

Bachelor Thesis

Performance comparison of heuristic algorithms in routing

optimization of sequencing traversing cars in a warehouse

Minh Hoang

Technische Universität Hamburg-Harburg

supervised by: Prof. Dr. Sibylle Schupp

Institute for Software Systems

TUHH

Hamburg 04.2010

2

Acknowledgement

My most sincere thanks go to Prof. Dr. Sibylle Schupp, who has inspired and given me

this previous chance to write this thesis on an interesting topic. I also owe many thanks

to Prof. Dr. Ralf Möller, who is the second examiner for my thesis.

My great gratitude goes to Mr. Rainer Marrone, who has motivated and guided me

through all the steps to accomplish this thesis, who has supported me throughout this

very first thesis of mine with his patience and knowledge whilst allowing me the room

to work in my own way.

3

Declaration

I hereby confirm that I have authored my bachelor thesis with the title

"Performance comparison of heuristic algorithms in warehouse transport optimization"

independently and without use of others than the indicated resources. All passages taken

out of publications or other sources are marked as such.

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich meine Masterthesis mit dem Thema

"Performance comparison of heuristic algorithms in warehouse transport optimization"

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel

benutzt habe.

Hamburg, April 10, 2010

Minh Hoang

4

Abstract

This thesis aims at comparing the performance of heuristics algorithms used to solve the

"Sequencing Traversing Cars in a Warehouse Problem" (STCP) as an extension of the

classic "Traveling Salesman Problem" (TSP). Algorithms to benchmark are Genetic

Algorithm and Ant-Colony Algorithm, Greedy Algorithm, and Greedy Algorithm with 2-

op Optimization. STCP has both similar and different features from the "Travelling

Salesman Problem” (TSP). To adapt the solutions of TSP in STCP, it is necessary to

analyze the similarities and differences between the two problems.

In order to implement solutions for STCP and a platform for numerical comparison of

the applied algorithms, this thesis proposes an UML-model of a simple warehouse

system and programming test bench used for comparing solutions of STCP.

Keywords: Optimization algorithms, TSP, Sequencing Traversing Car, Pick-up and

Delivery, Greedy Algorithm, Ant-Colony Algorithm, Genetic Algorithm.

5

Table of Contents
ACKNOWLEDGEMENT 2

DECLARATION 3

ABSTRACT 4

CHAPTER 1 INTRODUCTION 7

1.1. Motivation 7

1.2. Task description 7

1.3. Structure of the thesis 8

CHAPTER 2 SEQUENCING TRAVERSING CARS IN A WAREHOUSE 9

2.1. Introduction 9

2.2. A simple Warehouse System 10

2.2.1. Storing capacity 10

2.2.2. Timing constraints 11

2.2.3. Priority of picking order and item consolidation 11

2.2.4. Traversing Car and Order-Picking 12

2.2.5. A warehouse model for performance comparison of routing algorithms 12

2.3. Mathematical Formulation of STCP 13

2.4. An example of delivery orders 14

2.5. Travelling Sale Man Problem 15

2.6. STCP-To-TSP Transformation 16

2.7. STCP-related problems 16
2.7.1. Multi collecting 17

2.7.2. STCP with limited buffer 17

2.7.3. Dynamic requesting 18

CHAPTER 3 SOLVING TSP WITH METAHEURISTICS 20

3.1. Metaheuristic Algorithm 20

3.2. Genetic Algorithm 21

3.2.1. Structure of Genetic Algorithm 21

3.2.2. Initiation a random population 22

3.2.3. Evaluation function 23

6

3.2.4. Genetic Operations 23

3.3. Ant-Colony Optimization 26
3.3.1. Biological Background 26

3.3.2. Ant System 27

3.3.3. Ant Colony System 29

CHAPTER 4 IMPLEMENTATION A TEST BENCH FOR STCP 31

4.1. Test Bench Structure 31

4.2. Frameworks 33

4.2.1. Java for Ant-Colony Systems Framework (JACSF) 34

4.2.2. Genetic Algorithm Framework 35

4.2.3. TSPLIB 36

4.3. Testbench workflows 36

4.2.4. Setup warehouse: 37

4.3.1. Delivery Orders: 38

4.3.2. Calculating Best Tour: 38

4.3.3. Integrating other algorithms 38

CHAPTER 5 PERFORMANCE COMPARISON OF ALGORITHMS TO STCP 39

5.1. Setup Test Bench 39

5.2. Tuning Ant-Colony Algorithm applied to STCP: Number of ants 40

5.3. Tuning Genetic Algorithm applied to STCP 41

5.4. Benchmarking algorithms applied in STCP 43

CHAPTER 6 SUMMARY AND CONCLUSION 46

6.1. Summary 46

6.2. Conclusion 46

6.3. Implications for future works 47

TABLE OF FIGURE 49

BIBLIOGRAPHY 50

7

Chapter 1

Introduction

1.1. Motivation

The "Travelling Salesman Problem" has been a popular research topic among experts

and scholars of mathematics and computer science. With the goal of minimizing the

total travel distance of the salesman in Travelling Salesman Problem (TSP), TSP's

solutions can be applied to a wide range of discrete optimization problems. Reducing

travel cost of transportation and logistics distribution are one of typical applications of

TSP.

Transportation optimization is the most natural application of TSP, in which TSP can

play the role of reducing travel cost. Büchter & Novoa [1] suggested that the

Sequencing Traversing-Cars in a Warehouse Problem can be solved as an extension of

TSP. They also provided statistical comparison between solutions used Greedy

Algorithm and Ant-Colony Optimization (ACO). The comparison has shown that ACO

is a promising technique to incorporate in algorithms for warehouse traffic sequencing.

It is a temptation to apply other heuristic algorithms used to solve TSP in Sequencing

Traversing Car in A Warehouse Problem (STCP) and compare their performances in

aspects of finding the most optimal tour and algorithm run-time.

1.2. Task description

This thesis analyzes characteristics and features of STCP and suggests a problem

transformation from STCP to TSP. It also compares performances between two

heuristic algorithms Ant-Colony Algorithms, Genetic Algorithm and with some other

algorithms in solving STCP. Since STCP can be considered as a sub-problem or an

extension of TSP. In order to adapt algorithms used in TSP in STCP, a test bench for

8

numerical comparison between applied algorithms in TSP and STCP is to be

implemented.

1.3. Structure of the thesis

After Chapter 1 which provides a general idea of the thesis, Chapter 2 presents the

description of the Sequencing Traversing Cars in a Warehouse with analyzing the

features of the simple warehouse model used through the thesis. The Travelling

Salesman Problem is also briefly introduced before suggesting a STCP-to-TSP

transformation. The transformation will help apply TSP solutions to STCP.

Chapter 3 puts heuristic approaches in solving TSP in context. Two heuristic

algorithms: Genetic Algorithm and Ant-Colony Algorithm and their applications in TSP

are discussed in detail.

Chapter 4 is dedicated to present structures and workflows of the algorithms comparing

test bench. The test bench imports solutions of TSP, transforms STCP to TSP and

solves STCP. Design of the test bench as well as used programming frameworks and

libraries are introduced in this Chapter 4.

In Chapter 5, a number of numerical and statistical comparisons between Greedy

Algorithm, Genetic Algorithm and Ant-Colony Algorithm in STCP are performed in

order to demonstrate the advantages and disadvantages of each algorithm. Chapter 5

also defines a list of experiments cases to tune optimal parameters of Ant-Colony

System and Genetic Algorithm when they are applied to STCP.

The conclusion and summary is presented in Chapter 6 with a brief overview of

implications for future work.

9

Chapter 2

Sequencing Traversing Cars in a
Warehouse

This chapter describes the Sequencing Traversing Cars in a Warehouse Problem.

Features of a warehouse are analyzed in order to classify the problem into sub-problems

like car loading problem, multi-Collecting Problem, Routing Problem, etc. This

Chapter also provides an introduction of the Travelling Salesman Problem and discusses

the similarities and differences between routing of a salesman and that of a traversing

car in a warehouse.

2.1. Introduction

Figure 1: a simple warehouse model depicts a simple warehouse system.

Figure 1: a simple warehouse model [1]

10

The warehouse model has only one single input (IP) and output (OP) point, four picking

stations (PP), four storage aisles which have single output buffer (OB) and input buffer

(IB) for each. AS and RS are the Automatic storage and Retrieval systems. Goods in

warehouse are transferred between aisles, input, output and picking stations through a

traversing car (TC). In Figure 1, the arrow shows the direction of where goods should

go.

The above warehouse system has great demands of goods delivery in daily workflow.

There are orders for traversing cars for deliver goods from input point to storage aisles,

from storage aisles to output point or picking stations, or directly from IP to OP in some

specific cases. The main problem of as traversing car in a warehouse is how to

minimize traveling distance between stations under considerations of available

resources which can be stations’ storage buffer and capacity.

2.2. A simple Warehouse System

In this section, we are going to consider characteristics of the warehouse model

mentioned in [1]. Main subjects of the simple warehouse system are storage units (aisle,

picking point), retrieval units and picking units (car).

2.2.1. Storing capacity

A real warehouse system has its own limited capacity. The capacity can be seen roughly

as how many items it can store. More exactly, the capacity should be the dedicated size

and volume used for storing goods. In this warehouse model, each storing point has its

own size, which defines the limits of total items weight and size it can store. The limited

capacity of each storing point can be mathematically presented as a pair: capacity = (w,

s) with w being how much weight one storing point can keep items in, and s being the

volume of the storing point. The total weight of all items needed to be stored in one

station is not allowed to exceed the specific capacity of a station. Together with weight

and dimension of items, temperature requirements are also a problem of a warehouse.

As we can see from Figure 1, which describes a warehouse system, each picking station,

input/output point and input/output buffer of each aisle has their limited storing

11

capacity. The problem of how to make the most optimal use of the storing capacity

brings us to the classic computer science problem: The Rucksack Problem.

2.2.2. Timing constraints

According to Büchter & Novoa [1], the authors have attempted to find the optimal tour

for the traversing car in a warehouse with a set of delivery orders. In reality, the orders

can come to the car continuously. If the traversing car can compute only the most

optimal tour for just a subset of orders, then it is obviously not the global optimal tour.

But in the normal workflow, picking orders can come at anytime, and the traversing car

should not be idle until all orders come and then calculate the global optimal tour. For

that reason, it is acceptable to choose a certain number of orders for the traversing car to

serve. This number should be based on an estimation of how many orders coming

during a certain time span, and how many orders each traversing car can serve in that

time span.

Another timing constraint is the time when an item should be delivered to its

destination. Even with the car which has the most optimal tour for sparing travelling

cost, it may not make the most wanted tour. If each order has its own expected-delivery

time, then the most important goal is that all these timing demands are fulfilled

regardless of the whole tour distance.

2.2.3. Priority of picking order and item consolidation

In most cases of warehouse transportation, the First In First Out (FIFO) rule is used for

a stream of delivery orders. . The FIFO paradigm is not appropriate for cases in which

each order has its own priority. Packet consolidation can be seen as an example of a

priority problem. Let us consider there is a huge item waiting at an output buffer of aisle

A to delivery to output point. The huge item is actually a packet which is waiting for

other items from stations B and C to consolidate before sending. It is obvious that

delivery orders of items from B and C have higher priority than the delivery order from

A in this case. To solve such a problem of delivery orders with priority, it is essential to

define validation rules preventing conflicts between picking order. Moreover, the

consolidation capacity of wrapping packet, as well as the size of each items in it, also

need to be identified, which leads us back to the problem of storing capacity. Priority of

picking orders can be decided by warehouse administrators.

12

2.2.4. Traversing Car and Order-Picking

Properties of the traversing car should be taking into consideration before analyzing the

solutions to the transportation optimization in a warehouse. The properties can be: the

number of traversing car, the speed of the car, the car's storing capacity and its

collection ability. If the warehouse has more than one car, then a new occurring

problem is how to avoid delivery conflicts when the two cars serve the same set of

picking orders. If they serve different sets of order, the global information base of

station temporary buffer need to be rapidly updated and informed to each car. In reality,

a real car can contain one or more items for one delivery task. For example, a car serves

an order from A to D, and then on its way to D it can collect items from B, C and brings

them to C.

The term Order-picking is about delivery goods of traversing cars in a warehouse

from/to storing units or picking point, input/output points. According [2], order-picking

is the most intensive and expensive process in warehouses and distributed center.

Following is an exemplary number of delivery orders in a warehouse:

Mail-order trade

(very large)

Pharmaceutical

wholesale trade

Food regional

warehouse

Producer electric

household appliances

Orders/day 190 000 4 000 780 350

Ordered

items/day
650 000 105 000 300 000 6800

Table 1: Exemplary number of picking orders pro day in warehouses [3]

2.2.5. A warehouse model for performance comparison of routing algorithms

The main focus of this thesis is to compare the performance of applied heuristic

algorithms in finding the most optimal tour for the traversing car in a warehouse.

Therefore, a good evaluation function should be defined to benchmark the algorithms

with each others. So far, this thesis has discussed characteristics of a real warehouse

system including storing capacity, timing, priority, and properties of traversing car. If

each property of the warehouse is a parameter in the evaluation function, the function is

going to be very complex. It needs to fulfill all storing-capacity, timing, priority

constraints and all properties of the traversing car. The biggest importance for the

13

routing problem is the travel distance of traversing cars. Thus we restrict some

constraints for our STCP in order to retrieve a simple evaluation function which makes

it easy to compare between applied solutions. Followings are the features of the

warehouse model for our STCP:

• Every item has a same weight and volume to avoid the storing capacity

problem mentioned in 2.2.1.

• Storing capacity is just about number of items; weight and volume are

not taken into consideration

• No timing constraint for any delivery order. With this feature, the only

factor used to evaluate solution is length of the tour.

• Every delivery orders has the same priority

• No consolidation

• There is only one car in the warehouse, and it has no multi-collecting

function. Solutions of multi-car and multi-collecting STCP are suggested

in 2.7.

• Unlimited storing buffer of aisles, input, output and picking point

• Traversing car has a constant speed

2.3. Mathematical Formulation of STCP

In this section, we will mathematically formulate the STCP with all the constraints

mentioned in section 2.2.5. The only traversing car in the warehouse serves a set of n

service order from different sources of the system.

At a given time, the traversing car has to choose the location of the next station it needs

to visit in order to pick items. Given C being the set of candidate order at a given time,

nc is the size of the set C. For each order i, the car needs to deliver goods from an origin

oi to a destination di. If the traversing car serve order j directly after order i, there is a

dependent set-up time si,j, which is the time it takes the car to un-load travel from di to

oj. For serving an order i, there is the fixed time the car takes to load travel from oi to oj.

The total time for serving all orders is the sum of all fixed load travel time and un-load

travel time. It is impossible to reduce the fixed load travel time except we apply the

problem to a continentally distributed warehouse, in which between stations, items can

14

be delivered by airplanes which is much faster than by cars. Authors in [1] suggested an

equation of calculating total tour time:

()min ij j ij
j C i C

s f x
∈ ∈

+∑∑

Formula 1: Total Tour Time

In Formula 1, the variable xi,j is the binary variable which presents one if the traversing

car serves order j succeed s order i.

2.4. An example of delivery orders

Let's consider an example set of order for the warehouse system in Figure 1, assumed

that distance between two side by side aisles is 1 distance unit, and the aisles are name

from A to D from left to right. The set of order is {(A, B), (B, D), (A, C), (D, B)}.

Followings are the sequence of execution with the First-In-First-Out and the Greedy

approaches.

Order Loaded travel distance Unloaded travel distance Accumulated Travel Time

(A,B) 1 0 1

(B,D) 2 0 3

(A,C) 3 3 (from D to A) 9

(D,B) 2 1 (from C to D) 12

Table 1: Traversing car serving a set of order with FIFO rule

Order Loaded travel distance Unloaded travel distance Accumulated Travel Time

(A,B) 1 0 1

(B,D) 2 0 3

(D,B) 2 0 5

(A,C) 2 1 (from B to A) 8

Table 2: Traversing car serving a set of order with Greedy rule

15

From two tables above we can see that if the traversing car serves the given set of order

with the Greedy Algorithm, it takes only 8 time units compared to 12 time units when it

serves with the FIFO. In this case, the Greedy Algorithm has a better performance than

the FIFO Algorithm. This small example strengthens our hope, that applied heuristics

algorithm will shorten tour length of a traversing car in a warehouse.

2.5. Travelling Salesman Problem

The Travelling Salesman Problem is a typical example of combinatorial optimization

problem. The problem is about a salesman of a company who needs to visit his

customers located in different cities. To save money for the company and to visit

customers as soon as possible, it is a difficult job for the salesman to plan his travel

route. The problem can be mathematical described by a connected graph G = (V, E).

With V as the set of cities, and E contains all edges between vertexes. There are two

types of TSP, symmetric TSP and asymmetric TSP. If the distance between two cities i

and j is di,j then in symmetric TSP dij = dji, meanwhile in asymmetric TSP, dij ≠ dji.

There are more software tools and programs dedicated to solving only symmetric TSP

than solving asymmetric TSP. A typical symmetric TSP solver is Concorde [3].

As for the salesman, planning the tour is a very tough job for him. If there are n cities to

visit, then the number of possible path is (n − 1)!/2 .If n = 20 then number of tours for

TSP are about 6 × 1016 Assumed that the salesman has a powerful computer, which

can compute billion additions in a second, it takes him about 703 days just to calculate

all tour lengths, he stills need to sort them afterwards. He probably loses his job before

finish calculating.

TSP has been long stated by scientists as NP-hard problem [4]. It means there is no

efficient find exact solution of TSP. An acceptable approach for TSP is to use heuristic

algorithms. Although they do not guarantee the most optimal tour for the Salesman,

they still can deliver reasonable results.

16

2.6. STCP-To-TSP Transformation

For solving STCP using TSP’s solutions, the first step is to transform STCP to TSP. In

STCP each order is considered as a city in TSP. The unloaded travel time of the

traversing car between serving two orders can be seen as the time it takes the salesman

to travel from one city to another. In this case, we assume that the picking and

delivering time at each station is negligible. The traversing car plays a role of the

travelling salesman. In TSP, the sales man travel from city to city; in STCP the

traversing car serves one order after another. It is possible that there are identical orders

and it differs from TSP where the salesman visits each city only once.

Cities in TSP are usually interpreted as a matrix of distances between cities or a list of

cities’ coordinates [3]. In the STCP problem, it is difficult to present delivery orders in a

TSP-like coordinate system because the distances for traversing car to serve two orders

are not symmetric. For example, distance from order (A, B) to (B, C) is zero, but from

(B, C) to (A, B) is 2 length unit. Instead of defining coordinates for each delivery order,

distances between cities should be presented in a matrix form as the asymmetrical TSP

problem, or so-called generalized TSP [6]. In conclusion, the STCP can be transformed

as the Asymmetric TSP with only two constrains that the salesman in this case possibly

needs to visit his customers in a city more than once and he does not need to come back

to his start city.

2.7. STCP-related problems

In theses last sections, we have discussed about features of a simple warehouse and

created a set of warehouse’s constraints used for our comprising purpose. And the goal

of comparison is to retrieve the information, which solution delivers the minimal

travelling cost. As in 2.2.5 described simple warehouse used for comparing algorithms

applied in STCP, the cost function is only based on travelled tour length of the

traversing car. In this section, we will discuss new problem classes derived by putting

more constraints to the STCP. Challenge of doing this is to construct new evaluation

functions used to evaluate solutions constructed by heuristics algorithms.

17

2.7.1. Multi collecting

Keeping all constraints in 2.2.5, we put into the problem a new constraint that the car

can possibly pick-up more than one items. Without considering size of item, we call m

as a number of items the traversing car can put in its storing capacity. If m is greater

than pre-defined number n of orders in a picking set, we can solve the problem directly

with symmetric TSP’s solutions. In this case, a city is not an order like in STCP, a city

is a station, which can be an aisle, input/output point, picking station. If m is less than n

then multi-collecting STCP is a combination between simple STCP with TSP.

Presumed that we already have the picking order list, there are 3 steps to solve the

problem:

- Choosing sets of m picking orders

- Scheduling within each set m

- Scheduling routing between (n/m+1) wrapped orders.

The second step can be solved as a symmetric TSP, the third step as a simple STCP. If

we use heuristic algorithms to solve this problem, the “divide and conquer” approach

might not be necessary. Because using heuristics, the search space in this space is

possibilities of combination of these two steps, and evaluation function is still only

based on the tour length. So far we assumed that m is a fixed number. If m is a variable

and warehouse management system should also decide which the most optimal m is, the

problem is going to be very complex and it would take a lot of time and resource to

solve that difficult problem.

One example of multi-collecting STCP is pickup and delivery packets of the post.

Customers use web-form to book a home picking for their packets. The post uses trucks

to pick up packets and deliver them. Delivery within a small region such as within a

city, which a central collected station not so necessary is, trucks can be seen as our

traversing cars and number of packet it can contain as storage capacity of the traversing

cars.

2.7.2. STCP with limited buffer

In 2.2.5 we assume that our simple warehouse having unlimited capacity for storing

items at buffer point, picking station and in traversing cars. Bringing capacity into

consideration we not only need to optimize storing space, we also need to put a

18

blocking variable into each storing unit. That means, if the buffer of an aisle is

temporarily full, no other delivery order to this aisle is allowed to operate. This possibly

brings the whole system into a deadlock. It happens when car have already taken items

at picking points, but the correspondent delivery points are all blocked. There is one

way to prevent deadlock in this situation is that the traversing car should be able to

forecast of blocking variable at every stations, and schedule picking process

accordingly. In [1], authors have declared a blocking variable when they solve the

problem with Ant Colony Optimization. An order which has a blocked station as

destination should not be taken into the travelling tour. They did not mention how to the

car can predict the blocking variable when it serves a set of picking orders. Prevention

of deadlock is hard, even impossible. There is one way to deduce the possibility for

happening of deadlock, is define a variable for available capacity for each station. A

station which has greater free buffer should have higher priority for picking as a station

with less buffer space. Now the cost of the travelling tour is not only based on length of

the tour, but also depends on efficiency of using buffer space.

2.7.3. Dynamic requesting

According to [2] and [5] our simple routing problem of sequencing traversing car in a

warehouse is a sub-problem of Warehouse Management and can be generalized as

General Picking-and-Delivery Problem (GPDP). One very important characteristic of

GPDP is how the picking order becoming available. We distinguish it here into two

categories: static and dynamic. Static GPDP is the same as our simple STCP which the

traversing car serves a set of delivery requests. In dynamic SPDP, request can become

available during operating time of the traversing car. In [1], authors called the dynamic

situation as an “on-line” STCP, but did not suggest in detail how to solve the problem.

As stated in 2.2.4 about multi-car situation, we can solve the dynamic STCP with the

same approach. Using buffers for collecting new requests, the routing algorithm are

started only when number of picking orders in the buffer exceeds the certain preset

value. Of course when resources are available for new picking orders as we have a

ready-to-use traversing car in a warehouse, the car does not need to wait for reaching

any certain number of orders.

One application of dynamic requesting can be the picking-up VIP customers of airlines

from VIP Lounge to boarding station. In this situation, we have a number of shuttle

movement cars in the airport. The central picking-system retrieves requests from

19

airlines which stated when their customers should be present at boarding station. The

central system schedule routing plan for shuttle cars and orders them to move and pick

VIP customers. The process runs dynamically and on-line. Picking orders come to

central controlling system at anytime. According to available resources, after

scheduling, the central control system should be able to inform airlines whether they

can full fill the picking request.

We have discussed how STCP can be extended to solve related problems. In the reality,

there are so many other constraints which should be taken into consideration. Adding

more factors to STCP enlarge the search space tremendously. It is then very difficult to

find the exact solution. It is time for heuristics algorithm coming into play. In next

chapter, Metaheuristics are introduced and discussed in detail. It is a way to find

acceptable solution in a reasonable calculating time.

20

Chapter 3

Solving TSP with Metaheuristics

This chapter gives an overview about heuristic algorithms applied to solve TSP. The

first section is general introduction of heuristic algorithms and its applications,

especially to solve TSP. The second section brings more details of the Genetic

Algorithm used for TSP. The last section focuses on Ant-Colony Algorithm.

3.1. Metaheuristic Algorithm

Metaheuristic is a high level algorithm, which actually does not define the problem it

solves, or in other words, metaheuristic is not problem-specific. Metaheuristic plays as a

black-box solver, which have as an evaluation function on solution instance and a

generating function to generate new solution from a current one. Typical examples of

metaheuristics which has been applied to many sorts of computer science’s problem are:

Tabu Search, Simulated Annealing, Genetic Algorithm and Ant Colony System, etc.

Metaheuristic solves problems but it has at the beginning very little information about

what the optimal solution looks like. Normally, hetaheuristic is used in situations that

the search space is too large for linear evaluating all possible solutions. The Travelling

Salesman Problem is an example problem where metaheuristic algorithms can apply to.

In TSP, a sample random tour can be created, and from this tour, a metaheuristic

generates other tours which will hopefully be better than the original one. An evaluation

function for TSP takes generated tour as input parameter and return tour length for

evaluation. The less it is, the better tour we have. In the STCP, given a set of 1000 daily

delivery orders, there are 999! possibilities of serving orders. 999! Order schedules is

too large a number for any mainframe computer to calculate their tour lengths or it

takes several weeks to finish finding the exact optimal order for one working day of the

traversing car. Heuristics Algorithms are expected to delivery an acceptable tour in a

reasonable time.

21

Recently published researches have shown many metaheuristics algorithms to find

solutions to TSP. These solutions can be applied to STCP after we done the STCP-to-

TSP transformation. Next sections are about prominent algorithms based on natural

behavior: Genetic Algorithm and Ant-Colony Optimization.

3.2. Genetic Algorithm

Genetic Algorithm (GA) was first proposed by John Holland in the 1960s and was

developed with his students and colleagues at the University of Michigan in the 1970s

[6]. General concept of GA is to simulate the natural evolution. Based on evolutionary

theory, GA uses natural techniques such as inheritance, mutation, selection and

crossover in combination with a fitness evaluation function to find "survival of the

fittest" of a population. This section presents the general concept of GA and the

relationships between objects of GA and objects of TSP for later application of GA in

solving TSP.

3.2.1. Structure of Genetic Algorithm

Figure 2 shows the simple structure of Genetic Algorithm. GA begins with random

initiation of a population using chromosomes as abstract presentations of solution

candidates. Chromosomes encode feasible. The population evolves successively. A

portion of population, which is evaluated as better individuals, is chosen for breeding.

The selecting process is based on a fitness function, which delivers the fitness of each

individual. The "breeding" or so-called "reproduction" step of GA is applying natural

genetic operators such as Selection, Crossover, and Mutation for each two chosen

individuals. The new child will share characteristics of its parents. The generational

process will be stopped until the pre-defined criteria are met. The typical criteria can be

the number of created generations, runtime of generation process, pre-defined level of

fitness or the combination of all above mentioned criteria. Those criteria depend

strongly on the real problem and real conditions, in which the resource like

computational performance should be taken into consideration.

22

Figure 2: Simple Structure of Genetic Algorithm applied in TSP

In the above structure of Genetic Algorithm, the Genetic Algorithm takes parameters as

random set of TSP tours and a function to evaluate tour length. Every time it returns a

new population, which is in TSP a new tour, the evaluation function is applied to each

individual in the new population to calculate population’s average fitness and the fittest

individual. Genetic Algorithm applied natural genetic operations and expects that the

new generated population always better than the old one as the “survival of the fittest”

rules the evolution. Figure 3 depicts 3 steps of generating new population.

3.2.2. Initiation a random population

The first step of GA is to initiate a new random population. Before doing that, it is

necessary to define the population size. In TSP, the question is how many random tours

should be created for the first population. Size of population can be constant or can vary

after each evolution cycle. The stopping criterion of the algorithm also needs to be

specified in this step. It can be a limitation of timing and/or population age. One typical

problem of heuristic algorithm is when the algorithm should stop. Timing can be

understood as the algorithms starts, and after a pre-specified time span, even that

23

population’s fitness is still improving, we need to stop the algorithm. Population age is

number of generation cycles, in which population’s fitness does not improve. The best

fitness in this case should be accepted as the best solution the algorithm can delivery.

Figure 3: Generating new population

3.2.3. Evaluation function

In TSP, it is easy to choose a fitness/evaluation function. The fitness function takes a

tour as input parameter and return tour length for evaluation. Good individual will

deliver high fitness; in TSP it means better tours have shorter travelling distance to the

salesman. Evaluation result has a crucial role in choosing mating couples for generating

next generations. Taking good individuals to create parents strengthens the hope that

their offset in the next generation will have better fitness, or at least as strong as its

parents. In some specific case, the best individual in a population remains in the next

generation, because after crossover mutation the best individual can be lost.

3.2.4. Genetic Operations

Selection

Randomly two individuals are chosen for producing tentative offspring. The selection is
based on fitness of individual. In TSP, shorter tours have greater possibility to be
chosen. One good individual can take part in several mating processes; the number of its
copies is directly proportional to its fitness. When a very good tour is found in TSP, it is
used to produce some more similar good tours in next generation. This step mimics the
natural procedure which is called proportional selection scheme [6].

24

Crossover

After choosing parents, next step will be how the parents get their offspring. That is
where Crossover operation comes in play. The main role of crossover in the nature is to
randomly select parts of a parent individual and combine them to create new offspring.
There are several types of crossover, and the most common type is single point
crossover. Single point crossover chooses a location of one parent chromosome, packs
into child chromosome and the rest of this child chromosome is copied from another
parent. Figure 4: single point crossover shows us there is only one point of crossover,
that why the operation is called single point cross over. There are some possibilities
which should be defined at this point such as possibility for the happening of crossover
because it can happen that the parent can not cross each other at all but just copy
themselves directly to their child. Possibility for deciding whether only one offspring or
two should also be defined by implementing this algorithm.

Figure 4: single point crossover

Many combinational problems can be used one point cross over, because they can

present their solution candidates in a binary form. But in TSP it is quite difficult to do

that. Solution candidates in TSP are sequences of paths between cities, like the

followings:

• parentTour1 = [1 2 3 4 5 6 7 8 9 10]

• parentTour2 = [3 6 8 9 2 5 1 4 7 10]

Application of one point crossover is not appropriate in this case. Assumed that we

choose the fifth cities as the crossing point, the child tour looks like:

25

• childTour = [1 2 3 4 5 5 6 4 7 10]

The childTour violates TSP’s rule of visiting each city only once as city 8 does not exits

in this tour.

There is another approach of Crossover in TSP, actually named Cycle Crossover

(Karova, Smarkov, & Penev, 2005). In Cycle Crossover, cities are taken from each

parent and put into their child at the exact locations like them in the parent. For

example, city 1 is taken from parent 1; city 10 is taken from parent 2:

• childTour1&2 = [1 - - - - - - - - -]

Because the first position is occupied by city 1 of parent 1, city 3 of parent 2 cannot be

there, that means city 3 have to be taken from parent 1, again.

• childTour1&2 = [1 - 3 - - - - - - -]

Keep doing that, we have:

• childTour1&2 = [1 - 3 4 - - 7 8 9 -]

All cities in the above tour is taken from parent 1, we fill it up with other cities in parent

2:

• childTour1&2 = [1 6 3 4 2 5 7 8 9 10]

This Cycle Crossover approach helps us exchange cities to visit randomly, but does not

guarantee that the numbers of cities taken from both parents are fairly equal. An

example:

• parentTour1 = [1 2 3 4 5 6 7 8 9 10]

• parentTour3 = [10 1 2 3 4 5 6 7 8 9]

Apply the same Cycle Crossover as mentioned, we have the child tour exactly identical

to parentTour1: childTour1&3 = [1 2 3 4 5 6 7 8 9 10]. If this happens, crossover is

stuck on this specific tour. This is for the time mutation operation coming in play.

Mutation:

Selection and Crossover are processed rapidly until a new full population comes out.

Because it is possible that all the new individuals are exact the same like in the older

26

population. A mutation operation on all new individuals can guarantee that will not

happen. A loop through the population, and change at one encoded position is applied to

each individual. Mutation guarantees that the algorithm is not trapped into one local or

sub-optimal solution.

An example of Mutation in TSP:

• Tour = [1 6 3 4 2 5 7 8 9 10] before apply Mutation.

• Tour = [1 9 3 4 2 5 7 8 6 10] after apply Mutation to position 2 and 9

3.3. Ant-Colony Optimization

Recently many algorithms have been inspired by mimic and simulating the natural

behavior of a real ant in its community to solve difficult discrete optimization problems.

The word “Ant System” (AS) was the first time mentioned in [7]. In this paper, Dorigo

and his colleges have defined an Ant System algorithm derived from behaviors of

artificial ant colonies. To test diverse branches of the algorithms as well as finding the

optimal parameters, they applied the algorithms to Travelling Salesman Problem. In

1996, Dorigo and his colleagues introduced an improvement of Ant System algorithm

and named it Ant-Colony System (ACS) in the paper titled “Ant Colony System: A

Cooperative Learning Approach to the Traveling Salesman Problem” [8]. ACS is a

crucial improvement of AS because it can solve large TSPs much more effectively than

AS.

3.3.1. Biological Background

In reality, a natural ant colony consists of millions of individuals. In an ant community,

there are different kinds of ants which have different tasks and responsibilities: worker,

soldiers and the queen. One of ant-worker’s (or –agent’s) tasks is to find the food source

and bring food back to their colony. Although an ant is blind, it is found that ants mostly

find the shortest way from colony to source food. Once the path is found, ants

communicate with each other through a special communication media: the pheromone.

Pheromone is the chemical substance ants lay on their path in finding food. The

intensity of pheromone-trail has the most important role in ant moving direction. The

Ant nest can be considered as a start position for all ants for searching for food.

Assumedly there is only one food source and there are many distinguish ways from the

27

colony to the source. Each way has its own distance and if all ants move at the same

speed, it means the shortest way takes the shortest travel time from colony to the food

source.

3.3.2. Ant System

The problem finding food of ants can be presented by a graph G = (V, E). V is the set of

nodes in the Graph, and E is an edge between two nodes. In TSP, each vertex v in V can

be seen as a city and E is the road between two cities. As above mentioned, ants deposit

pheromone and they cooperate with each other through the intensity of pheromone trail.

The main parts of the algorithm are the movement decisions of an ant from one node to

another, local pheromone updating in each edge when an ant walks in the edge and the

global pheromone updating which updates all the edge an ant has visited before

completes the tour.

Figure 5: Example of Ants' movement
(Uhttp://en.wikipedia.org/wiki/Ant_colony_optimizationU)

The crucial factors in ants’ moving decision are the town distance and the amount of

trail present on the connecting edge [7].

http://en.wikipedia.org/wiki/Ant_colony_optimization�

28

Following is the definition of the transition probability from city i to city j of Ant

System algorithm:

pij(t) = �
[𝜏𝜏𝑖𝑖𝑖𝑖 (𝑡𝑡)]𝛼𝛼 .�𝜂𝜂𝑖𝑖𝑖𝑖 �

𝛽𝛽

∑[𝜏𝜏𝑖𝑖𝑖𝑖 (𝑡𝑡)]𝛼𝛼 .�𝜂𝜂𝑖𝑖𝑖𝑖 �
𝛽𝛽 𝑖𝑖𝑖𝑖 𝑖𝑖 ∈ 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂

0 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

�

This formula is taken from [7] when they apply the algorithm to TSP. ηij is the visibility

of the road from i to j, which is disproportional to the distance from i to j: ηij = 1/dij .

τij (t) is the density of pheromone on the road from i to j. α und β are parameter for

controlling the relative importance of trail versus visibility. If β is much greater than α,

which means the distance have a great importance; the algorithm tends towards to the

Greedy Algorithm.

After complete a tour, each ant compares his tour with the best global tour and update it

if it has just travelled through a better tour, which in this case a tour with less cost.

There are 3 models of ant algorithms: Ant-Density, Ant-Quantity and Ant Cycle. They

differ from each other by how and when ants and ant-colony update pheromone. ∆τij
k is

the amount of pheromone an ant puts on a road between i and j.

Ant-Density Model: ∆τij
k = � Q if the k − ant go through the i − j path

 0 otherwise
�

Ant-Quantity Model: ∆τij
k = � Q

dij
 if the k − ant go through the i − j path

 0 otherwise
�

Ant-Cycle Model: ∆τij
k = � Q

Lk
 if the k − ant go through the i − j path

 0 otherwise
�

With Lk being the total tour distance of the k-ant

29

According to [9] Ant-cycle model is not as near to the reality as Ant-density and Ant-

quantity. But for the optimization purpose, Ant-cycle has great advantages against other

two models. In Ant-cycle model, only the “good” tours are taken to update global

pheromone. Experiments have showed that applying Ant-cycle into TSP brought a very

good result in compare with other models. Thus, Ant-cycle model will be applied to

solve STCP.

3.3.3. Ant Colony System

Ant Colony System (ACS) is an improvement of Ant System. ACS was mentioned for

the first time in [8] when authors tried to improve efficiency of Ant System for solving

symmetric and asymmetric TSP. Their experiments say that the Ant System Algorithm

can discover good tours up to 30 cities, but requires much more time for larger

problems.

ACS is basically based on AS. Main differences lay on aspects of how pheromone trail

updated, transition decision of ants and how ants locally communicate with each other.

Initiation

FOR t = 1 TO number of pre-specified Iteration

FOR k = 1 TO m

Until k-ant not yet visited all cities

Choosing next city with pij

Calculate total travel trip Lk after visited all cities

Update Pheromone Intensity ∆𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘 for all paths in trip of k-ant

Figure 6: Ant System Algorithm (Ant-cycle model)

30

The following table describes the differences of these two algorithms in 3 aspects:

 Ant System Ant-Colony System

Transition Rule

Decision depends on edges’

length and pheromone’s

intensity

To balance between exploration new edge

& exploitation a priori: use a pre-specified

parameter Q0

Global

updating rule

After all ants finish their tour:

evaporates an amount of

pheromone on all edge and

each ant deposits an amount

of pheromone on edges of its

tour

Apply global updating rule only to edges

belonging to best tour.

Communication
implicitly through global

updating rule

Through global updating rule and local

updating rule

Table 3: Compare Ant System and Ant-Colony System

State Transition Rule of ACS can be described with the formula:

𝑒𝑒 = � 𝑎𝑎𝑒𝑒𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚{[𝜏𝜏(𝑒𝑒,𝑢𝑢)]. �𝜂𝜂(𝑒𝑒,𝑢𝑢)]𝛽𝛽� if q<q0(exploitation)
𝑒𝑒𝑎𝑎𝑟𝑟𝑟𝑟𝑜𝑜𝑚𝑚𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑐𝑐𝑡𝑡 𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡 𝑟𝑟𝑜𝑜𝑟𝑟𝑒𝑒 otherwise (exploration)

�

s is the next node to visit with an ant located at node r. Q0 is a pre-specified parameter

impacting the decision between exploitation or exploration, 0≤Q 0 ≤1. q is a random

variable created every times an ant calls transition rule.

The crucial difference between AS and ACS lays on the global updating rule. Only the

ant, which makes globally best tour, is allowed to deposit pheromone on his path. With

this rule, in next iterations of the algorithms, ants will search around the last best tour.

Local Updating Rule is a branch-new operation of ACS. With this rule, ants are allowed

to change pheromone level of the edges when they visit. According to (Dorigo &

Gambardella, 1996), the Local Updating Rule has the purpose to shuffle the tour. It

avoids ants to be stuck around the sub-optimal tours. Compared to the Genetic

Algorithm’s permutation operation, this rule has the same goal.

31

Chapter 4

Implementation a test bench for
STCP

The test bench for performance comparison between algorithms applied in STCP is

implemented in object-oriented methodology using Java and Eclipse IDE. Programming

framework for Ant Colony Algorithm is the “Java for Ant-Colony Systems Framework”

[10] and a framework for Genetic Algorithm is “Java Genetic Algorithm Solution” [11].

4.1. Test Bench Structure

The test bench has 4 main packages: warehouse, TSP, simulation and Algorithms. The

warehouse package contains all classes abstracting the simple warehouse model used to

interpret the Sequencing Traversing Car in a Warehouse Problem. TSP package

abstracts Travelling Salesman Problem in classes: City, TSPMap, and Salesman.

Simulation package contains a Simulator class, which provides methods to generate test

cases, report comparison result, setup and run the warehouse model. The Algorithm

package contains classes of for TSP applied algorithms.

There is a class named WarehouseConfiguration in the warehouse package including all

information of a warehouse instance which is number of cars, aisles, picking stations

speed and of the traversing car. A warehouse instance has an array of order and an array

of station. Methods for finding optimal tour for a set of orders are defined and named

like: CallACOEngine, CallGeneticEngine, CallGreedyEngine, etc. These methods then

create corresponding algorithms, passing parameters and receive back the most optimal

tour that the algorithms can find. Stations are identified with ID and XCoordinate,

YCoordinate. There are in fact 3 types of stations: aisle, input/output point and picking

station, but in this warehouse model, we assume that the buffer size is defined as

unlimited; hence it is no difference between three types of stations.

32

One of the most important parts of solving STCP is to transforming it in to TSP

problem, which in this case asymmetric TSP. To do that, we import warehouse

configuration, picking order request and from that information, we generate a distance

matrix. The matrix is calculated based on stations’ location and orders’ information. As

mentioned in 2.6, STCP can only be transformed to asymmetrical TSP or generalized

TSP which takes only setup information as a matrix of distance between cities.

Figure 7: STCP test bench’s main class diagram

Input file format for STCP workbench is in XML-format. The Configuration XML

contains information corresponding to WarehouseConfiguration’s attribute. The Order

XML has a list of orders, with order ID, start and destination of each order. The

workbench use Dom4J framework to read XML file and parse XML with XPath.

Following is an example of Order XML

33

Figure 8: a sample of XML order file

Figure 9: Parsing XML configuration file with XPath using Dom4J Framework

4.2. Frameworks

This section introduces programming frameworks and libraries used in construct the test

bench.

@SuppressWarnings({ "unchecked" })
public void ReceivingDeliveryRequest(String RequestFileLocation)
throws DocumentException {

File ConfigurationFile = new File(RequestFileLocation);
SAXReader xmlReader = new SAXReader();
Document requestDoc = xmlReader.read(ConfigurationFile);

List<Node> requestNodes =
List<Node>)requestDoc.selectNodes("//Request");
int numberOfRequest = requestNodes.size();
requestQueue = new Request[numberOfRequest];

//System.out.println(requestNodes.get(0).selectSingleNode("From").get
Text());
for (int i = 0; i < numberOfRequest; i++) {
int from =
Integer.parseInt(requestNodes.get(i).selectSingleNode("From").getText
());
int to =
Integer.parseInt(requestNodes.get(i).selectSingleNode("To").getText()
);

int ID = Integer.parseInt(requestNodes.get(i).valueOf("@ID"));
…

<?xml version="1.0" encoding="UTF-8"?>
<DeliveryRequest>
 <Comment>a sample of request file for traversing car</Comment>
 <Date>10/02/2010</Date>
 <Time>07:00</Time>
 <Request ID="01">
 <From>4</From>
 <To>6</To>
 </Request>
 <Request ID="02">
 <From>3</From>

34

4.2.1. Java for Ant-Colony Systems Framework (JACSF)

JACSF is chosen as a framework to solve STCP in this thesis, because it is one of the

closest implementations to Ant-Colony System described in [8] of among others

programming libraries. And JACSF was also implemented to solve generalized TSP,

meanwhile other implementations like Concorde restricted to solve only symmetric

TSP.

JACSF is an Object-Oriented framework written in Java designed by Ugo Chirigo [10]

to implement Ant Colony System. This framework is chosen for testing the efficiency

of Ant Colony System in solving Sequencing Traversing Car in a Warehouse Problem.

JACSF has implemented the idea of Dorigo and Gambardella of Ant Colony System in

[8]. The Ant Colony System is described in 3.3.3 of this thesis. Three important aspects

of Ant Colony System implemented in JACSF are:

“

• a State Transition Rule which brings the concrete ant from a node to another across an arc;
• a Local Updating Rule which updates the pheromones deposited by the ant on the arc it walked

in;
• a Global Updating Rule which updates the pheromones deposited on the arcs when an ant ends

its tour;
“

JACSF has 3 main entities: Ant, AntColony and a AntGraph. An Ant Colony System

contains a set of ants, a graph and an ant colony, which plays the global updating job of

the algorithm. Figure 10: Object Model of JACSF in UML depicts these entities in

UML.

The object model of JACSF has two abstract classes: Ant and AntColony. Ant

implements behavior of an artificial ant which, during the searching process, has to

make transition decision and update local pheromone trail. These two methods are

abstracts and implemented in the context of specific problem. AntColony is an abstract

class implementing the Ant Colony System. Two methods need to be implemented in

derived classes are creatAnt and globalUpdatingRule. AntGraph class contains

information of pheromone density and distance between nodes in graph.

Quote 1: Rule of Ant Colony System (Ugo, 1997)

35

To apply JACSF to TSP, the transition rule, global updating rule and local updating rule

should be implemented in two derived classes of Ant and AntColony. Formula of those

rules is described in 3.3. The path in STCP differs than in TSP that it does include

distance from last visited city to the city where the salesman starts.

4.2.2. Genetic Algorithm Framework

As mentioned, the Genetic Algorithm Framework used for performance testing is Java

Genetic Algorithm Solution (JGAS) [11]. This framework is chosen because it contains

not only Genetic Algorithm’s implementation but also others optimization algorithms

like 2-opt, Greedy Algorithm. Like JACSF, Java Genetic Algorithm Solution also uses

the power of parallel programming to speed up algorithms’ runtime and can solve a TSP

with up to 5000 cities. This framework also accepts a TSP defined with a distance

matrix between cities. Thus, it is capable to solve generalized TSP, especially

asymmetrical Travelling Salesman Problem. Supported algorithms by JGAS are:

• Random Mutation: simply mutate two random tour with each other

• JGAP Genetic Algorithm: implementation of an open-source java genetic

framework

• Genetic Algorithm: Genetic Algorithm with crossover and mutation

operations

Figure 10: Object Model of JACSF in UML [10]

36

• Genetic Algorithm with 2-opt optimization: a very fast solution of TSP using

GA and 2-opt (Sengoku & Yoshihara, 1998)

• 2-opt optimization: implementation a pure 2-opt optimization. The

optimization is based on random mutation.

4.2.3. TSPLIB

TSPLIB is not a framework; it is a library of test instance for TSP and TSP-related

problems. TSPLIB is used to benchmark solutions. The benchmark instances are given

with varying complexity and difficulty. STCP is considered in this thesis as a related

problem to TSP.

The TSPLIB format has two parts: specification part and a data part. In the specification

part all entries are in the form <keyword> : <value>. The specification parts contain the

configuration of the TSP like: name, type of TSP (asymmetric, symmetric), edge weight

format (given in function of matrix format), etc. The data part of TSPLIB files has the

format depending on the choice of the specification. Each section of data part begins

with a corresponding keyword and the information begins with a new line. End of data

part is defined in the specification section. More details of can be found in [12].

The STCP Test bench provides a module to translate XML input file to TSPLIB format

file as an Asymmetrical Travelling Salesman Problem. With this standard format for

TSP, STCP can be solved directly by programs which accept TSPLIB file format.

4.3. Testbench workflows

Figure 11: xml – to - tsplib workflow and Figure 12: xml - to - distance matrix

workflow present two possible workflows of the test bench. In the first workflow, STCP

configuration file and delivery order files are transformed directly to TSBLIB file then

use solutions, which take TSPLIB format as input, to solve STCP. In the second

workflow, configuration file and delivery order file is translated to a matrix of distance,

then use framework of genetic and ant colony system to solve that asymmetric matrix.

Because the configurations file as well as delivery order file is in XML-format, the first

workflow is called XML-to-TSPLIB and the second workflow is called XML-to-

DistanceMatrix.

37

4.2.4. Setup warehouse:

The test bench takes at least two files before asking a warehouse model to execute a set

of orders. One of them is a configuration file for setting up warehouse model, and the

other is the order file in XML format. A configuration file contains information of the

warehouse, which indicates where the stations are and how far they are from each

others, is similar to specify the city coordinate in TSP and their distance to other city.

The setup process begins with a simulator instance call method setupWarehouse with

parameter as a String referring to setup file location.

Figure 11: xml – to - tsplib workflow

Figure 12: xml - to - distance matrix workflow

38

4.3.1. Delivery Orders:

After the warehouse is configured, it is ready to take delivery orders. Delivery orders

are specified in a XML file. Simulator decides which set of orders should be executed.

After locating the information of picking orders, the warehouse instance will create a

TSPLIB format file or a two-dimensional distance matrix.

4.3.2. Calculating Best Tour:

The warehouse instance sends a matrix of distance to solutions engines, which is based

on routing algorithms like Genetic Algorithms or Ant-Colony System. It also deliver

pre-specified parameter for each solution engines. For example in Genetic Algorithm,

that is the population size, in Ant-Colony System, that is the number of ants. After

solutions engines finishing their computation, they return the best tour back to the

warehouse, which forwards the results further to the simulator instance. Because the

warehouse model built is just for comparison between algorithms, the workflow should

stop here. In reality, after comparing results of solutions engines with each others, the

warehouse will instruct a traversing car to execute a sequence of picking orders.

4.3.3. 55BIntegrating other algorithms

There are two situations possible for plugging other algorithms into this test bench. First

variant is the algorithms are already used to solve TSP. That means it should be able to

take a distance matrix as a parameter and calculation of tour length as evaluation

function. In this case, we only need to implement an adapter class for the new algorithm

The adapter class must have the function findBestTour(double[] distanceMatrix). In the

other case, the new heuristic algorithm has not been applied to TSP yet. Because it is a

heuristic algorithm, we need to define encoding function and evaluation. This test bench

is designed to use algorithms which have been already coded to solve TSP.

39

Chapter 5

7BPerformance Comparison of
Algorithms to STCP

In this chapter we also compare performance of several algorithms applied in STCP.

The comparison result is basis for the suggestion of using which algorithms in which

case of STCP. One of the main tasks of chapter 5 is to define test cases for tuning Ant-

Colony System Algorithm and Genetic Algorithm to get optimal configurations of two

algorithms when apply them to Sequencing Traversing Car in a Warehouse Problem.

5.1. 27BSetup Test Bench

For tuning configuration of Ant-Algorithm and Genetic Algorithm, there is a set of 50

delivery orders in a 4 aisle, 4 picking station, 1 input point and 1 output point. Location

of stations is specified with 2-Dimension coordinate system. Measure unit of

coordination system is meter. Speed of the traversing car is 2 m/s, single-collecting car.

Followings are station coordination:

• Input Point: < 0, 0 >

• Output Pont: <25, 0>

• Aisle 1: < 50, 0 >

• Aisle 2: < 75, 0 >

• Aisle 3: < 100, 0>

• Aisle 4: < 125, 0>

• Picking station 1: < 50, 0 >

• Picking station 2: < 80, 0 >

• Picking station 3: < 110, 0 >

• Picking station 4: < 140, 0>

40

For algorithm tuning we use only one set of 50 delivery orders. To compare algorithms’

performances with each other, we have several sets of delivery order which contain

from 50 up to 2000 orders.

Because there is no exact solution implemented, a set of order with a tour which has a

total un-loaded travel time is 0 meter as the optimal tour. With this set of order, we can

analyze how low it takes an algorithm to reach to the optimal tour.

5.2. 28BTuning Ant-Colony Algorithm applied to STCP: Number of ants

In order to achieve optimal number of ants for a set of 50 orders, a test is launched with
fix factors: β = 2, α = ρ = 0.1, max number of cycle is 2500 and Q0 is 0.8. For each
number of ants, at least 10 tests are executed.

Number
of Ants

Un-loaded distance of
the best found tour

Average un-loaded
distance for 10 tests

Average number of cycles before
entering best Uni-path.

10 305 meter 322 meter 911

20 320 meter 322 meter 876

30 305 meter 315,5 meter 721

Table 4: Tuning number of Ants in Ant-Colony Algorithm

Table 4 reveals a minor difference of best tours as well as the average of best tour
distance in 10 tests corresponding to the number of ants. As in Table 4, the more ants
there are the faster we get into the best Uni-Path. It can be explained that when we have
more ants on the map, the intensity of pheromone trail is stronger in all paths, especially
the shortest path and some near-shortest paths. Best tours showed in the table can
possibly be the optimal global tours, or just sub-optimal tours which ants are stuck in.
With a decision factor Q0 = 0.8 (80% exploitation, 20% exploration) and max number of
iteration is 2500, colony setup with 20 ants like in the above table seems like cannot
find the tour with un-loaded travel distance of 305 meter.

We have experimented runtime of Ant-Colony System with increasing number of ants,
and result is in Diagram 1. The graph captures the growth of running time of ACS with
a set of 50 picking orders. It shows us that the algorithm runtime rises linearly. Take it
as an indicator for choosing number of Ants for a set of 50 orders, we will set number of
ants at 10 as suggested in [8].

41

Diagram 1: Runtime of Ant-Colony Algorithm with increasing number of ants

5.3. 29BTuning Genetic Algorithm applied to STCP

As mention in 3.2, two parameters of Genetic Algorithm should be tuned in order to

attain the best configuration for the algorithm is population size, permutation rate. We

apply the same set of 50 delivery orders like in tuning ASC. Permutation rate is fixed at

10%. The stopping criterion for GA is population age equaling 100, which means the

algorithm stop by 100 cycles. Criteria used to choose the number of population is

algorithm’s runtime and tour distances it delivers. Following is the tuning result of

population size:

Diagram 2: Tuning population size of GA for a set of 50 orders

0

50

100

150

200

250

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

(s)

Number of Ants

0,00
0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00
4,50
5,00

0
100
200
300
400
500
600
700
800

10 40 70 10
0

13
0

16
0

19
0

22
0

25
0

28
0

31
0

34
0

37
0

40
0

43
0

46
0

49
0

52
0

55
0

58
0

61
0

64
0

67
0

70
0

73
0

76
0

79
0

82
0

85
0

88
0

91
0

94
0

97
0

10
00

se
co

nd

m
et

er

size of population

Best Tour Found (meter) Average Run-Time (seconds)

42

Genetic Algorithm constantly delivers very good tour when population size is greater

than 130. The graph also shows that GA’s computation cost for a set of 50 picking

requests rises linearly to number of population size. In conclusion, from this experiment

we can take population size of 150 for a set of 50 delivery orders to guarantee that GA

delivers good tour in acceptable time.

Next tuning is about the Mutation Ration. Population size is set at 150, a set of Mutation

Ration to evaluate is: {0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1}. Statistics are

calculated across 10 trials. After experiments, we recognize very slight difference of

GA runtime again increasing mutation ration. Thus AG’s runtime in this case is one

factor that is not necessary to consider. The only remain interesting factor is the best

average tour GA delivers with different value of mutation ration. Following charts

depicts the experiments result:

Diagram 3: average unloaded-travel distance against mutation ration

Interestingly, with mutation ration from 0.5 to 0.7, GA returns the best tour of 305

meter across all 10 trials for each value. From the chart we can see that the average

unloaded-travel time is extremely high with small value of mutation ration (up to 0.3).

This can be explained that with small value of mutation rotation, GA is usually stuck

into sub-optimal solutions. The value is too small to shuffle individuals, and then it is

difficult to get to the most optimal tour. With higher value of mutation ration, GA also

cannot deliver the best optimal tour, because it shuffles almost all individuals in the

population, even the fittest. Thus, GA loses the fittest because of mutation and creates

new weaker individuals. We choose 0.6 as the most optimal mutation ration in this

circumstance.

290
295
300
305
310
315
320
325
330
335

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

m
et

er

Mutation Ration

43

5.4. 30BBenchmarking algorithms applied in STCP

In the last sections, we have tested and found the best optimal configurations for Ant-

Colony System and Genetic Algorithms. In this section we benchmark algorithms with

each other to see of how fast they can solve STCP, how good algorithms solve the

problem, how scalar the algorithms are when rapidly increasing number of requests.

The ultimate goal of benchmarking is to find the best algorithm in aspects of speed and

quality of orders’ execution in STCP.

Algorithms in the benchmark are: Ant-Colony System, Genetic Algorithm, 2-opt

Algorithm, Genetic-hybrid-2-opt Algorithm, Greedy Algorithm and FIFO approach.

The first evaluation is about solution quality the algorithms can deliver. We test all

algorithms with sets of {50, 100, 150, 200, 250, 300, 350, 400, 500} requests.

Algorithms are tested across 10 trials. Following is the result:

Set of

orders

ACS
Genetic

Algorithm
2-opt

Genetic-

Hibrid-2opt
Greedy FIFO

Best

found
Avr.

Best

found
Avr.

Best

found
Avr.

Best

found
Avr.

50

orders
320 326,5 305 307 355 368 355 367 475 2535

150

orders
855 902,22 665 683 765 782 745 765 900 6930

Table 5: Compare unloaded travel distances rendered by solution engines

The table shows us that in almost all cases, genetic algorithm always gets the best

solutions. GA is convincingly good with every sets of picking orders. 2-opt algorithm

has been proved to be a very effective approach to solve symmetric TSP, but through

this table, we can see that it has the worst performance compare with all heuristic

algorithms. It can be explained that 2-opt is only effective in a symmetric TSP, when it

shorten crossed edges. In contrast to symmetric TSP, in TSP, unfold crossed edges can

even makes a worse tour than a crossed one. Genetic Algorithms has brought a very

44

good solutions, but apply 2-opt into the solutions does not optimize, let alone makes it

even worse. Greedy Algorithm is very promising; it delivers acceptable results and is

expected to be the fastest algorithm because of its simplicity. The following diagram

depicts more clearly that Genetic Algorithm is the best algorithm to find optimal tour

for traversing car:

Diagram 4: Compare calculated unloaded travel distanced

Next step of the benchmark is to compare runtime of the algorithms. Tests are

performed on a PC computer running MS Windows 7, 2x2.53 GHz Duo-Core, 6GB

Ram.

Diagram 5: Comparison of algorithms' runtime for solving STCP

Once again The Genetic Algorithm shows in this case a very good performance in

aspect of speed. It returns result very fast quite regardless of problem size. In contrast,

0
200
400
600
800

1000
1200
1400
1600

50 requests 100 requests 150 requests 200 requests

U
nl

oa
de

d
tr

av
el

 ti
m

e

Set of picking orders

Genetic

Greedy

ACO

2-opt

2-opt-genetic

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

50 60 70 80 90 100 120 140 160 180 200

Ti
m

e
(s

) ACO

Genetic

2-Opt

GeneticHibrids2-Opt

45

ACO is much slower. The 2-opt algorithm is a bit faster than ACO when number of

request less than 100. The Diagram 4 and 5 provide a good indication, that The Genetic

Algorithm can solve STCP very efficient.

46

Chapter 6

8BSummary and Conclusion

6.1. 31BSummary

The goal of this thesis is to compare performance of heuristic algorithms for the

Sequencing Traversing Car in a Warehouse Problem. Base on the similarities between

the Travelling Salesman Problem and STCP, it has proposed an approach which uses

algorithm applied in TSP to solve STCP. This work splits into two three main parts. The

first part is about investigating characteristics of STCP resulted in modeling a simple

warehouse model. The warehouse model serves as a platform for comparing routing

algorithms. The second part of this work concentrates on metaheuristics, and how they

solve TSP problem. In the last part, this thesis has fine-tuned and execute each

algorithm in order to get answer the main objective at the beginning of this work. To

make it possible to compare algorithms, a test bench has been designed to use solutions

of TSP to solve STCP. The test bench was written in Java, using Eclipse IDE.

6.2. 32BConclusion

Overall we have seen that the Genetic Algorithm is superior to other mentioned

algorithms. It is the best algorithm in finding the shortest tour and the second-best of

fastest runtime. Scalability of the Genetic Algorithm is also very good; it runs almost in

constant time in compare with Ant Colony Algorithm, which has an exponential

runtime. Greedy Algorithm is the fastest algorithms we tested so far. With a set of less

than 100 request, the Greedy Algorithm take even under 1 ms to solve the problem, and

the delivered results are acceptable. Ants Colony Optimization has showed its

advantages in solving TSP in [7] and [8], but in our Sequencing Traversing Car

Problem, it is the slowest algorithm and not the best algorithm in aspect of finding the

best tour. 2-Opt Algorithm and Genetic-Hibrids-2opt cannot prove their advantages in

47

solving STCP. Because STCP is more similar to asymmetric TSP, these two algorithms

take more time to operate and sometime even make the tour longer than the original

initiation.

Choosing which algorithm should be used to solve converges to two algorithms:

Genetic Algorithm and Greedy Algorithm. The decision, of course, depends on which is

the most important factor for the warehouse management. Greedy Algorithm has great

speed advantage; meanwhile Genetic Algorithm always delivers very good tour

distance. On an Intel Core2Duo 2,56x2 processor, the Genetic Algorithm takes 8s to

solve a set of 200 requests. In reality, with a small and slower microprocessor

embedded in the traversing car, it would take couple of minutes to solve the problem.

Otherwise, the Greedy Algorithm takes only 10ms to solve the same set of problem with

an acceptable tour length. In conclusion, the Genetic Algorithm is the best algorithm in

finding best traveling tour for a traversing car in a warehouse. Beside Genetic

Algorithm, the Greedy Algorithm is the best algorithm in aspect of traveling-length/run-

time. With a small set of request (under 50), the speed disadvantage of Genetic

Algorithm is negligible, but for a bigger problem, greater set of requests, Greedy

Algorithm is a wiser choice.

6.3. 33BImplications for future works

Having compared algorithms used to solve STCP, the following limitations of this

thesis should need to persuade in future work.

Compare algorithms applied to solve dynamic STCP:

Dynamic STCP means that traversing car should be able to retrieve a stream of orders

during operation. For doing this, first step is to simulate a stream of picking orders.

Secondly, it is recommended simulating an automatic storage and retrieval systems for

each aisle. Traversing car should take the capacity of stations’ buffer into consideration.

Design and construct a flexible, extensible workbench

This thesis has proposed a test bench for comparison algorithm in solving STCP. To test

the algorithms, many constraints have been declared. It is tempting to test more

algorithms for not only STCP but also other related problems. For that reason, it is

recommended to design a workbench for STCP. The workbench should work as a

48

framework and be able to simulate STCP and related problem as well as adapt other

algorithms to solve these problems.

49

9BTable of Figure

UFigure 1: a simple warehouse model [1]U .. 9

UFigure 2: Simple Structure of Genetic Algorithm applied in TSPU 22

UFigure 3: Generating new populationU ... 23

UFigure 4: single point crossoverU ... 24

UFigure 5: Example of Ants' movement

(http://en.wikipedia.org/wiki/Ant_colony_optimization)U ... 27

UFigure 6: Ant System Algorithm (Ant-cycle model)U .. 29

UFigure 7: STCP Workbench’s main class diagramU... 32

UFigure 8: a sample of XML order fileU .. 33

UFigure 9: Parsing XML configuration file with XPath using Dom4J FrameworkU 33

UFigure 10: Object Model of JACSF in UML [10]U .. 35

UFigure 12: xml – to - tsplib workflowU .. 37

UFigure 13: xml - to - distance matrix workflowU ... 37

50

10BBibliography

1 Büchter, Hubert and Novoa, Clara M. Sequencing Traversing Cars in a Warehouse

using Ant-Colony Systems (2005).

2 Hompel, Michael ten and Schmidt, Thorsten. Warehouse Management - Automation

and Organisation of Warehouse and Order Picking Systems. Springer, 2007.

3 Arnold, Dieter. Materialflusslehre 2nd. Verlag Vieweg & Sohn Braunschweig,

Wiesbaden, 1998.

4 http://www.tsp.gatech.edu.

5 Garey, M. R. and Johnson, D. S. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, New York, 1979.

6 Yang, Jinhui, Shi, Xiaohu, Marchese, Maurizio, and Liang, Yanchun. An ant colony

optimization method for generalized TSP problem. 2008.

7 Savelsbergh, M.W.P and M.Sol. The General Pickup and Delivery Problem (2005).

8 Bandyopadhyay, Sanghamitra and K.Pal, Sankar. Classification and Learning Using

Genetic Algorithms - Application in Bioinformatics and Web Intelligence. Springer

Verlag Berlin Heidelberg, 2007.

9 Dorigo, Macro, Maniezzo, Vittorio, and Colorni, Alberto. Positive feedback as a

search strategy (1991).

10 Dorigo, Macro and Gambardella, Luca Maria. Ant Colony System: A Cooperative

Learning Approach to the Traveling Salesman Problem (1996).

11 Heiko, Stamer. Ant Algorithm für kombinatorische Optimierungsprobleme (2001).

51

12 Ugo, Chirico. A Java Framework for Ant Colony Systems. Rome, Italy, 1997.

13 Saiko, Dušan. Travelling Salesman Problem - Java Genetic Algorithm (2005).

14 Reinelt, Gerhard. Repurecht-Karl-Universität Heidelberg.

15 Jong, Jasper de and Wiering, Marco. Multiple Ant Colony Systems for the Busstop

Allocation Problem. University of Utrecht.

16 Reinelt, Gerhard. TSPLIB 95. Universität Heidelberg, 1995.

17 Whitley, Darrell. A Genetic Algorithm Tutorial. Computer Science Department,

Colorado State University.

18 Blum, Daniel. Ant Colony Optimization (ACO) (2003).

19 Uğur, Aybars and Aydin, Doğan. An interactive simulation and analysis software for

solving TSP using Ant Colony Optimization algorithms (2008).

20 Jovanovic, Raka, Tuba, Milan, and Simian, Dana. Developing an Object-Oriented

Framework for Solving Problems Using Ant (2008).

21 Aho, Alfred V., Hopcroft, John E., and Ullman, Jeffrey D. Data Structures and

Algorithms. Addison Wesley, 1982.

22 Sze, San Nah and Tiong, Wei King. A Comparison between Heuristic and Meta-

Heuristic Methods for Solving the Multiple Traveling Salesman Problem (2007).

23 Luke, Sean. Essentials of Metaheuristics. George Mason University, 2010.

24 Fischer, Thomas and Merz, Peter. A Distributed Chained Lin-Kernighan Algorithm

for TSP Problems. Proceedings of the 19th International Parallel and Distributed

Processing Symposium (IPDPS 2005), Denver, CO, USA (2005).

52

25 Karova, Milena N., Smarkov, Vassil J., and Penev, Stoyan. Genetic operators

crossover and mutation in solving the TSP problem. International Conference on

Computer Systems and Technologies - CompSysTech’ 2005 (2005).

26 Sengoku, Hiroaki and Yoshihara, Ikuo. A Fast TSP Solver Using GA on Java

(1998).

27 Kohout, Peter. Genetic and Ant Colony Optimization Algorithms (2003).

	Declaration
	Eidesstattliche Erklärung
	Abstract
	Chapter 1 Introduction
	1.1. Motivation
	1.2. Task description
	1.3. Structure of the thesis

	Chapter 2 Sequencing Traversing Cars in a Warehouse
	Introduction
	2.2. A simple Warehouse System
	Storing capacity
	2.2.2. Timing constraints
	2.2.3. Priority of picking order and item consolidation
	2.2.4. Traversing Car and Order-Picking
	2.2.5. A warehouse model for performance comparison of routing algorithms

	2.3. Mathematical Formulation of STCP
	2.4. An example of delivery orders
	2.5. Travelling Salesman Problem
	2.6. STCP-To-TSP Transformation
	2.7. STCP-related problems
	Multi collecting
	2.7.2. STCP with limited buffer
	2.7.3. Dynamic requesting

	Chapter 3 Solving TSP with Metaheuristics
	Metaheuristic Algorithm
	3.2. Genetic Algorithm
	Structure of Genetic Algorithm
	3.2.2. Initiation a random population
	3.2.3. Evaluation function
	3.2.4. Genetic Operations

	3.3. Ant-Colony Optimization
	Biological Background
	3.3.2. Ant System
	3.3.3. Ant Colony System

	Chapter 4 Implementation a test bench for STCP
	Test Bench Structure
	4.2. Frameworks
	Java for Ant-Colony Systems Framework (JACSF)
	4.2.2. Genetic Algorithm Framework
	4.2.3. TSPLIB

	4.3. Testbench workflows
	4.2.4. Setup warehouse:
	Delivery Orders:
	4.3.2. Calculating Best Tour:
	4.3.3. Integrating other algorithms

	Chapter 5 Performance Comparison of Algorithms to STCP
	Setup Test Bench
	5.2. Tuning Ant-Colony Algorithm applied to STCP: Number of ants
	5.3. Tuning Genetic Algorithm applied to STCP
	5.4. Benchmarking algorithms applied in STCP

	Chapter 6 Summary and Conclusion
	Summary
	6.2. Conclusion
	6.3. Implications for future works

	Table of Figure
	Bibliography

