
Query engine for massive distributed
ontologies using MapReduce

Submitted by

Juan Esteban Maya Alvarez
maya.juan@googlemail.com

Information and Media Technologies
Matriculation Number

20729239

Supervised by

Prof. Dr. Ralf Moeller
Sebastian Wandelt

Hamburg, Germany

July 6, 2010

Acknowledgements

I would like to thank all the persons who helped me during the last past 6 months of
work. To all the people who gave me their support and patience. Particularly I want
to thank Sebastian Wandelt, who helped me through all the development of this thesis.
Prof. Dr. Ralf Moeller for all the passionate lectures that put the seed of Description
Logics on my education and for giving me the chance to work on this topic and Prof.
Dr. Weberpals for its interest and accepting to be second examiner of this thesis. I
would also like to thank The Public Group LLC and its IT manager, Luis Londoño, who
allowed me to use their infrastructure to run the benchmarks required for this project.
To my family for their valuable support even when they are thousands of kilometers
away from me, to my friends for having the patience to deal with my days of bad mood
and last, but not least, all my gratitude goes to my girlfriend Gabriela, who gave me
her smile and moral support when I most needed it.

1

Declaration

I declare that:
this work has been prepared by myself,
all literal or content based quotations are clearly pointed out,
and no other sources or aids than the declared ones have been used.

Hamburg, July 4, 2010
Juan Esteban Maya A

2

Contents

1 Introduction 1
1.1 Outline . 2

2 Hadoop and Map Reduce 3
2.1 HADOOP . 3

2.1.1 Commercial use and Contributors 5
2.1.2 HDFS . 7
2.1.3 HDFS Core Concepts . 7

2.2 MapReduce . 9
2.2.1 A MapReduce Example . 12

2.3 HBase . 13
2.3.1 HBase Concepts . 14

3 Semantic Web and DL Concepts 16
3.1 Semantic Web . 16

3.1.1 The Resource Description Framework (RDF) 18
3.1.2 RDFS . 20

3.2 Web Ontology Language (OWL) . 21
3.2.1 OWL Languages and Profiles . 22

3.3 Reasoning Basics . 23
3.3.1 Open World Assumption . 23
3.3.2 No Unique Name Assumption . 24

3.4 Description Logics . 24
3.4.1 ALC Family of Description Logics

. 25
3.5 Reasoning in Description Logics . 28

3.5.1 Tableaux Algorithm . 30
3.5.2 Tableaux Algorithm for ALC . 30

3

3.6 Query Efficiency . 33
3.6.1 Retrieval Optimization using the Pseudo model technique 34

3.6.1.1 Flat pseudo models for ABox Reasoning 34
3.6.2 Soundness and Completeness . 35
3.6.3 Individual Realization using Pseudo Models 36

4 System Architecture 38
4.1 Overview . 39

4.1.1 HBase Schema . 40
4.2 Knowledge Base Importer Module . 43

4.2.1 Import Mapper . 44
4.2.2 Import Reducer . 45
4.2.3 Pseudo Model Builder . 46

4.3 Reasoning Module . 47
4.3.1 Tableau Model Creation . 48

4.3.1.1 Lazy Unfolding . 50
4.3.2 Candidate Individuals Selection 51
4.3.3 Instance Checking Algorithm . 52

4.4 Query Engine Module . 54
4.4.1 Query Parser . 54
4.4.2 Query Executor . 54

5 Evaluation 55
5.1 Lehigh University Benchmark for OWL 55
5.2 Performance Evaluation . 57

5.2.1 System Setup . 57
5.2.2 System load time . 57
5.2.3 Query Answering Time . 59

6 Conclusions and future work 62
6.1 Conclusions . 62
6.2 Future Work . 63

4

List of Figures

2.1 HDFS Data flow . 8
2.2 Map Reduce Flow . 10
2.3 Parts of a MapReduce job . 11
2.4 Word Counter . 12
2.5 Map Reduce Example . 13
2.6 HBase Cluster . 14

3.1 The Semantic Web Stack . 18
3.2 A graph representation of a RDF statement 19
3.3 Knowledge base example . 25
3.4 ALC family hierarchy . 28
3.5 De Morgan’s rules . 30

4.1 Overal System Architecture . 39
4.2 Query Execution Process . 40
4.3 HBase Schema . 41
4.4 Import Mapper . 44
4.5 Pseudo model builder class diagram . 46
4.6 Pseudo Model Creation Sequence Diagram 47
4.7 Query Answering Process . 48
4.8 Tableau Model Creation Pseudo-Code 49
4.9 Candidate Individual Selection Sequence Diagram 52
4.10 Tableau model for concept expression ∃S.C � ∀S.¬D � ∃R.C 53
4.11 Sample ABox . 53
4.12 Tableau model completion for Indiviudal a 53

5.1 LUMB Ontology - Asserted Model . 56
5.2 System load time . 58
5.3 System load penalty index . 59

5

5.4 Query 1 - Asserted Model . 60
5.5 Query 2 - Asserted Model . 60
5.6 Query answering time . 60

6

List of Tables

2.1 Hadoop Filesystems . 7

3.1 Comparison of Relational Databases and Knowledge Bases 17
3.2 RDFS Classes . 20
3.3 OWL Namespaces . 21
3.4 ALC Tableau completion rules . 31

4.1 ALCRender syntax . 43
4.2 ALCOntolologyMapperWalkerVisitor Axioms 45
4.3 Lazy unfolding expansion rules . 50

5.1 LUMB test data . 57
5.2 System load Penalty Index . 58

7

Abstract

Due to the massification of the Semantic Web and the use of Description Logics al-
gorithms to perform reasoning services in its data, there is a growing need to create
architectures and algorithms that support practical TBox and ABox Reasoning. Dur-
ing the past years the DL community has focused its research on creating algorithms
that support reasoning services on very expressive DL Languages, however, many times,
when applied to real world applications, the algorithms don’t scale so well to the needs
of the Semantic Web.

The objective of this project is to propose an architecture that exploits the progress
in the reasoning of very expressive languages but at the same time allow applications
to scale to the proportions required by the Semantic Web. The proposed architecture
takes the reasoning services provided by existent DL Reasoners and brings them to a
distributed environment. The project focuses on describing the architecture and tech-
niques used to support query answering in very large ABoxes without losing expressivity
power.

Chapter 1

Introduction

The Semantic Web was created thinking about the next generation of the Web. Its
application benefits from the combinations of expressive description logics (DL) and
Databases; description logics are useful to structure and represent knowledge in terms
of concepts and roles, but the reasoning procedures are currently not scalable for answer-
ing queries based on large scale data sets. Databases, on the other hand, are efficient
to manage data, however, when thinking about massive amounts of data, even the most
robust database systems fall short in terms of storage needs. This is not so difficult to
imagine when we think about the space requirements and infrastructure of the search
engine giants like Google or Yahoo or in general, companies whose business model is
based on collecting and analyzing data face this problem, some examples are Facebook
or Twitter.

Given the increasing need for a practical storage and infrastructure to process vast
amounts of data, Google has come with a group of technologies that allow not only to
store the data efficiently but also to process the data in a scalable way. In 2004, with [4]
Google introduced for the first time the MapReduce programming model to process and
generate large data sets. Because traditional databases were falling short to store all the
data required by Google applications, BigTable was introduced in 2006 [5]. BigTable is
a distributed storage system for managing structured data that is designed to scale to a
very large size across thousands of commodity servers.

The features of description logics (DL) and databases have led researches to find
techniques that could exploit the semantic representation and powerful reasoning ser-
vices of DL as well as the efficient management and accessibility of databases. In 1993,
the approach of loading data into description logic reasoners was investigated in [1]. [2]

1

extends the traditional DL ABox with a DBox so that users can make queries without
being concerned about whether a database or Knowledge Base has to be accessed. [3] is
focused on domains with massive data, where a large amount of related individuals exist.

It’s safe to imagine that the next evolutionary step in the Semantic Web is to come
with mechanisms that will allow to have expressive language reasoning in distributed
environments containing vast amount of information. A few approaches have been pro-
posed. In [6] the authors present an algorithm to reason over RDFS in top of DHTs1

and in [8] MapReduce is used to execute RDFS reasoning with success. Yahoo has been
also actively trying to incorporate the Semantic Web in its product portfolio2. Yahoo’s
interest produced a public paper [7] that explores MapReduce and related technologies
to execute SPARQL queries in large distributed RDF triple stores.

In this thesis I will address the architectural problems needed to answer DL queries
over large amount of data using a distributed environment that runs in commodity
hardware, specifically using the MapReduce programming model [4] offered by the open
source framework Hadoop. At the same time, techniques to improve the overall per-
formance of the query engine will be used that make use of the progress done in the
integration of DL and distributed persistence mechanisms.

1.1 Outline

The chapters in this thesis are organized as follows. Chapter 2 introduces Hadoop,
MapReduce and the technologies around them. Chapter 3 introduces the Semantic
Web, basic concepts of Description Logics, its algorithms and mechanisms to improve
the performance of query answering. Chapter 4 proposes an architecture to perform DL
Queries in a distributed environments. Chapter 5 presents the results obtained with the
performance analysis reports. Finally, chapter 6, presents the conclusions and possible
extensions to follow this work.

1Distributed Hash Tables
2SearchMonkey: http://developer.yahoo.com/searchmonkey/

2

http://developer.yahoo.com/searchmonkey/

Chapter 2

Hadoop and Map Reduce

This chapter introduces the frameworks and technologies around MapReduce required to
build scalable applications that support vast amounts of data.

2.1 HADOOP

Hadoop is a project from the Apache Software Foundation written in Java and created by
Doug Cutting1 to support data intensive distributed applications. Hadoop enables ap-
plications to work with thousands of nodes and petabytes of data. The inspiration comes
from Google’s MapReduce[4] and Google File System[12] papers. Hadoop’s biggest con-
tributor has been the search giant Yahoo, where Hadoop is extensively used across the
business platform.

Hadoop is an umbrella of sub-projects around distributed computing and although is
best known for being a runtime environment for MapReduce programs and its distributed
filesystem HDFS, the other sub-projects provide complementary services and higher level
abstractions. Some of the current sub-projects are:

• Core: The Hadoop core consist of a set of components and interfaces which
provides access to the distributed filesystems and general I/O (Serialization, Java
RPC, Persistent data structures). The core components also provide “Rack Aware-
ness”, an optimization which takes into account the geographic clustering of servers,
minimizing network traffic between servers in different geographic clusters. The
distributed file system is designed to scale to petabytes of storage running on top
of the filesystem of the underlying operating systems.

1Creator of Apache Lucene, the widely used text search library.

3

• MapReduce: Hadoop MapReduce is a programming model and software frame-
work for writing applications that rapidly process vast amounts of data in parallel
on large clusters of computer nodes. Section 2.2 introduces MapReduce with more
detail.

• HDFS: Hadoop Distributed File System (HDFS) is the primary storage system
used by Hadoop applications. HDFS is, as its name implies, a distributed file
system that provides high throughput access to application data creating multi-
ple replicas of data blocks and distributing them on compute nodes throughout a
cluster to enable reliable and rapid computations.

• HBase: HBase is a distributed, column-oriented database. HBase uses HDFS
for its underlying storage. It supports batch style computations using MapRe-
duce and point queries (random reads). HBase is used in Hadoop when random,
realtime read/write access is needed. Its goal is the hosting of very large tables
running on top of clusters of commodity hardware.

• Pig: Pig is a platform for analyzing large data sets. It consists of a high level
language for expressing data analysis programs, coupled with infrastructure for
evaluating these programs. The main characteristic of Pig programs is that their
structure can be substantially parallelized enabling them to handle very large data
sets. At the present time, Pig’s infrastructure layer consists of a compiler that pro-
duces sequences of MapReduce programs and the textual language called Pig Latin.

• ZooKeeper: ZooKeeper is a high performance coordination service for dis-
tributed applications. ZooKeeper centralizes the services for maintaining the con-
figuration information, naming, providing distributed synchronization, and provid-
ing group services. All of these kinds of services are used in some form or another
by distributed applications. Each time they are implemented there is a lot of work
that goes into fixing the bugs and race conditions that are inevitable.

• Hive: Hive is a data warehouse infrastructure built on top of Hadoop. Hive pro-
vides tools to enable easy data summarization, ad-hoc querying and analysis of
large datasets stored in Hadoop files. It provides a mechanism to put structure on

4

this data and it also provides a simple query language called Hive QL, based on
SQL, enabling users familiar with SQL to query this data. Hive QL also allows
traditional MapReduce programmers to be able to plug in their custom mappers
and reducers to do more sophisticated analysis which may not be supported by
the built in capabilities of the language.

• Chukwa: Chukwa is a data collection system for monitoring large distributed
systems. Chukwa includes a flexible and powerful toolkit for displaying, monitor-
ing and analyzing results to make the best use of the collected data.

Hadoop can in theory be used for any sort of work that is batch oriented, very data
intensive, and able to work on pieces of the data in parallel. Commercial applications
of Hadoop include:

• Log and/or clickstream analysis of various kinds.

• Marketing analysis.

• Machine learning and/or sophisticated data mining2.

• Image processing.

• Processing of XML messages.

• Web crawling and/or text processing.

• General archiving, including of relational/tabular data, e.g. for compliance.

2.1.1 Commercial use and Contributors

Some successful corporations are using Hadoop as backbone of their business. This is
the case of Yahoo, one of the bigger supporters of the Project. On February 19, 2008,
Yahoo launched what they claimed was the world’s largest Hadoop production appli-
cation. The Yahoo Search Webmap is a Hadoop application that runs on more than
10,000 core Linux cluster and produces data that is now used in every Yahoo Web search
query. There are multiple Hadoop clusters at Yahoo, each occupying a single datacenter
(or fraction of it). The work that the clusters perform is known to include the index
calculations for the Yahoo search engine. On June 10, 2009, Yahoo! released its own
distribution of Hadoop3.

2The apache Mahout project, http://mahout.apache.org/ implements several machine learning
algorithms in top of Hadoop.

3http://developer.yahoo.com/hadoop/

5

http://mahout.apache.org/
http://developer.yahoo.com/hadoop/

In 2007, IBM and Google announced an initiative that uses Hadoop to support
university courses in distributed computer programming4. In 2008 this collaboration,
the Academic Cloud Computing Initiative (ACCI), partnered with the National Science
Foundation to provide grant funding to academic researchers interested in exploring large
data applications. This resulted in the creation of the Cluster Exploratory (CLuE) pro-
gram.

Also Amazon, by allowing to run Hadoop on its Amazon Elastic Compute Cloud
(EC2) and Amazon Simple Storage Service (S3), has been a key player on increasing
the popularity of Hadoop in the Commercial area. As an example The New York Times
used 100 Amazon EC2 instances and a Hadoop application to process 4TB of raw image
TIFF data (stored in S3) into 11 million finished PDFs in the space of 24 hours at a
computation cost of about $240 (not including bandwidth)5.

The official Apache Hadoop distribution supports, out of the box, the Amazon S3
filesystem. Additionally, the Hadoop team generates EC2 machine images after every
release. From a pure performance perspective, Hadoop on S3/EC2 is inefficient, as the
S3 filesystem is remote and delays returning from every write operation until the data
is guaranteed to not be lost. This removes the locality advantages of Hadoop, which
schedules work near data to save on network load. On April 2, 2009 Amazon announced
the beta release of a new service called Amazon Elastic MapReduce which they describe
as "a web service that enables businesses, researchers, data analysts, and developers to
easily and cost-effectively process vast amounts of data. It utilizes a hosted Hadoop
framework running on the web scale infrastructure of Amazon Elastic Compute Cloud
(Amazon EC2) and Amazon Simple Storage Service (Amazon S3)."

Other prominent users of Apache Hadoop include: AOL, Facebook, Freebase, Fox
Interactive Media, ImageShack, Last.fm, Linkedln, Meebo, Ning and Twitter.

The following sections contain a brief description of HDFS and HBase to familiarize
the reader with the Hadoop sub-projects that were directly used during this thesis.

4http://www.google.com/intl/en/press/pressrel/20071008_ibm_univ.html
5http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/

6

http://www.google.com/intl/en/press/pressrel/20071008_ibm_univ.html
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/

2.1.2 HDFS

When a dataset grows beyond the storage capacity of a single physical machine, it
becomes necessary to partition it across a number of separate machines. Filesystems
that manage the storage across a network of machines are called distributed filesystems.
Since they are network based there are many complications inherited from the network
infrastructure. Problems like latency and node failure must be correctly handled without
any data loss. HDFS is a filesystem designed for storing very large files with streaming
data access patterns running on clusters of commodity hardware.

Filesystem Description
Local A filesystem for locally connected disks.
HDFS Hadoop’s distributed filesystem.
HFTP Provides read only access to HDFS over

HTTP.
HSFTP Provides read only access to HDFS over

HTTPS.
KFS (Cloud Store) Distributed filesystem similary to HDFS

(formerly known as Kosmos filesystem)
FTP A filesystem backed by an FTP Server.

S3 (native) A filesystem backed by Amazons S3.
Has file size limit of 5GB.

S3 (block based) A filesystem backed by Amazons S3,
which store files in blocks. (Similar to

HDFS)

Table 2.1: Hadoop Filesystems

Hadoop has an abstract notion of filesystem, of which HDFS is just an implementa-
tion. Table 2.1 presents the implementations available on the official Hadoop distribu-
tion.

2.1.3 HDFS Core Concepts

An HDFS cluster has two types of node operating in a master-worker pattern: a na-
menode (the master) and a number of datanodes (workers). The namenode manages
the filesystem namespace. It maintains the filesystem tree and the metadata for all the
files and directories in the tree. This information is stored persistently on the local disk
using two types of files: the namespace image and the edit log. It is also the namenode
responsibility to know the datanodes on which all the blocks for a given file are located,
however, it does not store block locations persistently, since this information is recon-
structed from datanodes when the system starts.

7

A client accesses the filesystem on behalf of the user by communicating with the
namenode and datanodes. The client presents a POSIX6-like filesystem interface, so the
user code does not need to know about the details of the namenode and datanodes to
work correctly.

Datanodes perform the dirty work on the filesystem. They store and retrieve blocks
when they are told to (by clients or the namenode) and they report back to the namen-
ode periodically with lists of blocks that they are storing.

Without the namenode, the filesystem cannot be used. In fact, if the machine run-
ning the namenode goes down, all the files on the filesystem would be lost since there
would be no way of knowing how to reconstruct the files from the blocks on the datan-
odes. For this reason, it is important to make the namenode resilient to failure.

Figure 2.1 helps to get an idea of how the data flows between a client interacting
with HDFS.

Figure 2.1: HDFS Data flow
6Portable Operating System Interface [for Unix]

8

Blocks

A disk has a block size which is the minimum amount of data that it can read or write.
Filesystems for a single disk use this concept by dealing with data in blocks which are an
integral multiple of the disk block size. Filesystem blocks are typically a few kilobytes
in size, while disk blocks are normally 512 bytes. This is generally transparent for the
filesystem user who is simply reading or writing a file. HDFS has also the concept of
blocks, but it is a much larger size: 64 MB by default. Like in a filesystem for a single
disk, files in HDFS are broken into block-sized chunks, which are stored as independent
units. Unlike a filesystem for a single disk, a file in HDFS that is smaller than a single
block does not occupy a full block’s worth of underlying storage. Having larger blocks
compared to normal disc blocks minimize the cost of seeks in HDFS. By making a block
large enough, the time to transfer the data from the disk can be made to be significantly
larger than the time to seek to the start of the block. Thus the time to transfer a large
file made of multiple blocks operates at the disk transfer rate.

Having a block abstraction for a distributed filesystem brings several benefits. First,
a file can be larger than any single disk in the network. There is nothing that requires
the blocks from a file to be stored on the same disk, so they can take advantage of any of
the disks in the cluster. Second, making the unit of abstraction a block rather than a file
simplifies the storage subsystem. The storage subsystem deals with blocks, simplifying
storage management and eliminating metadata concerns. Third, blocks fit well with
replication for providing fault tolerance and availability. To insure against corrupted
blocks and disk and machine failure, each block is replicated to a small number of
physically separate machines (typically three). If a block becomes unavailable, a copy
can be read from another location in a way that is transparent to the client. When a
block that is no longer available, due to corruption or machine failure, can be replicated
from their alternative locations to other live machines to bring the replication factor
back to the normal level.

2.2 MapReduce

MapReduce is a programming model originally designed and implemented at Google
[4] as a method of solving problems that require large volumes of data using large
clusters of inexpensive machines. The programming model is based on two distinct
phases. A Map phase executes a function of the form Map : (k1, v1) → list(k2, v2) that
obtains the input and performs an initial transformation over the data. The Reduce

9

phase aggregates the output of the mappers allowing all associated records to be pro-
cessed together in the same node. The function of the Reduce phase follows the form
Reduce : (k2, list(v2)) → list(v3). The transformation functions of the map and reduce
phase can be executed in parallel, keeping in mind that the execution in each node is
isolated from executions in other nodes. Figure 2.2 introduces the model of a MapRe-
duce execution.

Figure 2.2: Map Reduce Flow

When a MapReduce job is submitted to Hadoop, the framework decomposes the job
into a set of map tasks, shuffles, a sort and a set of reduce tasks. Hadoop is responsible
for managing the distribution execution of the tasks, collect the output and report the
status to the user. A typical MapReduce job in hadoop consist of the parts show in
Figure 2.3.

10

Figure 2.3: Parts of a MapReduce job

The advantage of the programming model provided by MapReduce is that it allows
the distributed execution of the map and reduce operations. When each mapping oper-
ation is independent of the other, all maps can be performed in parallel, limited only by
the data source and the number of CPUs available. Similarly, the reducers can perform
the reduction phase in parallel. This kind of parallel execution also allows the execution
to recover from a partial failure of servers or storage during the operation: if one mapper
or reducer fails, the work can be rescheduled.

To achieve reliability during the execution of a MapReduce job each node is expected
to report back periodically with completed work and status updates. If a node doesn’t
report back for a period longer than a configurable interval, the master node marks the
node as dead and distributes the node’s work to other available nodes. Reduce operations
operate much the same way. Because of their inferior properties with regard to parallel
operations, the master node attempts to schedule reduce operations on the same node or
in the same rack as the node holding the data being operated. This property is desirable

11

as it reduces the bandwidth consumption across the backbone network of the datacenter.

2.2.1 A MapReduce Example

In essence MapReduce is just a way to take a big task and split it into discrete task that
can be done in parallel. A simple problem that is often used to explain how MapReduce
works in practice consists in counting the occurrences of single words within a text. This
kind of problem can be easily solved by launching a single MapReduce job as follows.

Initially, the input text is converted into a sequence of tuples that have as key and
value all the words of the text. For example, the sentence “Hello world from MapRe-
duce.” is converted into 4 tuples, each of them containing one word of the sentence both
as key and as value. The mapper algorithm is executed for every tuple in the input of
the form <word,word>, the algorithm returns an intermediate tuple of the form <word,
1>. The key of this tuple is the word itself while 1 is an irrelevant value. After the map
function has processed all the input, the intermediate tuples will be grouped together
according to their key.

map(key , va lue) :
//key : word
// value : word

output . c o l l e c t (key ,1)

reduce (key , i t e r a t o r va lue s) :
count = 0
f o r (va lue in va lue s)

count = count + 1
output . c o l l e c t (key , count)

Figure 2.4: Word Counter

The reduce function counts the number of tuples in the group. Because the number
of tuples reflects the number of times the mappers have encountered that word in the
text, the reducers output the result in a tuple of the form <word,count>. The tuples
encode the number of times that a word appears in the input text. An overall picture
of this particular job execution is given in Figure 2.5.

12

Figure 2.5: Map Reduce Example

2.3 HBase

HBase, modeled after Google’s Bigtable[5], is a distributed column-oriented database
written in Java and built on top of HDFS. HBase is used on Hadoop when real time
read/write random access is required in very large datasets. Although there are many
products for database storage and retrieval in the market, most solutions (specially re-
lational databases) are not built to handle very large datasets and distributed environ-
ments. Many vendors offer replication and partitioning solutions to grow the database
beyond the limits of a single node but these add-ons are generally an afterthought and
are complicated to install and maintain. These add-ons also add several constraints to
the feature set of RDBMs. Joins, complex queries, triggers, constraints become more
expensive to run or do not work at all. To avoid those problems HBase was built from
the ground to scale linearly by just adding nodes to an existing cluster.

Some of the HBase features include compression, in-memory operation and filters
per column basis as outlined in the original BigTable paper[5]. Tables in HBase can
be used as the input and output of MapReduce jobs that run in Hadoop or could be
accessed through the Java API, REST or Thrift7 gateway APIs.

7Thrift is a software framework from the Apache foundation for cross-language services development.

13

Figure 2.6: HBase Cluster

The scaling capabilities of HBase comes at a cost: HBase is not a relational database
and doesn’t support SQL, however, given the proper problem, HBase is able to do what
a RDBMS cannot: host vast amounts of data on sparsely populated tables on clusters
made from commodity hardware.

2.3.1 HBase Concepts

In HBase, the data is store into labeled tables made of rows and columns. Each table
cell, an intersection of a row and a column, is versioned. By default, the version field is
a timestamp auto assigned by HBase when the cell is inserted. The content of all the
cells is an uninterpreted array of bytes. The row key of a Table, its primary key, is also
a byte array, this means that any kind of object can serve as a row key, from strings to
serialized data structures. Typically all the access to the table is done via the table pri-
mary key, although there are third party facilities in HBase to support secondary indexes.

The row columns in an HBase table are grouped together into column families. All
columns family members have a common prefix, for example, the columns person:name
and person:lastname are both members of the person column family. The column fam-
ilies are specified up front with the table schema definition, but new columns can be
added to the column family on demand. Physically, the column family members are
stored together on the filesystem.

Tables are automatically partitioned horizontally by HBase into Regions. Each re-
gion compromises a subset of table’s rows. A region is defined by its first row, inclusive,
and the last row, exclusive, plus a randomly generated region identifier. Initially a table

14

contains a single region but as the size of the region grows and after it crosses a config-
urable size threshold, it splits at a row boundary into two new regions of approximately
equal size. Until the first split happens, all loading will be against the single server host-
ing the original region. As the table grows, the number of its regions grows. Regions
are the units that get distributed over an HBase cluster. In this way, a table that is too
big can be carried by a cluster of servers where each node hosts a subset of the table.
Row Updates in HBase are atomic, no matter how many row columns constitute the
row level transaction. This keeps the locking model simple for the user.

15

Chapter 3

Semantic Web and DL Concepts

This chapter focuses on presenting the main concepts related to the Semantic Web and
Description Logics.

3.1 Semantic Web

The Semantic Web is an effort to bring back structure to the information available on
the Web by describing and linking data to establish context or semantics that adhere
to defined grammar and language constructs. The structures are semantic annotations
that conform a specification of the intended meaning. Therefore, the Semantic Web
contains implicit knowledge often incomplete since it assumes open world semantics.

The Semantic Web addresses semantics through standardized connections to related
information. This includes labeling data, unique and addressable, allowing that data
to be connected to a larger context, or the web. The web offers potential pathways
to its definition, relationships to a conceptual hierarchy, relationships to associated in-
formation and relationships to specific instances. The flexibility of a web form enables
connections to all the necessary information, including logic rules. The pathways and
terms form a domain vocabulary or ontology.

The flexibility and many types of Semantic Web statements allow the definition and
organization of information to form rich expressions, simplify integration and sharing,
enable inference of information and allow meaningful information extractions while the
information remains distributed, dynamic and diverse.

A set of statements that contribute to the Semantic Web exists primarily in two

16

forms; knowledge bases and files. Knowledge bases offer dynamic, extensible storage
similar to relational databases. Files typically contain static statements. Table 3.1
compares relational databases and knowledge bases.

Feature Relational Database Knowledgebase
Structure Schema Ontology statements
Data Rows Instance statements
Administration Language DDL Ontology statements
Query Language SQL SPARQL
Relationships Foreign Keys Multidimensional
Logic External to database/triggers Formal logic statements
Uniqueness Key for table URI

Table 3.1: Comparison of Relational Databases and Knowledge Bases

Relational databases depend on a schema for structure. A knowledge base depends
on ontology statements to establish structure. Relational databases are limited to one
kind of relationship, the foreign key. Instead, the Semantic Web offers multidimensional
relationships such as inheritance, part of, associated with, and many other types, in-
cluding logical relationships and constraints. An important note is that the language
used to form structure and the instances themselves is the same language in knowledge
bases but quite different in relational databases. Relational databases offer a different
language, Data Description Language (DDL), to establish the creation of the schema.
In relational databases, adding a table or column is very different from adding a row.
Knowledge bases really have no parallel because the regular statements define the struc-
ture or schema of the knowledge base as well as individuals or instances.

One last area to consider is the Semantic Web’s relationship with other technologies
and approaches. The Semantic Web complements rather than replaces other informa-
tion applications. It extends the existing WWW rather than competes with it, offering
powerful semantics that can enrich existing data sources, such as relational databases,
web pages, and web services or create new semantic data sources. All types of appli-
cations can benefit from the Semantic Web, including standalone desktop applications,
mission critical enterprise applications, and large scale web applications/services. The
Semantic Web causes an evolution in the current Web to offer richer, more meaningful
interactions with information.

The Semantic Web offers several languages. Rather than have one language to resolve
all the information and programming needs, the Semantic Web offers a range from basic

17

to complex. This provides Semantic Web applications with choices to balance their needs
for performance, integration and expressiveness. As shown on Figure 3.1 there are some
standards on top of XML that allow to express knowledge in the Semantic Web. On
the Semantic Web, information is modeled primary with a set of three complementary
languages: The Resource Description Framework (RDF), RDF Schema and the Web
Ontology Language, OWL. RDF Defines the underlying data model and provides a
foundation for the more sophisticated features of the higher levels of the Semantic Web.

Figure 3.1: The Semantic Web Stack

3.1.1 The Resource Description Framework (RDF)

RDF consist of a family of specifications from the W3C1 originally designed as a meta-
data model used now as a general method for conceptual description or modeling of
information that is implemented in web resources.

In the Semantic Web information is represented as a set of assertions called state-
ments that are made up of three parts: Subject, Predicate and Object. Because of these
three elements, statements are typically referred as Triples. The subject of a statement is
the thing that the statements describes. The predicate describes a relationship between
the subject and the object. Every triple can be seen as a small sentence. An example
could be the triple “John plays Guitar” where John is the subject, eats is the predicate
and Guitar the object. This kind of RDF assertions form a directed graph, with subjects

1World Wide Web Consortium. http://www.w3.org/

18

http://www.w3.org/

and objects of each statements as nodes and predicates as edges.

Figure 3.2: A graph representation of a RDF statement

The nodes in a RDF graph are the subjects and objects of the statements that make
up the graph. There are two kinds of nodes: Literals and Resources. Literals represent
the concrete data values like numbers or strings and can’t be the subject of a statement,
only the objects. Resources, in contrast, represent everything else; they can be either
subjects or objects. Resources can represent anything that can be named. Resource
names take the form of URIs (Universal Resource Identifiers). Predicates, also called
properties, represent the connections between resources; predicates are themselves re-
sources. Like subjects, predicates are represented by URIs.

An RDF graph can be Serialized using multiple formats making the information rep-
resented in them easy to exchange by providing a way to convert between the abstract
model and a concrete format. There are several, equally expressive serialization formats.
Some of the most popular are RDF/XML2, N3 3, N-Triples4 and Turtle5. This means
that depending of the application needs an RDF statement can be serialized in different
ways.

2http://www.w3.org/TR/rdf-syntax-grammar/
3http://www.w3.org/DesignIssues/Notation3
4http://www.w3.org/TR/rdf-testcases/#ntriples
5http://www.w3c.org/TeamSubmission/turtle

19

3.1.2 RDFS

The Resource Description Framework (RDF) provides a way to model information but
does not provide a way to specify what that information means. In other words RDF
cannot express semantics. To add meaning to RDF a vocabulary of predefined terms is
needed to describe the information semantics. RDF Schema (RDFS) extends RDF pro-
viding a language with which the users can develop shared vocabularies, that have a well
understood meaning and it is used in a consistent manner to describe other resources.
RDF Schema provides basic elements for the description of ontologies, otherwise called
Resource Description Framework (RDF) vocabularies, intended to structure RDF re-
sources.

RDFS vocabularies describe the classes of resources and properties being used in a
RDF model allowing to arrange classes and properties in generalization/specialization
hierarchies, define domain and range expectations for properties, assert class member-
ships and specify and interpret datatypes. RDFS is one of the fundamental building
blocks of ontologies in the Semantic Web and is the first step to incorporate semantics
into RDF.

The list of classes defined by RDFS is shown in Table 3.2. Classes are also resources,
so they are identified by URIs and can be described using properties. The members of
a class are instances of classes, which is stated using the rdf:type property.

rdfs:Resource rdfs:subClassOf rdf:type
rdfs:Resource rdfs:Resource rdfs:Class

rdfs:Class rdfs:Resource rdfs:Class
rdfs:Literal rdfs:Resource rdfs:Class

rdfs:Datatype rdfs:Class rdfs:Class
rdf:XMLLiteral rdfs:Literal rdfs:Datatype
rdf:Property rdfs:Resource rdfs:Class
rdf:Statement rdfs:Resource rdfs:Class

rdf:List rdfs:Resource rdfs:Class
rdfs:Container rdfs:Resource rdfs:Class

rdf:Bag rdfs:Container rdfs:Class
rdf:Seq rdfs:Container rdfs:Class
rdf:Alt rdfs:Container rdfs:Class

rdfs:ContainerMembershipProperty rdf:Property rdfs:Class

Table 3.2: RDFS Classes

20

In RDFS a class may be an instance of a class. All resources are instances of the
class rdfs:Resource. All classes are instances of rdfs:Class and subclasses of rdfs:Resource.
All properties are instances of rdf:Property. Properties in RDFS are relations between
subjects and objects in RDF triples, i.e., predicates. All properties may have defined
domain and range. The Domain of a property states that any resource that has given
property is an instance of the class. Range of a property states that the values of a
property are instances of the class. If multiple classes are defined as the domain and
range then the intersection of these classes is used. An example stating that the domain
of hasSon property is Person and that the domain of the same property is Man follows:

@pref ix : <http ://www. example . org / sample . r d f s#>.
@pref ix r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>.

: hasSon rd f s : domain : Person ;
r d f s : range :Man.

3.2 Web Ontology Language (OWL)

With RDF Schema it is possible to define only relations between the hierarchy of the
classes and the properties or define the domain and range of these properties. The
community needed a language that could be used for more complex ontologies and
therefore work was done to create a richer language that would be later released as the
OWL language. The Web Ontology Language (OWL) extends the RDFS vocabulary
with additional resources that can be used to build more expressive ontologies for the
web. OWL adds restrictions regarding the structure and contents of RDF documents in
order to make processing and reasoning more computationally decidable. OWL uses the
RDF and RDFS, XML Schema datatypes, and OWL namespaces. The OWL vocabulary
itself is defined in the namespace http://www.w3.org/2002/07/owl and it is commonly
referred to by the prefix owl. OWL 2 extends the original OWL vocabulary and reuses
the same namespace. The full set of namespaces used in OWL and their associated
prefixes are listed in Table 3.3.

Namespace Prefix
http://www.w3.org/1999/02/22-rdf-syntax-ns rdf
http://www.w3.org/2000/01/rdf-schema rdfs
http://www.w3.org/2001/XMLSchema xsd
http://www.w3.org/2002/07/owl owl

Table 3.3: OWL Namespaces

21

Resources on the web are distributed, as a result, the resources descriptions con-
tained in the Semantic Web are also distributed. OWL supports this kind of distributed
knowledge base because is built on RDF, which allows you to declare and describe re-
sources locally or refer to them remotely. OWL also provides a mechanism to import
and reuse ontologies in a distributed environment.

3.2.1 OWL Languages and Profiles

Both the original OWL specification and OWL 2 provide profiles, or sublanguages of
the language, that give up some expressiveness in exchange for computational efficiency.
These profiles introduce a combination of modified or restricted syntax and nonstructural
restrictions on the use of OWL. In the original OWL specification, there were three
sublanguages:

• OWL Lite: The intention OWL Lite was to provide applications and tool devel-
opers with a development target or starting point for supporting primarily classi-
fication hierarchy and simple constraints. Unfortunately, OWL Lite was regarded
mostly as a failure because it eliminated too many of the useful features without
introducing enough of a computational benefit to make the reduced features at-
tractive.

• OWL Full: OWL Full It is a pure extension of RDF. As a result, every RDF
document is a valid OWL Full document, and every OWL Full document is a valid
RDF document. The important point to make here is that OWL Full maintains
the ability to say anything about anything. With the flexibility comes a tradeoff
in computational efficiency making OWL Full not decidable6.

• OWL DL: OWL DL provides many of the capabilities of description logics. It
contains the entire vocabulary of OWL Full but introduces the restriction that
the semantics of OWL DL cannot be applied to an RDF document that treats
a URI as both an individual and a class or property. This and some additional
restrictions make OWL DL decidable.

With OWL 2 the main purpose of an OWL profile, as with the original OWL Languages,
is to produce subsets of OWL that trade some expressivity for better computational

6Decidability specifies that there exists an algorithm that provides complete reasoning. It does not
say anything about the performance of such an algorithm or whether it will complete in an acceptable
or realistic amount of time

22

characteristics for tools and reasoners. The profiles were developed with specific user
communities and implementation technologies in mind. The three standardized profiles
are:

• OWL EL: The OWL EL profile is designed to provide polynomial time compu-
tation for determining the consistency of an ontology and mapping individuals to
classes. The relationship between ontology size and the time required to perform
the operation can be represented by the formula f(x) = xa. The purpose of this
profile is to provide the expressive features of OWL that many existing large scale
ontologies (from various industries) require while also eliminating unnecessary fea-
tures. OWL EL is a syntactic restriction on OWL DL.

• OWL QL: The OWL QL profile is designed to enable the satisfiability of conjunc-
tive queries in log-space with respect to the number of assertions in the knowledge
base that is being queried. The relationship between knowledge base size and
the time required to perform the operation can be represented by the function
f(a) = log(a). As with OWL EL, this profile provides polynomial time compu-
tation for determining the consistency of an ontology and mapping individuals to
classes.

• OWL RL: The OWL RL profile is designed to be as expressive as possible while
allowing implementation using rules and a rule processing system. Part of the
design of OWL RL is that it only requires the rule processing system to support
conjunctive rules. The restrictions of the profile eliminate the need for a reasoner
to infer the existence of individuals that are not already known in the system,
keeping reasoning deterministic.

3.3 Reasoning Basics

3.3.1 Open World Assumption

The open world assumption states that the truth of a statement is independent of
whether it is known. In other words, not knowing whether a statement is explicitly
true doesn’t imply that the statement is false. The closed world assumption states that
any statement that is not known to be true can be assumed to be false. Under the open
world assumption, new information must always be additive. It can be contradictory,
but it cannot remove previously asserted information. This assumption has a significant

23

impact on how information is modeled an interpreted.

Most systems operate with a closed world assumption. They assume that the in-
formation is complete and known. For many applications this is a safe and necessary
assumption to make. However, a closed world assumption can limit the expressivity of
a system in some cases because it is more difficult to differentiate between incomplete
information and information that is known to be false.

The open world assumption impacts the kind of inference that can be performed
over the information contained in the model. In DL it means that reasoning can be
performed only over information that is known. The absence of a piece of information
cannot be used to infer the presence of other information.

3.3.2 No Unique Name Assumption

The distributed nature of the Semantic Web makes unrealistic to assume that everyone
is using the same URI to identify a specific resource. Often a resource is described by
multiple users in multiple locations and each of those users is using his or her own URI
to represent the resource.

The no unique name assumption states that unless explicitly stated, it can’t be
assumed that resources identified by different URIs are different. This assumption differs
for the one used on traditional systems. In most database systems, all information is
known and assigning and unique identifier, such a primary key, is possible. Like the
open world assumption, the no unique names assumption impact inferences capabilities
related to the uniqueness of resources. Redundant and ambiguous data is a common
issue in information management systems, the unique names assumption makes these
issues easier to handle because resources can be made the same without destroying any
information or dropping and updating database records.

3.4 Description Logics

One of the reasons behind the fact that the Semantic Web community adopted Descrip-
tion Logics (DL) as a core technology is that DL has been purpose of multiple studies
that try to understand how constructors interact and combine to affect reasoning.

The Language expressions using on a DL describe classes (concepts) of individuals

24

that share some properties. Properties can also be specified by means of relations (roles)
between individuals. The language is compositional, i.e. the concept descriptions are
built by combining different subexpressions using constructors. The semantics of the
language is given in a set theoretical way over a domain which is a set of elements. A
concept expression corresponds to a subset of the domain, while a role expression cor-
responds to a binary relation over the domain. As their shape suggests, some of these
constructors have a strong relationship with boolean operators and logical quantifiers.

A DL knowledge base consists of a terminology, TBox, and an assertional part,
ABox. The TBox contains the definitions of the terms (concept definitions), while the
ABox contains a set of membership and role assertions. Membership assertions relate an
individual to a concept, stating that the individual involved is an instance of the concept.
Role assertions state that two individuals are linked by a given role. For example:

Terminology Humans are Animals.
Women are Humans and not Male

Assertions gabi is-a Human and not Male and
has a Friend who is Male

TBox Human � Animal

Women � Human � ¬Male

ABox Human � ¬Male �
∃hasFriend. Male (gabi)

Figure 3.3: Knowledge base example

Reasoning with DL knowledge bases is a deduction process which extracts not only
the facts explicitly asserted in a knowledge base but also their logical consequences.
When only the terminology is involved in a deduction the reasoning is said to be Ter-
minological, otherwise it is said to be Hybrid.

Description Logic languages can be categorized in many different logics, distinguished
by the constructors they provides. The work done is this project is focused on ALC,
considered a basis of many DL systems.

3.4.1 ALC Family of Description Logics

The language ALC consist of an alphabet of distinct concept names, role names and
individual names, together with a set of constructors for building concept and role ex-
pressions. Formally, a description logic knowledge base is a pair K =< T, A > where T

25

is a TBox and A is an ABox. The TBox contains a finite set of axiom assertions of the
form C � D | C

.= D , where C and D are concept expressions. Concept expressions
are of the form: A |� | ¬C |C �U |C �D | ∃R.C | ∀R.C, where A is an atomic concept,
R is a role name, � (top or full domain) is the most general concept and ⊥ (bottom
or empty set) is the least general concept. The ABox contains a finite set of assertions
about individuals of the form C(a) (Concept membership assertions) and R(a, b) (Role
Membership Assertions), where a, b are individual names.

The Semantics of description logic are defined in terms of an interpretation I =
(�I , �I), consisting of a nonempty domain �I and an interpretation function �I . The
interpretation function maps concept names into subsets of the domain (AI ⊆ �I), role
names into subsets of the Cartesian product of the domain (R ⊆ �I ∗ �I), and indi-
vidual names into elements of the domain. The only restriction on the interpretations
is the unique name assumptions (UNA). Given a concept name A (or a role name R),
the set denoted by AI(or RI) is called the interpretation or extension of A (or R) with
respect to I.

The interpretation is extended to cover concepts built from negation (¬) , conjunction(�),
disjunction(�), existential quantification(∃R.C) and universal quantification(∀R.C) as
follows:

(¬C)I = �I�CI

(C �D)I = CI ∩DI

(C �D)I = CI ∪DI

(∃R.C)I = {x ∈ �I |∃y. < x, y >∈ RI �
y ∈ CI}

(∀R.C)I = {x ∈ �I |∀y. < x, y > ∈ RI → y ∈ CI}

An interpretation I satisfies (entails) an inclusion axiom C ⊆ D (Written I |= C ⊆
D) if, and it satisfies an equality C

.= D if CI = DI . It satisfies a TBox T if it satisfies
each assertion in T. The interpretation I satisfies a concept membership assertion C(a)
if aI ∈ CI and satisfies a role membership assertion R(a,b) if (aI , bI) ∈ RI . I satisfies
an ABox A (I � A) if it satisfies each assertion in A. if I satisfies an axiom (or a set of
axioms), then it is a model of the axiom (or set of axioms). Two axioms are equivalent

26

if they have the same models. Given a knowledge base K =< T, A >, the knowledge
base entails an assertion α(written (K � α)) iff for every interpretation I, if I |= A and
I |= T then I � α.

The DL ABox can be viewed as a semi-structured database, while the TBox contains
a set of constraints for the data in the ABox. The TBox can be compared to data model
in databases (Entity-Relationship Model in databases) but the semantic of description
logics are defined in terms of interpretation differentiating them with databases. In
addition, the domain of interpretation can be chosen arbitrary and it can be infinite.
This, together with the open world assumption, are features that differentiate descrip-
tion logics from traditional databases. Another particular feature of description logic
is the reasoning capabilities that are associated with it. Reasoning allow to exploit the
description of the model to draw conclusions about a problem.

The research community has extensively study the decidability and complexity of
ALC and its sublanguages, designing sound and complete subsumption testing algo-
rithms, some extensions of ALC include:

• ALC, ALCR,ALCNR: Add number restriction concept expressions (N) and/or
role conjunction (R) to ALC.

• ALCF : Add attributes (also called features), attribute composition and attribute
value map concept expressions to ALC.

• ALCFN,ALCFNR: Add number restriction expressions and role conjunction to
ALCF.

• ALCN(o): Adds role composition in number restriction expressions to ALC.

• ALC+: Adds union, composition and transitive closure role expressions to ALC.

• ALCR+: Adds transitively closed primitive roles to ALC (axioms of the form
RN ∈ R+).

• ALCL : Adds a restricted form of predictive role introductions axioms to ALCR+.

• TSL: Adds union, composition, identity, transitive reflexive closure and inverse
role expressions to ALC.

• CIQ: Adds qualified number restriction expressions (inverse roles are the only
form of role expression allowed in qualified number restrictions) to TSL.

27

It is important to notice that extending the syntax of the DL language does not neces-
sary increase its expressiveness. Figure 3.4 show some of the members of the ALC family.

Figure 3.4: ALC family hierarchy

3.5 Reasoning in Description Logics

A DL knowledge base support two kinds of reasoning tasks: TBox reasoning and ABox
Reasoning. In TBox reasoning the basic reasoning services consist of:

• Knowledge Base Consistency: A TBox T is consistent iff it is satisfiable, i.e.
there is at least a non empty model for T. An interpretation I is a model for T if
it satisfies every assertion in T.

• Satisfiability: A concept C is satisfiable with respect to T if there exist a model
I of T such that CI is nonempty. I is also a model of C.

• Subsumption: A concept D subsumes a concept C with respect to T (C ⊆T

D or T |= C
.= D) if CI = DI for every model I of T.

• Equivalence: Two concepts C and D are equivalent with respect to T (C .=T

D or T |= C
.= D) if CI = DI for every model I of T.

• Disjointness: Two concept C and D are disjoint with a respect to T if for every
model I of T, CI ∩DI = θ.

28

Concept satisfiability is the key inference for TBox reasoning. Subsumption, equivalence
and disjointness can be reduced to concept (un)satisfiability test, which can be achieved
though applying the Tableau Algorithm explained on Section 3.5.1

• Subsumption: C is subsumed by D (C ⊆ D) iff C � ¬D is unsatisfiable with
respect to T.

• Equivalence: C and D are equivalent (C .= D) iff both C � ¬D and D � ¬C are
unsatisfiable with respect to T.

• Disjointness: C and D are disjoint iff C �D is unsatisfiable with respect to T.

When reasoning in the ABox it has to be taken into consideration that there are only two
kinds of assertions: concept membership assertion of the form C(a) and role membership
assertion of the form R(a,b). Therefore, the ABox alone can’t be seen as a knowledge
base; the ABox must be attached with its TBox. Consequently ABox reasoning will
always be done with respect to its TBox. In Description Logics the basic reasoning
services for ABox are:

• Instantiation Check: The problem consist to determine whether an assertion
is entailed by ABox A or not (A |= C(a)). An assertion is entailed if every
interpretation that satisfies A also satisfies C(a).

• Realization: Given an individual a and a set of concepts, find the most specific
concept C from the set such that A |= C(a)

• Retrieval: Given an ABox A and concept C, find all individuals a such that
A |= C(a)

• ABox Consistency: An ABox A is consistent iff it is consistent with respect to
the TBox T. TBox reasoning must be used for ALC expanding the ABox with
unfolded TBox concepts. An unfolded concept C’ is obtained by replacing the
descriptions of the original concept with their descriptions in T. Due to the fact
that C is satisfiable with respect to T iff C’ is satisfiable; the original concept
and the unfolded concept are equivalent, C

.=T C �. Thus, the expansion of A with
respect to T can be obtained by replacing each concept assertion C(a) in A with
the assertion C’(a). In every model of T, a concept C and its expansion C’ are
interpreted in the same way. Therefore, A’ is consistent with respect to T iff A’ is
consistent. A’ is consistent iff it is satisfiable (There is at least a nonempty model
for A’)

29

Realization and retrieval can be reduced to an instantiation test. They can be done
through a series of instantiation tests. Additionally, the instantiation test can be re-
duced to the consistency problem for ABox since A |= C(a) iff A∪ {¬C(a)} is inconsis-
tent. Concept satisfiability can also be reduced to an ABox consistency test since C is
satisfiable iff {C(a)} is consistent, where a is an arbitrary individual.

3.5.1 Tableaux Algorithm

The main idea around the Tableaux algorithm is to prove the satisfiability of Concept
expression D by finding a model I = (�I , �I) in which DI �= φ; a tableau is a graph
which represents such model with nodes corresponding to individual and edges corre-
sponding to relationships between the individuals. Typically, the algorithm starts with
a single individual that satisfies D and tries to construct a complete model by inferring
the existence of additional individuals or of additional constraints on the individuals.
The inference mechanism consists of applying a set of expansion rules that correspond to
the logical constructs of the language; the algorithm terminates either when the model
is complete (no further inferences are possible) or when an obvious contradiction appears.

To simplify the algorithm, the concept expression D, is assumed to be an unfolded
concept expression in negation normal form (NNF). A concept is in NNF when nega-
tion is applied only to concept names and not to compound terms. Arbitrary concept
expression can be transformed into NNF using a the DeMorgan’s laws from Figure 3.5.

Initial Concept Equivalent Concept
¬(A �B) ¬A � ¬B

¬(A �B) ¬A � ¬B

¬¬A A

¬∀R.A ∃R.¬A

¬∃R.A ∀R.¬A

Figure 3.5: De Morgan’s rules

3.5.2 Tableaux Algorithm for ALC

The tableaux algorithm uses a tree to represent the model being constructed. Each
node x in the tree represents an individual and is labeled with a set of expression which
it must satisfy: C ∈ L(x) ⇒ x ∈ CI . Each edge < x, y > in the tree represents a
pair of individuals in the interpretation of a role and is labeled with the role name:

30

R = L(< x, y > ⇒ < x, y >∈ RI).

To determine the satisfiability of a concept expression D, a tree T is initialized to
contain a single node xo, with L(x0) = {D}, the tree is expanded by continuously apply-
ing the rules from table 3.4. T is fully expanded when none of the rules can be applied.
T contains an obvious contradiction when, for some node x and some concept C, either
⊥ ∈ L(x) or {C,¬C} ⊆ L(x).

Condtion Actions
� Rule 1. C1 � C2 ∈ L(x) L(x) → L(x) ∪ {C1, C2}

2. {C1, C2} � L(x)
� Rule 1. (C1 � C2) ∈ L(x) a. save T

2. {C1, C2} ∩ L(x) = Ø b. Try (x) → L(x) ∪ {C1} if, clash
restore T and try:
(x) → L(x) ∪ {C2}

∃ Rule 1. ∃R.C ∈ L(x) create node y and edge <x,y> with:
2. There is no y s.t
L(< x, y >) = R and C ∈ L(y)

L(y) → L(y) ∪ {C} and
L(< x, y >) = R

∀ Rule 1. ∀R.C ∈ L(x) L(y) → L(y) ∪ {C}
There is some y s.t.
L(< x, y >) = R and C /∈ L(y)

Table 3.4: ALC Tableau completion rules

A fully expanded class free tree T can be converted into a model to probe the
satisfiability of D :

�I = {x | x is a node in T}
C = {x ∈ �I | C ∈ L(x)} for all concept names C in D
RI = {< x, y > | < x, y > is an edge in T and L(< x, y >) = R}

The algorithm is guaranteed to terminate because:

• The �,�,∃ rules can only be applied once to any given concept expression C in
L(x).

• The ∀-rule can be applied many times to a given ∀R.C expression in L(x) but only
once to any given edge < x, y >.

• Applying a rule to concept expression D extends the labeling with a concept ex-
pression which is always smaller than D.

31

The �-rule is non-deterministic and operates by performing a depth first backtracking
search of the possible expansions resulting from the disjunction in D, stoping when a
fully expanded tree is found or every when every possible expansion is shown to lead to
a clash.

Example: Demonstrating Subsumption using Tableaux Algorithm

Given the TBox:
B

.= P � ∀RA

D
.= P � ∀R.(A � C)

The tableaux algorithm can be used to show that B � D by demonstrating that B�¬D

is not satisfiable:

1. Unfold and normalize B � ¬D :

P � ∀RA � (¬P � ∃R.(¬A � ¬C))

2. Initialize T to contain a single node x.

L(x) = {P � ∀RA � (¬P � ∃R.(¬A � ¬C))}

3. Apply the �-rule:

L(x) → L(x) ∪ {P,∀RA, (¬P � ∃R.(¬A � ¬C))}

4. Apply the U -rule to ¬P � ∃R.(¬A � ¬C):

(a) Save T and try: L(x) → L(x) ∪ {¬P}
L(x) contains a clash: {P,¬P} ⊆ L(x)

(b) Restore T and try: L(x) → L(x) ∪ {∃R.(¬A � ¬C)}

5. Apply the ∃-rule to ∃R.(¬A � ¬C) ∈ L(x):

create a new node y and a new edge < x, y >

L(y) = {¬A � ¬C}

L(< x, y >) = R

6. Apply the ∀-rule to ∀R.A ∈ L(x) and L(< x, y >) = R:

L(y) → L(y) ∪ {A}

32

7. Apply the �-rule to ¬A � ¬C ∈ L(y):

L(y) → L(y) ∪ {¬A,¬C}

L(y) contains a clash: {A,¬A} ⊆ L(y).

Because all the possible applications of the �-rule (step 4) have been shown to lead to a
contradiction, it can be concluded that B �¬D is unsatisfiable, with respect to T, thus
we can say that B � D.

3.6 Query Efficiency

There are two standard type of queries allowed in Description Logic: boolean queries
and non boolean queries, they can respectively be seen as the instance checking and
retrieval ABox reasoning services. A boolean query Qb refers to a formula of the form
Qb ← QExp, where QExp is an assertion about an individual. For example the query:
Qb ← John : (Student � ∃takesCourse.Course) will return a boolean True or False.
Qb will return True if and only if every interpretation that satisfies the knowledge base
K also satisfies QExp and return False otherwise.

A non boolean query Qnb refers to a formula of the form Qnb ← QExp where QExp
is a concept expression. For example Qnb ← Student � ∃takesCourse.Course. In this
case, the query will return one of the members of the set {⊥, M}, where ⊥ refers to the
empty set and M represent a set of models that satisfies QExp with respect to the knowl-
edge base K. A non boolean query is trivially transformed into a set of boolean queries.
Answering a boolean query consist in resolving an entailment problem. For example,
answering Qb ← John : (Student � ∃takesCourse.Course) can be resolved by check-
ing K |= John : (Student � ∃takesCourse.Course). Thus, boolean query or instance
checking can be reduce to knowledge base satisfiability: K |= C(a) iff K ∪ {¬C(a)} is
unsatisfiable.

As explained before, many DL reasoners can deal with very expressive languages,
however, when the reasoning has to be performed on large ABoxes, scaling problem ap-
pear. The main reasons for this problem is that the reasoners must compute the tableau
algorithm, mainly using main memory and the fact that some of the Tableau algorithms
require a lot of CPU power to run.

33

3.6.1 Retrieval Optimization using the Pseudo model technique

In order to avoid the need to run the completion of a Tableau model for every can-
didate individual in the ABox, the first optimization that comes to mind is to detect
the obvious instances of a concept C. [10] introduces such a method. The advantage of
this technique is that reduces the number satisfiability tests executed during the query
answering process. The pseudo model technique introduces a very effective mergeable
test which reuses information computed from previous satisfiability tests.

Each subsumption test (C ⊆ D) can be transformed into a satisfiability test unsat(C �
¬D). If C �¬D is satisfied then C � D. In order to check if the conjunction C �¬D is
satisfiable or not, a mergeable test between C’s pseudo model and ¬D’s pseudo model
can be applied. If there is not interaction between the pseudo models of C and ¬D,
then C � ¬D is satisfied. Therefore, C � D.

The pseudo model technique is sound but it is not complete. This means that if the
pseudo models of C and ¬D cannot be merged, the completion of the Tableau model
must be complete to test the satisfiability of C �¬D. However, using the mergeable test
can effectively reduce the number of individual tests, reducing the number oft times the
Tableau algorithm needs to run.

3.6.1.1 Flat pseudo models for ABox Reasoning

To realize an individual a, given the concepts D1...Dn, it is required to perform a set
of ABox consistency tests for ADi=A ∪ {¬Di(a)}. The main purpose of the flat pseudo
model technique is to provide an efficient sound mergeable test for an individual a and
sets of concept terms ¬Di.

Pseudo model for an individual a

Assuming that the ABox A is consistent and there exists a non-empty set of completions
C. let A� ∈ C. The pseudo model M for the individual a in A is defined as the tuple
< MA, M¬A, M∃, M∀ > w.r.t A’ and A using the following definitions:

MA = {A | a : A � A
�}

M¬A = {A | a : ¬A � A
�}

M∃ = {R | a : ∃R.C � A
�}

M∀ = {R | a : ∀R.C � A
�}

34

Pseudo model for a concept D

Similarly the pseudo model for a concept D can be defined as follow. Given the set
LA(a) defined as the set of concept terms from all concept assertions for a in a com-
pleted ABox A’. Let D be a concept and A the ABox A = D(a), the pseudo model M
for D consists of the sets:

MA
D = {D | D � LA(a)}

M¬A
D = {D | ¬D � LA(a)}

MA
D = {R | ∃R.C � LA(a)}

MA
D = {R | ∀R.C � LA(a)}

The mergeable test for the flat pseudo models M1 and M2 consist in checking
whether there are interactions between the models by checking for atomic concepts:
((MA1

D ∩ M
A2
¬D �= φ) ∨ (MA2

D ∩ MA1
¬D �= φ)) and for roles successors: ((MA1

∃R ∩ M
A2
∀R �=

φ) ∨ (MA2
∃R ∩MA1

∀R �= φ)).

The pseudo model can be used before the TBox subsumption or the ABox satisfia-
bility test for an individual and a concept. For example, to test whether D is the type
of individual a, it is sufficient to test whether a’s pseudo model is mergeable with ¬D’s
pseudo model, if they are mergeable then D is not the type of individual a.

3.6.2 Soundness and Completeness

A procedure is sound when there are no wrong inferences drawn from the knowledge
base using the procedure. A sound procedure may fail to find solutions in some cases,
even though they exist. A procedure is complete if its execution can obtain all the
correct inferences from the knowledge base. A complete procedure may find solutions
when there are actually no solutions. In other words, if the procedure is sound, and
the answer found is affirmative, the answer can be trusted. On the other hand, if the
procedure is complete, and the answer is negative, then the answer can be trusted.

There are many sound and incomplete algorithms which are considered as good ap-
proximation to resolve a problem because they can simplify the procedure to find a
solution reducing the computational complexity. The pseudo model technique is one
of these algorithms. Therefore, when the mergeable test is applied to resolve the sub-
sumption of C1 � C2, being C1 and C2 complex concept expressions and the following

35

conditions:

M
C1
D ∩M

¬C2
¬D = /O

M
¬C2
D ∩M

C1
¬D = /O

M
C1
∃R ∩M

¬C2
∀R = /O

M
¬C2
∃R ∩M

C1
∀R = /O

If all the conditions are kept true, meaning there is no interaction between the
pseudo models, then the models can be merged which means the conjunction of the
concept C1 � ¬C2 is satisfiable what implies that C1 � C2. If one of the conditions is
false, which means there is an interaction between the pseudo model of C1 and C2. In
this case, the Tableau algorithm must be run to test the satisfiability of the conjunction.
In other words, if there is no interaction between the pseudo models, there is no need to
execute the completion of the Tableau Model reducing the computational complexity of
the query answering process.

3.6.3 Individual Realization using Pseudo Models

Let a be an individual in a consistent ABox A w.r.t. a TBox T, ¬C be a satisfiable
concept, Ma and M¬C the pseudo models for the individual a and the concept ¬C re-
spectively. If the mergeable test returns true, meaning there is not interaction between
the models, the ABox A ∪ {¬C(a)} is consistent, so a is not an instance of C.

Individuals in an ABox belong only to a few concepts, therefore, the proof of contra-
diction will not derive a clash, which means in most of the cases, a is not an instance of
C. As for the mergeable test, if a is not an instance C, there is not interaction between
the pseudo models. Since the mergeable test is a sound but incomplete, the affirmative
result can be trusted. There is no need to execute the completion of the Tableau model
for the majority of the individuals in the ABox.

As an example, suppose the following knowledge base and query:

TBox: C ≡ ∃R.Y

ABox: R(a, b), Y (b)

Query: C(a) = ?

36

The pseudo model for a and ¬C corresponds to:

MA
a = φ MA

¬C = φ

Ma = M¬A
a = φ M¬C = M¬A

¬C = {C}
M∃

a = {R} M∃
¬C = φ

M∀
a = φ M∀

¬C = {R}

There is an interaction between MA and M¬C , the two pseudo models are unmerge-
able. However, if the algorithm is applied recursively, the mergeable test for Mb and My

can be performed.

MA
b = {X} MA

¬Y = φ

Ma = M¬A
b = φ M¬C = M¬A

¬Y = {Y }
M∃

b = φ M∃
¬Y = φ

M∀
b = φ M∀

¬Y = φ

There is a no interaction between the pseudo models Mb and My, therefore they are
mergeable which can lead to the conclusion that a is not an instance of C.

37

Chapter 4

System Architecture

This chapter presents the architecture and design used during the prototype
implementation of a MapReduce based DL query engine.

Design an architecture that scales to the requirements of the Semantic Web is a
challenging thing to do. Just thinking about a “Supercomputer” that could store and
process all the information on the web is far beyond reality. There is not one single ma-
chine that could handle even a small fraction of then information that exists in the web.
However, during the last years, Cloud computing has brought hope to applications that
need to scale beyond single machine architectures reducing the hardware requirements
of complex algorithms executions.

The proposed architecture exploits the facilities that MapReduce and Hadoop pro-
vide to distribute the execution of repetitive tasks over large datasets. Specifically,
MapReduce is used to distributedly execute the knowledge base import process, create
a pseudo model cache for all the individuals in the ABox, extract the ABox candidate
individuals for a given concept expression using the pseudo model technique and, finally,
MapReduce is used to process the completion of the Tableau algorithm that runs over all
the candidate individuals from the ABox. Figure 4.1 introduces the overall architecture
of the system. Notice that all the components run inside a Hadoop cluster, not only
providing access to HBase and HDFS but also allowing the execution of MapReduce
jobs in the cluster. In the following sections each module is explained with more detail.

38

Figure 4.1: Overal System Architecture

4.1 Overview

The purpose of the section is to introduce the overall architecture of the system before
explaining the details of how each module works, presenting an overview of the query
answering process.

Before being able to answer queries the system needs to import the knowledge base
that will be used. The initial import process loads, both TBox and ABox data, from a
list of files in a specified path in the HDFS filesystem, indexing and encoding the infor-
mation in a distributed database. Once the whole knowledge base has been imported an
optimization process is executed that creates the Pseudo Models for all the individuals
in the ABox. After the execution of the import process is complete the system is ready
to answer DL queries from the user.

The prototype implementation supports the execution of Instance Retrieval queries.
Instance Retrieval queries answer the question of which individuals, mentioned in the
knowledge base, are instances of a concept expression C. As explained in section 3.5,
Instance Retrieval queries are resolved by applying the Instance Checking algorithm to

39

all1 the individuals in the ABox. Because of the inherited repetitive nature of the In-
stance Retrieval algorithm a MapReduce job is used to distribute its execution.

When a query is submitted to the system a Tableau model is created for the concept
expression representing the query. A MapReduce job uses the query expression pseudo
model and the cached individual pseudo models to identify which individuals must be
checked using the instance checking algorithm. Once the candidate individuals are
identified, a MapReduce Job performs the completion of the Tableau model for the
concept expression representing the user query for all the candidate individuals in the
ABox. Hadoop facilitates the efficient distribution of the individuals through the cluster.
Figure 4.2 presents the Sequence Diagram of the query execution process.

Figure 4.2: Query Execution Process

4.1.1 HBase Schema

HBase is used as persistence mechanism of the knowledge base inside the Hadoop cluster.
The schema, presented on Figure 4.3, was created having on mind that HBase is not a
traditional RDBMS system, because of this reason, Join operations add a lot of overhead
to the system, therefore the schema tables don’t follow the normalization rules2 common
in traditional relational database schemas.

1As explained later some techniques are used to discard individuals to check.
2http://publib.boulder.ibm.com/infocenter/idshelp/v10/topic/com.ibm.ddi.doc/ddi56.htm

40

Figure 4.3: HBase Schema

• DICTIONARY: The DICTIONARY table contains the encoded values of all the
resources mentioned in the knowledge base. Encoding the data is necessary due to
the large size of data sets in the Semantic Web, applications that want to process
data efficiently must implement an encoding process that reduces the total size of
the data manipulated and the memory footprint of the reasoner algorithms. For
this implementation, the id that represents a resource is the key of the dictionary
table.

• TBOX : The TBOX table contains the list of all the equivalence or subclass
axioms mentioned in the knowledge base. The data is saved in the table in a de-
normalized way because on the contrary, due to the HBase nature, the number of
joins to perform would make the system unusable, an effect of this design decision
is that every time an expression is loaded the system has to perform a parse opera-
tion that converts a serialized String axiom into a mapo.common.concept.Concept
expression using mapo.common.parser.impl.ALCParser. The table contains ex-
pressions of the type C ≡ D and C � D using as key of the table left hand side
of the axiom and the axiom type. For example, the axiom C ≡ D � ∃R.D is
persisted in HBase as { C + ’e’, D .AND (.EXISTS R. (D)) } and the axiom

41

C � D � ∃R.D as { C + ’s’, D .AND (.EXISTS R. (D)) }.

• ABOX_CONCEPT_ASSERTION and ABOX_ROLE_ASSERTION.
The ABOX_CONCEPT_ASSERTION table is used to persist ABox assertions
of the form C(a), using the individual a as key. The Multimap capabilities of HBase
are used to save more than a concept assertion for a given individual. The reason
the individual is used as key is because it facilitates the random access to obtain
the asserted concepts to a given individual. The ABOX_ROLE_ASSERTION
table contains role assertions of the type R(a, b), using as key R + a . This key
allows to easily load the objects b, that are related to an individual a given the
role R.

• INDIVIDUAL: The INDIVIDUAL table contains the list of all the individual
mentioned in the knowledge base ABox. The table allows to easily iterate over
all the individual, mentioned in the ABox, during the execution of the reasoning
services. The table is completely traversed during the extraction of the individual
pseudo models and the execution of the instance checking algorithm.

• ABOX_PSEUDO_MODEL: The ABOX_PSEUDO_MODEL table contains
a cache with the pseudo model associated of all the individuals mentioned in the
ABox. The table is populated by the import module, the first time the system
starts and it is used during the execution of DL queries to reduce the number of
individuals to verify using the Tableau Algorithm. The natural key of the table is
the individual hash code.

The access to all the tables is implemented in the Persistence layer using the DAO pat-
tern3 that allows the persistence mechanism to be changed easily without rewriting other
layers of the system. A custom OWLObjectRenderer, ALCRenderer, is used to serialize
the OWLOntology axioms to a string that could be easily parsed during posterior execu-
tions facilitating the persistence and debug process of the executions. The ALCRenderer
uses the rules presented in the table 4.1 to perform the serialization process.

3Data Access Object: http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

42

Axiom Serialization Syntax
OWLSubClassOfAxiom C .SUB D

OWLNegativeObjectPropertyAssertionAxiom .NO (C)
OWLDisjointClassesAxiom C .OR D
OWLClassAssertionAxiom C(a)

OWLEquivalentClassesAxiom C .EQ D
OWLObjectIntersectionOf C .AND D

OWLObjectUnionOf C .OR D
OWLObjectSomeValuesFrom .EXIST R. (D)
OWLObjectAllValuesFrom .FORALL R. (D)

Table 4.1: ALCRender syntax

4.2 Knowledge Base Importer Module

The objective of the Knowledge Base Importer Module is to facilitate the execution
of the reasoning services, executed on top layers of the architecture. Specifically, the
module encodes and indexes all the knowledge base, TBox and ABox data, and cre-
ates the Pseudo models for all the individual in the ABox as explained in section 3.6.1.
The import module populates the tables of the HBase schema presented on the fig-
ure 4.3. The encoded key of a resource is found by executing the hash function4

h = S0 ∗ 31n−1 + S1 ∗ 31n−2 + ... + Sn−1. The function h generates an unique hash
code that represents a resource from the knowledge base. During the import process
the hash codes for all the mention resources are calculated and persisted; when the sys-
tem is answering a query, the dictionary table is used to translate the hash codes into
their original values. The import process may take several minutes or hours to complete
depending of the size of the knowledge base and the network topology of the cluster used.

The import process receives as input a directory containing a set of OWL files with
the complete knowledge base to process. To read all the files, a new hadoop FileIn-
putFormat and RecordReader, OWLFIleInputFormat and OWLFileRecordReader were
implemented. These classes are responsible for parsing the OWL files and creating a
valid input for the MapReduce Mappers. The OWL files are read using the open source
framework OWL-API5. For each of the configured mappers a new OWLOntolgyWritable
object is generated that contains a fragment of the the knowledge base to process. Each

4http://www.javamex.com/tutorials/collections/hash_function_technical.shtml
5http://owlapi.sourceforge.net/

43

of the mappers configured receives an OWLOntolgyWritable that contains the abstrac-
tion of one of the owl files in the input directory.

4.2.1 Import Mapper

The OWLImportMapper class is responsible for processing the ontology’s files repre-
sented in the OWLOntolgyWritable object. The input of the mapper consist of a tuple
of the type <NullWritable, OWLOntologyWritable>, its input key is not relevant, there-
fore a NullWritable value is used as wildcard; the tuple’s value contains the abstraction
of the OWL file to process.

Figure 4.4: Import Mapper

• The mapper uses a Visitor6, ALCOntolologyMapperWalkerVisitor, to traverse the
graph that represents an OWLOntology. The responsibility of the ALCOntololo-
gyMapperWalkerVisitor is to extract those RDF and OWL axioms present in the
OWLOntology that correspond to the ALC family language and other elements
required by the reasoner services. The ALCOntolologyMapperWalkerVisitor acts
as a Translator that receives an OWLOntology and collects the output to be pro-
cessed by the configured Reducers. Table 4.2 presents an overview of the axioms
and the output tuples generated by the ALCOntolologyMapperWalkerVisitor. The
tuples correspond to the output generated by each of the mappers configured in
the execution, because each mapper processes the equivalent to an OWL file in

6Visitor Pattern: http://sourcemaking.com/design_patterns/visitor

44

the knowledge base, the ALCOntolologyMapperWalkerVisitor generates multiple
outputs in the same mapper allowing Hadoop to sort and group the output tuples
by its key. The hash value of the resources mentioned corresponds to the hash
function one introduced on 4.1.1.

OWL Constructor Output Tuple
OWLEquivalentClassesAxiom <hash(C), “.EQ hash(D)”>

OWLSubClassAxiom <hash(C), “.SUB hash(D)”>
OWLClassAxiom <C,C>

OWLObjectProperty <r, C>
OWLClassAssertionAxiom <hash(a), hash(C)>
OWLAnonymousIndividual <a, ->

OWLNamedIndividual <a, ->
OWLDataPropertyAssertionAxiom <hash(a), R(hash(b))>

OWLObjectPropertyAssertionAxiom <hash(a), R(hash(b))>

Table 4.2: ALCOntolologyMapperWalkerVisitor Axioms

4.2.2 Import Reducer

The OWLImportReducer class is responsible for processing the tuples collected by the
OWLImportMapper as shown in the Table 4.2. The reducers receive as input tuples
of the type <Text, [Text]*> and, after identifying the type of element to process, the
reducer persist the information to HBase.

The reducers identify the tuples type by checking each of the tuple’s values. A tuple
containing a TBox concept is identified by selecting the tuples whose value contains the
string constants ’.EQ’ or ’.SUB’; once identified, the value from a TBox tuple is parsed
to validate that represents a valid ALC concept and persisted in the system using the
TBoxDao interface.

If the tuple is not identified as a TBox tuple then the reducers check if the tuple
belongs to the ABox. ABox role assertions tuples are identified checking if the tuple’s
value contains a character ’(’ and ABox concept assertions are identified checking if
both, the input key and the tuple value, are valid integer objects. Once an ABox tuple
is identified, the ABoxDao interface is used to persist the ABox data.

45

Tuples that have as key a string value correspond to ontology Classes or Role prop-
erties definitions. Both of them are added to the dictionary table. Tuples without a
value correspond to mentioned ABox individuals. Individual tuples are added to both,
the individual and dictionary table, using its correspondent dao classes.

When all the import reducers configured in system finish their execution, the schema
contains the encoded and indexed knowledge in the Hadoop cluster. Reasoning services
in above layers are now able to perform operations on the given data.

4.2.3 Pseudo Model Builder

After the knowledge base has been encoded and indexed the system performs an opti-
mization process that allows the query engine to answer instance retrieval queries in a
more efficient manner. The implemented algorithm follows the Pseduo Model technique
introduced in Section 3.6.1.

A MapReduce job is used to find the set of completions C, for each individual in the
ABox. The PseudoModelBuilderMapper is responsible for creating a cartesian product
between all the individuals in the ABox with all the expressions in the TBox.

Figure 4.5: Pseudo model builder class diagram

The Execution of the algorithm starts by obtaining all the Individuals mentioned
in the ABox. This is done by implementing a new Hadoop TableInputFormat that al-
lows to convert HBase tabular data into a format that is consumable by MapReduce

46

jobs. When the execution starts, the PseudoModelBuilderMappers receive a tuple: <Im-
mutableBytesWritable, RowResult>, whose value contains a row of the Individual Table.
The mappers use the configured TBoxDao to obtain all the expressions of the the form:
C ⊆ D or C ≡ D. Each triple of the type C ⊆ D found is converted to a concept
expressions of the type: ¬C �D. Equivalently, triples of the type C ≡ D are converted
to two concept expression of the type ¬C �D and ¬D � C.

The PseudoModelBuilderMapper mapper uses the generated concept expressions
from the TBox and the input individuals to create output tuples of the form <Con-
ceptExpression, Individual>. The concept expression must be used as key of the output
tuple, allowing Hadoop to group the common keys. The PseudoModelBuilderReducer
receives as input tuples of the form <ConceptExpression, [Individual]*> and finds the
pseudo models for the input expression and individual. The reducer finally persist the
pseudo models to the HBase table individual_pseudo_model. Figure 4.6 presents the
sequence diagram that follows the execution of the algorithm.

Figure 4.6: Pseudo Model Creation Sequence Diagram

4.3 Reasoning Module

The reasoning module receives a concept expression in Normalized Negation Form (NNF)
to create a Tableaux model and execute an instance checking algorithm to selected in-
dividuals in the knowledge base. In the worst case, all the individuals in the knowledge
base must be validated trough the instance checking algorithm but, as explained in
section 3.6.1, optimization technics are applied to detect obvious clashes discarding in-
dividuals to check.

47

A MapReduce job is launched, to distributively execute the instance checking al-
gorithm, where each mapper receives as input a candidate individual to check and the
tableau model of the specified concept expression7. The instance checking algorithm
uses the knowledge base ABox to find clashes with the concept expression. Additionally,
the process saves a cache of the individual model extracted from the ABox. The cached
model is used in posterior executions to identifying the candidate ABox individuals to
process. Figure 4.7 shows, graphically, the execution of the process. In the following
sections each process will be explained with more details.

Figure 4.7: Query Answering Process

4.3.1 Tableau Model Creation

The first thing the reasoning module does is to run a Tableau algorithm to obtain the
associated model from the specified concept expression. The process receives a concept
expression in NNF and uses an and-or tree to create the Tableau model using the ALC
completion rules from Figure 3.4. Each node in the tree contains the properties:

• Content: Set of concepts in the node.

• Individual: Represents the key of the Node.

• Status: Specifies the currents status of the node. The possible values are: unex-
panded, expanded, satisfiable, unsatisfiable .

• Type: Specifies the type of node. The possible values are: and-node, or-node.

• Parent: Parent node of the current node.

• Children: Set of children of the node. Each node is associated with an edge.
7The concept expression is specified as configuration parameter of the job.

48

The type of the node is determined by the rules applied in the node content. Specifically,
if a �− rule is applied the node becomes an or-node. The type of node determines the
way the satisfiability of the node is calculated. An and-node requires all its children to
be satisfiable, on the other side, an or-node is satisfiable if at least one of its children is
satisfiable. Figure 4.8 presents the pseudo code for the creation of the model:

I n i t i a l i z a t i o n : s e t i =0, E = Concept exp r e s s i on ;

c r e a t e n = <i , E, unexp , and−node>;
whi l e (n . s t a tu s not in (sat , unsat)){

i f (n . content not r u l e s to apply){
n = n . parent ;
i f (n . content has c l a sh){

n . s t a tu s = unsat ;
} e l s e {

f o r each (c on n . ch i l d r en){
i f (n . type = and−node){

n . s t a tu s = c . s t a tu s and n . s t a tu s ;
} e l s e {

n . s t a tu s = c . s t a tu s or n . s t a tu s ;
}

}
}

}
} e l s e {

i f (n−r u l e){
n . content=new_content ;

} e l s e i f (u−r u l e){
n . type=or−node ;
c r e a t e w = <i , E1 , unexp , and−node>;
c r e a t e z = <i , E2 , unexp , and−node>;
n . ch i l d r en = n . ch i l d r en + {w, z } ;
n = w;

} e l s e { //ER.C or VR.C
c r ea t e y = <i++,E2 , unexp , and−node>;
n . ch i l d r en = n . ch i l d r en + edge−R(y) ;
n = y ;

}
}

}

Figure 4.8: Tableau Model Creation Pseudo-Code

49

4.3.1.1 Lazy Unfolding

The Tableau algorithm implemented uses lazy unfolding to expand the concept expres-
sions that appear in a node’s content after applying the Tableau completion rules from
figure 3.4. Unfolding allows to eliminate from a concept expression C, whose satisfiabil-
ity is going to be tested with respect to the TBox T, all the concept names occurring in
T using a recursive substitution procedure.

The unfolding process works a follows: for a non primitive concept A, defined in T
by an axiom A ≡ D, the procedure substitutes A with D wherever it occurs in C and
then the procedure is repeated to unfold D. For a primitive concept name A, defined
in T by an axiom A � D, the procedure is more complex. Wherever A occurs in C is
substituted with a concept A� �D, where A� is a new concept name that does not occur
in T or C, and D is then recursively unfolded. The concept A� represents the unspecified
characteristics that differentiate it from D.

Although the Tableaux algorithms generally assume that the concept expression to be
tested is fully unfolded, in practice it is usual to unfold a expression only when required
by the execution of the algorithm. For example, if T contains the definition A ≡ C and
the � − rule is applied to a concept (A � D) ∈ L(x) so that A and D are added to
L(x), then A can be unfolded by replacing it with C. In this way, lazy unfolding avoids
the unnecessary expansion of irrelevant subconcepts because contradictions could be
discovered without fully expanding the tree. A greater increase in efficiency is achieved
by retaining the names when their definitions are added, instead of substituting them.
The efficiency is achieved because the discovery of a clash between concept names can
avoid the expansion of their definitions. The algorithm implemented uses the expansion
rules from Table 4.3.

Name If Then
U1 −Rule A ∈ L(x) and (A ≡ C) ∈ T L(x) → L(x) ∪ {C}

C /∈ L(x)
U2 −Rule ¬A ∈ L(x) and A ≡ C ∈ T L(x) → L(x) ∪ {¬C}

¬C /∈ L(x)
U3 −Rule A ∈ L(x) and (A � C) ∈ T L(x) → L(x) ∪ {C}

C /∈ L(x)

Table 4.3: Lazy unfolding expansion rules

The unfolding algorithm implementation access the TBOX table to expand a given
concept. The expansion process uses the hash, of the concept to unfold, as index key.

50

The TBoxDao implementation is responsible for obtaining the list of subclass and equiv-
alence axioms present in the knowledge base. The TBoxDao uses the index h(C) + ’E’
obtaining as result the equivalent concept expressions and h(D)+’s’ to look for any sub-
class axioms.

4.3.2 Candidate Individuals Selection

When an instance retrieval query is posted to the system, the naive approach to find
which individuals are valid answers for the query consist on finding the Tableau model
completion for all the individuals in the system. This would be inefficient because nor-
mally individuals in the ABox are associated with only a few concepts in the TBox.
As explained in Section 3.6.1, pseudo models are used to reduce the number of ABox
individuals to check every time a query is answered.

The candidate selection algorithm works as follow. For a concept expression, Q, that
represents a query to be answer, the algorithm finds the pseudo model, MQ, for the con-
cept expression ¬Q. Once MQ is found, a MapReduce job is used to find the interaction
between MQ and the cached pseudo models, Mx, for every individual x mentioned in
the ABox found during the import process (Section 4.2.3).

The MapReduce mappers receive as input all the cached the pseudo models from
the individual in the ABox using a Hadoop TableInputFormat. The mappers receive the
pseudo model for the query concept expression as a parameter, this parameter remains
constant for all the mappers in the MapReduce job. The input tuples for the mappers
have the format <individual, [MA

a ,M¬A
a , M∃

a ,M∀
a]>. Each mapper tries to find if there

is an interaction between the pseudo models of the configured concept expression and
the mapper input for each individual in the ABox. If an interaction is found, the pseudo
models are unmergeable, therefore the Tableau Model completion has to be performed
for the current individual being tested by the pseudo model. The Mappers generate an
output tuple for every individual that has to be checked using the Tableau algorithm.
The output tuples are of the form <individual, null>.

The reducer receive as input tuples, equivalent to the output of the reducer, with
the format <individual, null>. The reducers generate don’t perform any specific job,
they let Hadoop generate a list of files in the HDFS file system that contain the list of
candidate individuals to be checked. Figure 4.9 presents the flow of the execution.

51

Figure 4.9: Candidate Individual Selection Sequence Diagram

4.3.3 Instance Checking Algorithm

The objective of the instance checking algorithm is to verify the satisfiability of a con-
cept expression with respect to an individual in the ABox. The algorithm receives as
input a Tableau model, that corresponds to a complex concept expression and a list of
candidates individuals from the ABox to which the algorithm will be applied.

The Instance checking algorithm runs using a MapReduce job that allows the al-
gorithm to be distributed through all the nodes in the Hadoop cluster. Hadoop and
MapReduce dramatically could improve the performance and scaling capabilities of the
algorithm compared with traditional reasoners. In traditional reasoners, the instance
checking algorithm is typically executed in single machine, limiting the algorithm to the
characteristics of a specific hardware. In the proposed architecture, allows the checking
of the individuals to be executed in parallel scaling the execution of the algorithm and
removing any single point of failure in the architecture.

Specifically, the implementation of the Instance checking algorithm uses an Tableau
tree to check for clashes of a specific individual in the ABox. The algorithm uses the
indexes created in the knowledge base importer module, 4.2, to fast access the informa-
tion in the ABox, executing the completion model for the Tableau Model of a concept
expression for each candidate individual. The instance checking process is best explained
with an example.

52

Figure 4.10: Tableau model for concept expression ∃S.C � ∀S.¬D � ∃R.C

The algorithm to execute the instance checking for the individual a Given the
Tableau model from figure 4.10, that corresponds to the concept expression ∃S.C �
∀S.¬D � ∃R.C.

ABox = { S(a , b) , D(b) , R(a , c) , C(c) }

Figure 4.11: Sample ABox

Given the ABox from Figure 4.11, the algorithm checks every individual mentioned
in the ABox8, therefore the Tableau Completion has to be run for the individuals a,b,c.
After the algorithm runs, only the model for individual a is open w.r.t to the ABox, as
shown in Figure 4.12. Therefore, individual a is a valid answer for the query ∃S.C �
∀S.¬D � ∃R.C.

Figure 4.12: Tableau model completion for Indiviudal a
8For this example the pseudo model technique is not being applied

53

4.4 Query Engine Module

The query engine module is responsible for parsing a concept expression that represents a
query and orchestrates the execution of the query using the reasoning services explained
in Section 4.3.

4.4.1 Query Parser

The query parser is responsible for converting a serialized OWL concept expression in a
format that could be processed by the system. The instance retrieval queried posted to
the system are expressed, as any other concept expression, in one of the popular OWL
Serialization formats: XML/OWL or Turtle. The OWL-API framework9 is used to
parsed the input file and obtain an in-memory representation of the concept expression.
With the memory representation of the concept expression to answer, the query parser
delegates the control to the query executor.

4.4.2 Query Executor

The query executor orchestrates the execution of the query answer process for a concept
expression. The query executor receives an abstraction of a concept expression and, using
services from the reasoning module, obtains the pseudo model for the query concept
expression. With the pseudo model of the concept expression, the query executor calls
the method to obtain the candidate individuals, based on the cached pseudo models,
from the knowledge base ABox. Once the candidate individuals are identified, the
query executor executes the process responsible for executing the completion of Tableau
models for the concept expression that represents the query for every selected candidate
individual. The query executor reports the answers to the user once the process has
been completed.

9The OWL API is a Java API and reference implmentation for creating, manipulating and serialising
OWL Ontologies. (http://owlapi.sourceforge.net/)

54

Chapter 5

Evaluation

In this chapter the performance results for the proposed architecture are presented and

analyzed. Initially the chapter introduces the test data used followed by the environment used

to conduct the test and the results obtained.

5.1 Lehigh University Benchmark for OWL

The Lehigh University Benchmark (LUBM)[13] is a benchmark developed at the Lehigh
University for testing the performance of ontology management and reasoning systems.
The ontology describes organizational structure of universities and it is relatively simple:
it does not use disjunctions or number restrictions, but it does use existential quanti-
fiers. Due to the absence of disjunctions and equality, query answering on LUBM can
be performed deterministically.

The benchmark for OWL consists of the following:

• A plausible OWL ontology named univ-bench1 for the university domain.

• Repeatable synthetic OWL data sets that can be scaled to an arbitrary size. Both
the uni-bench ontology and the data are in the OWL Lite sublanguage.

• Fourteen test queries that cover a range of types in terms of properties including
input size, selectivity, complexity, assumed hierarchy information and assumed
inference.

• A set of performance metrics including data loading time, repository size, query
response time, and query answer completeness and soundness. With the exception
of completeness, they are all standard database metrics.

1http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl

55

http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl

• A test module that allows to generate test knowledge bases for the ontology.

Figure 5.1 presents graphically the asserted model generated using Protégé.2 The figure
helps to visualize the model represented by the LUMB ontology.

Figure 5.1: LUMB Ontology - Asserted Model
2http://protege.stanford.edu/

56

http://protege.stanford.edu/

5.2 Performance Evaluation

The goal of the the performance evaluation was to test the scalability of the proposed
architecture and not the algorithms implemented, that is, to see how the architecture
performs depending on the amount of data and the number of machines running in the
Hadoop Cluster. The reason for focusing in benchmarking the architecture and not the
algorithms implemented is because there exist already more efficient DL algorithms than
the ones implemented that make use of some of the optimizations mention in Section 6.2.
Also, due to the MapReduce batch processing nature and its execution environment, it
is safe to suppose that if the algorithms are optimized then the overall performance of
the system will improve with them. Because of this reason the results presented in this
section should be taken qualitatively, rather than quantitatively.

5.2.1 System Setup

The test were performed using three different Hadoop clusters configurations in order
to determine how the performance of the architecture is affected by adding nodes to the
cluster. The Hadoop clusters used for the benchmarks were configured using 2, 5 and 7
machines all of them with a 2 GHz Intel processor, 2 GB of RAM, running Linux Ubuntu
10.4, Hadoop 0.19.2 and HBase 0.19.3. The Java virtual machine used was Sun’s Java
1.6 with the VM memory limited to 1500 MB.

Two different test datasets were created using the test module of the LUBM bench-
mark. Table 5.1 summarize the details of the data sets used during the benchmarks.

Name Universities C � D C ≡ D Domain Range Instance Number
Dataset 1 10 36 6 25 18 1’298.988
Dataset 2 20 36 6 25 18 2’790.579

Table 5.1: LUMB test data

5.2.2 System load time

As explained in Section 4.2, during the import process the system encodes the knowledge
base, creates the pseudo models for all the individual and saves the information in the
distributed persistence mechanism, HBase.

57

Figure 5.2: System load time

Figure 5.2 presents the overall time that it takes to each cluster to import the com-
plete knowledge base. From the figure we can notice how the performance of the import
process improves, reducing the completion time, by adding machines to the Hadoop
cluster. The increased performance of the process can be explained due to the fact that
the execution of the algorithms used during the import process is done distributedly
and independently across the machines in the cluster. It’s also interesting to notice that
when a new machine is added to the cluster there is a slight penalty introduced. The
Tables 5.2 present the penalty index introduced for the import process, loading both
test datasets. The penalty index follows the formula: Pi = 1 − Ti

Te
, where Te is the

expected execution time, found using the formula: Te = Tr∗nr
ni

, Tr is the reference time
that corresponds to the total time used by the reference cluster to complete the process,
and Ti corresponds to the total time that takes to the cluster i to complete the process.

2 Machines 5 Machines 7 Machines
Penalty Index - 0.11 0.08

Penalty per machine - 0.02 0.01
(a) Penlaty index Dataset 1

2 Machines 5 Machines 7 Machines
Penalty Index - 0.05 0.05

Penalty per machine - 0.01 0.01
(b) Penalty index Dataset 2

Table 5.2: System load Penalty Index

58

Figure 5.3: System load penalty index

Due to the small size of the of the test clusters the penalty index is not significant
but it is expected to grow with the size of the Hadoop cluster. When the penalty index
per machine is too big the executions times of the processes running inside the cluster
will increase. However, when the knowledge base is too big and the memory available
per machine is reduced, it could be desirable to increase the size of the cluster beyond
the optimum penalty index to allow the processes to complete, even if it takes a longer
theoretical completion time.

5.2.3 Query Answering Time

The implemented prototype architecture supports answering instance retrieval queries,
because of this reason, not all of the 14 test queries provided by the LUBM bench-
mark can be used to execute the benchmarks. Two instance retrieval queries from the
benchmark can be used to test the architecture. Those queries are:

• Q1(x) ≡ UndergraduateStudent(x): The query assumes both the explicit sub-
ClassOf relationship between UndergraduateStudent and Student and the implicit
one between GraduateStudent and Student. It has large input and low selectivity.

59

Figure 5.4: Query 1 - Asserted Model

• Q2(x) ≡ Student(x): This query has a large input and low selectivity and does
not assume any hierarchy information or inference.

Figure 5.5: Query 2 - Asserted Model

The benchmarks for the query answering time were obtained executing every test query
against the two test datasets on the three Hadoop clusters introduced in Section 5.2.2.
To take into account the cache optimizations included in the architecture, each of the
three queries were executed ten times consecutively and the average time was used as
final query time.

(a) Dataset 1 (b) Dataset 2

Figure 5.6: Query answering time

In terms of query answering we can see from Figure 5.6 that the architecture has a
similar behavior as observed during the import process. Adding machines to a cluster
reduces the query answering time for each of the test queries. In fact, the scalability

60

increases in a rate similar for both queries. However, as observed during the import
process, a penalty index is introduced for every machine added to the Hadoop cluster.

What can be concluded from the benchmarks is that the use of Hadoop to distribute
the execution of both, the import process and the query processing affects the perfor-
mance of the architecture positively. The batch processing characteristics of Hadoop
allow the DL algorithms to be executed concurrently not only reducing the overall exe-
cution time but allowing the architecture to process large knowledge bases.

The factors that influence the penalty index are of different kinds most of them being
do to network traffic, overhead added by Hadoop and the HBase persistence mechanism.
This factors can, in some measure, be tweaked to reduce the penalty index per machine
allowing the overall system to perform better. For example, the network infrastructure
should be as optimized as possible having the Hadoop cluster aware of the network
configuration, the Hadoop HDFS system should also be tuned according to the network
topology used and with an optimum block size. Increasing the RAM used by the java
vm of the machines in the Hadoop clusters can also reduce the penalty index given the
fact that the Hadoop engine requires memory to coordinate the execution of processes
in the cluster. The Hadoop community has collected some resources with tips that could
be used to improve the performance of Hadoop clusters.3

3http://wiki.apache.org/hadoop/PerformanceTuning

61

http://wiki.apache.org/hadoop/PerformanceTuning

Chapter 6

Conclusions and future work

This chapter summarizes the contributions of the project and proposes possible
directions for future work.

6.1 Conclusions

This thesis was focused on creating an architecture that could make use of the advantages
offered by the MapReduce programming model to create a query engine for massive and
distributed ontologies knowledge bases. The proposed architecture was designed taking
into consideration the resent proliferation of Cloud based services like Amazon’s Elastic
Compute Cloud (Amazon EC2) that have democratized the possibility to have robust
environments using a cluster of machines to execute complex algorithms. The architec-
ture was specifically designed thinking on how to use those clusters of machines with
an already successful programming model, MapReduce, to execute the already proven
algorithms required to answer DL queries. The architecture allows the knowledge base
data to be distributed across different machines using a distributed persistence system,
HBase, and the distribution of the execution of the reasoning algorithms, required to
answer DL queries, allowing the execution to scale by dynamically distributing the pro-
cesses through the configured machines in a cluster.

The power of the MapReduce programming model shines when one algorithm has
to be applied many times and this is exactly the type of execution characteristic of the
Instance Checking algorithm where all the individuals mention in the ABox must be
checked. As shown in Chapter 5, the query answering time is reduced by adding ma-
chines to the Hadoop cluster. However, one problem that appears is that the access to
the knowledge base persistence mechanisms is costly. This is not a simple problem to

62

solve using MapReduce because the programmer does not have control of the machines
where the data is persisted. One optimization, implemented in this project, to reduce
the persistence access times, consists on encoding the knowledge base and creating a
cache of the TBox expression on every machine in the cluster. The disadvantage of this
solution is that the machines running in the Hadoop cluster will require more memory,
depending of the size of the TBox.

However, although MapReduce allows the system to scale beyond what traditional
architectures could do, its programming model introduces some restrictions that had to
be taken into consideration during the design of the query engine architecture. The most
critical restriction is that in order to scale and exploit the scaling power of MapReduce,
the tasks executed by the mappers and the reducers must be completely independent
between each other. This gives MapReduce jobs a batch execution behavior that allows
the execution of a MapReduce Job to be distributed across a cluster of machines. An im-
plication of this is that MapReduce is not a reasonable alternative to create distributed
algorithms. Specifically for the work on this thesis, MapReduce can not be efficiently
use to create an execution of the Tableau Models that expands the Model distributedly
across different machines. Such execution would require different control mechanisms
not provided by any MapReduce execution environment and that go beyond the MapRe-
duce programming model. For the prototype implementation in this project the Tableau
Model construction was created using Threads allowing the model to be created more
efficiently but with the hardware limitations of the machine where they run.

Another disadvantage is the need for a persistent mechanism. The initial HBase
releases suffered terrible performance for random reads and writes, primarily because
HDFS is not optimized for low latency random access but with the addition of a
memcached-based1 intermediate layer its performance has been improved. HBase servers,
particularly the version using memcached, are memory intensive and generally require
at least a gigabyte of memory per server. Also a smoothly performing HDFS filesystem
is critical for the correct operation of HBase, any datanode instability will show up as
HBase errors, this can become frustrating and cumbersome to solve.

6.2 Future Work

The prototypical implementation of the architecture supports DL instance retrieval
queries but, in order for the system to be more usable, it needs to support more robust

1http://memcached.org/

63

http://memcached.org/

queries. The mechanism to answer conjunctive queries could be implemented as pre-
sented on [15] where a rolling up technique is used to reduce the complexity of conjunctive
queries with and without variables. The technique uses a simple transformation to con-
vert every role term into a concept term. For example the role < John, Bill >: Bother

can be transformed into the equivalent concept John : ∃Brohter. Bill. Other addi-
tionally concept terms can be rolled up into the rolled up concept term. For example,
the conjunction: < John, Sally >: Parent ∧ Sally : Female ∧ Sally : PhD can be
transformed into John : ∃Parent(Sally � Female � PhD). On queries without vari-
ables the transformation reduces the number of conjuncts what means that the number
of satisfiability tests needed to answer the query will also be reduced. The technique
requires a more sophisticated rolling up technique when the queries contain variables as
expressed in the referenced paper.

The algorithm to obtain the pseudo model for concept expressions and ABox could
also be improved to use a deep pseudo model technique. On [16] a Deep Model Merging
technique is presented and its advantages against the Flat pseudo model technique are
empirically demonstrated.

Other optimization to be implemented could be classified in two categories: tech-
niques to improve the subsumption testing algorithm and techniques to reduce the num-
ber of subsumption tests. Some of those techniques are:

• Normalization and Encoding: the technique detects structurally obvious sat-
isfiability and unsatisfiability and enhance both the efficiency and effectiveness of
other optimizations.

• GCI Absorption: the technique works by absorbing GCI axioms into primitive
concept introduction axioms. This is a novel technique which can eliminate most
of GCIs from a terminology which are a major cause of intractability.

• Boolean Constraint Propagation: the technique is used to maximize determin-
istic expansion of the Tableau model, pruning the search tree via clash detection
before performing a non-deterministic expansion.

• Heuristic Guided Search: heuristic techniques can be used to guide the search
in a way which ties to minimize the size of the search tree.

• Dependency Directed Backtracking: the technique adapts a form of depen-
dency directed backtracking called back-jumping, which has been used in solving

64

constraint satisfiability problems. Back-jumping works by labeling concept ex-
pressions with a dependency set indicating the �−Nodes on which they depend.
The algorithm can jump back those nodes without exploring alternative successors.

Another step further would be to create a mixed architecture that uses the scaling
power of MapReduce and the reasoner power of existing database based reasoners such
as DLDB-OWL2 or database-based Sesame3. Such reasoners already have implemented
several optimization techniques that could improve drastically the query answering time.
A special effort would have to be invested in creating a bridge between the reasoners and
MapReduce and to be able to change its underlying persistence mechanism to HBase or
more robust distributed persistent mechanism base on HBase such as Apache Cassan-
dra4.

2http://swat.cse.lehigh.edu/downloads/dldb-owl.html
3http://www.openrdf.org/
4http://cassandra.apache.org/

65

http://swat.cse.lehigh.edu/downloads/dldb-owl.html
http://www.openrdf.org/
http://cassandra.apache.org/

Bibliography

[1] R.Brachman, A.Borgida: Loading data into description reasoners. Volume 22. SIG-
MOD, 1993

[2] P. Bresciani: Querying database from description logics. In KRDB’95, 1995.

[3] T. R.Gruber : Toward principles for the design of ontologies used for knowledge
sharing. International Journal of Human-Computer Studies, Volume 43.

[4] Jeffrey Dean and Sanjay Ghemawat : MapReduce: Simplified Data Processing
on Large Clusters. OSDI’04: Sixth Symposium on Operating System Design and
Implementation, San Francisco, CA, December, 2004.

[5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. OSDI’06: Seventh Symposium
on Operating System Design and Implementation, Seattle, WA, November, 2006.

[6] Zoi Kaoudi, Iris Miliaraki, and Manolis Koubarakis. RDFS Reasoning and Query
Answering on Top of DHTs. The Semantic Web - ISWC 2008: 7th International
Semantic Web.

[7] Peter Mika, Giovanni Tummarello. Web Semantics in the Cloud. The Semantic
Web, IEEE 2008

[8] Jacopo Urbani, RDFS/OWL reasoning using the MapReduce framework. vrije Uni-
versiteit Amsterdam, 2009.

[9] Franz Baader, Diego Calvanese, Deborah L. McGuinness, and Daniele Nardi, R.
Moeller. The Description Logic Handbook: Theory, Implementation and Applica-
tions. Sept. 24, 2007

[10] V. Haarslev and R. Moeller. Optimization techniques for retrieving resources de-
scribed in OWL/RDF documents: First results. In Ninth International Conference

66

on the Principles of Knowledge Representation and Reasoning, KR 2004, Whistler,
BC, Canada, June 2-5, pages 163–173, 2004.

[11] Justin Zobel, Steffen Heinz, and Hugh E. Williams. In-memory hash tables for
accumulating text vocabularies. Information Processing Letters.

[12] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System.
San Francisco, 2003

[13] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A Benchmark for OWL
Knowledge Base Systems.

[14] Bitton, D., DeWitt, D., and Turbyfill, C. Benchmarking Database Systems, a Sys-
tematic Approach. In Proc. of the 9th International Conference on Very Large Data
Bases. 1983

[15] Ian Horrocks and Sergio Tessaris. A Conjunctive Query Language for Description
Logic ABoxes.

[16] Volker Haarslev and Ralf Moeller. Optimizing TBox and ABox Reasoning with
Pseudo Models, University of Hamburg, Computer Science Department.

67

	Introduction
	Outline

	Hadoop and Map Reduce
	HADOOP
	Commercial use and Contributors
	HDFS
	HDFS Core Concepts

	MapReduce
	A MapReduce Example

	HBase
	HBase Concepts

	Semantic Web and DL Concepts
	Semantic Web
	The Resource Description Framework (RDF)
	RDFS

	Web Ontology Language (OWL)
	OWL Languages and Profiles

	Reasoning Basics
	Open World Assumption
	No Unique Name Assumption

	Description Logics
	ALC Family of Description Logics

	Reasoning in Description Logics
	Tableaux Algorithm
	Tableaux Algorithm for ALC

	Query Efficiency
	Retrieval Optimization using the Pseudo model technique
	Flat pseudo models for ABox Reasoning

	Soundness and Completeness
	Individual Realization using Pseudo Models

	System Architecture
	Overview
	HBase Schema

	Knowledge Base Importer Module
	Import Mapper
	Import Reducer
	Pseudo Model Builder

	Reasoning Module
	Tableau Model Creation
	Lazy Unfolding

	Candidate Individuals Selection
	Instance Checking Algorithm

	Query Engine Module
	Query Parser
	Query Executor

	Evaluation
	Lehigh University Benchmark for OWL
	Performance Evaluation
	System Setup
	System load time
	Query Answering Time

	Conclusions and future work
	Conclusions
	Future Work

