
An Investigation of
Machine-Learning Approaches for a

Technical Analysis of Financial
Markets

Diploma Thesis

October 2010

submitted by:
Karsten Martiny

supervised by:
Prof. Dr. Ralf Möller

Prof. Dr. Kathrin Fischer

Technische Universität Hamburg-Harburg
Institute for Software Systems

Schwarzenbergstraße 95
21073 Hamburg

Statement of authorship

I hereby certify that this thesis has been composed by myself and describes my own work,
unless otherwise acknowledged in the text. All references and verbatim extracts have been
quoted, and all sources of information have been specifically acknowledged. It has not been
accepted in any previous application for a degree.

Hamburg,
October 19, 2010
Karsten Martiny

i

Contents

1 Introduction 1

2 Technical Analysis of Financial Markets 3
2.1 Dow Theory . 4
2.2 Price Patterns . 5

2.2.1 Line Patterns . 5
2.2.2 Point Patterns . 7

2.3 Technical Indicators . 8
2.3.1 Moving Averages . 9
2.3.2 Cross Average . 11
2.3.3 Moving Average Convergence/Divergence (MACD) 11
2.3.4 Bollinger Band . 13
2.3.5 Momentum . 13
2.3.6 Relative Strength Index (RSI) . 14
2.3.7 Average True Range (ATR) . 14
2.3.8 Aroon Indicator . 15
2.3.9 Commodity Channel Index (CCI) . 15
2.3.10 Stochastics Oscillator (%K%D) . 17
2.3.11 Trading Volume . 18
2.3.12 On-Balance Volume (OBV) . 19
2.3.13 Money Flow Index (MFI) . 19
2.3.14 Ease of Movement (EOM) . 20
2.3.15 Summary . 20

2.4 Candlestick Analysis . 21
2.4.1 About Candlestick Charts . 21
2.4.2 Characteristic Candlestick Shapes and their Meaning 22
2.4.3 Candlestick Patterns . 23

3 Preliminaries on Bayesian Networks 25
3.1 A Brief Summary on Probability Theory . 25

3.1.1 Probability Axioms . 25
3.1.2 Prior Probabilities . 26
3.1.3 Conditional Probabilities . 27
3.1.4 Independence . 27
3.1.5 Bayes’ Rule . 28

3.2 Bayesian Networks . 29
3.2.1 Semantics of Bayesian Networks . 29
3.2.2 Inference in Bayesian Networks . 32

3.3 Dynamic Bayesian Networks . 39
3.3.1 Domain Requirements for Dynamic Networks 39
3.3.2 Temporal Models . 40
3.3.3 Inference Tasks in Dynamic Bayesian Networks 42

4 Design of Forecasting Modules with Probabilistic Reasoning 43

iii

Contents

4.1 Trend Lines: Forecasting Module 1 . 43
4.1.1 Identification of Trend Lines . 43
4.1.2 Domain Parameters . 49
4.1.3 Prediction Network . 50
4.1.4 Learning and Results . 54

4.2 Point Patterns . 55
4.2.1 Scalable Extreme Point Models . 56
4.2.2 Identification of Point Patterns . 59

4.3 Technical Indicators: Forecasting Module 2 61
4.3.1 Domain Parameters . 61
4.3.2 Prediction Network . 64
4.3.3 Learning and Results . 68

4.4 Candlesticks: Forecasting Module 3 . 70
4.4.1 Domain Parameters . 70
4.4.2 Pattern Recognition . 72
4.4.3 Prediction Network . 76
4.4.4 Learning and Results . 77

5 Inference of Trading Strategies with Reinforcement Learning 79
5.1 Introduction to Reinforcement Learning . 79

5.1.1 Formalization of the Learning Task 80
5.1.2 Learning Procedures . 82
5.1.3 State Space Exploration . 84
5.1.4 Summary . 85

5.2 State Space Encoding . 85
5.3 Environment Model for the Trading Domain 87
5.4 Learning and Results . 88

6 Conclusion 93
6.1 Summary . 93
6.2 Outlook . 93

Bibliography 95

List of Figures 99

List of Tables 101

iv

1 Introduction

Technical analysis of financial markets is a discipline from the field of finance concerned
with forecasting future price movements of securities through the study of historic market
data. The basic principle of technical analysis is the observation that history tends to repeat
itself. Over time, several subdisciplines have evolved which facilitate different approaches
but share the same goal of identifying distinct situations in market history that result in
similar successive developments, and exploit these insights to derive predictions of future
price movements. Even though the area of technical analysis has been widely researched
and a wealth of information is available on this topic, a successful application of these
analysis methods towards a profitable trading strategy still requires profound experience
in financial markets in order to correctly evaluate the peculiarities of any potential signal
with respect to its informative value, reliability, and correlation with other signals.

In short, the task of gaining experience in the application of technical analysis can be
seen as a process of learning characteristic patterns from historic market data. The task
of automatically extracting patterns from data is in turn called data mining and has been
subject to intensive research, as well. Therefore it seems auspicious to combine both areas
of research with the goal of obtaining an adaptive technical analysis system. This system
should be equipped with basic knowledge of technical analysis methods and then be tasked
with learning of how to forecast future price movements through an analysis of historic
price movements with data mining methods. The financial domain is especially well-
suited to facilitate a machine-learning approach because all key properties are denoted
with numerical values from the beginning. This allows for an accurate transformation
into a machine-readable form and, most important, the numerical values provide precise
performance criteria to quantify the system’s utility.

Based on these considerations, this work has two major objectives: first, possible ap-
proaches of facilitating probabilistic reasoning processes for a variety of technical analysis
methods are explored. These probabilistic reasoning modules are realized with Bayesian
networks and aim at obtaining forecasts of future price movements. Second, it is investi-
gated how the resulting forecasts can be exploited with reinforcement learning in order to
reach a profitable trading strategy.

The subsequent work is structured as follows:

Chapter 2 gives an introduction to the field of technical analysis. A variety of common
technical analysis methods is presented and their respective underlying assumptions, means
of generating trading signals, and possible interpretations for the inference of forecasts are
explained.

In chapter 3, the principles of Bayesian networks are explained. This chapter starts with
a brief recapitulation of required properties from probability theory and introduces the
semantics of Bayesian networks subsequently. Afterwards, several inference procedures are
introduced that enable the use of Bayesian networks for probabilistic reasoning processes.
The chapter concludes with the notion of dynamic Bayesian networks which augment the
previously explained models with an incorporation of time as a further dimension in order
to cope with temporal dependencies.

After the prerequisites have been introduced in the previous chapters, chapter 4 investi-

1

1 Introduction

gates the feasibility of technical analysis methods for a use in machine learning processes.
For all of the analysis methods that proved to be feasible, a machine-readable notion of
the domain is introduced, approaches for an appropriate implementation of a probabilistic
reasoning module are discussed, and the resulting forecasts are evaluated.

The basic concepts of reinforcement learning are introduced in chapter 5. It is shown
how this technique can be used to learn a profitable trading strategy from the forecasts
discussed in chapter 4 and the resulting gains are presented.

This work concludes with a summary of the results in chapter 6 and gives an outlook
for possible subsesequent research topics in this area.

2

2 Technical Analysis of Financial Markets

In order to participate in any kind of financial markets a trader should perform some
kind of market analysis prior to any investment decisions. The main goal of all analysis
techniques is the evaluation of a security’s current state as well as a forecast of future price
movements.

The discipline of financial market analysis can be divided into two categories: the Fun-
damental Analysis studies key data of a security, e.g., financial statements, management
decisions, market perspectives, and economic environments. The second approach is the
Technical Analysis which does not take any fundamental data into account, but rather
relies purely on a market’s history (namely movements of price and volume, i.e., number
of securities traded within a certain period of time) in order to predict future movements.
While both approaches can justify a valid analysis result, there is a magnificent difference
in the required input data, background knowledge, and evaluation techniques for each
approach.

In order to accomplish a thorough fundamental analysis of any security, it is essential to
have a sound knowledge of the corresponding market and the ability to assess the impact
of a huge variety of information. Since just the mere task of computationally capturing
news’ meanings (let alone an evaluation of its possible impact) is highly error prone with
current technology, major obstacles have to be overcome when facilitating a machine-based
fundamental analysis.

The basis of all technical analysis approaches is the premise that “market action discounts
everything” (see [Mur99], for example). This premise states that all relevant information
regarding a certain security is already reflected in its current price. For instance, if a
security’s fundamental analysis suggests a prosperous development, the security’s price
should be rising and therefore the same conclusion can be reached with complete negligence
of any fundamental data by simply examining the price and volume movements. The
correctness of this core principal has been demonstrated in [Den08].

Informally speaking, technical analysis is all about forecasting future developments by
identifying certain characteristics in a security’s historical price and volume movements.
Since this field has been subject to intensive research for more than a century, technical
analysis has a set of well-established rules and correlations available that allow for a pro-
found market analysis. Opposed to the fundamental analysis, most of the knowledge in
the technical approach can be conveniently expressed in terms of equations and algorithms
and therefore it can be easily adapted to a machine-readable form. Another benefit of
the technical analysis is the universal validity of its knowledge and therefore no expert
knowledge in certain markets is required. Consequently, this work aims to exploit the
well-established knowledge of the technical analysis and does not take fundamental data
into account at all.

This chapter gives an introduction to the key elements of the technical analysis as used
within this work. For further information see for example [Mur99] or [Voi06].

3

2 Technical Analysis of Financial Markets

2.1 Dow Theory

Cornerstone of all modern methods within the field of technical analysis is the work of
Charles Dow from the late nineteenth century which is known as the Dow Theory today.
Central element of this theory is the consideration of local extreme points that enable a
classification of price movements into trends:

• A market is in an uptrend (also known as bullish trend1) if the price movement
exhibits a series of successive higher highs and higher lows (see figure 2.1 for a visu-
alization of this concept).

• Analogously, a market is in a downtrend (or bearish trend) if the price movement
exhibits a series of successive lower highs and lower lows.

• If a market meets neither of the above criteria it is said to be trendless or in a
sideways trend.

A trend is further divided into different phases: the phases while the prices move towards
the trend’s direction are called trend movement while phases in the opposite direction
are called trend correction. A trend is started as soon as the movements exhibit three
consecutive local extremes that meet one of the mentioned trend criteria. Accordingly, a
trend is said to be broken once a local extreme occurs which violates the above criteria.

Note that a single security’s price movement may exhibit several trends on different time
scales at the same time: For instance, if a security is in a long-term uptrend, each phase
will resemble a complete short term trend; each trend movement is a short uptrend by
itself while each trend correction is a small downtrend.

Additionally, Dow stated that the trading volume of a security should resemble the
corresponding price trend, i.e., during trend movements, the trading volume should be
significantly higher compared to the volume during trend corrections. Turning points from
one trend phase to the next mark important points of the movement. Therefore, they
should be accompanied by a relatively large trading volume.

Figure 2.1: Schematics of an uptrend according to the Dow Theory: the local highs are
marked with green dots, the local lows with red ones. This clearly points out
the series of rising highs and rising lows, as required for the existence of an
uptrend.

1The terms bull and bear are commonly used picturesque metaphors that resemble the fighting styles
of animals: The bear tries to wrestle its opponent down to the ground while a bull tries to throw an
opponent up in the air with its horns. Therefore, downward movements are said to be bearish while
upward movements are said to be bullish.

4

2.2 Price Patterns

This simple concept of trends is able to generate a variety of signals: For instance, if a
security is currently in an uptrend and the current price just rose above the previous local
high, the trend is confirmed and a buy signal is generated. Similarly, if the current price
drops below the previous low, the trend is broken and a sell signal is generated.

For more information on the Dow Theory and possible trading strategies directly based
on it, see [Voi06], for example.

While the definition of this concept is fairly straightforward, its application towards a
successful trading strategy is all but simple, for human analysts as well as machines. Major
obstacle in the transformation of the Dow Theory into a practical trading strategy is the
distinction between arbitrary price movements that should be considered as noise and true
local extremes. While one can easily determine local extremes in hindsight, identification of
a security’s current trend state relies heavily on instinct and guesswork. However, based on
the Dow Theory, auxiliary methods have evolved that allow for a less ambiguous analysis,
namely the analysis of characteristic price patterns.

2.2 Price Patterns

The movement of a security’s price tends to exhibit easily identifiable patterns that reflect
the current trend state. Since these patterns are easy to identify (and therefore easy to
incorporate into a trading strategy), they are among the most popular methods in technical
analysis. Price patterns can be coarsely divided into two categories: line patterns that
provide continuation signals and point patterns that provide reversal signals.

2.2.1 Line Patterns

Trend Lines

All line patterns make use of the concept of Trend Lines. A trend line is an imaginary
straight line that connects local extremes of the same type. A line that connects local
lows is referred to as support line, while a line of local highs is called a resistance line. An
example of trend lines is depicted in figure 2.2.

The rules for the identification of trend lines are simple:

• A trend line arises when more than two local extremes can be connected via a straight
line. There may be other extremes of the same type in between that are not in the
line’s proximity, but the price movement must not cross the line significantly.

• A trend line is confirmed each time the price movements develop a new local ex-
treme in the proximity of the line. A line’s significance increases with its number of
confirmations.

• A trend line is valid until it is crossed by the price movements (i.e., the security’s
price drops below a support line or rises above a resistance line). Once a line has
been crossed it is said to be broken and will be ignored in the future.
In practice, it is reasonable to introduce a second criterion to invalidate trend lines:
the security’s price may move away significantly from a trend line without ever cross-
ing it. Without ever invalidating such a line, the set of existing trend lines may
become extremely large, although most lines do not appear to have a significant re-
lation to the current movements. Hence, a line should be artificially invalided if it
has not received any confirmation within a certain time period.
For instance, see the resistance lines in figure 2.2: line 3 is a long-lasting resistance

5

2 Technical Analysis of Financial Markets

Figure 2.2: Recent price movements of the Dow Jones Industrial Average Index with
exemplary trend lines. Lines 1 and 2 are examples of support lines, 3 and
4 resistance lines, respectively. Each confirmation of a line is marked with
a green circle and the red circle depicts a line break. Note that many more
lines can be found, but only few are depicted for clarity.

line that has been confirmed several times and remains unbroken in the depicted
time frame. However, a new trend line (4) with a smaller slope evolved in November
2009. Apparently, this new line imposes stronger limits on potential upward moves
and thereby the old line’s significance fades.

• The slope of a line gives information about the current trend state: in general,
positive slopes reflect up movements and negative slopes reflect down movements.
The slope’s absolute value indicates the strength of the trend: the higher the value,
the stronger the trend. Values close to zero can be considered as trendless states
(independently of the slope’s sign).

Note that the concept of trend lines directly incorporates the Dow Theory but imposes
a severe restriction on the local extremes’ positions. While according to the Dow Theory a
sequence of extremes is only required to be monotonically increasing or decreasing in order
to form a trend, the trend line concept additionally requires the extreme sequence to be
subject to a linear function. However, once a trend line is identified, its interpretation is
straightforward and not subject to ambiguities.

As it can be seen in figure 2.2, trend lines provide two kinds of valuable information: as
long as a line remains valid and is confirmed by price movements frequently, it provides
hints that future prices will continue to move in the line’s direction. By breaking such a
line, another valuable signal is generated, indicating that future movements are likely to
change their direction. For instance, the break-through of the ascending resistance line
1 coincides with the development of the new descending resistance line 2 - obviously the
upward move has lost a lot of its strength.

Combination of Trend Lines into Continuation Patterns

By relating one resistance and one support line per time interval, several characteristic
patterns can be found. Since each pattern consists of two trend lines, a certain pattern

6

2.2 Price Patterns

(a) Trend Channel (b) Triangle (c) Flag

Figure 2.3: Schematic line patterns (from [Mur99])

can be described by the following parameters:

• ms, mr: slopes of the support and resistance line, respectively

• d: duration of the pattern

• c: (optional) context
Key features of any pattern are the slopes of its trend lines and, most important, the
difference between the slopes. This leads to two basic shapes of line patterns: if both
slopes are approximately equal, the lines form a channel, whereas different slopes lead to
a triangle. These basic shapes can be divided into several more patterns with different
interpretations. To illustrate the usage of price patterns, figure 2.3 depicts some of the
basic patterns:
(a) depicts a pattern of two long-lasting parallel lines. This is referred to as a trend channel
and future prices are expected to continue moving within the boundaries of these lines.
(b) depicts the general shape of a triangle. If this pattern occurs, future prices are expected
to move within a decreasing range until they arrive near the triangle’s tip and yield a
significant outburst subsequently.
(c) is called a flag and has the same shape as a trend channel. The difference is that this
pattern only has a fairly short duration and is pointing opposite to the major direction of
price movements. This is typically considered to be a temporary correction move that is
followed by continuing movements into the previous direction.

For a detailed overview of different line patterns and their peculiarities see [Mur99].

2.2.2 Point Patterns

The second type of typical price patterns is defined by a set of typical points and indicates
trend reversals. Again, these patterns are an extension of the Dow Theory. Mainly, there
are two different point patterns:

The first is called Head and Shoulders Pattern. Key element of this pattern is a series of
three consecutive local highs with the first and third high being on approximately the same
price level (forming the shoulders) and the second high being on a significantly higher level
(forming the head). The low points between head and shoulders are called neck. Figure
2.4 depicts an example of such a pattern. In accordance with the Dow Theory, this pattern
indicates the end of an uptrend since the second shoulder was not able to rise above the
head and thereby broke the current uptrend. After an occurrence of this pattern within
an uptrend, a reversal is indicated and prices are expected to fall subsequently. Technical
analysts consider this as one of the most reliable patterns. There is a counterpart to this
pattern called Inverse Head and Shoulders Pattern. Similarly, this counterpart is defined

7

2 Technical Analysis of Financial Markets

Figure 2.4: An example of the Head and Shoulders Pattern in the Dow Jones Industrial
Average Index. This is probably the most infamous instance of the pattern,
as it completed merely days before the Black Thursday (October 29, 1929)
and therefore was preparatory to the Great Depression.

by a series of consecutive local lows with the center one being significantly lower than the
other ones. Consequently, if this pattern occurs within a downtrend, upward movements
are expected.

The other type of common point pattern is called Double Top and, as the name suggests,
consists of two consecutive local highs on the same price level. If the same price value
proved to be a barrier twice, it is assumed that this value forms a significant resistance that
cannot be exceeded currently. Hence, if this pattern occurs within an uptrend, the trend is
expected to stop with this pattern. This complies with the Dow Theory as the prices were
not able to mark a new local high. This reflects only a missing confirmation of the trend
while the previously described pattern clearly showed a trend break. Consequently, this
pattern is not regarded to be as reliable as the Head and Shoulders Pattern. There also is
an equivalent counterpart to this pattern: if two consecutive local lows on the same price
level appear within a downtrend, the pattern is called Double Bottom and indicates the
potential end of this trend. Examples of a Double Top and a Double Bottom are depicted
in figure 2.5.

For more information on these patterns and possible variations see [Mur99].

2.3 Technical Indicators

Other popular instruments for the technical analysis of stock prices are Technical Indica-
tors. Common to all these indicators is that they are defined by some formula that includes
past values and are supposed to generate a certain signal. Since the resulting values are
completely deterministic and therefore not subject to varying interpretations2, they are
quite popular with technical analysts as well as mechanical trading systems.

There exists a vast variety of different indicators with varying meaning and complexity.

2Only the indicator’s value is deterministic of course, the value’s interpretation is still subject to the
trader’s interpretation. However, most indicators suggest certain thresholds for signal generation.

8

2.3 Technical Indicators

Figure 2.5: Examples of a Double Bottom (1) and a Double Top (2) in the Dow Jones
Industrial Average Index. Note that the pattern’s size hints to the magnitude
of future price movements.

The following section provides a brief survey of the most commonly used indicators utilized
in this work.

It should be noted that within this work the basic time unit is assumed to be one trading
day. Depending on the desired trading frequency and the available data, one can also use
other time units such as hours, weeks, or months.

2.3.1 Moving Averages

Moving averages are a very simple yet highly regarded type of a technical indicator. Basi-
cally, a moving average for a certain time t is calculated by averaging a certain number d
of past values.

Variants of Moving Averages

Within the technical analysis, three different approaches are being used for calculation of
an average:

• Simple Moving Average (SMA)
This is the most simple way of constructing a moving average, its parameter d de-
termines the “length” of the average. To determine the average’s value at time t, d
past price values P are simply summed up and divided by d:

SMAd(t) =

d∑
i=1

P (t− i)

d

While this approach is appealing because of its simple computation, one might argue
that it lacks precision because each value used for its calculation contributes the
same weight to the result and therefore older values influence the result by the same
amount that newer values do.

9

2 Technical Analysis of Financial Markets

• Weighted Moving Average (WMA)
The construction of a weighted moving average is similar to the simple average,
except that differentiated weights are used for its computation: starting with the
newest value, each value is assigned a weight in a descending order. Therefore, a
value’s influence on the result fades with its age:

WMAd(t) =

d∑
i=1

(d+ 1− i) · P (t− i)

d ·
d∑
i=1

i

Compared to the SMA, the WMA responds quicker to changes in the data, due to
its differentiated weights. Thus it is tied closer to the actual movements.

• Exponential Moving Average (EMA)
The exponential moving average (or, more precisely, the exponentially weighted mov-
ing average) assigns descending weights to older values as well. However, opposed to
the WMA, all previous values are taken into the calculation with exponentially de-
creasing weights. Analogously to the previously introduced averages, the EMA takes
a length-parameter d as an input. This parameter determines a constant smoothing
factor α that represents the degree of weighting decrease and is used for the EMA’s
calculation:

α =
2

d+ 1

EMAd(t) = EMAd(t− 1) + α(P (t)− EMAd(t− 1))

EMAt(1) is not defined and EMAt(2) may be initialized in different ways, most
commonly it is set to P (1). All subsequent values can be calculated by the above
formula.

Some analysts prefer this type of average, because it “takes the complete history into
account”. However, due to the exponential decrease, the influence of old values fades
quickly to almost zero. Hence, this “advantage” is only of theoretical interest.

Parameter Determination

When using moving averages of any kind, one has to set a parameter for the average’s
length d. The lower d’s value, the higher is the average’s responsiveness. A fast response
has the advantage of quickly reacting upon market changes, but at the same time this will
yield to a rather noisy line. On the other hand, a large value of d leads to a smoother line
and therefore fewer false signals, but it comes with the price of a considerable lag between
market movements and an average’s signal. Thus, there is always a trade-off between lag
and signal quality which has to be taken into account for a determination of a feasible
d. These considerations also hold for all of the following indicators that are duration-
dependent.

10

2.3 Technical Indicators

Applications of Moving Averages

There are several concepts that exploit moving averages in order to infer certain information
about a security’s state. By examining the slope of an average one can easily determine the
current direction of a long-term trend without the distortion of local noise. By comparing
the relation between correct prices and an average one can determine the short-term trend
state: if prices are quoted above the average, the share is in a short uptrend. Analogously,
prices below the average identify a short-term downtrend. See figure 2.6a for a visualization
of these concepts. More applications of moving averages are explained in the next section
as those are treated as separate indicators.

2.3.2 Cross Average

By comparing two (or more) moving averages of different duration one can obtain a
smoother method for signal generation. If the short-duration average (the “quicker” av-
erage) resides above the “slower” average, the share is considered to be in an uptrend,
otherwise it is considered to be in a downtrend. Consequently, each time the average lines
cross, the trend states are assumed to reverse and therefore a trading signal is generated.

It is common to plot the difference between two indicators separately (as shown in figure
2.6b). This makes the identification of trend states even easier: bullish and bearish trends
are reflected by positive and negative values, respectively. Each crossing of the zero-line
leads to the generation of a trading signal.

2.3.3 Moving Average Convergence/Divergence (MACD)

The Moving Average Convergence/Divergence is a widely used indicator based on mov-
ing averages with a more complex construction. It consists of two separate lines and is
constructed as follows (described for example in [Mur99]).

1. Two separate exponentially smoothed averages are created. While in theory the
averages’ length can be adjusted as desired, practice established the standard of
using a 12-day and a 26-day average.

2. The difference of these averages is calculated and plotted as the first line (called
MACD line).

3. The resulting line is smoothed with another exponential average (usually of length
9) and plotted as the second line (called signal line).

As an example for the MACD, see figure 2.6c.

There are several signals that the MACD can emit: the major trading signals are created
by crossings of the two lines. If the signal line crosses the MACD line upwards, a buy signal
is generated. Analogously, if the signal line crosses the MACD line downwards, a sell signal
is generated. Additionally, the position of the MACD line is able to provide information
by itself: large positive values reflect an overbought market (i.e., the market is expected
to fall in the near future as a correctional response to previous strong upward movements)
and large negative values reflect an oversold market. By combining these two facts, the
signal’s quality can be further increased. If a line crossing appears in a highly oversold or
overbought area, the indicator emits two realizations of a forecast and thereby creates a
more reliable signal.

11

2 Technical Analysis of Financial Markets

(a) SMA50 (red line), SMA100 (blue line), and Bollinger Band (shaded in rose, explained subsequently)

(b) 50/100-Day Cross Average

(c) Moving Average Convergence/Divergence with MACD line (black) and signal line(red)

(d) Momentum

(e) Relative Strength Index

(f) Average True Range

Figure 2.6: Examples of various technical indicators

12

2.3 Technical Indicators

2.3.4 Bollinger Band

The Bollinger Band is an analysis tool that measures the relative level of current prices.
It consists of two pieces:

• A simple moving average of a certain length (SMAd) forms the middle line

• A multiplicity (K) of the past d values’ standard deviation (σ) determines the dis-
tance to the band’s borders, i.e., the band is defined by the interval
[SMA − Kσ, SMA + K σ]. Commonly used values are d = 20 and K = 2.

An example of a Bollinger Band with the default values is shown in figure 2.6a.

The majority of price movements is assumed to happen within the Bollinger Band’s
range. Therefore two types of information can be extracted from this indicator.

The band width provides information about the price’s volatility: a narrow band in-
dicates small fluctuation amplitudes and vice versa. This fact, in combination with the
band’s direction, can be used to determine a trend’s strength. A narrow band indicates a
lucid movement into a certain direction while a spaced out band represents large oscilla-
tions in both directions. By comparing the current band width to the band width’s historic
average, one might try to predict the volatility’s state in the near future. Since price oscil-
lations mostly tend to happen within a certain range, situations in which the band width
exhibits a magnificent deviation from its historic average are expected to quickly revert to
this average.3

By analyzing the position of the current price value relative to the bollinger band, one
can obtain an idea of the relative short-term price level. If the prices are close to the
lower border, the security is assumed to be oversold and consequently prices are expected
to bounce off the border, leading to a short-term upward movement. Analogously, prices
located close to the upper border are expected to signal downward movements. Addition-
ally, by taking the current bandwidth into consideration, one can also infer hints about
the magnitude of expected movements.

2.3.5 Momentum

The Momentum is a simple indicator which measures speed and direction of the price mo-
tion (in the style of the physical quantity momentum, hence the name). It is calculated by
subtracting the closing price d (usually 10) days ago from the current closing price:

M(t) = P (t)− P (t− d)

In other words, momentum measures the slope of price movements. If prices move
steadily in one direction, the momentum indicator exhibits a horizontal line. This can
be useful as an early warning sign of changing trends: in an uptrend, prices might still
continue to climb, while the momentum starts to decline. This can indicate that the force
of a (currently still valid) uptrend is fading. See figure 2.6d for an example.

Again, this indicator can be used to identify uptrends and downtrends through positive
and negative indicator values, respectively. Just like with the previously explained indi-
cators, large distances from the zero line indicate overbought and oversold situations and

3In financial mathematics, the concept of using the current state of a security’s price in order to obtain
information about future volatility is called Implied Volatility. While this concept is only used indirectly
within this work, it plays a major role in other fields of finance, particularly in the pricing of options
with the Black-Scholes Formula, as described in [BS73].

13

2 Technical Analysis of Financial Markets

zero crossings indicate trend reversals.

One disadvantage of the momentum’s simple concept is the fact that previous price
movements can lead to sudden erratic fluctuations in the indicator line. If a strong rise or
decline happened d days ago, the current indicator value will exhibit a significant outburst,
even though current price changes may be rather small.

2.3.6 Relative Strength Index (RSI)

The Relative Strength Index4 was originally introduced in [Wil78] and is also used to mea-
sure strength or weakness of price movements. In essence, the RSI is a refinement of the
momentum’s concept that aims to overcome the aforementioned disadvantage of a simple
momentum indicator. The RSI is calculated as follows:

RSI = 100− 100

1 +RS

RS =
Average of closing prices within d days with rising values
Average of closing prices within d days with falling values

De facto standard for the RSI’s calculation is a duration of 14 days, as depicted in figure
2.6e.

Next to solving the aforementioned problem of erratic fluctuations, the RSI brings an-
other advantage: opposed to the momentum, it has a constant vertical bandwidth of 100
points. Consequently, fixed values may be used as trigger marks for signal generation. RSI
values above 70 points indicate overbought situations while values below 30 points indicate
oversold situations (marked in the chart with a green and red line, respectively).

If the RSI resides in the overbought or oversold range, divergences between RSI’s curve
and actual price motions may emit early warnings of trend changes. According to [Wil78],
these divergences are in fact the most valuable information emitted by the RSI.

2.3.7 Average True Range (ATR)

Another indicator introduced by [Wil78] is the Average True Range which measures a price
trend’s degree of volatility.

The term range refers to the maximum motion within a given time interval. Thus, a
trading day’s range is simply the difference between the day’s high and low price. While
the range gives a first impression about a stock’s volatility, its concept is too simple to truly
grasp the volatility state since it only indicates intra-day movements but is not concerned
with inter-day motions. For instance, stock quotes on a certain day may open significantly
above the previous day’s close (thereby leading to a so-called gap) without exhibiting
significant movements throughout the day. The range in this situation would be rather
small while the actual price volatility is considerably higher.

To overcome this problem, the True Range takes the previous day’s key points into
account and is defined as the maximum of the following three values:

• Difference between today’s high and today’s low

• Difference between yesterday’s close and today’s high
4The name is somewhat misleading because in technical analysis, the term relative strength usually refers
to the ratio of a certain stock price to the market average. However, this is not what is measured by
the RSI.

14

2.3 Technical Indicators

• Difference between yesterday’s close and today’s low

Hence, the true range’s formula is

TR(t) = max(High(t),Close(t− 1))−min(Low(t),Close(t− 1))

Consequently, the true range provides valuable hints at the volatility state.

The Average True Range is a d-day exponential moving average of true range values. In
[Wil78] it is recommended to employ a 14-day average, as shown in figure 2.6f.

The average true range characterizes the magnitude (and thereby the “force”) of a given
trend state. Note that it is independent of the motion’s direction, which makes it im-
possible to infer any predictions concerning a movement’s direction solely based on this
indicator. Therefore, it is rather a supplement to other indicators which possibly allows
for an increased quality in the inferred predictions.

2.3.8 Aroon Indicator

The Aroon5 Indicator is a two-line indicator system originally proposed in [Cha95]. It
allows for an identification of trends and their respective strength. As depicted in figure
2.7b, it is created upon two indicators called Aroon Up and Aroon Down that measure
strength of up and downtrends, respectively.

The Aroon Up and Aroon Down indicators for a certain duration d (usually 14 days)
are calculated as follows:

AU = 100 · d− (Number of days since highest high in previous d days)
d

AD = 100 · d− (Number of days since lowest low in previous d days)
d

The indicator lines signal a new extreme within the given period with a value of 100
(the indicator’s maximum value). Conversely, a value of 0 indicates that price movements
were not able to reach a new local extreme within the given time period.

This leads to a rather straightforward interpretation of the indicator lines. If the Aroon
Up resides at its upper limit, a strong upwards move is indicated. If the Aroon Down is
at its upper limit, a strong downward move is indicated. Trends are indicated if a signal
line remains persistently within the range above 70. Ideally, the trend’s state is confirmed
via the opposing indicator residing in the range below 30 (these thresholds are depicted in
figure 2.7b via the green and red horizontal line, respectively).

A crossover of the indicator lines should receive special attention since this will most
likely indicate the end of a previous trend.

2.3.9 Commodity Channel Index (CCI)

The Commodity Channel Index is an indicator introduced by Donald Lambert in an article
of the October 1980 issue of Commodities magazine. A reprint of this article can be found
in [Lam83]. Although this indicator was originally intended to be used in commodity

5“Aroon” is a Sanskrit word meaning “dawn’s early light” or the change from night to day, as explained
in [Cha95].

15

2 Technical Analysis of Financial Markets

(a) Price movements (for reference purposes)

(b) Aroon Indicator, consisting of Aroon Up (black line) and Aroon Down (red line)

(c) Commodity Channel Index

(d) Stochastic %K (black line) %D (red line)

(e) Trading Volume

(f) On-Balance Volume

(g) Money Flow Index

(h) Ease of Movement

Figure 2.7: Further examples of various technical indicators

16

2.3 Technical Indicators

markets, over time it became popular with technical analysts in various markets.

Opposed to previously introduced indicators, the CCI’s calculation is based on the day’s
Typical Price:

TP(t) =
High(t) + Low(t) + Close(t)

3

The CCI is calculated by dividing the difference of the typical price and its simple mov-
ing average by the typical price’s mean absolute deviation:

CCI =
1

0.015

TP− SMA
σ(TP)

According to [Lam83], the additional scaling factor of 1
0.015 is used to ensure that the

majority of values falls between -100 and 100.

Lambert originally aimed for the identification of strong trends. He argued that values
above 100 and below -100 signal strong uptrends and downtrends respectively. He also
suggested to use those values as trigger marks for signal generation: a buy signal is gen-
erating via the CCI’s upward breach of 100 and a sell signal via a downward breach of
-100.

While the indicator itself is rather popular among traders, its common interpretation
has changed: instead of using the trigger marks for an anticipation of beginning trends,
popular interpretation is exactly the opposite. Similar to some of the previously described
indicators (e.g., the RSI), large values are believed to signal overbought and oversold
situations. Hence, a crossing of one of the trigger marks leads to the expectation of an
imminent correction.

An example of the CCI is depicted in figure 2.7c, the high and low signal triggers are
marked by a green and a red line, respectively.

2.3.10 Stochastics Oscillator (%K%D)

The Stochastics Oscillator is a two-line indicator system that attempts to predict turning
points by comparing a security’s current closing price to its recent price range. It is based
on the observation that closing prices in an uptrend tend to reside near the range’s upper
limit while closing prices in downtrends happen to appear near the lower border. Thus,
the indicator’s first line (called %K) denotes the current price level relative to its recent
trading range:

% K(t) = 100 · P (t)− Ld(t)
Hd(t)− Ld(t)

As usual, P denotes the closing price. Ld and Hd refer to the highest high and lowest
low within the last d (usually 14) days.

The second line (called %D) is a 3-period exponential moving average of the %K-line:

%D = EMA3(%K)

This results in two lines oscillating between 0 and 100 (see figure 2.7d for an example).
The indicator’s extreme areas that signal overbought and oversold situations are above 80

17

2 Technical Analysis of Financial Markets

and below 20 (marked by the green and red line in the figure).

Conditions for the stochastic’s signal generation are somewhat more complex than with
other indicators: in general, this indicator emits trading signals if divergences between the
indicator and the corresponding price movements occur. A negative divergence occurs if
the %D-line resides above 80 and exhibits two peaks with a descending tendency, while the
price continues to move upwards. This indicates that, although prices still proceed towards
new highs, the motion loses its momentum and therefore an imminent turning point with
a subsequent downward move is expected. If these prerequisites are met, the actual signal
is generated by a crossover of %K and %D. Conversely, a buy signal is generated if the
%D-line resides below 20 and exhibits two peaks with an ascending tendency, while price
movements still continue to move downward.

To summarize, the stochastic indicator generates a signal if all of the following conditions
are met:

• the %D-line is in an extreme area (> 80 or < 20)

• the %D-line forms two peaks with a certain tendency

• price movements diverge from the %D-line tendency

• the %D-line is crossed by the %K-line

2.3.11 Trading Volume

As already briefly mentioned in section 2.1, while analyzing price movements it is common
to take the trading volume into account, also. According to the theory of technical analysis,
the trading volume (i.e., number of shares traded within a certain time period) can be
considered as a measurement for any signal’s strength. Since the volume itself can rarely
provide feasible information about future price movements by itself, it is referred to as a
secondary indicator which may be used to enhance the quality of other indicator’s signals.

Usually, the trading volume is displayed as a bar chart below the price chart (as depicted
in figure 2.7e). For a better distinction of the price movement’s direction it is common to
color the volume bars of rising days in green and falling days in red.

The reasoning behind analyzing the volume is that price movements arise from the ac-
tions of market participants. Consequently, the trading volume can be considered as a
majority vote among market participants: for instance, if an upward movement is accom-
panied by a high trading volume, it can be seen as a hint to the fact that a large number of
traders believes in rising prices. Consequently they would be expected to continue buying
a particular share and thereby driving its price further upwards.

Also, many market participants use a low-frequency trading strategy, i.e., they do not
convey market orders very often. They usually only step into action if prices arrive at a
level that they regard as relevant enough to alter their positions. Hence, such levels are
accompanied by a high trading volume which stresses their importance.

To further illustrate the volume’s impact, it is useful to examine an example for low-
volume trading days. A typical situation for the occurrence of very low-volume trading
days is the holiday season at the end of December (this can be clearly seen in figure
2.7e, as the volume exhibits significant lows during this time). It is obvious that only
very few people work (and therefore participate in financial markets) during this time.
Consequently, it only takes relatively few market participants to push prices into a certain
direction. However, once the other market participants return in the beginning of the
following year, they are able to quickly correct any movements that do not reflect the
majority’s opinion due to the significantly higher volume.

18

2.3 Technical Indicators

2.3.12 On-Balance Volume (OBV)

A simple indicator based upon the concept of trading volume is the On-Balance Volume.
It simply cumulates the trading volume with regard to the price movement’s direction
(initialized with OBV (0) = 0):

OBV(t) = OBV(t− 1) +

volume(t), if P (t) > P (t− 1)

0, if P (t) = P (t− 1)

-volume(t), if P (t) < P (t− 1)

As depicted in figure 2.7f, this indicator usually moves into the same direction as price
movements do. While the indicator’s actual values are not of much interest, its direction
may provide valuable information. Since it usually reflects the price movements, any
occurring divergences between OBV and prices may hint to imminent turning points. As
explained in [Mur99], it is common believe that “volume prevails prices”, i.e., a change of
trend should be signaled early through the OBV before any signs become visible in the
price movements.

A careful comparison of the OBV in figure 2.7f with the corresponding price movements
in figure 2.7a already forecloses subsequent results of this work: the OBV’s development
exactly coincides with the price movements, i.e., local extremes in the OBV curve appear
at the same positions as they do in the price movements. Without any prevailing changes
in the OBV, it can hardly extend the information derived directly from an analysis of the
prices.

2.3.13 Money Flow Index (MFI)

The Money Flow Index is an indicator that relates price and volume movements. Its con-
struction starts with the calculation of the so-called Money Flow based upon a security’s
typical price TP (see section 2.3.9) and volume:

MF = TP · volume

Subsequently, the Money Ratio is calculated for the previous d (typically 14) days. It is
the ratio of cumulated positive and negative money flows during that time period:

MR =
cumulated positive money flow for d days
cumulated negative money flow for d days

Finally, based upon the money ratio, the MFI is calculated as follows (see figure 2.7g for
an example of the MFI):

MFI = 100− 100

1 + MR

As with many of the previously described indicators, the MFI is used to signal over-
bought and oversold situations through trigger marks at 80 and 20, respectively. Also, any
divergences in the trend directions of MFI and price movements are considered to be early
signals of a forming trend reversal.

19

2 Technical Analysis of Financial Markets

2.3.14 Ease of Movement (EOM)

The Ease of Movement is another indicator which relates price and volume and can be
seen as a sensible seismograph of supply and demand. It is calculated as follows (as before,
H and L refer to a day’s high and low values):

Midpoint: MP(t) =
(H(t) + L(t))

2

Midpoint Move: MPM(t) = MP(t)−MP(t− 1)

Box Ratio: BR(t) =
volume(t)

(H(t)− L(t))

Ease of Movement: EOM(t) =
MPM(t)

BR(t)

As depicted in figure 2.7h, the indicator oscillates around the zero line. An EOM value
near zero represents a rather balanced relation between supply and demand. It is commonly
assumed that any trend reversals are accompanied by significant shifts in the relation of
supply and demand. Therefore, this indicator can be used as a filter: if other indicators
point to a pending trend reversal, the EOM should exhibit fluctuations of a high magnitude.
If instead the EOM’s graph remains fairly steady, the signal may be regarded as being likely
erroneous.

2.3.15 Summary

In general, the indicators presented previously can be classified into four categories:

• trend direction indicators

• trend strength indicators

• volatility indicators

• secondary indicators

Table 2.1 lists a summary of each indicator’s key features.6 A comparison of the indica-
tors shows that there are plenty of them with high similarities as they use the same input
and aim to yield the same results through similar formulas. Thereby, one should expect
to obtain an analysis of similar quality by utilizing only a small subset of these indicators.
Hence, at first glance it might appear to introduce an unnecessary increase in complexity
to use a great variety of indicators. However, the usage of several similar indicators serves
two purposes: first, if several indicators point to the same fact, they confirm each other
and thereby lead to a more reliable result. Second, and more important, there is always
the possibility that different indicators diverge in their signals. These divergences can in
fact provide highly valuable information (for instance, they can be used to filter out false
signals or to refine the anticipated magnitude of any forecast). Of course, due to the many
similarities, the employment of further indicators can only improve the result to a very
limited extend.

6As explained above, many indicators may serve different purposes at the same time. Hence the listed
indicator types are not exclusive but rather reflect the main usage.

20

2.4 Candlestick Analysis

Indicator Type Range
Moving Average trend direction positive unlimited
Cross Average trend direction unlimited
MACD trend direction and strength unlimited
Bollinger Band trend direction and volatility positive unlimited
Momentum trend direction and strength unlimited
RSI trend strength [0,100]
ATR volatility positive unlimited
Aroon trend direction and strength [0,100]
CCI trend strength unlimited
Stochastics trend strength [0,100]
Volume secondary positive unlimited
OBV trend direction and strength unlimited
MFI trend strength [0,100]
EOM secondary unlimited

Table 2.1: Key features of the technical indicators

2.4 Candlestick Analysis

The third method of analyzing securities used within this work is the technique of Candle-
stick Charts and the recognition and interpretation of distinguished patterns within these
charts.

2.4.1 About Candlestick Charts

Candlesticks charts are a visually appealing method7 of presenting price movements that
has been developed in Japan centuries ago. In fact, the use of candlesticks amongst ancient
Japanese rice traders dates back to the early 18th century and thereby, this method is
established significantly longer than modern financial markets themselves. However, this
technique remained unknown to the western world until the early 1990s, when it was first
made accessible in [Nis91]. It has gained popularity amongst western analysts ever since.

To create a candle chart, the key points of every day are used to construct a candle.
A day’s key points consist of its opening, highest, lowest, and closing price. (These data
sets are sometimes also referred to as OHLC-data and will form the actual machine input
subsequently).

As depicted in figure 2.8, the construction of a candle works as follows: a rectangle
is drawn between opening and closing price (called the candle’s body), a line is drawn
from the body’s upper edge to the highest value (called upper shadow or upper wick) and,
accordingly, another line is drawn from the body’s lower edge to the lowest value (called
lower shadow or lower wick). Additionally, the candle’s body will be colored according to
the situation: “rising days” (i.e., the closing price is above the opening price) are marked
with a green color, while “falling days” are marked red. Alternatively, it is also common
(namely in print media) to color the candle bodies in white and black instead of green and
red.

Note that a candle does not necessarily have to exhibit all of these features: since the

7Of course, the concept of a visually appealing chart does not provide any use for a computerized pro-
cessing. However, since the analysis of the corresponding patterns is closely related to this form of
depiction, the candlestick chart is still explained briefly here.

21

2 Technical Analysis of Financial Markets

Figure 2.8: Depiction of time intervals as candles: O = opening price, H = highest price,
L = lowest price, C = closing price; if the closing price is above the opening
price, the candle’s body is colored green, otherwise it is colored red.

opening or closing values may coincide with a day’s high or low values, there can be candles
with only one or even no shadow at all.

2.4.2 Characteristic Candlestick Shapes and their Meaning

The candlestick’s main advantage is that it allows for an instant perception of the market
participants’ attitude. Figure 2.9 depicts a few characteristic candlestick shapes which,
according to [Nis03], can be interpreted as follows:

• (a) Candles with large bodies and relatively small shadows are called Belt-holds. Such
a candle shows that opening and closing prices are near the day’s extreme prices and
thus a strong and lucid movement into one direction (depending on the body’s color)
has occurred. This usually shows that market participants are clearly in favor of one
definite direction.

• (b) A session in which the opening and closing prices are roughly on the same level
(indicated by a minuscule body) is called Doji. As there is no significant differ-
ence between the session’s opening and closing, market participants are obviously
undetermined about the direction. Hence, this candle is associated with uncertainty.

• (c) If a candle with only a large lower shadow and a rather small body appears within
an ongoing downward movement, this candle is called a Hammer. As opening and
closing prices do not differ in large, the body’s color is of no importance for this
candle, but it is rather distinguished by its characteristic shape. As this candle is
prevailed by a downward movement, it appears that this movement continued in the
session’s beginning but came to a halt sometime during the day. Since prices were
able to recover their losses until the session’s end, this candle may signal that the
previous downward movement has ended and prices have arrived at a turning point.

• (d) A candle with a diminutive body and unusually large shadows in both directions is
called a High Wave Candle. Again, this candle resembles indetermination as it does
not exhibit a clear direction. However, the large shadows resemble a rather high
volatility and therefore significant forces into both directions. This may constitute
an early warning sign that the prevailing movement’s direction is about to revert.

These are only a few examples to provide some insight into the possibilities of candle-
stick interpretations. More detailed information about characteristic candlesticks and their
interpretation can be found for example in [Nis03].

22

2.4 Candlestick Analysis

(a) Belt-holds (b) Doji (c) Hammer (d) High Wave Candle

Figure 2.9: Examples of characteristic candlesticks (from [Nis03])

(a) Morning Doji-Star, indicating a
bullish reversal

(b) Evening Doji-Star, indicating a
bearish reversal

(c) Three White soldiers, confirming
the strength of an upward move-
ment

(d) Three Black Crows, confirming
the strength of a downward move-
ment

Figure 2.10: Examples of candlestick patterns (from [Nis03])

2.4.3 Candlestick Patterns

While candlesticks are able to provide valuable insight into a market’s situation, single
candlesticks are usually regarded as too fragile to allow for a prognosis of required relia-
bility. Hence, instead of relying only on a single candle’s shape, forecasts are based upon
constellations of successive candlesticks. These so-called Candlestick Patterns usually con-
sist of a series of three candlesticks with certain properties. Next to the candle’s shapes,
their positions relative to each other, as well as the prevailing direction of movement, are
taken into consideration.

To give an impression of possible candlestick patterns, figure 2.10 illustrates a few ex-
amples.8

According to the previous explanations, the first candle in (a) indicates a solid down-
ward movement, the second candle indicates insecurity (and thereby already demonstrates
the weakness of the prevailing movement), and finally, the third candle resembles a rather

8As shown in the figure, it has become a tradition to associate a rather fantastic name with each particular
pattern. However, the patterns’ names are of no importance whatsoever within this work.

23

2 Technical Analysis of Financial Markets

strong upward movement, thereby confirming that the second candle’s insecurity indeed
lead to a reversal of the previous movement. This represents the character of most pat-
terns: the first two candles indicate a possibility of future movements and by confirming
this possibility, the third candle rounds off the pattern. Consequently, this candle sequence
forms an upward-pointing reversal pattern. As with practically all candle patterns, mir-
roring this pattern leads to its equivalent counterpart (depicted in (b),) which indicates a
downward-pointing reversal.

As an example for a continuation pattern see (c) (and (d) for its corresponding counter-
part). All the candles within this pattern resemble strong movements into one direction
and thereby this pattern indicates the continuation of an existing movement.

For a thorough guide to candlestick patterns see [Nis91] or [Mor06].

In general, candlestick patterns can be classified into two categories: reversal patterns in-
dicate an imminent turning of the current movement’s direction while continuation patterns
confirm the current movement. Opposed to the previously introduced analysis methods,
candlestick patterns only require a succinct time period to form a characteristic pattern
and thereby emit a signal. Consequently, it is only natural to utilize these patterns for
short-term forecasts. In fact, distinguished patterns have the means to forecast the fol-
lowing day’s direction with a rather high certainty, but by extending the forecast further
into the future, its quality will quickly dimmish. [Mor06] analyzed statistical correlations
between a forecast’s length and its quality and reached the conclusion that a feasible hit
ratio can be achieved for a maximum of three days, while after a maximum of seven days
a pattern’s prognosis is hardly able to outperform a random guess.

Due to their short-term nature, candlestick patterns may be employed to facilitate strate-
gies with a rather high trading frequency. Also, since the previously described analyzing
methods tend to forecast movements on a larger scale, they can be augmented with can-
dlestick patterns to pinpoint the exact positions of turning points.

24

3 Preliminaries on Bayesian Networks

This chapter introduces the concept of Bayesian networks as an approach to implement
probabilistic reasoning procedures. After providing a recapitulation of required proper-
ties from probability theory, the semantics of Bayesian networks and possible inference
procedures are introduced.

3.1 A Brief Summary on Probability Theory

Probability theory is the branch of mathematics concerned with the representation of
uncertain knowledge. Within the field of artificial intelligence, probabilities can be used to
express degrees of belief, i.e., the likelihood that a certain event is true. This section is an
abstract of the introduction to probability theory from [RN02].

Basic element of probability theory is the random variable, commonly denoted by a
capital letter. Each random variable has a domain of possible values. Therefore random
variables describe the state space of propositions. Single elements of the state space are
usually denoted by lowercase letters. The probability of a certain event (i.e., a particular
value assignment x to a random variable X) is denoted by P (X = x) or, if there is no
possibility for ambiguities, it can be simply denoted by P (x).

Random variables can be divided into two types depending on their respective domain:

• Discrete random variables take on values from a domain of countable elements.
The values in the domain must be mutually exclusive and exhaustive.

• Continuous random variables take on values from the set of real numbers. The
domain can be either the complete set or a specified subset.

3.1.1 Probability Axioms

The semantics for probability statements are defined by three basic probability axioms :

1. The probability for any event x is a real number between 0 and 1:
0 ≤ P (x) ≤ 1

2. Assumption of unit measure: the probability that some elementary element from the
entire sample space X will occur is 1. Consequently, there are no elements outside
the sample space:
P (X) = 1 and P (∅) = 0
In other words, events that are necessarily true have a probability of one and events
that are necessarily false have a probability of zero:
P (true) = 1 and P (false) = 0

3. The probability of a disjunction of two events x and y is given by:
P (x ∨ y) = P (x) + P (y)− P (x ∧ y)

The Russian mathematician Andrei Kolmogorov has shown that the rest of probability
theory can be built upon these axioms and therefore they are also called Kolmogorov’s
axioms (see [Rud08] for further information).

25

3 Preliminaries on Bayesian Networks

3.1.2 Prior Probabilities

The prior probability P (x) (also called unconditional probability) is the degree of belief
associated with a particular proposition x in the absence of any other information. It is
important to note that prior probabilities only hold if no other information is available.
As soon as auxiliary information becomes available one must use conditional probabilities,
as explained in the next section.

The specification of the prior probabilities of a random variable depends on its type. For
discrete variables, this specification (called prior probability distribution) can be provided
by enumerating all possible states and the corresponding probabilities. For instance, the
probabilities for certain weather forecasts might be (example from [RN02]):

P (Weather = sunny) = 0.7

P (Weather = rain) = 0.2

P (Weather = cloudy) = 0.08

P (Weather = snow) = 0.02

Information on a combination of multiple variables can be expressed by enumerating all
possible combinations of events and their respective probabilities. This is called a full
joint probability distribution. To illustrate this, table 3.1 depicts the example of a full joint
distribution for a dentist consultation. The domain consists of three random variables:
toothache indicates whether the patient has a toothache, cavity indicates whether the
patient has a cavity, and catch indicates whether the dentist’s instrument gets caught in the
patient’s tooth. Each entry in the table denotes the probability for a specific combination
of events.

The probability of particular subset of variables (called marginal probability) can be
obtained by summing over all entries in which these variables are true. For instance, the
first row in the example depicts all cases in which cavity is true. Hence the marginal
probability for cavity is:

P (cavity) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2

If a random variable has a continuous domain, it may take on infinitely many values and
therefore enumeration is not possible. Instead, the probability that a random variable X
takes on a value x is usually defined as a parametrized function of x. For instance, a very
simple continuous function can be used if x can take on any value in the interval [a, b] with
the same probability. This can be expressed by the uniform distribution:

f(x) =

{
1
a−b , for a ≤ x ≤ b
0, else

Such a distribution function is called probability density function. Probably the most widely
used distribution function for continuous variables in Bayesian networks is the gaussian or

toothache ¬toothache
catch ¬catch catch ¬catch

cavity 0.108 0.012 0.072 0.008

¬cavity 0.016 0.064 0.144 0.576

Table 3.1: Example of a full joint distribution for the dentist word (from [RN02])
.

26

3.1 A Brief Summary on Probability Theory

normal distribution which is in fact used for all continuous variables in this work:

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

The shape of this distribution function is determined by its parameters mean µ and variance
σ2. The fact that a random variable X is distributed normally with certain parameters µ
and σ2 is for simplicity commonly denoted by

X ∼ N (µ, σ2)

3.1.3 Conditional Probabilities

The prior probability of any proposition x is not applicable any more if some further
information y concerning this proposition is obtained. Instead, conditional probabilities
(also called posterior probabilities) have to be used. This is expressed by P (x|y) and has
the meaning “the probability of x, given that y is known”.

Conditional probabilities can also be expressed in terms of unconditional probabilities
as shown in the following equivalent equations:

P (x|y) =
P (x ∧ y)

P (y)
(3.1)

P (x ∧ y) = P (x|y)P (y) (3.2)

For instance, the unconditional probability in table 3.1 for cavity is P (cavity) = 0.2, as
shown in the previous section. However, if the patient complains about a toothache, ad-
ditional information is available and the prior probability is no longer applicable. Instead,
to obtain the new probability for cavity, one has to calculate the conditional probability
of a cavity if the patient has a toothache. This can be done by calculating the marginal
probabilities for cavity and toothache and toothache first:

P (cavity ∧ toothache) = 0.108 + 0.012 = 0.12

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

⇒ P (cavity|toothache) =
P (cavity ∧ toothache)

P (toothache)
=

0.12

0.2
= 0.6

Apparently, the additional information leads to a significant change in the belief state. This
is a very important property that will be exploited in the design of probabilistic reasoning
systems.

3.1.4 Independence

When analyzing the probabilities of a set of random variables, it is important to know
whether these variables influence each other. In the previously explained example of the
dentist consultation all of the variables depend on each other, which means that obtaining
information about one variable alters the belief state of the remaining variables. This
example can be augmented with the aforementioned random variable weather. While this
leads to a larger state space, it is obvious that for example the probability of a cavity
is not influenced by the current weather. Therefore weather and cavity are independent
variables. In fact, none of the entries from table 3.1 would change by obtaining knowledge
about the weather.

27

3 Preliminaries on Bayesian Networks

This is especially important in the context of conditional probabilities. If two events x
and y are independent, the conditional probability simplifies to:

P (x|y) = P (x)

Two random variables X, Y are conditionally independent if their relationship does not
satisfy the independence condition in general, but if they become independent once another
random variable z is known, i.e., X and Y are conditionally independent given Z:

P (x|y ∧ z) = P (x|z)

To illustrate the concept of conditional independence, consider the probability for a failure
of the headlights of a car. Assume that there may be two causes for a headlight failure: if
the car’s generator is broken both of the lights will fail. If a bulb burned through, only the
corresponding headlight will fail. Since both lights depend on a working generator, their
failure probabilities are obviously not independent. However, if the generator is known to
be working, each light can only fail due to a burned through bulb and therefore the failure
probabilities become independent. Consequently, the failure probabilities of the headlights
are independent given the state of the generator.

3.1.5 Bayes’ Rule

The Bayes’ rule is a very important relation between two reverse conditional probabili-
ties stemming from equation 3.2 (named after the English minister Thomas Bayes, who
formulated this rule in the early eighteenth century).

As explained in [Pea88], the rule is formulated as

P (x|y) =
P (y|x) · P (x)

P (y)
(3.3)

and states that the degree of belief of some event x after obtaining some additional
information y can be calculated by multiplying the previous belief P (x) with the so-
called likelihood P (y|x). The likelihood gives the probability that event y will happen
if x is actually true. P (y) is a normalizing constant which can be calculated by requir-
ing that P (x|y) and P (¬x|y) sum to unity. Since the individual terms from this rule
are required for subsequent explanations, their respective names are summarized again:

• P (x): prior probability (or simply prior)

• P (x|y): posterior probability (or simply posterior)

• P (y|x): likelihood

• P (y): normalizing constant

Key predication of this rule is the fact that every conditional probability can be expressed
in terms of its reverse. While this may not seem very beneficial at first glance, in practice
there are many situations with good probability estimates for the right hand side, but
poor estimates on the posterior. A simple example from [RN02] can illustrate the rule’s
usefulness:

Consider a simple medical diagnosis scenario concerning meningitis: a doctor may know
that meningitis causes a stiff neck 50% of the time. Also, the doctor may have information
about some unconditional facts: the probability that any patient has meningitis (denoted

28

3.2 Bayesian Networks

by m) is 1
50000 , and the probability that any patient complains about a stiff neck (denoted

by s) is 1
20 . Now the doctor is concerned with the task of estimating the probability of a

patient suffering from meningitis, if he has a stiff neck. While this problem could be solved
through an appropriate survey, the solution can also be obtained by using Bayes’ rule:

P (s|m) = 0.5

P (m) =
1

50000

P (s) =
1

20

⇒ P (m|s) =
P (s|m)P (m)

P (s)
=

0.5 · 1
50000

1
20

= 0.0002

Now, to reveal the real power of Bayes’ rule, imagine that there is a sudden epidemic of
meningitis and therefor the corresponding prior P (m) goes up. Any information about the
posterior obtained by statistical observations would become useless in this scenario. The
Bayesian solution however can be easily adapted by adjusting P (m). According to equation
3.3, the posterior should increase proportionately with the prior and, most important, the
causal information P (s|m) remains unaffected by the epidemic. Hence the use of this
kind of model-based knowledge yields the required robustness to construct any reliable
probabilistic reasoning system.

3.2 Bayesian Networks

3.2.1 Semantics of Bayesian Networks

As described in the previous section, knowledge about domains with uncertainty can be
provided through full joint probability distributions. However, next to the aforementioned
difficulty of gaining sound knowledge about each possibly entry in the full joint distribution,
handling of these distributions explicitly may become intractable with an increasing size
of the model.

These obstacles can be resolved by using Bayesian belief networks or Bayesian networks
for short. Formally, a Bayesian network is a directed acyclic graph (DAG) with the following
specifications, as described in [RN02]:

• The network’s node are made up by the random variables of the domain. Hence,
each variable is represented by a corresponding node in the network.

• Nodes can be pairwise connect by directed links. If there is a link from some node
X to another node Y , X is said to be a parent of Y (and vice versa, Y is a child of
X). Links in the network denote dependencies among random variables.

• Each node Xi has a conditional probability distribution P (Xi|Parents(Xi)) that
quantifies the effect of the parents on the node.

• The Network does not contain any directed cycles (hence the name directed acyclic
graph).

To illustrate this concept, figure 3.1 depicts the Bayesian network corresponding to the
previously discussed dentist domain. This structure facilitates an easy identification of
the domain’s key features: the isolated node weather shows that it does not influence the
remainder of this domain. The events toothache and catch both depend on the state of
cavity. Also, due to the missing link between toothache and catch, it is obvious that both

29

3 Preliminaries on Bayesian Networks

weather cavity

toothache catch

Figure 3.1: Bayesian network for the dentist domain (from [RN02])

P(C=f) P(C=t)

0.5 0.5

C P(S=f) P(S=t)

f 0.5 0.5

t 0.9 0.1

C P(R=f) P(R=t)

f 0.8 0.2

t 0.2 0.8

S R P(W=f) P(W=t)

f f 1.0 0.0

t f 0.1 0.9

f t 0.1 0.9

t t 0.01 0.99

cloudy

rainsprinkler

wetGrass

Figure 3.2: Bayesian network for the sprinkler domain with corresponding probability
distributions (from [RN02])

variables are conditionally independent given that the state of cavity is known.1

A Bayesian network can be seen as an alternative presentation of a domain’s full joint
probability distribution. Instead of providing the full distribution explicitly, it is suffi-
cient to provide conditional probabilities for each node. Thereby, the probability for each
particular combination of events x1, ..., xn can be obtained by

P (x1, ..., xn) =

n∏
i=1

P (xi|parents(Xi)) (3.4)

To further explore the potential of Bayesian networks, consider another simple example
from [RN02] (a more detailed analysis of this example can be found in [Mur07]). As de-
picted in figure 3.2, this domain consists of four binary random variables: cloudy indicates
whether it is a cloudy day, rain indicates whether it has rained, sprinkler indicates whether
the sprinkler has been turned on, and wetGrass indicates whether the grass is wet. The
dependencies in the graph are straightforward: a cloudy day brings a high probability of
rain and thereby renders it less probable that the sprinkler is turned on. Both sprinkler
and rain will likely cause the grass to be wet. First, it is assumed that the only variable
which can be observed in this scenario is the grass, all other variables are hidden (i.e., they
cannot be observed) and therefore their most probable states have to be inferred depending

1Consequently, the task of identifying conditional independences in Bayesian networks is identical to the
graph theoretical problem of d-separation. See [Pea88] for details.

30

3.2 Bayesian Networks

H

E1 E2
. . . En

Figure 3.3: Naive Bayes model

on the grass’s state. Now one might be interested for example in the probability that the
sprinkler was turned on given that the grass is wet. Hence the evidence is W = t while the
states of all other nodes are unknown. Application of the rules from the previous section
yields to P (S = t|W = t) ≈ 0.43. Now suppose that the new information that it has
rained before (R = t) is acquired and this new fact is added to the evidence. Calculating
the probability for the sprinkler again now leads to P (S = t|W = t ∧R = t) ≈ 0.19 which
is significantly lower than before. Since rain is known to cause wet grass, this result is not
surprising as it provides a feasible explanation for the evidence. In other words, without
any additional knowledge, the causal relationships between wet grass and rain and sprin-
kler lead to a rather high degree of belief in both causes. However, since the knowledge
about rain provides a satisfactory explanation for the grass being wet there is little reason
to assume that the sprinkler was turned on also and therefore the corresponding degree of
belief decreases. This fact is an important capability of Bayesian networks and is usually
referred to as explaining away the evidence (the rain “explained away” the fact that the
grass is wet).

If a causal model exhibits a clear distinction between observed states (called evidence)
and hidden states which are to be inferred (called hypothesis), it is common to denote the
states by E and H. To allow for an easy distinction between observed and hidden nodes
the following depictions of Bayesian networks follow the standard convention of shading
observed nodes.

The simplest and most commonly used Bayesian network model (and the only one em-
ployed within this work) is called the naive Bayes model. In this model, the class variable
H is the root and the feature variables E1, ..., En are the leaves, as depicted in figure 3.3.
This model is called “naive” because it assumes that all evidence variables are conditionally
independent of each other, given the class. Since most domains in fact do not satisfy this
assumption the use of a naive Bayesian network often leads to an erroneous model and
therefore the naive Bayesian approach is sometimes also called “Idiot Bayes”. However,
even though such a network may be known to reflect an incorrect model of the correspond-
ing domain, it may still be able to perform surprisingly well in practice. This fact has been
subject to intensive research (e.g., [DP97], [Ris01], and [HY01]) and will be examined in
more detail in the following chapter.

Main advantage of this naive model is its easy calculation of joint probabilities. Accord-
ing to Bayes’ rule (equation 3.3) the conditional probability for this model can be expressed
as

P (H|E1, ..., En) =
P (H) P (E1, ..., En|H)

P (E1, ..., En)
.

As explained before, the interesting part of this expression is its numerator since the
denominator does not depend onH and is therefore constant with given evidence E1, ..., En.
According to equation 3.1 the numerator is equivalent to the joint probability

P (H ∧ E1 ∧ ... ∧ En)

31

3 Preliminaries on Bayesian Networks

which through repeated application of the product rule (equation 3.2) can be expressed as

P (H ∧ E1 ∧ ... ∧ En) = P (H) P (E1 ∧ ... ∧ En|H)

= P (H) P (E1|H) P (E2 ∧ ... ∧ En|H ∧ E1)

...
= P (H) P (E1|H) P (E2|H ∧ E1)...P (En|H ∧ E1 ∧ ... ∧ En−1)

Due to the assumption of conditional independence the individual terms of this expression
can be simplified to (with i 6= j)

P (Ei|H ∧ Ej) = P (Ei|H)

and therefore the joint probability is simplified to

P (H ∧ E1 ∧ ... ∧ En) = P (H) P (E1|H)...P (En|H)

= P (H)

n∏
i=1

P (Ei|H)

and thus the conditional distribution over H can be expressed as

P (H|E1 ∧ ... ∧ En) =
1

z
P (H)

n∏
i=1

P (Ei|H) (3.5)

with a scaling factor z only depending on the evidence. Therefore, such naive Bayesian
models are much more manageable compared to any alternative models since they can be
separated into a class prior P (H) and independent probability distributions P (Ei|H).

3.2.2 Inference in Bayesian Networks

In order to facilitate reasoning for domains with uncertainty, there are two main infer-
ence tasks that have to be performed in Bayesian networks, namely inferring the state
of unobserved variables and estimating the parameters of unknown probability distribu-
tions.2 Although there exists a vast variety of different inference algorithms, this section
is constrained to the algorithms employed within this work.

Parameter Estimation from Complete Data via ML Learning

In most probabilistic reasoning scenarios the causal dependencies of the target domain are
identified by domain experts and a corresponding Bayesian network is designed. Hence, the
initial situation for a learning task consists of a Bayesian network of known structure and
known types of conditional probability distributions, but parameters of the distribution
functions are yet to be determined. This parameter determination can be performed with
the use of sets of exemplary data (usually called training data) and therefore the task of
parameter estimation is commonly also called statistical learning or training.

The choice of an appropriate learning technique depends mostly on the available train-
ing data. If every instance of the training data comprises values for all random variables
(i.e., the domain is fully observable), the learning task is only concerned with estimating

2If dependencies of random variables within the domain are unknown, a third major inference task is
structure learning. Since all models introduced in this work are built upon a pre-defined and fixed
structure, this task is not explained here.

32

3.2 Bayesian Networks

unknown parameters of the probability distribution functions such that they represent the
most likely reflection of the domains correlations. This learning process is called parame-
ter estimation from complete data and is usually performed through Maximum-Likelihood
Learning or ML Learning for short.

Informally speaking, ML learning estimates numerical parameters such that the resulting
probability distributions yield the most plausible model of the observed training data.

To simplify notation in the following explanations, the complete training instances are
denoted by X = {x1, ..., xn}, i.e., each xi denotes a certain pair of observation ei and
corresponding hypothesis hi from the training set. The likelihood distribution of the train-
ing set X is denoted by P (X|θ) with respect to the conditional distribution’s unknown
parameter(s) θ to be determined. Since all realizations are assumed to be independent and
identically distributed (i.i.d), the distribution can be factorized as follows:

P (X|θ) = P (x1, ..., xn|θ) =
∏
i

P (xi|θ)

Since the realizations xi are observed and therefore fixed, the distribution function can be
seen as a function of θ (the so-called likelihood function):

L(θ) = P (X|θ) =
∏
i

P (xi|θ) (3.6)

Maximizing this expression with respect to θ results in a maximum likelihood estimate
(MLE, denoted by θ̂) and thereby provides the best estimate of distribution functions for
the given training data. Hence with a parameter space Θ, ML learning is performed by
solving

θ̂ = argmax
θ∈Θ
L(θ) (3.7)

As a result, a full specification of distribution functions is obtained, which provides the
best reflection of model correspondences exhibited in the training data.

Note that equation 3.7 may be rather inconvenient to solve due to the product in equation
3.7. To ease computations, it is common to exploit the fact that the logarithm provides
a monotone transformation of a distribution function. Hence, instead of maximizing the
likelihood function directly, one can also use its logarithmic transformation ` called log
likelihood :

`(θ) = lnL(θ) =

n∑
i=1

lnP (xi|θ) (3.8)

Since the logarithm is a monotone transformation, maximization of `(θ) will yield the same
result as maximizing L(θ), but, due to the replacement of the product in equation 3.6 with
the sum in equation 3.8, the maximum of the log likelihood is usually easier to calculate
and therefore results in a speedup of the learning process. as both variants yield the same
results, they do not alter the principle of this learning procedure but merely influence the
processing speed. Consequently, even though the logarithmic functions are used for the im-
plementation of the models presented in this work, the following explanations occasionally
omit this step for the sake of simplicity.

Parameter Learning with Missing Values via the EM Algorithm

The fairly easy task of ML learning is only applicable if the values of all random variables
can be observed from the training data. If some of the values are not observable (i.e., the
domain contains hidden states), another learning approach has to be employed, namely the

33

3 Preliminaries on Bayesian Networks

Expectation Maximization Algorithm or EM Algorithm for short. The lack of observable
values for some variables requires an additional parameter compared to ML learning: next
to the already defined observations X and distribution parameters θ, the domain now
contains one or more latent variables denoted by Y . Thus, next to estimating θ, the
learning procedure is now also tasked with inferring values for Y .

Main goal of this procedure is again the determination of a maximum likelihood estimate.
However, due to the latent variable Y all of its possible values must be taken into account
when calculating the likelihood of observed data:3

L(θ) = P (X|θ) =
∑
Y

P (X ∧ Y |θ)

Since a maximization of this expression is often intractable, the EM algorithm offers an
alternative approach of finding a maximum likelihood estimate.

Informally speaking, the idea behind this algorithm is the replacement of latent variables
with plausible values (called imputation) and a successive calculation of an ML estimate
based upon these assumed values. This MLE can be used afterwards to guess new (possi-
bly more plausible) values for the latent variables. Consequently, this algorithm proceeds
with an alternating execution of guessing plausible values for Y and maximizing the cor-
responding likelihood.

More formally, the algorithm proceeds by performing the following two steps iteratively.
Since θ varies for each iteration, the parameter of iteration i is denoted by θ(i). Even
though the results of this algorithm are heavily dependent on an appropriate initialization
of the parameter θ(0), for simplicity it is assumed that no prior knowledge concerning this
parameter is available and therefore it is set to some value randomly. Strategies for an
expedient initialization are discussed for instance in [BCG03].

• Expectation Step (E-step)
First, a plausible value for Y is determined based on the previous iteration’s param-
eter estimate θ(i−1), i.e., Y is set to the y that maximizes P (y|X ∧ θ(i−1)). This is
used to obtain a new estimate of θ through the so-called Q-function. This function
calculates the expected value E of the log likelihood function with respect to the
conditional distribution P (Y |X) and the current parameter estimate θ(i−1):

Q(θ) = Q(θ|θ(i−1)) = EP (Y |X∧θ(i−1))

(
`(θ)

)
• Maximization Step (M-step)

After the expected value has been calculated, the next estimate θ(i) is determined
such that

θ(i) = argmax
θ
Q(θ|θ(i−1)).

This step can be carried out through ML learning as described before.

These steps are performed alternately until the resulting θ(i) do not exhibit significant
changes in successive iterations any more. Though it has been shown that this procedure
will always converge (discussed for example in [MK96]), it is not guaranteed to reach a
maximum likelihood estimate but instead the algorithm may also stall in a local maximum.

Next to the obvious advantage of being able to cope with hidden variables, this algorithm
is quite popular because it is usually easy to implement and is known to reach at least some
local maximum (i.e., it will always return a solution even though not necessarily the optimal
one). As mentioned before, the algorithm is heavily dependent on a feasible initialization

3Y is assumed to be a discrete variable in this case. If it is a continuous variable instead, the sum would
have to be replaced by an integral.

34

3.2 Bayesian Networks

of its parameter θ(0), since this selection may determine whether the result is limited by
some local maximum. Thus the problem of undesired local maxima may be resolved (or at
least diluted) by executing the algorithm multiple times with varying initial parameters.
However, as convergence of this algorithm is rather slow, such a multiple execution may
be inappropriate if computing time is an important factor. Alternative improvements may
be achieved through sophisticated strategies of determining feasible initial parameters, as
described for instance in [BCG03].

Prediction of Hidden Variables via the Junction Tree Algorithm

Once the network has been trained successfully, it can be used for prediction, i.e., inferring
the state of a hidden variable H for a certain observation e, or, more formally speaking, it
is the task of finding the hi that maximizes P (H|e).
The most simple approach of answering queries about the states of hidden variables is

simply summing over terms from the full joint distribution, as explained in section 3.2.1.
However, with increasing size of the network such an explicit enumeration of different terms
from the conditional probability tables will quickly become intractable. More efficient
approaches have been developed to allow for an admissible processing time. Algorithms
for the inference of hidden variables have been subject to intensive research and therefore
a large variety of different inference algorithms is available. In general, these algorithms
can be classified into two types of inference: exact inference yields results that are in exact
accordance with the probability model while approximate inference usually facilities an
increase in computational speed but only produces approximate solutions.

Thus, alternative algorithms mostly differ in computational speed and precision. The
inference algorithm employed in this work is the junction tree algorithm (called JTA sub-
sequently), which belongs to the class of exact inference algorithms. There may be other
algorithms that are suited equally well (and it terms of speed probably significantly better)
for the required inference tasks, but since this algorithm yields exact results and compu-
tational speed is not a vital issue within the context of this work, this algorithm proved to
be a sufficient choice. For more information on different inference algorithms for Bayesian
Networks see for example [RN02], [Pea88], and [CGH96].

This section only summarizes the JTA’s functionality, for an in-depth analysis of its
features and justification see [CGH96]. Aim of this algorithm is the transformation of
a Bayesian network into an undirected tree in order to provide the means of efficiently
computing exact marginals. The algorithm comprises four steps as listed below, each of
which is explained subsequently.

1. Moralize the network

2. Make the graph chordal through triangulating

3. Form the junction tree

4. Inference in the junction tree

Moralizing
The moral graph corresponding to a Bayesian network is obtained by first creating links
between every pair of nodes with a common child and then dropping the directionality
of all links. This process is called moralizing (if two parents share a common child, they
should be “married” in order to adhere to certain concepts of morality, hence the name
of this step). To illustrate this, figure 3.4a depicts some arbitrary Bayesian network and
figure 3.4b depicts the corresponding moralized graph.

35

3 Preliminaries on Bayesian Networks

A

B

C

D

E

F

G

H

(a) Original Bayesian network

A

B

C

D

E

F

G

H

(b) Moralized undirected graph, addi-
tional links are marked green

AB

BCF

CD

EF

EG

CGH

C G

B E

C

F

C

(c) Junction graph from (b)

A

B

C

D

E

F

G

H

(d) Chordal graph, the additional link
is marked green

AB

BCF

CD

EFG

CFG

CGH

C CG

B FG

C

F

C

CF

(e) Junction graph from (d)

AB

BCF

CD

EFG

CFG

CGH

CG

B FG

C

CF

(f) Resulting junction tree

Figure 3.4: Transformation of a Bayesian network into a junction tree

36

3.2 Bayesian Networks

This transformation of a DAG into an undirected graph results in a loss of some conditional
independencies. To ensure an equivalent representation of all original dependencies, the
resulting graph is clustered into cliques (i.e., subgraphs in which all pairs of nodes are
connected) and separators (i.e., subgraphs which form an intersection between individual
cliques). See figure 3.4c for an example (cliques are denoted by ellipses, separators by
rectangles). Such a graph is called junction graph. Consequently, separators in a junction
graph adopt the function of class variables in Bayesian network as they denote conditional
independence of the separated cliques.
Each of the resulting links is assigned a so-called potential φ which denotes a certain
weight of this connection. Since the aim of the algorithm is the inference of marginals,
these potentials should be defined such that they can be used to retrieve joint probabilities.
The correct determination of potentials is the actual inference task in this algorithm and
will be explained below, but it should be already noted that it is the goal to determine all
potentials such that a joint probability for a set of nodes X can be calculated by dividing
the product of all involved cliques Ci and separators Sj :

P (X) =

∏
i

φ(Ci)∏
j

φ(Sj)
(3.9)

Triangulating
Equation 3.9 is only applicable if the cluster graph fulfills the condition that for all pairs of
nodes X and Y , all nodes on the path between X and Y must contain the intersection of
X and Y . This is also called the running intersection property. To illustrate this property,
consider for instance the nodes BCF and CGH in figure 3.4c. The intersection between
these nodes is formed through the separator C and thus, in order to fulfill this condition,
all connections between these nodes must contain C. However, the graph also provides
a detour via EF which does not include C and hence does not comply with the running
intersection property.
It has be shown (see [CGH96]) that compliance with the running intersection property can
be ensured by using chordal graphs. A graph is said to be chordal if and only if each of its
cycles with four or more nodes contains a chord, which is a link joining two non-adjacent
nodes in the cycle. To illustrate this, consider figure 3.4b again: the cycle {E,F,C,G}
does not contain a chord and therefore this graph is not chordal. This can be solved by
simply adding chords to this cycle until it is chordal, as depicted in figure 3.4d. The addi-
tion of further links introduces new triangular relations and therefore this process is called
triangulation.
From the resulting triangulated graph one can construct another junction graph as de-
picted in figure 3.4e.

Constructing the Junction Tree
By assigning a weight corresponding to the separator size for each connection of cliques,
one can construct a minimum spanning tree (MST) from this junction graph. An MST of
a graph is a subgraph which forms a tree and connects all nodes of the graph. It is said to
be minimal if no other spanning tree with less weight can be found. Result of such an MST
search on a junction graph results in a tree with separators of maximum size as depicted in
figure 3.4f (if their weights reflect the size of the separators, this would be strictly speaking
a maximum tree rather than a minimum one, but the procedures for finding this tree are
the same for MSTs). Detailed descriptions on algorithms for finding minimum spanning
trees can be found for example in [PR02] and [FW94]. Note that neither the junction
graph nor the resulting junction tree is guaranteed to be unique, but it is guaranteed that

37

3 Preliminaries on Bayesian Networks

a valid junction tree can be constructed from any triangulated graph.

Inference in the Junction Tree
As mentioned before, this algorithms aims at providing potentials that reflect marginal
probabilities. Thus, the actual inference task is a modification of potentials such that they
fulfill the following requirements:

• the joint probability is consistent (global consistency)

• adjacent cliques are consistent (local consistency)

• clique potentials are equivalent to clique marginals

• separator potentials are equivalent to separator marginals

To initialize the junction tree, the potentials of all clusters and separators are set to
φ(Ci) = 1 and φ(Si) = 1. Afterwards some node X is picked, a Clique Ci containing
X and Parent(X) is selected and the clique potential is multiplied with the corresponding
conditional probability: φ∗(Ci) = φ(Ci) · P (X|Parent(X)). This step is repeated for all
nodes X.
After the values have been initialized, a two-way message passing scheme is used to modify
the potentials such that the aforementioned requirements are fulfilled. To illustrate this,
consider the schematic junction tree with two cliques X and Y and a separator S depicted
in figure 3.5. In order to ensure local consistency it is required that for two adjacent cliques
the marginals on their separator must be equal:∑

X\S

φ(X) = φ(S) =
∑
Y \S

φ(Y)

Consequently, a so-called “absorption message” is sent from X to S containing a new po-
tential φ∗ for S (denoted as message 1 in the figure):

1. φ∗(S) =
∑

X\S φ(X)

As already stated in equation 3.9, a joint probability can be expressed as a ratio of poten-
tials of cliques and separators. Therefore the second message passed from S to Y updates
the potential accordingly:

2. φ∗(Y) =
φ(Y)φ∗(S)

φ(s)

Subsequently, the equivalent messages are sent back the other way:

3. φ∗∗(S) =
∑

Y \S φ
∗(Y)

4. φ∗(X) =
φ(X)φ∗∗(S)

φ∗(s)

After this message passing (also called belief propagation) has been carried out, one obtains
a consistent junction tree which fulfills all of the previously stated requirements.

Finally, predictions of hidden states can be inferred by setting the potentials of evidence

X S Y
1 2

34

Figure 3.5: Message passing in a junction tree

38

3.3 Dynamic Bayesian Networks

nodes to the observed values. This introduces temporary inconsistencies in the junction tree
which are resolved by a new turn of the described message passing. The forward messages
(denoted by the blue arrows in figure 3.5) are then usually called evidence collection and
the backward messages (denoted by the red arrows) are called evidence distribution. After
all distribution messages have been sent, the tree is again in a consistent state and, since
the resulting potentials reflect marginals, the predictions of hidden states can be obtained
by simply reading the potentials of hidden nodes. This message passing scheme is also
called belief propagation.

3.3 Dynamic Bayesian Networks

The means of probabilistic reasoning presented so far are only concerned with static worlds,
in which each random variable has a single fixed value. However, there are many domains
in which one deals with time series of data, i.e., one has a set of data instances so that
the random variables take on different values for each instance and successive instances are
not independent of each other but have temporal relations. Dynamic Bayesian networks
(DBN)4 provide an extension to Bayesian networks in order to cope with such tempo-
ral relations. The following provides a summary of the properties of Dynamic Bayesian
Networks. More information can be found for example in [RN02] and [HW99].

3.3.1 Domain Requirements for Dynamic Networks

In order to allow for the use of a Dynamic Bayesian network, the modeled domain has to
fulfill certain requirements, namely it has to be stationary and Markovian. These properties
are each explained subsequently.

Stationary Processes

To allow for the representation of a domain with a DBN, the dependencies of the domain
must be governed by stationary processes. A process is stationary if its properties do not
change over time, i.e., the joint probability distribution remains unaffected by temporal
shifts. As a result, if parameters of such a process have been learned once, they can be
applied to future scenarios as well. In other words, a stationary process is only subject to
relative differences in time but is independent of the actual time itself.

To illustrate this, consider the weather forecasting domain again. One may have certain
evidence (e.g., clouds in the sky, temperature, or humidity) on a particular day and is
concerned with forecasting weather on the next day. The correlations between evidence
and forecast should be unaffected by the exact date of the forecast, i.e., if for example
a cloudy sky is observed today and therefore it is forecasted to rain tomorrow, the same
result should be obtained when a cloudy sky is observed some time next week and the
following day’s weather is forecasted. If the relationship between today’s evidence and
tomorrow’s forecast is applicable completely independent of the actual day, the process of
weather forecasting is said to be stationary. More formally, a process is stationary if

P (X(t)|X(t− 1)) = P (X(t+ τ)|X(t+ τ − 1)) ∀ t, τ ∈ R+. (3.10)
4The name Dynamic network can be somewhat misleading because one might expect a network with
dynamically changing structure. However, the notion of a dynamic network denotes that the domain
changes dynamically over time while the network’s structure remains the same. Temporal Bayesian
network might be a better name for such a network but it has become standard to call such networks
dynamic.

39

3 Preliminaries on Bayesian Networks

Though it is required to employ stationary processes when designing DBNs, this re-
quirement can be relaxed in practice. For instance, it is apparent that the stationary
assumption in the weather domain simplifies the domain too much to capture all relation-
ships correctly. Obviously, the forecasts are not only subject to a certain day’s evidence
but they also exhibit seasonal effects (e.g., the probability for a rainy day is presumably
higher in the fall than in the summer). These seasonal effects will lead to a slowly chang-
ing environment. As a consequence, if certain relations have been learned currently, they
should also apply when obtaining a forecast next week but probably they will not apply
exactly when obtaining a forecast in half a year. Such a process is called locally stationary
because for rather short periods of time it can be assumed to be stationary but for long
time periods the stationarity is violated. As long as a process is known to be only local
stationarity, it can still be employed in a DBN if the network is retrained ever so often in
order to adapt to a changing environment.

Markov Processes

The second condition which has to be met is the Markov property. This property states
that the current state of a temporal process depends only on a finite number of previous
states. If a process meets this condition, it is said to be Markovian and is usually called
Markov process or Markov chain. In other words, a Markov process is memoryless (or more
precisely memory-limited) as it is allowed to forget about its history. Common definition
of a Markov process is “a process for which conditional on the present state of the system,
its future and past are independent” ([enc09]).

This property is of utmost importance for the facilitation of temporal reasoning because
for a non-Markovian process all previous states need to be considered for inference. This
would lead to an infinite growth of the state space with increasing time and thereby hinder
any meaningful form of reasoning.

Markov processes are further classified with respect to the length of their memory (i.e.,
the number of previous states which influence the current state). This information is
denoted by the order of a Markov process. For instance, in a first-order Markov process
the current state depends only on the previous state while all prior states are irrelevant.
More formally, a process is first-order Markovian if

P
(
X(t) | (X(1), ..., X(t− 1)

)
= P

(
X(t) | X(t− 1)

)
. (3.11)

Note that first-order Markov processes are by far the most common variant. If someone
simply refers to a Markov process without explicitly stating its order, it is usually assumed
to be a first-order process. In fact, all temporal processes used in this work are modeled
as first-order Markov processes.

3.3.2 Temporal Models

If the relationships of a domain adhere to the aforementioned properties, one can construct
a dynamic Bayesian network as a series of static networks. A single time step (also called
time slice) is modeled through a static network (referred to as intra-slice network). The
same static network is then repeated for each time step and additional links are introduced
to denote temporal dependencies. For instance, consider the simple naive Bayesian clas-
sifier in figure 3.6a. If this network is used to model a single time slice, a corresponding
DBN can be constructed by repeating this time slice over time with additional temporal
dependencies, as depicted in figure 3.6b. Since this dynamic Bayesian model extends the

40

3.3 Dynamic Bayesian Networks

H

E

(a) Intra-slice network

.H(t− 2)

E(t− 2)

H(t− 1)

E(t− 1)

H(t)

E(t)

H(t+ 1)

E(t+ 1)

transition model

sensor model
(b) Inter-slice network

Figure 3.6: Dynamic Bayesian network

time slices with links between different slices, it is sometimes also called inter-slice network.
From the temporal connections it can easily be seen that this network refers to a first-order
Markov process.

Note that a Dynamic Bayesian network does not necessarily has to exhibit a structure
as depicted in figure 3.6b. There may be also models in which non-consecutive time slices
are connected (leading to Markov processes of higher order), or one can employ networks
without hidden states. However, if the dynamic network is modeled by a Markov process
and exhibits a clear distinction between observed evidence nodes and hidden hypothesis
nodes, it is called a Hidden Markov Model (HMM). Consequently, HMMs are a specific
subcategory of DBNs.

The separation into intra-slice and inter-slice models allows for the specification of two
separate probability models: the network for a particular time slice corresponds to a static
network as described in the previous section and describes how a hypothesis is affected by
particular evidence values. Therefore the intra-slice network is also called sensor model.
The temporal connections describe how states evolve over time and therefore these inter-
slice connections form the transition model. Full specification of a DBN consequently
consists of specifications for both models, as depicted in figure 3.6b.

41

3 Preliminaries on Bayesian Networks

3.3.3 Inference Tasks in Dynamic Bayesian Networks

Since the use of dynamic models introduces time as an additional dimension of the domain,
these models provide various means of inference. For simplicity, the tasks in the following
are explained with respect to a Hidden Markov Model but they can be applied analogously
to other dynamic networks as well.

• Filtering
The task of filtering is concerned with computing the current belief state, i.e., the
posterior of the current state given all evidence up to date. More formally, it computes

P
(
H(t) | E(1), ..., E(t)

)
• Prediction

A prediction is similar to filtering except that the series of hidden states is extended
into the future and a posterior is computed for some future state:

P
(
H(t+ τ) | E(1), ..., E(t)

)
• Smoothing

If new evidence arrives, this has the possibility of changing the belief of a previous
state in hindsight. Hence smoothing computes the posterior

P
(
H(t− τ) | E(1), ..., E(t)

)
(for some 1 < τ < t)

• Most Likely Explanation
If a sequence of observations is available, it is expedient to find the sequence of hidden
states that most likely generated this series of observations:

arg max
h(1),...,h(t)∈H(1),...,H(t)

P
(
h(1), ..., h(t) | E(1), ..., E(t)

)
These tasks illustrate the higher power of dynamic networks compared to static ones:

because subsequent observations provide means of altering previous belief states in ret-
rospective (namely through smoothing and filtering), they also allow for more accurate
filtering and prediction tasks. This increase in accuracy is due to the dynamic state tran-
sitions: if a particular state can be predicted with an increased certainty, the prediction
for a successive state will also become more reliable.

For actually performing these inference tasks, one can transform a DBN into a static
network through “unrolling”, i.e., replicating the time slices until the network is large
enough to cope with the specified series of observations. As a result, one obtains a static
network and therefore can apply all algorithms suitable for Bayesian networks, namely the
ones presented in the previous section. Each of the inference tasks listed above then can be
simply carried out by introducing the evidence and computing the values of the respective
hidden variables.

Note that this technique of unrolling has the undesired side effect of an exponentially
increasing complexity with a growing number of time slices and therefore is rarely the
best choice for reasoning in temporal models. Many alternative algorithms have been
developed which are able to perform reasoning significantly faster. However, as explained
before, processing time is not a vital issue within this work and unrolling the implemented
networks was able to deliver results within an acceptable time and therefore the algorithms
presented in the last section are used for DBNs as well.

42

4 Design of Forecasting Modules with
Probabilistic Reasoning

This chapter describes the design of three different probabilistic reasoning modules that
facilitate forecasts of future stock price movements based on the analysis techniques intro-
duced in chapter 2. All analysis results presented in this chapter refer to historic data of
the Dow Jones Industrial Average Index (DJI) obtained from Yahoo Finance1. The data
consists of OHLC (see section 2.4) and volume data for 20588 trading days covering the
time from October 1, 1928 to September 24, 2010. The Dow Jones Industrial Average Index
has been selected for test purposes because it is the world’s most highly regarded economic
barometer and comes with by far the largest set of historical data. A large set of historical
test data is important for the purpose of this work, because it allows for an evaluation of
any procedures’ long-term performance. Historical data sets for other securities covered
only significantly shorter time periods or were found to be incomplete.

All modules have been implemented with Kevin Murphy’s open-source software Bayes
Net Toolbox for Matlab2.

4.1 Trend Lines: Forecasting Module 1

The first module is based upon the theory of trend lines and line patterns as described in
section 2.2.1. Consequently, the first step is a preprocessing of the raw price data in order
to identify trend lines.

4.1.1 Identification of Trend Lines

The identification of trend lines is performed in several successive steps, each of which is
explained subsequently:

1. Identification of local extremes

2. Collection of local extreme points that may form a trend line

3. Construction of trend line candidates based upon these extreme points

4. Merge of similar trend lines

Identification of Local Extremes

This step analyzes each day’s high and low information from the raw OHLC data and
returns a sequence of local extremes. It is evident that an expedient result should comprise
a sequence of alternating local highs and local lows. However, as there are two values
(high and low, denoted by Ht and Lt subsequently) assigned to each day, the input is
not a mathematical function and therefore standard procedures for finding local extremes

1http://finance.yahoo.com/
2http://bnt.googlecode.com/

43

4 Design of Forecasting Modules with Probabilistic Reasoning

(a) Local extreme candidates, undesired ef-
fects are marked with red circles

(b) Cleaned local extremes

Figure 4.1: Recent local extremes in the Dow Jones Industrial Average Index

have to be modified. More precisely, due to the double value assignment for each day it
is possible that the time series exhibits consecutive local extreme points of the same type
without an converse extreme in between (e.g., two local maxima may occur without an
intermediate local minimum).

As a first step, all candidates for local extremes are filtered from the time series. The
criteria for local extreme candidates are as follows:

t is a local high candidate if Ht > Ht−1 ∧ Ht > Ht+1

t is a local low candidate if Lt < Lt−1 ∧ Lt < Lt+1

While technically all of these points are local extremes, they do not necessarily yield the
expected results yet, namely because the resulting series may contain multiple successive
extremes of the same type (see figure 4.1a for an example). Obviously, such subsequences
of extremes of the same type contain more than just the significant points. Therefore,
further criteria for cleaning the extreme series are introduced:

• If a single day exhibits two local extremes (i.e., both Ht and Lt exist for some day
t), their order in the time series is ambiguous. Since the following rules depend on
the extreme’s chronological order, such days are ordered as follows:
If a particular day with two extremes has been a rising day (i.e., closing value higher
than opening value), it is assumed that the local low occurred before the local high.
Conversely, for falling days it is assumed that the local high occurred first.
While in theory there may be rare occasions in which this order is not correct,
these are plausible assumptions in accordance with candlestick interpretations (as
explained in section 2.4) and yield sufficient results in practice.

• If two successive local extremes of the same type and exactly the same price values
occur (and thereby form a plateau), they are merged into a new extreme positioned
in the center between both points (as suggested in [Bao08], which is concerned with
a similar problem).

• If two successive local extremes of the same type but with different price values occur,
the “less extreme extreme” (i.e., the lower high or the higher low) is removed.

Application of these rules results in a clean series of local extremes, as depicted in figure
4.1b.

44

4.1 Trend Lines: Forecasting Module 1

Collection of Local Extreme Points that may form a Trend Line

After the series of local extremes has been obtained, this series can be used as input for
the search of potential trend lines. In a mathematically correct sense, a trend line should
be created for each set of points whose prices P (t) adhere to a linear equation of the form
P (t) = m · t + n. As stock price movements behave like a noisy signal, exact compliance
with a linear equation is such a strict constraint that this criterion would barely find
any of the significant trend lines. Hence, the criterion is extended by a noise parameter
v(t) ∈ [−V P (t);V P (t)] that allows prices to fluctuate around the trend line by a maximum
of some tolerance value V (relative to the current price). Consequently, to form a trend
line, a set of extreme points has to adhere to an equation of the form

P (t) = m · t+ n+ v(t). (4.1)

In other words, all of the line’s points must reside between the lines P (t) = m·t+n−V P (t)
and P (t) = m · t+ n+ V P (t).

Additionally, it is meaningful to limit the distance between the extreme points (denoted
by E1, ..., En in the following) that form the line (or, in other words, a trend line has to
be confirmed ever so often in order to remain valid). This is done by requiring that the
time interval between any two successive extremes of a trend line is smaller than a certain
threshold. This threshold should be defined with respect to the line’s duration, because
spacing of the confirmation points should scale with the overall length:

t(Ei+1)− t(Ei) ≤ tmax
(
t(En)− t(E1)

)
∀i = 1, ..., n− 1 (4.2)

These criteria are sufficient to test whether a set of given points forms a trend line, but
since the potential line’s slope cannot be known beforehand, the search criteria is still more
broadened. To allow for an easier comprehension of the following search concept, figure 4.2
visualizes all required elements. The search starts for any two local extremes of the same
type and two boundary lines are constructed in a way that they form a widening beam.
This is done by creating one line through the points P (t1) + V P (t1) and P (t2)− V P (t2)
and another line through the points P (t1) − V P (t1) and P (t2) + V P (t2). All extremes
within the boundaries of those lines may potentially form a trend line. Within this area, all
extreme points are collected until one of the boundary lines is broken. Following the break
of a boundary line, the points collected so far are used for trying to create a trend line
through linear regression (see below). Afterwards, the broken boundary line is replaced

Figure 4.2: Search area for a trend line. The two initial local extremes are marked by
green circles. This leads to the initial search area marked by lines 1 and 2.
After boundary line 1 is broken (marked by the red circle) a new line 3 is
created for a continuation of the search.

45

4 Design of Forecasting Modules with Probabilistic Reasoning

by a new valid line (which narrows the search area, as depicted in figure 4.2) and the
search continues with collecting extremes again. This search then continues until one of
the following termination criteria is met:

1. both boundary lines meet and thereby eliminate the search area

2. both lines drop below zero

3. the search reaches the end of the data set

Construction of Trend Line Candidates

Once a set of potential extremes has been obtained (as mentioned in section 2.2.1 such a
set must contain at least three points), these points are used as input for forming a line
through linear regression (i.e., determining a line so that the sum of squared residuals is
minimized). This is done recursively until the result either complies with both line criteria
(equations 4.1 and 4.2) or until there are less than three points remaining. If these criteria
are met, the line is added to the set of resulting trend lines. If the line does not meet the
criteria, the next action depends on the situation:

• If the time criterion is not met, all points after exceedance of the time limit are
removed.

• If the linear criterion is not met, it must be distinguished in which direction the limit
is exceeded. If a single point is too far from the line but does not yield a line break,
it is simply removed.

• If the linear criterion is not met and the corresponding point yields a line break, all
subsequent points are removed.

The described framework now contains all methods required for the search of trend lines.
This search is performed through nested iterations:

One extreme i (starting with the first extreme) is picked as the start point for the search
and the successive extreme j = i+ 1 is selected as the second extreme to form the search
area. Search in this area continues until one of the termination criteria listed above is met.
If criterion 1 is met, the next search area is formed by maintaining the first extreme i and
moving forward the second extreme (i.e., ĵ = j + 1). If criterion 2 or 3 is met, results for
extreme i are exhaustive and therefore the search proceeds with the next extremes î = i+1
and ĵ = i+ 2. This search continues until the end of the data set is reached. The results
of this procedure are depicted in figure 4.3a.

Merge of Similar Trend Lines

As it can be seen from figure 4.3a, the outcome of the previously described search procedure
results in an exhaustive set of trend lines, but apparently there are large sets of lines with
high similarities. Hence, the result contains many redundancies which would increase the
complexity of the inference process unnecessarily. Cause of the many redundancies is the
fact that adjoining local extremes tend to reside on very similar price levels. This leads
to many trend lines that differ only in adjoining confirmation points and therefore exhibit
almost exactly the same slope and length. To filter out such lines, the results from the
previous section are searched for lines with high similarities, which are consequently merged
into a new line (again, this is created through linear regression).

Natural similarity criterion for the comparison of two lines is the difference of their
respective angles of elevation. From a given slope m (which is known after performing the
linear regression), the corresponding elevation angle can be calculated by α = arctan(m).

46

4.1 Trend Lines: Forecasting Module 1

(a) Exhaustive set of trend lines

(b) Set of merged trend lines

Figure 4.3: Recent trend lines in the Dow Jones Industrial Average Index

47

4 Design of Forecasting Modules with Probabilistic Reasoning

parameter value meaning

V 0.005 relative tolerance for the distance between a particular
extreme and a trend line

tmax 0.15
maximum spacing on the time axis between two points of a
trend line (i.e., maximum duration without any
confirmation) relative to the line’s total length

δ 5◦ maximum angle to consider two trend lines as similar

Table 4.1: Parameters for the line search

This formula is not applicable however in this scenario, as the slope is dependent on the
current price level and therefore cannot be used as an ubiquitous input. To illustrate this,
consider an imaginary diagonal through figure 4.3a. A visual inspection would suggest
an angle of α ≈ 30◦. As this figure depicts roughly 500 trading days in the range from
6440 to 11450 points, the slope is m ≈ 5010

500 = 10.02 and therefore obtaining the angle
calculatively would yield to α = arctan(m) ≈ 84◦. And if the figure would instead of the
DJI depict a penny stock ranging from 0.664USD to 1.145USD, the same diagonal would
have a calculative slope of 0.001002 and the resulting elevation angle would be α ≈ 0.05◦.
This problem is due to the fact that the lines depicted in the figure provide visually useful
angles, but as the chart can be scaled arbitrarily in the vertical direction, the corresponding
angles are rather arbitrary, too.

To resolve this problem, an additional slope normalizing constant N is introduced. It is
calculated upon the average values of both lines l1 and l2 that are to be compared:

N =
max(l1)−min(l1)

2 + max(l2)−min(l2)
2

2

Consequently the elevation angle of a trend line is calculated as

α = arctan
(m
N

)
. (4.3)

Based upon this, two lines are considered to be similar if their angle difference is below
a certain threshold δ:

α1 − α2 ≤ δ (4.4)

In order for two lines to be merged, there are additional obvious requirements: naturally,
both merging candidates must overlap on the time axis and the distance between them
must not exceed the tolerance threshold V P (t), as defined before. If all of these conditions
are met, all points from both lines form the input for another recursive linear regression
process, as described above. As before, it may happen that regression does not yield a
valid line and in this case both of the original lines are kept.

After applying this cleaning process to the trend lines depicted in figure 4.3a, the rather
slender set of trend lines shown in figure 4.3b is obtained. These lines form the actual
input for the probabilistic reasoning process. To summarize this procedure, table 4.1 lists
all criteria required for the identification of trend lines together with respective values that
yield feasible results in practice.

48

4.1 Trend Lines: Forecasting Module 1

4.1.2 Domain Parameters

Evidence

As explained in section 2.2.1, the key properties of a trend line are its duration, the number
of confirmations, and its elevation angle. Also, it is important to know how close current
price movements are to a certain trend line, since this determines the current influence
of a line (if current price movements are not within the proximity of a certain line, it is
unlikely that this line influences price movements in the near future). Hence, each line li
obtained from the methods described in the previous section is described with the following
parameters for each day t:

ldi (t) duration of the line, i.e., the number of days from its starting point
lci (t) number of confirmations, i.e., number of supporting points
lai (t) the line’s elevation angle
loi (t) offset between current price and current line position. This value is scaled by

current prices to obtain universally applicable values,
i.e., loi = line position - price position

price position

The trend lines are grouped into support lines s and resistance lines r so that the
evidence for each day consists of two sets of lines. This leads to a problem in the design
of an appropriate network since the number of lines present at a certain day will vary over
time. Hence, the observation space has a variable size in this domain but the Bayesian
network requires a fixed size. While there are certain variants of Bayesian networks that
allow for a variable input space (e.g., switching networks or segment models as described in
[Mur02]), these approaches come with an increased complexity in the model design as well
as in the inference algorithms. Within the domain of trend lines, there is a much simpler
solution to solve the problem of the variable input space: While building the input data
set, it can be easily determined what the maximum number of co-occurring resistance lines
and support lines is throughout the available data. Consequently, a fixed-size input space
can be incorporated.

In addition to the information about trend lines, the observations are augmented with the
percentaged change in the closing price in order to capture the current movement’s direc-
tion. This price change is denoted by c and calculated as c(t) = closing price(t)−closing price(t−1)

closing price(t−1) .

With m denoting the maximum number of resistance lines and n denoting the maximum
number of support lines, the complete evidence vector for any day is:

~e(t) = (r1(t), ..., rm(t), s1(t), ..., sn(t), c(t)) (4.5)

Thereby, the evidence space is fixed to the size m+ n+ 1. For days with less than the
maximum number of trend lines the evidence vector is simply filled with zeros denoting the
absence of further lines. For instance, if the observations at same day t consist of i < m
resistance lines and j < n support lines, the according evidence would be

~e(t) = (r1(t), ..., ri(t), 0, ..., 0, s1(t), ..., sj(t), 0, ..., 0, c(t)) .

Prognosis

Before introducing the hidden states that form the prognosis in this module, it is important
to examine the nature of price movements. These movements reflect a rather noisy signal
and may be subject to seemingly arbitrary outbursts on any day. Therefore aiming at the
prediction of exact values for a certain day would be a futile task.

49

4 Design of Forecasting Modules with Probabilistic Reasoning

Figure 4.4: Schematic trend channel

As explained in section 2.3, moving averages can be used as an instrument for denoising
the signal. The use of a short-term moving average will still track actual price movements
closely while at the same time the influence of arbitrary fluctuations is highly reduced.

A second problem is the difficulty of forecasting the exact timing of any movements.
If the system is trying to predict values for a certain day in the future, it may easily
happen that the prediction itself has a high quality but the timing has not been estimated
correctly. For instance, consider the situation in which the system is trying to obtain a
five-day forecast and is inferring a strong upward movement. Now it may happen that the
prognosis itself was correct and prices indeed start an ascent in the subsequent days, but
after, say, three days some new information leads to a drop in the price values. Hence,
after five days it could be that a strong upward movement indeed has happed as forecasted,
only with its impact having already vanished at the day that was subject to the forecast.

Consequently, instead of inferring a prognosis about the state after a certain time period,
the movements within a certain period should be employed for a prediction.

To further illustrate this, consider the situation of a trend channel (as described in section
2.2.1, depicted again in figure 4.4): the assumption that price movements in the near future
will reside inside the channel’s boundaries is a reasonable prediction. The fluctuations of
price movements can be easily forecasted by projecting the boundary lines into the future.
However, the identification of this channel does not provide any information about the
movements within this channel and therefore it would be a hard task predicting whether
prices are close to the upper or to the lower boundary line (or somewhere in between) at
a certain time and it would not significantly enhance the forecast’s merit, either.

Following these considerations, the hidden state in this model is formed by prognoses
about the percentaged minimum and maximum changes of a short-term moving average
within a certain time period p, i.e.,

~hp(t) =

(
min

x∈{t+1,...,t+p}

WMA(x)

WMA(t)
, max
x∈{t+1,...,t+p}

WMA(x)

WMA(t)

)
(4.6)

Since the evidence contains trend lines of varying duration, it can be used to infer
predictions on different time scales (obviously, a short trend line is suitable for near-future
prognoses, while a long trend line is better used for mid-term or long-term prognoses).
Therefore, the hidden state is designed to infer a set of predictions in the form of equation
4.6 and consequently the complete hypothesis is formed by a set of n predictions (and
thereby leads to hidden state space of size 2n):

~h(t) =
(
~hp1(t), ...,~hpn(t)

)
(4.7)

4.1.3 Prediction Network

For the construction of the Bayesian network it is assumed that separate trend lines occur
independently of each other. While this assumption might be subject to an thorough

50

4.1 Trend Lines: Forecasting Module 1

H

E

(a) Naive Bayesian intra-slice network
for the trend line module

. . .

. . .

. . .

. . .

H(t− 1)

E(t− 1)

H(t)

E(t)

(b) Dynamic Bayesian network for the trend line module

Figure 4.5: Bayesian networks for the trend line module

investigation, practical tests proved it to be sufficient for the design of a feasible prognosis
module. Assuming i.i.d. observations allows for the use of a naive Bayesian approach,
as explained in the previous chapter. This leads to the slender naive Bayesian intra-slice
network depicted in figure 4.5a.

Since the available data forms a successive time series of data sets, it is expedient to
augment this network to a dynamic network in order to capture temporal dependencies.
The adequate network is depicted in figure 4.5b. Due to the hidden states H(t), this
network is an instance of a Hidden Markov Model, as explained in the previous chapter.

For the forecasting domain it would be reasonable to assume that all nodes in the inter-
slice network influence each other: if a forecast concerning movements for, say, the next
week is obtained today, one should expect that a similar forecast will be obtained tomor-
row. Consequently, today’s forecast (or more precisely: the actual pending price movement
subject to the forecast) should influence tomorrow’s observations and today’s observations
should influence tomorrow’s forecast. Also, since trend lines remain present for longer
periods of time, the observations of consecutive days should have a strong connection.
This would lead to a so-called fully connected vector autoregressive process as described in
[Mur02] and is depicted through all (solid and dotted) arrows in figure 4.5b.

Experiments with different variants of the dynamic model have shown however, that
most connections do not contribute to an appreciable enhancement of the forecasts’ qual-
ity though they increase the network’s complexity and therefore slow down the inference
process significantly. Consequently, all dotted connections in figure 4.5b have been omit-
ted since they do not yield better results compared to the network including only the solid
connections.

Also, the considerations from section 3.3 suggest an alternative modeling of the domain:
instead of encapsulating the forecasts into a hidden state and thereby employing a Hidden
Markov Model, one could create a fully observable Bayesian network such that the evidence
nodes still depict observations of trend lines while the hypothesis node would be replaced
with information about the current change in price C(t). The corresponding network is
depicted in figure 4.6. Consequently, instead of inferring hidden states, one could use this
network to extend the sequence of price changes into the future and, by determining the
most likely sequence, one could obtain forecasts about future price movements, too. How-
ever, tests have shown that this alternative network performs significantly worse than the
presented Hidden Markov Model and therefore was not employed. The same considerations
also hold for the next forecasting module, which is why it has been modeled as a Hidden
Markov Model, as well.

51

4 Design of Forecasting Modules with Probabilistic Reasoning

.C(t− 1)

E(t− 1)

C(t)

E(t)

C(t+ 1)

E(t+ 1)

C(t+ 2)

E(t+ 2)

Figure 4.6: Alternative dynamic Bayesian network for the trend line domain

Preceding Considerations on the Choice of Distribution Functions

An analysis of movements in stock prices shows that the majority of short-term price
changes exhibit only a small magnitude (thereby suggesting a large probability of small
changes) and, vice versa, magnificent short-term price changes only have a small probabil-
ity. Consequently the use of gaussian distributions seems to be the appropriate choice for
the implementation of this network.

While gaussian distributions are indeed used within this work, some comments are nec-
essary on this choice, before describing the distributions in detail.

Though there always has been some controversy, gaussian distributions have been the
default choice in any kind of financial model for several decades. It has been criticized early
(e.g., in [Man63]) that the features of the gaussian distribution (skewness and kurtosis) are
inadequate for modeling the returns of financial assets. This criticism is mainly due to the
fact that the kurtosis in a gaussian distribution leads to a bell curve shape that falls off too
quickly (see figure 4.7 for an illustration). In other words, short-term price fluctuations
of a high magnitude receive a very low probability and a true crash of prices becomes
virtually impossible according to a gaussian distribution and hence the risk of losses is
notoriously underestimated. As an alternative, “fat-tail” (or, more formally: leptokurtic)
distributions as depicted in figure 4.7 have been suggested (for example by [Man63]). The
figure illustrates the consequences of this alternative clearly: since high fluctuations are
more probable according to the alternative distribution, a model constructed upon a fat-
tail distribution should be more risk aware. While this might appear instantly desirable, a
higher risk awareness has the “disadvantage” of yielding more careful prognoses and, since
potential gain and potential risk are usually proportional, naturally limits the potential re-
wards of such a model. These considerations kept most financial engineers from employing
fat-tail distributions for several decades.

Figure 4.7: Comparison of distribution functions: a standard gaussian distribution (blue)
and a leptokurtic distribution (red)

52

4.1 Trend Lines: Forecasting Module 1

Popular opinion about the use of gaussian distributions in financial models only changed
recently as a consequence of the US subprime mortgage crisis which eventually led to the
recent world economic crisis. One of the main reasons for this crisis was a lack of risk
awareness throughout major market participants. And as most of them used gaussian-
based risk models, some even blame the gaussian distribution for causing this economic
crisis (as explained for example in [Pat10]).

Despite these considerations, there are still reasons to design a forecasting module based
on gaussian distributions. First, the models presented in this work do not aim at providing
an accurate risk model but they rather aim at predicting probable movement directions.
Additionally, as explained below, the inferred prognoses of this module only depend on
the expected value and since both types of distribution yield the same expected value, the
prognoses would be unaffected by employing a leptokurtic distribution. Also, as explained
in [DVR07], a mixture of gaussian distributions can be used to alter the distribution’s
shape and thereby overcome the aforementioned obstacles.

To summarize, although the use of gaussian distributions is by now condemned in many
financial models, they are still suitable for the setting of this work. Since the used Matlab
toolbox facilitates only gaussian distributions (though it could be extended accordingly)
and both kinds of distribution will yield the same expectation values, employing leptokurtic
distribution functions would only require more implementation efforts without altering
the results at all. Thus, all continuous distributions in this work have been modelled as
gaussians.

Specification of Probability Distribution Functions

After deciding upon gaussian distribution functions, the probability density function for
conditional gaussian (or normal) distribution that a certain hypothesis hi emits a certain
evidence value ej is defined as3

P (ei|hj) =
1√

2πσij
e
−

(ei−µij)2

2σ2
ij (4.8)

with unknown parameters mean µij and variance σ2. This gaussian (or normal) distribution
is usually denoted by

P (ei|hj) ∼ N (µij , σ
2
ij) (4.9)

Since all evidence variables are assumed to be conditionally independent, the joint proba-
bility distribution for all evidence variables can be expressed as (see equation 3.5)

P (~e|hj) =
∏
i

N (µij , σ
2
ij) (4.10)

with unknown parameters µij and σ2
ij .

Similarly, the dynamic state transitions are specified as

P (hi(t)|hi(t− 1)) ∼ N (µit, σ
2
it) (4.11)

3As explained in [JL95], equation 4.8 is not strictly correct: the probability that a real-valued vari-
able exactly equals any value is zero. Instead one can provide the probability that a variable x lies
within some interval: p(x ≤ X ≤ x + ∆) =

∫ x+∆

x
N (µ, σ2)dx. By the definition of a derivative,

lim∆→0
p(x≤X≤x+∆)

∆
= N (µ, σ2). Thus for some small constant ∆, p(X = x) ≈ N (µ, σ2) · ∆. The

factor ∆ is canceled out by performing normalization so equation 4.8 may be used.

53

4 Design of Forecasting Modules with Probabilistic Reasoning

4.1.4 Learning and Results

After the network has been fully specified, the unknown parameters (means and variances)
can be learned through the ML learning procedure described in the previous chapter. The
learning process results in a fixed set of variances, while the expected values depend on the
respective observation. Hence, the expected values give information about the most likely
values of the hidden states and thereby form the actual prognosis. Note that this explains
the aforementioned irrelevance of the shape of the distribution’s tail: both distributions
depicted in figure 4.7 exhibit the same expected value (namely 0 in this figure) and since the
general shape of the distribution is fixed after learning (due to the fixed variance values)
and thereby cannot provide additional information about the forecast’s certainty, some
leptokurtic distribution would yield exactly the same results as a normal distribution in
this context.

For the inference process of obtaining a forecast for d days, each data instance comprises
data for d+ 1 successive days, i.e., the network is unrolled so that it consists of the d+ 1
time slices t−d ... t. Hence, at day t one can always determine the correct forecast from day
t−d in retrospective. This has the advantage that the “hidden” state of the instance’s first
day is known and therefore can be provided for inference purposes. This strongly enhances
the inference of the time series’ most likely sequence of states as it can be performed with
respect to one fixed value.

Standard learning procedure is to divide the available data into a training and a test
set. For creation of the training set, all available information from the corresponding data
is specified and therefore in this scenario it consists of the daily information about trend
lines e(t) as well as the subsequent developments of prices h(t). While these subsequent
developments are unknown for current observations, they can be easily obtained by using
historical data for the network training. This training set is fed into the network and as a
result one receives estimates for all unknown parameters. After all parameters have been
learned, the remainder of the available data is used as a test set. In this case, only the
evidence is provided while the information about future developments is intentionally left
out. Therefore the network has to infer states of the hidden nodes (or make predictions)
based upon the previously learned relationships. After the whole test set has been pro-
cessed, one then can compare the predictions to the actual developments that have been
held back in order to evaluate the quality of the network’s prognoses.

Due to the rather large set of available training data the learning procedure had to be
altered a little in this work: instead of using a classical division into two separate sets,
training and evaluation are performed similar to a sliding window technique. Initially the
network has been trained with the first 3000 datasets to obtain estimates of the unknown
parameters. Subsequently, these parameters have been tested with the following 1000
datasets (the “test window”). Upon completing the test procedure, these 1000 datasets have
been added to the training data (this time containing the actual future developments) and
parameters are re-estimated for this new, larger dataset. These re-estimated parameters
are used for testing the next 1000 data sets. This process continues until the end of the
dataset has been reached. Consequently, instead of having a fixed test set, the test set
resembles a window that slides through the available data.

The forecasting results of this module can be best described through a visualization, as
depicted in figure 4.8. While it is of no surprise that the forecasts are not able to match
the actual developments exactly, it can bee seen that the predicted movements resemble a
feasible approximation of true price changes. Some interesting facts about the results can
be derived from this visualization: obviously there are market phases (e.g., the datasets
≈ 500, ..., 600) in which this module is able to track the actual movements rather closely,

54

4.2 Point Patterns

Figure 4.8: Evaluation of the line forecasting module: the graph shows a comparison of a
5-day forecast and the corresponding actual price changes in the Dow Jones
Industrial Average Index for the 1000 most recent instances of the test data.

while there are other phases (e.g., the following ≈ 600, ..., 700 datasets) where there are
rather large discrepancies between forecast and actual development, mainly due to heavy
fluctuations in the price movements. In general, it can be said that this module tends to
underestimate the magnitude of any outbursts.

Though it is neat to obtain information on the exact magnitude of a price change, this
information should not be overrated. The most important information to decide upon
an action is the expected direction of future price movements. As long as the predicted
direction turns out to be correct, any actions based upon this prediction are guaranteed
to yield a gain, while an additional incorrect estimation of the movement’s magnitude
can only boost or reduce this gain. As mentioned before, this module usually tends to
underestimate the magnitude of any outburst which means that trading actions based upon
these forecasts tend to yield higher gains than predicted, if the magnitudes of forecast and
actual movement differ. This should be an acceptable risk.

Consequently, the predicted directions should be treated as the essence of this module’s
forecast while the information about magnitude should be treated as a supplement that
may potentially refine any trading strategies. The correctness of each prognosis’ direction
is marked separately in the bottom of figure 4.8 with colored dots. This shows that the
vast majority of forecasts is able to capture the direction correctly and thereby provides
highly useful results.

4.2 Point Patterns

As described in section 2.2.2, point patterns consist of a sequence of consecutive local
extremes with a certain relationship to each other. The definition of consecutive extremes
is somewhat arbitrary since the patterns’ size may vary on the time scale (as it could be
seen in figure 2.5). While a short-term pattern may be formed through truly consecutive
extremes and thereby could be identified within the extreme point series described in the

55

4 Design of Forecasting Modules with Probabilistic Reasoning

previous section, there may be also patterns on a larger time scale. Obviously the key
points for such patterns are formed by more significant local extremes and consequently
between these significant points there may be several other extremes which have to be
treated as noise. To identify such large-scale patterns, a filtering method for the local
extreme series is required. Two separate approaches have been investigated within this
work, both of which are explained in the following.

4.2.1 Scalable Extreme Point Models

Higher-Order Extreme Point Model

The first method of identifying extremes on a larger scale is an extension to the previously
described method of finding local extremes. To illustrate this procedure, figure 4.9 depicts
all intermediate results occurring during this procedure.

Initial input of this procedure is the series of local extremes resulting from the afore-
mentioned method (i.e., a set of lowest-order extremes, depicted in orange). Based on this
initial set, two new lines are created by each connecting all local lows and all local highs
(depicted as the red lines). These lines represent boundaries of the price movements and
already visualize price movements on a larger scale.

Next, both of this lines are treated as separated time series of datasets and are both
searched for local extremes through the usual procedure. As a result, two new lines (de-
picted in black) are created which resemble a kind of filtered channel for local extremes.
Since each of these lines is constructed upon local extremes, the resulting lines’ extreme
points represent extremes on a higher order. It can be seen that both lines generally tend
to move into the same direction (if small fluctuations are considered as noise) and therefore
turning points of this channel can be considered as the resulting extremes of higher order.

Figure 4.9: Identification of higher-order extremes: original series of extremes (orange),
connection of local lows and local highs(red), extreme channel (black), and
higher extreme series (blue). Note that some lines have been left out inten-
tionally on the figure’s edges in order to allow for an easier identification of
the separate lines.

56

4.2 Point Patterns

These turning points are identified through the following criteria: For the identification
of higher-order lows, the low-points of the lower line are considered. For each low-point, the
interval between the neighboring high-points is analyzed. If the higher line also exhibits
a low-point within this interval, it is evident that both lines and therefore the whole
channel has changed its direction. Therefore, this low is added as a new higher-order low.
Accordingly, higher-order highs are obtained by considering high-points of the higher line.
If in the interval of its adjacent low-points the lower line also exhibits a high-point, a new
higher-order high has been found. The resulting series of extremes is depicted as the blue
line in figure 4.9.

This procedure can be performed recursively in order to continue filtering the extremes.
Advantage of this process is that, due to the use of a channel’s turning points, each recur-
sion returns only truly significant extremes of the next-higher order. However, this also
introduces a drawback: since this filtering method does not enable a stepless scaling of the
results, it may happen that certain patterns remain concealed because their key points are
located somewhere in between two recursions.

Critical Point Model

An alternative approach for the identification of significant extremes is the Critical Point
Model (CPM) proposed by [Bao08]. The same model has also been suggested by [PWZP00]
under the name Landmark Model.

Cornerstone of this model is the specification of a duration threshold TD and an oscil-
lation threshold TO. Initial input for this procedure is also an alternating series of local
extremes. Informally speaking, the filtering process is performed by analyzing the distances
of successive extreme points and, if oscillation or duration between these points is below
the specified thresholds, removing points from the time series until all remaining distances
exceed the specified thresholds.

More formally, the time series is analyzed by iterating through units of each local maxi-
mum point i2 and the adjacent local minimum points i1 and i3. Hence, each unit consists
of a rise (from i1 to i2) and a following decline (from i2 to i3). These units can be divided
into four different cases with regard to the thresholds TD and TO:

1. both the rise and decline exceed at least one of the thresholds

2. the rise exceeds a threshold but the decline is below TD and TO
3. the rise is below TD and TO but the decline exceeds a threshold

4. neither the rise nor the decline exceed any threshold

With P (i) denoting the price value of a point i, these cases are are processed as follows
(as described in [Bao08]):

1. As both rise and decline exceed the thresholds, i1 and i2 are preserved as critical
points and the next unit is formed by the points i3, i4, and i5. This is the only case
that actually leads to the preservation of points.

2. This case can be divided into two sub cases depending on the following point i4: if
P (i4) ≥ P (i2), the next unit is formed by i1, i4, and i5, while i2 and i3 are discarded
as irrelevant. Else, if P (i4) < P (i2), the next unit is formed by i1, i2, and i4.

3. The points i1 and i2 are discarded as irrelevant and the next unit is formed by i3, i4,
and i5.

4. This case will be divided into two sub cases again: if P (i1) ≤ P (i3) the next unit is
formed by i, i4, and i5, else it is formed by i3, i4, and i5.

57

4 Design of Forecasting Modules with Probabilistic Reasoning

(a) CPM strictly according to [Bao08] (b) CPM with additional postprocessing

Figure 4.10: Critical Point Model

An implementation of these methods has shown that they do not yield the expected
results in all cases but lead to the identification of insignificant extreme points in rare
cases. This is due to the fact that a critical point is preserved as soon as the thresholds are
exceeded and subsequently search continues from this point on. It may happen that subse-
quent movements exhibit another extreme that is more significant than the one previously
found, but as the distance to the preceding critical point is not exceeded, this extreme is
discarded. This problem is illustrated in figure 4.10a: after finding the local maximum (at
August 5), the remaining ascend does not exceed the thresholds and is therefore discarded
while the figure clearly shows that the ascend’s summit (September 3) constitutes a more
significant local maximum. This problem can be easily fixed by introducing an additional
post-processing step: after the critical point model has been obtained, the resulting ex-
treme series is compared to the underlying price movements. The comparison proceeds in
intervals of three adjacent extremes i1...i3 (i.e., either a local maximum i2 with its neigh-
boring local minimal i1 and i3 or vice versa). If the underlying price movements exceed
the center extreme within the given interval, the corresponding critical point i2 is simply
shifted to the actual extreme of price movements within the given interval. For instance,
the previously described case in figure 4.10a leads to the analysis of the interval bounded
by the neighboring local minima (March 26 and October 29). Analysis of the price move-
ments shows that the previously found critical point is exceeded and therefore its position
is shifted to the actual maximum within this interval, as depicted in figure 4.10b.

Pros and cons of this procedure are exactly opposite to those of the previously described
method: the use of arbitrary thresholds allows for a stepless scaling of the model. However,
there may be rare instances in which a certain choice of thresholds leads to subsets of points
in which some are considered as significant according to the first model while others are
considered as noise. An increase of the threshold may result in a concurrent removal of
both the significant and insignificant points. As a result, it may happen (though only
rarely) that the CPM misses certain patterns that would have been identified through the
use of the higher-order extreme model.

Consequently, both models should be used simultaneously to query the time series for

58

4.2 Point Patterns

the existence of point patterns. In order to form the input to the pattern search, both
methods are applied to the data repeatedly (the CPM model with increasing thresholds)
until they no longer return any extreme points.

4.2.2 Identification of Point Patterns

Once the extreme point models have been constructed, they can easily be searched for
point patterns according to the following criteria:

• Head Shoulders
A Head Shoulders pattern consists of seven consecutive points i1...i7:

– i1: preceding minimum

– i2: left shoulder (local maximum)

– i3: left neck (local minimum)

– i4: head (local maximum)

– i5: right neck (local minimum)

– i6: right shoulder (local maximum)

– i7: trailing minimum

To form a valid pattern, the values P (i) of these points must fulfill the following
conditions:

– P (i4) = max
k∈{1...7}

P (ik), i.e., the head must be the highest point of the pattern

– min
(
P (i2), P (i6)

)
> max

(
P (i2), P (i5)

)
, i.e., both shoulders must be higher

than the necks

– max
(
P (i1), P (i7)

)
< min

(
P (i3), P (i5)

)
, i.e., both values preceding and trailing

the pattern must be lower than the necks

The Inverse Head Shoulders pattern can be identified accordingly by inversing all
conditions.

• Double Top
A Double Top pattern consists of five consecutive points i1...i5 with i2 and i4 being
local maximum points. The condition to form a valid pattern is simply P (i2) ≈ P (i4),
i.e., both tops must reside on the same price level (with regard to a certain tolerance
threshold).
Inversing these properties leads to the identification of a Double Bottom.

As explained in section 2.2.2, these patterns hint at trend reversals. Therefore their iden-
tification should be limited to situations in which they are preceded by the corresponding
trend movement. For instance, it is not feasible to analyze a Head Shoulders pattern (which
indicates a reversal from an uptrend to a downtrend) if price movements do not exhibit an
uptrend in the first place. Consequently, as explained in section 2.3, a moving average is
used to determine the preceding trend state and patterns are only identified if a pattern
matches the corresponding trend.

It should be noted that the presented criteria for each pattern are rather relaxed. Tech-
nical analysts usually impose further constraints on a valid pattern, namely they require
certain relations for the patterns’ individual properties. For instance, for a valid Head
Shoulders pattern it is usually required that both shoulders and both necks reside on sim-
ilar price levels, the distance between head and shoulders must exceed a certain threshold,
and the whole pattern should exhibit a rather symmetric shape. An integration of these

59

4 Design of Forecasting Modules with Probabilistic Reasoning

Security
Time
Period
(years)

Head
Shoulders

Inverse
Head

Shoulders

Double
Tops

Double
Bottoms

Dow Jones
Industrial

Average Index
≈ 82 35

(≈ 1/2.3 yrs)
16

(≈ 1/5.1 yrs)
38

(≈ 1/2.1 yrs)
12

(≈ 1/6.8 yrs)

Standard &
Poor’s 500

Index
≈ 60 18

(≈ 1/3.3 yrs)
11

(≈ 1/5.5 yrs)
16

(≈ 1/3.7 yrs)
6

(≈ 1/10 yrs)

Nasdaq
Composite

Index
≈ 40 2

(≈ 1/20 yrs)
1

(≈ 1/40 yrs)
2

(≈ 1/20 yrs)
12

(≈ 1/3.3 yrs)

General Electric
Company ≈ 48 17

(≈ 1/2.8 yrs)
18

(≈ 1/2.7 yrs)
28

(≈ 1/1.7 yrs)
8

(≈ 1/6 yrs)
Amazon.com

Inc. ≈ 13 9
(≈ 1/1.4 yrs)

9
(≈ 1/1.4 yrs)

15
(≈ 1/0.8 yrs)

9
(≈ 1/1.4 yrs)

International
Business

Machines Corp.
≈ 48 16

(≈ 1/3 yrs)
14

(≈ 1/3.4 yrs)
17

(≈ 1/2.7 yrs)
16

(≈ 1/3 yrs)

The Coca-Cola
Company ≈ 48 19

(≈ 1/2.5 yrs)
14

(≈ 1/3.4 yrs)
24

(≈ 1/2 yrs)
11

(≈ 1/4.4 yrs)

Table 4.2: Point pattern occurrences in selected securities: the table lists the number of
identified patterns for each security and their respective average occurrence
frequencies. The analyzed time periods depend on the available historical data
from Yahoo Finance.

additional constraints would lead to a significantly reduced set of resulting patterns.

Table 4.2 lists the results of the pattern search for a selection of popular securities. The
selection is rather arbitrary but the results provide a good representation of the patterns’
quantities for all securities that have been investigated within this work.

An analysis of these results reveals a severe problem that hinders any feasible approach of
statistical inference: the resulting set of patterns is simply too sparse to enable the learning
of any meaningful relations by examples. It should be noted that a manual analysis of the
price charts did not result in the identification of any further patterns and hence it can be
precluded that insufficiencies in the extreme point models are the cause for this problem
and therefore the resulting sets of patterns can be assumed to be exhaustive.

At first glance, it appears that these deficiencies might be resolved by merging patterns
of several securities into a single pattern database until enough pattern instances have been
collected to allow for an expedient statistical learning approach. However, an analysis of the
individual patterns and their respective future development reveals another key property
that is important to all learning processes presented in this work: different securities react
differently when following the presence of a certain pattern. For instance, an analysis of
subsequent developments after the occurrence of Head Shoulders patterns in the Dow Jones
Industrial Average Index reveals that this pattern yields a highly reliable signal since it
is followed by a significant downward movement with nearly every occurrence. The same
analysis performed on Amazon.com Inc. reaches opposite conclusions. Even though the
occurrence frequency is significantly higher, subsequent price developments do not seem
to exhibit any clear relation to the occurrence of this pattern and therefore it does not
provide any feasible signal for this security.

Hence, although the methods presented in this work are universally applicable to any
security, it is of evident importance to realize that each security has its own characteristics

60

4.3 Technical Indicators: Forecasting Module 2

and consequently the reasoning modules have to be trained separately for each security.
This realization prohibits the approach of merging patterns from various securities into a
single pattern database.

These considerations give rise to the question of the true cause which leads to the detected
point pattern deficiencies: the analysis so far has only shown that the available data did not
exhibit a sufficient number of well-known significant patterns. It remains unclear however,
whether this is due to a sparse existence of significant patterns or due to a sparse knowledge
of such patterns. In principle it might very well be that the data contains a various number
of characteristic patterns that are simply unknown (or at least unpublished). In order to
search the data for potentially unknown pointpatterns, the resulting local extreme points
were organized in hierarchical clusters (this method will be explained in more detail in
section 4.4.2) and the resulting clusters were analyzed with respect to common successive
developments. These clusters did not reveal any additional patterns and therefore did not
provide a meaningful alternative to the manual definition of patterns.

As a consequence, no feasible forecasting module based on point patterns could be con-
structed with the available data. And even if one would construct a meaningful forecasting
module somehow, it would hardly increase the system’s overall results since these patterns
occur so rarely that they could contribute to the overall analysis results only very seldomly.
There is a possibility that the situation is different, if, instead of analyzing daily data, one
would choose a smaller time unit (e.g., hours). By analyzing the same time period with a
finer time resolution, one should expect the occurrence of significantly more patterns sim-
ply due to the larger dataset. This could not be tested due to the lack of historic intra-day
data.

It should be noted that several works (e.g., [Bao08], [BY08], [GLL07]) have been pub-
lished which report on a successful implementation of technical analysis systems incorpo-
rating point patterns. However, due to only vague summaries of the testing scenarios, their
results could not be reproduced. Also, these papers describe systems incorporating a vari-
ety of analysis methods so that it remains unclear how much the point patterns contribute
to the overall results (provided that they do contribute to the results at all).

4.3 Technical Indicators: Forecasting Module 2

The next forecasting module is another dynamic Bayesian network which aims at facili-
tating predictions of future price movements by analyzing the states of the set of technical
indicators described in section 2.3.

4.3.1 Domain Parameters

Evidence

Since an implementation of the described indicators directly yields a set of numerical
values, these values can easily be used as input for a Bayesian network. However, it has
to be considered that many of these values directly relate to the securities’ state (i.e., they
exhibit absolute values which are informative only when comparing them to the underlying
values of the security’s current price or volume). Since the prognosis should be universally
applicable, such values need to be normalized in order to hinder the forecasting module
to infer relations to absolute price levels. For instance, if the observed indicator values
suggest a pending ascent, this insight should be retrieved no matter if the underlying
security currently resides on high or low levels compared to its historic movements. To

61

4 Design of Forecasting Modules with Probabilistic Reasoning

attain this independence of absolute price levels, some of the indicators are normalized
before being fed into the Bayesian network. The actual input values for each indicator are
listed in table 4.3. Note that not all indicators are connected to absolute levels, but there
are also several indicators which have a restricted range in the first place. These indicators
can be incorporated directly without any preprocessing.

The analyzed evidence space of the indicator network comprises 19 numerical values, as
denoted in the table. As it will be explained below, some of the indicators proved to be of
no avail for the inference of a forecast and therefore have been removed from the eventual
network. These indicators are marked accordingly in the table.

Prognosis

The same considerations described in section 4.1.2 hold for the modeling of an appropriate
forecasting state in the indicator domain. Hence, the forecast is subject to price movements
within a certain interval of future developments again.

However, as investigations of various modelings of the forecasting state have revealed,
opposed to the trend line module the indicator domain does not facilitate the means of
actually quantifying the magnitude of future movements. All attempts of predicting the
amount of change resulted in forecasts which exhibited hardly any recognizable relation to
the factual developments. Consequently, the indicator module is not commissioned with
quantifications of changes but is rather content with predicting the movement’s direction.
As it was explained in section 4.1.4, the essence of any feasible forecast is reliable informa-
tion of future directions and therefore this module is still able to provide highly valuable
information, even though it is restricted to discrete prognoses of directions.

After examining several variations of modeling the forecast, the method which proved to
perform best with respect to reliability and usefulness is the model of determining whether
future developments exhibit significant movements into a particular direction within a
certain time interval. To identify a significant movement, a price threshold TP is defined
and a percentaged change in price is considered significant if it exceeds this threshold.
Again, due to the same reasons explained in section 4.1.2, a moving average is used as a
basis to determine forecasts. Hence, the discrete hypothesis for a forecasting period p is
defined as

hp(t) =

1 if
min

x∈{t+1,...,t+p}

WMA(x)

WMA(t)
> −TP

∧ max
x∈{t+1,...,t+p}

WMA(x)

WMA(t)
> TP

−1 if
max

x∈{t+1,...,t+p}

WMA(x)

WMA(t)
< TP

∧ min
x∈{t+1,...,t+p}

WMA(x)

WMA(t)
< −TP

0 else

(4.12)

While the previously described trend line module contained evidence for predictions
on various time scales simultaneously and therefore could be used to facilitate several

62

4.3 Technical Indicators: Forecasting Module 2

Indicator Components Network Input Size

Price Change • difference between current and
previous closing prices (P)

P (t)− P (t− 1)

P (t)
1

Exponential
Moving Average

• difference between indicator
value (EMA) and current price
(P)

P (t)− EMA(t)

P (t)
1

Cross Average
• difference between indicator
value (CAV) and current price
(P)

P (t)− CAV(t)

P (t)
1

Moving Average
Conver-

gence/Divergence

• MACD-Line (MACD)
• Signal-Line (MAS)

MACD(t),MAS(t) 2

Bollinger Band
• bandwidth (BW)
• distance between current price
and band center (BC)

BW(t)

P (t)
,
P (t)− BC(t)

BC(t)
2

Momentum • indicator value (MOM) MOM(t) 1

Relative Strength
Index • indicator value (RSI) RSI(t) 1

Average True
Range • indicator value (ATR)

ATR(t)

P (t)
1

Aroon Indicator • Aroon Up (AU)
• Aroon Down (AD)

AU(t), AD(t) 2

Commodity
Channel Index • indicator value (CCI) CCI(t) 1

Stochastic %K %D • %K-line (SK)
• %D-Line(SD)

SK(t), SD(t) 2

Volume
• difference between value (VOL)
and corresponding volume
moving average (VMA)

VOL(t)− VMA(t)
VOL(t)

1 ?

On-Balance
Volume

• indicator value (OBV) scaled by
volume moving average (VMA)

OBC(t)

VOL(t)
1 ?

Money Flow Index • indicator value (MFI) MFI(t) 1 ?

Ease of Movement • indicator value(EOM), scaled to
ease processing

EOM(t) · 105 1

total 19

Table 4.3: Indicator preparation for the use with a Bayesian network: the table lists the
components for each indicator, the corresponding calculations and the input
size (i.e., number of values) for each indicator. Indicators which have been
omitted in the final network are marked with a ?.

63

4 Design of Forecasting Modules with Probabilistic Reasoning

prognoses in parallel, the indicator domain exhibits a definite relationship between the
obtained evidence and its viability for a particular forecasting period. As it was explained
in section 2.3, all indicators are parametrized with respect to a certain duration, which has
a direct influence on the forecasting time scale. Hence, instead of incorporating multiple
hypothesis values, the model is designed to deliver predictions only for one particular time
scale. Then predictions of alternative time scales can be obtained by employing several
instances of the same model with varying evidence duration parameters. Experiments
have shown that a ratio of 1

3 between forecasting period and indicator duration yields the
best result. For instance, to obtain a five-day forecast, the indicators are calculated for a
duration of 15 days.

4.3.2 Prediction Network

The most simple design of incorporating the technical indicators into a Bayesian network
is again the naive Bayesian approach as depicted in figure 4.11.

Successful implementations of such a naive Bayesian approach for this domain have been
reported in [BY08] (treating daily observations separately) and [Leo06] (using a dynamic
Bayesian network with the same structure depicted in figure 4.11). While these proposals
aim at the same target, both of them differ in the pursued strategy of representing the input
state space. Common to both approaches is that they infer discrete directional predictions
and discretize the observations before they are fed into the prediction network.

[BY08] uses static rules for each indicator in order to obtain a trading signal, i.e., each
observation component is classified into the binary states up or down. Hence, the actual
input to the Bayesian network is formed by a boolean vector. While it is reported that
this approach yields feasible results, it comes with two major disadvantages:
First, the transformation of continuous indicator values into boolean variables comes with
a significant loss of information. As it was explained in section 2.3, most indicators pro-
vide considerably more information than just a simple discrete state, namely because their
exact values usually hint at the strength of a certain signal. Also, since some of the most
valuable information originates from (possibly small) divergences of different indicators,
one of the most powerful capabilities of technical indicators is waived by compressing the
indicators into boolean values, because small divergences cannot be captured but instead
a comparison of different indicators can only lead to the results “same” or “different”.
Second, the use of static rules to classify indicator values into boolean trading signals
requires sound domain expert knowledge (i.e., a wide experience in the application of tech-
nical indicators). Signaling rules for each indicator have to be designed and implemented
separately and any shortcomings in these rules will lead to inevitable deficiencies in the
resulting probabilistic network. Consequently, instead of delegating the learning task to an
adaptive reasoning module, this approach relies on human expertise while the probabilistic
reasoning system merely has the potential of determining the human expert’s reliability.

[Leo06] aims at identifying all significant states that a particular indicator may adopt.

. . .

. . .

. . .

. . .

H(t− 1)

E(t− 1)

H(t)

E(t)

Figure 4.11: Bayesian network for the indicator module

64

4.3 Technical Indicators: Forecasting Module 2

In order to define these states, a set of transformation rules is defined for each indicator.
For instance, values of the Relative Strength index are categorized into “below oversold
threshold”, “below 50 but higher than oversold threshold”, “above 50 but below overbought
threshold”, and “above overbought threshold”. All significant states of the RSI are then
obtained by combination of current and previous category of the indicator and thereby
a total of 16 significant states is identified only for this indicator (though it remains un-
clear why the indicator states are defined with respect to previous values if a dynamic
Bayesian network is used, which is fed with observations of consecutive days anyways).
Compared to [BY08], this approach has the advantage of the actual interpretation being
left to the Bayesian network instead of a human expert and therefore this approach allows
for a consideration of different indicator combinations instead of only isolated indicators.
This approach still comes with disadvantages: In order to distinguish significant states of
any indicator, it is still required to consult a domain expert with wide experience in the
application of technical indicators. Still, a false or incomplete identification of significant
states will introduce deficiencies in the resulting forecast, although the effect is less severe
than in the previously described approach. The approach of using transformation rules
for several indicators leads to a rule set of tremendous size which has to be maintained
manually and expanded with the addition of each further indicator. Also, the discrete
state space still does not facilitate the means of exploiting small divergences of different
indicators.

Consequently, the approach pursued within this work does not employ discrete obser-
vation states but instead the continuous values listed in table 4.3 are directly fed into the
network. While this may lead to a slower inference process and require more training data,
the benefits are evident: since no preceding discretization step is employed, the module is
completely independent of any human knowledge (which naturally always bears the risk
of being subjective), but instead all potentially significant relations have to be inferred
through the machine’s probabilistic reasoning procedures. Next to enabling the chance of
profiting from observed small indicator divergencies, this approach also has the advantage
that no manual implementation of complex preprocessing has to be maintained.

A comparison of the indicator definitions from section 2.3 shows that several of them
share high similarities. These similarities give rise to serious doubts about the naive
Bayesian assumption of the conditional independence of the evidence variables. Also,
it is questionable whether such a simple model is capable of exploiting the full potential of
the available information. Some alternative models have been explored within this work,
namely a combination of a Coupled Hidden Markov Model (CMM) and a Hierarchical Hid-
den Markov Model (HHMM), as well as a Segment Model next to the Vector Autoregressive
Model already described in section 4.1.3.

A Coupled Hidden Markov model is a dynamic Bayesian network with multiple sequences
of evidence variables and multiple sequences of hidden states (as depicted in figure 4.12).
Each hidden state exhibits a corresponding observation, but it is additionally assumed that
hidden states also influence the successive states of other hidden nodes. In the domain
of technical indicators, this model can be implemented such that each indicator yields a
separate forecast but it is assumed that all individual forecast states impact other successive
forecasts due to the assumption that the indicators are conditionally dependent. To obtain
a general forecast from the whole set of observations, this model can be expanded to a
Hierarchical Hidden Markov Model. Such a model exhibits a hierarchical structure of
hidden states, i.e., there is one (or more) superior hidden state which is linked to several
hidden substates actually emitting observations. This can be used to facilitate an all-
embracing forecast, as defined in the previous section, built on individual forecasts created
from each indicator observation. The resulting model is depicted in figure 4.13. Note that

65

4 Design of Forecasting Modules with Probabilistic Reasoning

Figure 4.12: Schematic depiction of a Coupled Hidden Markov Model (from [Mur02]),
hidden states are denoted by X and observed states by Y .

the general form of this network offers opportunities for many variations in the modeling
of dependencies. For instance, one could also introduce connections between successive
observations or a coupling structure between evidence nodes, as well.

Another alternative is the use of a Segment Model as depicted in figure 4.14. Main
purpose of this model is the sectioning of the hidden state series into subsequences that
share certain properties. This is done by introducing hierarchical states of random length
which emit a sequence of observations. The number of hierarchical states is governed by
a random variable, too. In the indicator domain, this model could be used to separate
the hidden states into sequences of upward and downward movements, respectively. This
has the advantage that - next to the particular relationships between indicator states and
pending developments - the network is also able to infer knowledge about the duration of
movements and therefore it has another dimension of information at its disposal, which
can supposedly contribute to an enhanced quality of the forecasts. Also, by replacing
the evidence nodes with the previously described superior hierarchical hidden states of a
Hierarchical Coupled Hidden Markov Model, this Segment Model could be refined further.

For a thorough description of these models and further alternatives as well as suitable
inference algorithms see [Mur02].

Although the described alternatives provide a more sophisticated approach of modeling
the domain’s correlations, practical tests have shown that an application of these models
to the technical indicator domain did not yield any benefits. In fact, the results were quite
the contrary: while the quality of the results was not significantly altered, the computing
time was subject to a tremendous increase due to the considerably higher complexity of
the alternative models.

Result of these investigations is that none of the examined alternatives is able to defeat
the forecasts obtained from the naive dynamic Bayesian network, while at the same time
any other model slows down the inference process significantly. Hence, the naive model
(depicted in figure 4.11) has been chosen to implement this forecasting module.

In fact, it is a well-known property of naive Bayesian approaches that - even though
for many domains their use deliberately introduces false independence assumptions - they
often perform surprisingly well in practice. This phenomena has been subject to extensive
research and could be confirmed through several empirical studies. More information on
the evaluation of naive Bayes approaches can be found, for instance, in [DP97], [Ris01],
and [HY01].

66

4.3 Technical Indicators: Forecasting Module 2

...

.

H(t− 1) H(t) H(t+ 1)

H1(t− 1)

E1(t− 1)

H1(t)

E1(t)

H1(t+ 1)

E1(t+ 1)

H2(t− 1)

E2(t− 1)

H2(t)

E2(t)

H2(t) + 1

E3(t+ 1)

H3(t− 1)

E3(t− 1)

H3(t)

E3(t)

H3(t+ 1)

E3(t+ 1)

Figure 4.13: Hierarchical Coupled Hidden Markov Model for the indicator domain, the
extension with hierarchical states is depicted in red.

Figure 4.14: Schematic depiction of a Segment Model (from [Bil01]). The Xt nodes rep-
resent the observed states, the Qn nodes represent sequential hidden states,
the random variable ln denotes the sequence length of the corresponding
state and τ determines the total number of sequence states Qn.

67

4 Design of Forecasting Modules with Probabilistic Reasoning

The considerations from section 4.1.3 for the choice of conditional probability distribu-
tions hold for this domain as well. Consequently, the links between hypothesis and evidence
(i.e., the intra-slice conditional distributions P (H|E)) are again modeled as gaussian dis-
tributions. The inter-slice distribution only links discrete values and therefore can be easily
expressed as a 3× 3 tabular conditional distribution.

4.3.3 Learning and Results

The learning and testing procedures for this module are the same as described in section
4.1.4, i.e., for a forecast duration of d days, the network is unrolled for d + 1 slices and
learning and testing is performed alternately with a sliding test window. Final results of
this module for the described test data are listed in table 4.4.

The expectations on the nature of a forecasting module based on technical indicators
as described in section 2.3 were confirmed with this module: as it was explained before,
a small set of indicators should lead to a result of feasible quality while the incorporation
of additional indicators can only provide a further increase of rather small magnitude.
To confirm this, the network also has been tested with only the value change, a moving
average and the Relative Strength Index (these indicators have been selected because they
are among the most popular indicators with technical analysts). This subset of evidence
states resulted in an average success rate of just under 70 percent. While the success
rate denoted in table 4.4 is obviously preferable and therefore justifies the use of further
indicators, these results indeed show that the forecasts’ improvements are rather small
compared to the significant augmentation of the evidence space.

Unfortunately, it is not possible to evaluate every individual indicator’s impact on the
results, since the large number of combinatorial possibilities for alternative evidence spaces
renders an evaluation of all such possibilities intractable. Since some indicators unfold
their full potential only in combination with other indicators and conversely an indicator’s
impact may also vanish if other indicators with nearly redundant information are employed,
a complete evaluation of all indicators’ contributions to the result would require a testing
of all possible combinations.

Though it is intractable to assess all indicators, if one suspects a particular indicator
of being useless, it is easily possible to determine this indicator’s contributions by simply
removing it from the evidence space and comparing the resulting forecasts.

As it was explained in section 2.3, a scrutiny of the On-Balance Volume’s developments
made its usefulness appear highly questionable. By performing tests for both evidence sets

test instances success rate
3000-5000 0.83
5001-7000 0.81
7001-9000 0.79
9001-11000 0.82
11001-13000 0.79
13001-15000 0.72
15001-17000 0,67
17001-19000 0.77
19001-20588 0.81

total 0.78

Table 4.4: Evaluation of the technical indicator forecasting module

68

4.3 Technical Indicators: Forecasting Module 2

with and without the OBV’s values, it could indeed be confirmed that this indicator did
not significantly contribute to the forecast. In fact, introduction of this indicator resulted
in only very small fluctuations of the results and since these fluctuations were both positive
and negative (i.e., some forecasting instances were improved while an even slightly larger
number of other instances was impaired), the average success rate was actually decreased
by a small amount. Hence, this indicator represents undesired noise rather than useful
information (at least within the presented model) and was therefore removed from the
evidence space.

After obtaining this result, other volume-based indicators have been tested the same way
and thereby it was revealed that the Ease of Movement is the only one of these indicators
that proved to contribute to the results, while the volume and the Money Flow Index only
resembled noise, also. These indicators were removed, too, as already marked in table 4.3
(page 63).

The comparison of results for separate test windows as listed in table 4.4 shows that there
are different slowly-changing market phases that this module is not able to handle equally
well, namely there is a considerable drop in the forecasts’ success rate for the data sets from
roughly 13000 to 17000. Similar effects were observed with tests of other securities, too.
Although the results are satisfactory even in phases of lower success rates and therefore
do not raise serious concerns, it would be interesting to determine how these phases differ
and what exactly causes the variations in the module’s success rate for different phases.
Within the limits of this work, these phenomena could not be investigated thoroughly but
may rather be subject to future research.

An analysis of the inferred probabilities for each forecast (i.e., the belief state assigned
to a particular forecast) revealed another interesting fact: the forecasting module “feels
certain” about its forecast virtually every time, roughly 90 percent of the obtained forecasts
have an assigned probability of > 0.8 and slightly more than 70 percent of the forecasts
even exhibit assigned probabilities of > 0.98 (for comparison: complete indetermination
would correspond to a probability of 0.33). While the vast majority of forecasts is obviously
correct, as depicted in table 4.4, and therefore may justify such extreme belief states, it
appears surprising that the module never shows any signs of indetermination, especially
since such high certainties are even assigned if the forecast is wrong. This is unfortunate
because a more differentiated assignment of probabilities could possibly assist in improving
a trading strategy by keeping away from situations with rather low probabilities (and
therefore high uncertainty).

This does not necessarily has to be a deficiency of this model because since stock price
movements may always be subject to unforeseen phenomena, even signals considered as
highly reliable can be false. In fact, experiments with significantly smaller training sets
and small subsets of indicators resulted in significantly lower probabilities for each forecast.
This suggests that the large size of training instances and the large set of indicators allows
for a sound learning process and therefore high belief states and, consequently, wrong
forecasts are likely the result of observations that proved to be reliable in the past but are
followed by unforeseen changes in future developments.

It should also be noted that different testing procedures showed that this domain is
only locally stationary, i.e., it is not completely time-invariant. This was revealed by using
a sliding window for test purposes without updating the training cases. Such a training
procedure leads to an increasing gap between the training set and the respective test
sets and results have shown that the forecasts’ success rate fades while the test window
proceeds forward. By retraining the network after completion of each test window, this
effect was prevented and therefore it is obvious that the relations of the domain slowly
change over time (which is why the process is only locally stationary). While it is not easy

69

4 Design of Forecasting Modules with Probabilistic Reasoning

to determine the exact change rate (and this knowledge is useless for the purpose of this
work anyways), it could been seen that the effect becomes first perceivable with a gap of
roughly 4000 days between training and test data sets. This introduces some moderate
constraints on the learning procedures but the sliding window method used within this
work remains unaffected by this restricted stationarity and therefore this effect does not
require additional attention.

4.4 Candlesticks: Forecasting Module 3

The last forecasting module implemented in this work is based on the analysis of candlestick
patterns as described in section 2.4. This domain differs from the previously described
analysis methods due to the local character of candlestick prognoses. Since the analysis of
a particular pattern depends only on a short sequence of days and since there are usually
rather large distances between the occurences of patterns (i.e., there are large sequences
which do not emit any information useful for a candlestick analysis), a temporal approach
is not feasible in this context. Consequently, this domain is modeled with a static network
in which each random variable has a single fixed value for each instance.

4.4.1 Domain Parameters

Evidence

As it was explained before, a particular candlestick is described through its opening, high-
est, lowest, and closing value (called OHLC-data) and thus these values are used to form
the observation space. Again, it is necessary to avoid absolute values in order to hinder
the network from inferring dependencies of certain price levels. Instead of directly using
the OHLC-data, the values are scaled such that they denote a percentaged change with
respect to the opening value. Next to resulting in universally applicable descriptions of
candlesticks’ shapes, this normalization has the convenient side effect that the evidence
space is reduced because the opening value can be omitted. Consequently, the observation
of a particular candlestick CSt is described by:

CSt = (H ′t, L
′
t, C

′
t) with H ′t =

Ht

Ot
, L′t =

Lt
Ot
, C ′t =

Ct
Ot

(4.13)

Next to the included candlestick shapes within each pattern, it is also necessary to provide
information about the candlestick’s positions relative to each other. This information is
based on the midpoint Mt of a candlestick:

Mt =
Ht − Lt

2
+ Lt

Using these midpoints, the relative position of a candle j with respect to a preceding candle
i is defined as the percentaged change ∆ij of their respective midpoints:

∆ij =
Mj −Mi

Mi
(4.14)

As explained in section 2.4, a candlestick pattern comprises three consecutive candle-
sticks and therefore a particular instance of the evidence eTt formed by a complete candle-
stick pattern and a certain trend state T is described by

eTt =
(
CSt−2, CSt−1, CSt, ∆t−2,t−1, ∆t−1,t) (4.15)

70

4.4 Candlesticks: Forecasting Module 3

To complete the description of a particular pattern it is also required to provide in-
formation about the pattern’s context (i.e., the current trend state). Since candlestick
patterns are only concerned with a rather short-term situation, it is sufficient to use a
short sequence of preceding values in order to determine this trend state. As before, a very
short weighted moving average (WMA3, based on 3 days) is used. An upward movement
is assumed if this moving average has been strictly monotonic increasing for at least two
days before a pattern was formed. Accordingly, a downward movement is assumed for a
strictly monotonic decreasing average. If neither condition is fulfilled the context does not
exhibit a clear trend. Thus the trend state Tt for a certain pattern CPt is defined as

Tt =

1 if WMA3(t− 4) <WMA3(t− 3) <WMA3(t− 2)

−1 if WMA3(t− 4) >WMA3(t− 3) >WMA3(t− 2)

0 else
. (4.16)

Since patterns are treated differently depending on the corresponding trend state, these
states can be used to classify the observations before feeding them into the network. As
a result, instead of having one network for all patterns, three separate instances of the
same network are used such that each instance handles patterns of a certain context. This
pre-classification results in a significant speedup of the inference process especially since
processing time of the clustering algorithm described below increases exponentially with
larger data sets.

Prognosis

Since the field of candlestick pattern analysis is a classical task of pattern matching, it is
expedient to separate the reasoning process into two subtasks:

First, it is determined whether a certain observation Ei resembles an instance of some
known pattern. A discrete clustering variable P is introduced to denote the set of known
patterns. Since it is obvious that not every observed candlestick sequence resembles a
known pattern, it is not eligible to enforce the classification of each observation into a
known pattern. To enable the forecasting module to disregard any instances, an additional
“absorbing pattern” is introduced, i.e., a pattern that servers as a placeholder for all se-
quences that cannot be classified into one of the known patterns. Hence, for a number of
n known patterns, the clustering variable P can take on the values 1...n+ 1.

After classifying the evidence sequence, the actual prognosis concerning future price
developments can be inferred. Experiments with various modelings of the forecast have
shown that this domain allows for neither a quantification of future price changes, nor
a prediction of particular candlestick characteristics but instead it only facilitates a bi-
nary prognosis concerning the direction of a pending candlestick’s midpoint. Thus for a
prediction of p days into the future, the forecast hpt is defined as4

hpt = sgn
(
∆t, t+p

)
. (4.17)

4Strictly speaking, this definition would yield three different forecasting states because next to rising and
falling days it may also occur that the midpoint positions are exactly equal. However, since a pair
of candles virtually never exhibits exactly the same midpoint values in practice, the hypotheses space
is modeled binary. In order to achieve an exhaustive definition, the forecast is implemented with the
assumption sgn(0) = −1. Due to the practical irrelevance one could also keep the third unneeded state
or use other assumptions as well without impacting the results.

71

4 Design of Forecasting Modules with Probabilistic Reasoning

4.4.2 Pattern Recognition

Before any evidence instances can be matched with a known pattern, it is required to
somehow acquire descriptions of relevant patterns. Different variants have been explored
within this work with the goal of obtaining a system that is able to identify any relevant
pattern autonomously. While the task of inferring predictions based on unknown pattern
memberships resembles the process of learning memberships of unknown mixture compo-
nents (as described for example in [RN02]), this domain bears the additional challenge that
the number of mixture components (i.e., the number of significant patterns) is unknown
a priori, too. As explained in the previous chapter, Bayesian networks are not able to
cope with variable sizes and thus it is necessary to perform a separate process of pattern
recognition in order to obtain information about the number of patterns prior to defining
the network.

Evaluation of Possible Approaches

A rather simple approach of acquiring this knowledge is proposed in [CHYL97]: the charac-
teristics of significant patterns are identified by a domain expert and implemented through
a set of static rules. The situation with this approach is similar to the alternatives discussed
in section 4.3.2 and therefore bears the same disadvantages. Again, instead of entrusting
the reasoning component with the task of learning significant patterns, the system has to
rely on the knowledge of a human expert and consequently its results are strictly limited
by the quality of the predefined rules. It is especially not possible that the system can
find any supplementary patterns unknown to the domain expert and therefore the machine
learning task is reduced to merely an evaluation of the quality of the expert’s knowledge.
In fact, [CHYL97] explicitly states that its AI component only serves as some kind of
quality assurance as it double-checks the decisions obtained through the use of static rules.
While it may be useful to have such a quality assurance, it is obvious that this approach
is not able to identify unknown patterns autonomously and therefore lacks the means of
fully exploiting the potential of a machine learning process.

An alternative approach that offers unsupervised learning of candlestick characteristics
has been described in an internet blog.5 This article proposes the categorization of indi-
vidual candlesticks into various types with distinguished shapes by using the k-means clus-
tering algorithm and a construction of pattern definitions based on these types. K-means
clustering is a simple center-based clustering procedure and with a predefined number of
clusters k it works as follows:

1. The k cluster centers are distributed randomly.

2. Each data point is assigned to the cluster with the shortest distance to its center
(i.e., the cluster with the nearest mean, hence the name).

3. The cluster centers are recomputed such that they form the mean of all containing
data points.

4. Based on the new cluster centers, the procedure continues with step 2 again. This
procedure is performed repeatedly until either a predefined number of iterations has
been performed or until an iteration does not alter cluster memberships of any point.

For more information on this procedure and other clustering methods see [MW07].

An implementation of this proposed clustering procedure revealed two significant short-
5http://intelligenttradingtech.blogspot.com/2010/06/quantitative-candlestick-pattern.html, the men-
tioned article has been posted under the title “Quantitative Candlestick Pattern Recognition (HMM,
Baum Welch, and all that)” on June 10, 2010. Unfortunately the article’s author remains anonymous.

72

4.4 Candlesticks: Forecasting Module 3

Figure 4.15: Clusters of candlestick shapes obtained from various executions of the k-
means clustering algorithm, the lengths of the wicks are given as a fraction
of the whole candlestick’s size (the cluster colors are only used for a better
visualization and do not depict any correlations).

comings of the k-means clustering algorithm. To illustrate these shortcomings, figure 4.15
depicts the resulting clusters for three executions of the attempt of categorizing candlesticks
into nine clusters with respect to their proportionate wick sizes.

A comparison of the results immediately reveals one disadvantage of k-means clustering:
due to the arbitrary initialization of cluster centers, the results are not reproducible but
instead may vary with each execution of the algorithm. Although this problem can be
attenuated by executing the algorithm several times and averaging the results, it is hardly
possible to construct any feasible pattern descriptions on the basis of varying clusters. An
alternative solution to reach reproducible results is the replacement of random initialization
with predefined initial cluster positions. This would lead to fairly reproducible results but
bears the disadvantage that a suboptimal manual initialization will have a strong impact
on the results. The other problem of employing the k-means clustering algorithm in the
candlestick domain is the fact that it always results in clusters of spherical shape and is
therefore not able to capture the truly significant shapes of particular candlesticks. For
instance, as it was explained in section 2.4, the diminutive size or complete absence of a
shadow carries valuable information. To reflect these characteristics in the classification
of candlesticks, the results depicted in figure 4.15 would be required to exhibit long and
narrow clusters at the graph’s edges. Obviously such a cluster cannot be obtained if clusters
are limited to spherical shapes.

To resolve the problem of spherical clusters, an alternative clustering procedure has been
explored, namely Density Based Spatial Clustering of Applications with Noise (DBSCAN).
This algorithm is able to find clusters of arbitrary size based on the density of data points
in certain regions. A thorough description of this algorithm can be found in [MW07].
However, an examination of the data points in figure 4.15 shows that they are nearly even
distributed and therefore any clustering approach based on density is deemed to fail. In
fact, an application of DBSCAN to this dataset leads in essence to a single large cluster
(with the exception of some outliers).

These two variants illustrate an elementary problem of all “flat” clustering algorithms
(opposed to hierarchical methods as explained subsequently) for this domain: either the
data set is equally partitioned in clusters of fixed shape, which are not able to capture
the candlesticks’ key properties, or no meaningful clusters can be found at all due to the
nearly even distribution of data points.

Before proceeding to the description of a feasible clustering method, it should be noted
that the approach of determining particular candlestick types and constructing pattern
descriptions based on these types - even though it may appear promising at first - did not
yield feasible results. This is mainly due to the tremendous number of possible patterns: a

73

4 Design of Forecasting Modules with Probabilistic Reasoning

meaningful classification of individual candlesticks should contain at least three types for
each shadow’s size (diminutive, average, large) and five types for the candle’s body (large
red, small red, diminutive, small green, large green). By analyzing sequences of three
candlesticks this leads to (3 · 3 · 5)3 = 91125 possible patterns even without taking the
relative position of each candlestick into account. Thus, the number of possible patterns
is significantly larger than the size of the training set and as a result this approach did
not find any reoccurring patterns in the training data. Instead of clustering individual
candlesticks, the following algorithm is applied to complete descriptions of candlestick
sequences according to equation 4.15 such that the resulting clusters directly represent
meaningful patterns.

Hierarchical Clustering

Since flat clustering approaches are not able to yield feasible results in this domain, a
hierarchical method is used instead. Hierarchical clustering methods construct an ordered
structure of clusters such that the distance according to some distance measure between
respective cluster members increases with the hierarchical order of a cluster. To illustrate
this, figure 4.16 depicts an example of a hierarchical cluster structure: in a complete
structure, the top-most cluster contains all elements of the data set and its children are
split such that they form two clusters with a minimal distance between all respective cluster
elements.

In general, there are two approaches to construct a hierarchical clustering structure:

Agglomerative hierarchical clustering (“bottom-up clustering”) starts with assigning each
element to a separate cluster. Afterwards, in each iteration the two clusters with minimal
distance are merged into a new cluster so that successively larger clusters are constructed.
This process continues until all data points are merged into a single cluster.

Divisive hierarchical clustering (“top-down clustering”) works in the opposite direction.
It is initialized with a single cluster containing all data points and in each step the cluster
is split such that two clusters with a minimal intra-cluster distance are created. This
process continues until all data points are assigned to separate clusters. More information
on hierarchical clustering methods can be found in [MW07].

The agglomerative approach has an advantage in this domain because after finding
desired clusters (according to conditions explained below), the clustering process may
terminate early without constructing the complete structure. Since the clustering process
is very time-consuming, this early termination offers a significant speedup.6

A useful distance measure to define similarities between different observations in this
context is the euclidean distance. Hence, the distance between two patterns x and y (of
the form described in equation 4.15, containing 11 properties) is defined as:

d(x, y) = ‖x− y‖2 =

√√√√ 11∑
i=1

(xi − yi)2

After merging two observations into a cluster, the feature values of the resulting cluster are
set to the respective average values of both merging candidates. Applying agglomerative
hierarchical clustering with this distance measure to the training set of input patterns7

6The early termination is only a performance optimization that does not alter the functionality. Thus in
the following a full construction of the hierarchical structure is assumed in order to simplify explana-
tions.

7As explained before, the training set is actually partitioned into three subsets according to the corre-

74

4.4 Candlesticks: Forecasting Module 3

4 7 3 1 12 9 11 2 5 10 6 8
data points

distance

Figure 4.16: Schematic depiction of a hierarchical cluster structure (this type of graph is
called dendogram)

results in a structure that provides information about the similarity of different observations
and therefore can be used to identify reoccurring patterns.

Once this structure has been constructed, it can be easily used to query for significant
patterns. To identify significant patterns, two properties for each cluster (i.e., each possible
pattern) are defined: First, it is necessary to ensure that a cluster indeed represents a
reoccurring pattern and not only some random effect. In order to ensure reoccurrence, a
cluster must contain at least a certain minimum number of members (representing instances
of a particular pattern). This is denoted by the instance count IP of a pattern P and simply
defined as

IP = # instances for a pattern P = # elements in the corresponding cluster.

Also, a pattern should exhibit a certain reliability RP , i.e., a certain ratio of all cluster
members need to be followed by the same subsequent development. The reliability of a
pattern P is defined as

RP =
max # instances with the same outcome

IP
.

This stresses the importance of considering the instance count: each of the initial clusters
only contains a single instance and thus exhibits a reliability of 100%. Without requiring
a certain number of occurences, all of these clusters would be considered significant.

Based upon these properties a pattern is considered significant if both values exceed a
certain threshold (i.e., IP ≥ Imin and RP ≥ Rmin). Note that the parameter Imin cannot
be set universally but instead must be adapted to the size of the training set. Obviously,
this parameter must be set the higher the larger the training set is.

Search for these pattern starts at the bottom of the hierarchical structure. As soon as
a cluster is found that meets the specified criteria, it is added to the set of significant
patterns and its parents are omitted from continuation of the search. This is because if
a pattern is already considered as significant, an addition of further instances bears the
danger of diluting the pattern’s properties by considering auxiliary insignificant instances.

Result of this procedure is a set of autonomously detected significant patterns, which
can be used to train the parameter P described in the previous section.

sponding trend states and therefore the clustering is performed three times for subsets of the training
data. Due to the clustering procedure’s exponential complexity, this is the step that profits most (in
terms of runtime requirements) from partitioning the input set.

75

4 Design of Forecasting Modules with Probabilistic Reasoning

4.4.3 Prediction Network

Once the information about significant candlestick patterns has been obtained through
agglomerative hierarchical clustering, the design of a feasible network is fairly simple.

As depicted in figure 4.17, the evidence (i.e., the pattern description according to equa-
tion 4.15) is used to determine its pattern membership. Note that, next to all known
patterns, P also provides the option for a missing pattern membership, as explained be-
fore. The conditional probabilities P (e|p), denoting that a particular observation e is due
to a certain pattern p, are again modeled as gaussians. Hence, the probability of this
observation is a mixture of gaussians:

P (e) =

n+1∑
p=1

P (p)P (e|p)

=
n+1∑
p=1

wp · N (µp, σ
2
p)

wp denotes the mixing weight for each component and can easily be determined by the
prior P (p) which in turn is determined by the ratio of p’s number of occurences and the
size of the training set.

Usually the task of learning mixtures of gaussians is used for unsupervised learning (as
explained for example in [RN02]), i.e., inference of a set of cluster memberships, while only
the number of clusters but no information about their properties is provided. However, in
this scenario the subtask of learning the properties of the mixtures is not truly unsuper-
vised as information about the clusters is provided from the results of the agglomerative
hierarchical clustering (although by considering the whole learning process with included
pre-clustering, the task of learning candlestick patterns is indeed unsupervised).

One might wonder why the Bayesian network is still tasked with inferring relations
between evidence and clusters even though cluster memberships have already been de-
termined through the previous clustering process. Instead, the evidence node could be
omitted and the network could be used solely for inferring relationships between certain
patterns and their respective prognoses. While this too would lead to valid results, the
incorporation of the evidence node is mainly due to performance reasons: the hierarchi-
cal clustering structure cannot be easily augmented with additional evidence because new
nodes cannot be simply appended but each new instance of evidence could possibly change
the clustering structure. Hence, using the hierarchical cluster structure for determining
pattern memberships of the test data would lead to repeated recalculations of the clus-
tering hierarchy and, as explained before, these calculations are rather time-consuming.
Determining the pattern membership within the Bayesian network as depicted in figure
4.17 proved to be significantly faster and an evaluation of both variants showed that they
are able to produce results of equal quality. However, as explained before it is not pos-
sible to dispose of the pre-clustering completely because the gaussian mixture learning

E

P

H

Figure 4.17: Bayesian classifier for candlestick pattern matching

76

4.4 Candlesticks: Forecasting Module 3

trend
context

total #
instances

reliability
(Rmin)

identified
pattern
types

matched
pattern
instances

matching
ratio

success
rate

60 % 75 2914 0.47 0.66
70 % 48 1914 0.31 0.69

up 6262 80 % 32 1232 0.20 0.72
90 % 10 387 0.06 0.82
100 % 2 70 0.01 0.95
60 % 52 2086 0.41 0.66
70 % 33 1243 0.24 0.72

down 5129 80 % 22 842 0.16 0.73
90 % 10 413 0.08 0.79
100 % 1 35 0.01 0.86
60 % 35 1387 0.38 0.68
70 % 22 804 0.22 0.69

none 3609 80 % 16 616 0.17 0.72
90 % 6 244 0.07 0.84
100 % 0 0 0 -

Table 4.5: Evaluation of the candlestick analysis module: the table depicts the results
for a one-day forecast with Imin = 30 and varying Rmin parameters sorted
by the corresponding trend context. For each parameter Rmin the number of
identified pattern types, the total number of observation instances that could
be matched to one of the patterns, the corresponding matching ratio (i.e., the
fraction of all evidence instances that were identified as significant patterns),
and the resulting success ratio of the forecasts are listed.
Note that a reliability of 100 % merely denotes that all observed instances of a
pattern were followed by the same outcome (i.e., the data set did not contain
any counterexamples) and must not be confused with a prognosis of absolute
certainty.

requires a predefined number of mixture components and therefore cannot be used before
determining this number through the hierarchical clustering.

Once the pattern membership of a particular instance has been determined, the actual
forecast is inferred based on the hidden pattern. Since both the pattern and the forecast are
discrete variables, the corresponding conditional probability P (H|P) can be easily defined
through a conditional distribution table.

4.4.4 Learning and Results

Learning and testing with this module has been performed in the same way described
before with a sliding test window and alternating training and test procedures.

Experiments with varying query parameters Rmin and Imin have shown that Imin = 30
provides a feasible threshold for the described DJI data set. The corresponding results
for a one-day forecast with varying Rmin parameters are listed in table 4.5. A comparison
of the used reliability thresholds and the according success rates of the forecasts shows
that the resulting success rate reflects a rather close tracking of the respective reliability
parameter. Thus, by deciding upon a certain Rmin, one can tune the success rate nearly
arbitrarily. Although at first glance it may appear desirable to increase the success rate to

77

4 Design of Forecasting Modules with Probabilistic Reasoning

the highest amount possible, an analysis of the listed results shows that it not necessarily
the best choice to aim for a maximized success rate. For instance, a success rate of 95 %,
as it has been obtained with Rmin = 1 in the uptrend context, can certainly be considered
an amazing result. However, taking the corresponding matching ratio into account, as
well, reveals that this result is not so pleasant after all. A matching ratio of 0.01 reflects
roughly two occurences of such a highly reliable pattern per year. This means that a signal
is generated only approximately twice per year and is concerned with only forecasting
movements of the following day. Obviously such a sparse existence of very short-term
signals renders this result virtually useless in practice, although its quality is outstanding.
If instead one would for example use a reliability of 70 % (and therefore accept occasional
false signals), the resulting success rate would still be very satisfactory but, on average,
signals are generated more than once per weak and thus the overall gain of any trading
strategy employing this parameter would result in significantly higher gains.

Tests with forecasts of various durations were able to confirm the statements from section
2.4 regarding the forecasting ability: a forecast three days into the future with Rmin = 0.7
resulted in a success rate of roughly 60 % while the success rate of a four-day forecast was
not able to exceed 50 % significantly and therefore can hardly be of any use in practice.
Hence, this module should be used for forecasts with a maximum of three days into the
future.

78

5 Inference of Trading Strategies with
Reinforcement Learning

The separate forecasting modules described in the previous chapter are able to provide
valuable information about future price movements, but their results are not yet sufficient
to completely define a trading strategy. Especially due to the variety of information ob-
tained from the probabilistic reasoning processes, it is not always possible to extract an
obvious mapping from forecasting results to expedient trading decisions. There are still
several issues which have to be resolved when handling the forecasting results. For instance,
questions that still remain unanswered are:

• What is the best decision if separate forecasting modules differ in their respective
prognoses?

• How should one react when forecasts vary for different time horizons?

• How can separate forecasts be combined in order to find optimal points in time for
a trading action?

To answer these questions, another learning module is presented in this chapter, which
aims at learning an optimal trading strategy based on the results of the previously de-
scribed forecasting modules. This learning module is based on reinforcement learning and
is described in the following.

5.1 Introduction to Reinforcement Learning

This section provides a summary of the key features of reinforcement learning as described
in [RN02] and [SB98]. In order to illustrate the principles of reinforcement learning, [RN02]
gives the following description:

“Imagine playing a new game whose rules you don’t know; after a hundred or
so moves, your opponent announces, ‘You lose.’ This is reinforcement learning
in a nutshell.”

More specifically, reinforcement learning separates the learning task into two entities,
a learning and decision-making entity called agent and the thing an agent interacts with
(basically everything outside the agent), called the environment. The agent and environ-
ment interact with each other at discrete time steps t = 1, 2, 3... The environment has a
set of possible states S and for each time step t, the agent receives information about the
current environment’s state st ∈ S. Based on the environment’s state, the agent selects an
action at ∈ A(st), where A(st) denotes the set of actions available for the state st. The
agent communicates his selection to the environment and, in response, receives an numeri-
cal reward rt+1 ∈ R together with a new state description st+1. This communication cycle
forms the basis for reinforcement learning and is depicted in figure 5.1.

For the scenario described in the quotation above, the player corresponds to the agent
and everything else (i.e., the opponent and the rules of the game) forms the environment.
Playing the game once corresponds to a single time step and yields a binary reward through
either winning (which is good and should therefore lead to a positive reward) or losing

79

5 Inference of Trading Strategies with Reinforcement Learning

Environment

Agent

rt+1

st+1

reward
rt

state
st

action
at

Figure 5.1: Cyclic proceedings in reinforcement learning (according to [SB98]): the agent
receives a state description st and a reward rt from the environment, selects
an action at and in turn the environment replies with a successive state de-
scription st+1 and reward rt+1.

(which is bad and should lead to a negative reward). Initially, the agent has no idea how
the game works and thus is not able to aim at winning. Through repeated playing he
will (hopefully) observe how his actions lead to certain results and how these results will
eventually conclude in a victory or defeat. By the use of rewards he should also learn
that winning is better than loosing and thus after playing the game for various times, the
agent is expected to choose his actions such that they are most likely to lead to a victory.
Consequently, the agent is expected to learn the game through trial and error, which is
essentially the approach of reinforcement learning. The name of this approach stems from
the fact that “good” actions receive high rewards and are thereby reinforced while “bad”
actions are punished and thus attenuated.

5.1.1 Formalization of the Learning Task

To formalize the task of reinforcement learning, a utility function is introduced in order to
measure the quality of an agent’s actions. The most simple concept of a utility function
can be obtained by simply accumulating the rewards for a sequence of states:

U(s0, s1, ..., sn) = r1 + r2 + ...+ rn+1 (5.1)

Obviously, an agent’s task in reinforcement learning is to choose his actions such that
they lead to states with high rewards and therefore its ultimate goal is to maximize this
utility function. If an agent was tasked with learning a maximum for this function, its
aim would be to choose each action so that it results in a successive state sequence with
highest rewards and therefore would lead to a globally maximized utility. While it is of
course desirable to reach such an optimal utility, this function introduces a computational
problem in practice: as it can be clearly seen from figure 5.1, a single action at will influence
all future states st+1, st+2, ..., st+n and all future rewards rt+1, rt+2, ..., rt+n. Hence, before
the agent can know which is the most desirable state st+1 (and therefore know which
is the most desirable action at to cause this state), it would be required to evaluate all
successive alternatives st+2, st+3, ...stn . Such an evaluation will become quickly intractable
if the sequence of states is not limited to a rather short length. This problem can be
illustrated by considering the target domain of inferring trading strategies: in this domain
it is reasonable to provide the agent with three different actions for each state (buy, sell,

80

5.1 Introduction to Reinforcement Learning

do nothing). If considering the data set described in chapter 4 (comprising data for 20588
trading days), before an agent can truly determine the globally best choice for a1, it would
have to test the potential rewards for all possible successive sequence. Thus, before the
best action a1 can be found, 320588(≈ 109823) alternatives would have to evaluated, which
is obviously a futile task. Also, it should be noted that the assumption of a single action
influencing all future states is all but meaningful in the financial domain. As it will be
discussed below, the described trading agent does not truly influence future states st+τ
by his actions but merely the rewards rt+τ associated with tuples of states and actions.
Hence, the influence of any particular action will vanish as soon as the agent executes
another different action in the future.

To overcome this intractability problem, it is common to model an agent such that it
prefers current rewards over future rewards. This is done by introducing a discount factor γ,
which leads to a decay of future rewards when calculating the utility. This also introduces
the benefit that time series of infinite length (for simplicity denoted by S = s0, s1, ...
subsequently) can be handled:

U(S) = r1 + γr2 + γ2r3 + ... =
∞∑
t=0

γtrt+1 (5.2)

With these considerations, the agent is first tasked with learning the environment’s tran-
sition model (i.e., the agent should learn how the environment evolves). This transition
model is described through a set of probabilities T ass′ denoting the probability of reaching
the successive state s′ if an action a is selected in some state s:

T ass′ = P (st+1 = s′ |st = s ∧ at = a) (5.3)

Simultaneously with learning the transition model, the agent should also learn what action
a ∈ A(st) to take in a particular state s = st such that it receives a maximum reward rt+1

and therefore he should learn an expedient mapping between states and action. Such a
mapping is called policy and is usually denoted by π (consisting of mappings a = π(s)).
With respect to a certain policy, the utility of some state s can be expressed as

Uπ(s) = E

[∞∑
t=0

γtrt+1|π, s0 = s

]
(5.4)

A policy is called optimal and denoted by π∗ if it yields the highest expected utility:

π∗ = arg max
π

E

[∞∑
t=0

γtrt+1|π

]
(5.5)

Hence, the optimal policy for a certain step s is:

π∗(s) = arg max
a∈A(s)

∑
s′∈S
T ass′ · Uπ

∗
(s′) (5.6)

As explained in [SB98], assuming that an agent selects optimal actions leads to the so-
called Bellman equation, which gives the utility of an individual state s = st (consisting of
the immediate reward for being in state s (denoted by R(s)) and the expected discounted
utility of the next state s′):

U(s) = R(s) + γ max
a∈A(s)

∑
s′∈S
T ass′ · U(s′) (5.7)

By solving this equation for all possible states s ∈ S, the agent could determine an optimal
policy and thereby solve the learning problem.

81

5 Inference of Trading Strategies with Reinforcement Learning

5.1.2 Learning Procedures

Temporal Difference and Q Learning

Although the previously explained equation 5.7 provides an option to find the optimal
policy π∗, solving the resulting system of equations for all possible states s may still be
intractable for large state spaces S. An approximative solution to these equation can be
obtained through temporal difference learning (TD learning). Instead of explicitly comput-
ing equation 5.7 for each state, TD learning uses (randomly initialized) utility estimates
for all states and incrementally updates these estimates with observed rewards from sam-
ples. These updates are formed by the difference of a state’s current utility estimate and
observed rewards from successive states.

To illustrate this concept, consider first the task of simply determining the utility of a
specified fixed policy (this task is also called passive reinforcement learning) with regard
to the differences between two successive states (this is called TD(0) learning, the reason
for this name will become apparent with subsequent explanations). In this scenario, utility
estimates are updated as following:

Uπ(s) ← Uπ(s) + α
(
R(s′) + γUπ(s′)− Uπ(s)

)
(5.8)

New observations are weighted with 0 ≤ α ≤ 1. This parameter is called the learning rate
and determines the influence of new samples, i.e., α = 0 would mean that new observations
are not considered at all while α = 1 would lead to a complete replacement of previous
knowledge. This update step is also called sample backup because it looks ahead to a
successor state, uses the successor’s value and the reward to compute a backed-up value,
and changes the value of the original state accordingly.

Since the ultimate goal of the agent is to learn an optimal policy, the utility estimates
from TD(0) learning can be replaced with estimates of the rewards of state-action pairs,
denoted by Q(s, a):

Q(s, a) ← Q(s, a) + α
(
R(s′) + γmax

a
Q(s′, a)−Q(s, a)

)
(5.9)

The resulting process is called Q-learning and it can be shown (see [SB98]) that the learned
Q estimates approximate the optimal state-action pairs Q∗, independently of the policy
being followed (provided that the policy visits all states). Consequently, the resulting Q
estimates can be used directly to form the optimal policy π∗.

TD(λ) and Q(λ) learning

The TD(0) procedure described above is only concerned with looking one step ahead and
thereby uses 1-step backups. In order to achieve more accurate results, one can also extend
the lookahead n steps into the future (leading to an n-step backup). The reward R(n)

t of
such an n-step backup is defined as:

R
(n)
t = rt+1 + γrt+2 + ...+ γnU(st+n)

and is called n-step return. This Reward R
(n)
t comprises a sequence of n − 1 actually

observed rewards and terminates with a utility estimate according to equation 5.8 for the
state st+n . Therefore this expression is also called corrected n-step truncated return.

Instead of considering only a particular n-step return, one can also consider an average of
various weighted n-step returns for varying n. Such a combination of varying n-step returns

82

5.1 Introduction to Reinforcement Learning

Figure 5.2: Schematic development of an eligibility trace (from [SB98])

is called complex backup and can be constructed from an arbitrary set of returns, as long
as the mixing weights are positive and sum to 1. A common approach of constructing such
a complex backup is to use all possible n-step rewards and assign exponentially decaying
weights:

Rλt = (1− λ)

∞∑
n=1

λn−1R
(n)
t (5.10)

with a decay factor 0 ≤ λ ≤ 1. The additional normalizing constant (1 − λ) is used to
ensure that all weights sum to 1. A temporal difference procedure which incorporates such
a complex backup with weights decaying by some factor λ is called TD(λ). The choice of
λ governs the influence of successive states, i.e., with a high value of λ a large proportion
of the rewards is obtained from more distant states. For λ = 0 this procedure is exactly
the one-step TD learning method described before.

As explained in [SB98], the above considerations cannot be implemented directly because
equation 5.10 is acausal, meaning that at each step it uses knowledge of what will happen
many steps later. To allow for an implementation of this procedure, an additional memory
variable called eligibility trace is associated with each state. The eligibility trace for a state
s at a time t is denoted by et(s) ∈ R+. When performing the learning task, these eligibility
traces are decayed by γλ in each step t and the eligibility trace for the visited step is is
incremented by one:

et(s) =

{
γλet−1(s) if s 6= st

γλet−1(s) + 1 if s = st
(5.11)

These eligibility traces record which states have recently (defined in terms of γλ) been
visited and therefore they indicate whether a state is eligible for changes in the case of
reinforcement events. To illustrate this, figure 5.2 schematically depicts the development
of an eligibility trace.

These eligibility traces are used to quantify how much a utility estimate is changed at
some time t:

∆Ut(s) = et(s) · α ·
(
rt+1 + γU(st+1)− U(st)

)
(5.12)

Note that recently visited states exhibit a high eligibility trace and therefore they are sub-
ject to rather large changes while estimates of states which have not been visited recently
remain virtually unchanged due to their negligible eligibilities. As a consequence, the use of
eligibility traces facilitates the decaying weighting scheme from equation 5.10 and therefore
yields a correct implementation of the TD(λ) procedure, as it has been shown in [SB98].

Again, TD(λ) offers an analogous procedure (called Q(λ)1)to learn estimates of state-
action pairs. Eligibility traces are used in a similar fashion as described before, with the
exception that they are set to zero whenever an exploratory action is selected. The use
of exploratory actions is explained below, for now it should only be noted that an agent

1In fact, different learning methods have been proposed under the name Q(λ). The method described
here refers to the one proposed in [Wat89]

83

5 Inference of Trading Strategies with Reinforcement Learning

usually selects actions with the expected highest rewards but may also select other actions
in order to augment its knowledge. To simplify notation, eligibility traces et for Q(λ)
learning are denoted as two separate components e1 and e2:

e1
t (s, a) =

{
γλet−1(s, a) if Qt−1(st, at) = max

a
Qt−1(st, a)

0 else (exploration action)

e2
t (s, a) =

{
1 if s = st and a = at

0 else

et(s, a) = e1
t + e2

t

Using these eligibility traces, updates of the Q estimates are performed in analogy to
equations 5.9 and 5.12:

∆Qt(s, a) = et(s, a) · α ·
(
γmax

a′
Qt(st+1, a

′)−Qt(st, at)
)

(5.13)

Performing these update steps iteratively will eventually lead to convergence towards the
optimal state-action pairs Q∗.

The main advantage of TD(λ) and Q(λ) methods compared to the previously described
temporal difference and Q learning methods is that they exhibit a faster convergence.
However, it should be noted that it is common to start reinforcement learning with a
rather high frequency of exploratory actions (as explained in the next section) and since
the Q(λ) eligibility traces are reset whenever selecting such an action, there is only little
advantage of using eligibility traces when starting the learning process.

5.1.3 State Space Exploration

The previous section explained how an agent is able to infer knowledge about its best
actions, but it did not yet provide any actual criteria for deciding upon a particular action.

At first sight it may seem obvious to simply pick the action that corresponds to the
highest expected gain (with respect to the current knowledge). This approach is called a
greedy strategy or exploitation strategy. However, always picking the greedy action would
most likely cause the agent to quickly stall in local optimum without ever being able to
learn the actual globally optimal policy π∗. This is due to the fact that such a greedy
agent is unwilling to take the risk of exploring unknown states, i.e., as soon as agent has
learned that in some state s, a particular action a will result in a positive reward, he will
always choose this action a if he arrives in state s subsequently. However, there may be
alternative but yet unexplored actions which could lead to significantly higher rewards.
Since these actions are not explored yet they are not associated with a positive expected
reward and consequently they will never be chosen by the agent.

The complete opposite of a greedy agent would be a pure exploring agent, i.e., an agent
who always chooses actions randomly without ever considering previously learned knowl-
edge about expected rewards. The corresponding strategy is therefore called exploration
strategy. In theory, such an agent is able to learn the globally optimal strategy eventually
after exploring the complete space of state-action pairs. However, as explained in section
5.1.1, the exhaustive exploration of the space of state-action pairs is intractable for most
domains. Even if this exploring agent was somehow able to learn the optimal policy despite
the tremendous computational requirements, this knowledge would be of no use as long as
the agent keeps its exploring policy and remains ignorant of his knowledge.

84

5.2 State Space Encoding

parameter name meaning

0 ≤ α ≤ 1 learning rate displacement weight of new knowledge
over previous knowledge

0 ≤ γ ≤ 1 discount factor preference of future rewards over current
rewards

0 ≤ λ ≤ 1
trace decay
parameter

decay of a particular state’s influence
over time (through its eligibility trace)

0 ≤ ε ≤ 1
exploration
parameter

rate with which explorative actions are
selected

Table 5.1: Parameters for reinforcement learning

A common solution to this problem is a so-called ε-greedy strategy. Such a strategy
is defined with respect to some 0 ≤ ε ≤ 1, which provides a ratio of exploitative and
explorative actions. For a proportion 1 − ε of the trials, the agent is supposed to choose
the greedy action while for the remaining proportion ε he is asked to explore alternative
actions. More formally, the agent chooses greedy actions ag and explorative actions ae
with the probabilities

P (ag) = 1− ε
P (ae) = ε

Consequently, ε = 0 denotes a pure greedy agent and ε = 1 denotes a pure exploration
agent. In practice usually a parameter ε� 1 is selected, though the choice may vary with
the corresponding domain.

5.1.4 Summary

As it can be seen from the previous discussions, a reinforcement learning agent is neither
required to have a model of the domain nor does it has to know how to select actions
initially. This is why reinforcement learning is also called model-free learning. Instead, the
learning task is only defined through the previously introduced learning parameters, which
are summarized again in table 5.1. Consequently, a RL agent is a general purpose agent
which - after being implemented once - can be applied to various domains. Note that the
discussions of this section are limited to the use of this work. There are also alternative
approaches of reinforcement learning which may be specified with different parameters.
For more information see [RN02] and [SB98], for instance.

5.2 State Space Encoding

The previously described methods of reinforcement learning require that the pairs of states
and actions can be represented in a tabular form. Thus it is necessary to have a set of
distinct states which consequently requires a discrete state space. If a domain exhibits
states with continuous values, these values have to be discretized by some means before
they can be used with reinforcement learning. The most simple approach of performing
such a discretization is a partitioning of the continuous state space into intervals of a
certain step width and assign each continuous value to its corresponding interval (hence,
an implementation of a classical analog-to-digital converter). However, such a simple
discretization method has the problem of resulting in a rather large number of discrete

85

5 Inference of Trading Strategies with Reinforcement Learning

states for many domains. To illustrate this, consider the continuous forecasts obtained
from the trend line module described in section 4.1. Using a long-term forecast for the
previously described DJI data set yields a set of forecasts in the range [−31.53, 70.05]
(percentaged value changes). Even if one used a step size of 1 (which leads to a rather
coarse resolution), roughly 100 steps would be required to discretize the input values. Since
the goal of this reinforcement learning module is to use forecasts of different time scales,
the size of the state space virtually explodes when incorporating forecasts of varying time
scales with this discretization method.

Such an overdimensioned state space bears a variety of problems. First, there are obvious
practical issues: as explained before, the agent is tasked with learning the values for each
state-action pair, and thus, a large state space will require the exploration of many different
options, which in turn will lead to a very low convergence speed. Since each particular
state has to be explicitly represented with a corresponding utility value and an eligibility
trace, the memory requirements of a large state space can quickly exceed the available
hardware resources.

Even if one is able to overcome the practical problems, there remains another - even
more severe - issue. With a training set not being considerably larger than the state space
size, it is very likely to happen that each instance of the training data will be represented
through a unique state. As a consequence, the agent would learn how to react for each
specific observation contained in the training data, but it would not be able to apply this
knowledge to any new observations, since it would be unable to detect similarities between
different states. This effect is called overfitting and hinders the facilitation of an expedient
learning process. As a result, one must find a state space encoding of significantly smaller
size than the training data in order to enable a generalization of the learning task, i.e., the
states must be encoded such that an agent is able to apply knowledge of previously visited
states to ones that have never been seen before.

In this work, the state space generalization is performed through tile coding. As explained
in [SB98], tile coding groups the input space into an exhaustive set of partitions, so that
each element represents a single binary feature. Such a partitioning is called tiling and each
element of a tiling is called a tile. This is best illustrated with a two-dimensional example, as
depicted in figure 5.3: the input space in this example consists of two continuous variables
x, y ∈ [0, 10] and is separated into a tiling with 16 tiles (marked as the black grid). Through
using this tiling, each point (x, y) can be specified with a binary vector of length 16 with
each vector element denoting the membership of a particular tile. Hence, all but element
of this vector will be 0.

Note that, due the the large step size, the chosen tiling provides a rather coarse ap-
proximation of the input space. A significant improvement of the coding resolution can
be achieved by using several instances of the same tiling, each offset by a random amount
(depicted through the blue and red grid in figure 5.3). Mappings of points from the in-
put space to specific tiles are then weighted according to their memberships of each tiling
instance. The weights for each tile can be obtained by summing over the corresponding
vector elements of all tiling vectors. For example, as shown in figure 5.3, the point p is
member of tile 10 with weight w10 = 2 and of tile 11 with weight w11 = 1 (and obviously
membership to all remaining tiles is weighted with 0). The use of several equal tilings with
random offsets according to this weighting scheme allows for a local generalization while
resulting in a rather small state space. As described in [SB98], random offsets of the tilings
exhibit a significantly better performance than offsetting each tile by the same increment.

This technique can be applied to input spaces of arbitrary dimension and leads to the
representation of each tile as a hyperrectangle. Note that the tilings do not necessarily
need to form uniform grids but instead the tiling resolution can be set independently for

86

5.3 Environment Model for the Trading Domain

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

p

x

y

0 10

10

p=(4.3,4.6)
=(0000000001000000)
=(0000000001000000)
=(0000000000100000)

Figure 5.3: Tile coding example for two continuous variables x, y ∈ [0, 10]. The respec-
tive binary tiling vectors are shown for an exemplary point p, indicating a
membership of tile 10 with weight w10 = 2 and of tile 11 with weight w11 = 1

each dimension so that each dimension of the input space can be approximated with the
required precision.

5.3 Environment Model for the Trading Domain

Before explaining the details of the environment model, it should be noted that the trading
agent has a set of three obvious actions for every time step t at its disposal: it can buy
(at = 1), sell (at = −1) or remain neutral (at = 0). The actions in this model do not
directly compare to actual trading actions: usually a trading agent would have the options
of buying, selling, or doing nothing. The actual states of the agent then depend on its
previous actions: if he has bought a security before and remains inactive subsequently he
is still engaged in a trade. This dependency on previous actions complicates the model, but
can be removed easily without altering the agent’s functionality, while at the same time
leading to a simpler model: instead of denoting actual trading activities, the agent’s action
are modeled so that they represent the desired trading state of the agent. For instance, if
the agent chose a buying action yesterday and wants to keep its securities today, this would
be denoted by a buying action again. If instead the agent wants to sell the securities, this
would be denoted by a neutral action (because a buy followed by a sell results in a neutral
state). Both views lead to an equivalent model of the trading agent, but denoting desired
trading states instead of actual activities simplifies description and implementation of this
model.

The goal of the reinforcement learning agent in this work is the inference of a suitable
trading strategy based on previously obtained forecasts such that it will gain high profits.
The input state space comprises predictions from all forecasting modules described in the
previous chapter for various time scales. The forecasting periods for each module have been
determined through various tests such that they return useful and reliable information in
practice. The resulting components of the input space are listed in table 5.2. Note that
forecasts from the candlestick module only result in probabilities of binary directions. Thus,
the corresponding forecast can be reduced to a single probability value because it contains
the opposite direction’s probability implicitly. Prognoses from the indicator module are
limited to their discrete values without considering the associated probabilities because,
as explained in section 4.3.3, the resulting probabilities tend to be so high for nearly all
forecasts that they do not provide any additional information.

These input values are used to form a suitable state space through tile coding. The

87

5 Inference of Trading Strategies with Reinforcement Learning

forecasting
module

forecasting
periods (days) provided values

trend lines 5, 30 predicted minimum and maximum percentaged
change (continuous value)

indicators 5, 15 predicted direction
(discrete value)

candlestick
patterns 1, 2, 3 probability of upward movement

(continuous value)

Table 5.2: Input space for the RL environment

exact parameter choices for this tile coding will be discussed in the following section.

The reward function for this model is rather obvious: since the agent’s goal is to maximize
its profits through trading, its daily rewards are determined from the daily percentaged
price change C(t) of a security. Whether the agent yields profits or losses obviously depends
also on his trading actions. Hence the reward is defined as:

rt+1 = at · C(t) (5.14)

with C(t) =
closing price(t)− closing price(t− 1)

closing price(t− 1)

This completes the specification of the learning environment: for each time step t the
agent receives a tile encoded state description st, decides on one of the three available
actions at and receives a corresponding reward st+1 along with a new state description
st+1 afterwards. Note that this problem differs somewhat from common reinforcement
learning tasks, because the agent is not able to truly influence the environment. The
environment’s next state will always be the same no matter what action is chosen by the
agent, but the learning problem is not affected by this since the agent is still tasked with
learning the optimal state-action pairs.

5.4 Learning and Results

An evaluation of the reinforcement learning process proved to be more complex than eval-
uating the individual forecasts. First of all, the procedure is highly sensitive to the choice
of learning parameters. The parameters that proved to perform best in practice are listed
in table 5.3. The most important parameters are the ones related to the tile coding: these
parameters determine the size of the environment’s state space and are therefore crucial to
the learning success. The selected parameters result in a rather coarse coding scheme but
tests with varying parameters confirmed the previous considerations about the state space
size: a finer coding allows the agent to yield significantly higher rewards when it is trained
with repeated iterations on the same training set. However, as soon as the agent is tasked
with applying his knowledge to new observations, it performs so poorly that any positive
overall reward can be considered lucky. Obviously this finer encoding of the state space
yields to an overfitting so that the agent is not able to generalize its knowledge in order to
apply it to new situations. Smaller values on the other hand result in such a small state
space that the agent is no longer able to grasp key properties of specific observations and
thus will never learn a profitable strategy. As discussed before, it is important to set the
discount factor γ to a value < 1, because otherwise the agent can determine any action’s
value only after examining all possible subsequent states which would result in a virtually

88

5.4 Learning and Results

parameter value
α 0.4
γ 0.6
λ 0.5
ε 0.15

tiling resolution
line forecasts: 7

indicator forecasts: 3
candlestick forecasts: 3

tilings 5
convergence criterion no improvement within 20 iterations

Table 5.3: Selected parameters for the reinforcement learning task

never-converging learning process. The remaining parameters did not exhibit a significant
influence on the learning procedure, but rather can be used for fine-tuning the process
(e.g., a higher value of ε does not alter the results significantly but will lead to a slower
convergence). To determine whether the learning process has achieved its maximum, the
agent keeps track of the highest previous rewards for a certain learning set. If it is not
able to exceed this reward for 20 iterations (i.e., it was not able to learn any new valuable
information in that period), the learning process is assumed to be converged and the agent
proceeds with the next learning sequence.

In order to evaluate the learned policy’s merits, it is necessary to disable the exploration
(i.e., set ε = 0) while testing with unknown data sets. Otherwise the agent would deliber-
ately choose sub-optimal actions occasionally and therefore the results would be less than
optimal. A comparison of testing periods of varying length have shown that it is expedi-
ent to limit them to a rather short duration. If test periods are too long, there may be
many previously unvisited states contained within and disabling the exploration hinders
the learning of any new information for these states. Test periods with a length of 125 days
(reflecting approximately half a year, since only business days are considered) resulted in
a satisfying performance. After testing a sequence of instances, the same sequence is used
to continue learning. It turned out that the agent is able to learn significantly better when
he is only tasked with learning on small subsets. This is due to the fact that he can quickly
explore various combinations of states if only small sets are considered, while it takes many
learning iterations if the whole set is used for learning. On the other hand, if only small
time slices are considered for learning, it may happen that a single instance of a certain
state in the subset will replace knowledge about the corresponding state-action estimate
learned from many previous instances. This could result in a local overfitting and to avoid
this effect, the complete set of previously learned instances is considered for updating the
learning process every once a while. The complete evaluation proceeds by starting with
some initial training, testing of a subset, using the same subset for learning subsequently
until the convergence criterion is reached, and then proceeding to the next subset. After
each learning sequence of ten subsets, the procedure performs an additional learning task
with the complete set so far. This procedure is schematically depicted in figure 5.4.

Note that the resulting evaluation comprises only a subset of the data described in chap-
ter 4. This is due to the fact that the initial 5000 data sets used for training the forecasting
modules cannot be employed for the reinforcement learning task, because they do not have
inferred forecasts associated. Before the inferred strategies from the reinforcement learning
agent can be evaluated, it is also necessary to provide a training set of certain size because
otherwise the agent would have no means of exploring the state space sufficiently. Again,
an initial training set of 5000 instances proved to be sufficient to allow for a thorough

89

5 Inference of Trading Strategies with Reinforcement Learning

data instances

time

testing
learning

Figure 5.4: Schematic RL evaluation procedure

training of the agent. As a result, the data set used for evaluation is reduced by 10,000
instances compared to the data described in chapter 4. Still, the remaining data covers
the time period from 1965 to 2010 and is therefore large enough to show that the agent
is able to generalize its knowledge. Testing of only short time sequences bears the danger
of producing misleading results because an agent may incidentally perform well in certain
situations without being able to adapt to other scenarios. Various tests with different
approaches throughout the development of this work have shown that even inadequate
procedures may yield profits if tested with distinct short-term periods (i.e., periods of a
few years at most), although they will fail to perform well consistently. This can be best
illustrated by considering recent developments: Since financial markets worldwide started
recovering from the economic crisis in early 2009, nearly all securities experienced magnifi-
cent gains recently. By analyzing only the short time period from early 2009 on, one could
have selected securities for buying virtually at random and still yield major profits. Obvi-
ously, this could lead to impressive gains for many trading strategies, although they might
be incapable of performing well in changing market phases, and therefore an analysis of
such a short time period might lead to a distortion of the results. The resulting evaluation
set presented in this work still comprises roughly 45 years of historical price movements
and is therefore large enough to show a general applicability of the inferred strategy.

The result from applying the inferred trading strategy to the test data of the Dow Jones
Industrial Average Index is depicted in figure 5.5. This figure shows the accumulated
percentaged profits from applying this strategy compared to the percentaged price change
of the underlying security. These underlying price changes denote the profits one could
have obtained by buying the security at the beginning of the test period and then simply
holding on to it (called buy-and-hold strategy). This comparison is commonly used to
evaluate trading strategies: a strategy is only considered useful, if it is able to outperform
the simple buy-and-hold strategy. As it can be seen from the figure, the results from
this work are clearly able to meet this criterion and therefore they may be considered
useful. Special attention should be paid to the recent years of the test period: it can
be seen from the figure that the beginning of the US subprime crisis (marked with the
red dashed line) lead to a significant drop in the underlying values while it produced
tremendous profits with the inferred strategy at the same time. This clearly shows how
the agent was able to learn a correct interpretation of the forecasts and thereby exploit
the heavy fluctuations to gain large profits. To explain the fact that the strategy’s gain
has a significantly larger magnitude than the underlying decrease, one has to keep in

90

5.4 Learning and Results

mind that positive accumulated gains grow exponentially and that figure 5.5 only has a
rather coarse resolution. In fact, the actual movements exhibit many small fluctuations (as
were depicted in various figures before), which were exploited by the trading agent such
that its resulting gain has a larger overall percentaged change than the underlying prices.
Further analysis of the results reveals that profiting from crises is no isolated incident
for the learned strategy. Previous crises (the Black Monday Crash from October 1987,
marked with the brown line, and the New Economy Crisis from the early 2000s, marked
with the turquoise line) also resulted in significant increases of the trading agent’s profits.
Obviously, the learned trading strategy performs especially well in crisis situations. This
can be explained through the fact that such situations comprise short-term drops of the
underlying price movements with a significantly higher magnitude than usual changes. If
the pending direction was predicted correctly, the trading agent is therefore able to score
major profits with few actions.

Figure 5.5: Resulting profits for the Dow Jones Industrial Average Index with the inferred
trading strategy. For comparison, the actual price changes (representing a
buy-and-hold strategy) are also depicted.

91

5 Inference of Trading Strategies with Reinforcement Learning

92

6 Conclusion

6.1 Summary

Goal of this work was an investigation and subsequent implementation of machine learning
approaches to facilitate a technical analysis of financial markets. The results from chapter 4
clearly show that it is in general possible to successfully employ machine learning processes
in order to obtain forecasts of future price movements, although it was discovered that not
all analysis methods are equally well-suited for all purposes. The analysis of trend lines
proved to yield useful forecasts with respect to direction and magnitude of future price
changes and exhibits a satisfactory precision. Prognoses based on an indicator analysis are
able to predict future directions with an impressive success rate but are less informative
compared to the line-based forecasts due to the lack of magnitude information. An analysis
of candlestick patterns proved to yield forecasts with an almost arbitrary scalable success
ratio but it has been shown that obtaining prognoses with the highest reliability does
not necessarily result in maximum gains. The only analysis method that proved to be
unfeasible for a statistical learning process is the theory of point patterns.

The candlestick module performs best with very short-term forecasts, the indicator mod-
ule is able to infer forecasts on a short-term to mid-term range, and, while the trend line
module does not perform well on very short-term forecasts, it is able to extend forecasts far-
ther into the future compared to the indicator module. As a result, the forecasts obtained
from the different modules supplement each other and should be analyzed simultaneously
in order to decide on trading actions. Chapter 5 has shown that such a combination of
forecasts from different analysis modules and for varying time scales can indeed be used
to facilitate learning of a profitable trading strategy.

6.2 Outlook

A highly useful extension to the presented model would be some kind of risk estimation.
From the presented forecasting processes, the candlestick analysis module is the only one
that is informative with respect to its reliability and therefore to the risk associated with
reaching decisions based on its forecast. The trend line module is able to give risk estimates
to a very limited extend as it yields forecasts with respect to both minimum and maximum
expected change in price values. By comparing both forecasts one can obtain a rudimentary
estimation of the associated risk, i.e., if both forecasts exhibit similar values the associated
risk can be considered small while large deviations obviously reflect uncertainty and there-
fore a rather high risk. However, this is far less informative than information about the
certainty associated with each forecast. The indicator module lacks any information on
potential risk because it tends to yield forecasts with associated probabilities that indicate
nearly certainty. An augmentation to the presented modules such that useful information
on all forecasts’ associated risks is provided would provide the reinforcement learning agent
with another dimension of information that possibly might enhance its profits significantly
by avoiding risky trades.

Another improvement might be obtained by employing further technical analysis meth-

93

6 Conclusion

ods. The research presented so far has been limited to a selection of popular methods, but
there are several additional methods available which have not been explored due to the
limited time frame of this work. For instance, one could search the historic data for cyclic
movements. It has been observed that markets are subject to certain cycles and therefore
if one could identify characteristic cycles in the past and, by matching the current situation
with such a known cycle, one could potentially forecast future movements. An example of
a cyclic movement could be the assumed correlation between American financial markets
and the US presidential elections: it has been observed that prices exhibit rather strong in-
creases in the pre-election year while they tend to decline in the post-election year. Due to
the modular structure presented in this work, additional forecasting modules can be easily
added by implementing them separately and include their resulting forecasts into the input
space of the reinforcement learning environment model. Such an approach could possibly
also explain (and eventually resolve) the observation from section 4.3.3 that forecasts from
the indicator module exhibit certain time periods with lower success rates.

All considerations so far were only concerned with analyzing individual securities. A
completely different dimension could be introduced by analyzing the correlations of various
securities. To name a few examples of such an analysis, one could for instance compare the
stocks of similar companies. If these companies are active in the same area of business and
have exhibited similar stock price movements in the past, one could use these similarities
to infer forecasts. If stock prices of these companies diverge at some point there is reason
to assume that they will converge again in the near future and therefore one would predict
the higher-priced stock to decline and the lower-priced stock to rise. This concept has
been employed in practice for several decades and is called statistical arbitrage. Another
example is the analysis of inter-market correlations. For instance, stock markets exhibit a
considerable risk while gold is considered to be a very reliable investment. Hence it can be
observed that an increasing insecurity in stock markets leads to a rise in gold prices. This
may be used as an early indicator as a rising gold price might hint at future declines of stock
markets and vice versa. Enabling a machine of learning such correlations autonomously
obviously requires rather complex and sophisticated models and is therefore a task that
offers plenty of future research opportunities.

94

Bibliography

[Bao08] Depei Bao. A generalized model for financial time series representation and
prediction. Applied Intelligence, 29:1–11, 2008. 10.1007/s10489-007-0063-1.

[BCG03] Christophe Biernacki, Gilles Celeux, and Gérard Govaert. Choosing starting
values for the em algorithm for getting the highest likelihood in multivariate
gaussian mixture models. Computational Statistics & Data Analysis, 41(3-
4):561 – 575, 2003.

[Bil01] Jeff Bilmes. Graphical models and automatic speech recognition. Technical Re-
port UWEETR-2001-0005, University of Washington, Department of Electri-
cal Engineering, 2001. https://www.ee.washington.edu/techsite/papers/
refer/UWEETR-2001-0005.html.

[BS73] Fischer Black and Myron Scholes. The pricing of options and corporate liabil-
ities. Journal of Political Economy, 81(3):637–654, 1973.

[BY08] Depei Bao and Zehong Yang. Intelligent stock trading system by turning
point confirming and probabilistic reasoning. Expert Systems with Applica-
tions, 34:620–627, 2008.

[CGH96] Enrique Castillo, Jose M. Gutierrez, and Ali S. Hadi. Expert Systems and
Probabilistic Network Models. Springer, 1 edition, December 1996.

[Cha95] Tushar S. Chande. The time price oscillator. Technical Analysis of Stocks and
Commodities, 13(9):369–374, 1995.

[CHYL97] Seng Chou, Hsien Hsu, Chau Yang, and Feipei Lai. A stock selection dss
combining ai and technical analysis. Annals of Operations Research, 75:335–
353, 1997.

[Den08] Min Deng. On the Theoretical Foundation of Technical Analysis: Market
Action Discounts Everything. SSRN eLibrary, 2008.

[DP97] Pedro Domingos and Michael Pazzani. On the optimality of the simple bayesian
classifier under zero-one loss, 1997.

[DVR07] José G. Dias, Jeroen K. Vermunt, and Sofia Ramos. Analysis of heterogeneous
financial time series using a mixture gaussian hidden markov model. Preprint
submitted to Elsevier Science, 2007.

[enc09] Encyclopaedia Britannica 2010. Encyclopedia Britannica, 15 edition, Septem-
ber 2009.

[FW94] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for
minimum spanning trees and shortest paths. Journal of Computer and System
Sciences, 48(3):533 – 551, 1994.

[GLL07] Xinyu Guo, Xun Liang, and Nan Li. Automatically recognizing stock patterns
using rpcl neural networks. Proceedings of the 2007 International Conference
on Intelligent Systems and Knowledge Engineering, October 2007.

[HW99] Jeff Harrison and Mike West. Bayesian Forecasting and Dynamic Models.
Springer, Berlin, 2. auflage. edition, April 1999.

95

https://www.ee.washington.edu/techsite/papers/refer/UWEETR-2001-0005.html
https://www.ee.washington.edu/techsite/papers/refer/UWEETR-2001-0005.html

Bibliography

[HY01] David J. Hand and Keming Yu. Idiot’s bayes - not so stupid after all? Inter-
national Statistical Review, 69(3):385–398, 2001.

[JL95] George H. John and Pat Langley. Estimating continuous distributions in
bayesian classifiers. Proceedings of the Eleventh Conference on Uncertainty
in Artifical Intelligence, 1995.

[Lam83] Donald R. Lambert. Commodity channel index: Tool for trading cyclic trends.
Technical Analysis of Stocks and Commodities, 1(5):120–122, 1983.

[Leo06] Kong Cheong Leong. the empirical study of applying technical analysis on dji,
hsi and taiwan stock market. Master’s thesis, National Sun Yat-Sen University,
No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, R.O.C., June 2006.

[Man63] Benoit Mandelbrot. The variation of certain speculative prices. Journal of
Business, 36:394, 1963.

[MK96] Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm and
Extensions. Wiley-Interscience, 1 edition, November 1996.

[Mor06] Gregory L. Morris. Candlestick Charting Explained: Timeless Techniques for
Trading Stocks and Sutures. Mcgraw-Hill Professional, 3rd ed. edition, May
2006.

[Mur99] John Murphy. Technical analysis of the financial markets : a comprehensive
guide to trading methods and applications. New York Institute of Finance, New
York, 1999.

[Mur02] Kevin Murphy. Dynamic Bayesian Networks: Representation, Inference and
Learning. PhD thesis, University of California, Berkeley, 387 Soda Hall, Berke-
ley CA 94720, July 2002.

[Mur07] Kevin Murphy. How to use the bayes net toolbox. http://bnt.googlecode.
com/svn/trunk/docs/usage.html, 2007.

[MW07] Guojun Gan; Chaoqun Ma; and Jianhong Wu. Data Clustering: Theory, Al-
gorithms, and Applications. SIAM, Society for Industrial and Applied Mathe-
matics, May 2007.

[Nis91] Steve Nison. Japanese Candlestick Charting Techniques: A Contemporary
Guide to the Ancient Investment Techniques of the Far East. New York In-
stitute of Finance, March 1991.

[Nis03] Steve Nison. The Candlestick Course. Wiley & Sons, June 2003.

[Pat10] Scott Patterson. The Quants: How a New Breed of Math Whizzes Conquered
Wall Street and Nearly Destroyed It. Crown Business, February 2010.

[Pea88] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[PR02] Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree
algorithm. J. ACM, 49(1):16–34, 2002.

[PWZP00] Chang Shing Perng, Haixun Wang, Sylvia R. Zhang, and D. Stott Parker.
Landmarks: a new model for similarity-based pattern querying in time series
databases. In ICDE, pages 33–42, 2000.

[Ris01] Irina Rish. An empirical study of the naive bayes classifier. In IJCAI-01
workshop on "Empirical Methods in AI", 2001.

[RN02] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2 edition, December 2002.

96

http://bnt.googlecode.com/svn/trunk/docs/usage.html
http://bnt.googlecode.com/svn/trunk/docs/usage.html

Bibliography

[Rud08] Dr. Tamas Rudas. Handbook of Probability: Theory and Applications. Sage
Publications, Inc, 1 edition, February 2008.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. The Mit Press, May 1998.

[Voi06] Michael Voigt. Das große Buch der Markttechnik : Auf der Suche nach der
Qualität im Trading. FinanzBuch-Verlag, München, 2006.

[Wat89] C. Watkins. Learning from Delayed Rewards. PhD thesis, University of Cam-
bridge,England, 1989.

[Wil78] J. Welles Wilder. New Concepts in Technical Trading Systems. Trend Research,
June 1978.

97

Bibliography

98

List of Figures

2.1 Schematics of an uptrend according to the Dow Theory 4
2.2 Exemplary trend lines . 6
2.3 Schematic line patterns . 7
2.4 An example of the Head and Shoulders Pattern 8
2.5 Examples of Double Top and Double Bottom 9
2.6 Examples of various technical indicators . 12
2.7 Further examples of various technical indicators 16
2.8 Depiction of time intervals as candles . 22
2.9 Examples of characteristic candlesticks . 23
2.10 Examples of candlestick patterns . 23

3.1 Bayesian network for the dentist domain . 30
3.2 Bayesian network for the sprinkler domain 30
3.3 Naive Bayes model . 31
3.4 Transformation of a Bayesian network into a junction tree 36
3.5 Message passing in a junction tree . 38
3.6 Dynamic Bayesian network . 41

4.1 Recent local extremes in the Dow Jones Industrial Average Index 44
4.2 Search area for a trend line . 45
4.3 Recent trend lines in the Dow Jones Industrial Average Index 47
4.4 Schematic trend channel . 50
4.5 Bayesian networks for the trend line module 51
4.6 Alternative dynamic Bayesian network for the trend line domain 52
4.7 Comparison of distribution functions . 52
4.8 Evaluation of the line forecasting module . 55
4.9 Identification of higher-order extremes . 56
4.10 Critical Point Model . 58
4.11 Bayesian network for the indicator module 64
4.12 Schematic depiction of a Coupled Hidden Markov Model 66
4.13 Hierarchical Coupled Hidden Markov Model for the indicator domain 67
4.14 Schematic depiction of a Segment Model . 67
4.15 k-mean clusters of candlestick shapes . 73
4.16 Schematic depiction of a hierarchical cluster structure 75
4.17 Bayesian classifier for candlestick pattern matching 76

5.1 Cyclic proceedings in reinforcement learning 80
5.2 Schematic development of an eligibility trace 83
5.3 Tile coding example . 87
5.4 Schematic RL evaluation procedure . 90
5.5 Resulting profits from the inferred trading strategy 91

99

List of Tables

2.1 Key features of the technical indicators . 21

3.1 Example of a full joint distribution . 26

4.1 Parameters for the line search . 48
4.2 Point pattern occurrences in selected securities 60
4.3 Indicator preparation for the use with a Bayesian network 63
4.4 Evaluation of the technical indicator forecasting module 68
4.5 Evaluation of the candlestick analysis module 77

5.1 Parameters for reinforcement learning . 85
5.2 Input space for the RL environment . 88
5.3 Selected parameters for the reinforcement learning task 89

101

	Introduction
	Technical Analysis of Financial Markets
	Dow Theory
	Price Patterns
	Line Patterns
	Point Patterns

	Technical Indicators
	Moving Averages
	Cross Average
	Moving Average Convergence/Divergence (MACD)
	Bollinger Band
	Momentum
	Relative Strength Index (RSI)
	Average True Range (ATR)
	Aroon Indicator
	Commodity Channel Index (CCI)
	Stochastics Oscillator (%K%D)
	Trading Volume
	On-Balance Volume (OBV)
	Money Flow Index (MFI)
	Ease of Movement (EOM)
	Summary

	Candlestick Analysis
	About Candlestick Charts
	Characteristic Candlestick Shapes and their Meaning
	Candlestick Patterns

	Preliminaries on Bayesian Networks
	A Brief Summary on Probability Theory
	Probability Axioms
	Prior Probabilities
	Conditional Probabilities
	Independence
	Bayes' Rule

	Bayesian Networks
	Semantics of Bayesian Networks
	Inference in Bayesian Networks

	Dynamic Bayesian Networks
	Domain Requirements for Dynamic Networks
	Temporal Models
	Inference Tasks in Dynamic Bayesian Networks

	Design of Forecasting Modules with Probabilistic Reasoning
	Trend Lines: Forecasting Module 1
	Identification of Trend Lines
	Domain Parameters
	Prediction Network
	Learning and Results

	Point Patterns
	Scalable Extreme Point Models
	Identification of Point Patterns

	Technical Indicators: Forecasting Module 2
	Domain Parameters
	Prediction Network
	Learning and Results

	Candlesticks: Forecasting Module 3
	Domain Parameters
	Pattern Recognition
	Prediction Network
	Learning and Results

	Inference of Trading Strategies with Reinforcement Learning
	Introduction to Reinforcement Learning
	Formalization of the Learning Task
	Learning Procedures
	State Space Exploration
	Summary

	State Space Encoding
	Environment Model for the Trading Domain
	Learning and Results

	Conclusion
	Summary
	Outlook

	Bibliography
	List of Figures
	List of Tables

