
Hamburg University of Technology
Institute for Software Systems

Diploma Thesis

AURIS
Autonomous Robot Interaction Simulation

Author: Gerry Siegemund

Supervisors: Prof. Dr. Ralf Möller

Prof. Dr. Karl-Heinz Zimmermann

Start: January 3 2011

End: July 4 2011

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own work except
to the extent that assistance from others in the project’s design and conception or in style,
presentation and linguistic expression is acknowledged. All resources used are explicitly
referenced in the bibliography.

Hamburg, July 4, 2011

Gerry Siegemund

iii

Acknowledgments

Thanks to all the people that contributed to this thesis and that supported me along the
way. Especially, Katrin Preiß who kept me sane while not writing and August Betzler who
kept my writing sane.

Hamburg, July 4, 2011

v

Contents

1 Introduction 3

2 Preliminaries 7
2.1 Simulation Environment . 7

2.1.1 Projects and Related Work . 8
2.1.2 USARSim Progression . 10
2.1.3 Coordinates and Units . 10

2.2 Unreal Game Engine 3 . 12
2.2.1 Unreal Script . 13
2.2.2 Building Robots, Sensors, and Maps . 13
2.2.3 Vector Rotations . 15

2.3 System Theory and Filter Basics . 16
2.3.1 Increasing the Realism of Sensor Output 17
2.3.2 Kalman Filter . 17
2.3.3 PID controller . 19

3 Design 21
3.1 Building a Quadrotor for USARSim . 21

3.1.1 Setting up the Static Mesh . 21
3.1.2 Defining Physical Behavior . 22

3.2 Building Sensors . 28
3.2.1 Developed Sensors . 29

4 Controlling a Quadrotor 35
4.1 Communication . 36

4.1.1 Inter-UAV Communication . 37
4.2 Collision Avoidance . 38
4.3 Altitude Control . 42
4.4 Mapping . 42

4.4.1 Simultaneous Localization and Mapping 43
4.4.2 Basic Mapping with Error Correction 45

4.5 Power Management . 48

vii

Contents

5 Multi Robot Scenarios and Swarms 51
5.1 Full Disclosure . 51
5.2 Discussion on Limited Communication . 57
5.3 No Communication . 58
5.4 Search . 61

5.4.1 Item Search . 63
5.4.2 Reconnaissance Search . 67

5.5 Tracking . 68

6 Results and Evaluation 75
6.1 Tests . 75

6.1.1 Scalability . 77
6.1.2 Kalman Filter and Positioning . 78
6.1.3 Scenarios . 80

6.2 Evaluation . 83

7 Conclusion and Future Work 85

References 87
Books and Articles . 87
Webpages . 90

List of Figures 93

List of Tables 95

List of Symbols 97

A Appendix 99
A.1 Distance Measures . 99
A.2 Quaternion Product . 100
A.3 Optical Smoke Detector . 100
A.4 Overview of Robotic Simulators . 101

viii

Abstract

This thesis extends an environment that simulates quadrotors and their physical
properties. Furthermore, a program is developed that coordinates the autonomous
behavior of a number of unmanned aerial vehicles. Tests of the system are con-
ducted with single agents as well as with groups of quadrotors. This setup can be
adapted to fit a number of different requirements to be of use for a wide range of
developers. Beyond that, algorithms are proposed which motivate the employment
of quadrotors, and that can be used to measure the performance of the proposed
system.

1

1 Introduction

In the fields of miniature robotics various researches are conducted. Especially wheeled
robots have been studied over the last decades [16] [3]. Since these robots drive on the
ground their working area is usually mapped to a two-dimensional space. The analysis of
flying robots on the other hand is a newer field, which evolves rapidly. New problems arise
in this filed because the work area is a three-dimensional environment. These so-called
Unmanned Aerial Vehicles (UAVs) can be equipped with different scanners, ranging from
altitude and attitude sensors to cameras and advanced laser measurement technologies.
Furthermore, provided with high computation power, the UAVs can evaluate sensor data
while in the air. Quadrotors, i.e., miniature helicopters with four instead of one rotor, are
one example to represent this field of research. Figure 1.1 shows a picture of the Hamburg
University of Technology’s quadrotor (project website: [46]).

Figure 1.1: Apollo Quadrotor Hamburg Tech. courtesy of [11]

3

1 Introduction

Humans usually steer these vehicles, but due to the sensors and the computation power,
autonomous behavior can be programmed. Autonomy for robots means, no human guid-
ance, sensing and evaluating the environment, and rationally acting upon these informa-
tions. Different concepts have been designed to enable autonomous behavior [1] [19].
Therefore, UAV could also be changed to AAV, Autonomous Aerial Vehicle, in analogy to
Autonomous Underwater Vehicles AUVs.

Equipped with communication devices, robots can also interact and build groups, which
can accomplish tasks. These tasks vary from scanning areas for certain objects, to con-
tentiously monitoring different entities, or transporting substances to a marked position.
For wheeled robots swarm ideas have been studied thoroughly, for UAVs on the other
hand, researches and especially implementations in this area have just begun, as can be
seen in Figure 1.2. Creating groups of quadrotors, or other UAVs, costs money and work
power. If erroneous behavior is accidentally programmed, crashes can be the result, in-
creasing the expenses further.

1955

Autonomous Control Levels

Pioneer

1965 1975 1985 1995 2005 2015 2025

Global Hawk, Shadow,
ER/MP, and Fire Scout

J-UCAS Goal

Fully Autonomous Swarms

Group Strategic Goals

Distributed Control

Group Tactical Goals

Group Tactical Replan

Group Coordination

Adapt to Failures & Flight Conditions

Real Time Health/Diagnosis

Remotely Guided

Onboard Route Replan

10

9

8

7

6

5

4

3

2 Predator

1

UCAR Goal

1955

Autonomous Control Levels

Pioneer

1965 1975 1985 1995 2005 2015 2025

Global Hawk, Shadow,
ER/MP, and Fire Scout

J-UCAS Goal

Fully Autonomous Swarms

Group Strategic Goals

Distributed Control

Group Tactical Goals

Group Tactical Replan

Group Coordination

Adapt to Failures & Flight Conditions

Real Time Health/Diagnosis

Remotely Guided

Onboard Route Replan

10

9

8

7

6

5

4

3

2 Predator

1

UCAR Goal

Figure 1.2: “Unmanned Aircraft Systems Raodmap” courtesy of [20]

4

Therefore, a simulation software should be used, to be able to minimize errors of pro-
posed algorithms. The goal of this thesis is to extend a system that simulates robots, and
their physical properties in a three-dimensional environment. Furthermore, a control-
program named AURIS is developed, which coordinates the autonomous behavior of an
agent. The program’s design needs to be amendable to be used in guidance control of
actual UAVs, too.

The simulation software adopted is USARSim, a middle-ware build upon the game Unreal
Tournament 3. AURIS communicates with the simulation trough a TCP/IP connection. In
a real world application, a link between AURIS and the UAV’s controller system needs to
be established, to interpret the simple instructions given. Figure 1.3 shows the communi-
cation setup.

AURIS
(Control Program)AURIS

(Control Program)

Client Server

Unreal Side

USARSim
(Robot-/ Sensor-API)

TCP/IP

Controller Side

1
2

n

Unreal Tournament 3
(Map, Environment Control)

Unreal Engine 3
(Global Environment)

Real UAV which can
interpret

AURIS-commands

Real World

AURIS
(Control Program)

1

Figure 1.3: Communication setup, between AURIS and the simulation environment

First the simulated model and the appropriate physical behavior of a quadrotor are added
to the USARSim system. A flight stabilizer is introduced to make the movement of the
UAV easier controllable by AURIS. For proposed tasks, e.g., fire and smoke detection, new
sensors are developed. The simulation is supposed to be as close to reality as possible.
Therefore, errors to sensor output are added, this degraded data has then to be handled
by the control-program.

5

1 Introduction

Search missions, where the UAV has to find a fire, are run, thereby verifying the function-
ality of AURIS, and of the built quadrotor-model, as well as its attached sensors.

In Chapter 2, preliminaries, the underlying control-theory basics are explained, as well
as, mathematical fundamentals. Chapter 3 discusses the design of the simulation envi-
ronment, in particular the quadrotor assembly. Followed by the development of AURIS
in Chapter 4. Chapter 5 introduces applications of multi agent systems. The last chap-
ters evaluate the presented implementations, as well as drawing conclusions based on
the accomplished experimental and theoretical work.

6

2 Preliminaries

This chapter describes the basics behind the construction of the simulation, the robots,
and the underlying control systems. For the reader it can be seen as a reference for later
chapters to come back to. At the beginning the simulation software (USARSim) and the
system it is built upon (Unreal Game Engine 3) are explained. Furthermore, control theory
basics used in later chapters are touched.

2.1 Simulation Environment

USARSim (Unified System for Automation and Robot Simulation) [49] is based on the
Unreal Tournament game engine. It emulates the behavior of multiple robots in an en-
vironment. As a middle-ware between a control program and the Unreal Engine (UE) its
used to manage a number of agents in various situations. USARSim is mainly intended
as a research tool, but among others it is also the basis for the RoboCup rescue virtual
robot competition (RoboCup Rescue) [48], the IEEE Virtual Manufacturing Automation
Competition (VMAC) [50], and the DARPA grand challenge [44].

USARSim is a very powerful, well designed tool for robot simulation of any kind. It enables
the developer to load different three-dimensional (3D) environments and add a number
of agents which are able to behave in arbitrary ways. Several robots are already built as a
3D model, i.e., consisting of 3D-meshes and Unreal Script classes, to be used in the US-
ARSim environment. All of them are four-wheel robots that can be moved on the ground,
for example, the P3AT (Figure 2.1) from Pioneer. The environments, or maps, that host
the simulation can be designed to meet virtually any requirement given by underwater,
space, town, or desert scenarios.

Note that USARSim only enables developers to use a variety of robots and sensors, it is
not a generator for autonomous behavior.

7

2 Preliminaries

(a) Original (b) Simulated Version

Figure 2.1: Pioneer robot

2.1.1 Projects and Related Work

USARSim enables researchers and developers to test their products before they are actu-
ally built. Wherever 3D simulation might be helpful, USARSim could be an option. So
far, a variety of different robots and environments have been developed, among others,
highway robots, the DARPA grand challenge, robotic soccer (see Figure 2.2), submarines,
humanoids, and helicopters. For every developed environment, there are again multiple
possible scenarios. Even though a number of websites concern themselves with USARSim
([44], [50], [48], [52]) and robot simulation, no other research team is working on swarm
behavior of UAVs with USARSim, yet.

Besides USARSim there are many other robot simulation development kits available. Ap-
pendix A.4 shows a comparison between different softwares, some of them are mentioned
here in more detail. Gazebo [45] for instance is a multi-robot 3D simulator, similar to US-
ARSim. The physics engine used is Open Dynamics Engine (ODE [51]). The graphics of
Gazebo can not keep up with the Unreal Engine’s, especially because UE was built for
commercial 3D game simulation.

Another promising simulation tool is SimRobot [37], it has been developed by the Uni-
versity of Bremen, Germany, over 16 years now. The software is open-source, just like
Gazebo and the physics engine is ODE, too. SimRobot consists of several modules which
are linked to become one single application. This differs from Gazebos or USARSims

8

2.1 Simulation Environment

Figure 2.2: UT2004 (USARSim 2) robotic soccer simulation [29]

client-server architecture, it offers the possibility of pausing or stepwise executing of the
whole simulation. The main shortcoming is that new robots can not be added to a run-
ning simulation, therefore making this simulator a poor choices.

Webots [53] is a commercial development environment used to model, program and sim-
ulate mobile robots. Being a commercial software, the biggest advantage of Webots is
user support and constant documentation. Nevertheless, the modeling tools of Webots
are not as powerful as the Unreal Editor, also the graphics can not compete. Furthermore,
the price of about 250 EUR1 is a five fold of the cost for Unreal Tournament 3. USAR-
Sim is an open-source distribution, therefore the base code can be modified to fit special
simulation needs, which Webots might not be able to fulfill.

For the mentioned reasons, USARSim is the chosen platform for the quadrotor simula-
tion. Especially the client-server architecture of USARSim enables the developer to write
a control program in any programming language able handle networking, completely de-
coupling the simulation from the control unit.

1Approximatly 350 USD for the EDU version, stated on the website [53]

9

2 Preliminaries

2.1.2 USARSim Progression

USARSim is built with the Unreal Game Engine (UE). Three versions of this engine have
been developed so far. The first generation, with games like Unreal Tournament 2003, was
used for the original USARSim. As the Unreal Engine progressed so did USARSim. After
the second generation, with games like Unreal Tournament 2004, followed the current
third generation. Unreal Tournament 3 which is based on UE3, has been around for about
three years now (release: Nov. 2007), but not all the features of USARSim 2 (UE2) have
been ported to the present engine, yet. Between the two versions UE2 and UE3, there
have been more changes than between UE1 and UE2. For example, the KARMA physics
engine was replaced by nVidia PhysX in UE3. Therefore, the transition from USARSim 2
to USARSim 3 is more time consuming. The robot design changed, too. The ready-to-
use quadrotor from the prior USARSim was not implemented in USARSim 3. Accordingly,
recreating the flying robot is the first challenge to be overcome. Section 3.1 will elaborate
the work done further.

2.1.3 Coordinates and Units

USARSim resembles a deterministic simulation, which uses discrete time measurement
with interpolation. In the contrary, stochastic simulation is typically used for systems
where events occur probabilistically. In this simulation, the time t evolves with respect
to the real world, and is measured by the computers CPU. At a discrete time value ∆t
the systems current state can be evaluated. During the elapsed time all system states
are interpolated. The time value ∆t is unspecified, it usually stays in the bounds of 0.01
seconds to 0.1 seconds. Since USARSim is a 3D-simulation the picture a spectator sees is
also updated every ∆t , that means, the frame-rate, or frames per second (FPS) is directly
proportional to ∆t (1F PS = 1

∆t). For the user to watch a fluent 3D-scene the frame-rate
needs to stay above 20FPS (∆t = 0.05s).

The spacial units in the simulation are proportional to meters. An Unreal Unit (UU) re-
sembles 0.04 centimeters. Because time and distance measurements are a like, all calcu-
lated units using these values are, too, e.g., velocity 1 m

s ⇔ 250UU
s . For convenience, unit

converters are in place, i.e., the user can always refer to meters while internally Unreal
Units are used.

Three different coordinate systems are used to determine the position of the UAV, and
its surrounding. The local reference frame can be seen in Figure 2.3, it is the quadrotor’s
coordinate system. The global frame is the Unreal Engine’s view. Last there is the map

10

2.1 Simulation Environment

drawn by the agent on the user’s computer, in two-dimensions.

f3

f1

mg

f2

f0

x

y

z
x

y

z

UT frame

quadrotor
coordinate system

φ

θ

ψ

u

u

u

q

q

q

q

q

q

φ

θ

ψ

u

u

u

Figure 2.3: Quadrotor sketch with local coordinate system (q) and Unreal Coordinate Sys-
tem reference (u)

Conversions between the different coordinate systems can be done by rotation matrices.
Either the rotation around each angle Rφ, Rθ, Rψ is done consecutively or with one rota-
tion matrix R, i.e.,

R = RφRθRψ

=
cosθcosψ sinφsinθcosψ−cosφsinψ cosφsinθcosψ+ sinφsinψ

cosθ sinψ sinφsinθ sinψ+cosφcosψ cosφsinθ sinψ− sinφcosψ
−sinθ sinφcosθ cosφcosθ

 .
(2.1)

The map drawn by the quadrotor uses the computer picture format, that is, the origin
is in the left upper corner and x- and y-coordinates grow only positively. The map is a
two dimensional entity so a projection from the three dimensional environment has to
be done. Furthermore, the Unreal Engine uses positive and negative position values, with
the origin usually in the middle of the map. For the 3D to 2D conversion the z-value is
dropped and the x- and y-values are adapted using this formula:

11

2 Preliminaries

(
xm

ym

)
= s

(−yu

xu

)
+

(
Xo

Yo

)
, (2.2)

255

0

130

200

60

chosen color (mean value):
at 15m altitude*

drawn color:
at 30m altitude

drawn color:
at 0m altitude

* 15m is the average �ight height chosen for
this particular example

Figure 2.4: Color profile propor-
tional change of color to altitude

where (xm , ym)T are the new coordinates in the
map, (xu , yu)T the Unreal Coordinates, (Xo ,Yo)T

the offset between the drawn map origin and the
Unreal environment origin, and s a scaling factor
to reduce the drawn map size. The scaling factor
might be different for any environment, depending
on its size.

For the conversion, the z-values are not used but
when the map is drawn, the color used is influ-
enced by the z-coordinate. The lighter a color gets
the higher the UAV’s altitude. This is done for any
information drawn, e.g., scanned area, obstacles, or
other UAVs in range. Figure 2.4 shows how the color
is adjusted for a certain altitude.

2.2 Unreal Game Engine 3

Figure 2.5: UT3 DVD cover

The Unreal Engine 3 (UE3) is a computer game
engine developed by Epic Games, succeeding the
Unreal Engine 1 and 2. It is designed for DirectX
9/10/11 PCs, the Xbox 360, and the PlayStation 3. It
also offers OpenGL-based operation system (Mac
OS X, iOS) support. A Linux version was proposed,
but has not been released.

The underlying physical computations are done
by Nvidias PhysX physics engine. It exceeds the
Karma engine from the prior Unreal Engines.

This thesis will only be concerned about the PC /
Windows Version of the software, precisely, with
the game Unreal Tournament 3 (UT3). Figure 2.5
shows the DVD cover of the game.

12

2.2 Unreal Game Engine 3

2.2.1 Unreal Script

The syntax used by the unreal scripting language resembles the C++ syntax. UnrealScript
has object oriented features and supports inheritance, interfaces and operator overload-
ing. Actual C++ functions can also be included to support a certain functionality in the
Unreal environment, these classes are referred to as native code.

When a class is inherited from a basic UE class (like the “Pawn” Class, for instance2), then
also a tick function is present. The Unreal Engine updates every mesh, every picture, and
anything of movement once every tick. A tick is a time ∆t , which in most cases is smaller
than one second (0.01s <∆t < 0.1s). ∆t is the shortest time in which all actors in a running
environment are updated (as mentioned in Section 2.1.3). The update rate is only limited
by CPU and graphics accelerator power.

A class can be added into the simulation if it is marked placeable. From inside a placeable
class, other classes can be called, too. Any motion controlling calculations need to be in
the tick-function, of a placeable class. In a way it can be understood as a “main”-function,
which is executed at every time step ∆t .

2.2.2 Building Robots, Sensors, and Maps

USARSim is a collection of features, ready-to-use for a simulation. Only wheeled robots
are currently available. Furthermore, prepared sensors and maps might not fit all pur-
poses desired. Therefore, new robots, sensors and maps need to be developed. Develop-
ing new sensors or robots makes use of Unreal Script. Preexisting robot and sensor classes
can be used as templates to further augment the system.

First of all, a static mesh is developed. For this purpose Autodesk’s 3ds Max [34] or Maya [35]
are recommended by the USARSim community. Figure 2.6 shows the 3ds Max environ-
ment used to set up the quadrotor. A skeleton mesh is built to ensure certain parts, e.g.,
wheels or rotors, are movable. Next, the corresponding Unreal Script class needs to be
written. It links the mesh to its behavior. Sensors are built in a similar manner. First a
mesh is constructed then the appropriate Unreal Script Class needs to be designed. In
Chapter 3 certain steps on how to actually build new equipment is described in more
detail.

2The Pawn class is a basic UT3 class, it is the parent class of all actors that can be controlled.

13

2 Preliminaries

Figure 2.6: 3ds Max working environment

Maps are designed using the Unreal Tournament 3 Editor, which has various tools to de-
sign new maps or to manipulate existing ones. Meshes are added from an toolbox with
a variety of objects, moving and stationary. They define the ambiance of the simulated
scene. Completely new objects can be designed, and added to the scene, as well.

Meshes can have certain behaviors, e.g., a bird could be designed, flying around in the
scenario. In addition, basic responses to other actors are implementable. Artists and
developers have been designing maps for different reasons, mostly to play the game UT3
in another setting. These maps can be adapted to fit special simulation needs, without
the time consuming process of building an own map [54].

Unreal Editor The game Unreal Tournament 3 comes with an editor, the Unreal Edi-
tor (UnrealEd), it is used to import new meshes, making it possible to place them into
a simulation scenario. Furthermore, it helps manipulating maps, enabling a developer
to change all objects in the current scene, as well as creating new ones from scratch. In
addition, the UnrealEd includes tools to change the behavior of actors. Anim Trees and
Physics Assets, as subprograms in the UnrealEd, are mentioned because they are needed
to create robots.

Anim Trees or Animation Trees are graphical representations of Unreal Script Classes
which can be used to specify their behavior. Animations, Blend Nodes, Bone Controllers
and Morph Nodes can be added to Anim Tree Nodes. Especially for graphical perfor-
mance specification Anim Trees are necessary. For instance, if an object in a 3D

14

2.2 Unreal Game Engine 3

simulation gets destroyed, then the Anim Tree specifies which mesh is loaded to represent
the broken object. For more informations on Anim Trees the Epic Games Website can be
helpful [39].

With Physics Assets physical behavior can be specified [40], e.g., the collision area, that is
the area around an object which can have an effect on the object itself and on the one it
collides with. Every placeable object needs a Physics Asset and an Anim Tree.

2.2.3 Vector Rotations

In a three-dimensional space, an orientation vector (~θ = (θx ,θy ,θz)T) describes an atti-
tude. When turning around this vector, it is not clear in which direction.

Therefore, quaternions 3 are used to describe attitudes in a three-dimensional environ-
ment, with the advantage over an Eulerian angle representation, that quaternions de-
fine the rotation uniquely. Internally, quaternions are used to represent vector rotations.
Therefore, their mathematical structure is explained here. Quaternions are reminiscent
to the complex numbers. As a vector space quaternions are defined as:

w +xi + y j + zk, (2.3)

where i , j , and k are complex numbers, with the following rules

i 2 = j 2 = k2 = i j k =−1,

i j = k,

j i =−k,

(2.4)

here x, y, z, and w are real numbers. w is a scalar and (x, y, z)T is called the vector part of
the quaternion. This representation for a quaternion will be used:

3First described by Hamilton, in 1843 [9]

15

2 Preliminaries

~q =

w
x
y
z

 . (2.5)

For rotations between different coordinate systems quaternions can be convenient. Let
~qu→t = (w, x, y, z)T describe the transformation from a coordinate system u to system t .
The inverse of a quaternion also describes the inverse transformation, it is constructed as
shown:

(~qu→t)−1 =

w
−x
−y
−z

=~qt→u . (2.6)

To rotate a vector two multiplications and a vector augmentation are needed. The vector
is treated as a quaternion with its scalar value set to zero:

~v ∈ℜ3 ⇔ (0, vx , vy , vz)T ∈ℜ4

~̃v =~q~v~q−1.
(2.7)

More informations on quaternions can be found at [6]. For completeness the quaternion
multiplication is shown in Appendix A.2, because it is used internally in the Unreal En-
gine.

2.3 System Theory and Filter Basics

For every simulation trying to be as close to nature as possible is the most important
proposition. Accordingly, errors in measurements are essential to accomplish a realis-
tic simulation. Dealing with erroneous input and output requires the same tools as in
the real world, for example, the Kalman filter approach is used to filter and correct sensor
data.

16

2.3 System Theory and Filter Basics

2.3.1 Increasing the Realism of Sensor Output

-3 -1 1 2 30-2

0.1

0.2

0.3

0.4

Figure 2.7: Gaussian distributed,
σ= 1, α= 2

A sensor is nothing else than a unreal script class.
It can use virtually any function given by the unreal
engine. That means, the data captured by a sensor
is always perfect, because it is data retrieved from
the unreal engine. For an realistic simulation, the
data needs to be corrupted.

A function has been implemented to add Gaussian
noise to any sensor data. The variance σ and a
cutoff value α can be set for any sensor that mea-
sures discrete values (Figure 2.7 shows a Gaussian
distributed with a cutoff value of 2). For sensors
which return boolean values, e.g., the victim detec-
tion sensor, false positives and false negatives can be added. The crucial part is to set
the tuning parameters according to the used sensor. A laser scanner, for example, has a
smaller variance compared to a sonar scanner. Most scanners in the real world state their
expected error, this explicit value should be used in the simulation, too.

Figure 2.8 shows the process of data capturing and evaluation. First the data is distorted
then it its transfered to AURIS, which tries to mitigate the error. The best possible outcome
is n(t) = ñ(t).

Data capture
n(t)

Distort data
n(t)+e(t)+

Send to TCP link
n(t)+e(t)

Import to AURIS
n(t)+e(t)

Remove error
n(t)-ẽ(t)

Processed data
ñ(t) -

Figure 2.8: Data processing, from the UE to AURIS

2.3.2 Kalman Filter

To gain knowledge of a system, which is only described by erroneous data, a Kalman filter
is used. Since all sensors in USARSim can be modified to produce imperfect data, this
approach is used wherever sensor data is evaluated.

17

2 Preliminaries

System Model Considering a linear system with measured data that is afflicted with
white noise. The system model with the state vector~x is:

~xk+1 = Ak ~xk +Bk ~uk + ~wk , (2.8)

where A is the state transition matrix, B the input matrix, and ~uk the control vector. ~wk

describes the Gaussian distributed model-error with the covariance matrix Qk .

The observation ~yk with the observation matrix Hk at time k looks as follows:

~yk = Hk ~xk + ~vk , (2.9)

where ~vk is the measurement error, as well Gaussian distributed with the covariance ma-
trix Rk .

Prediction Uncertainties are the covariance matrices of the errors, they need to be esti-
mated. The predicted system state vector4:

x̃k+1 = Ak x̃k +Bk uk , (2.10)

where the error covariance matrix is:

P̃ = Ak Pk AT
k +Qk . (2.11)

Estimation Now the prediction needs to be improved by using the current measure-
ments. The new (estimated) system state vector

xk = x̃k +Kk
(
yk −Hk x̃k

)
, (2.12)

and its covariance matrix

4The variables x, x̃, and y are vectors, their arrows have been spared for readability reasons.

18

2.3 System Theory and Filter Basics

Pk = P̃k −Kk Hk P̃ T
k (2.13)

are calculated using the Kalman gain

Kk = P̃k H T
k (Hk P̃k H T

k +Rk)−1. (2.14)

More informations on Kalman filters can be found in [30, p. 129-147]

2.3.3 PID controller

The proportional integral derivative controller, short PID, is a control scheme, or feed-
back control system, with the gains Kp , Ki , and Kd as possible tuning parameters. The
PID controller is used for various purposes, e.g., to calculate the stabilizing factors for the
quadrotor flight.

The controller output u(t) is given by:

u(t) = Kpε(t)+Ki

∫ t

0
ε(τ)dτ+Kd

d

d t
ε(t), (2.15)

where Kp,i ,d are the tuning parameters, ε is the error, and t is the time. The error is calcu-
lated as the difference between the current value, and the desired one. Figure 2.9 shows a
block diagram of a parallel PID controller.

x(t)

P K e(t)

I K ∫ ε(τ)dτ

D K dε(t)/dt

processε(t)
+

+

+

u(t)

+
-

Σ

p

i 0

t

d

Σ

Figure 2.9: PID control loop as block diagram

19

3 Design

No quadrotor is defined in USARSim 3, and copying the physical behavior from USARSim
2 is impossible, because their underlying physics engine was replaced (see Section 2.1.2).
Using the older version was not proposed, because it would diminish the advancements
of the Unreal Engine 3. To realize the simulation of the quadrotor in the desired environ-
ment, first a computer-aided design (CAD), or mesh, and the essential physical behavior
needed to be defined. To unravel the full potential of the UAV, new sensors are needed
which have not, or only partly been developed, by the USARSim team.

This chapter elaborates the realization of the quadrotor, and shows the building process
of newly designed sensors.

3.1 Building a Quadrotor for USARSim

To build the UAV two subtasks need to be addressed, first the quadrotor mesh has to be
defined, second the Unreal Script Class, describing the physical behavior has to created.
To enable movement in different directions, ideas how to stabilize the quadrotor are in-
troduced.

3.1.1 Setting up the Static Mesh

To build the quadrotor’s static mesh, knowledge of a 3D molding tool is necessary. Either
Autodesks 3ds Max or Maya are recommended by the USARSim community. Instead of
creating a new quadrotor model that fits the UE3 requirements, a prior version of the UAV
used in USARSim 2 (UE2) is remodeled.

Various type conversions are necessary to accomplish this task, because UE2 and UE3
use different mesh types. Additionally, remodeling of the body and the rotors needs to be

21

3 Design

done. After creating the static mesh bones are placed on the model to become a skele-
ton mesh. With a skeleton mesh movement is possible. On each bone torques can act.
Therefore, bones are added where the rotors attach to the chassis (Figure 3.1 shows the
quadrotor wireframe, with rotors and chassis).

The Unreal Tournament 3 Editor is used to import the modified mesh. With the UnrealEd
a Physics Asset is created which is needed to define the collision area around the UAV and
other characteristics, e.g., its mass. Furthermore, an Anim Tree is added. It specifies how
certain robot parts are moved. Here it is used to state in what way the rotors are turned,
i.e., around which axis. Anim Tree and Physics Asset are tools to setup characteristics of a
simulation, as mentioned in Section 2.2.2.

After the static mesh is constructed it needs to be assigned to an Unreal Script Class. From
this class the static mesh is called, and added into a simulation. Moreover, it defines the
basic behavior of the robot, e.g., its translatory movement. The next subsection elaborates
the class design further.

3.1.2 Defining Physical Behavior

To be able to explore all features of USARSim to its full extent, knowledge of Unreal Script
a necessity. In Section 2.2.1, basics about Unreal Script are mentioned. The following
paragraphs explain in detail the underlying concept of the quadrotor flight in a three-
dimensional environment.

All vehicles in USARSim inherit the “USARVehicle” Class, it manages the functionality of
USARSim, i.e., handling the sensors, the robots, or decorations. For none flying robots,
like the P3AT (Figure 2.1), the subsequent hierarchical class is called “GroundVehicle”.
It mainly handles the communication between the Unreal Engine and the robot. The
next underlying class for this particular robot is the “SkidSteeredRobot” Class the actual
movement of the wheels and the speed-handling are its main purpose. Different types
of driving robots and of steering types have been developed. Last in the hierarchy is the
actual “P3AT” Class, here all the default values for dimensions and movement are set. In
addition, the static mesh is linked to its class, enabling the possibility to add the robot to
a simulation.

For the quadrotor, the same class design was maintained. The “USARVehicle” Class is
still the primary class. Followed by the “AirVehicle” Class, the “RotorVehicle” Class, and
the “Quadrotor” Class, as can be seen in Figure 3.1. Preserving this design enables later
developers to add other types of flying vehicles like airplanes or helicopters efficiently.

22

3.1 Building a Quadrotor for USARSim

USARVehicle GroundVehicle

AirVehicle

SkidSteeredRobot

RotorVehicle Quadrotor

P3AT

Fanuc
AckermanSteeredRobot

. . .

Figure 3.1: Basic USARSim Robot Class Design

Rotor Movement Assembling a realistic simulation requires inertia and friction to act
on objects. When the UAV starts the engine the rotors will turn. They need to start slowly
until their desired turning speed is reached, vice versa, when shutting off the engine. The
uplifting force is proportional to the rotor movement, that means, after starting the engine
it will take a moment until the quadrotor lifts off.

To accomplish this behavior four PID controllers1, one per rotor, are used. In each Tick-
Function of the “RotorVehicle” Class, the current error at time k is calculated, ενk = νg −
νi , where the current, and the given speed are νg , and νi . The cumulative error

∑
εν∫ is

permanently computed.

The needed acceleration2 ~a(t), hence the result of the PID controller is given by:

a(t) =~̈r (t) = Pενk + Iεν∫ +D
(ενk −ενk−1)

∆t
, (3.1)

where∆t is measured by the engine and specifies the time between each tick. This is done
for each rotor separately. In the next step, the appropriate force will be applied and the
calculation continues.

1The basics about the PID controller can be found in Chapter 2.3.3
2Alternatively denoted by ~̈r , the second derivation of the position vector

23

3 Design

The proportional gain Kp , the integral gain Ki , and the derivative gain Kd have been de-
termined by experiments. Settings of Kp = 1.5, Ki = 0.8, and Kd = 0.04 let the rotor move-
ment look realistic. Due to these values the response and settling time are high, which
simulates friction, that has to be overcome by the rotors.

Altitude Control Even though the rotors are moving now, the quadrotor will still not
leave the ground, because there is no actual force coming from the rotors, which interacts
with the mesh of the quadrotor. No lift force or aerodynamic drag is implemented in UE3.
Nevertheless, gravity is available as a simulated force vector, which usually points to the
ground3. The counterforce to overcome it, is implemented to make the UAV fly.

On a static mesh an arbitrary number of forces can be applied. They are attached as vec-
tors on a distinct position on the model. The magnitude and direction of the force-vector
are adjustable. Wherever a rotor is placed on the static mesh, there a force-vector ~Fn is
attached, as can be observed in Figure 3.2, on the quadrotors wire-frame.

 X

Y

Z

F0

F1

F2

F3

Figure 3.2: The quadrotor wire-frame with attached forces

3Gravity is implemented as ~FG = g m, its value and direction can be changed, to simulate different environ-
ments, e.g., space ~FG = 0

24

3.1 Building a Quadrotor for USARSim

The rotor speed is implemented to be proportional to the force’s strength. For the altitude
velocity, the UAV’s control program, specifies the rotor speed not the quadrotor’s velocity.
If the given speed, i.e., the uplift force is below a threshold (gravity) the UAV will not lift
off, matching the real world behavior.

The altitude changes as long as the UAV does not roll or pitch. Should there be a discrep-
ancy in those rotations, a different behavior can be witnessed. Because the force-vector
points in z-direction of the quadrotor coordinate-frame, a change in roll or pitch angle
leads to a rotation of this vector in Unreal Engine coordinates. Should the force-vectors
be rotated in UE coordinates sense, then the UAV moves in x- or y-direction.

Flight Stabilizing Lifting off from an uneven ground lets the quadrotor unintention-
ally fly off to either side, since the force vector does not point upward in UE coordinates.
Moreover, if the UAV hovers over one point, due to rounding errors, each rotor will have a
different speed after a given amount of time. Even though, this might be an infinitesimal
difference, the robot could turn slowly, and then drift off to either side.

This points out the need for a flight stabilizer. If the UAV starts to drift of in one direction,
the stabilizer needs to change the speed of the according rotor to compensate. The PID
controller approach is used to accomplish this task. If the set speed vector νs = (x, y, z)T

for the quadrotor is νs = (0,0, 6= 0), then the roll (φ) and pitch (θ) angle have to be zero. Is
that not the case the speed of the appropriate rotors needs to be adjusted.

If the pitch angle differs the rotor pair 0/1 and 2/3 need to be adjusted. The current error
in the pitch angle (εθ = θs −θi) the cumulative error (εθ∫ =∑

εθ∆t), and the previous error
(εθk−1), with the gain values Kp , Ki , and Kd give a correction value

c = Pεθk + Iεθ∫ +D
(εθk −εθk−1)

∆t
. (3.2)

The correctional value c is applied to every rotor, in the current example it is added to the
rotor pair 0/3 and subtracted from the other rotor pair.

Virtually, the same is done when φs −φi 6= 0. Both corrections are done consecutively,
that means, that two PID controller, which each calculate a correction value cφ for the roll
angle and cθ for the pitch angle, are used. The overall correctional value for each “n”-th
rotor is given by:

νn = Ancφ+Bncθ n = 0..3 , (3.3)

25

3 Design

with An = {1,−1,−1,1} and Bn = {1,1,−1,−1}. This approach guarantees, that even if both
angels are faulty, the adjustment is applied and the quadrotor is stabilized.

The gain values chosen in the current stabilizer design are Kp = 3, Ki = 0.03, and Kd =
0.2 where found in experiments. The high Kp value helps to respond quick. The chosen
tuning parameters prevent any overshoot because the UAV shouldn’t oscillate in the air
until it is stabilized.

In all run simulations the PID controller worked and the UAV was stabilized. Even though,
slight differences between rotor speeds cause strong imbalances. This is a limitation
of the simulation environment, which does not interfere with test of swarming or area
searches, due to the reliable stabilizer.

F
0

F
1

F
3

F
2

 X

Z

Y

φ

θ

ψ

Figure 3.3: Increment of certain rotor forces change the translation of the UAV

Translational Control To move the quadrotor along the x-axis, only the rotor pairs 0/1
or 2/3 need to be adjusted. If the rotor pair 2/3 turns faster, a higher vertical force is
applied, causing the UAV to turn around the pitch angle and to fly forward. This behavior
can be seen in Figure 3.3. Is the speed of the mentioned rotors declined, then the agent
turns in the opposite direction and flies backward. Adjusting the speed of any rotor has

26

3.1 Building a Quadrotor for USARSim

an effect on the vertical speed of the quadrotor. Assuming setting a speed in x-direction,
this turns the UAV around its pitch angle and affects the x- and the z-speed of the robot.

The influence of a particular vertical speed-setting u, corresponding to certain angles and
speeds are defined by:

mẍ =−u sinθ,

mÿ = u cosθ sinφ,

mz̈ = u cosθcosφ−mg ,

(3.4)

where m is the mass of the UAV and ẍ, ÿ , z̈ are the accelerations in the corresponding
direction. These equations can be converted, then stating what force results in which
correlated angle. If the translational accelerations, ẍ and ÿ , are given, then that is:

θ = arcsin

(
mẍ

−u

)
, and

φ= arcsin

(
mÿ

−u cosθ

)
.

(3.5)

In the simulation the x-speed can be specified by AURIS. It internally is transformed into
the appropriate pitch angle, the underlying Unreal Script class (developed in this thesis)
controls this. The robot turns around this angle, resulting in a forward movement. If the
z-speed is low, that means, the UAV is barley holding its height, setting a x-speed results
in forward but also downward motion. The control-program must accommodate to this
situation (which AURIS does, as described in Section 4.3).

Rotation around a yaw angle is obtained by alternately increasing and decreasing the
speed of the even and odd rotor pairs. This is done while keeping the overall thrust con-
stant. The yaw turning-speed νψ can be adjusted. More elaborate deductions about the
physics behind quadrotors are state here [5].

To maneuver in y-direction two different approaches are possible. First the speed of the
rotor pair 0/3 or 1/2 can be adapted. Alternatively, the quadrotor can turn around its z-
axis, i.e., its yaw (ψ) angle, and then fly straight. After reaching the desired coordinates
it turns back around ψ, ultimately being in the exact location, and facing the identical

27

3 Design

position as in the former approach. The decision to use either procedure lies at the pro-
grammer of the agent-control program. In Section 4.2 the currently used approach is
explained.

The proposed quadrotor model enables tests of flight scenarios and autonomy. The phys-
ical attributes introduced by the Unreal Engine mimic the real world realistically. With
the restricted flight control easy traversal through different environments is possible. In a
newer revision these restrictions will probably be reduced. Nevertheless, for test scenar-
ios proposed, i.e., way point finding, search missions, basic swarming the implemented
system is adequate.

3.2 Building Sensors

USARSim has a variety of predefined sensors, e.g., Range Scanners, GPS Sensors, and
Cameras. One or more of any sensor type can be added to any given Robot. The sensor’s
energy intake and its weight can be specified, which has an immediate impact on the
battery charge of the agent. Intuitively, more attached sensors lead to increased energy
consumption, due to amplified battery drain, and to the higher weight of the quadrotor,
that needs to be overcome by increased torque.

For test reasons all of those delimiters can be turned off. The battery can also be set to
unlimited so long-term tests that would be impossible in the real world can be done. New
sensors can be developed as well, for example, a Smoke Detector, a Sound Scanner and
a modified Range Scanner have been developed over the course of this thesis, their de-
sign and setup is explained in the next section. For the sensor setup, conveniently, an
initialization file has been created, here base-values for the scanners can be assigned, i.e,
resolution, range, noise or other thresholds. This file also handles the number and type
of sensor that get mounted to each robot. No Unreal Script or any further programming
language skill is necessary to attach sensors to robots, this makes USARSim interesting for
people that want to do some quick tests.

A sensor, speaking in Unreal terms, is an item, i.e, it extends the “Item” Class. This class is
used to register an object to engine. That means, it specifies a name not a certain behavior.
For scanners the base-class is the “Sensor” Class, it is a child of the “Item” Class. Here the
default values are set and imported from the main initialization file mentioned before.
The role an individual sensor has, is defined in its own class.

28

3.2 Building Sensors

Item

Sensor

RangeScanner

SmokeSensor

Camera

Effector

Decoration

...

...

Gripper

...

BatteryPack

Figure 3.4: Basic USARSim “Sensor”-, “Effector”-, and “Decoration”-Class design

Sensors, effectors, and decorations are all based on the “Item” Class. Figure 3.4 shows
their inheritance. These three classes are used to enhance the robots appearance and its
utilization. Effectors are moving objects that cannot exist on their own, for example, a
hand part of a robot-arm. The hand or each finger would be an effector. Decorations are
used to complement the demonstration.

3.2.1 Developed Sensors

Acoustic Sensors An acoustic scanner is developed to detect simulated human voices,
or any other source of sound. In a search and rescue mission it might be of great assis-
tance to find injured or buried victims. For test reason, all quadrotors send out a distinct
sound signal. It is used to locate the specific position among each UAV. To simulate swarm
behavior this approach was utilized, as elaborated in Section 5.3.

The traveling of sound as waves is not implemented in the Unreal Engine. The developed
acoustic sensor simulates the reduction of signal strength over the traveled distance. Any
sound that shall be detectable by this scanner needs to be specified in the development
of the sensor. Focusing on the sound each UAV sends out, from this moment onward it is
called a beep. The engine notifies the sensor of the beep, its position and the

29

3 Design

distance d . The sensor uses d to calculate the actual loudness L in dB using this formula
found in [38]:

L = Lmax −20log(d)
1

log(10)
, (3.6)

where Lmax is the loudness of the sound when it is emitted. A “hearing” threshold Lc

can be specified, should the loudness of the received signal be below, it is considered not
distinguishable. In the real world it is also referred to a to low Signal-Noise-Ratio. With
Lmax = 60dB and Lc = 20dB a realistic model of actual sound damping is found (see
Figure 3.5).

0 50 100 150
0

10

20

30

40

50

60

70

d in m

L
in

 d
B

 (w
ith

 L
m

ax
=6

0)

60dB − 20 log(d) 1
log(10)

"hearing"
threshold

Figure 3.5: Acoustic sensor distance to volume

The proposed damping function works if no object is between sender and receiver. Is that
not the case different techniques need be applied. With the Trace-function of the Unreal
Engine objects in the line of sight can be detected. One approach is to double the distance
d when there is a wall between the UAVs. This idea is implemented and tested.

If two quadrotors are in two adjacent rooms, that means, completely separated by a wall,
this approach make sense and the results are promising. Although if there is only a corner

30

3.2 Building Sensors

of a wall, or any other minor object, detected by the Trace-Function, doubling the distance
is not reasonable. The damping in this case is to strong.

With this concept there are lots of errors if the quadrotors are used in town like environ-
ments. The detected loudness of the beep increases and then decreases abruptly when-
ever a part of a wall is shortly between two agents, even though in the real world, the
sound would not have been distorted significantly. Therefore, this part of the simulated
sensor is unrealistic.

Extensive work and calculating power are necessary to build a model which can actually
measure the area of the walls blocking the sound, their density, and their influence on
the sound travel. To this point, it is considered that the beeps are only needed in open
environments, where sound is not distorted significantly. For the given purpose the sound
scanner generates sufficient behavior.

After calculating the loudness of the beep, its direction is calculated. The UE has already
a set of basic functions implemented. Rotations, normalization, and other vector oper-
ations are available. Obtaining the global position of the sound source is archived by a
rotation of the location vector.

Quaternions are internally used to specify the location and rotation of a vector as de-
scribed in Section 2.2.3. The local direction of the sound is

−→pl =−→ps −−→pm , (3.7)

with the location of the sound −→ps and the position of the sensor that hears the sound −→pm .−→pl is now transformed internally into a global direction −→pg , with the given functions:

−→q = fr (−→σm) ↔ QuatF r omRot ator (),
−→q −1 = fi nv (−→q) ↔ Quat Inver t (),
−̃→pg = fr v (−→q −1,−→pl) ↔ QuatRot ateV ector (),
−→pg = fn(−̃→pg) ↔ Nor mal (),

(3.8)

where −→σm is the current rotator, i.e., rotation vector (φ,θ,ψ)T of the sound receiver.

The built sensor is different to a sensor in the real world. It actually has all the information,
but it distorts it and returns a degraded set of information. The data sent to the client is

31

3 Design

the direction −→pg , the volume L, and the duration of the sound ts , hence, the information
provided by this sensor. Furthermore, these values can, alike other sensors, be distorted
by virtually any probability distribution.

For the acoustic sensor a Gaussian distribution is used to alter the sensor data. For the
loudness a higher variance is applied than for the direction, because in the real world,
different sounds in an area interfere with the distinction of a certain signal. Subjectively,
this seems to be the right choice, because for the human ear it is easier to determine the
direction of a sound rather than its distance.

The Unreal Engine limits the function of this sensor, because it is difficult to determine
witch objects need to be surpassed by a sound signal on its way between sender and re-
ceiver. For the given purpose, i.e., using the beep in an outside environment to distinguish
the location of different UAVs the current approach is satisfactory.

Smoke Sensor The smoke scanner can neither illustrate the functionality nor the ro-
bustness of a real smoke sensor. The currently implemented version has no actual cou-
pling to reality, and it is merely used to test different robot behaviors.

It uses the Trace-Function mentioned in the prior paragraph. This function returns the
type of mesh it has encountered in a straight line, with a given range, and in a certain di-
rection. A special “Smoke” Mesh is used [42] to add fire and smoke to a test environment.
When the Trace-Function detects the “Smoke”-Mesh the sensor is activated and returns
the location of the fire. The sensor checks an area in front of the quadrotor in a cone
shape. In Figure 3.6 the smoke, the UAV, and the basic detection area of the smoke sensor
in a running simulation environment can be seen. The smaller picture-in-picture is the
view of the quadrotor camera. The sensor cone is invisible in a running simulation.

The cone size, and the range can be adjusted. In addition, false outputs can be produced
to make the scanner more realistic. With a camera an optical smoke sensor can possibly
be developed. First approaches have been undertaken by the developers of the smoke
mesh as can be seen in Appendix A.3.

32

3.2 Building Sensors

Figure 3.6: Quadrotor with smoke detector and smoke

33

4 Controlling a Quadrotor

Autonomous actions need to be backed up by sensor data of the environment. With-
out these informations a robot can not prevail in an unknown surrounding. This chapter
investigates the processing of gathered sensor data, their evaluation, and the actions fol-
lowed by the extracted informations.

The control program introducing autonomous behavior is AURIS. In which manner it
communicates with the steered robot is explained in the upcoming section as well. In
addition, the processing of information collected by the robot and its influence to the
course of action are described. Protocols to safeguard the quadrotor at all times are intro-
duced.

Sensors

Battery

Range (pitch/
yaw)

Fire/ Smoke

Attitude/
Altitude

Communication
Set current

goal possition

Movement commands

Move x/z

Turn yaw

p
rio

rity

Figure 4.1: Evaluated sensor data leads to movement

35

4 Controlling a Quadrotor

This chapter shows in detail how the guarding systems, range detection in yaw and pitch
direction, and the power management work. The difficulty of flight planing and of de-
veloping knowledge of the surrounding, are discused as well. Figure 4.1 shows the basic
sensors and there prioritized impact on the decision marking process. Only if no obsta-
cle needs to be surpassed and the battery is charged to a certain extent, a mission can be
accomplished.

4.1 Communication

Sensors and robots communicate with AURIS through a client server setup. Hence, more
than one robot can be spawned in the same simulation environment. All data available
in the UE can also be sent over a TCP connection. AURIS is an external program written
in C++. It has basic commands, which enable it to control a robot in the simulated envi-
ronment. Nevertheless, it would also be possible to use the same program (possibly with
altered I/O) to navigate a quadrotor in the real world.

The Unreal Engine loads the surrounding, i.e., a map, as soon as the simulation starts.
Here different static meshes are placed to introduce a certain ambiance. The simulated
domain can be adjusted as needed, it can a town, or an open field, or even another planet.
After AURIS sends out an initialize command, the specified robot spawns, that means, it
gets added to the map.

All sensors that belong to the robot have been specified prior to the start of USARSim. Af-
ter the start, all sensor data is broadcast to the TCP link between AURIS and USARSim.

Four different message types are used to communicate:

• “Info” (NFO), for initialization purposes only

• “Sensor” (SEN), all sensor data that is sent from a sensor to the control program

• “Status” (STA), messages that inform about location and different situations con-
cerning the Unreal Engine, and the spawned robots

STA messages are not used to control the robot. They are background data for debug
purposes only. Using this data in a simulation can not be allowed, because this data
would not be present in the real world.

36

4.1 Communication

• “DRIVE”, the only command the control program can send out, besides initializa-
tion

With “DRIVE” the movement of the robot is specified. For every distinct robot-type
there might be a different variation of the DRIVE command, e.g., a driving robot will
not have “DRIVE{zspeed}”, because it cannot move in z-direction.

Due to the message protocol, the introduced design can be converted to control an actual
UAV. The sensor messages need to be modified to be read by AURIS, and the “DRIVE”
command has to be handled by the UAV, to make this possible.

4.1.1 Inter-UAV Communication

Communication between robots in a simulation was not part of USARSim. This feature is
built over the course of the thesis. A wireless networking adapter is developed, it attaches
to robots in the same way sensors do.

The communication mimics a reliable transmission protocol, that means, if a message
is transfered to a certain agent, the sender can be sure that the data is delivered (similar
to TCP). The communication can only take place if UAVs are in the range of the wireless
networking adapter. For test purposes the maximum range of the adapter can be specified
before the simulation starts. Damping, or blocking of the communication signal is not
provided. Nevertheless, the possibility to implement it is given.

Internally three different Unreal Script classes enable this behavior. AURIS sends its mes-
sage to the Unreal Game Server, as it is done for “DRIVE” commands. The data handler is
called, which checks for other wireless networking modules in range. Either a message is
broadcast to all communication adapters, or to a specified ID.

With this setup complex swarms of distributed agents can be established. Chapter 5 intro-
duces strategies for setup and control of such groups of UAVs. To implement the commu-
nication link between AURIS and a real world quadrotor, respectively, between different
UAVs an interface has to be proposed to establish the communication between agents
first.

37

4 Controlling a Quadrotor

4.2 Collision Avoidance

Assuming the quadrotor design is finished, a mesh is designed and the physical behav-
ior is defined. That means, the UAV is ready to perform tasks. Since the ultimate goal
is autonomous behavior, it is important that the agent can navigate on its own. There-
fore, collision avoidance functions are essential. Even if a robot can go from one point to
another, there is no use for it if it can not surpass the first obstacle it encounters.

In the current implementation the UAV can only fly in positive x-direction, in z-direction
and turn around the z-axis. The movement looks therefore constricted, this makes it eas-
ier to detect obstacles and to control the quadrotor motion. With this approach only two
sensors are used to detect objects blocking the way, these are, range scanners around the
z-axis and the y-axis (see Figure 4.2).

The range scanners sampling rate can be adjusted to simulate its real world counterpart.
A Hokuyo UTM-30LX laser range finder, for example, has a sampling rate of 40Hz. To safe-
guard a quadrotor completely a whole sphere of laser scanners would be necessary. With
two attached scanners, and the restricted maneuverability, the UAV can only detect ob-
stacles that can be harmful because of its own motion. Another moving entity, e.g., a bird,
can still hit the agent from an angle that is not scanned. The likelihood of such an event
is minuscule, therefore, the current scanner setup is considered sufficient. Furthermore,
this design is a trade-off between power consumption, especially due to the weight1 of
additional scanners, and obstacle detection.

Each laser scanner scan at N (=16) positions around the perimeter, depicted as dotted
lines in Figure 4.2 . As mentioned, the UAV can only fly forward or upward. Therefore,
the reaction to an obstacle found directly in flight direction needs to be more severe than
to an object in the outer rim. Accordingly, two weighting functions were developed, one
for the distance d of an object, and the other one for its radial position ψ compared to
the quadrotor. In addition, the bigger the object the more sensor nodes respond, and that
also increases the measurement of severity.

The weight w f is calculated as

w f =
N∑
i

(
fψ(ψ) fd (d)

)
and (4.1)

1The UTM-30LX laser range scanner [47] used by one of the MITs quadrotors [1] has a weight of 370g. The
lightest laser scanners still weighting approximately 150g. With quadrotor payloads lower than 1kg adding
more sensors needs to be well-considered.

38

4.2 Collision Avoidance

 X

Y

Z

Range Scanner (yaw)

Range Scanner (pitch)

Figure 4.2: Quadrotor with yaw and pitch range scanner

where

fψ(ψ) = exp(−ψ2
i), (4.2)

fd (d) =
(

dM ax −d

dM ax −dMi n

)
. (4.3)

A plot of the multiplied weighting functions can be seen in Figure 4.3, it shows how close,
frontal obstacles have a bigger impact on the generated weight, than further away or out-
side objects. Even though the maximum value of w f might exceed 1, it is treated the same.
The maximum distance dmax resembles the maximal range of the scanner. The critical
value of dmi n specifies the distance, to an obstacle, which leads to a complete stop of the
UAV, because fd (d = dmi n) = 1. For the range scanner around the pitch angle, the same
weighting functions are used.

After an obstacle is detected the agent reacts to it according to the generated weight. If
the quadrotor tries to get to a certain location, the course has to be altered after an object

39

4 Controlling a Quadrotor

−4
−3

−2
−1

0
1

2
3

4

0

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

distance to obstacle in m
(min. distance = 0.3m)

16 scan positions

π > ψ > −π

Figure 4.3: Multiplication of weighting functions to show area of severity

blocking the way has been found. When the pitch-range scanner finds an obstacle the
UAV changes its altitude to avoid it. If the yaw-range scanner gets activated, the course is
altered in x- and y-direction. Should both scanners get activated then a combined direc-
tion change takes place.

Figure 4.4 shows the behavior of the yaw-range scanner if an obstacle is detected on the
right front. First w f is computed, then a new direction is calculated ψa = fw (w f) away
from the obstacle and from the original route, to a unique temporary goal in a given dis-
tance. If another obstacle is detected, the temporary goal will be recalculated. After reach-
ing it, the quadrotor continues to the main goal. Should the pitch-range-sensor signal,
then the severity is calculated. The UAV stops its advance in x-direction and adjust its
altitude according to the calculated weight. After reaching the desired height the forward
movement continues. When the UAV is landing this rule is disabled, right after getting to
the correct x- and y-coordinates.

40

4.2 Collision Avoidance

goal

obstacle

current direction

range sensor activation

range sensor (yaw)

temporary goal
new calculated direction

ψa

Figure 4.4: Collision avoidance operation

All simulations conduced have shown that this approach leads to satisfying results with-
out extensive calculation or way planing. Basically, any obstacle can be surpassed. If the
final destination cannot be reached due to a scenic characteristic, e.g., the goal-position
is inside a building without a way in, then the algorithm will not come to an end. Setting
the quadrotor on a circular course around the goal position, until the battery interrupt
(see Section 4.5) commands it to fly back to the base station.

This collision avoidance control is designed for outside use. It safely guides the UAV away
from trees, rocks, or buildings. Inside, there needs to be an extended control algorithm,
which searches more thoroughly for a position to surpass an obstacle. Furthermore, it
needs to be concluded that the goal position cannot be reached.

41

4 Controlling a Quadrotor

4.3 Altitude Control

When the UAV advances in any direction, it turns around the roll or pitch angle. There-
fore, rotation its force-vector, away from a straight upward direction, i.e., converting uplift
force in forward thrust. That means, the z-speed of the quadrotor changes. The altitude
control keeps the height on a constant level. If the collision avoidance control changes
the z-position of the UVA, then altitude control does not interfere.

To accomplish the controller, the current height is estimated first. In the real world, it is
not an ordinary task to determine the altitude of an UAV correctly. Different sensor data
can be combined to improve the final output, e.g., barometric data can be supported by
the quadrotors vertical acceleration (see. [11]). This behavior can be simulated by the UE.
For now a pseudo sensor is used, which returns adequate data. This data can be distorted
by white noise with a given variance, but it does not behave like an actual barometric
sensor.

To change the current altitude, the speed in z-direction is added (or subtracted), i.e., turn-
ing the rotors faster (slower). This is done to all rotors simultaneously, to keep the UAV
steady. To land the quadrotor it is important to lower the speed continuously until the
downward speed is fast enough. Decreasing the altitude too cautiously lengthens the de-
scend unnecessarily, but declining to hastily might cause a crash possibly damaging the
UAV.

Due to accurate sensor data, height control was not a focus area. Considering that the
significant part of simulations done were in an outside environment, fast responses to
vertical direction changes have not been developed. If a quadrotor is supposed to work
in a complex environment, especially inside a building over a number of floors, more
powerful algorithms need to be developed.

4.4 Mapping

In a simulation the UAV could get full knowledge of the map. In the contrary, it is possible
to add the quadrotor into the environment without any a priori knowledge. The latter
premise is focused on in this thesis and in all experiments, because it relates to the real
world.

42

4.4 Mapping

4.4.1 Simultaneous Localization and Mapping

Every robot in the simulation has sensors to trace its surrounding. One of the goals of au-
tonomous robots is to navigate in an unknown environment and to localize themselves in
that area. Due to noise of range sensors, GPS, and all other sensors used for position esti-
mation, the internal map created by a robot can never be one hundred percent accurate.
Therefore, methods have been developed to overcome shortcomings in detail and preci-
sion. Simultaneous Localization and Mapping (SLAM) is such an approach. Historically
the construction of environment models from moving sonar platforms, in photogramme-
try [13] and computer vision [26], are predecessor of SLAM, without covering the field of
robotics. Preliminaries of the SLAM approach are explained in this section, a comprehen-
sive illustration is given by S. Thrun [25].

For a driving robot, the world is basically two-dimensional. Surpassing obstacles by sim-
ply driving over them is virtually never possible. Obstacles are usually walls, trees, or
whole buildings, hence localizing and mapping are done in two dimensional space. For
the quadrotor, it is usually possible to fly over objects, increasing the complexity of the
mapping. Especially, because the search area grows in a third dimension. On a search
mission, for example, the maximum altitude needs to be restricted, to ensure the UAV gets
done with its task in a reasonable time. On the upside, growing sensor ranges increase the
productivity, but also raise the computational complexity.

Changing environments, e.g, people walking by, objects get moved by wind, or a spread-
ing fire, add to the map building difficulty. Locations that are visited are marked, e.g.,
empty or obstacle, depending on the sensor reading. There has to be an update process of
all measured points as soon as new sensor data arrives. The SLAM approach considers all
those properties, with five steps: Landmark extraction, data association, state estimation,
state updating and landmark updating.

Landmark Extraction Different scanners can be chosen to retrieve the data for the land-
mark extraction. Either laser range scanners, sonars or cameras can be used. In a simu-
lation where costs do not matter, a laser scanner will be attached, due to its accuracy.
Nevertheless, in the real world, a sonar is much cheaper. In addition, it is helpful in an
underwater scenario, where the range of a laser scanner is more restricted.

Cameras could be used, too, but the computational complexity, to calculate the optical
flow of every pixel of a captured picture, is relatively high. Therefore, the camera drains
more power from the UAV. Furthermore, the processor used might not be able to handle
all necessary calculations in real time. Although, the range of a camera in an outside envi-

43

4 Controlling a Quadrotor

ronment is greater than a laser scanner’s. All three scanner types are already implemented
in USARSim, and can be chosen for different scenarios.

Landmarks need to be re-observable, hence, they need to be distinguishable from each
other, as well as stationary. A moving landmark increases the complexity to update the
location of an agent precisely, because location and speed can never be observed accu-
rately. The distinguishability is a necessity, because it is unclear if a certain landmark is
unique in a given environment. Different methods have been created to find landmarks,
e.g., spike landmarks, or RANSAC [24].

RANSAC is used in different fields when parameters need to be estimated from a dataset.
It is an iterative method, with the number of iterations used the quality of the result in-
creases. For landmark extraction, RANSAC is used to fit lines on the measured data from
the laser scanner. If lines are found, they are used as landmarks. This is especially useful
in indoor environments, hence, walls resemble straight lines.

[2.91 3.06 2.91 3.18 3.02 3.01 3.16 2.86 2.88 3.11 2.78 2.74 2.66 2.56 2.61 2.64 2.54 2.59 0.98 1.12
1.08 2.61 2.66 2.76 2.65 2.66]

0 0.5 1 1,5 2 2,5 30

0.5

1

1.5

2

2.5

3

3.5

4

x

Data output laser range scanner:

Estimated RANSAC landmark

Found spike landmark

Corresponding graphical representation

Example scene

y

Figure 4.5: RANSAC and spike landmark extrac-
tion

Spike landmark extraction looks for
extrema in laser scan readings. A tree
in an open field can be represented
as a spike in the graphical represen-
tation of a sensor reading, as can be
seen in Figure 4.5.

The spike landmark approach should
not be used by itself [17], since the
failure rate is very high, e.g., a person
walking trough a scene will be clas-
sified as a landmark. As the person
moves, the landmark can not be asso-
ciated correctly, increasing the possi-
bility of erroneous map building.

RANSAC is much more error prone,
if certain parameters (minimum line
length) are set correctly. Spike land-
marks can only be beneficial in com-
bination with other landmark extrac-
tion protocols. To enhance the extrac-
tion even further scan matching [18]
can be used. Scan matching is basi-
cally a test of the shape. If the

44

4.4 Mapping

landmark found has a different (to a certain extent) shape, than the landmark it is sup-
posed to be associated with, it is rejected.

Data Association Landmarks in concurrent scans are evaluated, if they are identical or
if a new landmark has been found. A number of errors can lead to wrong detection. If a
line (RANSAC) can not be re-observed in every time step, there needs to be an algorithm
to add them together. After a landmark has been found it might not be re-observable,
then, after a number of iterations, it has to be deleted. The biggest mistake is associating
unrelated landmarks, this completely destroys the understanding of the scene.

Every landmark needs to be observed a number of times (N) to be considered to be used
for SLAM. Should it be accepted it is called key. For every data reading the extracted land-
marks are compared to the keys. With a certain threshold, the landmark is either new,
or interpreted as re-observed. This so called nearest-neighbor approach is also used in
other visual related areas. For distance calculations several concepts can be used, typical
are Euclidean or Mahalanobis (see Appendix A) distances. Data association with a chosen
threshold λ is done by:

ζT
k Q−1

k ζk ≤λ, (4.4)

where ζi the innovation, and Qi the corresponding covariance matrix from the Kalman
Filter used to merge the existing data. The Kalman Filter handles the last three steps of
the SLAM approach. The final outcome is supposed to be the agent’s position, as close
to the real location as possible. An Extended Kalman Filter (EKF) is usually used for this
purpose. In addition to a regular Kalman Filter, the EKF can also handle nonlinearities in
the process model, the observation model, or both. The following paragraphs will con-
tinue to explain the usage of the Kalman Filter, for actually simulated basic map-building
designs.

4.4.2 Basic Mapping with Error Correction

SLAM still is an area in robotics that holds challenges, therefore its implementation is
complex and extensive. Because basic flying test, swarms, and searches for fire where
the main focus points of this thesis, a complete SLAM approach is not implemented. Al-
though, a less sophisticated mapping concept is carried out.

45

4 Controlling a Quadrotor

A standard stimulation to evaluate the flight behavior of the quadrotor, is that a goals is
set, and the agent has to reach it autonomously. This elemental test involves one or more
quadrotors. The second type of test is checking areas for fires. After the flames or smoke
is found the UAV has to find its way back.

No a priori map knowledge is given. The quadrotor “memorizes” the areas it flies through,
where it finds fire, and any obstacle it encounters. The object is saved as a dot at the
position on the map where the range scanner got initiated. Figure 4.6 shows a map drawn
by the agent on a simulated mission, it had to fly to certain way points without colliding
with walls. Note that, the UAV cannot distinguish between certain obstacles, because it
has only range scanners attached. This approach is sufficient to get a basic understanding
of the map and of obstacles which have to be surpassed. It is merely used to retrace the
quadrotor’s steps.

5

6

7

3

4

2

1
x

yM

M

Figure 4.6: Basic map drawn by the UAV. The small dots represent positions where the
range scanner (pitch or yaw) was activated. The gray area represents the already
scanned environment, where the different shadings symbolize to the altitude of the
robot in that point in time.

46

4.4 Mapping

Evaluating Sensor Data In “Underwater SLAM for Structured Environments Using an
Imaging Sonar” [23], different methods have been introduced to solve the SLAM problem
for an autonomous underwater vehicle (AUV). A voting algorithm, an EKF approach, a
hybrid of EKF and voting, and an adapted voting scheme was introduced to merge and
correct sensor data efficiently. Some ideas can be adopted and integrated for AURIS. An
underwater area relates partly to an aerial one, due to its three dimensional complexity.

In this thesis, a Kalman Filter is used as well to filter and correct measured data. The
global, instead of the local attitude and location is traced filter. The Kalman Filters math-
ematical basics are explained in 2.3.2. With the current location data (x, y, z)T from the
simulated position sensor and the speeds (ν) respectively, the state vector is:

−→xk =

x
y
z
νx

νy

νz

 , A =

0 0 0 ∆t 0 0
0 0 0 0 ∆t 0
0 0 0 0 0 ∆t
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (4.5)

The filter is initialized with date of the first observation, hence the first measurement.
The observation is followed by the prediction. The prediction step projects the estimates
of the state vector and its error covariances ahead in time. The measurement error co-
variance and the model error covariance matrix are defined before the filter is started. In
a simulation the expected error is known, therefore the correct values for the covariance
matrices can be set. Nevertheless, simulations are conducted with imperfect settings. The
Kalman Filter has proven to be reliable in those test as long as the errors reflect possible
real world settings.

With the measurement matrix

H =
0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

 , (4.6)

the new sensor data (−→xk = (x y z)T) is taken into account and in the next step, the system
model is updated.

Furthermore, extreme errors in measurements are considered. If a reading appears to de-
viate considerably from the Kalman Filter prediction, it is not used for updates. After such

47

4 Controlling a Quadrotor

an outlier was found, the possibility to find another one is increased. If the Euclidean dis-
tance of the measured position, (xm , ym , zm)T , and the estimated position, (xp , yp , zp)T ,
exceeds the threshold:

|(xp , yp , zp)T − (xm , ym , zm)T | > %+2L ∗νmax ∗∆t , (4.7)

where % is the maximal tolerable error, νmax the maximum speed of the quadrotors, L
is the number of concurrently found outliers, and ∆t the time difference between two
prediction steps.

Assuming that a quadrotor gets hit by a gust of wind, changing its current location rapidly.
The measured position values are considered to be outliers. After dumping a couple of
values the possibility of another error increases to the point that a measurement is con-
sidered correct again. This data is now added to the Kalman estimation, which contin-
ues. Chapter 6.1.2 states tests of the implemented Kalman Filter, for comparison with
and without outlier reduction.

4.5 Power Management

One of the worst things that can happen in the real world, is that the quadrotor crashes,
or gets lost. When the battery is empty the motors stop and the UAV falls from the sky. For
an autonomous agent, that does not constantly report its position, this is especially prob-
lematic, because the agent might never be retrieved. Accordingly, it is of vital importance
that the quadrotor returns to the base station before it is out of power.

An algorithm is derived to implicate this behavior. It interrupts any task the quadrotor
is conducting and set course to the home base. With knowledge of the surrounding,
recorded while exploring the perimeter, it is possible to calculate the way back. As long as
the map is not changing drastically2. The agent, internally, computes how long it takes to
get back to the base station. This is done for the first time when the battery drops below
sixty percent, to conserve computation power. The quadrotor uses already verified areas
for its retreat, hence, in the worst case, it flies back exactly the way it came from.

To find the way back the UAV saves the cells it has been to. With a cell, the cube around
the sphere of all sensors is described (see Section 5.4 and Figure 5.8). Should a particular
cell be reached twice, or a neighboring cell has been visited before, then the list will be
amended, i.e., cut off at the current position. Accordingly, the shortest known path back

2Fire or earthquakes, for example, could change the surrounding. If this is the case, the current algorithm
needs to be augmented.

48

4.5 Power Management

Base Station

Figure 4.7: UAV saves shortest known path back to base station; light green route will be
“forgotten”; black arrow shows traveled path

home is maintained. Figure 4.7 elaborates this approach, in a two dimensional fashion.
Even though the UAV traverses a three-dimensional environment, most problems can be
considered from a 2D perspective. Nevertheless, the actual path saved internally is a 3D
route.

For this algorithm the computational complexity is eligible, because only the list of visited
cells must be checked if a new position is reached, the distance to the home base needs
to be computed. With a growing area, the complexity of this algorithm increases linearly.
The cell size is determined by the sensor range, and the number of cells depend on the
work area. Considering that the UAV operates in a limited height. Ignoring the fact that
not all cells in an environment ever need to be saved for the way back, (because then they
all would have neighbors reducing the way to the diagonal) the size for the list of points
would be:

Ca = cx cy cz , (4.8)

where cx,y,z are the number of cells in each direction. In the worst case scenario, half the
cells are blocked, and the others are free to move through. In the 3D worst case, only

49

4 Controlling a Quadrotor

three cells in a cell neighborhood can be open to fly through, the others are inaccessible.
So three of seven cells need to be saved. That means the biggest list that needs to be stored
is:

Ca = 3cx cy cz

7
. (4.9)

A map that might actually look like that could be the corridors of a skyscraper, over dif-
ferent floors. There could be special cases where the number of saved points gets even
bigger. In a 1x1000x1 cells map, for example, with no obstacle, clearly, all cells are saved.
This is due to the reduced cell neighborhood at the sides and corners of a map. Here the
neighborhood is three cells big, including the considered cell itself. This cancels down
Equation 4.9 to Ca = 3/cx cy cz /3/. Generally, it is assumed that the cell neighborhood con-

sists of seven cells.

When calculating the required battery power to fly the return route, the number of saved
cells in the list is added, and then multiplied by a given factor. Moreover, a ten percent re-
serve for safety reasons is considered in the computation. As a second lifeline the quadro-
tor lands as soon as only five percent of battery power are left, keeping in mind that the
landing process also coast power. The agent lands wherever it is at this moment, rather
getting lost than crashing. The remaining power will then be used to send out distress
signals. For certain terrains the described approach might still lead to broken quadro-
tors. Considering an island group that has to be searched. Should the agent powers down
its engine, because it determined it cannot make it back base station with the remaining
power, it will be landing in the water. Two different ideas are introduced to mitigate this
problem.

First, a new cell type, additional to blocked and free, has to be introduced, e.g., dangerous.
That means, the UAV does not power down its engines if flying through a cell like that.
Algorithms can be introduced to try to avoid all dangerous cells altogether. Second, the
power consumption for the return flight is reduced. Only the needed sensors for collision
avoidance are not shut off. Because the return route has been evaluated before, it can be
considered known, that means scanning it again is unnecessary. With this small power
boost the possibility of returning to the base station increases.

50

5 Multi Robot Scenarios and Swarms

This chapter introduces applications and possible setups for groups of agents. All of these
ideas can be implemented in the simulation. It is the main purpose of the upcoming
paragraphs to show the diversity and power of UAV swarms and their benefit to different
fields of research. First of all two concepts are explained, swarms and emergence.

A swarm is a number of entities that knowingly or unknowingly work together. While
working does not necessarily mean to accomplish a task, it could also mean, the collective
motion of a number of entities [21]. Usually, swarm behavior is mentioned in the com-
bination with animals, especially fish (schooling), quadrupeds (herding), birds (flocking)
or insects. In this thesis, a swarm is a collection of robots, i.e., quadrotors, which are sup-
posed to accomplish something together. The number of robots forming the swarm is not
restricted aside from being more than one.

Different approaches for the forming of swarms are discussed, because the level of com-
munication changes the organization structures among the swarm, from a hierarchical
set of quadrotors to a decentralized self-organizing system. The later introduces the con-
cept of emergence. A coherent system which evolves from the actions of its members is
exhibiting emergence, that is what De Wolf and Holvoet state in their paper on “Emer-
gence Versus Self-organisation” [32]. The self-organization can also be realized by com-
munication among the members of the group, whereas emergence is a process not com-
prehend by the components of the subsystem.

5.1 Full Disclosure

With the simulation software described in the Chapters 3 and 4 in place, a number of
different scenarios can be tested. First it is considered that the quadrotors have a direct
communication channel open at all times. So all information necessary for team-setup,
way planing, objective control, and time management can constantly be communicated
among all team members.

51

5 Multi Robot Scenarios and Swarms

One possible swarm building approach is to inform every entity of the group about the
current position, status, and other required factors of each other member. This is called
full disclosure.

Communication Methods It is considered that all UAVs possess a wireless-LAN (WLAN)
controller. The communication between each group member might not be direct. It is
possible that only a couple of quadrotors can correspond with each other at a certain
time. That means, the UAVs build a communication chain or circle to make every agent
aware of the current setup. This controller can be implemented in the simulation.

The basic characteristics of a real WLAN controller need to be imitated. That means, the
controller is faster and more reliable if quadrotors exchanging data are in closer proximity.
Figure 5.1 elaborates this setting. To get messages from one outer rim to the other, mes-
sages need to be forwarded by all agents in between. The bigger the intersection of the
WLAN-range circles, the higher the possibility that a message can be sent and received,
because the error probability is lower.

WLAN Range

max range

mid range

close proximity

50m

25m

2m

125m0m 250m

125m

0

1

2

3

4

0 to all

3 0 to all

Communication Chain

Figure 5.1: Possible communication setup

Other communication methods are also possible. Assuming that each quadrotor has a
GPRS 1 module attached. Is the current application-area a town or city, then the range of
GPRS is virtually unlimited. All UAVs can continuously, not only exchange data between
each other, but also inform the base-station or any other entities (firefighters, police, am-
bulances, or other robots) of their current status. Furthermore, GPRS uses less energy

1When talking about GPRS newer standards (GMS, EDGE, UMTS, or HSDPA) are not excluded.

52

5.1 Full Disclosure

compared to the requirements of WLAN usage. Moreover, the communication does not
require a set of agents, that have to forward messages, anymore. Every quadrotor con-
nects through an antenna tower with each other, that makes communication more reli-
able. Because, if one UAV in the middle of a communication-chain fails, two agent groups
can not exchange data anymore. Whereas, if the same happens with a quadrotor that uses
a GPRS module, only one entity looses communication, without effecting the other group
members.

Considering an open field, or a sparsely populated or uninhabited area, GPRS is not an
option. WLAN should be used for this purpose, and is the proposed way of commu-
nication throughout this thesis. Mainly because, the simulation is linked to the actual
quadrotor at Hamburg Tech., and on account of fire-monitoring and search scenarios in
open environments, which has been focused on. In Figure 5.1 the WLAN range is set to a
maximum of 100 meters, even though, current WLAN generations (IEEE 802.11n) are sup-
posed to have a maximum range of over 200 meters (outdoors) [36]. For error prevention
indoor environments are always considered, that means, the maximum range is approx-
imately 100 meters. The actual quadrotor at Hamburg Tech also has a range of circa 100
meters, even in outdoor environments. This is mainly due to less advanced equipment.

Communication between all quadrotors at all times can never be guaranteed. There have
to be safety protocols, when the WLAN peer-to-peer connection gets lost. The robots
need to either continue their current task, with the information available, return to the
base station, or wait to pick up a signal in the future. Since the data transmitted between
the agents is not limited, the goal coordinates can be broadcast when starting the com-
munication. That means, should a quadrotor get out of WLAN range, it can still fly to
the desired location, and possibly rejoin with the others. A variety of protocols have been
proposed to deal with these situations, e.g., “Communications Recovery for Multi-Robot
Teams” by P. Ulam [28] provides more information.

Formation Either centralized or decentralized hierarchical structures are possible, each
type can be subdivided in a number of special applications. The focus lies on the cen-
tralized methods with one leader per group. Let the communication be established by a
WLAN module (Figure 5.1). The information sent to all other quadrotors is the current
position, the status, and perhaps certain sensor data. The status is following, leaving for-
mation to recharge battery, or found something of interest. Of course other states are
possible.

A leader has to be appointed first. Let every quadrotor have a unique natural number η
assigned, when they meet (get into communication range of each other) the one with the

53

5 Multi Robot Scenarios and Swarms

Line Trail Echelon (left) Vee Bulk Stack

3D-Formations2D-Formations

0 1 2 3 4

0

1

2

3

4

0
1

2

3
4

0

1

2

3

4

0

1

2

34

0
1
2
3
4

Figure 5.2: Different flight formations

smallest number is the designated leader. In the simulation these numbers are assigned
and incremented as a robot is spawned. In a real world scenario the MAC address2 or any
other number, a priori known to all robots, can be used.

The commanding UAV needs to specify the formation used. In Figure 5.2 a number of
formations are illustrated, each for different purposes. The quadrotor number3 is shown
in the figure for each setup.

With different formations a variety of task, the UAVs are capable of, can be conduct. The
line, vee, and echelon (left or right) formation can be used for searches, because they all
cover about the same surface area with their combined sensor range. The trail formation
is applicable for special purposes, e.g., certain air-pressure experiments. Inside buildings
it might be the only organization pattern possible, because there is no space to fly next
to each other. Three-dimensional patterns are uncommon but possible. Bulk, for exam-
ple, can be used to travel a distance where no sensor measurements are needed. Since
the formation looks like a single large entity, it decreases the possibility of colliding with
birds. Measurements of the flowfield of wind turbines have been conducted [55]. The
stack formation can be a way to get concurrent data right behind the rotors.

Every quadrotor needs to keep its position in the formation, only two capabilities have a
higher priority. Collision avoidance and the low battery interrupt can interfere with the
movement to a certain position. From a follower point of view, a control system has to be
in place to set the altitude, attitude, and velocity [19]. With an offset (Sη,Rη,Tη) described

2Media Access Control address (MAC address) is the unique, physical address of every network entity.
3Note: The formation can be reordered. It is not necessary that the leader flies in front of all other UAVs.

54

5.1 Full Disclosure

by the chosen formation, the reference trajectory for a follower (xη, yη, zη)T , hence, the
desired position of the pursuer can be calculated by:

xη
yη
zη

=
x0 +Rη cosψ0 −Sη sinψ0

y0 +Rη sinψ0 −Sη cosψ0

z0 +Tη

 , (p = 1,2, ...,n) , (5.1)

where (x0, y0, z0)T is the position of the leader and ψ0 its yaw angle. An offset value for
Tη is unnecessary for 2-dimensional formations. Figure 5.3 shows a representation of this
position setup, where Pη = (xη, yη, zη)T .

ψ

P1

P2

1 2

0

S1

S1

R2
R1

y

x

z

P0
y

x

Figure 5.3: Desired position of two followers in a vee formation

After the position has been calculated, the velocity has to be controlled. The UAV has to
match the speed of the leader at the right time, it first has to be faster than the agent in
front, then it slows down. In [19] a sophisticated control system has been developed to
oversee velocity and acceleration constantly.

A simplified version is currently implemented to test basic swarm setups. First the dis-
tance dη, between the current location and the desired point, Pη is calculated, then the
speed νη for the “η”th follower is given by:

55

5 Multi Robot Scenarios and Swarms

fνη(dη) =−exp

{(
−2dη
dmaxη

)3}
(νmaxη −ν0)+νmaxη , (5.2)

and

νη =
{

0 if fνη(dη) ≤ 0
fνη(dη) else

. (5.3)

Here dmaxη determines the distance where the slowdown of the follower, trying to take its
place, begins. νmaxη is the maximum velocity of the “η”th quadrotor. Figure 5.4 shows a
representation of Equation 5.3 . As soon as Pη is reached the speed of the follower νη and
the leader ν0 is identical. Small errors of the position in the formation are tolerated.

−20 −10 0 10 20 30 40 50 60

0

1

2

3

4

5

6

d in m

v
 in

 m
/s

η

η

Figure 5.4: fνη(d) with dmaxη = 50m, νmaxη = 6 m
s , and ν0 = 2 m

s

Should a pursuer get to close to the leader or another follower the collision avoidance
protocol is activated. It will disrupt the advance, safely keeping the distance between the
UAVs.

56

5.2 Discussion on Limited Communication

5.2 Discussion on Limited Communication

Motors
Calculations on
Intel Atom*

Communication
(WLAN)

Sensors

1% 1%

* A camera is attached, and while �ying, computations are done.
 For basic calculations the power consumption will be lower.

3%

95%

Figure 5.5: Average power consumption of
the quadrotor at Hamburg Tech.

The limitation of the communication
among agents arose from the idea of
conserving energy. This approach re-
sulted from the misconception that com-
munication has a considerable impact on
the power consumption of the quadrotor
flight. This is not the case as can be antici-
pated from Figure 5.5. Nevertheless, there
are other advantages to limit the commu-
nication, e.g., in military operations (radio
silence). UAVs can perform tasks without
the possibility of picking up their radio sig-
nals.

With limiting the communication, not the
amount of data transfered is meant but
rather the time spots when information
exchange is permitted. All UAVs update their status at these times, as well as the under-
standing of the surrounding, i.e., the position of the team members, the actual position
in the formation, and all necessary data about the mission. The locations on the map,
and the time slots when communication is allowed are known before the start of the mis-
sion.

Only with advanced position estimation a formation can be obtained over a longer period
of time without updating the location of at least a singe teammate. The probability of los-
ing teammates, due to inaccurate sensor data, resulting in a difference between position
estimation and the actual location of the UAV increases with time, because the position-
ing errors accumulate. Should an agent get lost, i.e., drift outside of the communication
range, it determines that it is missing its teammates. If this happens measures need to be
undertake, for example, it can continue straight to the next meeting point, and wait for
its peers, or return right back to the base station. As soon as the team realizes the loss of
members it has to accommodate to the new situation, e.g., redefine the search area, for
the limited number of agents.

With an attached camera, team-maneuvers are also imaginable. Motion-flow, and ob-
ject recognition enable UAVs to follow each other without active communication. The
computational complexity is much higher for approaches like this, but with stronger pro-
cessors these calculations can be realized. OpenCV is a collection of algorithms for vision

57

5 Multi Robot Scenarios and Swarms

based approaches [43]. The package has been made available in the AURIS setup already.
Currently it is used to draw the internal map, but OpenCV is much more powerful. It has
ready-to-use functions for motion-flow and object recognition. The swarm setup and the
formation stability can benefit from the 3D-vision algorithms during the time communi-
cation is prohibited.

Because the difficulties and the complexity outweigh the benefits of the limited commu-
nication approach, the idea is only shortly discussed and not further pursed. In “Dis-
tributed Collaboration with Limited Communication using Mission State Estimates” [8],
more possible approaches for limited communication are introduced.

5.3 No Communication

One idea developed during this thesis is the emergent forming of a swarm without ac-
tual communication, and without the members being aware of the forming of the swarm.
With a minimum set of commands all UAVs in range gather, stay together, and work on a
task.

Each quadrotor sends out a signal, which channel will be used for that purpose in real
application is not specified, yet. It could either be acoustic, radio, or even an optical sig-
nal. Most certainly a radio signal will be chosen. The communication protocol will be one
of the current standards used in WLANs or WPANs. In the simulation an acoustic signal,
observable by any quadrotor in range, is used. A sound sensor has been built to enable
this behavior, as mentioned in Section 3.2.1.

Grouping The location of other quadrotors compared to the current position can be
determined by the beep. Therefore, an agent can calculate how many other UAVs are in
proximity. Figure 5.6 shows the behavior of four quadrotors which will be building groups.
With the range of the acoustic scanner as the radius a hemisphere is created in front of
each robot. Is another agent in that area and travels in the same direction, then it is the
designated leader of the pair. The head quadrotor does not alter its behavior, if it has a
follower.

58

5.3 No Communication

0

1

2

3

x

y

radio signal receiving range

Figure 5.6: Quadrotor grouping

With the following basic set of rules, evaluated by each UAV, the swarm forms.

a. Is a beep in front of the UAV, i.e., x-coordinate of beep direction positive?

b. After the 2nd beep: Is the beep traveling in the same direction (dot product positive)?

c. Is there more than one beep with Question a. and b. true? Yes, calculate the distances
between your current position and each beep, then follow the closer one.

In the example seen in Figure 5.6, two groups form, due to these simple rules, 1 & 2 and
0 & 3, where the bold printed one is the leader of each group. Should the leader come
to the boarder of a search area, then it determines a new flight direction. This can also
happen due to other reasons, depending on the leader’s configuration. The swarm

59

5 Multi Robot Scenarios and Swarms

reconfigures itself at that point, because the follower does not recognize the quadrotor in
front of it as leader anymore, due to the violation of b . The direction changing leader, is
not trying to group with the UAVs in front of it, because they travel in another direction.

Figure 5.7 elaborates this behavior with four agents that all form one group. The dashed
curves show the direction each quadrotor wants to take after loosing the leader. How the
new direction is determined is unimportant right now. In the contrary, the dotted lines
show the affiliation between leader and pursuer. The brown formation is formed shortly
until it dissolves and one new swarm emerges. In this case, both groups are identical, that
is not a necessity. This type of grouping will have the effect that all quadrotors seem to
follow one leader. In fact, each UAV just follows the quadrotor in front of it.

1

2

3

0
2

3

1

0

3
1

2

0

1
2

3

0

1

2

3

0

I II III IV V

Figure 5.7: Quadrotor loosing formation and regrouping

The echelon or tail formations can be obtained with a basic offset4 value given. Instead,
the vee formation requires knowledge of other followers, which can be obtained, but this
destroys the simplicity of this swarming algorithm. With an augmented offset solution,
where the closest position, right or left of the leader, is chosen, a quasi vee formation can
be established. Depending on the position the quadrotors add to the formation an over-
hang to either side will occur. The line formation will also need an adjusted algorithm,
because no UAV is actually in front of the other, hence, a. would always be false.

With this self-organized formation, a wider sensor range than with a single UAV, is pos-
sible. That means, fire searches as mentioned in Section 5.4, and shown in Figure 5.12 can
benefit. For a line by line search the formation is only beneficial if the leader considers
the position of its followers, or the same area would be searched repeatedly.

4The offset usage is mentioned in Section 5.1 and shown in Figure 5.3 for the vee formation.

60

5.4 Search

The “basically no communication approach” established, is a theoretical idea with almost
no actual benefit over the methods involving communication. For a quadrotor being ad-
vanced equipment with different sensors and enough power for fast communication, this
team building algorithm is not applicable. It might be possible to use the “beep”-design
as a backup system. Nevertheless, with simple linear commands a group forms without
the members of it being actually aware of it, this resembles emergents.

5.4 Search

A basic field robots and especially UAVs can be used for is the search of an area. Either for
a certain stationary or moving object, or for safety reasons, to verify that the area has not
changed, e.g., no fire broke out, or after an earthquake: nothing got destroyed. Searches
can be conducted with a single agent or with teams. For a group of multiple UAVs, with
the ability to communicate, new problems arise. First of all, each agent needs to search
a different area to maximize the covered area at a time. With limited communication
range the UAVs have to, either stay in close proximity, or reunite after splitting up, to share
the progress they have made. Furthermore, a refuel strategy needs to be in place, alike
the algorithm introduced in Section 4.5, but with an augmentation, because, if the UAV
returns on way it came from it covers an area twice, increasing the overall search time.

For a valuable search, the robot needs to know its whereabouts in the sense of global co-
ordinates. Since this is a simulation it can be assumed that precise movement is possible,
and that the position knowledge of each UAV is accurate. Tests can be done with or with-
out erroneous data to validate the robustness of introduced algorithms.

Layers and Cells Three-dimensional way planning and searching is still a rare research
field, only few papers can be found. Kuwata and How [15] are mentioned, because they
consider 3D trajectories for UAVs. Most 3D problems are considered in 2D space, this is
true for team searches [2][27], or single robots. A three-dimensional search can be trans-
formed in a number of smaller 3D areas, these can be understood as two-dimensional.
Therefore, the 3D setting is divided into layers, which each are located in a certain alti-
tude. When searching an area the number of layers needs to be defined a priori. For the
tracing of a wild fire, for example, one layer is enough, because only the ground needs
to be scanned. Whereas, air pressure measurements might need an increased number of
layers to get the desired readings.

61

5 Multi Robot Scenarios and Swarms

In addition to layers, search areas are split into cells. A cell is a quadratic area that can
be covered by the sensors, this takes longer than a single time step (∆t). The whole time
it takes to cover a cell is T = c∆t , where c is determined by the movement speed and the
sample rate of the sensor, hence, T determines the time needed to move from one cell to
another, Figure 5.8 explains what is meant by one cell. Small errors, due to the different
shapes of a cell and of the radial sensor coverage, and due to the discrete sampling time,
are discarded. On account of traversing a 3D environment, a cell is a cube (A = r 3

s). Where
rs is the sensor range, considered in all directions with the same value. With regard to the
layer approach, hence, the agent does not change the altitude, a cell can be represented
as a square (Figure 5.8 on the right).

 Δt

new scan depend-
ing on sampling

rate

c new scan
areas cΔt = T

currently
searched

cell

next cell to
be searched

x

y

x

y

z

z

 3D 2D

one cell

Figure 5.8: Clarification of sensor sampling rate and cell search

The total number of free cells is N . The sum of all blocked cells is defined as B . Cells can
be either blocked or free to move trough. Covering all cells (N and B) needs N +B time
steps, because to identify that an area is blocked needs the UAV to scan this area, too. With
a number of quadrotors R this time is reduced to:

fc

(
N +B

R

)
. (5.4)

When considering that the starting point of the robots (i.e, the base station) is not part of
the search area, a distance D has to be traveled to reach the first cell of the search area.
Hence, the lower bound for a complete search is:

62

5.4 Search

fc

(
N +B

R
+D

)
. (5.5)

5.4.1 Item Search

As the first actual search scenario an object retrieval is assumed. For example someone
lost a bag in a corn filed and sends out an quadrotor to find it. Considering that the UAV
is able to distinguish the bag from any other object in the search area. Figure 5.9 shows
two simple search patterns for such a assignment. Flying on the boarder, in concentric
circles until the middle is reached, or lane by lane. Arbitrary other strategies are possible,
e.g., subdividing the area.

2 km

0.
5

km

starting point / base station

(a) Around and around

2 km

0.
5

km

starting point / base station

(b) Lane by lane

Figure 5.9: Quadrotor flight for full search coverage

To be more precise, the corn filed has an one square kilometer big area and the quadrotor
in this scenario can be 30 minutes in the air, with a maximum speed of six meters per

63

5 Multi Robot Scenarios and Swarms

second. Furthermore, the maximum sensor range is five meters, hence, the cell size is
ten times ten meter. 10000 cells need to be searched, but the agent can only search 1080
cells (6m/s ∗ 1800s) until the battery is empty. The red dot in the Figures 5.9 show the
approximate location where this happens.

2 km

0.
5

km

starting point / base station

Figure 5.10: Quadrotor flight for full search with refueling strategy

Figure 5.10 shows an augmentation for the lane by lane search approach. At the or-
ange dot the quadrotor determines that the battery charge is insufficient to continue the
search, i.e., it proceeds on a return route close to the already covered area. A corridor in
close proximity to the base station as been established to ensure only the minimum num-
ber of cells are searched twice. Calculations of the best possible route can be done before
releasing the quadrotor.

This elemental search example already shows some of the difficulties that have to be faced
when missions are conducted with robots. When more than one agent is available the
search time can be decreased as shown in Equation 5.4.

Multi Agent Search An arbitrary number of different approaches to search an area with
a team of robots can be proposed. Two main types can defined to divide those con-
cepts, i.e., all UAVs search close enough together to stay in communication range (see
Section 5.1, and Figure 5.2). Alternatively, each agent explores by itself and meets with the
team to update the overall status. The later is subdivided in two different concepts again,
i.e, they meet at a known location, or they meet randomly. The second approach should
not be used by itself, because the possibility of meeting each other converges to zero as
the perimeter grows. Should the agents miss each other, hence they do not meet, each
agent searches the complete area, that means, the number R is reduced to being a value
of redundancy instead of acting as a divider for the coverage time. Divided searches are
more complicated than swarm approaches where all teammates can communicate over
the whole course of a mission. Especially in an outside scenario it seems not applicable to

64

5.4 Search

use any approach other than the formation flight. When using a split-up concept, there
needs to be time to meet and to share the current status of the mission, this is overhead,
compared the concept of agents staying in close proximity. For an open field this is true,
in the contrary, assuming there is a big lake with a number of islands. All isles need to be
searched but the water is not. Flying in formation to each small search area is increasing
the overall search time, while divided, the completion time decreases.

A possible concept algorithm is introduced to deal with a group of quadrotors that split
up to cover an area. All R agents split up dividing the search area equally among them.
An estimate is proposed for the duration of the search of each subarea. After completing
the search, or when a given timeout is reached, all quadrotors agree to meet again on a
meeting line, which is close to all search areas. Not a single point is used to discribe the
meeting area, because this point might be an obstacle, if the meeting is in an undiscovered
area (i.e., when meeting for the first time this is always the case).

After getting to the meeting line, the agents travel toward the position where they expect
the other members to come from. One point of the line has to be in a known area, hence
the first meeting is, in the worst case, at the base station. After reaching the end of the
line they turn around, until all team members are together. Should the meeting occur in
an already searched area the meeting line disintegrates to a point. Should agents meet
(adjacent search areas) before they are done, or the time is up, they update their cur-
rent understanding of the map. Thereafter, adding the covered and uncovered areas, and
newly dividing them among them. Furthermore, those two that randomly met, agree on
a new meeting time, and line. Randomly, one of both UAVs attend the meeting with the
other group.

When the whole group meets all data is updated, and the remaining search areas, minus
the one which is still being searched by members that did not attend the meeting, is di-
vided again. Figure 5.11 shows a rectangular area to be searched by four UAVs. Found
obstacles are black polygons. In (b) one can see how agent 0 and 1 divide their remaining
area among them and that number 1 does not attend the meeting of the other quadrotors,
but keeps on searching.

Tests might show that the subdividing among team members proves to be too compli-
cated, or that possible errors occur. Then that part of the algorithm needs to be adapted.
Without this augmented concept, the basic algorithm should hold, enabling a group of
UAVs to split up an area between them while saving time in the progress. The longer an
agent has to wait for its team mates attend a meeting, the higher the total search time. Er-
ror handling needs to be in place, if a quadrotor gets lost the others still need to continue
the search.

65

5 Multi Robot Scenarios and Swarms

0

3

1

2

Base
Station

Search Area

(a) Start; subareas are determined

0

3

1

2

Search Area

Base
Station

0 & 1 meet, dividing their remaining areas among them

(b) Everyone is going to the meeting line (vertical bisect), besides 1 it keeps searching

0

3

1

2

Search Area

Base
Station

new meeting point
determined after (b)

(c) End; everyone is about to get done and meet

Figure 5.11: Four UAVs searching an area; colored areas still need to be searched by the
quadrotor in the same color; black areas are obstacles

66

5.4 Search

5.4.2 Reconnaissance Search

When searching an area for a fire a lane by lane search, as mentioned in Section 5.4.1 is
not applicable. It needs to be searched over a wider spectrum. Especially if the size of
the possible finding is unknown, it might make sense when partial areas are skipped. For
example, it is considered that a quadrotor is used to search for a fire which has a size of
5x5 meters. Missing lanes in both directions of 4x4 meters is unproblematic because the
flames reach into a searched area.

Therefore, a new search algorithm is proposed. To resume the example from Section 5.4.1,
the base station is in the top left corner, and the UAV can only cover about a tenth of the
complete search area without refueling. The agent flies one to the opposite side of the
search area dividing it into two smaller areas. The areas centroid is determined (Equa-
tion 5.6) and the UAV continues on a line between the current position and the centroid,
until reaching a border of the search area.

Area calculation of a polygon and centroid computation:

A = 1

2

N−1∑
i=0

(xi yi+1 −xi+1 yi),

Cx = 1

6A

N−1∑
i=0

(xi +xi+1)(xi yi+1 −xi+1 yi),

Cy = 1

6A

N−1∑
i=0

(yi + yi+1)(xi yi+1 −xi+1 yi),

(5.6)

In the next step, the algorithm computes the largest subarea, and calculates a new course
for the quadrotor, through the centroid of this subarea. Figure 5.12 elaborates the pro-
posed algorithm. A Safety protocol is in place to recharge the battery as needed, the yellow
dot in the figure indicates the moment the quadrotor has to fly back.

From the computational point of view, this approach is suboptimal since in the worst
case, 2n (where n is the number of flights from one side to another) areas need to be
sorted. However, not every cross flight can split all areas in half, so the complexity is
reduced. Furthermore, these calculations can be done before liftoff by the base station,
i.e., a faster computer. Only the way points are saved on the quadrotor side, and processed
one by one.

67

5 Multi Robot Scenarios and Swarms

2 km
0.

5
km

starting point / base station

Figure 5.12: Quadrotor flight for full search (fire) zig-zag pattern

5.5 Tracking

The following section introduces another usage area for quadrotors. The algorithms pro-
posed can be implemented with the introduced simulation environment and AURIS. Only
the detection of a fire, and the return to the base station, have been tested so far, the ad-
vanced concepts introduced here, still need to be implemented, yet.

Ideas discussed so far, especially regarding different search patterns are always concerned
with finding a single entity, and reporting the discovery. If the object found needs to be
monitored, after it has been detected, an augmented behavior needs to be introduced.

Considering a child in a cornfield, it got lost. A quadrotor found the kid, but it has to
stay in close proximity, because the child will probably keep wandering around eventually
getting lost again. The UAV could work as a beacon, flying up in the air to be seen from far
away. A possible second UAV would have to transmit the message of the retrieval to the
base station, hence, the search team, while the other stays with the kid.

Fire Perimeter Tracking Another scenario where UAVs could be useful is the tracking of
bush fires. Every year a large number of fires cause potential harm to people, and cost a lot
of money. Especially the helpers, i.e., firefighters are endangered by the blazes. Changing
winds and different outbreak areas make fires extremely hard to predict. It is proposed to
use a number of quadrotors to monitor the fire constantly [22, pages 247-264].

The UAVs are equipped with infrared sensors, and cameras to locate and track the fire.
Moreover, due to the camera the firefighters have visual contact to the fire without getting
into harm’s way. Expecting the burning area to be larger than the communication range
of a single quadrotor points out, that data captured by the UAV can not be analyzed by the

68

5.5 Tracking

ground crew in real time. Therefore, minimizing the offset, between capturing the data
and delivering it, is crucial.

First, it is assumed that only a single quadrotor is tracking the fire. The UAV has au-
tonomous guidance as described in Chapter 4 (coalition avoidance, limited fuel consid-
eration are in place). The way-points are calculated by using the infrared sensor, always
staying in close proximity of the fire without flying into it. After finishing one lap around
the fire perimeter the quadrotor delivers all captured data to the base station. If possible
it flies another lap or recharge its battery. The time tl it took the quadrotor increases as
the fire grows. The development during this time can only be predicted, thus tl needs to
be minimized.

base station

UAV 2 b
UAV 2 a

UAV 1

�re perimeter

Figure 5.13: Fire monitoring, 1 vs 2 UAVs (after [22])

For one UAV the latency tl cannot be changed, because it is equal to the time the quadro-
tor needs to traverse the perimeter (

sper i meter

vU AV
= t = tl). Using two quadrotors cuts the la-

tency in half. Figure 5.13 shows the coverage of a fire hazard. The thickness of the flight
path displays the value of tl , that is, how old the information about that point in time is
when returning to the base. Adding any number of UAVs to this setup does not reduce tl

any further.

To be sure not to have missed any part of the perimeter, a single quadrotor has to conduct
its search until it meets with a UAV coming its way, which has covert the other side of
the fire. Then it returns to the base station (still searching, to minimize the latency). The
fly-back time is as long as tl for the furthest away point (half the perimeter;

69

5 Multi Robot Scenarios and Swarms

Equation 5.8 & 5.10). Adding more UAVs returns more updates in the same time, but tl

cannot decrease any further.

For one UAV the latency tl (x) at a point x is given by:

tl (x) = P −x

ν
, (5.7)

where ν is the current velocity of the quadrotor. The total latency for each point on the
perimeter is therefore:

∫ P

0
tl (x)d x = 0.5P 2

ν
. (5.8)

For two quadrotors, one going the opposite direction of the other, the equation looks like
this

tl (x) =

x
v , if 0 ≤ x ≤ P

2

P−x
v , if P

2 < x ≤ P
, (5.9)

with an overall latency of

∫ P

0
tl (x)d x = 0.25P 2

ν
. (5.10)

With a growing fire, the latency is going to get higher, too. As a fire spreads out tl grows
two. One approach to overcome this shortcoming is to evenly spread out UAVs all over
the fire perimeter. All agents can communicate, and they send basic updates right to the
base station. The latency is the time the signal needs to surpass all quatrotors, hence, it
can be considered instant (

sper i meter

c≈speed o f l i g ht
= tl). Figure 5.14a shows a possible setup.

If that many UAVs are available this approach reduces tl to the minimum. The main
problem thereby being the large and growing number of UAVs needed. More problems
arise if the communication chain breaks or when the battery of certain agents need to be
recharged. Concluding that this idea is not actually feasible.

70

5.5 Tracking

base station

�re perimeter

(a) All UAVs stay in communication range

base station

�re perimeter

d
0

d
1

d
2

d
0

d
2

d
3

d
3

d
1

(b) Each UAV monitors a part of the fire

Figure 5.14: Cooperative fire monitoring

An alternative approach, where tl cannot be minimized, is shown in Figure 5.14 b. Pairs
of UAVs divide parts of the perimeter among them. For each pair, one agent is flying in
the clockwise direction until it meets its partner flying toward it. When they meet data
is being transferred. The distance traveled (di for the i th UAV) between rendezvous is
tracked by each quadrotor. When meeting, each pair adds up their distances and divides

them evenly (dw = di+d j

2).

The agent with the shorter traveled distance waits for the other at the calculated meeting
point dw (the midpoint between the pair). Figure 5.16 shows how four pairs of quadrotors
evenly distribute over a circular steady perimeter. With this algorithm, a growing fire can
be covered as well because, no more than one UAV waits for its partner, the other keeps
going until meeting its neighbor. Adding UAVs at any time is also possible as can be seen
in the figure.

Switching positions on the perimeter can be helpful to conveniently replace UAVs. When
meeting, the agents compare their remaining battery charge, the one with the lesser re-
serves takes the place closer to the base station. Ensuring the quadrotor with the least
power left to be nearer to the recharger.

The latency for this approach is the same as for two quadrotors traveling across the entire
perimeter, because the information can only travel as fast as the quadrotrs can fly to their
meeting points. Nevertheless, this algorithm ensures that UAVs can be replaced easily,

71

5 Multi Robot Scenarios and Swarms

especially for refueling, and that a growing perimeter is dealt with automatically. Further-
more, should one agent leave the formation, because of an unexpected event, the others
adjust and continue to cover the search.

A modification of the explained algorithm states that UAVs should not wait for the other
to check back at a meeting point, but to continue to traverse the perimeter until meet-
ing their partner [12]. After joining, the pair flies together to their designated meeting
point, recalculating it if the perimeter has changed (due to growing fire, or movement
of other agents). On average this approach converges slower compared to the first algo-
rithm. Monte-Carlo simulations conducted in [12] state that the first algorithm converges
on average 0.67T faster than the altered idea. Waiting at a certain point for a teammate to
show up might be considered a waste of energy, especially if the perimeter grows quickly
up to half the team will be loitering, therefore this algorithm might still be preferred.

Figure 5.15 shows a comparison of two teams of UAVs getting released at the same circular
perimeter. With the y-axis being the distance from one end of the base station to the other,
that means the middle is the furthest away point. Every line shows the position of a single
quadrotor traveling across the perimeter.

0
0

P/2

P

P/4

3P/4

T 2T 3T

UAV1, clockwise
UAV2, counter clockwise

UAV3, clockwise
UAV4, counter clockwise

(a)

0
0

P/2

P

P/4

3P/4

T 2T 3T

UAV1, clockwise
UAV2, counter clockwise

UAV3, clockwise
UAV4, counter clockwise

(b)

Figure 5.15: Comparison (a) algorithm where UAVs wait for one another, (b) 2nd algo-
rithm, UAVs pair up until they reach the midpoint of each section

In the worst case scenario, if all agents start at the same location, and fly in the identical
direction, e.g., start at the base station, and all flying clockwise, then the algorithm takes
longer than the first one proposed. All agents will travel the entire perimeter together,
until they start to evenly distribute. Launching the quadrotors in a structured matter, is
therefore important.

72

5.5 Tracking

t=0

1 2

(a) launching 1&2

t=2

3 4

1 2

(b) launching 3&4

t=4

5 6

1 2

3 4

(c) launching 5&6;
d1 = d2 = P/2; no waiting

t=5

5 6

1 2
3 4

(d) d1 = P/8 < d3 = 3P/8,
thus 1 will wait

t=6

7 8

1 2

3 4
5 6

(e) launching 7&8; d3 = P/8 <
d5 = P/4, thus 7 will wait

t=7

7 8

1 2
3 4

5 6

(f) all di = P/8, no waiting

t=8

7 8

1 2

3 4
5 6

(g) all di = P/8, no waiting

t=9

7 8

1 2
3 4

5 6

(h) same state as (f), algorithm
converged, minimum latency
found

Figure 5.16: The load balancing algorithm(1st introduced algorithm) with eight quadro-
tors in analogy to [22, pages. 247-264]

73

6 Results and Evaluation

For a simulation the main indicator of completeness and usefulness depends very much
on the realism employed by it. Various experiments are conducted to verify the scalability
of the simulation environment. In diverse maps, different quantities of quadrotors are
spawned to explore the area.

All test conducted show that the simulation environment is stable, and that the physical
behavior of the quadrotor is plausible. Visually the simulation looks entirely convincing,
as is demonstrated in Figures 6.1 and 6.3.

6.1 Tests

The functionality of all AURIS routines is tested in detail. The development of the control
program is the main purpose of this thesis, therefore, its effectiveness needs to be vali-
dated thoroughly. In detail, the correctness of collision avoidance, basic flight planning,
and the effectiveness of the senors is constantly verified. The setup of an actual simula-
tion with two quadrotors can be seen in Figure 6.1, it shows AURIS for both UAVs, the 3D
simulation, the maps drawn by each agent, as well as currently processed sensor data.

75

6 Results and Evaluation

M
es

sa
ge

s s
en

t a
nd

 re
ce

ive
d

by
 U

SA
RS

im
 an

d
AU

RI
S

SE
N:

 R
ec

ei
ve

d
se

so
r d

at
a

ST
A:

 C
ur

re
nt

 st
at

us
, u

nu
se

d
da

ta
OU

T:
co

nt
ro

l c
om

m
an

ds
 se

nt
 b

y A
UR

IS

Cu
rre

nt
 si

m
ul

at
io

n
se

tu
p

w
ith

 tw
o

UA
Vs

cu
rre

nt
 U

AV
 p

os
iti

on
 an

d
go

al
lo

ca
tio

n

cu
rre

nt
 U

AV
 p

os
iti

on
 an

d
go

al
lo

ca
tio

n
th

is
UA

V
re

ac
he

d
its

 �
rst

 g
oa

l
an

d
co

nt
in

ue
s t

o
th

e s
ec

on
d

UA
V

m
ap

rig
ht

 af
te

r t
he

 st
ar

t a
lm

os
t

un
di

sc
ov

er
ed

UA
V

m
ap

Si
m

ul
at

ed
 3

D
en

vir
on

m
en

t

Figure 6.1: Simulation setup with two UAVs, AURIS, and the drawn map.

76

6.1 Tests

6.1.1 Scalability

A system that simulates a number of entities needs to be stable and scalable, to be valu-
able. Especially for swarm behavior a group of agents with enough space to spread out
needs to be realizable. Furthermore, the cost of the simulation should be smaller than for
the actual implementation. This is the case with AURIS. A quadrotor, with a set of sen-
sors enabling it to communicate with peers, costs about 400 Euro1, this is about the same
amount needed to setup AURIS and Unreal Tournament 3 for at least twenty quadrotors,
which will not be vulnerable to erroneous implementations. Therefore, the scalability is
verified. Moreover, stress tests on the actual hardware system are carried out, to ensure
the durability of USARSim and AURIS.

Swarm Size As soon as the simulation environment (USARSim) is started, a window
opens where the current map can be seen. Should a UAV be attached with a camera,
then the spectator can verify the data captured by the quadrotor in a smaller window on
top of the main frame (as can be seen in Figure 3.6). Since the data in the small and in
the big window needs to be rendered separately, the graphic accelerator has to do almost
twice the work. Adding more UAVs with attached cameras degenerates the frame rate to
the point that the simulation is corrupted, because ∆t might become bigger than 0.1s.
All calculations that have to be done internally, e.g., force computing or PID controller
settings, might be interrupted. Table 6.1 shows the frame rate per added quadrotor 2.

#UAVs Avg. CPU usage in % FPS (max-min)
0 54.5 62-37
1 56 32-21
2 59.5 27-16
3 61.5 23-15
4 62.5 20-14
5 64 19-14
6 65 17-13
...
10 70 12-9
...
20 80 —

Table 6.1: CPU usage and FPS with multiple simulated UAVs

1http://www.conrad.de/ June 2011
2All test have been conducted on the same machine. An Intel i5 quad core, with 6GB of RAM, and a low end

graphics accelerator the NVIDIA GeForce 210

77

6 Results and Evaluation

A frame rate below 15 FPS is not acceptable. Therefore, the camera view is turned off when
more than three UAVs need to be simulated. The data captured by the different cameras
can still be used for calculations. Just the user, who is watching the simulation, will not
be able to see what every single quadrotor is seeing, anymore. Without the multi-view the
frame rate is constantly between 62 to 25 FPS. These values can be increased even further
when upgrading the hardware. The CPU usage is almost not affected by this, because the
graphic accelerator does most of the work. In addition, increasing the number of UAVs is
not as stressful for the CPU, because AURIS does not need that much processing power.
Until now, 20 agents have been simulated simultaneously, for all scenarios mentioned so
far this number is big enough. With better hardware this number can be increased. An
upper bound has not been defined yet.

Map Size When the first simulations with USARSim started, a small map was used to
concurrently test new features of AURIS and the environment. While progressing with the
work, especially focusing on swarms, bigger areas were necessary. The currently largest
map simulated has an area of 250000 square meters. The biggest possible map, with the
current conversion between UU and meters (1m = 250UU), is 2097m x 2097m, i.e., ap-
proximately 4.4 square kilometers. Changing the conversion factor to 1m = 50UU , an
area of over 100 square kilometers can be simulated [41], this is comparable to the ex-
panse of a medium sized town. Should an even bigger environment be needed it has to
be streamed from a number of smaller maps.

The maximum altitude is currently set to four kilometers. This is sufficient for all test con-
ducted. Considering changing the conversion factor to 1m = 50UU increases the maxi-
mum height by a five-fold, i.e., 20.9 kilometers, this is even higher than the standard cruise
level of a commercial airplane.

6.1.2 Kalman Filter and Positioning

With the Kalman Filter approach, errors in positioning of either other UAVs in a swarm
setup, or of the current location of a quadrotor itself, are reduced. In addition, outliers in
collected data are distinguished and their impact is decreased successfully as mentioned
in Chapter 4.4.2. The Kalman Filter reduces errors in data sets. In Figure 6.2 the dotted,
brown line shows the correct value, the blue line is the received data with outliers due to
erroneous measurement. Furthermore, the green line shows the smoothed data output
of the filter.

78

6.1 Tests

20 30 40 50 60 70

2

4

6

8

10

12

14

16

18

20 Received data
Kalman Filter output

Time

Lo
ca

tio
n

co
or

di
na

te

Figure 6.2: Kalman Filter error reduction. Brown dotted line: correct value; Blue: mea-
sured and received data; Green: Kalman Filter output; Black dotted line: position
where outliers occurred

Figure 6.3a shows a graph of Kalman Filter data. The current position ((x, y, z)T) and the
distance (d) of another UAV is tracked. For this test, both agents try to hold a steady posi-
tion in the air. The hovering is a well controlled task in the simulation, and the corrections
needed to stay in place are minimal.

When looking at the figure, (−48,3,33)T is the location of the tracked quadrotor. The
dashed lines show situations when outliers occurred. The Kalman Filter adapts these
erroneous values, but spikes can clearly be seen. Furthermore, concurrent data is not
represented correctly because the Kalman Filter needs a couple of steps to level out. Fig-
ure 6.2b, shows how the outlier reduction works. The red dots symbolize the position
where a possibly wrong value was discarded.

All three plots show the importance of outlier reduction, and the robustness of the Kalman
Filter. To accommodate to different types of data sets and errors the underlying covariants
matrix of the filter can be adjusted. Therefore, the Kalman Filter is a valuable asset to the
fundamental principles of the control program design. In a real world application, the
same approach can be applied. Possibly the model error and the measurement error need
to be adjusted to correspond to the applied sensors.

79

6 Results and Evaluation

0 10 20 30 40 50 60 70 80 90
−60

−40

−20

0

20

40

60

80
x
y
z
d

Tr
ac

ke
d

lo
ca

tio
n

ve
ct

or
 a

nd
 d

is
ta

nc
e

Time

(a) without outlier correction

0 10 20 30 40 50 60 70 80 90
−60

−40

−20

0

20

40

60

80
x
y
z
d

Tr
ac

ke
d

lo
ca

tio
n

ve
ct

or
 a

nd
 d

is
ta

nc
e

Time

(b) with outlier reduction

Figure 6.3: Tracking of a position and distance. The gray area illustrates the time steps the
Kalman Filter needs to even out, outlier reduction is not done during this time.

6.1.3 Scenarios

To validate the functionality of AURIS and of all sensors, different scenarios are executed.
A basic test looks like this: a number of way points are introduced and the quadrotor
has to reach the final position without hitting any obstacle along the way. The collision
avoidance algorithms stated in Section 4.2 is verified this way. Figure 4.6 shows a picture
of the map drawn internally by the UAV, while such a scenario was conduced.

The second test scenario is sending out one or more UAVs to search for a fire, and after
finding it, to return to the starting point. In Figure 6.3 one quadrotor is released, it is
already pointed into the right direction to shorten the search time. All guarding systems
are in place, to shield the UAV from hitting obstacles. The smoke detector described in
Section 3.2.1 is also attached. After passing by objects in the way, the quadrotor detects
the fire and returns to the home base. The complete developed system can be verified this
way. The balancing, and the physical behavior of the robot, as well as the functionality of
AURIS.

80

6.1 Tests

(a) A quadrotor is started to search for a fire, the first goal (black dot), is in proximity of the fire to shorten
the search time

(b) The UAV detected an obstacle blocking the way, small black circles; the agent turns to pass by the object

(c) After passing the obstacle the UAV continues straight to the goal location

81

6 Results and Evaluation

(d) The fire sensor detected the flames, the UAV turns around to fly back to the starting point

(e) The agent continues back to the start

(f) The quadrotor lands at the starting point

Figure 6.3: Search mission: UAV finds a fire hazard and returns to the start location; blue
arrow denotes UAV flight direction

82

6.2 Evaluation

6.2 Evaluation

The simulation, from a physical point of view, is only as realistic as the underlying game
and physics engine. With the Unreal Engine 3 game engine and the Nvidia PhysX physics
engine, state-of-the-art handling of three dimensional modeling and computing of physi-
cal events is acquired. Furthermore, the modeled quadrotor is bound to the physical rules
of the engine. The UAV flight is modeled with attached forces, where the rotors attach, as
well as the balancing is only achieved through a variation of those forces. Therefore, the
simulation is as realistic as possible.

In [33] it is stated that a valuable simulation needs flexibility, physical realism, visual re-
alism, efficiency, modularity and effective control. In fact, USARSim fulfills all those re-
quirements. It allows the simulation and creation of different robots, sensors and envi-
ronments. Interaction between robots and its environment is handled, as described in
the prior paragraph, by the Nvidia PhysX engine. The visual realism is not actually of
great importance, as long as the calculations are done correctly. Nevertheless, since the
Unreal Engine is also used in the game industry the graphic output is currently one of the
best possible. The efficiency of newly introduced scripts has to be evaluated by each de-
veloper separately, for USARSim 3, it can be said that the efficiency is very high. As can
be seen in Table 6.1, 20 UAVs can be simulated on the same machine, therefore claiming
that the current setup and USARSim are efficient. After the creating process of robots and
sensors is completed, adding and replacing them can be done conveniently in a setup file.
Additionally, elementary parameters are controlled in the same manner, hence, enabling
modularity. Since USARSim uses a TCP/IP interface to send control information to the
robots, any programing language capable of networking can be used to implement con-
trollers. This client-server architecture can be used to conduct complex computations on
dedicated machines, i.e., separating the simulation from the control software. Another
point to mention, when evaluating effective control, is that the simulation can be replaced
by a real world application (a real UAV), on account of the TCP/IP interface.

Nevertheless, a simulation can never be one hundred percent like the real world. With
USARSim only time discrete events can be investigated, what ever happens between sam-
pling intervals can only be predicted. Furthermore, certain aspects can not be simulated
with USARSim. Some might be integrable with intensive scripting, others are shortcom-
ings of the Unreal Engine itself.

Emission of radio waves and heat has not been implemented so far, they would be a great
asset to the realism of the simulation. Especially the effects of interference of waves could
be helpful to integrate better wireless-LAN adapters. Infrared cameras could be valuable
if thermal radiation would be implemented. The missing Linux support, and the

83

6 Results and Evaluation

semi-finished port from USARSim 2 to the third generation of the Unreal Engine diminish
the performance of USARSim 3.

Finally it is to be said that the simulation will be a great asset to the further development
of quadrotors, and especially UAV swarms. The advantages of USARSim outweigh the
shortcomings by far. Especially the expandability will encourage developers to upgrade
this simulation environment further.

84

7 Conclusion and Future Work

The autonomous control program AURIS and the simulation of physically convincing
quadrotor in USARSim 3 are ground-breaking first attempts which introduce diverse op-
portunities for further development. Different simulations have been conducted to test
the scope for expandability in the USARSim environment. The flexibility to adapt to vari-
able concepts is significant. With the power to build new sensors virtually any scenario
predictable can be implemented, considering certain adjustments.

Furthermore, possible areas where UAVs can be of aid for research and human live are de-
scribed. The search or the tracking of fires is explained, as well as algorithms to introduce
and handle the swarm behavior of different agents. The goals, adding the quadrotor into
the three-dimensional simulation environment and conditioning it to autonomously find
flames and reporting the discovery back to a base station have been fulfilled. Newly devel-
oped sensors work as predicted and enable the quadrotor to pair up with teammates.

With the setup now in place more advanced simulations can be undertaken and problem
solutions can be verified before they are implemented in a real world system. A major task
in the future will be enhancing the simulation for indoor assignments. Sensor upgrades
and faster flight maneuvers will be necessary to achieve this.

Self-organization, and advanced autonomy is a possible new research field, considering
that UAVs determine independently how to solve tasks or even search for new assign-
ments themselves. Groups of UAVs might emerge from a single agent broadcasting for
help. This approach might be more applicable in space, where flight times of small drones
could be extended over several months due to constant sunlight exposure, and the usage
of solar panels.

85

References

Books and Articles

[1] M. Achtelika, A. Bachrach, R. He, S. Prentice, and N. Roy. Autonomous Naviga-
tion and Exploration of a Quadrotor Helicopter in GPS-denied Indoor Environments.
Technical report, Technische Universität München, Germany and Massachusetts In-
stitute of Technology, Cambridge, MA, USA.

[2] R. W. Beard and T. W. McLain. Multiple UAV Cooperative Search under Collision
Avoidance and Limited Range Communication Constraints. In 42nd IEEE Conference
on Decision and Control, December 2003.

[3] R. A. Brooks. A Robust Layered Control System For A Mobile Robot. IEEE Journal of
Robotics and Automation, 1986.

[4] M. Carter. Minds and Computers, an Introduction to the Philosophy of Artificial In-
telligence. Edinburgh University Press, 2007.

[5] P. Castillo, R. Lozano, and A.E. Dzul. Modelling and Control of Mini-Flying Machines.
Springer-Verlag London, 2005.

[6] J. H. Conway and D. A. Smith. On Quaternions and Octonions: Their Geometry, Arith-
metic, and Symmetry. A.K.Peters Ltd., Natick, Massachusetts, 2003.

[7] A. P. Engelbrecht. Fundamentals of Computational Swarm Intelligence. Wiley, 2005.

[8] M. F. Godwin, S. Spry, and J.K. Hedrick. Distributed collaboration with limited com-
munication using mission state estimates. In American Control Conference, 2006,
June 2006.

[9] W. R. Hamilton. On quaternions, or on a new system of imaginaries in algebra. Philo-
sophical Magazine, 1844-1850.

87

7 References

[10] J. Kennedy and R.C. Eberhart. Swarm Intelligence. Morgan Kaufmann Publishers,
2001.

[11] R. Kesten. Data Fusion of Accelerometric, Gyroscopic, Magnetometric and Baromet-
ric Information for Attitude and Altitude Estimation of an Unmanned Quadrocopter.
Technical report, Hamburg University of Technology, 2010.

[12] D. Kingston, R. Beardy, and R. Holt. Decentralized perimeter surveillance using a
team of UAVs. AIAA Journal of Guidance, Control, and Dynamics, 2007.

[13] G. Konecny. Geoinformation: Remote Sensing, Photogrammetry and Geographical
Information Systems. Taylor and Francis, London, 2002.

[14] K. Kumar and S. Reel. Analysis of Contemporary Robotics Simulators. In PROCEED-
INGS OF ICETECT, 2011.

[15] Y. Kuwata and J. How. Three Dimensional Receding Horizon Control for UAVs. In
AIAA Guidance, Navigation, and Control Conference and Exhibit, August 2004.

[16] D. Lee and M. Recce. Quantitative evaluation of the exploration strategies of a mobile
robot. International Journal of Robotics Research, 1997.

[17] Massachusetts Institute of Technology. Cognitive Robotics (6.834J); Personal Insights
in Course Project, 2004.

[18] J. Nieto, T. Bailey, and E. Nebot. Recursive Scan-Matching SLAM. Technical report,
ARC Centre of Excellence for Autonomous Systems (CAS) The University of Sydney,
NSW, Australia, 2007.

[19] K. Nonami, F. Kendoul, S. Suzuki, W. Wang, and D. Nakazawa. Autonomous Flying
Robots. Springer Tokyo Dordrecht Heidelberg London New York, 2010.

[20] Office of the Secretary of Defense. Unmanned Aircraft Systems Roadmap 2005-2030.
Technical report, Office of the Secretary of Defense, Washington D.C., 2005.

[21] O.J. O’Loan and M.R. Evans. Alternating steady state in one-dimensional flocking.
Journal of Physics, 1998.

[22] W. Ren and R. W. Beard. Distributed Consensus in Multi-vehicle Cooperative Control.
Springer-Verlag London Limited, 2008.

88

[23] D. Ribas, P. Ridao, and J. Neira. Underwater SLAM for Structured Environments Using
an Imaging Sonar. Springer Berlin Heidelberg, 2010.

[24] S. Riisgaard and M. R. Blas. SLAM for Dummies a Tutorial Approach to Simultaneous
Localization and Mapping. Technical report, Massachusetts Institute of Technology,
2005.

[25] S. Thrun. Simultaneous Localization and Mapping. Robotics and Cognitive Ap-
proaches to Spatial Mapping, 2008.

[26] C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. International Journal of Computer Vision, 1992.

[27] V. K. Tzanov. Distributed area search with a team of robots. Master’s thesis, Mas-
sachusetts Institute of Technology, 2006.

[28] P. Ulam and R. Arkin. When good comms go bad: Communications recovery for
multi-robot teams. In International Conference on Robotics and Automation, April
2004.

[29] J. Wang and S. Balakirsky. USARSim, A Game-based Simulation of Mobile Robots,
v3.1.3 edition.

[30] J. Wendel. Integrierte Navigationssysteme. Oldenbourg Wissenschaftsverlag GmbH,
2007.

[31] M Wölfel and H. K. Ekenel. Feature Weighted Mahalanobis Distance: Improved Ro-
bustness for Gaussian Classifiers. Technical report, Institut fuer Theoretische Infor-
matik, Universität Karlsruhe (TH).

[32] T. De Wolf and T. Holvoet. Emergence Versus Self-Organisation: Different Concepts
but Promising When Combined. Springer Berlin / Heidelberg, 2005.

[33] M. Zaratti, M. Fratarcangeli, and L. Iocchi. A 3D Simulator of Multiple Legged Robots
based on USARSim. Technical report, Dipartimento di Informatica e Sistemistica,
Universià “La Sapienza”, Rome, Italy, 2006.

89

7 References

Webpages

[34] Autodesk. Autodesk 3ds Webpage. http://usa.autodesk.com/3ds-max/, 2011.

[35] Autodesk. Autodesk Maya Webpage. http://usa.autodesk.com/maya/, 2011.

[36] P. Belanger and K. Biba. 802.11n Delivers Better Range. http://www.wi-�planet.com/
tutorials/article.php/3680781, 2007.

[37] University Bremen. SimRobot - Robotics Simulator. http://www.informatik.
uni-bremen.de/simrobot/index_e.htm, 2010.

[38] eberhard@sengpielaudio.com. Damping of sound level with distance. http://www.
sengpielaudio.com/calculator-distance.htm, 2011.

[39] Inc Epic Games. Animation System Overview. http://udn.epicgames.com/Three/
AnimationOverview.html, 2001-2010.

[40] Inc Epic Games. Physics Asset Tool User Guide. http://udn.epicgames.com/Three/
PhATUserGuide.html, 2001-2010.

[41] Inc Epic Games. Terrain Design: Guidelines and Information. http://udn.epicgames.
com/Three/TerrainDesign.html, 2001-2010.

[42] O. Formsma, N. Dijkshoorn, S. van Noort, and A. Visser. usarsim-smoke-fire. http:
//code.google.com/p/usarsim-smoke-�re/, 2010.

[43] Willow garage. OpenCV 2.1 C++ Reference. http://opencv.willowgarage.com/
documentation/cpp/index.html, 2010.

[44] Laptop Geek. DARPA grand challenge. http://www.darpagrandchallenge.com/, 2007-
2011.

[45] Inc. Geeknet. Gazebo; 3D multiple robot simulator with dynamics. http://
playerstage.sourceforge.net/gazebo/gazebo.html, 2005.

[46] jonas.witt@tuhh.de Jonas Witt. TUHH Quadrokopter Projekt. http://quadro.fst.
tu-harburg.de/, 2011.

90

http://usa.autodesk.com/3ds-max/
http://usa.autodesk.com/maya/
http://www.wi-fiplanet.com/tutorials/article.php/3680781
http://www.wi-fiplanet.com/tutorials/article.php/3680781
http://www.informatik.uni-bremen.de/simrobot/index_e.htm
http://www.informatik.uni-bremen.de/simrobot/index_e.htm
http://www.sengpielaudio.com/calculator-distance.htm
http://www.sengpielaudio.com/calculator-distance.htm
http://udn.epicgames.com/Three/AnimationOverview.html
http://udn.epicgames.com/Three/AnimationOverview.html
http://udn.epicgames.com/Three/PhATUserGuide.html
http://udn.epicgames.com/Three/PhATUserGuide.html
http://udn.epicgames.com/Three/TerrainDesign.html
http://udn.epicgames.com/Three/TerrainDesign.html
http://code.google.com/p/usarsim-smoke-fire/
http://code.google.com/p/usarsim-smoke-fire/
http://opencv.willowgarage.com/documentation/cpp/index.html
http://opencv.willowgarage.com/documentation/cpp/index.html
http://www.darpagrandchallenge.com/
http://playerstage.sourceforge.net/gazebo/gazebo.html
http://playerstage.sourceforge.net/gazebo/gazebo.html
http://quadro.fst.tu-harburg.de/
http://quadro.fst.tu-harburg.de/

[47] Active Robots Ltd. Hokuyo Laser and Infrared Range Finders. http://www.
active-robots.com/products/sensors/hokuyo.shtml, 2003-2011.

[48] RoboCupRescue.org and RoboCupRescue.com. RoboCup Rescue. http://www.
robocuprescue.org/, 2006-2011.

[49] roboSim@nist.gov. USARSim Webpage. http://usarsim.sourceforge.net/wiki/index.
php/Main_Page, 2011.

[50] IEEE Robotics and Automation Society. IEEE/NIST VMAC Competition. http://www.
ieee-ras.org/event/ieee-nist-vmac-competition.html, 2007-2011.

[51] Russell Smith. Open Dynamics Engine (ODE) Community Wiki. http://opende.
sourceforge.net/wiki/index.php/Main_Page, 2010.

[52] Chemnitz UT. Simulation of Robots and Sensors. http://www.tu-chemnitz.de/etit/
proaut/forschung/simulation.html, 2011.

[53] webmaster@cyberbotics.com. Webots: the mobile robotics simulation software. http:
//www.cyberbotics.com/, 2011.

[54] XPac27. UT3 Map Factory. http://www.map-factory.org/ut3, 2007-2011.

[55] ETH Zurich. Wind energy fast-response-aerodynamic-probe theologies. http://www.
lec.ethz.ch/research/wind_energy, 2011.

91

http://www.active-robots.com/products/sensors/hokuyo.shtml
http://www.active-robots.com/products/sensors/hokuyo.shtml
http://www.robocuprescue.org/
http://www.robocuprescue.org/
http://usarsim.sourceforge.net/wiki/index.php/Main_Page
http://usarsim.sourceforge.net/wiki/index.php/Main_Page
http://www.ieee-ras.org/event/ieee-nist-vmac-competition.html
http://www.ieee-ras.org/event/ieee-nist-vmac-competition.html
http://opende.sourceforge.net/wiki/index.php/Main_Page
http://opende.sourceforge.net/wiki/index.php/Main_Page
http://www.tu-chemnitz.de/etit/proaut/forschung/simulation.html
http://www.tu-chemnitz.de/etit/proaut/forschung/simulation.html
http://www.cyberbotics.com/
http://www.cyberbotics.com/
http://www.map-factory.org/ut3
http://www.lec.ethz.ch/research/wind_energy
http://www.lec.ethz.ch/research/wind_energy

List of Figures

1.1 Apollo Quadrotor Hamburg Tech. courtesy of [11] 3
1.2 “Unmanned Aircraft Systems Raodmap” courtesy of [20] 4
1.3 Communication setup, between AURIS and the simulation environment . . 5

2.1 Pioneer robot . 8
2.2 UT2004 (USARSim 2) robotic soccer simulation [29] 9
2.3 Quadrotor sketch with local coordinate system (q) and Unreal Coordinate

System reference (u) . 11
2.4 Color profile proportional change of color to altitude 12
2.5 UT3 DVD cover . 12
2.6 3ds Max working environment . 14
2.7 Gaussian distributed, σ= 1, α= 2 . 17
2.8 Data processing, from the UE to AURIS . 17
2.9 PID control loop as block diagram . 19

3.1 Basic USARSim Robot Class Design . 23
3.2 The quadrotor wire-frame with attached forces 24
3.3 Increment of certain rotor forces change the translation of the UAV 26
3.4 Basic USARSim “Sensor”-, “Effector”-, and “Decoration”-Class design 29
3.5 Acoustic sensor distance to volume . 30
3.6 Quadrotor with smoke detector and smoke . 33

4.1 Evaluated sensor data leads to movement . 35
4.2 Quadrotor with yaw and pitch range scanner 39
4.3 Multiplication of weighting functions to show area of severity 40
4.4 Collision avoidance operation . 41
4.5 RANSAC and spike landmark extraction . 44
4.6 Basic map drawn by the UAV. The small dots represent positions where the

range scanner (pitch or yaw) was activated. The gray area represents the
already scanned environment, where the different shadings symbolize to
the altitude of the robot in that point in time. 46

4.7 UAV saves shortest known path back to base station; light green route will
be “forgotten”; black arrow shows traveled path 49

93

List of Figures

5.1 Possible communication setup . 52
5.2 Different flight formations . 54
5.3 Desired position of two followers in a vee formation 55
5.4 fνη(d) with dmaxη = 50m, νmaxη = 6 m

s , and ν0 = 2 m
s 56

5.5 Average power consumption of the quadrotor at Hamburg Tech. 57
5.6 Quadrotor grouping . 59
5.7 Quadrotor loosing formation and regrouping 60
5.8 Clarification of sensor sampling rate and cell search 62
5.9 Quadrotor flight for full search coverage . 63
5.10 Quadrotor flight for full search with refueling strategy 64
5.11 Four UAVs searching an area; colored areas still need to be searched by the

quadrotor in the same color; black areas are obstacles 66
5.12 Quadrotor flight for full search (fire) zig-zag pattern 68
5.13 Fire monitoring, 1 vs 2 UAVs (after [22]) . 69
5.14 Cooperative fire monitoring . 71
5.15 Comparison (a) algorithm where UAVs wait for one another, (b) 2nd algo-

rithm, UAVs pair up until they reach the midpoint of each section 72
5.16 The load balancing algorithm(1st introduced algorithm) with eight quadro-

tors in analogy to [22, pages. 247-264] . 73

6.1 Simulation setup with two UAVs, AURIS, and the drawn map. 76
6.2 Kalman Filter error reduction. Brown dotted line: correct value; Blue: mea-

sured and received data; Green: Kalman Filter output; Black dotted line:
position where outliers occurred . 79

6.3 Tracking of a position and distance. The gray area illustrates the time steps
the Kalman Filter needs to even out, outlier reduction is not done during
this time. 80

6.3 Search mission: UAV finds a fire hazard and returns to the start location;
blue arrow denotes UAV flight direction . 82

A.1 White screen to measure smoke intensity, courtesy of [42] 100

94

List of Tables

6.1 CPU usage and FPS with multiple simulated UAVs 77

A.1 Comparison of different commercial and open-source robotics simulators . 101

95

List of Symbols

Abbreviations

AAV Autonomous Aerial Vehicle

AURIS Autonomous Robot Interaction Simulation

AUV Autonomous Underwater Vehicle

DARPA Defense Advanced Research Projects Agency

EKF Extended Kalman Filter

FPS Frames Per Second

GPRS General Packet Radio Service

NFO Info message

ODE Open Dynamics Enginey

RANSAC Random Sampling Consensus

SEN Sensor message

SLAM Simultaneous Localization and Mapping

STA Status message

UAV Unmanned Aerial Vehicle

UE Unreal Game Engine

USARSim Unified System for Automation and Robot Simulation

UT Unreal Tournament

UU Unreal Unit

97

List of Symbols

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

Variables

(xm , ym)T map coordinates

(xq , yq , zq)T coordinates in the quadrotor frame

(xu , yu , zu)T coordinates in the simulated environment

∆t time between two ticks in the UE

φ, θ, ψ roll, pitch, yaw angle; attitude of quadrotor

ψi angle of found obstacle to quadrotor, retrieved from range scanner

~q Quaternion

Ak State transition matrix

Bk Input matrix

d distance in m

Hk Observation matrix

Kp,i ,d Tuning parameters of PID controller

Qk Covariants matrix for the model error in a Kalman Filter

Rk Covariants matrix for the measurement error in a Kalman Filter

w f weight of turning necessity (collision avoidance)

g standard gravity, g = 9.80665 m
s2

m mass

98

A Appendix

A.1 Distance Measures

Mahalanobis Distance In Section 4.4.1 Mahalanobis and Euclidean distance measures
are mentioned in context with data association in the SLAM approach.

di =
√

di

=
√√√√(x −µi)T

−1∑
i

(x −µi)
(A.1)

sum−1
i being the inverse of the covariance matrix of a class I . The range of variable of

the sample point is the expressed by the covariance matrix [31]. Therefore it is a weight,
should it be set to one, then the Mahalanobis distance becomes the Euclidean distance.

Euclidean Distance

di =
√

(x −µi)T (x −µi) (A.2)

Here µi represents the mean vector of class I and x is the sample vector to be classified.

99

A Appendix

A.2 Quaternion Product

Multiplication of quaternions might not be well known that is why it is mentioned here.
It can be thought of as a matrix vector product, and can be represented with a black dot,
e.g., ~q •~r .

Given two quaternions ~q1 = (w, x, y, z)T and ~q2 = (s,u, v, w)T their product is given by:

~q1 • ~q2 =

w −x −y −z
x w −z y
y z w −x
z −y x w

s
u
v
w

 (A.3)

A.3 Optical Smoke Detector

The team which devolved the smoke mesh, mentioned in Section 3.2.1, also introduced
Matlab-code to measure the smoke density compared to a white wall, as can be seen in
Figure A.1. This approach can possibly be adopted to acquire a more realistic smoke sen-
sor [42].

(a) No Smoke (b) Smoke

Figure A.1: White screen to measure smoke intensity, courtesy of [42]

100

A.4 Overview of Robotic Simulators

A.4 Overview of Robotic Simulators

Table A.1 shows a comparison between different robotic simulators, on account of, cost,
transference of controllers to a real robot, compatibility, 3D visualization, multi agent
support, physical behavior, and the reconfiguration of robots, hence, of the simulation
code.

Simulator A B C D E F G H
X-Plane 1994 M WLM Y N N N N
Webots 1996 M WLM Y Y Y Y N
AUV-Workb. 2002 M WLM Y Y N N N
MATLAB 1984 H WLM Y Y Y N Y
MS FlightSim 1982 M W Y N N N N
Actin 2001 L WL Y N Y Y Y
MS RDS 2006 L W Y N Y Y N
USARSim 2003 OS(L) W(L) Y (Y) Y Y Y
OpenSim 2001 OS WLM Y N N N N
ÜberSim 2003 OS WL Y Y N Y Y
Simbad 1981 OS WLM Y N Y Y N
FlightGear 1997 OS WLM Y N N N N
Breve 2008 OS WLM Y N Y Y N
Gazebo 2000 OS WML Y (Y) Y Y Y
SimRobot 1994 OS WML Y N Y Y (Y)

Table A.1: Comparison of different commercial and open-source robotics simulators,
courtesy of [14]
A = Year of origin
B = Cost: L=Low, M=Medium, H=High, OS=Open source
C = Platform compatibility: W=Windows, L=Linux, M=Mac OS X
D = 3D visualization: Y=Yes, N=No
E = Controller can be used for a real robot: Y=Yes, N=No
F = Multi agent simulation: Y=Yes, N=No
G = Correct physics: Y=Yes, N=No
H = Reconfigurable: Y=Yes, N=No

101

	1 Introduction
	2 Preliminaries
	2.1 Simulation Environment
	2.1.1 Projects and Related Work
	2.1.2 USARSim Progression
	2.1.3 Coordinates and Units

	2.2 Unreal Game Engine 3
	2.2.1 Unreal Script
	2.2.2 Building Robots, Sensors, and Maps
	2.2.3 Vector Rotations

	2.3 System Theory and Filter Basics
	2.3.1 Increasing the Realism of Sensor Output
	2.3.2 Kalman Filter
	2.3.3 PID controller

	3 Design
	3.1 Building a Quadrotor for USARSim
	3.1.1 Setting up the Static Mesh
	3.1.2 Defining Physical Behavior

	3.2 Building Sensors
	3.2.1 Developed Sensors

	4 Controlling a Quadrotor
	4.1 Communication
	4.1.1 Inter-UAV Communication

	4.2 Collision Avoidance
	4.3 Altitude Control
	4.4 Mapping
	4.4.1 Simultaneous Localization and Mapping
	4.4.2 Basic Mapping with Error Correction

	4.5 Power Management

	5 Multi Robot Scenarios and Swarms
	5.1 Full Disclosure
	5.2 Discussion on Limited Communication
	5.3 No Communication
	5.4 Search
	5.4.1 Item Search
	5.4.2 Reconnaissance Search

	5.5 Tracking

	6 Results and Evaluation
	6.1 Tests
	6.1.1 Scalability
	6.1.2 Kalman Filter and Positioning
	6.1.3 Scenarios

	6.2 Evaluation

	7 Conclusion and Future Work
	References
	Books and Articles
	Webpages

	List of Figures
	List of Tables
	List of Symbols
	A Appendix
	A.1 Distance Measures
	A.2 Quaternion Product
	A.3 Optical Smoke Detector
	A.4 Overview of Robotic Simulators

