
Tag Cloud Control

by Latent Semantic Analysis

Master’s Thesis

submitted by

Angelina Velinska

IMT

supervised by

Prof. Dr. rer. nat. habil. Ralf Möller

Dipl. Ing. Sylvia Melzer

Software Systems Institute

Prof. Dr. Karl-Heinz Zimmermann

Institute of Computer Technology
Hamburg University of Technology

Dr. Michael Fritsch
CoreMedia AG
Hamburg

Hamburg University of Technology

December, 2010

Declaration

I declare that:

This work has been prepared by myself, all literal or content based quo-
tations are clearly pointed out, and no other sources or aids than the
declared ones have been used.

Angelina Velinska

Hamburg
December, 2010

Acknowledgements

I would like to thank Prof. Dr. Ralf Möller for his advice and guidance
throughout the work on this thesis.

My special gratitude goes to Dr. Michael Fritsch in CoreMedia AG,
Hamburg for his great patience, and constant support. This work would
not exist without him. Michael, I owe you the implementation.

A big ”Thank you” to Sylvia Melzer for keeping me on track despite the
distance, and my poor German.

Contents

1 Introduction 9

1.1 Motivation . 9
1.2 Information Retrieval systems 11
1.3 Goal and scope of work 12
1.4 Outline . 13

2 Latent Semantic Analysis 14

2.1 Information Retrieval process 14
2.2 Document representation 14

2.2.1 Vector Space Model 15
2.2.2 Weight functions 17
2.2.3 Similarity measures 18

2.3 Latent Semantic Analysis 19
2.4 Singular Value Decomposition 20
2.5 Querying the semantic space 22
2.6 Factors which influence LSA performance 23

3 Cluster labeling 24

3.1 Clustering . 24
3.1.1 Clustering algorithms 25
3.1.2 K-means clustering algorithm 26

3.2 Cluster labeling . 27
3.2.1 Clustering and labeling 27
3.2.2 Formal framework for cluster labeling algorithms 29
3.2.3 Weighted Centroid Covering 31

3.3 Cluster labeling using external knowledge 34
3.3.1 Ontology as a source of external knowledge 34
3.3.2 Weighted Centroid Covering augmented by an ontology 36

4 Tag Clouds 38

4.1 Introduction . 39
4.2 Tag clouds generation . 42

4.2.1 Tag cloud layout 42

3

CONTENTS 4

4.3 Existing implementations 43
4.4 Conclusion . 43

5 Implementation 45

5.1 Tag cloud summarizer 45
5.2 Cluster labeling . 47
5.3 Tools and libraries used in this work 47

6 Evaluation 49

6.1 Measures for evaluation 49
6.2 Document set used for evaluation 50
6.3 Evaluation of the Tag cloud summarizer 50
6.4 Evaluation of cluster labeling algorithm WCC 51

7 Conclusion and outlook 53

7.1 Future Work . 54

Acronyms 56

A Ontology 57

B Source code 58

C Document set used for evaluation 81

List of Figures

1.1 Workflow in IR systems 11

2.1 Information Retrieval process 15
2.2 The Vector Space Model 16
2.3 Diagram of truncated SVD 21

3.1 Cluster labeling using WCC 32
3.2 Cluster labeling using WCC with external knowledge . . 36

4.1 A tag cloud. 39
4.2 Tag clouds in collaborative information services 41

6.1 Tag cloud generated . 50

A.1 Upper level domain specific ontology 57

5

List of Tables

6.1 Precision by WCC for cluster labeling 52

C.1 Document set overview 81
C.2 Document set used for evaluation 82
C.3 Queries used for evaluation 83
C.4 Candidate labels from query results to ”session connection” 83
C.5 Candidate labels from query results to ”server” 83
C.6 Candidate labels from query results to ”publication workflow” 83

6

List of Algorithms

3.1 K-means clustering algorithm 27
3.2 Weighted Centroid Covering algorithm for cluster labeling 33

7

Listings

B.1 Preprocessing of the document collection - markup is stripped from plain text 58
B.2 Latent Semantic Analysis 60
B.3 Querying the semantic space constructed by LSA 62
B.4 Tag cloud generation . 65
B.5 WCC cluster labeling algorithm 67
B.6 Lightweight domain ontology for CoreMedia CMS domain 70

8

Chapter 1

Introduction

1.1 Motivation

Information Retrieval (IR) systems become more important not only due
to their use in Internet and digital libraries, but also because the major-
ity of companies organize their activities around information and depend
on digital documents. Finding the right information brings value to the
business, and failing to do so usually leads to losses.

Certain factors influence the performance of search applications. On one
hand, it is the constantly growing problem of information overload. On
the other, it is the peculiarities of humans users which have to be taken
into consideration. IR systems need to adapt to their users, and to their
information need.

• Human behavior. Users searching for information usually sub-
mit queries composed of a few keywords only, as shown in stud-
ies [1]. For example, the average web users enter around 3 words
per query1. The search application performs exact matching be-
tween the submitted keywords, and the document set it searches
through, and often returns a long list of results. When searching
with short queries, the focus of users is unclear, and the missing
information contributes to long result lists containing many irrel-
evant hits. Users without domain expertise are not familiar with
the appropriate terminology, and therefore they don’t submit the
right query terms with respect to relevance or specialization. An-
other issue is the ambiguity of words, in the cases when words have
more than one meaning. When relevant documents contain words

1http://www.hitwise.com/us/press-center/press-releas es/

google-searches-apr-09 , accessed December, 2010

9

http://www.hitwise.com/us/press-center/ press-releases/google-searches-apr-09
http://www.hitwise.com/us/press-center/ press-releases/google-searches-apr-09

CHAPTER 1. INTRODUCTION 10

that are semantically relevant to the queries but not the same (syn-
onyms), they will not be judged relevant. As a consequence, search
results will not fit the information needs of users.

• Manual processing of results. When a large number of match-
ing documents is returned as a search result, only some of the
documents can be read, due to human limitations in information
processing, and time constraints (users want to find information
quickly). Human users need to narrow down the search iteratively
by reformulating the query, since it is unclear in which context
their queried words are used, and which words could be useful to
focus the search. This reformulation can be a frustrating and time
consuming process.

• Information need. Search applications that implement the key-
word search paradigm (or full-text search) are broadly accepted
by users; however, the challenge for the next years is the develop-
ment of search solutions that reflect users’ context (”what the user
meant” versus ”what the user entered as a query”). In other words,
solutions that are able to: a) organize search results better than in
the form of long lists, b) adapt to a users personal skills and experi-
ence concerning the underlying document collection, and c) adapt
to the retrieval task a user is concerned with; in other words, to
adapt to the users’ information need.

The factors listed above have lead to the development of techniques that
assist users to effectively navigate and organize search results, with the
goal to find the documents best matching their needs. Document clus-
tering is a process of forming groups (clusters) of similar objects from
a given set of inputs. When applied to search results, clustering orga-
nizes the results into a number of easily browsable thematic groups. It
contributes to solving the problem of finding a meaningful ordering in a
large amount of returned results. Latent Semantic Analysis is another
method from IR that handles the problem of words having more than one
meaning, or words ambiguity. It also filters out noise well, and reduced
the number of unrelevant hits. Both techniques have been implemented
in this work.

After documents have been clustered into categories according to their
topics, they have to be presented to the users. In particular, the cate-
gories have to be labeled with characteristic terms for browsing. Which
words from the cluster to choose as labels is a difficult problem to solve.
This work presents a relatively new algorithm for cluster labeling, called
Weighted Centroid Covering (WCC) (Stein and Meyer zu Eissen [2], [3]).

CHAPTER 1. INTRODUCTION 11

It evaluates it and proposes an improvement of WCC by using external
semantic knowledge for definition of the cluster labels. As a part of this
work, a domain-specific ontology is developed, which is used as a source
of external knowledge.

1.2 Information Retrieval systems

Techniques from IR field are implemented as a part of this work. There-
fore, what follows is an overview of the text analysis processes, common
to most IR systems. Then, in the context of these processes, the contri-
butions presented in this thesis will be summarized.

Figure 1.1: Workflow in IR systems

Most IR systems share common workflow, and follow common data pro-
cessing stages. Some of the processes involved in text analysis are: lexical
analysis to study word frequency distributions of words, retrieval, tag-
ging/annotation, and visualization among the others. The workflow in
IR systems usually starts with document ingestion, where texts from

CHAPTER 1. INTRODUCTION 12

the document corpus2, which will be analyzed, are parsed or loaded into
memory. After that comes the preprocessing phase, responsible for text
extraction, tokenization, token-filtering, text folding, etc. In this phase,
documents are often represented as vectors, whose components quantify
properties like how often words occur in the document. In the trans-

formation phase is where a dictionary, matrix or other form of index
is created from the extracted texts. In this phase all extracted terms3

are assigned weights by applying a weight function. In Chapter 2.6 are
given more details about the most common weight functions used in IR
systems. The analysis phase can include a retrieval process by querying
the corpus, clustering, etc. The visualization phase is where concepts,
query results, or summarizations extracted from the text collection are
presented to users. And in the final archiving phase, results from the
text analysis process can be saved.

The workflow in fig. 1.1 doesn’t show any iterations or cycles between
phases for simplicity. Iterations and repetition of certain phases of analy-
sis, however, are common, e.g. between transformation and post-processing
phases, or analysis and post-processing.

The focus of the current work is on transformation, analysis and post-
processing phases of IR workflow.

1.3 Goal and scope of work

This works contributes with the following:

1. It makes an evaluation of Weighted Centroid Covering algorithm,
proposed for unsupervised topic labeling of clusters ([2] and [3].

2. It proposes an improvement in WCC algorithm, performing topic
identification based on external knowledge. A light-weight domain-
specific ontology has been developed for this purpose, in order to be
used as a reference for external semantic knowledge during cluster
labeling.

3. A software application for executing an IR process has been devel-
oped. It implements Latent Semantic Analysis (LSA) for informa-
tion retrieval (analysis phase from fig. 1.1), and presents the main

2Throughout this work, document corpus is used as a synonym to a document
collection, in which IR tasks are performed.

3A term in this context denotes a word after preprocessing of the texts. A term is
a single unit, e.g. a word, a phrase, a number, or an abbreviation.

CHAPTER 1. INTRODUCTION 13

concepts contained in a document set using a tag cloud.

1.4 Outline

This chapter motivates the presented work, and summarizes its contri-
butions. It also offers a general overview of the phases of text analysis,
common to most IR systems. Chapter 2 gives theoretical foundations for
preprocessing and transformation phases of text analysis, and reviews a
specific technique for information retrieval, called Latent Semantic Anal-
ysis. In Chapter 3, WCC algorithm is evaluated, and a proposition for its
improvement is made, by using a light-weight domain-specific ontology.
Chapter 4 refers to the post-processing phase of text analysis, giving the
visualization means to present the main concepts retrieved from a docu-
ment set as a tag cloud. The software contribution, developed as a part
of this work, is described in Chapter 5, where test results are also present,
and an evaluation of the implementation is made. Finally, in Chapter 6
the thesis concludes with ideas for future work.

Chapter 2

Latent Semantic Analysis

2.1 Information Retrieval process

IR systems aim to satisfy user’s information needs, by providing access
to large collections of documents. In a search application, the IR pro-
cess retrieves a set of documents which matches a given query. There are
three basic processes which an IR system has to support: to represent the
content of the documents, to represent the user’s information need, and
to compare the two representations, based on a chosen similarity mea-
sure (fig. 2.1). Therefore, the first stage of constructing an IR system is
to extract information about the documents content, and implement a
similarity measure, based on which documents and queries can be com-
pared. Representing the documents is usually called the indexing process.
The comparison of the query against the document representations based
on a chosen measure is called the matching process.

2.2 Document representation

In order to find documents which are similar to a given query, both
documents and query have to be comparable, or have the same rep-
resentation in the IR system. Various models have been proposed for
internal representation of documents and queries. The Boolean, Vec-
tor space and Probabilistic models are popular IR models that find wide
implementation. The Boolean model represents both documents and
queries as a set of terms, and compares them based on boolean func-
tions (AND, OR, NOT , etc.). The probabilistic model uses proba-
bilistic inference for document retrieval [5]. Similarities are computed
as probabilities that a document is relevant for a given query. And
finally, the Vector Space Model (VSM), introduced first by Salton [6],

14

CHAPTER 2. LATENT SEMANTIC ANALYSIS 15

Figure 2.1: Information retrieval process, adapted from [4]. The information
need of the user is formulated as a query, which is transformed in the chosen
model of the IR system. Documents from the collection are also represented
according to the chosen model. Based on the implemented similarity measure,
matching documents are identified. Finally, the retrieved results are presented
to the user. If the user is not satisfied with the search results, the search query
can be reformulated during feedback.

represents both documents and queries as vectors in a multidimensional
space, whose dimensions are the terms used to build an index to represent
the documents (section 2.2.1 provides more details on VSM). Boolean
model is easy to implement; however, when querying, users need to be
familiar with boolean operators, which is a drawback of this model. Con-
cerning the probabilistic model, prior knowledge is required for its im-
plementation, as it usually includes tuning of independent probabilistic
parameters. VSM and the probabilistic model both have the advantage
that they rank the relevant results according to a chosen weight function,
but the former is easier to implement.

2.2.1 Vector Space Model

During indexing (fig. 2.1), documents are presented as data structures in
memory. In VSM a document is a vector, whose elements represent prop-
erties like term frequencies, or frequency of word occurrence within the
document. Before documents can be represented as vectors, they have
to be tokenized, or converted from a stream of characters to a stream
of words. Thus parsed, words will be used in building an index of the
document collection. During tokenization one can apply filtering, i.e.

CHAPTER 2. LATENT SEMANTIC ANALYSIS 16

removing HTML tags or other markup from text, as well as stop-words
and punctuation marks removal. Stop words are such words that don’t
convey information specific to the text corpus, but occur frequently, such
as: a, an, and, any, some, that, this, to.

Figure 2.2: The Vector Space Model. Documents ~d1 and ~d2, and a query
vector ~q are represented in a two-dimensional vector space, formed by terms
t1 and t2.

A distinction has to be made between words or terms, and tokens. A
term is the class which is used as a unit during parsing, and a token is
each occurrence of this class. For example, in the sentence:

CoreMedia CMS is shipped with an installation program for
interactive graphical installation and configuration of the soft-
ware.

the term installation is represented by two tokens. There is no universal
way to parse a text, and the parsing decisions to address depend on the
application in which the text collection will be used.

After tokenization, documents are represented as vectors, where each
term is a vector in the vector space, and the documents are the sum
of the terms, from which they consist. Thus, all document vectors and
terms form a multi-dimensional vector space, where terms are the dimen-
sions, and documents - the corresponding sum vectors. A diagram of the
vector space is given in fig. 2.2, where two document vectors ~d1 and ~d2,
and a query vector ~q are represented in a two-dimensional space.

CHAPTER 2. LATENT SEMANTIC ANALYSIS 17

2.2.2 Weight functions

Vectors in the VSM have as elements the occurrence frequencies of words
in documents. However, some documents are shorter than others, there-
fore one has to apply a normalization function in order to avoid repre-
senting words from longer documents as ”more important” than words
from shorter documents, as they would occur more often. Such normal-
ization functions are called weight functions, and they are applied after
the vector space has been constructed.

Weight functions are generally separated into two categories - local and
global. They are often implemented as a pair together, because local
functions measure the importance of a given word in a single document,
while global functions give the importance of a word in the whole docu-
ment collection. The most commonly used function pair is term frequency
and inverse document frequency.

Term frequency - inverse document frequency

The simplest local weight is the term frequency tft,d. It assigns a weight
to each term equal to the number of occurrences of the term t in a given
document d. However, not all words carry the same meaning in text
(therefore, stop words are removed during preprocessing, as mentioned
in 2.2.1). Words that are common to all documents in the collection
don’t reveal much information, as compared to words which occur only in
several documents. The latter are more likely to contain key information
about the meaning of these documents. This is reflected by the weight
function inverse document frequency (eq. 2.1)

idft = 1 + log
N

dft
(2.1)

where N is the total number of documents in the collection, dft is the
frequency of occurrence of term t in the whole collection, and t is a specific
term being weighted. Using idft is a way to scale down the importance
of commonly used words in text. When one combines both tf and idf , a
composite weight is produced for each term in each document. The tf-idf
weighting function assings to a term t in a document d a weight given by

(tf − idf)t,d = tft,d × idft (2.2)

.
As defined by Manning et al. [7], the weight assigned to term t in docu-
ment d by using a combination of local and global weight function is

CHAPTER 2. LATENT SEMANTIC ANALYSIS 18

1. highest when t occurs many times within a small number of docu-
ments;

2. lower when the term occurs fewer times in a document, or occurs
in many documents;

3. lowest when the term occurs in virtually all documents.

Log - entropy

Another popular pair of weight functions, frequently used in text anal-
ysis, is the log-entropy pair. The local function log takes the logarithm
of the raw term frequency, thus normalizing the effect when large dif-
ferences in term frequencies occur. In eq. 2.3 L(t, d) denotes the log of
number of occurrence of a term t in a document d.

L(t, d) = log(tf(t, d) + 1) (2.3)

The global function entropy H(t) reflects the local relative importance
of a term t in the whole document collection (eq. 2.4)

H(t) = 1 +
Σjp(t, d)

log n
(2.4)

where n is the number of documents in the whole collection. In eq. 2.4,
p(t, d) is defined by:

p(t, d) =
tft,d

gft
(2.5)

where gft is the total number of times that term t occurred in all doc-
uments. The entropy measures the distribution of terms over all docu-
ments.

2.2.3 Similarity measures

Once the vector space has been built, one can find the documents which
are most similar to a given query. During query formulation(fig. 2.1), the
queries are tokenized and represented as vectors, as already described in
section 2.2.1. Therefore, the similarities between documents and queries
can be measured based on the angles between their respective vectors (in
fig. 2.2.1, these are α and θ). Using the angles between vector represen-
tations, one can define a similarity measure which is necessary for the
matching process in IR systems. The standard way to computing the

CHAPTER 2. LATENT SEMANTIC ANALYSIS 19

similarity between two documents d1 and d2 is to compute the cosine

similarity of their vector representations
−→
d1 and

−→
d2 (eq. 2.6).

sim(d1, d2) =

−→
V (d1).

−→
V (d2)

∣

∣

∣

−→
V (d1)

∣

∣

∣
.

∣

∣

∣

−→
V (d2)

∣

∣

∣

, (2.6)

where the numerator represents the dot product1 of the vectors, while
the denominator is the product of their Euclidean lengths2. The measure

from eq. 2.6 is the cosine of the angle φ between the two vectors
−→
d1 and

−→
d2 .

Once we represent a collection of N documents as a collection of vectors,
it is easy to obtain a natural view of the collection as a term-document
matrix : this is a m× n matrix whose rows represent the m terms in the
document collection, and each of whose n columns corresponds to a doc-
ument. And this specific matrix grouping all documents and terms from
the collection is used in Latent Semantic Analysis, a technique which is
discussed next.

2.3 Latent Semantic Analysis

LSA was first introduced by Dumais et al. [8] and Deerwester et al. [9] as
a technique for improving information retrieval. It is based on the Vec-
tor Space Model, where as already discussed, words from users’ queries
are matched with the words in documents. Such IR models that depend
on lexical matching have to deal with two problems: synonymy and
polysemy. Due to the many meanings which the same word can have,
also called polysemy, irrelevant information is retrieved when searching.
And as there are different ways to describe the same concept, or syn-
onymy, important information can be missed. LSA has been proposed
to address these fundamental retrieval problems, having as a key idea
dimension reduction technique, which maps documents and terms into a
lower dimensional semantic space. LSA models the relationships among
documents based on their constituent words, and the relationships be-
tween words based on their occurrence in documents. By using fewer
dimensions than there are unique words, LSA induces similarities among

1The dot product −→x .−→y of two vectors is defined as

M
∑

i=1

xiyi.

2Let
−→
d is the document vector for d, with M components

−→
d1...

−→
dM . The Euclidean

length of d is defined to be

√

M
∑

i=1

−→
d2
i

CHAPTER 2. LATENT SEMANTIC ANALYSIS 20

words including ones that have never occurred together [10]. The ba-
sic steps in using LSA are: document representation (the same as in
VSM), Singular Value Decomposition (SVD) with dimensionality reduc-
tion, and querying. Next, the theoretical basis for LSA is given, as it has
been implemented as a part of this work.

As mentioned above, the first step of LSA implementation is document
representation. It is similar to the representation in VSM, therefore re-
fer to section 2.2. After tokenizing all documents in the collection, and
computing the corresponding term weights, one has to construct a term-
document matrix (eq. 2.7). Having as rows the terms, and as columns the
documents, its elements are the occurrences of each term in a particular
document, where aij denotes the frequency with which term i occurs in
document j. The size of the matrix is m x n, where m is the number
of terms, and n is the number of documents in the text collection. Since
every term doesn’t appear in each document, the matrix is usually sparse.

A =







a11 a12 · · · a1n
...

...
. . .

...
am1 am2 · · · amn






(2.7)

Local and global weightings are applied to increase or decrease the im-
portance of terms within documents. After presenting the most popular
weight functions in sections 2.2.2, we can write

aij = L(i, j) ×G(i), (2.8)

where L(i, j) is the local weighting of the term i in document j, and G(i)
is the global weighting for term i. As examples of local functions, the
term frequency tf and log were discussed, while idf and entropy were
the examples for global weightings. The choice of weight function im-
pacts LSA performance. In section 2.6 reasons are given for the specific
implementation decisions made in this work concerning LSA.

2.4 Singular Value Decomposition

After its generation, the term-document matrix is decomposed into three
matrices (eq. 2.9) by applying SVD. It is a unique decomposition of a
matrix into the product of three matrices - U , V and Σ, where U and V

CHAPTER 2. LATENT SEMANTIC ANALYSIS 21

are orthonormal matrices3, and Σ is a diagonal matrix4 having singular
values5 on its diagonal.

A = UΣV T (2.9)

After the initial matrix A is decomposed, all but the highest k values
of its product diagonal matrix Σ are set to 0. When A is recomputed
again following eq. 2.9, the resulting matrix Ak represents the semantic
space of the text collection. A classical visual example can be used to
presenting SVD (as given in [8]) into three product matrices. It can be
seen here how the dimensionality reduction of matrix Σ affects all three
product matrices.

Figure 2.3: Diagram of truncated SVD

Ak - best rank-k approximation of A m - number of terms
U - term vectors n - number of documents
Σ - singular values k - number of factors
V T - document vectors r - rank of A

In fig. 2.3, U and V contain the term and document vectors respectively,
and Σ is constructed by the singular values of A. An important prop-
erty of SVD is that the singular values placed on the diagonal of Σ are
in decreasing order. Hence, if all but the first k singular values are set

3An orthonormal matrix is a matrix, whose columns, treated as vectors, are also
orthonormal. A matrix is orthonormal, if its transpose is equal to its inverse. For
more information on matrices and matrix operations, refer to [11]

4A diagonal matrix is a square matrix, in which the entries outside the main
diagonal are all 0.

5For a square matrix A, the square roots of the eigenvalues of ATA, where AT

is the conjugate transpose, are called singular values. Given a matrix A, a non-zero
vector x is defined to be an eigenvector of the matrix, if it satisfies the eigenvalue

equation: Ax = λx for some scalar λ. The scalar λ is called an eigenvalue of A
corresponding to the eigenvector x.[11]

CHAPTER 2. LATENT SEMANTIC ANALYSIS 22

to 0, the semantic meaning in the resulting space is preserved to some
approximation k, while noise or variability in word usage, is filtered out.
Noise in this case are the terms with lowest weights which carry little
meaning. By using fewer dimensions k, LSA induces similarities among
terms including ones that have never occurred together. Terms which
occur in similar documents, for example, will be near each other in the
k-dimensional vector space even if they never co-occur in the same doc-
ument. This means that some documents that do not have any common
words with a given query may be near it in resulting k-space.

A factor to be considered when computing SVD is the run-time com-
plexity of the algorithm. For decomposition of very large matrices, it is
O(n2k3), where n is the number of terms in the text corpus, and k is the
number of dimensions in semantic space after dimensionality reduction.
Note that k is typically a small number between 50 and 350.

A more detailed description of SVD can be found in [12] and [11].

2.5 Querying the semantic space

In this work LSA is used for IR purpose. Therefore, the final step of
applying the technique is to pose queries on the constructed semantic
space. A query q is a set of words which must be represented as a
document in the k-dimensional space, in order to be compared to other
documents. The user’s query can be represented by using eq. 2.10:

q = qTUkΣ−1
k (2.10)

where q is the set of words in the query, multiplied by the reduced term
and singular values matrices. Using the transformation in eq. (2.10), the
query is ”mapped” onto the reduced k-space. After the mapping, the
resulting query vector can be compared to the documents in the k-space,
and the results ranked by their similarity or nearness to the query. A
common similarity measure used to compute similarity between the query
and the document vectors is the cosine (eq. 2.6). From the resulting doc-
ument set, the documents closest to the query above certain threshold
are returned as search results.

CHAPTER 2. LATENT SEMANTIC ANALYSIS 23

2.6 Factors which influence LSA performance

The effective usage of LSA is a process of sophisticated tuning. Several
factors can influence the performance of the technique. These factors
are pre-processing of texts (removal of stop-words, filtering, stemming),
frequency matrix transformations, choice of dimensionality k, choice of
similarity measure. Dumais et al. [13] and Nakov et al. [14] have carried
out research on LSA performance depending on the choice of the above
mentioned factors. They conclude that LSA performance depends on
the particular text corpus, as well as on the purpose of LSA application.
However, in the case of matrix transform, log-entropy (section 2.2.2)
performs better as compared to other matrix transform function com-
binations, including the popular term frequency - inverse document fre-
quency (tf − idf) (section 2.2.2). Therefore, the former is implemented
in this work. It has been further stated ([13],[15]) that with respect to
similarity measures used, LSA performs optimal when cosine similarity
measure is implemented to calculate the distance between vectors in the
semantic space (eq. 2.6). It is therefore used in this work to measure the
relevance between queries and documents. And finally, the dimensional-
ity reduction parameter k is defined empirically based on the experimen-
tation results presented in Chapter 6.

Chapter 3

Cluster labeling

A major problem in text analysis is to determine the topics in a text
collection and identify the most important or significant relationships
between them. Clustering and visualization (e.g. in the form of tag
clouds) are key analysis methods in order to address this problem. In
this chapter, an algorithm for cluster labeling, which is relatively new, is
discussed, and in Chapter 4 tag clouds are introduced as a visualization
mean used in IR systems.

3.1 Clustering

Clustering is an IR method that groups objects (documents) together
based on their similarities in so called clusters. Such methods are often
applied in the post processing phase of IR (fig. 1.1) for the visualization
of retrieved results. For example, similar search results can be grouped
together during presentation of results in search engines.

Clustering can be used to categorize resources. Document categorization
is the process of assigning a document to one or more categories. A cat-
egorization C = {c1, c2, ..., ck} partitions a document collection D into
subsets c ⊆ D, so that ∪k

i=1ck = D. C is an exclusive categorization
if ci ∩ cj 6=i = 0, ci, cj ∈ C, and non-exclusive categorization otherwise.
Clustering is an unsupervised categorization method, as it organizes doc-
uments into clusters without having prior knowledge about the clusters,
or predefined cluster categories.

Presenting search results in groups, or categories, should help users gain
a quick overview of the retrieved documents. An important part of clus-
tering used for visualization of results, is to choose suitable labels of the
categories defined, so that they are usable to human users. The process

24

CHAPTER 3. CLUSTER LABELING 25

of cluster labeling automatically creates labels for clustered groups of ob-
jects.

3.1.1 Clustering algorithms

A large variety of clustering algorithms exists, and they are usually clas-
sified according to the characteristic of their output structure. Jain et
al. [16] make a classification based on the following properties:

Flat vs. hierarchical clustering

Flat clustering creates a flat set of clusters without relations between
clusters due to some structure. K-means is a popular clustering algo-
rithm, which creates as output a flat structure of document clusters. The
k-means clustering algorithm is presented as an example for flat cluster-
ing in section 3.1.2. Hierarchical clustering on the other hand creates
a hierarchy of clusters, with parents and children nodes, in a tree-like
manner (Johnson [17]).

Hard vs. soft clustering

Another important distinction can be made between hard and soft (also
called fuzzy) clustering algorithms. If each document is assigned to a
single cluster only, we have hard clustering. Otherwise, clustering is soft,
and it assigns a document as a distribution over all clusters. This means
that each document can have a fractional membership in several clus-
ters. LSA (Chapter 2) is a good example for a soft clustering algorithm.
K-means is a popular example for hard clustering (section 3.1.2).

Monothetic vs. polythetic clustering

Based on how documents are assigned to different clusters, clustering can
be divided into monothetic and polythetic [18]. Monothetic algorithms
assign a document to a cluster based on a single feature, while polythetic
algorithms classify documents by overall degree of similarity/difference
calculated over many properties. This makes monothetic clustering well
suited for generating hierarchies and browsing search results, since a sin-
gle feature, common to all documents in the cluster, describe each cluster.
Users understand easily clusters generated in this way. K-means is an
example of polythetic document clustering algorithm, where each cluster
is described by several words of phases.

CHAPTER 3. CLUSTER LABELING 26

3.1.2 K-means clustering algorithm

In this work the cluster labeling algorithm Weighted Centroid Cover-
ing is evaluated. As clustering precedes cluster labeling, the k-means
algorithm is used for document clustering. Two factors influence this
implementation decision:

• As LSA is used to process the term-document matrix, it can be in-
vestigated which dimensionality reduction parameter k is optimal
for the specific implementation and data set used in this work, so
that the optimal number of topics (or soft clusters) can be obtained
for the evaluation data set. Therefore, the dimensionality reduc-
tion parameter, previously defined in LSA, can be used as initial
parameter for k-means, or the number of clusters inputted to the
algorithm. Thus, one of k-means’ weaknesses will not affect this
work.

• Another reason to use k-means algorithm is its simplicity, as com-
pared for example to Hierarchical Agglomerative Clustering (HAC)
- the complexity of k-means is linear, while the complexity of HAC
is exponential.

K-means is an example for a flat, hard and polythetic clustering al-
gorithm, based on the classification mentioned previously. It was first
introduced by Lloyd [19]. The algorithm outputs a flat unstructured set
of clusters. It starts by dividing the document collection into k clusters,
where k is an input parameter, and then computes the k means of these
clusters. The algorithm defines a cluster in terms of a centroid, usually
the mean of a group of points, and is applied to objects (documents) in
n-dimensional space (such as vector space). After the initialization, the
following two steps are iteratively repeated, until the clusters are not
re-assigned any more:

1. Each document in the collection is assigned to the cluster with the
closest mean.

2. For each cluster, new means are recomputed based on the docu-
ments it contains.

In algorithm 3.1 a detailed step-by-step description of the k-means algo-
rithm is given as pseudo-code.

CHAPTER 3. CLUSTER LABELING 27

Algorithm 3.1 K-means clustering algorithm

Input: D = {d1, d2, ..., dn} - documents to be clustered
k - number of clusters

Output: C = {c1, c2, ..., ck} - clusters
m : D → {1...k} - cluster membership
Set C to initial value (e.g. select k random points as initial centroids)
{Form k clusters by assigning each document to its closest centroid}
for all di ∈ D do

m(di) = mindistancej∈{1..n}(di, cj)
end for

{Recompute the centroid of each cluster until centroids do not change}
while m has changed do

for all i ∈ {1..n} do

Recompute ci as the centroid of {d|m(d) = i}
end for

for all di ∈ D do

m(di) = mindistancej∈{1..n}(di, cj)
end for

end while

3.2 Cluster labeling

Assume that a categorization over a document collection is determined
using an unsupervised approach, such as clustering. To present this cat-
egorization to users, it is convenient to label the individual categories
with characteristic terms. These terms, called category labels, should
characterize the content of the associated category with respect to the
remaining categories. This implies that cluster labeling should summa-
rize a category’s content and that it should discriminate a category from
the remaining categories. This section states desired properties for cat-
egory labels and presents the Weighted Centroid Covering (WCC) algo-
rithm (Stein and Meyer zu Eissen [2]) which generates such labels. It
further makes a proposition for improvement of WCC (section 3.2.3).
Finally, in Chapter 5 an evaluation of WCC for labeling of document
clusters is offered, created using k-means algorithm.

3.2.1 Clustering and labeling

In their paper from 2009 [20], Carpineto et al. claimed that there is a dif-
ference between clustering of data sets, and clustering of search results,
returned from search engines: ”in search results clustering description

CHAPTER 3. CLUSTER LABELING 28

comes first”. Thus, in contrast to the classical categorization of cluster-
ing algorithms previously outlined, they proposed a classification based
on how well the clustering algorithms can generate sensible, compre-
hensive and compact cluster labels, and divided the algorithms in the
following three categories:

Data-centric algorithms

Data-centric algorithms were the first ones to be implemented for cluster
labeling. Here, clustering is done with some general clustering algorithm,
and terms which are close to the cluster centroids1 are nominated as clus-
ter labels. Cluster centroids are a collection of independent terms from
all documents not related to each other. In order to define the terms from
cluster centroid, one uses a frequency measure, such as tf − idf (eq. 2.2).
WCC (see 3.2.3) is presented as an example for a data-centric clustering
algorithm.

Description-aware algorithms

While data-centric algorithms don’t consider word order, and process
documents as ”a bag of words”, description-aware algorithms process or-
dered sequence of words (phrases) instead of terms as candidate labels,
and assign labels during clustering process, not after it. Using mono-
thetic term selection (documents are assigned to clusters based on a sin-
gle feature), one nominates frequent phrases containing a noun as labels,
which are interpretable to human users. Suffix Tree Clustering (STC) is
an example of a description-aware algorithm, introduced by Zamir and
Etzioni [21]. STC builds a tree from the most frequent phrases in docu-
ments by using the data structure suffix tree [21]. It groups documents
that have common phrases under the same nodes of the tree. Thus, all
documents below a given node contain the phrase at the node.

Description-centric algorithms

These algorithms operate on the principle ”description comes first”, and
in this sense are the opposite of the data-centric algorithms. The goal
here is to find meaningful cluster labels. If there are no suitable labels
found, the cluster has no value for the users (doesn’t have a proper visu-
alization), and is therefore discarded. Description-centric algorithms are
mainly applied for clustering of search results (more information can be
found in [20]).

1The centroid of a cluster is the mean of all vectors in the cluster.

CHAPTER 3. CLUSTER LABELING 29

3.2.2 Formal framework for cluster labeling algo-

rithms

When an unsupervised approach is used to categorize a collection of doc-
uments, such as clustering, it is also necessary to label the categories
defined, in order to present them to users. The category labels should
characterize the given categories - labels should summarize category con-
tent, and should discriminate a category from other categories [2]. Un-
til now, no uniformly agreed upon formal framework exists that defines
the requirements for cluster labeling algorithms. There are publications
which name desired properties for cluster labels ([22], [23]), but they
all give informal descriptions. Stein and Meyer Zu Eissen [2] have given
their definitions for desired properties of cluster labeling algorithms as a
formal framework. The definition presented below is based on this source.

If we have an unstructured collection of documents D, a clustering al-
gorithm creates a categorization for this collection in the form C =
{c1, c2, ..., ck}, where the sets ci are subsets of D, and their union covers
D: ∪ci∈Cci = D. When applying a hierarchical clustering algorithm,
this implies a cluster labeling hierarchy HC over C. Then, HC is a tree
and its nodes are the categories in C, having one node as a root. Let
ci, cj ∈ C, ci 6= cj are two categories. If cj is a child cluster of ci, then ci
is closer to the root of the hierarchy HC , and we write ci ≻ cj.

For an existing categorization C, we therefore need a cluster labeling
 L = {l1, l2, ..., lk}.

Let T = ∪d∈DTd be the term set in the given document collection D.
As defined by Stein and Meyer zu Eissen [2], a cluster labeling function
τ : c � L assigns a cluster label to each cluster c ∈ C, where Lc ⊂ T .

Thus, the following properties are desired for a cluster labeling function:

1. Unique

Cluster labels should be unique. The same terms should not be
assigned as cluster labels to more than one cluster, or no two labels
should include the same terms from two different clusters.

∀ci,cj∈C,
ci 6=cj

: τ(Ci) ∩ τ(Cj) = 0 (3.1)

2. Summarizing

If possible, the label of a cluster c should contain at least one term

CHAPTER 3. CLUSTER LABELING 30

t from each document d ∈ c. Terms occurring in all documents,
which are part of the cluster, represent it better than terms that
occur only in few documents.

∀c∈C , ∀d∈c : τc ∩ Td 6= 0 (3.2)

where Td is the set of terms in document d.

3. Discriminating

Apart from summarizing, terms in labels should be discriminating.
They should contribute to discriminate the cluster from other clus-
ters, i.e. the same terms should be present in a considerably smaller
set of documents in the other clusters. Discriminating means that
in a cluster label ci, there exists a term t whose frequency of oc-
currence is relatively higher in the documents belonging to ci as
compared to the documents in other clusters.

∀ci,cj∈C
ci 6=cj

∃t∈Tci :
tfci(t)

|ci|
≪

tfcj(t)

|cj |
(3.3)

Here, Tci is the term set in category ci, and tfci(t) is the term fre-
quency of term t in category ci, or the sum of tf(t) in all documents
in cluster ci : tfci(t) =

∑

d∈ci
tfd(t).

4. Expressive

Terms forming a label of cluster c should have highest frequency of
occurrence in the documents from c:

∀c∈C∀d∈c∀t∈Td
: tfd(t) ≤ tfd(t

′), t′ ∈ τ(c) (3.4)

Here, tfd(t) is the term frequency of occurrence of term t in docu-
ment d.

5. Contiguous

This property holds for consecutive terms, for example belonging
to a phrase, idiom or name. Such cluster labels, containing consec-
utive terms, are more understandable to human users.

∀c∈C∃t,t′∈τ(c),
ci 6=cj

∀d∈c∃ti,ti+1∈Td
: ti = t ∧ ti+1 = t′ (3.5)

6. Hierarchically consistent If a cj is a child cluster or a special-
ization of ci, such that : ci ≻ cj, this specialization is reflected also
in the terms of the corresponding labels:

∀ci,cj∈C,
ci 6=cj

: ci ≻ cj ⇒ P (ti|tj) = 1 ∧ P (tj |ti) < 1, (3.6)

CHAPTER 3. CLUSTER LABELING 31

where ti ∈ τ(ci) and tj ∈ τ(cj), and P is the conditional probability
that terms ti, tj occur in clusters ci, cj . This property is required
only when using a hierarchical clustering algorithm (e.g. STC [21]).

7. Irredundant

Irredundancy complements the property unique. Terms which are
synonyms should be avoided in cluster labels.

∀c∈C , ∀t,t′∈τc,
t6=t′

: t and t’ are not synonyms (3.7)

The properties stated above describe ideal conditions and can only be
approximated in the real world. One needs external knowledge (e.g. an
ontology), in order to fulfill requirements hierarchical consistency and
irredundancy.

3.2.3 Weighted Centroid Covering

Weighted Centroid Covering (WCC) was introduced by Stein and Meyer
zu Eissen [2]. It is a data-centric algorithm for cluster labeling, in which
labels are generated from sets of frequently occurring terms.

If D are all documents in a collection, which contains a set of terms
T , and t ∈ T is a term from T , and C = {c1, c2, ..., c|C|} is a catego-
rization over the set D, then we can define a function κ as follows: let
κ : T × {c1, c2, ..., c|C|} → C is a function with κ(t, i) = c iff c is the
cluster with ith frequent occurrence of term t [2]. As an example, if t

occurs most frequently in a give cluster, we can write κ(t, 1), and if it
occurs least frequently, we write κ(t, |C|).

CHAPTER 3. CLUSTER LABELING 32

Figure 3.1: Cluster labeling using Weighted Centroid Covering algorithm,
where l is the number of terms per label

The WCC algorithm consists of three stages. As input to the algorithm,
a clustering C is given:

1. For all terms in the input clusters, it saves the k most frequent
occurrences of each word with its term frequency, and the cluster
in which it occurs, to a data structure (say a vector L).

2. It sorts vector L which stores tuples (k, tf(term), term, cluster)
in a descending order, based on the frequency of a term in a given
cluster tfc(t);

3. It assigns l terms to each cluster as labels. Therefore, in the end
each cluster has a label of l terms, assigned to it in a Round-Robin-
like manner.

The complexity of WCC is O(|T log(|T |)). A pseudo code of the algo-
rithm is given as algorithm 3.2. Additionally, the main steps of WCC
can be seen graphically in fig. 3.1.

CHAPTER 3. CLUSTER LABELING 33

Algorithm 3.2 Weighted Centroid Covering algorithm for cluster label-
ing

Input: C - clustering
l - number of terms per label
k - maximum occurrence of the same term in different labels

Output: τ - labeling function
 L = 0
foreach c in C do

τ(c) = 0;
end foreach

foreach t in T do

for i = 1 to k do

compute c = κ(t, i) from C;
add tuple 〈t, tfc(t)〉 to L;

end for

end foreach

sort L according to descending term frequencies;
for labelcount = 1 to l do

assigned = 0;
j = 1;
while assigned < |C| and j ≤ | L| do

let tj = 〈t, tfc(t)〉 be jth tuple of L;
if |τ(c)| < labelcount then

τ(c) = τ(c) ∪ {t};
delete tj from L;
assigned = assiged + 1;

end if

j = j + 1;
end while

end for

foreach c in C do

do sort τ(c)
end foreach

return τ ;

CHAPTER 3. CLUSTER LABELING 34

3.3 Cluster labeling using external knowl-

edge

WCC was previously presented as an algorithm for cluster labeling. It
nominates cluster labels by selecting as candidate labels the terms with
highest frequency of occurrence from the corresponding clusters. How-
ever, the algorithm nominates labels based only on cluster content and
term frequencies of words in the document collection. In order to im-
prove labeling for users, noun phrases may be used as labels, as they are
intuitively understood by humans, and are more descriptive than single
terms (Weiss [23]). Another improvement of cluster labeling can be made
by using external knowledge to generate more meaningful labels. Carmel
et al.([24]) reported promising results using Wikipedia2 as a source of an
external knowledge. Ontologies can also be used as a knowledge source
during cluster label generation. Stein and Meyer zu Eissen ([3]) pro-
pose using a hierarchical classifier, in order to assign clusters to ontology
nodes, and thus nominate cluster labels from the ontology, however, their
proposal includes a text classification problem.

Based on the ideas by Stein and Meyer zu Eissen ([3]), and Mugo ([25]), a
proposal for improving WCC is made using ontologies as external knowl-
edge, and adding semantic annotations to the document collection. Using
the semantic annotations in a cluster of documents, candidate labels can
be nominated from both the annotations and the terms, which occur
most frequently in clusters. Thus, if the ontology fails to provide suit-
able labels, the label candidates proposed by WCC can be used.

In order to present the approach, first a short overview on ontologies is
given. In order to gain more detailed insight, refer to the given reference
literature, as it is not the main topic of this work to investigate into
semantic knowledge and ontologies.

3.3.1 Ontology as a source of external knowledge

Formal models of the world can be used to provide formal semantics,
or machine-interpretable meaning to information, stored as documents,
web pages, databases. When models are intended to represent a shared
conceptualization, such as a classification, they are called ontologies [26].
Or if the classical definition from Gruber [27] is used: Ontologies are
explicit specifications of the conceptualizations at a semantic level.

2http://www.wikipedia.org/

http://www.wikipedia.org/

CHAPTER 3. CLUSTER LABELING 35

Formal ontologies are represented in a logical formalism which allows
for indexing, querying, and referencing purposes over non-ontological
datasets, such as documents, databases [23]. An example for a logical
formalism is the ontology language Web Ontology Language (OWL)3.

An ontology is characterized by the following tuple (ordered list):

O =< C,R, I, A > (3.8)

In the equation above C is a set of classes which represent the concepts
from a given domain. Examples for concepts can be databases, resources,
repositories. R is a set of relations, also called properties or predicates.
These relations are valid between instances of the classes from C. As an
example: Resource isStoredIn Repository. I is a set of instances, having
as elements instances to one or more classes, which can also be linked to
other instances or values. For example: manual2 isStoredIn onlineRepos-
itory1. And finally, A is a set of axioms, or rules in a logical form about
the domain which the ontology describes.

According to the formal language used for their creation, ontologies can
be divided into lightweight and heavyweight. Heavyweight ontologies pos-
sess highly predictive and restrictive concept definitions; as compared to
them, lightweight ontologies allow for more efficient and scalable reason-
ing [23]. Based on the conceptualization that they describe, the ontolo-
gies can be divided further into upper-level, which model general knowl-
edge and domain ontologies, specific to a certain domain (e.g. the domain
of CoreMedia Content Management System (CMS) in Appendix A.1).

The process of semantic annotation is to add meta data to documents us-
ing an ontology. After the annotation, the documents contain additional
set of information which was not specified by the initial author of the
document. This additional information based on an ontology allows for
interpretation of the meaning in texts. Thus, if cluster labels are gener-
ated based on semantic annotations, they will better reflect the meaning
in the cluster, than labels which only contain the most frequent terms.
Mugo [25] provides detailed overview of the annotation process.

CHAPTER 3. CLUSTER LABELING 36

Figure 3.2: Cluster labeling using Weighted Centroid Covering algorithm,
augmented by an ontology

3.3.2 Weighted Centroid Covering augmented by

an ontology

If a document collection is annotated using an ontology, the semantic
annotations can be used as candidate labels for the documents in a clus-
ter, as they reflect the ”meaning” of the texts. Candidate labels can
be nominated from both the semantic annotations in a cluster, and the
most frequent terms (fig. 3.2). Thus, selected ontological annotations
will ”compete” with inner terms for serving as the cluster labels. For the
case when the annotations fails to cover the cluster content, the most
frequent terms should be used as labels.

The proposed solution has the advantage of simplicity as compared to the
proposal of Stein and Meyer zu Eissen ([3])), because it doesn’t add the
complexity of a text classification problem to cluster labeling. However,
a traditional drawback of semantic annotations is that so far, there is no
fully automatic annotation tool, and manual work is required during the
process of document annotation ([25]).

3http://www.w3.org/TR/owl-features/, accessed December, 2010

CHAPTER 3. CLUSTER LABELING 37

Due to time constrains, no experimental results can be provided on run-
ning WCC with external knowledge. This remains for further work.

Chapter 4

Tag Clouds

Tagging is the activity of associating one or more key words or phrases
to a resource. A tag is a label or a note that makes it easier for users to
find documents, web-pages, videos, images or other resources. Tag clouds
are generated from a collection of tags, and one of their first uses was for
annotating pictures, as a part of the Flickr1 website in 2004 [28]. Tags cre-
ated by different users form a folksonomy, which is a flat user-generated
classification of a collection of resources. Folksonomies are part of Web
2.0, the collection of tools for retrieval, deployment, representation and
production of information. In Web 2.0 it is no longer organizations, web
designers or authors who generate content - every user can do so. The
heavy growth of user-generated content, a part of the so called informa-
tion flood, increases the demand for suitable methods and facilities for
storage and retrieval of this content. In order to meet those demands,
collaborative information services have been developed, like social book-
marking, photo sharing and video sharing, where users index their own
information resources with their tags. This indirect cooperation of users
creates a folksonomy for each collaborative information services com-
prised of each individuals user’s tags. Using this folksonomy, all users
may then access the resources of the information service in question.

Several concepts are defined below, which are used in this chapter:

Tagging, which is one of the defining characteristics of Web 2.0 services,
allows users to collectively classify and find information. Tagging is man-
ual (collaborative), done in social bookmarking applications for example,
or automatically generated, e.g., based on the frequency of term occur-
rence in a document collection.

Tag clouds are visual interfaces for IR. They provide a global contex-

1http://www.flickr.com/ , accessed December, 2010

38

http://www.flickr.com/

CHAPTER 4. TAG CLOUDS 39

tual view of tags assigned to resources (or documents) in the collec-
tion (fig. 4.1).

Collaborative tagging systems, also called social bookmarking systems,
are used to organize, browse and share personal collections of resources
by introducing simple meta data about these resources (fig. 4.2).

Folksonomies are flat, user-generated classifications of resources [28].

Web 2.0. Social bookmarking systems are a part of Web 2.0. Web 2.0
spans all activities and technical requirements that allow users of the
World Wide Web to self-publish content, in the form of profiles, book-
marks, photos, videos, posts etc. and to make it accessible to other users,
as well as to communicate with them [28].

Figure 4.1: A tag cloud, where tags have been selected and visually weighted
according to their frequency of use.

4.1 Introduction

Tag clouds are simple visualization interfaces. They are wide-spread as
a part of Web 2.0. Several types of tag clouds exist:

• Tag clouds generated over partial lists, such as search results. The
size of tags depends on the frequency of occurrence of the corre-
sponding terms, measured for example using tf − idf measure (sec-
tion 2.2.2).

• Collaborative tag clouds, where tag frequency and size are gener-
ated over all documents in the set D. Collaborative tag clouds
present the main concepts in the collection, where the size of tags
is defined by some measure, such as frequency of occurrence.

CHAPTER 4. TAG CLOUDS 40

• Categorical tag clouds, where the size of tags reflects the size of
the corresponding category.

Tag clouds can be further divided into manual and automatic, depend-
ing on the way they are generated. Manual tags are created for example
in social bookmarking applications by users, while automatic tag clouds
are generated based on a collection of textual resources, and a frequency
measure. Clouds enhance the visualization of information, contained in
a collection of resources. According to Smith [29] and Peters [28] tagging
has the following main application areas:

• Information retrieval, e.g. in the online services Last.fm2 or En-
gineering village3, where tag clouds enhance IR, and are used to
retrieve resources. Here are also included tag clouds used in e-
commerce services, such as Amazon4.

• Online libraries use tag clouds to present a book content as a col-
lection of tags, representing the main concepts in a book, as used
in Library Thing5, or to search for books under a collection of cat-
egories, presented as a tag cloud, as used in Wiley Online Library6.
These are just two examples out of many more.

• Social bookmarking. Delicious7 offers tagging for sharing book-
marks to online resources, and the popular Facebook8 uses tagging
for sharing photos, videos or music.

• As a part of games with a purpose, or GWAP9, where tagging is
used for improving computer programs, such as programs perform-
ing image recognition tasks, or for tagging audio or image files.

As tags and tag clouds are heavily used in collaborative tagging, an ex-
ample for tag cloud use is given in the context of social bookmarking

2http://www.lastfm.de/ , accessed December, 2010
3http://www.engineeringvillage.org/ , accessed December, 2010
4http://www.amazon.com/gp/tagging/cloud/ , accessed December, 2010
5http://www.librarything.com/ , accessed December, 2010
6http://onlinelibrary.wiley.com
7http://www.delicious.com/ , accessed December, 2010
8http://www.facebook.com/ , accessed December, 2010
9http://www.gwap.com/ , accessed December, 2010

http://www.lastfm.de/
http://www.engineeringvillage.org/
http://www.amazon.com/gp/tagging/cloud/
http://www.librarything.com/
http://onlinelibrary.wiley.com
http://www.delicious.com/
http://www.facebook.com/
http://www.gwap.com/

CHAPTER 4. TAG CLOUDS 41

Figure 4.2: Tag clouds in applications for collaborative information services.
Source: Heymann, Koutrika, Garcia-Molina(2007, [30])

software (fig. 4.2). In this application users have the roles of both con-
tent creators and content consumers. As consumers, they can use tag
clouds for retrieval of resources, and visualization. In fig. 4.2, a tag cloud
contains the most commonly occurring tags in the system, and tag book-
marks contain for a given tag t, a list of the most recently posted URLs
annotated with t.

The extensive amount of people involved in the process of resource tag-
ging can overcome to some extent the flood of information, generated
on a daily basis by users. With respect to social bookmarking, Clay
Shirky10, a professor at New York University, says: ”The only group that
can categorize everything is everybody.”. However, social tagging has cer-
tain drawbacks. There is criticism about the quality of tagging, as it is
usually done by laymen, and privacy issues arise, concerning the tagged
content [28].

10http://shirky.com/writings/ontology_overrated.html , accessed December,
2010

http://shirky.com/writings/ontology_overrated.html

CHAPTER 4. TAG CLOUDS 42

4.2 Tag clouds generation

Tag clouds are generated from a collection of tags, and corresponding
weights associated with them, which measure their ”importance” by
defining the tag size in the cloud. The implementation usually includes
a preprocessing phase, as already discussed in section 2.2, such as text
parsing, filtering out of stop words, numbers, punctuation. As tag size
is defined by frequency of occurrence, for small frequencies the size is
normalized to one. For larger values, a linear normalization is applied,
where the weight ti of a tag is mapped to a size scale of 1 through f ,
where tmin and tmax are specifying the range of available weights. Thus,
the displayed font size of a tag ti is defined by:

fi = ⌈
fmax.(ti − tmin)

(tmax − tmin)
⌉ for ti > tmin; else fi = 1 (4.1)

where fi is the displayed font-size, fmax is the maximum font-size, ti is
the count of tag t, and tmin, tmax are limits for minimum and maximum
count that a term t can have.

4.2.1 Tag cloud layout

The traditional tag cloud layout is alphabetical. Tag clouds aggregate a
statistics of the tag-usage. They are typically sent as in-line HTML to
browsers. Since the font size of a displayed tag is usually used to show
the relative importance or frequency of the tag, a typical tag cloud con-
tains large and small text interspersed. The following kinds of layout are
common:

• Sequential layout, with either a horizontal or vertical arrangement
of tags, sorted alphabetically or by some other criteria (e.g., popu-
larity, chronology, etc.).

• Circular layout, with the most popular tags in the center and tags
with decreasing popularities towards the borders (or vice versa).

• Clustered layout, in which the distance between tags follows a cer-
tain clustering criteria (e.g., semantic relatedness) and related tags
are positioned in close proximity [3, 6].

CHAPTER 4. TAG CLOUDS 43

4.3 Existing implementations

In this work, a semantic space is constructed over a set of documents
using LSA (Chapter 2), and a tag cloud is used to visualize the main
concepts in search results, retrieved from this space. Similar implemen-
tations of tag clouds exist, used to enhance IR tasks. Examples of such
applications are given below.

Yippy11 is a tool that visualizes topics based on search queries as a tag
cloud, previously known as Clusty. Created by Vivisimo12, it offers clas-
sification of search results.

Google13 has developed their Wonder wheel search visualization tool,
in order to display search results as a categorical tag cloud. The tags
in Google’s Wonder wheel represent categories in the set of search result
documents.

Opinion Crawl14 is web sentiment analysis application (it analyzes the
”opinion” of users). It generates a concept cloud from daily scanned
blogs, web site articles, and is developed at Semantic Engines LLC.

SenseBot Search Results is another tool from Semantic Engines LLC.
It is a plugin for Mozilla Firefox browser that generates a tag cloud of
the main concepts returned as search results from Google, included as a
part of the SenseBot semantic search engine15.

These are just a few examples of tag cloud usage presented here, as they
are similar to the implementation purpose of the tag cloud developed in
this work.

4.4 Conclusion

In this chapter tag clouds were presented as visualization interfaces for
enhancing IR services, and the use of tag clouds was over viewed in the
context of social bookmarking applications and commercial retrieval sys-
tems. In the next chapter, a tag cloud implementation is given, which

11http://cloud.yippy.com/ , accessed Dezember, 2010
12http://vivisimo.com/ , accessed Dezember, 2010
13http://www.google.com/ , accessed December, 2010
14http://www.opinioncrawl.com/ , accessed December, 2010
15http://www.sensebot.net/ , accessed December, 2010

http://cloud.yippy.com/
http://vivisimo.com/
http://www.google.com/
http://www.opinioncrawl.com/
http://www.sensebot.net/

CHAPTER 4. TAG CLOUDS 44

was developed as a part this work, and its function as a part of an IR
process is explained.

Chapter 5

Implementation

This chapter describes the implementation part of the thesis work. After
presenting in Chapter 2 the theoretical basis behind LSA, and in Chap-
ter 3 cluster labeling, theoretical application and specific implementation
decisions are discussed here. All software tools and libraries which were
used are pointed out, and code snipplets are given. Then in Chapter 6,
test results are shown, and evaluation of the implementation is made.

5.1 Tag cloud summarizer

The prototype implementation is a web application, which outputs a tag
cloud based on users’ queries. Initially, a preprocessing of the document
set is done, then a semantic space is constructed by running LSA and
performing dimensionality reduction during SVD (refer to Chapter 2 for
the terminology). The initial two stages are performed offline. Once
the document set is indexed by a term-document matrix, queries can be
made by users. The terms in the documents closest to the queries in
the semantic space, are input to the tag cloud. Querying and tag cloud
generation are performed interactively online.

The desicion to implement the prototype as a web application is due to
two factors. Firstly, tag clouds are widely spread in online systems, and
thus mainly used online. And secondly, the prototype should be imple-
mented in the online documentation system DocMachine1 at CoreMedia
AG, Hamburg, and should also be available online.

1https://documentation.coremedia.com/

45

https://documentation.coremedia.com/

CHAPTER 5. IMPLEMENTATION 46

Preprocessing

The documents used for evaluation are a part of the online documentation
at CoreMedia AG, Hamburg2. Documents are stored as XML files, and
CoreMedia CMS Unified API3 is used to access the plain text, as shown
in Listing B.1. Before executing LSA, a preprocessing the text corpus is
made, in order to construct a semantic space from a document collection.
Stop words, puncutuation and numbers are removed. No stemming is
done, as terms from the semantic space are later used for a tag cloud
generation.

LSA

The LSA implementation uses an opensource Java-based library, called
S-Space (see section 5.3). Partial code for LSA is given in listing B.2.
The complete source code can be found in the online repository where
this work in available online4).

Querying the semantic space

After the semantic space has been constructed, and dimensionality reduc-
tion has taken place, queries can be made to find the documents closest
to a given query, or the terms respectively, by querying the documents
or term space. As a reminder, the term space consists of the matrix
product: U ∗Σ, and the document space of the product: Σ∗V t (fig. 2.3).
In listing B.3 the source code for querying the semantic space is given.

Tag cloud generation

A tag cloud is generated using a collection of terms (or tags) with their
corresponding weights. The weights are just the normalized term fre-
quencies after a dimensionality reduction took place during LSA. In list-
ing B.4 is given the source code used for generating the tag cloud.

The Tag cloud summarizer is a tool that should aid the users of an IR
systems obtain a quick overview of the main concepts contained in search
results they receive. As it will be used by users, its evaluation should
in the best case be made by them. In Chapter 6 is provided a simple
evaluation of the Tag cloud summarizer based on user feedback.

2https://documentation.coremedia.com/
3https://documentation.coremedia.com/servlet/content /241548?

language=en&version=5.2&book=coremedia:///cap/conte nt/241548
4https://github.com/angievelinska/Tag-Cloud-Summariz er/tree/master/

summarizer/src/main/java/edu/tuhh/summarizer/lsa

https://documentation.coremedia.com/
https://documentation.coremedia.com/servlet/content/241548?language=en&version=5.2&book=coremedia:///cap/content/241548
https://documentation.coremedia.com/servlet/content/241548?language=en&version=5.2&book=coremedia:///cap/content/241548
https://github.com/angievelinska/Tag-Cloud-Summarizer/tree/master/summarizer/src/main/java/edu/tuhh/summarizer/lsa
https://github.com/angievelinska/Tag-Cloud-Summarizer/tree/master/summarizer/src/main/java/edu/tuhh/summarizer/lsa

CHAPTER 5. IMPLEMENTATION 47

5.2 Cluster labeling

The algorithm for cluster labeling Weighted Centroid Covering is imple-
mented in Java. It receives as input predefined clusters, and nominates
cluster labels for each cluster. A detailed overview of the algorithm can
be found in section 3.2.3. A part of the source code of this algorithm can
be found in listing B.5.

5.3 Tools and libraries used in this work

Repository

This thesis work is available online hosted in a reporitory under GitHub.
Prototype implementation5, project report6 and LATEX template7 can be
downloaded freely.

LSA and SVD

In this work the popular SVD C library8 is used, created by Doug Rohde
at the Massachusetts Institute of Technology. The implementation devel-
oped as a part of this project is Java-based, therefore for matrix compu-
tations the open source SVDLIBJ9 library is used, which is a Java-based
port of SVD C, made available by Adrian Kuhn and David Erni at the
University of Bern.

k-means clustering algorithm

Cluto clustering library10 is used as an implementation of the k-means
clustering algorithm.

5https://github.com/angievelinska/Tag-Cloud-Summariz er
6https://github.com/angievelinska/Tag-Cloud-Summariz er/raw/master/report/

thesis.pdf
7https://github.com/angievelinska/Tag-Cloud-Summariz er/tree/master/report
8http://tedlab.mit.edu/ ˜ dr/SVDLIBC/ , accessed December, 2010
9http://bender.unibe.ch/svn/codemap/Archive/svdlibj/ , accessed December,

2010
10http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overvi ew, accessed October,

2010

https://github.com/angievelinska/Tag-Cloud-Summarizer
https://github.com/angievelinska/Tag-Cloud-Summarizer/raw/master/report/thesis.pdf
https://github.com/angievelinska/Tag-Cloud-Summarizer/raw/master/report/thesis.pdf
https://github.com/angievelinska/Tag-Cloud-Summarizer/tree/master/report
http://tedlab.mit.edu/~dr/SVDLIBC/
http://bender.unibe.ch/svn/codemap/Archive/svdlibj/
http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

CHAPTER 5. IMPLEMENTATION 48

Information retrieval

S-Space project created by Jurgens and Stevens ([31]) was used for con-
structing a semantic space from the document set used for evaluation.

Tag cloud

The tag cloud used in this work is based on Opencloud11 project, au-
thored by Marco Cavallo.

Search and retrieval of search results

Lucene12 is an open source search engine library, distributed by the
Apache Software Foundation. It is used for indexing, query parsing and
retrieval of search results.

CoreMedia CMS domain ontology

For the ontology development, Protege Ontology Editor 4.113 was used,
developed at Stanfornd University. The ontology is a light-weight domain
ontology developed in OWL for CoreMedia CMS domain (Appendix A
and listing B.6).

Building and deployment

Maven14 is a software management tool, provided by Apache Software
Foundation, which is used for building and testing the implementation
prototype, and for deploying the web application module.

11http://opencloud.mcavallo.org/ , accessed December, 2010
12http://lucene.apache.org/java/3_0_2/ , accessed December, 2010
13http://protege.stanford.edu/ , accessed December, 2010
14http://maven.apache.org/

http://opencloud.mcavallo.org/
http://lucene.apache.org/java/3_0_2/
http://protege.stanford.edu/
http://maven.apache.org/

Chapter 6

Evaluation

Evaluation in IR is based on measures. As this work implements tech-
niques for information retrieval, several wide-spread measures are de-
scribed next, used commonly in IR systems to evaluate performance.
Then, the implemented tests are presented, and finally the obtained test
results are discussed.

6.1 Measures for evaluation

In order to perform an evaluation of IR systems, one needs in the simplest
case:

• a document collection,

• a test suite of information needs, or a set of queries,

• a set of relevance judgments to define for each query-document
pair weather the document is relevant or not relevant for the query
posed.

Relevance is assessed relative to an information need, not a query. A
document is considered relevant if it addresses the users’ information
need, not only if it contains all the words given in the query (Manning
et al. [32]). When short queries (composed of one word for example) are
posted, it is difficult to define the information need of users. But never-
theless, the user has one, and the retrieved search results are evaluated
based on his or her information need.

The two most frequent and basic measures for evaluation of IR systems
are precision and recall [7]. Recall shows the ability of a retrieval system
to present all relevant items, while precision shows its ability to present

49

CHAPTER 6. EVALUATION 50

only relevant items. For the simple case of a system which returns a
result set of document to a query, they are defined:

precision =
number of relevant documents retrieved

total number of relevant documents
(6.1)

recall =
number of relevant documents retrieved

total number of retrieved documents
(6.2)

6.2 Document set used for evaluation

In order to evaluate the retrieval and visualization of main concepts in
a document corpus by the Tag cloud summarizer tool, and cluster label-
ing by WCC, an evaluation document set was prepared, which contains
documents in three categories (see Appendix C) and includes 15 docu-
ments which have different lengths. Table C.2 gives an overview of the
constructed data sets. Due to time constraints, only a simple usability
evaluation was made, using the queries from Appendix C.

6.3 Evaluation of the Tag cloud summa-

rizer

The evaluation of Tag cloud summarizer tool was done by collecting user
feedback. Due to time constraints, only a small number of users were
interviewed. Based on the prepared document set for evaluation and the
queries, they were asked for feedback about the usability of the tool:

• Is the tool intuitive to use?

• Does it visualize the main concepts in the text collection based on
the query made?

• Does it bring value to a search application?

Figure 6.1: Tag cloud generated using the evaluation document set from the
results to a query ”publication workflow”

CHAPTER 6. EVALUATION 51

All users found the tool intuitive to use. Concerning its usefulness, the
main drawback pointed out was that in its current implementation, the
Tag cloud summarizer produces a text cloud, that is a cloud of words,
which do not link to the documents where they occur. It remains for
future work to improve the prototype, and to implement hyperlinks from
the tags in the cloud, which return the set of documents where the cor-
responding tag has the highest frequencies. Concerning the visualization
of main concepts, which are closest to a query, 2 out of 3 users stated
that not all displayed tags are connected to the query posted. However,
if a larger document set for evaluation is used, the retrieved concepts
should be closer to the queries, and the generated tag cloud therefore
more precise. Testing with a large document set remains for future work
as well.

6.4 Evaluation of cluster labeling algorithm

WCC

Evaluating the quality of cluster labeling is difficult as no standard bench-
mark collection is available for this purpose. To measure the quality of
labels, one needs for comparison a document clusterings that have been
labeled by humans. Therefore, such evaluations are subjective and not
easily reproducible.

Using the document set for evaluation, three clusters were prepared from
the set using k-means clustering. Then, the standard precision was mea-
sured based on a varying number of terms per label (from 1 to 5). Results
for recall are not presented here, as they were too high, due to the small
evaluation set, and small number of terms as candidate labels. There-
fore, recall is not considered valid measure in this case. When evaluating
cluster labeling, precision is more important than recall for users, as only
a limited number of terms are nominated for labels. For a document
collection of 15 texts in 3 categories, and for 1 - 5 terms per label, the
following precision was calculated:

CHAPTER 6. EVALUATION 52

Average precision by WCC for cluster labeling
Terms per label Precision

1 0,9
2 0,5
3 0,63
4 0,4
5 0,35

Table 6.1: Evaluation of WCC for cluster labeling by measuring the average
precision for varying number of terms per label, based on the query results in
Appendix C

It can be seen that for a limited number of terms per label, precision
starts very high, and then drops. These results are not similar to the
ones obtained by Meyer zu Eissen in [33], who reports precision not
above 0.75 for 1 - 5 extracted terms per label, which gradually decreases.
The differences are presumably due to the very small document set used
in this work for evaluation, and the high frequencies of terms, nominated
as candidate labels, which occur frequently in the small text corpus.
Therefore, in a test environment with a larger document collection, it is
very probable that an application of WCC will result in different values
for precision.

Chapter 7

Conclusion and outlook

Modern search applications process huge amount of information, and
have to cope with the ambiguity of search queries that the users enter
in search engines1. To address the problems of word ambiguity, LSA
was introduced in Chapter 2 as an IR technique. Clustering is another
method used largely in IR systems to group together similar documents,
and thus present large amounts of search results in categories, which are
better suited for browsing, than long search result lists. An important
part of clutering used in search applications is how to label the clusters
in a suitable and summarizing way, in order to increase clustering usabil-
ity for humar users. Therefore, in Chapter 3 the algorithm for cluster
labeling WCC was reviewed. It nominates cluster labels from the terms
in clusters which occur most frequently. However, clustering and WCC
examine neither the semantic structure in the text collection they pro-
cess, nor the ”meaning” of texts. As stated in the formal framework
for cluster labels given in section 3.2.2, labels need to be summarizing
and hierarchically consistent. Therefore, an improvement of WCC was
proposed using external knowledge from an ontology during cluster label
nomination. And finally, in order to contribute to solving the issue of
processing too many search results in search applications, a web appli-
cation was developed which provides users with a quick overview of the
main concepts contained in returned results. The tool is called Tag cloud
summarizer and uses LSA to find the concepts closest to a given query.

1http://www.hitwise.com/index.php/us/press-center/pr ess-releases/2009/

google-searches-apr-09/ , accessed December, 2010

53

http://www.hitwise.com/index.php/us/press-center/press-releases/2009/google-searches-apr-09/
http://www.hitwise.com/index.php/us/press-center/press-releases/2009/google-searches-apr-09/

CHAPTER 7. CONCLUSION AND OUTLOOK 54

7.1 Future Work

The goals set for this project and given in section 1.3 were reached. The
project can still be developed further. Below are outlined several pro-
posals for future work.

Tag cloud summarizer

It remains for future work to improve the Tag cloud summarizer tool by
implementing the tags in the cloud as hyperlinks, which return a docu-
ment set where the correspoding term occurs most ferquently. Currently,
the tag cloud displays only words, which are not hyperlinked to docu-
ments.

The prototype remains to be tested using the whole online documentation
available at CoreMedia AG. It remains for future work its implementation
in DocMachine, the online documentation system at CoreMedia, where
more extensive user feedback can be collected concerning its usability.

Cluster labeling

Other clustering methods can be investigated, such as STC, which pre-
serves the word order in documents, by presenting them in the form of a
tree. Cluster labeling using STC involves also using phrases as candidate
labels, instead of separate terms, which improves usability, as compared
to the investigates WCC algorithm.

Cluster labeling using external knowledge

Due to time constraints, it remains for future work to evaluate and
present experimental results on running WCC algorithm for cluster la-
beling with external knowledge from an ontology.

CHAPTER 7. CONCLUSION AND OUTLOOK 55

Testing

A larger set of document can be used for evaluation and testing of our
implementation. In this work tests are carried out on a document set con-
sisting only of 15 documents in 3 categories. Research has shown ([13]),
however, that LSA perform better when applied to document collections
above 3000 documents, each of which larger than ≈ 60 words, therefore
testing the prototype on a larger document collection remains as future
work.

Acronyms

CMS Content Management System.

HAC Hierarchical Agglomerative Clustering.

IR Information Retrieval.

LSA Latent Semantic Analysis.

OWL Web Ontology Language.

STC Suffix Tree Clustering.

SVD Singular Value Decomposition.

VSM Vector Space Model.

WCC Weighted Centroid Covering.

56

Appendix A

Ontology

Figure A.1: Upper level ontology for CoreMedia CMS domain

57

Appendix B

Source code

Listing B.1: Preprocessing of the document collection - markup is

stripped from plain text

1 public class ProcessDocuments extends AbstractDocuments {
2 private static Logger log = Logger.getLogger(

ProcessDocuments.class);
3 private static final String path = "summarizer/data/

output/";
4 private static final String extension = ".txt";
5

6 @Override
7 protected void processText(Content article){
8 String id = "";
9 Markup markup = null;

10

11 for (Content textElement : article.getLinks("Articles
")){

12 if (textElement.getType().getName().equals("Text")){
13 List<Content> languages = textElement.getLinks("

Language");
14

15 if (languages.size()>0 &&
16 languages.get(0).getString("Name").

equalsIgnoreCase("en")){
17 markup = textElement.getMarkup("Content");
18 id = textElement.getId();
19 serialize(id, markup);
20 }
21 }
22 }
23 }
24

25 private void serialize(String id, Markup markup){
26 StringBuffer sb = new StringBuffer();
27 sb.append(id.substring(id.lastIndexOf("/")+1));
28 sb.append(extension);

58

APPENDIX B. SOURCE CODE 59

29

30 File outputPath = new File(path) ;
31 if(!outputPath.exists()){
32 outputPath.mkdir();
33 }
34

35 File outputFile = new File(sb.toString());
36 if (!outputFile.exists()){
37 outputFile = new File(outputPath,sb.toString());
38 }
39

40 try {
41 BufferedWriter writer = new BufferedWriter(new

FileWriter(outputFile));
42 String plainText = asPlainText(markup);
43 writer.write(plainText);
44 writer.close();
45

46 } catch (IOException ex){
47 log.error(ex);
48 }
49 log.info(" *** File created: "+sb.toString());
50 }
51

52 private String asPlainText(Markup markup){
53 if (markup == null) return "";
54

55 StringWriter writer = new StringWriter();
56 PlaintextSerializer serializer = new

PlaintextSerializer(writer);
57 markup.writeOn(serializer);
58

59 return writer.toString();
60 }
61 }

APPENDIX B. SOURCE CODE 60

Listing B.2: Latent Semantic Analysis

1 public class LSA {
2 private static Logger log = Logger.getLogger(LSA.class);
3

4 public void runLSA() {
5 Properties props = new PropertiesLoader().

loadProperties();
6 IteratorFactory.setProperties(lsaprops);
7 int noOfThreads = Runtime.getRuntime().

availableProcessors();
8

9 long start = System.currentTimeMillis();
10 LatentSemanticAnalysis sspace = null;
11 try {
12 // initialize the semantic space
13 sspace = new LatentSemanticAnalysis();
14 Iterator<Document> iter = new

OneLinePerDocumentIterator(props.getProperty("
docFile"));

15

16 // dimensionality reduction and SVD
17 processDocumentsAndSpace(sspace, iter, noOfThreads

, props);
18

19 // save the constructed term space - after SVD
these are U * Sigma matrices.

20 File output = initOutputFile(props, "termSpace.
sspace");

21 SemanticSpaceIO.save(sspace, output,
SemanticSpaceIO.SSpaceFormat.TEXT);

22 log.info("Semantic space is saved after SVD
reduction.");

23 } catch (IOException e) {
24 e.printStackTrace();
25 } catch (InterruptedException ex) {
26 ex.printStackTrace();
27 }
28 saveDocumentSpace(sspace, props);
29

30 long end = System.currentTimeMillis();
31 log.info("LSA took " + (end - start) + "ms to index

the document collection.");
32 }
33

34 protected void processDocumentsAndSpace(SemanticSpace
space,

35 Iterator<
Document>
iter,

36 int noOfThreads,

APPENDIX B. SOURCE CODE 61

37 Properties props
)

38 throws IOException, InterruptedException {
39

40 parseDocsMultiThreaded(space, iter, noOfThreads);
41 space.processSpace(props);
42 }
43

44 protected void parseDocsMultiThreaded(final
SemanticSpace space,

45 final Iterator<
Document> iter,

46 int noThreads)
47 throws IOException, InterruptedException {
48 Collection<Thread> threads = new LinkedList<Thread>();
49 for (int i = 0; i < noThreads; ++i) {
50 Thread t = new Thread() {
51 public void run() {
52 log.info("Process document: " + iter.next().

toString());
53 while (iter.hasNext()) {
54 Document document = iter.next();
55 try {
56 space.processDocument(document.reader());
57 } catch (Throwable t) {
58 t.printStackTrace();
59 }
60 }
61 }
62 };
63 threads.add(t);
64 }
65

66 for (Thread t : threads)
67 t.start();
68

69 for (Thread t : threads)
70 t.join();
71 }
72

73 / ** * /
74 }

APPENDIX B. SOURCE CODE 62

Listing B.3: Querying the semantic space constructed by LSA

1 public class Query {
2 private SemanticSpace sspace;
3 private DoubleVector queryVector;
4 private DocumentVectorBuilder docBuilder;
5 private WordComparator wordCompare;
6 private Matrix docMatrix;
7

8 public Query() {
9 sspace = LSAUtils.getTermsSpace();

10 docBuilder = new DocumentVectorBuilder(sspace);
11 wordCompare = new WordComparator();
12 queryVector = new DenseVector(sspace.getVectorLength()

);
13 docMatrix = LSAUtils.getDocsMatrix();
14 }
15

16 / **
17 * @param query
18 * @return
19 * /
20 protected DoubleVector getQueryAsVector(String query) {
21 queryVector = docBuilder.buildVector(new

BufferedReader(new StringReader(query)),
queryVector);

22 return queryVector;
23 }
24

25 public List<SearchResult> searchDocSpace(String query) {
26 DoubleVector queryVector = getQueryAsVector(query);
27 final Map<Integer, Double> similarityMap =
28 new HashMap<Integer, Double>();
29 for (int i = 0; i < docMatrix.rows(); i++) {
30 double sim = SimilarityUtil.getCosineSimilarity(

docMatrix.getRowVector(i), queryVector);
31 if (sim > 0.0D) {
32 similarityMap.put(i, sim);
33 }
34 }
35 return sortByScore(similarityMap);
36 }
37

38 public List<SearchResult> searchTermSpace(String query ,
int maxResult) {

39 DoubleVector queryVector = getQueryAsVector(query);
40

41 MultiMap<Double, String> similarityMap = wordCompare.
getMostSimilarToVector(queryVector, sspace,

42 maxResult, Similarity.SimType.COSINE);
43

APPENDIX B. SOURCE CODE 63

44 List<SearchResult> results = new ArrayList<
SearchResult>();

45 for (Map.Entry entry: similarityMap.entrySet()){
46 double score = (Double)entry.getKey();
47 if (score < 0.001D){
48 continue;
49 }
50 results.add(new SearchResult(0, (String) entry.

getValue(), score));
51 }
52

53 return results;
54 }
55

56 protected MultiMap getSimilarWords(SemanticSpace sspac e,
String word, int maxResult) {

57 MultiMap results = wordCompare.getMostSimilar(word,
sspace, maxResult, Similarity.SimType.COSINE);

58 return results;
59 }
60

61 private List<SearchResult> sortByScore(
62 final Map<Integer, Double> similarityMap) {
63 List<SearchResult> results = new ArrayList<

SearchResult>();
64 List<Integer> docIndexes = new ArrayList<Integer>();
65 docIndexes.addAll(similarityMap.keySet());
66 Collections.sort(docIndexes, new Comparator<Integer>()

{
67 public int compare(Integer s1, Integer s2) {
68 return similarityMap.get(s2).compareTo(

similarityMap.get(s1));
69 }
70 });
71 for (Integer index : docIndexes) {
72 double score = similarityMap.get(index);
73 if (score < 0.001D) {
74 continue;
75 }
76 results.add(new SearchResult(index, "", score));
77 }
78 return results;
79 }
80

81 public class SearchResult {
82 public int index;
83 public String word;
84 public double score;
85

86 public SearchResult(Integer index, String word, double
score) {

87 this.index = index;

APPENDIX B. SOURCE CODE 64

88 this.word = word;
89 this.score = score;
90 }
91 }
92 }

APPENDIX B. SOURCE CODE 65

Listing B.4: Tag cloud generation

1 public class TagCloud {
2 private Cloud cloud;
3 private DictionaryFilter blacklist;
4 private Properties props;
5 private static Logger log = Logger.getLogger(TagCloud.

class);
6

7 protected TagCloud(double weight, int maxTags) {
8 props = new PropertiesLoader().loadProperties();
9 String DEFAULT_LINK = props.getProperty("DEFAULT_LINK

");
10 String STOPWORDS = props.getProperty("STOPWORDS");
11 cloud = new Cloud();
12 cloud.setMaxWeight(weight);
13 cloud.setMaxTagsToDisplay(maxTags);
14 cloud.addInputFilter(getStopWords(STOPWORDS));
15 cloud.addOutputFilter(getStopWords(STOPWORDS));
16 cloud.setDefaultLink(DEFAULT_LINK);
17 }
18

19 protected Filter<Tag> getStopWords(String STOPWORDS) {
20 Filter<Tag> stopwords = null;
21 try {
22 FileReader reader = new FileReader(new File(

STOPWORDS));
23 stopwords = new DictionaryFilter(reader);
24 } catch (IOException e) {
25 e.printStackTrace();
26 }
27 return stopwords;
28 }
29

30 public Cloud generateCloud(double maxWeight, int maxTags
, Map<String, Double> tags, double threshold) {

31 TagCloud tc = new TagCloud(maxWeight, maxTags);
32 tc.populateCloud(tags);
33 tc.orderCloud(threshold);
34 return tc.cloud;
35 }
36

37 @SuppressWarnings("unchecked")
38 private void populateCloud(Map<String, Double> tags) {
39 double weight;
40 for (Object o : tags.entrySet()) {
41 Map.Entry<String, Double> entry = (Map.Entry<String,

Double>) o;
42 String word = entry.getKey();
43 weight = entry.getValue();
44 Tag tag = new Tag(word, weight);
45 cloud.addTag(tag);

APPENDIX B. SOURCE CODE 66

46 }
47 }
48

49 protected void orderCloud(double threshold) {
50 cloud.tags(new Tag.ScoreComparatorDesc());
51 cloud.setThreshold(threshold);
52 }
53

54 / ** ... * /
55 }

APPENDIX B. SOURCE CODE 67

Listing B.5: WCC cluster labeling algorithm

1 / **
2 * The algorithm nominates terms as cluster labels based

on term occurrences.
3 *
4 * Algorithm is based on the paper "Topic Identification:

Framework and Application"
5 * by Stein and Meyer zu Eissen:
6 * http://i-know.tugraz.at/wp-content/uploads/2008/11/ 40

_topic-identification.pdf
7 *
8 * @author avelinsk
9 * /

10 public class TagsIdentification {
11 List<Tuple> topOccurrences;
12

13 / **
14 * @param tags - the set of terms in a document set (

cluster)
15 * @param l - how many terms make up the label of a

document
16 * @param k - how often the same word may occur in the

label of different documents
17 * /
18 public void identifyTags(Set<Document> clusters, Set<Ta g

> tags, int l, int k){
19 topOccurrences = new ArrayList<Tuple>();
20

21 for(Tag tag : tags){
22 / ** for each term, get its k most frequent

occurrences in documents
23 * and save them in list topOccurrences
24 * /
25 List<Tuple> tuples = kMostFrequent(clusters, tag, k)

;
26 for (Tuple tuple:tuples){
27 topOccurrences.add(tuple);
28 }
29 }
30 sortOccurences();
31

32 for(int labelcount = 1; labelcount < l; labelcount ++)
{

33 int assigned = 0;
34 int j = 1;
35 Iterator iter = topOccurrences.iterator();
36 while((assigned < clusters.size()) && (j <=

topOccurrences.size()) && iter.hasNext()){
37 Tuple tj = (Tuple) iter.next();
38 Document doc = tj.getDocument();
39

APPENDIX B. SOURCE CODE 68

40 if (doc.getLabelSize() < labelcount){
41 doc.addLabel(tj.getTag());
42 assigned++;
43 }
44 j++;
45 }
46 }
47 }
48

49

50 private List<Tuple> kMostFrequent(Set<Document> cluste rs
, Tag tag, int k){

51

52 Map<Double, Document> topDocs = getTopK(tag, clusters,
k);

53 List<Tuple> tuples = new ArrayList<Tuple>();
54

55 for (Map.Entry<Double, Document> entry : topDocs.
entrySet()){

56 Double tf = entry.getKey();
57 Document doc = entry.getValue();
58 Tuple tuple = new Tuple(doc, tag, tf);
59 tuples.add(tuple);
60 }
61 return tuples;
62 }
63

64 / **
65 * Returns the k documents in which a term occurs most

frequently.
66 *
67 * @param tag
68 * @param clusters
69 * @param k
70 * @return
71 * /
72 private Map<Double, Document> getTopK(Tag tag, Set<

Document> clusters, int k) {
73

74 Map<Double, Document> documents = new HashMap<Double,
Document>();

75 for(Document doc : clusters){
76 int idx = doc.getId();
77 Vector frequencies = tag.getFrequency();
78 Double frequency = (Double) frequencies.getValue(idx

);
79 documents.put(frequency, doc);
80 }
81

82 // sort the documents in descending order based on
term occurrences

83 documents = sortMap(documents);

APPENDIX B. SOURCE CODE 69

84

85 Map<Double,Document> result = new HashMap<Double,
Document>();

86 int i=0;
87 for (Map.Entry entry : documents.entrySet()){
88 i++;
89 if (i==k){
90 return result;
91 }
92 result.put((Double)entry.getKey(), (Document)entry.

getValue());
93 }
94 return result;
95 }
96

97 / **
98 * Sort a Map in reverse order by its keys.
99 *

100 * @param clusters
101 * @return
102 * /
103 public Map<Double, Document> sortMap(Map<Double,

Document> clusters){
104 List documents = new LinkedList(clusters.entrySet());
105 Collections.sort(documents, new Comparator(){
106 public int compare(Object o1, Object o2){
107 return ((Double)((Map.Entry) o2).getKey()).

compareTo ((Double)((Map.Entry)o1).getKey());
108 }
109 });
110

111 Map result = new LinkedHashMap();
112 for (Iterator it = documents.iterator(); it.hasNext();

){
113 Map.Entry entry = (Map.Entry) it.next();
114 result.put(entry.getKey(), entry.getValue());
115 }
116 return result;
117 }
118

119 private void sortOccurences(){
120 sort(topOccurrences);
121 }
122

123 public void sort(List<Tuple> tuples){
124 Collections.sort(tuples, Collections.reverseOrder()) ;
125 }
126 }

APPENDIX B. SOURCE CODE 70

Listing B.6: Lightweight domain ontology for CoreMedia CMS domain

1 <?xml version="1.0"?>
2 <!DOCTYPE rdf:RDF [
3 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
4 <!ENTITY swrl "http://www.w3.org/2003/11/swrl#" >
5 <!ENTITY dc "http://purl.org/dc/elements/1.1/" >
6 <!ENTITY swrlb "http://www.w3.org/2003/11/swrlb#" >
7 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
8 <!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml# "

>
9 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#"

>
10 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax -

ns#" >
11 <!ENTITY protege "http://protege.stanford.edu/plugins /

owl/protege#" >
12 <!ENTITY xsp "http://www.owl-ontologies.com

/2005/08/07/xsp.owl#" >
13]>
14 <rdf:RDF xmlns="http://www.coremedia.com/CoreMediaCM S.owl

#"
15 xml:base="http://www.coremedia.com/CoreMediaCMS.owl "
16 xmlns:dc="http://purl.org/dc/elements/1.1/"
17 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
18 xmlns:swrl="http://www.w3.org/2003/11/swrl#"
19 xmlns:protege="http://protege.stanford.edu/plugins/

owl/protege#"
20 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"
21 xmlns:xsp="http://www.owl-ontologies.com/2005/08/07 /

xsp.owl#"
22 xmlns:owl="http://www.w3.org/2002/07/owl#"
23 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
24 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
25 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax- ns

#">
26 <owl:Ontology rdf:about="http://www.coremedia.com/

CoreMediaCMS.owl">
27 <rdfs:label>CoreMedia CMS Ontology</rdfs:label>
28 <rdfs:comment>Ontology for CoreMedia CMS domain.
29 Developed by Angelina Velinska for Master Thesis project

at TUHH, Hamburg</rdfs:comment>
30 <dc:creator>Angelina Velinska</dc:creator>
31 </owl:Ontology>
32

33 <!-- //////////////////////////////////////
34 // Annotation properties
35 //////////////////////////////////////-->
36 <owl:AnnotationProperty rdf:about="&dc;creator"/>
37 <owl:AnnotationProperty rdf:about="&rdfs;label"/>
38 <owl:AnnotationProperty rdf:about="&rdfs;comment"/>
39

APPENDIX B. SOURCE CODE 71

40 <!-- //////////////////////////////////////
41 // Datatypes
42 //-->
43

44 <!-- http://www.w3.org/2001/XMLSchema#ID -->
45 <rdfs:Datatype rdf:about="&xsd;ID"/>
46

47 <!-- ///
48 // Object Properties
49 /////////////////////////////////// -->
50

51 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
configures -->

52 <owl:ObjectProperty rdf:about="http://www.coremedia.
com/CoreMediaCMS.owl#configures">

53 <rdfs:range rdf:resource="http://www.coremedia.com
/CoreMediaCMS.owl#Component"/>

54 <rdfs:domain rdf:resource="http://www.coremedia.
com/CoreMediaCMS.owl#ConfigurationFile"/>

55 <owl:inverseOf rdf:resource="http://www.coremedia.
com/CoreMediaCMS.owl#isConfiguredBy"/>

56 <rdfs:subPropertyOf rdf:resource="&owl;
topObjectProperty"/>

57 </owl:ObjectProperty>
58

59 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
contains -->

60 <owl:ObjectProperty rdf:about="http://www.coremedia.
com/CoreMediaCMS.owl#contains">

61 <rdfs:range rdf:resource="http://www.coremedia.com
/CoreMediaCMS.owl#Component"/>

62 <rdfs:domain rdf:resource="http://www.coremedia.
com/CoreMediaCMS.owl#Environment"/>

63 <rdfs:subPropertyOf rdf:resource="&owl;
topObjectProperty"/>

64 </owl:ObjectProperty>
65

66 <!-- http://www.coremedia.com/CoreMediaCMS.owl#deplo ys
-->

67 <owl:ObjectProperty rdf:about="http://www.coremedia.
com/CoreMediaCMS.owl#deploys">

68 <rdfs:range rdf:resource="http://www.coremedia.com
/CoreMediaCMS.owl#Client"/>

69 <rdfs:domain rdf:resource="http://www.coremedia.
com/CoreMediaCMS.owl#Server"/>

70 <owl:inverseOf rdf:resource="http://www.coremedia.
com/CoreMediaCMS.owl#isDeployedOn"/>

71 <rdfs:subPropertyOf rdf:resource="&owl;
topObjectProperty"/>

72 </owl:ObjectProperty>
73

APPENDIX B. SOURCE CODE 72

74 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
describes -->

75 <owl:ObjectProperty rdf:about="http://www.coremedia.
com/CoreMediaCMS.owl#describes">

76 <rdfs:range rdf:resource="http://www.coremedia.com
/CoreMediaCMS.owl#Component"/>

77 <rdfs:subPropertyOf rdf:resource="&owl;
topObjectProperty"/>

78 </owl:ObjectProperty>
79

80 <!-- http://www.coremedia.com/CoreMediaCMS.owl#hasPo rt
-->

81 <owl:ObjectProperty rdf:about="http://www.coremedia.
com/CoreMediaCMS.owl#hasPort">

82 <rdfs:range rdf:resource="http://www.coremedia.com
/CoreMediaCMS.owl#Port"/>

83 <rdfs:domain rdf:resource="http://www.coremedia.
com/CoreMediaCMS.owl#Server"/>

84 <rdfs:subPropertyOf rdf:resource="&owl;
topObjectProperty"/>

85 </owl:ObjectProperty>
86

87 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
isConfiguredBy -->

88 <owl:ObjectProperty rdf:about="http://www.coremedia.
com/CoreMediaCMS.owl#isConfiguredBy">

89 <rdfs:domain rdf:resource="http://www.coremedia.
com/CoreMediaCMS.owl#Component"/>

90 <rdfs:range rdf:resource="http://www.coremedia.com
/CoreMediaCMS.owl#ConfigurationFile"/>

91 <rdfs:subPropertyOf rdf:resource="&owl;
topObjectProperty"/>

92 </owl:ObjectProperty>
93

94 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
isConnectedTo -->

95 <owl:ObjectProperty rdf:about="http://www.coremedia.
com/CoreMediaCMS.owl#isConnectedTo">

96 <rdfs:subPropertyOf rdf:resource="&owl;
topObjectProperty"/>

97 </owl:ObjectProperty>
98

99 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
isDeployedOn -->

100 <owl:ObjectProperty rdf:about="http://www.coremedia.
com/CoreMediaCMS.owl#isDeployedOn">

101 <rdfs:domain rdf:resource="http://www.coremedia.
com/CoreMediaCMS.owl#Client"/>

102 <rdfs:range rdf:resource="http://www.coremedia.com
/CoreMediaCMS.owl#Server"/>

103 <rdfs:subPropertyOf rdf:resource="&owl;
topObjectProperty"/>

APPENDIX B. SOURCE CODE 73

104 </owl:ObjectProperty>
105

106 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
isPartOf -->

107 <owl:ObjectProperty rdf:about="http://www.coremedia.
com/CoreMediaCMS.owl#isPartOf">

108 <rdfs:domain rdf:resource="http://www.coremedia.
com/CoreMediaCMS.owl#Component"/>

109 <rdfs:range rdf:resource="http://www.coremedia.com
/CoreMediaCMS.owl#Environment"/>

110 <owl:inverseOf rdf:resource="http://www.coremedia.
com/CoreMediaCMS.owl#contains"/>

111 <rdfs:subPropertyOf rdf:resource="&owl;
topObjectProperty"/>

112 </owl:ObjectProperty>
113

114 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
isReplicatedOn -->

115 <owl:ObjectProperty rdf:about="http://www.coremedia.
com/CoreMediaCMS.owl#isReplicatedOn">

116 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
117 <rdfs:domain rdf:resource="http://www.coremedia.

com/CoreMediaCMS.owl#MasterLiveServer"/>
118 <rdfs:range rdf:resource="http://www.coremedia.com

/CoreMediaCMS.owl#ReplicationServer"/>
119 <rdfs:subPropertyOf rdf:resource="&owl;

topObjectProperty"/>
120 </owl:ObjectProperty>
121

122 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
isStoredIn -->

123 <owl:ObjectProperty rdf:about="http://www.coremedia.
com/CoreMediaCMS.owl#isStoredIn">

124 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
125 <rdf:type rdf:resource="&owl;IrreflexiveProperty

"/>
126 <rdfs:range rdf:resource="http://www.coremedia.com

/CoreMediaCMS.owl#Repository"/>
127 <rdfs:domain rdf:resource="http://www.coremedia.

com/CoreMediaCMS.owl#Resource"/>
128 <rdfs:subPropertyOf rdf:resource="&owl;

topObjectProperty"/>
129 </owl:ObjectProperty>
130

131 <!-- http://www.w3.org/2002/07/owl#topObjectProperty
-->

132 <owl:ObjectProperty rdf:about="&owl;topObjectPropert y
"/>

133

134 <!-- //
135 // Data properties
136 // -->

APPENDIX B. SOURCE CODE 74

137

138 <!-- http://www.coremedia.com/CoreMediaCMS.owl#hasId
-->

139 <owl:DatatypeProperty rdf:about="http://www.coremedi a.
com/CoreMediaCMS.owl#hasId">

140 <rdfs:range rdf:resource="&xsd;ID"/>
141 </owl:DatatypeProperty>
142

143 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
hasVersion -->

144 <owl:DatatypeProperty rdf:about="http://www.coremedi a.
com/CoreMediaCMS.owl#hasVersion">

145 <rdfs:range rdf:resource="&xsd;int"/>
146 </owl:DatatypeProperty>
147

148 <!-- //
149 // Classes
150 // -->
151

152 <!-- http://www.coremedia.com/CoreMediaCMS.owl#API -- >
153 <owl:Class rdf:about="http://www.coremedia.com/

CoreMediaCMS.owl#API">
154 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
155 </owl:Class>
156

157 <!-- http://www.coremedia.com/CoreMediaCMS.owl#Actio n
-->

158 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Action">

159 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Task"/>

160 </owl:Class>
161

162 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
AdministrationGuide -->

163 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#AdministrationGuide">

164 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Documentation"/>

165 </owl:Class>
166

167 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
Application -->

168 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Application">

169 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Client"/>

170 </owl:Class>
171

172 <!-- http://www.coremedia.com/CoreMediaCMS.owl#Clien t
-->

APPENDIX B. SOURCE CODE 75

173 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Client">

174 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Component"/>

175 </owl:Class>
176

177 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
Communication -->

178 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Communication"/>

179

180 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
Component -->

181 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Component"/>

182

183 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
ConfigurationFile -->

184 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#ConfigurationFile">

185 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#File"/>

186 </owl:Class>
187

188 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
ContentManagementServer -->

189 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#ContentManagementServer">

190 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#ContentServer"/>

191 </owl:Class>
192

193 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
ContentServer -->

194 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#ContentServer">

195 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Server"/>

196 </owl:Class>
197

198 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
Dataaggregator -->

199 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Dataaggregator">

200 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#WorkflowServer
"/>

201 </owl:Class>
202

203 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
Database -->

APPENDIX B. SOURCE CODE 76

204 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Database">

205 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Component"/>

206 </owl:Class>
207

208 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
Delivery -->

209 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Delivery">

210 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Environment"/>

211 </owl:Class>
212

213 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
DeveloperGuide -->

214 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#DeveloperGuide">

215 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Documentation"/>

216 </owl:Class>
217

218 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
Document -->

219 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Document">

220 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Resource"/>

221 </owl:Class>
222

223 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
Documentation -->

224 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Documentation"/>

225

226 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
Environment -->

227 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Environment"/>

228

229 <!-- http://www.coremedia.com/CoreMediaCMS.owl#File
-->

230 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#File"/>

231

232 <!-- http://www.coremedia.com/CoreMediaCMS.owl#Folde r
-->

233 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Folder">

234 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Resource"/>

235 </owl:Class>

APPENDIX B. SOURCE CODE 77

236

237 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
LicenseFile -->

238 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#LicenseFile">

239 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#File"/>

240 </owl:Class>
241

242 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
Management -->

243 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Management">

244 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Environment"/>

245 </owl:Class>
246

247 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
MasterLiveServer -->

248 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#MasterLiveServer">

249 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#ContentServer"/>

250 </owl:Class>
251

252 <!-- http://www.coremedia.com/CoreMediaCMS.owl#Port
-->

253 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Port">

254 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Communication"/>

255 </owl:Class>
256

257 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
PropertyFile -->

258 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#PropertyFile">

259 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#
ConfigurationFile"/>

260 </owl:Class>
261

262 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
Protocol -->

263 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Protocol">

264 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Communication"/>

265 </owl:Class>
266

267 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
ReplicationServer -->

APPENDIX B. SOURCE CODE 78

268 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#ReplicationServer">

269 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#ContentServer"/>

270 </owl:Class>
271

272 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
Repository -->

273 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Repository">

274 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Component"/>

275 </owl:Class>
276

277 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
Resource -->

278 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Resource"/>

279

280 <!-- http://www.coremedia.com/CoreMediaCMS.owl#Right
-->

281 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Right">

282 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Task"/>

283 </owl:Class>
284

285 <!-- http://www.coremedia.com/CoreMediaCMS.owl#Serve r
-->

286 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Server">

287 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Component"/>

288 </owl:Class>
289

290 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
SpringConfigFile -->

291 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#SpringConfigFile">

292 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#
ConfigurationFile"/>

293 </owl:Class>
294

295

296 <!-- http://www.coremedia.com/CoreMediaCMS.owl#Task
-->

297 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Task">

298 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
299 </owl:Class>
300

APPENDIX B. SOURCE CODE 79

301 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
UserGuide -->

302 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#UserGuide">

303 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Documentation"/>

304 </owl:Class>
305

306 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
Variable -->

307 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Variable">

308 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Task"/>

309 </owl:Class>
310

311 <!-- http://www.coremedia.com/CoreMediaCMS.owl#Versi on
-->

312 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Version">

313 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Document"/>

314 </owl:Class>
315

316 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
WebApplication -->

317 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#WebApplication">

318 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Client"/>

319 </owl:Class>
320

321 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
Workflow -->

322 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#Workflow"/>

323

324 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
WorkflowServer -->

325 <owl:Class rdf:about="http://www.coremedia.com/
CoreMediaCMS.owl#WorkflowServer">

326 <rdfs:subClassOf rdf:resource="http://www.
coremedia.com/CoreMediaCMS.owl#Server"/>

327 </owl:Class>
328

329 <!-- http://www.w3.org/2002/07/owl#Thing -->
330 <owl:Class rdf:about="&owl;Thing"/>
331

332 <!-- //
333 // Individuals
334 // -->
335

APPENDIX B. SOURCE CODE 80

336 <!-- http://www.coremedia.com/CoreMediaCMS.owl#HTTP
-->

337 <owl:NamedIndividual rdf:about="http://www.coremedia .
com/CoreMediaCMS.owl#HTTP">

338 <rdf:type rdf:resource="http://www.coremedia.com/
CoreMediaCMS.owl#Protocol"/>

339 </owl:NamedIndividual>
340

341 <!-- http://www.coremedia.com/CoreMediaCMS.owl#Hessi an
-->

342 <owl:NamedIndividual rdf:about="http://www.coremedia .
com/CoreMediaCMS.owl#Hessian">

343 <rdf:type rdf:resource="http://www.coremedia.com/
CoreMediaCMS.owl#Protocol"/>

344 </owl:NamedIndividual>
345

346 <!-- http://www.coremedia.com/CoreMediaCMS.owl#IOR -- >
347 <owl:NamedIndividual rdf:about="http://www.coremedia .

com/CoreMediaCMS.owl#IOR">
348 <rdf:type rdf:resource="http://www.coremedia.com/

CoreMediaCMS.owl#Protocol"/>
349 </owl:NamedIndividual>
350

351 <!-- http://www.coremedia.com/CoreMediaCMS.owl#JDBC
-->

352 <owl:NamedIndividual rdf:about="http://www.coremedia .
com/CoreMediaCMS.owl#JDBC">

353 <rdf:type rdf:resource="http://www.coremedia.com/
CoreMediaCMS.owl#API"/>

354 </owl:NamedIndividual>
355

356 <!-- http://www.coremedia.com/CoreMediaCMS.owl#JMXMP
-->

357 <owl:NamedIndividual rdf:about="http://www.coremedia .
com/CoreMediaCMS.owl#JMXMP">

358 <rdf:type rdf:resource="http://www.coremedia.com/
CoreMediaCMS.owl#Protocol"/>

359 </owl:NamedIndividual>
360

361 <!-- http://www.coremedia.com/CoreMediaCMS.owl#
UnifiedAPI -->

362 <owl:NamedIndividual rdf:about="http://www.coremedia .
com/CoreMediaCMS.owl#UnifiedAPI">

363 <rdf:type rdf:resource="http://www.coremedia.com/
CoreMediaCMS.owl#API"/>

364 </owl:NamedIndividual>
365 </rdf:RDF>
366 <!-- Generated by the OWL API (version 3.0.0.1451) http://

owlapi.sourceforge.net -->

Appendix C

Document set used for

evaluation

Document set overview
Category Id Category Document #
1 session, connection 5
2 server 5
3 publication, workflow 5

Table C.1: Overview of the constructed document set

81

APPENDIX C. DOCUMENT SET USED FOR EVALUATION 82

Doc. Id Cat. Id Document
1 1 The session that is created while the connection is

opened is also known as the connection session.
2 1 The sessions of the connected clients will be closed and

no more content changes are possible.
3 1 The previous code fragment shows how a second session

is created from an existing connection.
4 1 Multiple sessions show their greatest potential in trusted

applications which receive help in restricting user views
while maintaining a shared cache.

5 1 Having opened connection, all actions are executed on
behalf of the single user whose credentials where pro-
vided when logging in.

6 2 The state of the Master Live Server must be younger
than the state of the Slave Live Server.

7 2 The rewrite module checks the availability of the re-
quested file and, in the negative case, passes the request
on to the Active Delivery Server.

8 2 The directory layout of the Active Delivery Server has
changed as well as the format of the configuration file.

9 2 The CoreMedia Content Server is a central component
that manages the content repository and the user au-
thorization.

10 2 The CoreMedia Content Management Server is the pro-
duction system used to create and administrate content.

11 3 If the database does not allow to take online-backups
ensure that all publications are finished and that the
last publication was successful.

12 3 The third task in the workflow aims to check if the
change set is empty. Then, no publication is necessary
and the workflow can be finished.

13 3 This element is used to define which information should
be shown in the columns of the workflow list at the left
side of the workflow window.

14 3 Publication will be executed when finishing the task af-
ter all resources in the change set have been approved.

15 3 The CoreMedia Workflow installation comes with four
predefined workflows which cover the publication of re-
sources.

Table C.2: Document set used for evaluation of the implementation

APPENDIX C. DOCUMENT SET USED FOR EVALUATION 83

Queries used for evaluation
Query Id Query #
1 session, connection
2 server
3 publication, workflow

Table C.3: Queries used for evaluation

Candidate labels for query ”session connection”
Weight Term
0,9695 session
0,8962 client
0,8962 closed
0,8962 connected
0,8962 possible

Table C.4: Candidate labels from query results to ”session connection”

Candidate labels for query ”server”
Weight Term
1,0000 server
0,9490 create
0,8978 CoreMedia
0,8679 content
0,7859 production

Table C.5: Candidate labels from query results to ”server”

Candidate labels for query ”publication workflow”
Weight Term
0,9862 workflow
0,9684 ensure
0,9684 database
0,9684 successful
0,9684 online-backups
...
0,9487 publication (only on 9th place)

Table C.6: Candidate labels from query results to ”publication workflow”

Bibliography

[1] A. Spink, J. Bateman, and B. J. Jansen, “Users’ searching behavior
on the excite web search engine,” in WebNet, 1998.

[2] B. Stein and S. M. Z. Eissen, “Topic identification: Framework
and application,” in Proc of International Conference on Knowledge
Management (I-KNOW), 2004.

[3] B. Stein and S. M. zu Eissen, “Topic-identifikation. formalisierung,
analyse und neue verfahren,” KI, vol. 21, no. 3, pp. 16–22, 2007.

[4] D. Hiemstra, “Information retrieval models,” in Information Re-
trieval: Searching in the 21st Century (A. Göker and J. Davies,
eds.), UK: Wiley, 2009.

[5] S. Robertson, “The probability ranking principle in IR,” vol. 33,
pp. 294–304, 1977.

[6] G. Salton, “Automatic text processing: The transformation, analy-
sis, and retrieval of information by computer,” AddisonWesley, 1989.

[7] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to In-
formation Retrieval. Cambridge, UK: Cambridge University Press,
2008.

[8] S. T. Dumais, G. W. Furnas, T. K. Landauer, S. Deerwester, and
R. Harshman, “Using Latent Semantic Analysis to improve access
to textual information,” in Sigchi Conference on Human Factors in
Computing Systems, pp. 281–285, ACM, 1988.

[9] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by Latent Semantic Analysis,” Journal of
the American Society for Information Science, vol. 41, pp. 391–407,
1990.

[10] S. Dumais, “LSA and Information Retrieval: Getting Back to Ba-
sics,” pp. 293–321, 2007.

84

BIBLIOGRAPHY 85

[11] G. H. Golub and C. F. Van Loan, Matrix computations (3rd ed.).
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[12] M. W. Berry, S. Dumais, G. O’Brien, M. W. Berry, S. T. Du-
mais, and Gavin, “Using linear algebra for intelligent information
retrieval,” SIAM Review, vol. 37, pp. 573–595, 1995.

[13] S. T. Dumais, “Improving the retrieval of information from external
sources,” Behavior Research Methods, Instruments, & Computers,
vol. 23, pp. 229–236, 1991.

[14] P. Nakov, A. Popova, and P. Mateev, “Weight functions impact on
LSA performance,” in EuroConference RANLP’2001 (Recent Ad-
vances in NLP, pp. 187–193, 2001.

[15] P. Nakov, “Getting better results with Latent Semantic Indexing,”
in In Proceedings of the Students Prenetations at ESSLLI-2000,
pp. 156–166, 2000.

[16] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A
review,” 1999.

[17] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika,
vol. 32, no. 3, pp. 241–254, 1967.

[18] K. Kummamuru, R. Lotlikar, S. Roy, K. Singal, and R. Krishna-
puram, “A hierarchical monothetic document clustering algorithm
for summarization and browsing search results,” in Proceedings of
the 13th international conference on World Wide Web, WWW ’04,
pp. 658–665, ACM, 2004.

[19] S. Lloyd, “Least squares quantization in pcm,” Information Theory,
IEEE Transactions on, vol. 28, no. 2, pp. 129–137, 1982.

[20] C. Carpineto, S. Osinski, G. Romano, and D. Weiss, “A survey of
web clustering engines,” ACM Computing Surveys, vol. 41, no. 3,
pp. 1–38, 2009.

[21] O. Zamir and O. Etzioni, “Grouper: A dynamic clustering interface
to web search results,” pp. 1361–1374, 1999.

[22] R. Krishnapuram and K. Kummamuru, “Automatic taxonomy gen-
eration: issues and possibilities,” in Proceedings of the 10th interna-
tional fuzzy systems association World Congress conference on Fuzzy
sets and systems, IFSA’03, pp. 52–63, Springer-Verlag, 2003.

BIBLIOGRAPHY 86

[23] D. Weiss, Descriptive Clustering as a Method for Exploring Text Col-
lections. PhD thesis, Poznań University of Technology, Poznań,
Poland, 2006.

[24] D. Carmel, H. Roitman, and N. Zwerdling, “Enhancing cluster la-
beling using wikipedia,” in Proceedings of the 32nd international
ACM SIGIR conference on Research and development in informa-
tion retrieval, SIGIR ’09, pp. 139–146, ACM, 2009.

[25] D. Mugo, “Connecting people using Latent Semantic Analysis for
knowledge sharing,” Master’s thesis, Hamburg University of Tech-
nology, Hamburg, Germany, 2010.

[26] J. Davies, A. Duke, and A. Kiryakov, “Semantic search,” in In-
formation Retrieval: Searching in the 21st Century (A. Göker and
J. Davies, eds.), UK: Wiley, 2009.

[27] T. Gruber, “Ontology of folksonomy,” 2005.

[28] I. Peters and P. Becker, Folksonomies : indexing and retrieval in
Web 2.0. Berlin: De Gruyter/Saur, 2009.

[29] G. Smith, Tagging: People-powered Metadata for the Social Web.
Thousand Oaks, CA, USA: New Riders Publishing, 2008.

[30] P. Heymann, G. Koutrika, and H. Garcia-Molina, “Fighting spam
on social web sites: A survey of approaches and future challenges,”
IEEE Internet Computing, vol. 11, pp. 36–45, November 2007.

[31] D. Jurgens and K. Stevens, “The S-Space package: an open source
package for word space models,” in ACL ’10: Proceedings of the ACL
2010 System Demonstrations, (Morristown, NJ, USA), pp. 30–35,
Association for Computational Linguistics, 2010.

[32] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to In-
formation Retrieval. New York, NY, USA: Cambridge University
Press, 2008.

[33] S. M. zu Eissen, On Information Need and Categorizing Search. PhD
thesis, University of Padeborn, Germany, 2007.

	Titlepage
	Declaration
	Contents
	List of figures
	1 Introduction
	1.1 Motivation
	1.2 Information Retrieval systems
	1.3 Goal and scope of work
	1.4 Outline

	2 Latent Semantic Analysis
	2.1 Information Retrieval process
	2.2 Document representation
	2.2.1 Vector Space Model
	2.2.2 Weight functions
	2.2.3 Similarity measures

	2.3 Latent Semantic Analysis
	2.4 Singular Value Decomposition
	2.5 Querying the semantic space
	2.6 Factors which influence LSA performance

	3 Cluster labeling
	3.1 Clustering
	3.1.1 Clustering algorithms
	3.1.2 K-means clustering algorithm

	3.2 Cluster labeling
	3.2.1 Clustering and labeling
	3.2.2 Formal framework for cluster labeling algorithms
	3.2.3 Weighted Centroid Covering

	3.3 Cluster labeling using external knowledge
	3.3.1 Ontology as a source of external knowledge
	3.3.2 Weighted Centroid Covering augmented by an ontology

	4 Tag Clouds
	4.1 Introduction
	4.2 Tag clouds generation
	4.2.1 Tag cloud layout

	4.3 Existing implementations
	4.4 Conclusion

	5 Implementation
	5.1 Tag cloud summarizer
	5.2 Cluster labeling
	5.3 Tools and libraries used in this work

	6 Evaluation
	6.1 Measures for evaluation
	6.2 Document set used for evaluation
	6.3 Evaluation of the Tag cloud summarizer
	6.4 Evaluation of cluster labeling algorithm WCC

	7 Conclusion and outlook
	7.1 Future Work

	Acronyms
	A Ontology
	B Source code
	C Document set used for evaluation
	Bibliography

