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Abstract 
 

This thesis aims at comparing the performance of heuristics algorithms used to solve the 

"Sequencing Traversing Cars in a Warehouse Problem" (STCP) as an extension of the 

classic "Traveling Salesman Problem" (TSP). Algorithms to benchmark are Genetic 

Algorithm and Ant-Colony Algorithm, Greedy Algorithm, and Greedy Algorithm with 2-

op Optimization. STCP has both similar and different features from the "Travelling 

Salesman Problem” (TSP). To adapt the solutions of TSP in STCP, it is necessary to 

analyze the similarities and differences between the two problems.   

 

In order to implement solutions for STCP and a platform for numerical comparison of 

the applied algorithms, this thesis proposes an UML-model of a simple warehouse 

system and programming test bench used for comparing solutions of STCP. 

 

Keywords: Optimization algorithms, TSP, Sequencing Traversing Car, Pick-up and 

Delivery, Greedy Algorithm, Ant-Colony Algorithm, Genetic Algorithm. 
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Chapter 1  
 
Introduction 

 

 

1.1. Motivation 

The "Travelling Salesman Problem" has been a popular research topic among experts 

and scholars of mathematics and computer science. With the goal of minimizing the 

total travel distance of the salesman in Travelling Salesman Problem (TSP), TSP's 

solutions can be applied to a wide range of discrete optimization problems. Reducing 

travel cost of transportation and logistics distribution are one of typical applications of 

TSP.  

Transportation optimization is the most natural application of TSP, in which TSP can 

play the role of reducing travel cost. Büchter & Novoa [1] suggested that the 

Sequencing Traversing-Cars in a Warehouse Problem can be solved as an extension of 

TSP. They also provided statistical comparison between solutions used Greedy 

Algorithm and Ant-Colony Optimization (ACO).  The comparison has shown that ACO 

is a promising technique to incorporate in algorithms for warehouse traffic sequencing. 

It is a temptation to apply other heuristic algorithms used to solve TSP in Sequencing 

Traversing Car in A Warehouse Problem (STCP) and compare their performances in 

aspects of finding the most optimal tour and algorithm run-time.  

 

1.2. Task description 

This thesis analyzes characteristics and features of STCP and suggests a problem 

transformation from STCP to TSP. It also compares performances between two 

heuristic algorithms Ant-Colony Algorithms, Genetic Algorithm and with some other 

algorithms in solving STCP. Since STCP can be considered as a sub-problem or an 

extension of TSP. In order to adapt algorithms used in TSP in STCP, a test bench for 
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numerical comparison between applied algorithms in TSP and STCP is to be 

implemented. 

 

1.3. Structure of the thesis  

After Chapter 1 which provides a general idea of the thesis, Chapter 2 presents the 

description of the Sequencing Traversing Cars in a Warehouse with analyzing the 

features of the simple warehouse model used through the thesis. The Travelling 

Salesman Problem is also briefly introduced before suggesting a STCP-to-TSP 

transformation. The transformation will help apply TSP solutions to STCP. 

Chapter 3 puts heuristic approaches in solving TSP in context. Two heuristic 

algorithms: Genetic Algorithm and Ant-Colony Algorithm and their applications in TSP 

are discussed in detail.  

Chapter 4 is dedicated to present structures and workflows of the algorithms comparing 

test bench. The test bench imports solutions of TSP, transforms STCP to TSP and 

solves STCP. Design of the test bench as well as used programming frameworks and 

libraries are introduced in this Chapter 4. 

In Chapter 5, a number of numerical and statistical comparisons between Greedy 

Algorithm, Genetic Algorithm and Ant-Colony Algorithm in STCP are performed in 

order to demonstrate the advantages and disadvantages of each algorithm. Chapter 5 

also defines a list of experiments cases to tune optimal parameters of Ant-Colony 

System and Genetic Algorithm when they are applied to STCP. 

The conclusion and summary is presented in Chapter 6 with a brief overview of 

implications for future work. 
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Chapter 2  
 
Sequencing Traversing Cars in a 
Warehouse 

 

This chapter describes the Sequencing Traversing Cars in a Warehouse Problem. 

Features of a warehouse are analyzed in order to classify the problem into sub-problems 

like car loading problem, multi-Collecting Problem, Routing Problem, etc. This 

Chapter also provides an introduction of the Travelling Salesman Problem and discusses 

the similarities and differences between routing of a salesman and that of a traversing 

car in a warehouse. 

 

2.1. Introduction 

Figure 1: a simple warehouse model  depicts a simple warehouse system. 

 

Figure 1: a simple warehouse model [1] 
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The warehouse model has only one single input (IP) and output (OP) point, four picking 

stations (PP), four storage aisles which have single output buffer (OB) and input buffer 

(IB) for each. AS and RS are the Automatic storage and Retrieval systems. Goods in 

warehouse are transferred between aisles, input, output and picking stations through a 

traversing car (TC). In Figure 1, the arrow shows the direction of where goods should 

go. 

The above warehouse system has great demands of goods delivery in daily workflow. 

There are orders for traversing cars for deliver goods from input point to storage aisles, 

from storage aisles to output point or picking stations, or directly from IP to OP in some 

specific cases. The main problem of as traversing car in a warehouse is how to 

minimize traveling distance between stations under considerations of available 

resources which can be stations’ storage buffer and capacity.  

 

2.2. A simple Warehouse System 

In this section, we are going to consider characteristics of the warehouse model 

mentioned in [1]. Main subjects of the simple warehouse system are storage units (aisle, 

picking point), retrieval units and picking units (car).  

2.2.1. Storing capacity 

A real warehouse system has its own limited capacity. The capacity can be seen roughly 

as how many items it can store. More exactly, the capacity should be the dedicated size 

and volume used for storing goods. In this warehouse model, each storing point has its 

own size, which defines the limits of total items weight and size it can store. The limited 

capacity of each storing point can be mathematically presented as a pair: capacity = (w, 

s) with w being how much weight one storing point can keep items in, and s being the 

volume of the storing point. The total weight of all items needed to be stored in one 

station is not allowed to exceed the specific capacity of a station. Together with  weight 

and dimension of items, temperature requirements are also a problem of a warehouse.  

As we can see from Figure 1, which describes a warehouse system, each picking station, 

input/output point and input/output buffer of each aisle has their limited storing 
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capacity. The problem of how to make the most optimal use of the storing capacity 

brings us to the classic computer science problem: The Rucksack Problem.  

2.2.2. Timing constraints 

According to Büchter & Novoa [1], the authors have attempted to find the optimal tour 

for the traversing car in a warehouse with a set of delivery orders. In reality, the orders 

can come to the car continuously. If the traversing car can compute only the most 

optimal tour for just a subset of orders, then it is obviously not the global optimal tour. 

But in the normal workflow, picking orders can come at anytime, and the traversing car 

should not be idle until all orders come and then calculate the global optimal tour. For 

that reason, it is acceptable to choose a certain number of orders for the traversing car to 

serve. This number should be based on an estimation of how many orders coming 

during a certain time span, and how many orders each traversing car can serve in that 

time span. 

Another timing constraint is the time when an item should be delivered to its 

destination. Even with the car which has the most optimal tour for sparing travelling 

cost, it may not make the most wanted tour. If each order has its own expected-delivery 

time, then the most important goal is that all these timing demands are fulfilled 

regardless of the whole tour distance.  

2.2.3. Priority of picking order and item consolidation 

In most cases of warehouse transportation, the First In First Out (FIFO) rule is used for 

a stream of delivery orders. . The FIFO paradigm is not appropriate for cases in which 

each order has its own priority. Packet consolidation can be seen as an example of a 

priority problem. Let us consider there is a huge item waiting at an output buffer of aisle 

A to delivery to output point. The huge item is actually a packet which is waiting for 

other items from stations B and C to consolidate before sending. It is obvious that 

delivery orders of items from B and C have higher priority than the delivery order from 

A in this case. To solve such a problem of delivery orders with priority, it is essential to 

define validation rules preventing conflicts between picking order. Moreover, the 

consolidation capacity of wrapping packet, as well as the size of each items in it, also 

need to be identified, which leads us back to the problem of storing capacity. Priority of 

picking orders can be decided by warehouse administrators. 
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2.2.4. Traversing Car and Order-Picking 

Properties of the traversing car should be taking into consideration before analyzing the 

solutions to the transportation optimization in a warehouse. The properties can be: the 

number of traversing car, the speed of the car, the car's storing capacity and its 

collection ability. If the warehouse has more than one car, then a new occurring 

problem is how to avoid delivery conflicts when the two cars serve the same set of 

picking orders. If they serve different sets of order, the global information base of 

station temporary buffer need to be rapidly updated and informed to each car. In reality, 

a real car can contain one or more items for one delivery task. For example, a car serves 

an order from A to D, and then on its way to D it can collect items from B, C and brings 

them to C. 

The term Order-picking is about delivery goods of traversing cars in a warehouse 

from/to storing units or picking point, input/output points. According [2], order-picking 

is the most intensive and expensive process in warehouses and distributed center. 

Following is an exemplary number of delivery orders in a warehouse: 

 
Mail-order trade 

(very large) 

Pharmaceutical 

wholesale trade 

Food regional 

warehouse 

Producer electric 

household appliances 

Orders/day 190 000 4 000 780 350 

Ordered 

items/day 
650 000 105 000 300 000 6800 

Table 1: Exemplary number of picking orders pro day in warehouses [3] 

 

2.2.5. A warehouse model for performance comparison of routing algorithms 

The main focus of this thesis is to compare the performance of applied heuristic 

algorithms in finding the most optimal tour for the traversing car in a warehouse. 

Therefore, a good evaluation function should be defined to benchmark the algorithms 

with each others. So far, this thesis has discussed characteristics of a real warehouse 

system including storing capacity, timing, priority, and properties of traversing car. If 

each property of the warehouse is a parameter in the evaluation function, the function is 

going to be very complex. It needs to fulfill all storing-capacity, timing, priority 

constraints and all properties of the traversing car. The biggest importance for the 
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routing problem is the travel distance of traversing cars. Thus we restrict some 

constraints for our STCP in order to retrieve a simple evaluation function which makes 

it easy to compare between applied solutions. Followings are the features of the 

warehouse model for our STCP: 

• Every item has a same weight and volume to avoid the storing capacity 

problem mentioned in 2.2.1. 

• Storing capacity is just about number of items; weight and volume are 

not taken into consideration 

• No timing constraint for any delivery order. With this feature, the only 

factor used to evaluate solution is length of the tour. 

• Every delivery orders has the same priority 

• No consolidation 

• There is only one car in the warehouse, and it has no multi-collecting 

function. Solutions of multi-car and multi-collecting STCP are suggested 

in 2.7. 

• Unlimited storing buffer of aisles, input, output and picking point 

• Traversing car has a constant speed 

 

2.3. Mathematical Formulation of STCP 

In this section, we will mathematically formulate the STCP with all the constraints 

mentioned in section 2.2.5. The only traversing car in the warehouse serves a set of n 

service order from different sources of the system.  

At a given time, the traversing car has to choose the location of the next station it needs 

to visit in order to pick items. Given C being the set of candidate order at a given time, 

nc is the size of the set C. For each order i, the car needs to deliver goods from an origin 

oi to a destination di. If the traversing car serve order j directly after order i, there is a 

dependent set-up time si,j, which is the time it takes the car to un-load travel from di to 

oj. For serving an order i, there is the fixed time the car takes to load travel from oi to oj. 

The total time for serving all orders is the sum of all fixed load travel time and un-load 

travel time. It is impossible to reduce the fixed load travel time except we apply the 

problem to a continentally distributed warehouse, in which between stations, items can 
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be delivered by airplanes which is much faster than by cars. Authors in [1] suggested an 

equation of calculating total tour time: 

( )min ij j ij
j C i C

s f x
∈ ∈

+∑∑  

Formula 1: Total Tour Time 

In Formula 1, the variable xi,j is the binary variable which presents one if the traversing 

car serves order j succeed s order i. 

 

2.4. An example of delivery orders 

Let's consider an example set of order for the warehouse system in Figure 1, assumed 

that distance between two side by side aisles is 1 distance unit, and the aisles are name 

from A to D from left to right. The set of order is {(A, B), (B, D), (A, C), (D, B)}. 

Followings are the sequence of execution with the First-In-First-Out and the Greedy 

approaches.  

Order Loaded travel distance Unloaded travel distance Accumulated Travel Time 

(A,B) 1 0 1 

(B,D) 2 0 3 

(A,C) 3 3 (from D to A) 9 

(D,B) 2 1 (from C to D) 12 

Table 1: Traversing car serving a set of order with FIFO rule 

 

Order Loaded travel distance Unloaded travel distance Accumulated Travel Time 

(A,B) 1 0 1 

(B,D) 2 0 3 

(D,B) 2 0 5 

(A,C) 2 1 (from B to A) 8 

Table 2: Traversing car serving a set of order with Greedy rule 



15 

 

 

From two tables above we can see that if the traversing car serves the given set of order 

with the Greedy Algorithm, it takes only 8 time units compared to 12 time units when it 

serves with the FIFO. In this case, the Greedy Algorithm has a better performance than 

the FIFO Algorithm. This small example strengthens our hope, that applied heuristics 

algorithm will shorten tour length of a traversing car in a warehouse. 

 

2.5. Travelling Salesman Problem 

The Travelling Salesman Problem is a typical example of combinatorial optimization 

problem. The problem is about a salesman of a company who needs to visit his 

customers located in different cities. To save money for the company and to visit 

customers as soon as possible, it is a difficult job for the salesman to plan his travel 

route. The problem can be mathematical described by a connected graph G = (V, E). 

With V as the set of cities, and E contains all edges between vertexes. There are two 

types of TSP, symmetric TSP and asymmetric TSP. If the distance between two cities i 

and j is di,j  then in symmetric TSP dij = dji, meanwhile in asymmetric TSP, dij ≠ dji. 

There are more software tools and programs dedicated to solving only symmetric TSP 

than solving asymmetric TSP. A typical symmetric TSP solver is Concorde [3]. 

As for the salesman, planning the tour is a very tough job for him. If there are n cities to 

visit, then the number of possible path is  (n − 1)!/2 .If n = 20 then number of tours for 

TSP are about 6 ×  1016 Assumed that the salesman has a powerful computer, which 

can compute billion additions in a second, it takes him about 703 days just to calculate 

all tour lengths, he stills need to sort them afterwards. He probably loses his job before 

finish calculating.  

TSP has been long stated by scientists as NP-hard problem [4]. It means there is no 

efficient find exact solution of TSP. An acceptable approach for TSP is to use heuristic 

algorithms. Although they do not guarantee the most optimal tour for the Salesman, 

they still can deliver reasonable results. 
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2.6. STCP-To-TSP Transformation 

For solving STCP using TSP’s solutions, the first step is to transform STCP to TSP. In 

STCP each order is considered as a city in TSP. The unloaded travel time of the 

traversing car between serving two orders can be seen as the time it takes the salesman 

to travel from one city to another. In this case, we assume that the picking and 

delivering time at each station is negligible. The traversing car plays a role of the 

travelling salesman. In TSP, the sales man travel from city to city; in STCP the 

traversing car serves one order after another. It is possible that there are identical orders 

and it differs from TSP where the salesman visits each city only once. 

Cities in TSP are usually interpreted as a matrix of distances between cities or a list of 

cities’ coordinates [3]. In the STCP problem, it is difficult to present delivery orders in a 

TSP-like coordinate system because the distances for traversing car to serve two orders 

are not symmetric. For example, distance from order (A, B) to (B, C) is zero, but from 

(B, C) to (A, B) is 2 length unit. Instead of defining coordinates for each delivery order, 

distances between cities should be presented in a matrix form as the asymmetrical TSP 

problem, or so-called generalized TSP [6]. In conclusion, the STCP can be transformed 

as the Asymmetric TSP with only two constrains that the salesman in this case possibly 

needs to visit his customers in a city more than once and he does not need to come back 

to his start city. 

 

2.7. STCP-related problems 

In theses last sections, we have discussed about features of a simple warehouse and 

created a set of warehouse’s constraints used for our comprising purpose. And the goal 

of comparison is to retrieve the information, which solution delivers the minimal 

travelling cost. As in 2.2.5 described simple warehouse used for comparing algorithms 

applied in STCP, the cost function is only based on travelled tour length of the 

traversing car. In this section, we will discuss new problem classes derived by putting 

more constraints to the STCP. Challenge of doing this is to construct new evaluation 

functions used to evaluate solutions constructed by heuristics algorithms. 
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2.7.1. Multi collecting  

Keeping all constraints in 2.2.5, we put into the problem a new constraint that the car 

can possibly pick-up more than one items. Without considering size of item, we call m 

as a number of items the traversing car can put in its storing capacity. If m is greater 

than pre-defined number n of orders in a picking set, we can solve the problem directly 

with symmetric TSP’s solutions. In this case, a city is not an order like in STCP, a city 

is a station, which can be an aisle, input/output point, picking station. If m is less than n 

then multi-collecting STCP is a combination between simple STCP with TSP. 

Presumed that we already have the picking order list, there are 3 steps to solve the 

problem: 

- Choosing sets of m picking orders 

- Scheduling within each set m  

- Scheduling routing between (n/m+1) wrapped orders. 

The second step can be solved as a symmetric TSP, the third step as a simple STCP. If 

we use heuristic algorithms to solve this problem, the “divide and conquer” approach 

might not be necessary. Because using heuristics, the search space in this space is 

possibilities of combination of these two steps, and evaluation function is still only 

based on the tour length. So far we assumed that m is a fixed number. If m is a variable 

and warehouse management system should also decide which the most optimal m is, the 

problem is going to be very complex and it would take a lot of time and resource to 

solve that difficult problem. 

One example of multi-collecting STCP is pickup and delivery packets of the post. 

Customers use web-form to book a home picking for their packets. The post uses trucks 

to pick up packets and deliver them. Delivery within a small region such as within a 

city, which a central collected station not so necessary is, trucks can be seen as our 

traversing cars and number of packet it can contain as storage capacity of the traversing 

cars. 

2.7.2. STCP with limited buffer 

In 2.2.5 we assume that our simple warehouse having unlimited capacity for storing 

items at buffer point, picking station and in traversing cars. Bringing capacity into 

consideration we not only need to optimize storing space, we also need to put a 
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blocking variable into each storing unit. That means, if the buffer of an aisle is 

temporarily full, no other delivery order to this aisle is allowed to operate. This possibly 

brings the whole system into a deadlock. It happens when car have already taken items 

at picking points, but the correspondent delivery points are all blocked. There is one 

way to prevent deadlock in this situation is that the traversing car should be able to 

forecast of blocking variable at every stations, and schedule picking process 

accordingly. In [1], authors have declared a blocking variable when they solve the 

problem with Ant Colony Optimization. An order which has a blocked station as 

destination should not be taken into the travelling tour. They did not mention how to the 

car can predict the blocking variable when it serves a set of picking orders. Prevention 

of deadlock is hard, even impossible. There is one way to deduce the possibility for 

happening of deadlock, is define a variable for available capacity for each station. A 

station which has greater free buffer should have higher priority for picking as a station 

with less buffer space. Now the cost of the travelling tour is not only based on length of 

the tour, but also depends on efficiency of using buffer space. 

2.7.3. Dynamic requesting 

According to [2] and [5] our simple routing problem of sequencing traversing car in a 

warehouse is a sub-problem of Warehouse Management and can be generalized as 

General Picking-and-Delivery Problem (GPDP). One very important characteristic of 

GPDP is how the picking order becoming available. We distinguish it here into two 

categories: static and dynamic. Static GPDP is the same as our simple STCP which the 

traversing car serves a set of delivery requests. In dynamic SPDP, request can become 

available during operating time of the traversing car. In [1], authors called the dynamic 

situation as an “on-line” STCP, but did not suggest in detail how to solve the problem. 

As stated in 2.2.4 about multi-car situation, we can solve the dynamic STCP with the 

same approach. Using buffers for collecting new requests, the routing algorithm are 

started only when number of picking orders in the buffer exceeds the certain preset 

value. Of course when resources are available for new picking orders as we have a 

ready-to-use traversing car in a warehouse, the car does not need to wait for reaching 

any certain number of orders.  

One application of dynamic requesting can be the picking-up VIP customers of airlines 

from VIP Lounge to boarding station. In this situation, we have a number of shuttle 

movement cars in the airport. The central picking-system retrieves requests from 
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airlines which stated when their customers should be present at boarding station. The 

central system schedule routing plan for shuttle cars and orders them to move and pick 

VIP customers. The process runs dynamically and on-line. Picking orders come to 

central controlling system at anytime. According to available resources, after 

scheduling, the central control system should be able to inform airlines whether they 

can full fill the picking request.  

We have discussed how STCP can be extended to solve related problems. In the reality, 

there are so many other constraints which should be taken into consideration. Adding 

more factors to STCP enlarge the search space tremendously. It is then very difficult to 

find the exact solution. It is time for heuristics algorithm coming into play. In next 

chapter, Metaheuristics are introduced and discussed in detail. It is a way to find 

acceptable solution in a reasonable calculating time. 

  



20 

 

Chapter 3  
 
Solving TSP with Metaheuristics 

 

This chapter gives an overview about heuristic algorithms applied to solve TSP. The 

first section is general introduction of heuristic algorithms and its applications, 

especially to solve TSP. The second section brings more details of the Genetic 

Algorithm used for TSP. The last section focuses on Ant-Colony Algorithm. 

 

3.1. Metaheuristic Algorithm 

Metaheuristic is a high level algorithm, which actually does not define the problem it 

solves, or in other words, metaheuristic is not problem-specific. Metaheuristic plays as a 

black-box solver, which have as an evaluation function on solution instance and a 

generating function to generate new solution from a current one. Typical examples of 

metaheuristics which has been applied to many sorts of computer science’s problem are: 

Tabu Search, Simulated Annealing, Genetic Algorithm and Ant Colony System, etc. 

Metaheuristic solves problems but it has at the beginning very little information about 

what the optimal solution looks like. Normally, hetaheuristic is used in situations that 

the search space is too large for linear evaluating all possible solutions. The Travelling 

Salesman Problem is an example problem where metaheuristic algorithms can apply to. 

In TSP, a sample random tour can be created, and from this tour, a metaheuristic 

generates other tours which will hopefully be better than the original one. An evaluation 

function for TSP takes generated tour as input parameter and return tour length for 

evaluation. The less it is, the better tour we have. In the STCP, given a set of 1000 daily 

delivery orders, there are 999! possibilities of serving orders. 999! Order schedules is 

too large a number for any mainframe computer to calculate  their tour lengths or it 

takes several weeks to finish finding the exact optimal order for one working day of the 

traversing car. Heuristics Algorithms are expected to delivery an acceptable tour in a 

reasonable time. 
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Recently published researches have shown many metaheuristics algorithms to find 

solutions to TSP. These solutions can be applied to STCP after we done the STCP-to-

TSP transformation. Next sections are about prominent algorithms based on natural 

behavior:  Genetic Algorithm and Ant-Colony Optimization. 

 

3.2. Genetic Algorithm 

Genetic Algorithm (GA) was first proposed by John Holland in the 1960s and was 

developed with his students and colleagues at the University of Michigan in the 1970s 

[6]. General concept of GA is to simulate the natural evolution. Based on evolutionary 

theory, GA uses natural techniques such as inheritance, mutation, selection and 

crossover in combination with a fitness evaluation function to find "survival of the 

fittest" of a population. This section presents the general concept of GA and the 

relationships between objects of GA and objects of TSP for later application of GA in 

solving TSP.  

3.2.1. Structure of Genetic Algorithm 

Figure 2 shows the simple structure of Genetic Algorithm. GA begins with random 

initiation of a population using chromosomes as abstract presentations of solution 

candidates. Chromosomes encode feasible. The population evolves successively. A 

portion of population, which is evaluated as better individuals, is chosen for breeding. 

The selecting process is based on a fitness function, which delivers the fitness of each 

individual. The "breeding" or so-called "reproduction" step of GA is applying natural 

genetic operators such as Selection, Crossover, and Mutation for each two chosen 

individuals. The new child will share characteristics of its parents. The generational 

process will be stopped until the pre-defined criteria are met. The typical criteria can be 

the number of created generations, runtime of generation process, pre-defined level of 

fitness or the combination of all above mentioned criteria. Those criteria depend 

strongly on the real problem and real conditions, in which the resource like 

computational performance should be taken into consideration. 
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Figure 2: Simple Structure of Genetic Algorithm applied in TSP 

 

In the above structure of Genetic Algorithm, the Genetic Algorithm takes parameters as 

random set of TSP tours and a function to evaluate tour length. Every time it returns a 

new population, which is in TSP a new tour, the evaluation function is applied to each 

individual in the new population to calculate population’s average fitness and the fittest 

individual. Genetic Algorithm applied natural genetic operations and expects that the 

new generated population always better than the old one as the “survival of the fittest” 

rules the evolution. Figure 3 depicts 3 steps of generating new population. 

3.2.2. Initiation a random population 

The first step of GA is to initiate a new random population. Before doing that, it is 

necessary to define the population size. In TSP, the question is how many random tours 

should be created for the first population. Size of population can be constant or can vary 

after each evolution cycle. The stopping criterion of the algorithm also needs to be 

specified in this step. It can be a limitation of timing and/or population age. One typical 

problem of heuristic algorithm is when the algorithm should stop. Timing can be 

understood as the algorithms starts, and after a pre-specified time span, even that 



23 

 

population’s fitness is still improving, we need to stop the algorithm. Population age is 

number of generation cycles, in which population’s fitness does not improve. The best 

fitness in this case should be accepted as the best solution the algorithm can delivery.  

 

Figure 3: Generating new population 

 

3.2.3. Evaluation function 

In TSP, it is easy to choose a fitness/evaluation function. The fitness function takes a 

tour as input parameter and return tour length for evaluation. Good individual will 

deliver high fitness; in TSP it means better tours have shorter travelling distance to the 

salesman. Evaluation result has a crucial role in choosing mating couples for generating 

next generations. Taking good individuals to create parents strengthens the hope that 

their offset in the next generation will have better fitness, or at least as strong as its 

parents. In some specific case, the best individual in a population remains in the next 

generation, because after crossover mutation the best individual can be lost. 

3.2.4. Genetic Operations 

Selection   

Randomly two individuals are chosen for producing tentative offspring. The selection is 
based on fitness of individual. In TSP, shorter tours have greater possibility to be 
chosen. One good individual can take part in several mating processes; the number of its 
copies is directly proportional to its fitness. When a very good tour is found in TSP, it is 
used to produce some more similar good tours in next generation. This step mimics the 
natural procedure which is called proportional selection scheme [6]. 
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Crossover 

After choosing parents, next step will be how the parents get their offspring. That is 
where Crossover operation comes in play. The main role of crossover in the nature is to 
randomly select parts of a parent individual and combine them to create new offspring. 
There are several types of crossover, and the most common type is single point 
crossover. Single point crossover chooses a location of one parent chromosome, packs 
into child chromosome and the rest of this child chromosome is copied from another 
parent. Figure 4: single point crossover  shows us there is only one point of crossover, 
that why the operation is called single point cross over. There are some possibilities 
which should be defined at this point such as possibility for the happening of crossover 
because it can happen that the parent can not cross each other at all but just copy 
themselves directly to their child. Possibility for deciding whether only one offspring or 
two should also be defined by implementing this algorithm. 

 

Figure 4: single point crossover 

 

Many combinational problems can be used one point cross over, because they can 

present their solution candidates in a binary form. But in TSP it is quite difficult to do 

that. Solution candidates in TSP are sequences of paths between cities, like the 

followings:  

• parentTour1 = [1 2 3 4 5 6 7 8 9 10] 

• parentTour2 = [3 6 8 9 2 5 1 4 7 10] 

Application of one point crossover is not appropriate in this case. Assumed that we 

choose the fifth cities as the crossing point, the child tour looks like: 
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• childTour = [1 2 3 4 5 5 6 4 7 10] 

The childTour violates TSP’s rule of visiting each city only once as city 8 does not exits 

in this tour. 

There is another approach of Crossover in TSP, actually named Cycle Crossover 

(Karova, Smarkov, & Penev, 2005). In Cycle Crossover, cities are taken from each 

parent and put into their child at the exact locations like them in the parent. For 

example, city 1 is taken from parent 1; city 10 is taken from parent 2: 

• childTour1&2 = [1 - - - - - - - - -] 

Because the first position is occupied by city 1 of parent 1, city 3 of parent 2 cannot be 

there, that means city 3 have to be taken from parent 1, again. 

• childTour1&2 = [1 - 3 - - - - - - -] 

Keep doing that, we have: 

• childTour1&2 = [1 - 3 4 - - 7 8 9 -] 

All cities in the above tour is taken from parent 1, we fill it up with other cities in parent 

2: 

• childTour1&2 = [1 6 3 4 2 5 7 8 9 10] 

This Cycle Crossover approach helps us exchange cities to visit randomly, but does not 

guarantee that the numbers of cities taken from both parents are fairly equal. An 

example: 

• parentTour1 = [1   2 3 4 5 6 7 8 9 10] 

• parentTour3 = [10 1 2 3 4 5 6 7 8  9] 

Apply the same Cycle Crossover as mentioned, we have the child tour exactly identical 

to parentTour1:  childTour1&3 = [1 2 3 4 5 6 7 8 9 10]. If this happens, crossover is 

stuck on this specific tour. This is for the time mutation operation coming in play. 

Mutation: 

Selection and Crossover are processed rapidly until a new full population comes out. 

Because it is possible that all the new individuals are exact the same like in the older 
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population. A mutation operation on all new individuals can guarantee that will not 

happen. A loop through the population, and change at one encoded position is applied to 

each individual. Mutation guarantees that the algorithm is not trapped into one local or 

sub-optimal solution. 

An example of Mutation in TSP:  

• Tour = [1 6 3 4 2 5 7 8 9 10] before apply Mutation. 

• Tour = [1 9 3 4 2 5 7 8 6 10] after apply Mutation to position 2 and 9 

 

3.3. Ant-Colony Optimization 

Recently many algorithms have been inspired by mimic and simulating the natural 

behavior of a real ant in its community to solve difficult discrete optimization problems. 

The word “Ant System” (AS) was the first time mentioned in [7]. In this paper, Dorigo 

and his colleges have defined an Ant System algorithm derived from behaviors of 

artificial ant colonies. To test diverse branches of the algorithms as well as finding the 

optimal parameters, they applied the algorithms to Travelling Salesman Problem. In 

1996, Dorigo and his colleagues introduced an improvement of Ant System algorithm 

and named it Ant-Colony System (ACS) in the paper titled “Ant Colony System: A 

Cooperative Learning Approach to the Traveling Salesman Problem” [8]. ACS is a 

crucial improvement of AS because it can solve large TSPs much more effectively than 

AS.  

3.3.1. Biological Background 

In reality, a natural ant colony consists of millions of individuals. In an ant community, 

there are different kinds of ants which have different tasks and responsibilities: worker, 

soldiers and the queen. One of ant-worker’s (or –agent’s) tasks is to find the food source 

and bring food back to their colony. Although an ant is blind, it is found that ants mostly 

find the shortest way from colony to source food. Once the path is found, ants 

communicate with each other through a special communication media: the pheromone. 

Pheromone is the chemical substance ants lay on their path in finding food. The 

intensity of pheromone-trail has the most important role in ant moving direction.  The 

Ant nest can be considered as a start position for all ants for searching for food. 

Assumedly there is only one food source and there are many distinguish ways from the 
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colony to the source. Each way has its own distance and if all ants move at the same 

speed, it means the shortest way takes the shortest travel time from colony to the food 

source.  

3.3.2. Ant System 

The problem finding food of ants can be presented by a graph G = (V, E). V is the set of 

nodes in the Graph, and E is an edge between two nodes. In TSP, each vertex v in V can 

be seen as a city and E is the road between two cities. As above mentioned, ants deposit 

pheromone and they cooperate with each other through the intensity of pheromone trail. 

The main parts of the algorithm are the movement decisions of an ant from one node to 

another, local pheromone updating in each edge when an ant walks in the edge and the 

global pheromone updating  which updates all the edge an ant has visited before 

completes the tour. 

 

Figure 5: Example of Ants' movement 
(Uhttp://en.wikipedia.org/wiki/Ant_colony_optimizationU) 

 

The crucial factors in ants’ moving decision are the town distance and the amount of 

trail present on the connecting edge [7].   

http://en.wikipedia.org/wiki/Ant_colony_optimization�
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Following is the definition of the transition probability from city i to city j of Ant 

System algorithm: 

 

pij(t) = �
[𝜏𝜏𝑖𝑖𝑖𝑖 (𝑡𝑡)]𝛼𝛼 .�𝜂𝜂𝑖𝑖𝑖𝑖 �

𝛽𝛽

∑[𝜏𝜏𝑖𝑖𝑖𝑖 (𝑡𝑡)]𝛼𝛼 .�𝜂𝜂𝑖𝑖𝑖𝑖 �
𝛽𝛽             𝑖𝑖𝑖𝑖 𝑖𝑖 ∈ 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂

0                               𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

� 

 

This formula is taken from [7] when they apply the algorithm to TSP. ηij  is the visibility 

of the road from i to j, which is disproportional to the distance from i to j: ηij = 1/dij . 

τij (t) is the density of pheromone on the road from i to j. α und β are parameter for 

controlling the relative importance of trail versus visibility. If β is much greater than α, 

which means the distance have a great importance; the algorithm tends towards to the 

Greedy Algorithm. 

After complete a tour, each ant compares his tour with the best global tour and update it 

if it has just travelled through a better tour, which in this case a tour with less cost. 

There are 3 models of ant algorithms: Ant-Density, Ant-Quantity and Ant Cycle. They 

differ from each other by how and when ants and ant-colony update pheromone. ∆τij
k  is 

the amount of pheromone an ant puts on a road between i and j. 

Ant-Density Model: ∆τij
k =  �  Q     if the k − ant go through the i − j path

 0                               otherwise                                 
� 

Ant-Quantity Model: ∆τij
k =  �  Q

dij
     if the k − ant go through the i − j path

 0                               otherwise                                 
� 

Ant-Cycle Model: ∆τij
k =  �  Q

Lk
     if the k − ant go through the i − j path

 0                               otherwise                                 
� 

With Lk being the total tour distance of the k-ant 
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According to [9] Ant-cycle model is not as near to the reality as Ant-density and Ant-

quantity. But for the optimization purpose, Ant-cycle has great advantages against other 

two models. In Ant-cycle model, only the “good” tours are taken to update global 

pheromone. Experiments have showed that applying Ant-cycle into TSP brought a very 

good result in compare with other models. Thus, Ant-cycle model will be applied to 

solve STCP. 

3.3.3. Ant Colony System 

Ant Colony System (ACS) is an improvement of Ant System. ACS was mentioned for 

the first time in [8] when authors tried to improve efficiency of Ant System for solving 

symmetric and asymmetric TSP. Their experiments say that the Ant System Algorithm 

can discover good tours up to 30 cities, but requires much more time for larger 

problems.   

ACS is basically based on AS. Main differences lay on aspects of how pheromone trail 

updated, transition decision of ants and how ants locally communicate with each other.  

Initiation 

FOR t = 1 TO number of pre-specified Iteration 

FOR k = 1 TO m 

Until k-ant not yet visited all cities 

Choosing next city with pij 

Calculate total travel trip Lk after visited all cities 

Update Pheromone Intensity ∆𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘  for all paths in trip of k-ant 

Figure 6: Ant System Algorithm (Ant-cycle model) 
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The following table describes the differences of these two algorithms in 3 aspects: 

 

 Ant System Ant-Colony System 

Transition Rule 

Decision depends on edges’ 

length and pheromone’s 

intensity 

To balance between exploration new edge 

& exploitation a priori: use a pre-specified 

parameter Q0 

Global 

updating rule 

After all ants finish their tour: 

evaporates an amount of 

pheromone on all edge and 

each ant deposits an amount 

of  pheromone on edges of its 

tour 

Apply global updating rule only to edges 

belonging to best tour. 

Communication 
implicitly through global 

updating rule 

Through global updating rule and local 

updating rule 

Table 3: Compare Ant System and Ant-Colony System 

 

State Transition Rule of ACS can be described with the formula: 

𝑒𝑒 =  � 𝑎𝑎𝑒𝑒𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚{[𝜏𝜏(𝑒𝑒,𝑢𝑢)]. �𝜂𝜂(𝑒𝑒,𝑢𝑢)]𝛽𝛽�                  if q<q0(exploitation) 
𝑒𝑒𝑎𝑎𝑟𝑟𝑟𝑟𝑜𝑜𝑚𝑚𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑐𝑐𝑡𝑡 𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡 𝑟𝑟𝑜𝑜𝑟𝑟𝑒𝑒                         otherwise (exploration)

� 

s is the next node to visit with an ant located at node r. Q0 is a pre-specified parameter 

impacting the decision between exploitation or exploration, 0≤Q 0 ≤1. q is a random 

variable created every times an ant calls transition rule. 

The crucial difference between AS and ACS lays on the global updating rule. Only the 

ant, which makes globally best tour, is allowed to deposit pheromone on his path. With 

this rule, in next iterations of the algorithms, ants will search around the last best tour. 

Local Updating Rule is a branch-new operation of ACS. With this rule, ants are allowed 

to change pheromone level of the edges when they visit. According to (Dorigo & 

Gambardella, 1996), the Local Updating Rule has the purpose to shuffle the tour. It 

avoids ants to be stuck around the sub-optimal tours. Compared to the Genetic 

Algorithm’s permutation operation, this rule has the same goal. 
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Chapter 4  
 
Implementation a test bench for 
STCP 

 

The test bench for performance comparison between algorithms applied in STCP is 

implemented in object-oriented methodology using Java and Eclipse IDE. Programming 

framework for Ant Colony Algorithm is the “Java for Ant-Colony Systems Framework” 

[10] and a framework for Genetic Algorithm is “Java Genetic Algorithm Solution” [11]. 

 

4.1. Test Bench Structure 

The test bench has 4 main packages: warehouse, TSP, simulation and Algorithms. The 

warehouse package contains all classes abstracting the simple warehouse model used to 

interpret the Sequencing Traversing Car in a Warehouse Problem. TSP package 

abstracts Travelling Salesman Problem in classes: City, TSPMap, and Salesman. 

Simulation package contains a Simulator class, which provides methods to generate test 

cases, report comparison result, setup and run the warehouse model. The Algorithm 

package contains classes of for TSP applied algorithms.  

There is a class named WarehouseConfiguration in the warehouse package including all 

information of a warehouse instance which is number of cars, aisles, picking stations 

speed and of the traversing car. A warehouse instance has an array of order and an array 

of station. Methods for finding optimal tour for a set of orders are defined and named 

like: CallACOEngine, CallGeneticEngine, CallGreedyEngine, etc. These methods then 

create corresponding algorithms, passing parameters and receive back the most optimal 

tour that the algorithms can find. Stations are identified with ID and XCoordinate, 

YCoordinate. There are in fact 3 types of stations: aisle, input/output point and picking 

station, but in this warehouse model, we assume that the buffer size is defined as 

unlimited; hence it is no difference between three types of stations. 
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One of the most important parts of solving STCP is to transforming it in to TSP 

problem, which in this case asymmetric TSP.  To do that, we import warehouse 

configuration, picking order request and from that information, we generate a distance 

matrix. The matrix is calculated based on stations’ location and orders’ information. As 

mentioned in 2.6, STCP can only be transformed to asymmetrical TSP or generalized 

TSP which takes only setup information as a matrix of distance between cities. 

 
Figure 7: STCP test bench’s main class diagram  

 

Input file format for STCP workbench is in XML-format. The Configuration XML 

contains information corresponding to WarehouseConfiguration’s attribute. The Order 

XML has a list of orders, with order ID, start and destination of each order. The 

workbench use Dom4J framework to read XML file and parse XML with XPath. 

Following is an example of Order XML 
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Figure 8: a sample of XML order file 

 

 

Figure 9: Parsing XML configuration file with XPath using Dom4J Framework 

 

4.2. Frameworks 

This section introduces programming frameworks and libraries used in construct the test 

bench. 

@SuppressWarnings({ "unchecked" }) 
public void ReceivingDeliveryRequest(String RequestFileLocation) 
throws DocumentException { 
 
File ConfigurationFile = new File(RequestFileLocation); 
SAXReader xmlReader = new SAXReader(); 
Document requestDoc = xmlReader.read(ConfigurationFile); 
   
List<Node> requestNodes = 
List<Node>)requestDoc.selectNodes("//Request"); 
int numberOfRequest = requestNodes.size(); 
requestQueue = new Request[numberOfRequest]; 
     
//System.out.println(requestNodes.get(0).selectSingleNode("From").get
Text()); 
for (int i = 0; i < numberOfRequest; i++) { 
int from = 
Integer.parseInt(requestNodes.get(i).selectSingleNode("From").getText
()); 
int to = 
Integer.parseInt(requestNodes.get(i).selectSingleNode("To").getText()
); 

int ID = Integer.parseInt(requestNodes.get(i).valueOf("@ID")); 
… 

<?xml version="1.0" encoding="UTF-8"?> 
<DeliveryRequest> 
 <Comment>a sample of request file for traversing car</Comment> 
 <Date>10/02/2010</Date> 
 <Time>07:00</Time> 
 <Request ID="01"> 
  <From>4</From> 
  <To>6</To> 
 </Request> 
 <Request ID="02"> 
  <From>3</From> 
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4.2.1. Java for Ant-Colony Systems Framework (JACSF) 

JACSF is chosen as a framework to solve STCP in this thesis, because it is one of the 

closest implementations to Ant-Colony System described in [8] of among others 

programming libraries. And JACSF was also implemented to solve generalized TSP, 

meanwhile other implementations like Concorde restricted to solve only symmetric 

TSP. 

JACSF is an Object-Oriented framework written in Java designed by Ugo Chirigo [10] 

to implement Ant Colony System. This framework is chosen for testing the efficiency 

of Ant Colony System in solving Sequencing Traversing Car in a Warehouse Problem. 

JACSF has implemented the idea of Dorigo and Gambardella of Ant Colony System in 

[8]. The Ant Colony System is described in 3.3.3 of this thesis. Three important aspects 

of Ant Colony System implemented in JACSF are: 

“ 

• a State Transition Rule which brings the concrete ant from a node to another across an arc; 
• a Local Updating Rule which updates the pheromones deposited by the ant on the arc it walked 

in; 
• a Global Updating Rule which updates the pheromones deposited on the arcs when an ant ends 

its tour; 
“ 

 

JACSF has 3 main entities: Ant, AntColony and a AntGraph. An Ant Colony System 

contains a set of ants, a graph and an ant colony, which plays the global updating job of 

the algorithm. Figure 10: Object Model of JACSF in UML  depicts these entities in 

UML.  

The object model of JACSF has two abstract classes: Ant and AntColony. Ant 

implements behavior of an artificial ant which, during the searching process, has to 

make transition decision and update local pheromone trail. These two methods are 

abstracts and implemented in the context of specific problem. AntColony is an abstract 

class implementing the Ant Colony System. Two methods need to be implemented in 

derived classes are creatAnt and globalUpdatingRule. AntGraph class contains 

information of pheromone density and distance between nodes in graph. 

Quote 1: Rule of Ant Colony System (Ugo, 1997) 
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To apply JACSF to TSP, the transition rule, global updating rule and local updating rule 

should be implemented in two derived classes of Ant and AntColony. Formula of those 

rules is described in 3.3. The path in STCP differs than in TSP that it does include 

distance from last visited city to the city where the salesman starts.  

 

 

4.2.2. Genetic Algorithm Framework 

As mentioned, the Genetic Algorithm Framework used for performance testing is Java 

Genetic Algorithm Solution (JGAS) [11]. This framework is chosen because it contains 

not only Genetic Algorithm’s implementation but also others optimization algorithms 

like 2-opt, Greedy Algorithm. Like JACSF, Java Genetic Algorithm Solution also uses 

the power of parallel programming to speed up algorithms’ runtime and can solve a TSP 

with up to 5000 cities. This framework also accepts a TSP defined with a distance 

matrix between cities. Thus, it is capable to solve generalized TSP, especially 

asymmetrical Travelling Salesman Problem. Supported algorithms by JGAS are:  

• Random Mutation: simply mutate two random tour with each other 

• JGAP Genetic Algorithm: implementation of an open-source java genetic 

framework 

• Genetic Algorithm: Genetic Algorithm with crossover and mutation 

operations 

Figure 10: Object Model of JACSF in UML [10] 
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• Genetic Algorithm with 2-opt optimization: a very fast solution of TSP using 

GA and 2-opt (Sengoku & Yoshihara, 1998) 

• 2-opt optimization: implementation a pure 2-opt optimization. The 

optimization is based on random mutation. 

4.2.3. TSPLIB 

TSPLIB is not a framework; it is a library of test instance for TSP and TSP-related 

problems. TSPLIB is used to benchmark solutions. The benchmark instances are given 

with varying complexity and difficulty. STCP is considered in this thesis as a related 

problem to TSP. 

The TSPLIB format has two parts: specification part and a data part. In the specification 

part all entries are in the form <keyword> : <value>. The specification parts contain the 

configuration of the TSP like: name, type of TSP (asymmetric, symmetric), edge weight 

format (given in function of matrix format), etc. The data part of TSPLIB files has the 

format depending on the choice of the specification. Each section of data part begins 

with a corresponding keyword and the information begins with a new line. End of data 

part is defined in the specification section. More details of can be found in [12].  

The STCP Test bench provides a module to translate XML input file to TSPLIB format 

file as an Asymmetrical Travelling Salesman Problem. With this standard format for 

TSP, STCP can be solved directly by programs which accept TSPLIB file format. 

 

4.3. Testbench workflows 

Figure 11: xml – to - tsplib workflow and Figure 12: xml - to - distance matrix 

workflow present two possible workflows of the test bench. In the first workflow, STCP 

configuration file and delivery order files are transformed directly to TSBLIB file then 

use solutions, which take TSPLIB format as input, to solve STCP. In the second 

workflow, configuration file and delivery order file is translated to a matrix of distance, 

then use framework of genetic and ant colony system to solve that asymmetric matrix. 

Because the configurations file as well as delivery order file is in XML-format, the first 

workflow is called XML-to-TSPLIB and the second workflow is called XML-to-

DistanceMatrix. 
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4.2.4. Setup warehouse: 

The test bench takes at least two files before asking a warehouse model to execute a set 

of orders. One of them is a configuration file for setting up warehouse model, and the 

other is the order file in XML format. A configuration file contains information of the 

warehouse, which indicates where the stations are and how far they are from each 

others, is similar to specify the city coordinate in TSP and their distance to other city. 

The setup process begins with a simulator instance call method setupWarehouse with 

parameter as a String referring to setup file location. 

 

 

Figure 11: xml – to - tsplib workflow 

 

Figure 12: xml - to - distance matrix workflow 
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4.3.1. Delivery Orders:  

After the warehouse is configured, it is ready to take delivery orders. Delivery orders 

are specified in a XML file. Simulator decides which set of orders should be executed. 

After locating the information of picking orders, the warehouse instance will create a 

TSPLIB format file or a two-dimensional distance matrix. 

4.3.2. Calculating Best Tour: 

The warehouse instance sends a matrix of distance to solutions engines, which is based 

on routing algorithms like Genetic Algorithms or Ant-Colony System. It also deliver 

pre-specified parameter for each solution engines. For example in Genetic Algorithm, 

that is the population size, in Ant-Colony System, that is the number of ants. After 

solutions engines finishing their computation, they return the best tour back to the 

warehouse, which forwards the results further to the simulator instance. Because the 

warehouse model built is just for comparison between algorithms, the workflow should 

stop here. In reality, after comparing results of solutions engines with each others, the 

warehouse will instruct a traversing car to execute a sequence of picking orders. 

4.3.3. 55BIntegrating other algorithms 

There are two situations possible for plugging other algorithms into this test bench. First 

variant is the algorithms are already used to solve TSP. That means it should be able to 

take a distance matrix as a parameter and calculation of tour length as evaluation 

function. In this case, we only need to implement an adapter class for the new algorithm 

The adapter class must have the function findBestTour(double[] distanceMatrix). In the 

other case, the new heuristic algorithm has not been applied to TSP yet. Because it is a 

heuristic algorithm, we need to define encoding function and evaluation. This test bench 

is designed to use algorithms which have been already coded to solve TSP.  
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Chapter 5  
 
7BPerformance Comparison of 
Algorithms to STCP 

 

In this chapter we also compare performance of several algorithms applied in STCP. 

The comparison result is basis for the suggestion of using which algorithms in which 

case of STCP. One of the main tasks of chapter 5 is to define test cases for tuning Ant-

Colony System Algorithm and Genetic Algorithm to get optimal configurations of two 

algorithms when apply them to Sequencing Traversing Car in a Warehouse Problem.  

 

5.1. 27BSetup Test Bench 

For tuning configuration of Ant-Algorithm and Genetic Algorithm, there is a set of 50 

delivery orders in a 4 aisle, 4 picking station, 1 input point and 1 output point. Location 

of stations is specified with 2-Dimension coordinate system. Measure unit of 

coordination system is meter. Speed of the traversing car is 2 m/s, single-collecting car. 

Followings are station coordination: 

• Input Point: < 0, 0 > 

• Output Pont: <25, 0> 

• Aisle 1: < 50, 0 > 

• Aisle 2: < 75, 0 > 

• Aisle 3: < 100, 0> 

• Aisle 4: < 125, 0> 

• Picking station 1: < 50, 0 > 

• Picking station 2: < 80, 0 > 

• Picking station 3: < 110, 0 > 

• Picking station 4: < 140, 0> 
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For algorithm tuning we use only one set of 50 delivery orders. To compare algorithms’ 

performances with each other, we have several sets of delivery order which contain 

from 50 up to 2000 orders.  

Because there is no exact solution implemented, a set of order with a tour which has a 

total un-loaded travel time is 0 meter as the optimal tour. With this set of order, we can 

analyze how low it takes an algorithm to reach to the optimal tour. 

 

5.2. 28BTuning Ant-Colony Algorithm applied to STCP: Number of ants 

In order to achieve optimal number of ants for a set of 50 orders, a test is launched with 
fix factors: β = 2, α = ρ = 0.1, max number of cycle is 2500 and Q0 is 0.8. For each 
number of ants, at least 10 tests are executed. 

 

Number 
of Ants 

Un-loaded distance of 
the best found tour 

Average un-loaded 
distance for 10 tests 

Average number of cycles before 
entering best Uni-path. 

10 305 meter 322 meter 911 

20 320 meter 322 meter 876 

30 305 meter 315,5 meter 721 

Table 4: Tuning number of Ants in Ant-Colony Algorithm 

 

Table 4 reveals a minor difference of best tours as well as the average of best tour 
distance in 10 tests corresponding to the number of ants. As in Table 4, the more ants 
there are the faster we get into the best Uni-Path. It can be explained that when we have 
more ants on the map, the intensity of pheromone trail is stronger in all paths, especially 
the shortest path and some near-shortest paths. Best tours showed in the table can 
possibly be the optimal global tours, or just sub-optimal tours which ants are stuck in. 
With a decision factor Q0 = 0.8 (80% exploitation, 20% exploration) and max number of 
iteration is 2500, colony setup with 20 ants like in the above table seems like cannot 
find the tour with un-loaded travel distance of 305 meter. 

We have experimented runtime of Ant-Colony System with increasing number of ants, 
and result is in Diagram 1. The graph captures the growth of running time of ACS with 
a set of 50 picking orders. It shows us that the algorithm runtime rises linearly. Take it 
as an indicator for choosing number of Ants for a set of 50 orders, we will set number of 
ants at 10 as suggested in [8].  
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Diagram 1: Runtime of Ant-Colony Algorithm with increasing number of ants 

 

5.3. 29BTuning Genetic Algorithm applied to STCP 

As mention in 3.2, two parameters of Genetic Algorithm should be tuned in order to 

attain the best configuration for the algorithm is population size, permutation rate. We 

apply the same set of 50 delivery orders like in tuning ASC. Permutation rate is fixed at 

10%. The stopping criterion for GA is population age equaling 100, which means the 

algorithm stop by 100 cycles. Criteria used to choose the number of population is 

algorithm’s runtime and tour distances it delivers. Following is the tuning result of 

population size:

 

Diagram 2: Tuning population size of GA for a set of 50 orders 

0

50

100

150

200

250

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

(s)

Number of Ants

0,00
0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00
4,50
5,00

0
100
200
300
400
500
600
700
800

10 40 70 10
0

13
0

16
0

19
0

22
0

25
0

28
0

31
0

34
0

37
0

40
0

43
0

46
0

49
0

52
0

55
0

58
0

61
0

64
0

67
0

70
0

73
0

76
0

79
0

82
0

85
0

88
0

91
0

94
0

97
0

10
00

se
co

nd

m
et

er

size of population

Best Tour Found (meter) Average Run-Time (seconds)



42 

 

Genetic Algorithm constantly delivers very good tour when population size is greater 

than 130. The graph also shows that GA’s computation cost for a set of 50 picking 

requests rises linearly to number of population size. In conclusion, from this experiment 

we can take population size of 150 for a set of 50 delivery orders to guarantee that GA 

delivers good tour in acceptable time. 

Next tuning is about the Mutation Ration. Population size is set at 150, a set of Mutation 

Ration to evaluate is: {0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1}. Statistics are 

calculated across 10 trials. After experiments, we recognize very slight difference of 

GA runtime again increasing mutation ration. Thus AG’s runtime in this case is one 

factor that is not necessary to consider. The only remain interesting factor is the best 

average tour GA delivers with different value of mutation ration. Following charts 

depicts the experiments result: 

 

Diagram 3: average unloaded-travel distance against mutation ration 

Interestingly, with mutation ration from 0.5 to 0.7, GA returns the best tour of 305 

meter across all 10 trials for each value. From the chart we can see that the average 

unloaded-travel time is extremely high with small value of mutation ration (up to 0.3). 

This can be explained that with small value of mutation rotation, GA is usually stuck 

into sub-optimal solutions. The value is too small to shuffle individuals, and then it is 

difficult to get to the most optimal tour. With higher value of mutation ration, GA also 

cannot deliver the best optimal tour, because it shuffles almost all individuals in the 

population, even the fittest. Thus, GA loses the fittest because of mutation and creates 

new weaker individuals. We choose 0.6 as the most optimal mutation ration in this 

circumstance.  
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5.4. 30BBenchmarking algorithms applied in STCP 

In the last sections, we have tested and found the best optimal configurations for Ant-

Colony System and Genetic Algorithms. In this section we benchmark algorithms with 

each other to see of how fast they can solve STCP, how good algorithms solve the 

problem, how scalar the algorithms are when rapidly increasing number of requests. 

The ultimate goal of benchmarking is to find the best algorithm in aspects of speed and 

quality of orders’ execution in STCP. 

Algorithms in the benchmark are: Ant-Colony System, Genetic Algorithm, 2-opt 

Algorithm, Genetic-hybrid-2-opt Algorithm, Greedy Algorithm and FIFO approach. 

The first evaluation is about solution quality the algorithms can deliver. We test all 

algorithms with sets of {50, 100, 150, 200, 250, 300, 350, 400, 500} requests. 

Algorithms are tested across 10 trials. Following is the result: 

 

Set of 

orders 

ACS 
Genetic 

Algorithm 
2-opt 

Genetic-

Hibrid-2opt 
Greedy FIFO 

Best 

found 
Avr. 

Best 

found 
Avr. 

Best 

found 
Avr. 

Best 

found 
Avr. 

50 

orders 
320 326,5 305 307 355 368 355 367 475 2535 

150 

orders 
855 902,22 665 683 765 782 745 765 900 6930 

Table 5: Compare unloaded travel distances rendered by solution engines 

 

The table shows us that in almost all cases, genetic algorithm always gets the best 

solutions. GA is convincingly good with every sets of picking orders. 2-opt algorithm 

has been proved to be a very effective approach to solve symmetric TSP, but through 

this table, we can see that it has the worst performance compare with all heuristic 

algorithms. It can be explained that 2-opt is only effective in a symmetric TSP, when it 

shorten crossed edges. In contrast to symmetric TSP, in TSP, unfold crossed edges can 

even makes a worse tour than a crossed one. Genetic Algorithms has brought a very 
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good solutions, but apply 2-opt into the solutions does not optimize, let alone makes it 

even worse. Greedy Algorithm is very promising; it delivers acceptable results and is 

expected to be the fastest algorithm because of its simplicity.  The following diagram 

depicts more clearly that Genetic Algorithm is the best algorithm to find optimal tour 

for traversing car: 

 

Diagram 4: Compare calculated unloaded travel distanced 

 

Next step of the benchmark is to compare runtime of the algorithms. Tests are 

performed on a PC computer running MS Windows 7, 2x2.53 GHz Duo-Core, 6GB 

Ram. 

 

Diagram 5: Comparison of algorithms' runtime for solving STCP 
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ACO is much slower. The 2-opt algorithm is a bit faster than ACO when number of 

request less than 100. The Diagram 4 and 5 provide a good indication, that The Genetic 

Algorithm can solve STCP very efficient. 
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Chapter 6  
 
8BSummary and Conclusion 

 

 

6.1. 31BSummary 

The goal of this thesis is to compare performance of heuristic algorithms for the 

Sequencing Traversing Car in a Warehouse Problem. Base on the similarities between 

the Travelling Salesman Problem and STCP, it has proposed an approach which uses 

algorithm applied in TSP to solve STCP. This work splits into two three main parts. The 

first part is about investigating characteristics of STCP resulted in modeling a simple 

warehouse model. The warehouse model serves as a platform for comparing routing 

algorithms. The second part of this work concentrates on metaheuristics, and how they 

solve TSP problem. In the last part, this thesis has fine-tuned and execute each 

algorithm in order to get answer the main objective at the beginning of this work. To 

make it possible to compare algorithms, a test bench has been designed to use solutions 

of TSP to solve STCP. The test bench was written in Java, using Eclipse IDE. 

 

6.2. 32BConclusion 

Overall we have seen that the Genetic Algorithm is superior to other mentioned 

algorithms. It is the best algorithm in finding the shortest tour and the second-best of 

fastest runtime. Scalability of the Genetic Algorithm is also very good; it runs almost in 

constant time in compare with Ant Colony Algorithm, which has an exponential 

runtime. Greedy Algorithm is the fastest algorithms we tested so far. With a set of less 

than 100 request, the Greedy Algorithm take even under 1 ms to solve the problem, and 

the delivered results are acceptable. Ants Colony Optimization has showed its 

advantages in solving TSP in [7] and [8], but in our Sequencing Traversing Car 

Problem, it is the slowest algorithm and not the best algorithm in aspect of finding the 

best tour. 2-Opt Algorithm and Genetic-Hibrids-2opt cannot prove their advantages in 
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solving STCP. Because STCP is more similar to asymmetric TSP, these two algorithms 

take more time to operate and sometime even make the tour longer than the original 

initiation. 

Choosing which algorithm should be used to solve converges to two algorithms: 

Genetic Algorithm and Greedy Algorithm. The decision, of course, depends on which is 

the most important factor for the warehouse management. Greedy Algorithm has great 

speed advantage; meanwhile Genetic Algorithm always delivers very good tour 

distance. On an Intel Core2Duo 2,56x2 processor, the Genetic Algorithm takes 8s to 

solve a set of 200 requests. In reality, with a small and slower microprocessor 

embedded in the traversing car, it would take couple of minutes to solve the problem. 

Otherwise, the Greedy Algorithm takes only 10ms to solve the same set of problem with 

an acceptable tour length. In conclusion, the Genetic Algorithm is the best algorithm in 

finding best traveling tour for a traversing car in a warehouse. Beside Genetic 

Algorithm, the Greedy Algorithm is the best algorithm in aspect of traveling-length/run-

time. With a small set of request (under 50), the speed disadvantage of Genetic 

Algorithm is negligible, but for a bigger problem, greater set of requests, Greedy 

Algorithm is a wiser choice. 

 

6.3. 33BImplications for future works 

Having compared algorithms used to solve STCP, the following limitations of this 

thesis should need to persuade in future work. 

Compare algorithms applied to solve dynamic STCP: 

Dynamic STCP means that traversing car should be able to retrieve a stream of orders 

during operation. For doing this, first step is to simulate a stream of picking orders. 

Secondly, it is recommended simulating an automatic storage and retrieval systems for 

each aisle. Traversing car should take the capacity of stations’ buffer into consideration. 

Design and construct a flexible, extensible workbench 

This thesis has proposed a test bench for comparison algorithm in solving STCP. To test 

the algorithms, many constraints have been declared. It is tempting to test more 

algorithms for not only STCP but also other related problems. For that reason, it is 

recommended to design a workbench for STCP. The workbench should work as a 
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framework and be able to simulate STCP and related problem as well as adapt other 

algorithms to solve these problems. 
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