but it might be solely used to augment
the query’s presentation to the user.
Hence, the subsequent discussions will neglect this property as well.

4.3.2 Enriched queries

While the query’s frame may remain unmodified for the intended purpose, the content of
AssertionsType is subject to some changes in order to fit the knowledge communication
approach selected for this work:
First of all, the supplementary properties actiontype and certainty are discarded because

they do not contribute to any information gain, as described in the previous section. Note
that their removal is not mandatory; since they do not cause any interference to the query
process it is also possible to keep them within the query. Consequently, their removal is
due to simplicity considerations rather than a real necessity.
In principle, if an assertion’s subject or object contains an individual name, this might

be removed as well, since the name used internally by RMI does not shed any light on the
query’s content either. However, in order to allow for an easy following of the presented
examples, those names are kept within the queries at least for the scope of this work.
To enrich the query with information required by HCI, the supplementary information

SegmentLocator is added to the AssertionType, as depicted in Figure 4.4. Each Segment-
Locator is specified via its type property and it contains the actual positioning information
corresponding to the hypothesized individual.
To obtain this positioning information, all builtFrom relations of the hypothesized in-

dividual are traversed recursively until all input assertions involved in the interpretation
are identified. For those assertions corresponding segments and therefore segment locators
can be obtained. As a simple approach for audio and video modalities, all segment loca-
tors involved are aggregated and the lowest hasStart and the highest hasEnd values are
being used. Although this is a fairly simple approach that might be subject to major im-
provements, it should be sufficient to allow for an easy identification of the corresponding
position within the multimedia document.
While it might appear simpler to add the hasStart and hasEnd properties directly to the

AssertionType at first glance, the approach of nesting the actual properties into the type
SegmentLocator provides more flexibility: note that not all media modalities use the same
type of segment locators. For instance, mco provides the definition of a BoundingBox
for the image modality with information about its four corner coordinates. Hence, via
specifying the type of locator within the query, the types of positioning information nested
within may be adjusted to the current needs.
Due to this supplementary data, HCI now has all required information at its disposal to

achieve a clear marking of the explanation’s position within the multimedia documents.

4.3.3 High-level queries

The queries discussed so far only adhere to single interpretation steps. Consequently, this
approach would force the user to answer all queries on a certain interpretation path in
a top-down fashion. For instance, consider the whole result set of the first interpretation
example: since the scenario is rather simple, it is quite likely that the user would be able to
decide instantly whether the scene depicts a bridge building or a dam building (assuming
that one of these interpretations is true). However, since the final interpretation result
relies on two preceding hypotheses, it is not possible to decide on one of those results
without confirming all involved hypotheses first. Thus, the user is forced to clarify both
preceding interpretations (i. e. reply to query 1 and query 2) before being allowed to reply
to query 3.

40

4.3 Queries: syntax and semantics

Though the question as to whether or not it is actually the best solution to prompt the
user for replies on the highest-level queries first is subject to further discussion, it is obvious
that this option might lead to a significantly more convenient way of answering queries in
certain situations. Thus, the queries should at least provide the means of enabling this
option.
Hence, for high-level interpretations, all hypothesized explanations involved should be

aggregated into a single query that may be answered by the user instantly. The query
frame introduced previously already provides everything necessary for this aggregation:
since a high-level interpretation consists of a conjunction of hypothesized assertions, those
assertions can be attached to one query by using logicalOperatorType=AND. Figure 4.5
depicts a first approach to such an aggregated query: it presents a choice of different sets
of hypothesized assertions, namely the choice between the interpretations (Construction
AND ConstructionSite) OR (Destruction AND ConstructionSite).
Although this approach fulfills the requirements of a high-level query, it can easily be seen

that the query contains redundant information, and therefore it is not an optimal choice. In
addition to an unnecessary blow-up of the query’s size, a repetition of hypotheses common
to all choices will prevent an easy identification of the actual differences between the
presented options. By exploitation of logical equivalences, the query can be reformulated
in such a way, that the query’s emphasis then lies on the actual differences followed by
a trail of common hypotheses. This yields to the query (Construction OR Destruction)
AND ConstructionSite.
Analogously, the last interpretation step from the first examples leads to the optimized

query (DamBuilding OR Bridgebuilding) AND Construction AND ConstructionSite, as it
is depicted in Figure 4.6.
Note that those high-level queries enable the user to select each of the interpretation

results through answering a single query independently of the result’s interpretation level.

1 QuerySetType
2 {
3 QueryType id=1 importance=1
4 {
5 LogicalCompoundType logicalOperatorType=OR
6 {
7 AssertionType
8 {
9 subject="http://www.sts.tu-harburg.de/casam/abox.owl#IND-3",

10 relation="http://www.w3.org/1999/02/22-rdf-syntax-ns#type",
11 object="http://www.sts.tu-harburg.de/edo.owl#ConstructionSite",
12 SegmentLocator type=VideoLocator
13 {
14 hasStart="00:00:10:000",
15 hasEnd="00:00:42:000"
16 }
17 }
18 AssertionType
19 {
20 subject="http://www.sts.tu-harburg.de/casam/abox.owl#IND-2",
21 relation="http://www.w3.org/1999/02/22-rdf-syntax-ns#type",
22 object="http://www.sts.tu-harburg.de/edo.owl#ConstructionYard",
23 SegmentLocator type=VideoLocator
24 {
25 hasStart="00:00:10:000",
26 hasEnd="00:00:42:000"
27 }
28 }
29 }
30 }
31 }

Figure 4.4: Example for an enriched query (query 1 from the first example)

41

4 Query-generation

Opposed to this highly convenient way of query-answering, the previous approach of only
presenting the current interpretation’s alternative forced the user to answer one query per
interpretation level.

4.4 Prioritizing queries

As already mentioned before, RMI should be able to assign differentiated importance values
to each query in order to alter the queries’ presentation order. Before discussing details
on possible priority criteria, it is necessary to examine RMI’s communication capabilities
(and more importantly: possible actions upon received messages).

4.4.1 Communication during the interpretation process

From an external point of view, RMI’s currently implemented interpretation process (as
described in the previous chapters) can be seen as an atomic operation: at some point the
process is initiated based upon a certain set of inputs and successively RMI performs all
interpretation steps possible based on current input and rules. The process will terminate
only if either no further rules can be applied to the current knowledge base or else if some
other kind of termination condition (see Section 2.4.3) has been met. Before meeting one
of these termination conditions, RMI’s current prototype will not react upon any external
events (i. e. the process is non-interruptable).
In the context of query-processing this is a rather undesirable behavior: while RMI

is still in the process of retrieving high-level interpretations, it is very well possible that
HCI already returned replies to some queries that have arisen earlier. Obviously, those
query replies contain additional information that would enable RMI to eliminate a subset
of explanations. By looking at the interpretation process as a tree of several interpreta-
tion paths (as presented in the previous chapter), each query answer could allow RMI to
neglect the pursuance of all but one of the corresponding node’s subtrees. For instance,
consider the third example’s interpretation process as depicted in Figure 3.12: imagine
that RMI has just performed the interpretation step Explain: building1, doorSlam2 (with
the corresponding rule 3) and in the meantime received an answer to Query4, saying that
a CarEntry is depicted. If RMI was able to evaluate this information while still in the
process of interpreting, the subtree containing CarExit could be eliminated. Thus, two
interpretation steps would have been eliminated and therefore two queries to HCI could
have been saved.
Since the tree’s shape and depth are highly dependent on the respective input assertions

as well as the applicable rules, the number of interpretation steps that might be saved by
such a tree-cutting function will vary on a large scale for different scenarios. Thus, it is not
possible to quantify any potential performance gain in a general way. However, under the
assumption (that should hold up in practice) that most input observations can be explained
via some rule and that a majority of rules will yield to different possible explanations, it
becomes obvious that the required computation time is subject to an exponential growth
with an increasing number of input assertions.
Consequently, RMI should be expanded with a functionality to react upon incoming

query answers while still interpreting (i. e. the interpretation process should become
interruptable) in order to reduce computation requirements and to spare the user the
evaluation of unnecessary queries. The following section will present criteria for priority
assignments if an interruptable process is being used.

42

4.4 Prioritizing queries

1 QuerySetType
2 {
3 QueryType id=2 importance=1
4 {
5 LogicalCompoundType logicalOperatorType=OR
6 {
7 LogicalCompoundType logicalOperatorType=AND
8 {
9 AssertionType

10 {
11 subject="http://www.sts.tu-harburg.de/casam/abox.owl#IND-5",
12 relation="http://www.w3.org/1999/02/22-rdf-syntax-ns#type",
13 object="http://www.casam-project.eu/edo.owl#Construction",
14 SegmentLocator type=VideoLocator
15 {
16 hasStart="00:00:10:000",
17 hasEnd="00:00:42:000"
18 }
19 }
20 AssertionType
21 {
22 subject="http://www.sts.tu-harburg.de/casam/abox.owl#IND-3",
23 relation="http://www.w3.org/1999/02/22-rdf-syntax-ns#type",
24 object="http://www.casam-project.eu/edo.owl#ConstructionSite",
25 SegmentLocator type=VideoLocator
26 {
27 hasStart="00:00:10:000",
28 hasEnd="00:00:42:000"
29 }
30 }
31 }
32 LogicalCompoundType logicalOperatorType=AND
33 {
34 AssertionType
35 {
36 subject="http://www.sts.tu-harburg.de/casam/abox.owl#IND-4",
37 relation="http://www.w3.org/1999/02/22-rdf-syntax-ns#type",
38 object="http://www.casam-project.eu/edo.owl#Destruction",
39 SegmentLocator type=VideoLocator
40 {
41 hasStart="00:00:10:000",
42 hasEnd="00:00:42:000"
43 }
44 }
45 AssertionType
46 {
47 subject="http://www.sts.tu-harburg.de/casam/abox.owl#IND-3",
48 relation="http://www.w3.org/1999/02/22-rdf-syntax-ns#type",
49 object="http://www.casam-project.eu/edo.owl#ConstructionSite",
50 SegmentLocator type=VideoLocator
51 {
52 hasStart="00:00:10:000",
53 hasEnd="00:00:42:000"
54 }
55 }
56 }
57 }
58 }
59 }

Figure 4.5: Second-level query (corresponding to the first example’s query 2, not opti-
mized)

43

4 Query-generation

1 QuerySetType
2 {
3 QueryType id=3 importance=1
4 {
5 LogicalCompoundType logicalOperatorType=AND
6 {
7 LogicalCompoundType logicalOperatorType=OR
8 {
9 AssertionType

10 {
11 subject="http://www.sts.tu-harburg.de/casam/abox.owl#IND-7",
12 relation="http://www.w3.org/1999/02/22-rdf-syntax-ns#type",
13 object="http://www.casam-project.eu/edo.owl#DamBuilding",
14 SegmentLocator type=VideoLocator
15 {
16 hasStart="00:00:10:000",
17 hasEnd="00:00:42:000"
18 }
19 }
20 AssertionType
21 {
22 subject="http://www.sts.tu-harburg.de/casam/abox.owl#IND-6",
23 relation="http://www.w3.org/1999/02/22-rdf-syntax-ns#type",
24 object="http://www.casam-project.eu/edo.owl#BridgeBuilding",
25 SegmentLocator type=VideoLocator
26 {
27 hasStart="00:00:10:000",
28 hasEnd="00:00:42:000"
29 }
30

31 }
32 }
33 AssertionType
34 {
35 subject="http://www.sts.tu-harburg.de/casam/abox.owl#IND-5",
36 relation="http://www.w3.org/1999/02/22-rdf-syntax-ns#type",
37 object="http://www.casam-project.eu/edo.owl#Construction",
38 SegmentLocator type=VideoLocator
39 {
40 hasStart="00:00:10:000",
41 hasEnd="00:00:42:000"
42 }
43 }
44 AssertionType
45 {
46 subject="http://www.sts.tu-harburg.de/casam/abox.owl#IND-3",
47 relation="http://www.w3.org/1999/02/22-rdf-syntax-ns#type",
48 object="http://www.casam-project.eu/edo.owl#ConstructionSite",
49 SegmentLocator type=VideoLocator
50 {
51 hasStart="00:00:10:000",
52 hasEnd="00:00:42:000"
53 }
54 }
55 }
56 }
57 }

Figure 4.6: Third-level query (corresponding to the first example’s query 3, optimized)

44

4.4 Prioritizing queries

4.4.2 Runtime priorities

Basic priorities

The considerations from the previous section immediately lead to a priority scheme that
should be used while the interpretation is still running: since a query’s reply has the
purpose of cutting subtrees, it is obvious that a query’s importance should be directly
correlated to the subtree’s size that could be cut by its reply. Of course it is not possible
to determine each subtree’s actual size before its corresponding interpretations have been
carried out entirely, but it can be safely assumed that a subtree’s potential size shrinks
with an increasing distance between its parent node and the root node. In other words,
the higher the interpretation’s level, the smaller its subsequent number of interpretations.
Hence, an interpretation’s level is used to determine its corresponding query’s impor-

tance. Assuming a priority range from 0 to 100 (with 100 being of highest importance), an
importance value of 90 would be assigned to first-level-queries, 80 to second-level-queries,
and so on. This scheme intentionally leaves a gap between the most important level and
the highest possible importance value to allow for further refinements, as discussed below.
Note that only the difference between different values is important; the actual value range
and assignment are selected rather arbitrary for this work and might easily be altered to
fit practical requirements. In order to practically determine an explanation’s level, one
could traverse all of its builtFrom relations: the length of the longest chain of builtFrom
relations, from the current explanation’s individual to an input assertion, will determine
the explanation’s level.

Refined priorities

For a further refinement of priorities between different queries from the same level the
number of alternatives within each query can be analyzed: since each choice within a
query represents a branch in the interpretation tree (and thus leads to a separate subtree),
a reply to a query with several choices will lead to several subtrees being cut. Thus, the
importance of a query increases with the number of choices it represents. In order to
reflect this in the query’s importance, its importance value is incremented by one for each
alternative contained within, after assigning the level-priorities to each query.
This yields to the following equation for the determination of a query’s importance in a

top-down way:

ITD(q) = (10− L(q)) ⋅ 10 + #a (4.1)

ITD(q) := Importance of query q
L(q) := Interpretation level of q

#a := Number of alternatives contained within q

Note that this equation imposes certain restrictions upon the interpretation results: no
interpretation step is allowed to yield to more than nine different explanations and the
interpretation’s depth is limited to ten levels. While exceeding those limits would not have
severe consequences on the interpretation itself, some importance values would be outside
of the defined value range and thus the priorities would become useless.2 However, if
realistic scenarios will prove these boundaries to be too tight, the equation can be adapted
quite easily.

2 As long all interpretations adhere the restrictions, the actual value range is in fact from 1 to 99, but of
course that does not create any problems.

45

4 Query-generation

Therefore, the replacement of static values in the previous equation leads to the general
expression for the calculation of importance values as exhibited in equation (4.2): instead
of using fixed values, three variable parameters are introduced that allow an easy adaption
to different requirements: d denotes the interpretation’s maximum depth (i. e. the highest-
level explanation that may occur during the explanation retrieval process) and w denotes
the maximum width (i. e. the maximum number of alternatives) for any interpretation
level. Note that the value (w+1) is being used for calculation to ensure that the importance
value for queries with a maximum number of alternatives does not stretch out over the next-
lower level. By usage of these parameters, the lowest possible importance value 1 occurs for
a highest-level query with a single assertion contained within, while a highest-level query
with a maximum number of alternatives leads to the highest possible importance value of
(d−1)(w+1)+w. To ensure that those extreme values stay within the desired boundaries
of importance values, the additional scaling constant s is introduced. Consequently, it
holds that ITD(q) ∈

[
1
s ,

(d−1)(w+1)+w)
s

]
∀ q and thereby an easy adjustment to the desired

range is possible by an alteration of s.

ITD(q) =
1

s
[(d− L(q)) ⋅ (w + 1) + #a] (4.2)

d := Maximum interpretation depth
L(q) := Maximum interpretation width (for each level)

s := Scaling constant

Unary queries

Now it is time to return to the question raised during the discussion of the second in-
terpretation example (see page 22): should a unique interpretation result (i. e. without
ambiguities) produce a query (called unary query in the following)?
It is evident that a positive reply to a unary query does not contribute to a valuable

information gain of any kind: although this answer would confirm a hypothesis previously
made by RMI, the interpretation process does not have any alternatives available and
therefore the interpretation’s course will remain unaltered, regardless of its confirmation
status. Thus, it is needless to prompt the user for positive answers to a unary query.
However, even though no reply to a unary query is able to alter an interpretation’s

direction, negative answers to those queries can still be exploited to achieve a simplification
of the process. To illustrate this, the interpretation from the third example (Figure 3.12)
is considered: RMI started off with three interpretation steps that yielded to unary queries
before branching into different paths. All subsequent steps on higher levels entail at least
one of the hypotheses generated by these first three steps. Now it is assumed that unary
queries have been sent to HCI: this enables the user to follow the process in real time. If
he agrees to the hypotheses generated by RMI, he is not required to take any actions but
he can wait until further queries arrive. However, if he is able to identify a flaw in one
of the hypothesis, he is able to reject it immediately by submitting a negative answer to
the corresponding unary query. For instance, it is presumed that RMI has just finished
the first three interpretation steps from example 3 and sent the according unary queries to
HCI. The user did not agree to a CarRide being detected in the input data and therefore he
supplies a negative answer to query 1. RMI is able to immediately cut out large portions of
the interpretation tree. Hence, the possible results are limited to ABox5 and ABox9 while
the number of queries is reduced to five (namely the aforementioned unary queries plus
query 5 and query 8). The same situation without sending unary queries to HCI would
have resulted in a total of seven queries (with five of them being completely needless since
they incorporate the hypothesis CarRide).

46

4.4 Prioritizing queries

Hence, next to reducing computational requirements, the supplement of unary queries
embodies the potential of significantly reducing the total amount of queries a user has
to handle. Since their replies only yield to a reduced knowledge gain (opposed to other
queries), they should be of lower priority. Since the importance function described above is
influenced by the number of choices contained within a query, unary queries automatically
get the lowest importance value of all queries within the corresponding interpretation
level. If desired, their importance could be lowered further by assigning a negative weight
to unary choices.

Further improvement

Further pursuing the presented idea of prioritizing queries during runtime could lead to
an additional improvement: since the query importance is supposed to allow for a cut-
ting of unprocessed subtrees, a query’s importance evidently fades once all of its subtrees
have reached leaves (i. e. all paths have been followed until no more rules are applica-
ble). Accordingly, in this state a query’s reply would again lead to no alteration of the
interpretation process and thus its corresponding importance could be drastically lowered
a posteriori. However, this idea would lead to a constant alteration of the queries’ im-
portance values and therefore lead to a significant amount of traffic between RMI and
HCI. Since the priority scheme introduced so far should assure a rather expedient use of
priorities, a weighting of costs and benefits leads to a waiving of this improvement.

4.4.3 A posteriori priorities

While the derivation of runtime priorities was fairly straightforward, the importance re-
quirements are harder to identify once the interpretation process has terminated.
First of all, the arguments provided for the use of unary queries do not hold up any longer:

since their main goal was a possible early termination of the interpretation process, they
completely lose their purpose in the after-runtime phase; instead of enabling a reduction
of the query’s quantity, they just become a hassle to the user (the information obtained
by the rejection of a unary query can also be obtained through replies of higher-level
queries). Therefore, unary queries should be discarded a posteriori (or alternatively, their
importance value should be set to 0).
Figure 4.7 shows the schematic interpretation courses for different (imaginary) examples:

each node depicts an ABox Ak, subsequent nodes depict possible explanations of an ABox.
Since only the tree’s shape is of interest for this discussion, interpretation steps are not
shown explicitly.
(a) depicts only a few interpretation steps, each resulting in multiple explanations.

Hence, the number of possible solutions is quickly growing while the interpretation’s levels
stay fairly shallow. (b) depicts the opposite situation where only one path leads to high-
level interpretations while all alternative paths turn out to be dead ends.3 Even though
it has to be admitted that those artificial examples denote extreme cases and thereby do
not necessarily reflect realistic scenarios, they still illustrate the need for different priority
needs quite well.

Priorities in width-oriented interpretations

Examining the tree’s shape in (a) leads to an intuitive scheme on the queries’ priorities: it
is evident that a top-down approach will require the user to reply to exactly two queries
(and therefore consider eight choices altogether) independently from the actual result. If

3 Of course, this does not conclude that those leaves are wrong explanations, it simply says that they
cannot be interpreted any further.

47

4 Query-generation

A0

A4

A20

A19

A18

A17

A3

A16

A15

A14

A13

A2

A12

A11

A10

A9

A1

A8

A7

A6

A5

(a) width-oriented interpre-
tation

A0

A1 A2

A3

A5 A6

A7

A9 A10

A11 A12

A8

A4

(b) depth-oriented interpre-
tation

Figure 4.7: Schematic interpretation trees

a bottom-up approach was used instead (i. e. presenting high-level queries first), the user
would be able to select the right result by answering a single query. However, there are
four different second-level queries (all with the same priorities) and each of them contains
four different choices. Hence, there would be a total of 16 different choices a user would
have to consider before deciding on the right one and thus even though one query reply
was saved, this approach would require more effort from the user.
Consequently, in this scenario the top-down approach from the runtime situation can be

adopted without any modification and therefore equation (4.2) can be used to determine
a query’s importance value.

Priorities in depth-oriented interpretations

The example depicted in (b) is similar to the construction example from the previous
chapter: although each step yields to two different explanations, only a single path leads
to higher-level interpretations. Since two high-level interpretations (in A11 and A12) seem
to perfectly fit the observations, this scenario suggests that those are the likely explanations
while all other explanations yield to early termination.
The top-down approach that has been used so far leads to an inconveniently large amount

of queries that a user would have to answer before getting to the final result: under the
assumption that indeed either A11 or A12 contains the right solution, the user would have
to answer six queries, each containing two choices. On the other hand, if a bottom-up
approach was used, the reply to a single query with two choices would be sufficient to
clarify the results.
If a scenario like this contains a few queries on the highest interpretation level, the same

refinements that have been discussed before can be applied to this situation: the more

48

4.4 Prioritizing queries

choices a query contains, the higher its importance value becomes. Although in this case,
none of the queries is really more important than other queries on the same level, an
ordering by the number of choices will increase the chances that the desired solution will
be found in one of the first queries.
This leads to a slightly modified importance function incorporating bottom-up priorities:

IBU (q) =
1

s
[L(q) ⋅ (w + 1) + #a] (4.3)

The resulting range of importance values leads to a minimum value for a first-level
query with a single assertion, while the maximum value occurs for a query on level d with
w assertions. Hence, IBU (q) ∈

[
w+2
s , d(w+1)+w)

s

]
∀ q. Note that even though equation

(4.3) does not incorporate the parameter d, it is still necessary to determine its value in
order to ensure appropriate boundaries.

Choosing the suitable approach

Now that two different priority assignment schemes are available, after completing the
interpretation process it is necessary to decide on one approach. Unfortunately, realistic
scenarios are unlikely to exhibit one of the tree’s shapes as clear as depicted in Figure
4.7. In fact, practical scenarios are likely to result in several explanations distributed
among different interpretation levels. For instance, a single interpretation could be added
to Figure 4.7a as a subsequence to A5. Assuming that high-level interpretations are usually
preferred, the bottom-up approach would correctly assign the highest priority to this new
interpretation. However, if this interpretation turns out to be wrong, the following queries
created by the bottom-up approach would lead to the problems discussed previously.
In order to adapt the priority assignments to mixed scenarios, it is proposed to analyze

each interpretation’s level (starting with the highest level) with regard to its depth and
width (i. e. level and number of queries within this level). If the Ration R = d

w between
depth and width is larger than 1 (i. e. a scenario similar to 4.7b), all queries should get
importance values according to the bottom-up approach.
Once the procedure arrives at a level where R > 1 does not hold, the remaining levels

should be prioritized according to the top-down approach. This hybrid approach allows
an emphasis on few high-level explanations, as needed for a depth-oriented interpretation,
but at the same time enables a quick tree-traversal if an initial portion of the tree is wider
than deeper.
Note that an additional scaling of importance values is necessary once the procedure has

switched to top-down priorities, or else the following priorities might interfere with some
of the previously assigned values. The easiest way of achieving this is to assign the number
of the last bottom-up priority level LBU to d in the ITD-equation leading to the equation:

ITD(q) =
1

s
[(LBU − L(q)) ⋅ (w + 1) + #a] (4.4)

Hence, the procedure would start with the highest level, assigning IBU values as long as
R < 1 holds. If this condition does not hold for a certain level (i. e. the level LBU − 1),
the remaining queries get ITD values.

Further optimization

The bottom-up approach can be further optimized for an efficient query answering: as
described in Section 4.3.3, high-level queries should be created in such a way that the
different choices are presented in the query’s beginning followed by a “tail” of common
assertions ordered by their interpretation level. If such a query is presented to the user,

49

4 Query-generation

he is supposed to confirm one of the choices or alternatively decline all of them. If in fact
none of the choices presented turns out to be the right one, the mechanisms described so
far would only allow for a complete refusal of all alternatives. Consequently, the nextmost
important query will be presented to the user.
However, if a query is declined completely it is highly probable that part of the query’s

tail contains false assertions and following queries will most certainly contain a subset of
the same tail. Since this tail is presented to the user anyways, he would be able to recognize
the false assertions immediately after examining the first query. A complete rejection of
this query would simply lead to a presentation of the next query that might contain the
same false assertions, since there is no mechanism that enables the user to identify a false
assertion. Because the tail is ordered by the corresponding assertions’ levels, pointing
out the first wrong assertion would allow a direct “jump” to the corresponding subtree
and therefore simplify the query answering process significantly. Therefore, the query
answering process should be augmented with an option to point out the first error in a list
of assertions.
Also, the priority of high-level queries could be further refined by applying a scoring

function similar to the one presented in Section 2.4.1: it can be assumed that a high-
level interpretation is the better, the more ground observations are entailed. Thus, the
consilience value of an explanation can be added to the corresponding IBU value.
The simplicity value should not be used for the importance adjustment of high level

queries; since this value penalizes a high number of hypothesized assertions, it would lead
to a preference of low-level interpretations (the number of hypotheses obviously has to
increase with a rising interpretation level).

50

5 Summary and outlook

Goal of this work was the analysis of communication requirements between RMI and HCI,
as well as the proposal of a suitable query design. Through a comprehensive discussion
of different sample scenarios, key properties of the queries were identified. Based upon
those findings, a feasible format for the generation of queries has been developed with the
intention of enabling a lean knowledge communication, as well as providing an ergonomic
way of query handling for the user.
The queries’ structure proposed in this work meets both of these requirements: by en-

riching the queries with supplementary locating information, all relevant knowledge can be
communicated to the user interface with very little communication overhead. By assigning
differentiated priorities to each query, the user is able to handle most important queries
first, so that the right explanation can be identified quickly. Next to the user’s convenience,
prioritized queries with runtime processing may benefit the interpretation’s speed, also, by
an early elimination of possible explanations.
Throughout this work, several potential improvements for future work have been iden-

tified:
A slight alteration of the interpretation algorithm’s order of explanation retrieval, as

described in Section 3.3.2, can yield to a significant reduction of interpretation steps. This
accelerates the interpretation process and, at the same time, reduces the amount of queries
sent to HCI.
Also, this work encompasses a rather simple approach of enriching queries with posi-

tioning information. A more sophisticated approach of determining this information for
hypothesized individuals could lead to a more precise presentation at the user interface.
Additionally, an integretation of positioning information directly into RMI’s knowledge
base might be helpful: next to providing input to the queries, this information could be
exploited in later interpretation steps, given that the rule definitions are modified accord-
ingly.
Finally, as described in the previous chapter, the proposed prioritizing scheme leaves

room for further refinements, for instance by incorporating the idea of a scoring function.
The proposed scheme should prove to be sufficient in future implementations, but if prac-
tical tests exhibit the need for further refinements, these can be added to the presented
importance functions easily.

51

Bibliography

[BCM+07] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2007.

[CAS] CASAM. Approach. http://www.casam-project.eu/?Page=approach.

[GMN+09] Oliver Gries, Ralf Möller, Anahita Nafissi, Maurice Rosenfeld, Kamil Sokolksi,
and Michael Wessel. Basic reasoning engine: Report on optimization techniques
for first-order probabilistic reasoning, 2009. CASAM Project Deliverable D3.2.

[Kay] Atila Kaya. A Logic-Based Approach to Multimedia Interpretation. Dissertation
yet to be published.

[Tha78] Paul R. Thagard. The best explanation: Criteria for theory choice. The Journal
of Philosophy, 75(2), 1978.

[TUH] TUHH, Institute for Software, Technology and Systems (STS). CASAM -
Query Generation. presented at CASAM’s Lisbon Meeting in October 2009.

53

http://www.casam-project.eu/?Page=approach

List of Figures

2.1 Interaction loop between the user and the CASAM modules (from [CAS]) . 5
2.2 Conceptual architecture of the reasoning-based media interpretation engine

(from [GMN+09]) . 6

3.1 mco’s classes for the description of audio and video documents 13
3.2 Example for the hierarchical organization: edo’s classes for RingingTone . . 15
3.3 The input’s ABox Graph for the first example 16
3.4 RacerPro’s forward-rules for the first example 17
3.5 RacerPro’s backward-rules for the first example 18
3.6 Tree view of the first example’s interpretation process 20
3.7 The input’s ABox Graph for the second example 22
3.8 Tree view of the second example’s interpretation process 23
3.9 Tree view of the second example’s optimized interpretation process 25
3.10 Timeline for example 3 . 26
3.11 The input’s ABox Graph for the third example 29
3.12 Tree view of the third example’s interpretation process 30

4.1 RacerPro’s function call to obtain explanations for the co-occurrence of the
digger and brick pile in the same video segment 33

4.2 RacerPro’s reply to the explanation-retrieval 34
4.3 Sample query created by RMI’s current prototype 38
4.4 Example for an enriched query (query 1 from the first example) 41
4.5 Second-level query (corresponding to the first example’s query 2, not opti-

mized) . 43
4.6 Third-level query (corresponding to the first example’s query 3, optimized) . 44
4.7 Schematic interpretation trees . 48

55

List of Tables

3.1 relevant properties of the first example’s input 15
3.2 relevant properties of the second example’s input 21
3.3 relevant properties of the third example’s input 26

57

Supplementary CD

The CD contains an electronic version of this work, slides of the corresponding presentation,
and data for the examples presented in Chapter 3. For further information on the CD’s
content, see the file readme.txt in its root directory.

59

	Introduction
	About CASAM
	Project overview
	The approach of CASAM
	Architecture of the RMI module
	The CASAM Abduction Engine
	Preliminary definitions and functions
	The ABox abduction algorithm
	CAE's main procedure

	Interpretation of Multimedia Documents
	Structure of multimedia documents
	The environmental domain ontology
	Sample scenarios
	Example 1: construction at the river
	Example 2: smoke in the sky
	Example 3: car-related events

	Query-generation
	An interpretation step in RacerPro
	Function call for explanation retrieval
	RacerPro's reply
	Query generated by RacerPro

	Approaches of knowledge communication to HCI
	A dedicated RacerPro instance with unmodified ABox transfers
	A dedicated RacerPro instance with ABox delta transfers
	A supplementary communication channel to RMI's RacerPro instances
	Compensating RacerPro with enriched queries

	Queries: syntax and semantics
	Queries generated by the current prototype
	Enriched queries
	High-level queries

	Prioritizing queries
	Communication during the interpretation process
	Runtime priorities
	A posteriori priorities

	Summary and outlook
	Bibliography
	List of Figures
	List of Tables
	Supplementary CD

