
Diplomarbeit

Präferenzbasierte
Szeneninterpretation

Diploma Thesis

Preference-based
Scene Interpretation

Seyed Mohammad Reza Rasouli

supervised by:
Prof. Dr. Ralf Möller
Dr. Michael Wessel

January 4, 2011

Name: Seyedmohammad Reza Rasouli
Mtr.Nr.: 31106
Major: IIW
Birthday: 31.08.1982
Email: reza dot rasouli at tu-harburg dot de
Institute for Software Systems (http://www.sts.tu-harburg.de)
Supervised By: Prof. Dr. Ralf Möller,

Dr. Michael Wessel

i

Eidesstaatliche Erklärung :

Ich versichere hiermit, dass ich meine vorliegende Diplomarbeit mit dem Thema
"Präferenzbasierte Szeneninterpretation" selbständig verfasst habe und keine an-
deren Quellen und Hilfsmittel als die, welche am Ende dieser Arbeit aufgeführt
sind, benutzt habe.

Seyedmohamamd Reza Rasouli, Hamburg, den 04.01.2011

Declaration:

I hereby declare that I have written and prepared this report with the topic
"Preference-based Scene Interpretation" all by myself and independently and did
not use any other resources than those which are listed at the end of this work.

Seyedmohamamd Reza Rasouli, Hamburg, 04.01.2011

ii

Acknowledgements:

I would like to thank Prof. Dr. Ralf Möller for his support and help during
my entire work and diploma thesis.

I would like to thank Dr. Michael Wessel for helping me overcome the problems
regarding my thesis and specially supporting me with the questions and problems
regarding RacerPro.

I want to dedicate this work to my parents and brother who have always shown
me their support and love.

iii

Contents

1 Introduction 1

2 Table Cloth Scenario 3
2.1 The Scenario . 3
2.2 Tracking Data . 5
2.3 Reasoner . 7

2.3.1 RacerPro . 7
2.4 TBox of the Scenario . 8

3 Rules and Strategies 22
3.1 Rules . 22

3.1.1 Bottom-up Rules . 23
3.1.1.1 Absolute-bottom-up 28
3.1.1.2 Stepwise-bottom-up 28

3.1.2 Top-down Rules . 29
3.1.2.1 Absolute-top-down 36
3.1.2.2 Stepwise-top-down 37

3.1.3 Difficulties of top-down Rules with RacerPro
and Solutions . 39

3.2 Strategies . 47
3.2.1 Optimist Strategy . 48
3.2.2 Pessimist Strategy . 49
3.2.3 Realist Strategy . 49

4 Implementation 51
4.1 Overview . 51
4.2 GUI of the Interpretation Framework 52
4.3 Packages . 55

4.3.1 Package trackingDataParser 55
4.3.2 Package graphics . 57
4.3.3 Package frameManagement 59
4.3.4 Package rules . 60
4.3.5 Package racerInterface . 61
4.3.6 Package main . 61

iv

5 Tests and Results 62
5.1 Results of Run . 62

5.1.1 Rule: Stepwise-bottom-up, Strategy: Optimist 62
5.1.2 Rule: Absolute-top-down, Strategy: Realist 72

5.2 Comparison . 77
5.2.1 Rules . 77

5.2.1.1 Stepwise-bottom-up 78
5.2.1.2 Absolute-bottom-up 80
5.2.1.3 Stepwise-top-down 80
5.2.1.4 Absolute-top-down 80

5.2.2 Strategies . 83
5.2.2.1 Optimist . 84
5.2.2.2 Pessimist . 85
5.2.2.3 Realist . 85

6 Validation and Verification 89
6.1 Preliminaries . 89
6.2 Scoring Function . 90

7 Conclusion and Future Works 95
7.1 Conclusion . 95
7.2 Future Works . 97

List of Figures 100

List of Tables 101

A Result of Run for
Rule: Absolute-top-down,
Strategy: Realist 102

B Abbreviations 115

Bibliography 117

v

vi

Chapter 1

Introduction

Annotating the media documents plays an important role in order to work with
these documents. The growth in the amount of the media documents and expansion
of the fields, where they are used, makes the annotation process more important but
harder.

The simplest but very inefficient way to annotate a media document is to comment
these documents manually. A human user should watch, listen and/or read the entire
media document to be able to comment this document. One of the disadvantages
of this method is that each human individual has its own understanding of each
document. For example, one can annotate an audio document (music document)
with the words "Classic Guitar" since he is an expert in playing classic guitar and
one could annotate the same document with "Modern Saxophone" if he is interested
in this music instrument. A person who believes that a film is in the horror genre
has a different way of thinking compared to a person who believes that the film
should be categorized under the thriller group.

Another problem of manual annotation is the time needed for each media doc-
ument to be processed. Each video clip or audio document should be studied by
a person individually, which is a time consuming process. It is also not efficient,
for example, to watch the entire video clip to annotate this movie only by a few
keywords later. In other words, the amount of the data that is observed in a media
document is usually very high but also redundant.

As discussed above, manual annotation of the media documents is not efficient
at all. If the annotation process is done by machines instead, the speed of the
process increases significantly. This is done due to several reasons such as filtering
the redundant and/or non-relevant data, using image/audio/text processing tools
and programs, applying standard modulation of the interpretation steps and, etc.
. Since on one hand the image/audio/text processing tools are not fully accurate
and on the other hand, the interpretation and annotation of the media documents
are dependent on the basic and primitive data that are presented in the document
and should be identified by these tools, this solution might not be the best solution
at the first glance. Therefore, relying entirely on the machines is not effective at all
and the results should be controlled from time to time by a human user. However,

1

if the machines are able to learn and model reliable patterns, the need of manual
control will decrease.

One of the projects that is conducted in the field of media annotation is the
CASAM1 [6] [7] [5] project. CASAM stands for Computer-Aided Semantic
Annotation of Multimedia. The goal of this project is to implement a machine
for annotating the multimedia documents. CASAM has an abduction engine, which
is based on an engine that was used for another project, which is called Boemie 2.
In this work, for the abduction process, the RacerPro software is used.

In the next Chapter, the table cloth scenario, which this work is based on it, is
discussed. In this Chapter, the RacerPro3 software is introduced and the TBox
regarding the scenario is designed. In this Chapter, the tracking data of a video
clip provided by The Cognitive Systems Laboratory of the University of
Hamburg4 and studied in [23], will be illustrated and used for the presentation
knowledge presentation of the scene. In the third Chapter, the bottom-up and top-
down rules that are needed to interpret the scene, are studied and for each , two
versions of rules are introduced. In addition, three different strategies are discussed
that specify how and when the rules should be applied. In this Chapter, a scoring
function that is implemented in this work to choose the best results of explanations
is described. In Chapter four, it will be looked into the framework and its GUI
that were implemented during this diploma thesis. In Chapter five, the results of
interpretation using the framework and the reasoner software are illustrated. These
results are studied in Chapter six in depth for twelve different modes resulted by
the combination of four groups of rules and three different strategies. Finally, in
Chapter seven, the conclusion of this work and some ideas as cases of study are
described.

1http://www.casam-project.eu/
2http://www.boemie.org/
3http://www.racer-systems.com/
4http://kogs-www.informatik.uni-hamburg.de/

2

Chapter 2

Table Cloth Scenario

In this Chapter, the table cloth scenario upon which this work focuses, will be
illustrated. As discussed in the previous Chapter, the goal of this work is to use
the low-level information1 contained in the frames of a video document to interpret
this video. The result of the interpretation is high-level information about the scene
shown in each frame and the entire video.

2.1 The Scenario

The primitive objects2 (low-level data) in the scenario are the dishes (plate, saucer
and cup) and the cutlery objects (spoon, knife, fork and teaspoon) that will be placed
on a table during the video. The first frame of the clip contains an empty table.
As the video clip proceeds the end, more objects will be put on the table by hand.
At the same time, a camera located above the table tries to identify these objects.
The objects may be removed or relocated during the video clip. If the primitive
objects presented in a frame are immobile, this frame is called a Keyframe3. If an
object is discovered on the table, but could not be categorized under any type of the
primitive objects mentioned above, this object will be labeled as Unknown. The
camera captures and analyzes the scene and determines the position of each object
and its bounding box. This feature helps us specify the size of a primitive object
and its spatial relationships regarding other objects. The spatial relationships are
such as near-right-of, near-left-of, near-above-of, near-under-of and on-same-
position-of.

The aggregates4 in this work are Meal Cover, Dessert Cover(lower aggregates)
and Combined Cover (higher aggregate)5.

A plate and the cutlery objects related to it (knife, fork and/or), form a meal

1The presentation of the low-level information will be discussed in Section 2.2.
2The tracking data and content of the video clip studied in this work are provided by The
Cognitive Systems Laboratory of the University of Hamburg and studied in [23].

3For brevity, from this point on whenever the word frame is mentioned, a keyframe is meant.
4An aggregate is a concept that is formatted by the primitive objects[17].
5The description of the aggregates and their relationships regarding the primitive objects are
described in Section 2.3.

3

cover. A cup and the objects related to it (saucer and/or teaspoon) form a dessert
cover. A single plate or cup can also form a cover. It is also possible that a plate
or cup form an aggregate by itself. The cutlery objects and the saucers that are
not related to a plate or a cup will not be categorized under any cover in this work,
since at least one kind of dish (a plate or cup) should be present on the table.

A meal cover and a dessert cover could form a combined cover when they are
integrated together6. A schema of the concepts discussed so far could be seen in
figure 2.1.

Figure 2.1: Basic Schema of the Primitive Objects and Aggregates

In general, all covers could have more specific meanings such as: Steak Cover,
Tea Cover, Spaghetti Cover, Full Dinner Cover, , Dinner With Bitter Coffee
Cover, Soup Cover, Bitter Coffee Cover, Small Breakfast Cover and Big
Breakfast Cover.

One of the main goals of this work is to interpret the type of the table and the
number of the people who will be sitting at this table. Therefore, an instance of the
Table concept could have more specific definitions regarding its type and number of
seats.

6To be more precise, if the cup of a dessert cover is on the right side of the plate of a meal cover
and there is no other cup between these two objects, the dessert cover and the meal cover
that contain these objects form a combined cover.

4

The types in this work are Small Breakfast Table, Soup Table, Italian Table
English Tea Table, Big Breakfast Table, Full Dinner With Tea Table and Full
Dinner With Bitter Coffee Table.

The types regarding the number of the people who will be sitting at a table are:
Single Table, Double Table, Family Table, Business Table andBig Family Table7.

2.2 Tracking Data
The tracking data is the information delivered by the camera for each frame. It

contains the specifications of the objects that have been identified by the camera 8 .
These specifications include an ID referring to each object, the position of the pivot
of each object and their corresponding bounding boxes. It also denotes if an object
is moving in the scene or not.

In general, the tracking data of an object look as follows:

(ID #Num
(PV TYPE (Object’s Type)
(PV CENTER (X Y))
(PV BOX (X1, Y1, X2, Y2))
(PV MOVE (0 or 1))

)

The ID of each object is a unique number. If the object is moving in the scene,
its move property will be set to 1 in the tracking data, and if it is not moving, it
will be set to 0. The tracking data is saved in a text file.

An entity in the scene is either a primitive object, a hand or an object that is not
categorized yet, which is marked as an Unknown object.

The objects of type Hand will be ignored in the entire work, since they have no
effect on the outcome of this work.

For example, the tracking data regarding the frame 192 in the tracking data file
looks as shown in figure 2.2:

Figure 2.2: Tracking Data of Frame 192

The lines in figure 2.2 are modified and shown in a user-friendly mode in figure
2.3. The tracking data of frame 192 shows that in this frame four objects have been

7More details are discussed in Section 2.3.
8Not necessarily categorized.

5

identified. The object with ID 1 is of type SAUCER, which is located in (435, 292)9
and is not moving. The object with ID 2 is of type PLATE, which is located in
(110, 274) and is not moving. The Object with the ID 3 is of type CUP, which is
located in (430, 358), but is moving. The object with ID 53 is a hand and will be
ignored as previously mentioned.

Figure 2.3: Modified Tracking Data of Frame 192

The data in figure 2.3 is illustrated by the implemented framework in figure 2.4.
Each object with its ID, pivot and its corresponding bounding box is shown in this
figure.

9In X-Y coordinate system.

6

Figure 2.4: Frame 192

2.3 Reasoner

Since in this work, description logics are used to work with the knowledge base
regarding the scenes and to define the corresponding concepts for the primitive
objects and aggregates, their specification and the relations between the concepts
and their instances, a reasoner software is needed.

Hence, the RacerPro Reasoner, which works with SHIQ description logics is
used. SHIQ is ALC [1] [3] with inverse, transitive and hierarchical roles and
number restrictions.

RacerPro can handle TBoxes and ABoxes; it also answers queries using the
nRQL10 language.

2.3.1 RacerPro

Racer stands for Renamed ABox and Concept Expression Reasoner Pro-
fessional. RacerPro is a software used in the area of the description logics. RacerPro

10 New Racer Query Language

7

is being developed by Racer Systems GmbH & Co. KG11 using programming
languages, which are available for multiple computer platforms.

While key algorithms are written in Lisp, other parts of the system such as tools
are implemented in Java. RacerPro is offered on Windows, Linux and Mac OS X.
In this thesis the Mac OS X(RacerPro 2.0 preview for Mac OS X, 32bit, x86 CPU)
which was released on 01.11.2009, is used. RacerPro plays the role of a server, and
it is the core of the software. RacerPorter (Figure 2.5) is the GUI of RacerPro12.
In this diploma thesis, the abduction reasoning feature of RacerPro plays a
major role, specially for interpreting and explaining the scene.

Figure 2.5: RacerPorter: GUI of RacerPro

2.4 TBox of the Scenario
For the scene interpretation, a TBox needed to define the concepts and their re-

lations to each other for the objects and the aggregates. This TBox is saved in the
11Racer Systems GmbH & Co. KG is a company that was founded in September 2004
and is located in Hamburg. This company develops a reasoner software called RacerPro
and consults in the area of semantic web for industrial projects based on the W3C standards
RDF/OWL.
For more information, please visit www.racer-systems.com

12For more information, regarding RacerPro, please read the following documents:
"RacerPro Users Guide":

(http://www.racer-systems.com/products/racerpro/users-guide-1-9-2-beta.pdf)

"RacerPro Reference Manual":
(http://www.racer-systems.com/products/racerpro/reference-manual-1-9-2-beta.pdf)

8

file "TBox.racer" which is located in the docs folder of the program. This makes it
possible to run the scene interpretation program13 regardless of the media document
that is to be interpreted. Therefore, the TBox is always the same for all media doc-
uments. Before the program starts, the TBox should be loaded in RacerPro. The
TBox starts with the following lines:

1: (full-reset)

2: (init-tbox tracking)

3: (in-knowledge-base tracking tracking-family)

4: (signature: (:atomic-concepts {concept list})

5: :roles ({role list})

The first three lines reset the RacerPro and create a TBox with the name track-
ing. In line (4) and in line (5), the concepts and the roles, which are not shown here
for readability, are defined respectively.

6: (implies PLATE Meal Objects) PLATE v Meal_Objects
7: (implies KNIFE Meal Objects) KNIFE v Meal_Objects
8: (implies FORK Meal Objects) FORK v Meal_Objects
9: (implies Spoon Meal Objects) Spoon v Meal_Objects

10: (implies CUP Dessert Objects) CUP v Dessert_Objects
11: (implies SAUCER Dessert Objects) SAUCER v Dessert_Objects
12: (implies TeaSpoon Dessert Objects) TeaSpoon v Dessert_Objects

13: (implies Meal Objects Objects) Meal_Objects v Objects
14: (implies Dessert Objects Objects) Dessert_Objects v Objects

Lines (6-9) imply that the objects PLATE, KNIFE, FORK and Spoon are
subconcepts of the Meal Objects concept, and lines (10-12) imply that the objects
CUP, SAUCER and TeaSpoon are subconcepts of the concept Dessert Objects.

Finally, the lines (13) and (14) imply that all the objects, which are either a
Meal Objects or Dessert Objects, are subconcepts of the higher concept Objects.

15: (implies Meal Cover cover) Meal_Cover v cover
16: (implies Dessert Cover cover) Dessert_Cover v cover
17: (implies Combined Cover cover) Combined_Cover v cover

After categorizing the primitive objects, the covers are categorized all under
the super concept cover as stated in the lines (15-17).

One of the most important parts of defining the concepts is stating the disjoint-
ness of the concepts. Otherwise, an instance of the concept PLATE could be at the
same time an instance of the concept SAUCER. Therefore, the following lines are

13For more information regarding the scene interpretation program, please go to Chapter 3,
Section 3.

9

Figure 2.6: Hierarchy of the Primitive Objects

added to the TBox:

16: (disjoint PLATE FORK Spoon KNIFE)

17: (disjoint TeaSpoon CUP SAUCER)

18: (disjoint Meal Objects Dessert Objects cover)

19: (disjoint Meal Cover Dessert Cover Combined Cover Table)

Next, the roles should be defined, so that later the relations between the con-
cepts and the number restrictions could be given. First, the roles are all defined as
primitive roles:

20: (define-primitive-role near-right-of)

21: (define-primitive-role near-left-of)

22: (define-primitive-role on-same-position-of)

23: (define-primitive-role has-part)

24: (define-primitive-role belongs)

25: (define-primitive-role under)

26: (define-primitive-role owns)

27: (define-primitive-role is under)

10

Figure 2.7: Hierarchy of the Covers

28: (define-primitive-role contains)

The role near-right-of means that for an assertion like:

KNIFE(K), PLATE(P), near-right-of(K,P),

where P is an instance of PLATE,K is an instance of KNIFE in the ABox, K is on
the right side of P and also K is the nearest instance of its type (here KNIFE) on
the right side of P. For the role near-left-of, the same definitions are valid; however,
here the first object in the relation is on the left side of the second object in the
relation.

The role on-same-position-of indicates that two objects are located in the same
X-Y position; therefore, one of them is on the top of the other one.

As shown below:

29: (inverse has-part belongs)

30: (inverse is under contains)

31: (inverse under owns)

the roles defined in lines 23 and 24 are inverse of each other. The same thing is

11

also valid for the roles defined in the lines 25-26 and 27-28. The role has-part,
which is the inverse of the role belongs describes the relation between an instance
of the concept Meal Cover or Dessert Cover and their corresponding objects. In
other words, for an assertion like:

Meal Cover(M), PLATE(P), has-part(M, P),

where P is an instance of PLATE, M is an instance of Meal Cover in the ABox,
the assertion has-part(M, P) indicates thatM has the individual P at one its parts.
This means that the relation belongs(P, M) is also true since the role belongs is the
inverse of the role has-part.

The role contains describes the relation between an instance of the concept
Combined Cover (higher aggregate) and the instances of the concepts Meal Cover
and Dessert Cover(lower aggregates)14. The role owns describes the relation be-
tween an instance of the concept Table and the instances of the concept cover15.

32: (range on-same-position-of Objects)

33: (domain on-same-position-of Objects)

34: (range near-right-of (or Meal Cover Objects))

35: (domain near-right-of (or Dessert Cover Objects))

36: (range near-left-of (or Dessert Cover Objects))

37: (domain near-left-of (or Meal Cover Objects))

38: (range owns cover)

39: (domain owns Table)

40: (range has-part Objects)

41: (domain has-part (or Dessert Cover Meal Cover))

42: (range contains (or Meal Cover Dessert Cover))

43: (domain contains Combined Cover)

In lines (32-43), the domain and the range of each role have been defined. Lines
(32-37) include the domain and the range for the spatial relations between the ob-
jects. All instances of the objects could be on either side of the relations. In addition,
the concept Dessert Cover is added to the domain of the near-right-of role and
the concept Meal Cover is added to the range of this role because to be able to cre-
ate an instance of the concept Combined Cover, an instance of the Dessert Cover,
which is on the right side of an instance of the concept Meal Cover is needed.
Accordingly, the opposite is true for the role near-left-of.

In lines (38-43), the range and the domain of the roles between the higher concepts
and aggregates have been defined. It should be noted that if a concept A is in the
domain and concept B is in the range of role R, and the role I is the inverse role
of R, the concept A is in the range and concept B is in the domain of the role I .
In other words:

14The opposite is valid for the role is under.
15The opposite is valid for the role under.

12

d(R) = r(I) and r(R)= d(I)

As a result, by defining the domain and the range of the roles has-part, contains
and owns, there is no need to define the domain and the range of their corresponding
inverse roles, which are the roles belongs, is under and under.

In practice, there were some difficulties working with the roles in RacerPro al-
though the domain and the range of the roles were defined in the TBox. This
problem is solved by adding the following lines into the TBox. These lines are just
restrictions for the concepts, indicating that they cannot be in the domain of the
specific roles.

44: (implies Objects (not (some contains *top*)))

Objects v 6 ∃ contains.>

45: (implies Objects (not (some has-part *top*)))

Objects v 6 ∃ has−part.>

46: (implies Meal Cover (not (some contains *top*)))

Meal Cover v 6 ∃ contains.>

47: (implies Dessert Cover (not (some contains *top*)))

Dessert Coverv 6 ∃contains.>

48: (implies Table (not (some contains *top*)))

Table v 6 ∃ contains.>

After the concepts and roles are defined, the number restrictions are added, which
enables the concepts to be described more precisely and makes them consistent with
the environment of the scene interpretation scenario that is the objective of this
work.

49: (implies Meal Cover (exactly 1 has-part PLATE))

Meal Cover v (≤ 1 has−part.PLATE) u (≥ 1 has−part.PLATE)

50: (implies Meal Cover (at-most 1 has-part KNIFE))

Meal Cover v (≤ 1 has−part.KNIFE)

51: (implies Meal Cover (at-most 1 has-part FORK))

Meal Cover v (≤ 1 has−part.FORK)

52: (implies Meal Cover (at-most 1 has-part Spoon))

Meal Cover v (≤ 1 has−part.Spoon)

53: (implies Meal Cover (all has-part Meal Objects))

Meal Cover v ∀ has−part.Meal Objects)

13

54: (implies Dessert Cover (exactly 1 has-part CUP))

Dessert Cover v (≤ 1 has−part.CUP)

55: (implies Dessert Cover (at-most 1 has-part SAUCER))

Dessert Cover v (≤ 1 has−part.SAUCER)

56: (implies Dessert Cover (at-most 1 has-part TeaSpoon))

Dessert Cover v (≤ 1 has−part.TeaSpoon)

57: (implies Dessert Cover (all has-part Dessert Objects))

Dessert Cover v ∀ has−part.Dessert Objects)

Line (49) indicates that for an instance of Meal Cover, there must be exactly
(at least and at most) one instance of the concept PLATE as a filler of the role
has-part. Lines (50-52) indicate that an instance of Meal Cover can have at most
one instance of the concepts KNIFE, FORK and/or Spoon as fillers of the role
has-part. Line (53) indicates that an instance of Meal Cover can only have the
instances of the concept Meal Objects as fillers of the role has-part. The predeces-
sors of the role has-part in lines (49-53) should all be an instance of the concept
Meal Cover.

For the concept Dessert Meal, line (54) demonstrates that for an instance of this
concept, there must be exactly one instance of the concept CUP as a filler of the role
has-part. The next two lines illustrate that Dessert Cover can have at most one
instance of the concepts SAUCER and/or TeaSpoon as fillers of the role has-part.
Finally, line (57) indicates that an instance of Dessert Cover can only have the
instances of Dessert Objects as fillers for the role has-part. The predecessors of the
role has-part in lines (54-57) should all be an instance of the conceptDessert Cover.

58: (implies Combined Cover (exactly 1 contains Meal Cover))

Combined Cover v (≤ 1 contains.Meal Cover) u
(≥ 1contains.Meal Cover)

59: (implies Combined Cover (exactly 1 contains Dessert Cover))

Combined Cover v (≤ 1 contains.Dessert Cover) u
(≥ 1contains.Dessert Cover)

60: (implies Combined Cover (all contains cover))

Combined Cover v ∀ contains.cover)

61: (implies Meal Cover (at-most 1 is under Combined Cover))

Meal Cover v (≤ 1 isunder.CombinedCover))

62: (implies Dessert Cover (at-most 1 is under Combined Cover))

Dessert Cover v (≤ 1 isunder.CombinedCover))

14

The relations between different types of the covers could be described. From
lines (58-60) demonstrate that an instance of Combined Cover must have exactly
one instance of Meal Cover and Dessert Cover as fillers for the role contains.

The next two lines demonstrate that an instance of Meal Cover and an instance
of Dessert Cover could belong at most to one Combined Cover and that there
could be instances of Meal Cover and Dessert Cover that do not belong to any
instances of Combined Cover.

In other words, in order to build an instance of Combined Cover, an instance of
Meal Cover and an instance of Dessert Cover, which do not belong to any other
instances of Combined Cover, are needed.

63: (implies Meal Objects (at-most 1 belongs Meal Cover))

Meal Objects v (≤ 1 belongs.Meal Cover)

64: (implies Dessert Objects (at-most 1 belongs Dessert Cover))

Dessert Objects v (≤ 1 belongs.Dessert Cover)

65: (implies PLATE (exactly 1 belongs Meal Cover))

PLATE v (≤ 1 belongs.Meal Cover) u
(≥ 1 belongs.Meal Cover)

66: (implies KNIFE (at-most 1 belongs Meal Cover))

KNIFE v (≤ 1 belongs.Meal Cover)

67: (implies FORK (at-most 1 belongs Meal Cover))

FORK v (≤ 1 belongs.Meal Cover)

68: (implies Spoon (at-most 1 belongs Meal Cover))

Spoon v (≤ 1 belongs.Meal Cover)

69: (implies CUP (exactly 1 belongs Dessert Cover))

CUP v (≤ 1 belongs.Dessert Cover) u
(≥ 1 belongs.Dessert Cover)

70: (implies TeaSpoon (at-most 1 belongs Dessert Cover))

TeaSpoon v (≤ 1 belongs.Dessert Cover)

71: (implies SAUCER (at-most 1 belongs Dessert Cover))

SAUCER v (≤ 1 belongs.Dessert Cover)

The combination of lines (63-71) indicates that all the objects could belong
to at most one cover (either to an instance of Meal Cover or to an instance of
Dessert Cover, but not both). This is more restricted for the instances of PLATE
and CUP illustrated by lines (65) and (69).

15

F
ig
ur
e
2.
8:

E
R

D
ia
gr
am

of
P
ri
m
it
iv
e
O
bj
ec
ts

an
d
C
ov
er
s

16

In other words, if the data, which is processed by the implemented framework,
contains an instance of PLATE, this means that an instance of Meal Cover could
be created since the necessary and sufficient conditions for having an instance
of Meal Cover are fulfilled. The same story is true for the concepts CUP and
Dessert Cover.

It should be noted that although the above definitions have been inserted in the
TBox, it is not yet defined how RacerPro should find and create the aggregates.
This will be discussed in the form of the rules in the next Chapter.

72: (equivalent Lonely Table (exactly 1 owns General Cover))

73: (equivalent Romantic Table (exactly 2 owns General Cover))

74: (equivalent Family Table (exactly 4 owns General Cover))

75: (equivalent Business Table (exactly 6 owns General Cover))

76: (equivalent Big Family Table (exactly 12 owns General Cover))

The description continues by defining the higher and more special aggregates.
First, the types of the table are determined according to the number of the covers
on the table or to be more precise, the number of persons who are going to be seated
at the table.

As it is shown in the lines (72-76), it has been decided to relate the number of
persons at a table to the environment of the table. For example, a table with two
covers on it is a "Romantic Table" and a table with 12 covers is a "Big Family
Table"16.

The tables could be defined more specifically not only by the number of the covers
on them but also by the type of these covers. Hence, it is important to identify the
type of the different covers before identifying the type of the table17.

77: (equivalent SMALL_BREAKFAST_COVER (and cover

78: (some has-part CUP)

79: (some has-part SAUCER)

80: (not (some has-part Spoon))

81: (some has-part TeaSpoon)

82: (some has-part PLATE)

83: (some has-part KNIFE)

84: (not (some has-part FORK))))

85: (equivalent SOUP_COVER (and cover

86: (not (some has-part CUP))

87: (not (some has-part SAUCER))

88: (some has-part Spoon)

89: (not (some has-part TeaSpoon))

16These definitions are based on personal choices and there could be some alternatives with
different definitions in other contexts.

17Although a cover is either an instance of Meal Cover, Dessert Cover or
Combined Cover, it is not clear for which type of meal or dessert or, etc. this cover
is used.Therefore, the above specifications are needed.

17

90: (some has-part PLATE)

91: (not (some has-part KNIFE))

92: (not (some has-part FORK))))

93: (equivalent SPAGHETTI_COVER (and cover

94: (not (some has-part CUP))

95: (not (some has-part SAUCER))

96: (not (some has-part Spoon))

97: (not (some has-part TeaSpoon))

98: (some has-part PLATE)

99: (not (some has-part KNIFE))

100: (some has-part FORK)))

101: (equivalent TEA_COVER (and cover

102: (some has-part CUP)

103: (some has-part SAUCER)

104: (not (some has-part Spoon))

105: (some has-part TeaSpoon)

106: (not (some has-part PLATE))

107: (not (some has-part KNIFE))

108: (not (some has-part FORK))))

109: (equivalent BITTER_COFFEE_COVER (and cover

110: (some has-part CUP)

111: (some has-part SAUCER)

112: (not (some has-part Spoon))

113: (not (some has-part TeaSpoon))

114: (not (some has-part PLATE))

115: (not (some has-part KNIFE))

116: (not (some has-part FORK))))

117: (equivalent DINNER_COVER (and cover

118: (not (some has-part CUP))

119: (not (some has-part SAUCER))

119: (some has-part Spoon)

120: (not (some has-part TeaSpoon))

121: (some has-part PLATE)

122: (some has-part KNIFE)

123: (some has-part FORK)))

124: (equivalent STEAK_COVER (and cover

125: (not (some has-part CUP))

126: (not (some has-part SAUCER))

127: (not (some has-part Spoon))

128: (not (some has-part TeaSpoon))

129: (some has-part PLATE)

130: (some has-part KNIFE)

131: (some has-part FORK)))

132: (equivalent DINNER_WITH_BITTER_COFFEE_COVER (and Combined Cover

133: (some contains DINNER_COVER)

18

134: (some contains BITTER_COFFEE_COVER)))

135: (equivalent BIG_BREAKFAST_COVER (and Combined Cover

136: (some contains STEAK_COVER)

137: (some contains TEA_COVER)))

138: (equivalent FULL_DINNER_COVER (and Combined Cover

139: (some contains DINNER_COVER)

140: (some contains TEA_COVER)))

The more specialized definitions of the covers are demonstrated in lines (77-140).
For example, an instance of SMALL BREAKFAST COVER is a cover that has a
cup, plate, teaspoon, knife and saucer and an instance ofDINNER WITH BITTER
COFFEE COVER is a combined cover containing a meal cover with the type
DINNER COVER and a dessert cover with the type BITTER COFFEE COVER
(lines 132-134).

These lines directly state in the TBox what primitive objects each cover could
have as its parts in a way that the covers become mutually exclusive. This fea-
ture prevents the situation where a cover has two different types, none of which is
generally wrong.

Now that the different types of cover are defined, the tables could be specialized
based on the type of the covers on them.

141: (equivalent Big Breakfast Table (all owns BIG BREAKFAST COVER))

142: (equivalent Small Breakfast Table (all owns SMALL BREAKFAST COVER))

143: (equivalent Full Dinner With Tea Table (all owns (and Combined Cover

144: FULL DINNER COVER)))

145: (equivalent Full Dinner With Bitter Coffee Table (all owns (and Combined Cover

146: DINNER WITH BITTER COFFEE COVER)))

147: (equivalent Soup Table (all owns SOUP COVER))

148: (equivalent Italian Table (all owns SPAGHETTI COVER))

149: (equivalent English Tea Table (all owns TEA COVER))

As shown above, seven different tables have been defined in the TBox. Since
the definitions of the type of the covers make all of these types mutually exclusive,
the types of the tables are also mutually exclusive.

As an example, the concepts Full Dinner With Bitter Coffee Table and Small
Breakfast Table are considered. The first table owns only the instances of SMALL
BREAKFAST COVER and the second one owns instances of DINNER WITH
BITTER COFFEE COVER (which are also instances of Combined Cover) be-
cause whenever a cup and a saucer are on the table without a teaspoon, it means
that coffee is going to be served on the table with no sugar or milk. All the instances
of cover on a table should be of the same concept regardless of their quantity.

Figure 2.9 shows the relationships between the instances of different entities for
the tables and covers in the TBox as an ER diagram.

In addition to the concepts mentioned before, to make the scene interpreter a

19

non-memoryless system, a new concept called Waitress is added to the ABox. If an
instance of Waitress appears in the scene, it means that the scene has been taken
in a restaurant; otherwise, it has been captured in the dining room of a house. This
new concept has not been predicated in the tracking data; thus, such an instance
should be instantiated by the framework. The framework decides randomly if an
instance of Waitress is going to be seen during the clip. If the framework decides
to have an instance of Waitress, it randomly chooses a frame of a clip as a frame
where the waitress supposedly appears in the scene; then, the interpreter should
memorize that a waitress has become visible in a specific point of time in the scene,
and it should consider this information for the rest of the interpretation.

At the beginning of the interpretation, the framework assumes that the scene
is taken in a house; however, if an instance of Waitress appears in the scene, the
framework changes its assumption.

Although the TBox is completed now, the methods describing how different prim-
itive objects could be categorized under a cover and how they could build higher
aggregates have not been declared yet. In other words, since the scene interpreta-
tion requires abduction rules, which have not been defined yet, it is impossible to
form any aggregates[6]. It is also important how and in which direction the abduc-
tion rules are used and when a rule should be fired. All of these problems will be
discussed in the next Chapter.

20

F
ig
ur
e
2.
9:

E
R

D
ia
gr
am

of
th
e
Ta

bl
e

21

Chapter 3

Rules and Strategies

Based on experience, beliefs and desires, each human being has his own interpre-
tation when he is asked to interpret a scene from of a video clip. The differences
might be between the specific points in time that a person starts hypothesizing and
interpreting the scene or the methods he uses to make different hypotheses, search
them and choose the best ones with a best explanation. In this Chapter, these issues
are explained and answered in the terms of Rules and Strategies.

As discussed in the previous Chapters, for the interpretation of the ABox asser-
tions regarding the scene, abductive reasoning and abduction rules are used in order
to explain the effects and events in the scene(observations). By applying these rules
1 [2] some hypotheses (explanations) could be made. These hypotheses are either
concept assertions or role assertions. In other words, if these hypotheses were added
to the ABox, the observations that have been made in the scene could be explained.

The question that arises is how and when these rules should be used and applied
in order to explain the observations. Section 3.1 explains how the rules should be
defined and used. In this Section, different rule approaches called bottom-up,
top-down and their variations are introduced and explained. Section 3.2 explains
when the rules should be used and applied. Here three different strategies called the
Optimist, Pessimist and Realist are introduced and discussed.

3.1 Rules
The abduction reasoning could be described as:

Σ ∪∆ |= R Γ

where Σ is the background knowledge, Γ is the observations(effects), ∆ is the
explanations(causes) and R is the rules [8] [5].

It should be noted that there are different explanations for an observation; there-
fore, different hypotheses could be found.

An abduction rule has a head part and a body part. Generally, two approaches
could be used by the interpretation. If the low-level knowledge (here the primitive

1The rules in this work have no time interval.

22

objects and the relations between them) is to be explained, higher aggregates should
be hypothesized. This approach is called bottom-up and the rules are applied in
this direction. The other approach is called top-down approach. In this approach,
an instance of the aggregate is created in the form of a variable for each aggregate.
By applying the rules in the backward chaining direction, it will be examined which
assertions should be added to the ABox(should be hypothesized) so that the instance
of the higher aggregate could be explained as an observation. In this work, both
approaches have been studied. In addition, another approach called Stepwise-top-
down is studied in which instead of beginning from the aggregates in the highest
level, it starts with the aggregates in the lowest level. In the following sections,
each of these approaches is discussed in depth, and the corresponding rules will be
described.

It should be mentioned that RacerPro has a command called retrieve-with-
explanation , which is used to find hypotheses for the explanation of a role or a
concept assertion. Furthermore, it is possible to use this command with variables
in the head to find higher level explanations2.

In addition to this command, another command called add-explanation- as-
sertions is used for this work. This command makes it possible to add the hypoth-
esized assertions that the retrieve-with-explanation command delivers according
to the rules and queries. The combination of these two commands makes it possible
to explain an observation, choose the best explanation for it and add the assertions
based on the best result to the ABox.

3.1.1 Bottom-up Rules

The tracking data from the image processing tools only delivers the primitive
objects that are observed in the scene. The image processing tools are not able to
instantiate the higher aggregates.

It is the task of the reasoner software to form and instantiate the aggregates
using the primitive objects. This is done in a bottom-up approach way where the
aggregates that are created are based on the primitive objects.Due to the fact that
available evidences are used to form the upper concepts (aggregates), the word
bottom-up is used for this approach.

As discussed in the previous Chapters, there are seven primitive objects for
the table cloth scenario: PLATE, KNIFE, FORK, Spoon, TeaSpoon, CUP and
SAUCER. Their corresponding concepts are all located in the lowest level of the
concept hierarchy.

In the level above the level of the primitive objects, the two aggregatesMeal Cover
and Dessert Cover are located. By combining theMeal Cover and Dessert Cover

2The retrieve-with-explanation command uses a scoring function by default in order to
specify the score of each result so that the best results with the highest score are chosen.This
scoring function which, has been introduced by Paul R. Thagard, a Philosophy professor,
suggests that the result, which uses a fewer number of hypotheses and more number of
evidences found so far in the scene, is a better result. If Sf is the number of available
evidences on the scene and Sh is the number of the hypothesized assertions, the scoring
function is defined as follows: S = Sf − Sh [3]

23

Figure 3.1: bottom-up Rules for the Aggregate Meal Cover using the Instances of
PLATE and KNIFE

under certain circumstances, an aggregate in a higher level called Combined Cover
could be instantiated. The most specific instantiators3 of the instances of the aggre-
gates could be specified before going to the next higher level, so that each aggregate
could be described more precisely.

In the next level, the table aggregate is located, which could be specified more
according to the cover instances that will be attached to it using the relation owns
and the number of the covers that the table owns.

The approach described above shows briefly how the evidences available on the
scene (primitive objects) are used to form the aggregates by the rules.

Before showing how the rules are defined and used, it is important to make some
assumptions for the table cloth scenario. These assumptions are based on studies
that were conducted by looking at the real life table cloth scenarios, specially at
how a table should be covered using the primitive objects mentioned before in a
standard way, regardless of where the table is located, whether in a public place
like a restaurant or in a private place like the dining room of a house. In this work,
these standards are applied.

For an instance of Meal Cover having an instance of PLATE as one of its part
3By using the command most-specific-instantiators of RacerPro.

24

Figure 3.2: bottom-up Rules for the Aggregate Meal Cover using the Instances of
PLATE, FORK and Spoon

is a necessary condition (also sufficient to build a meal cover). A plate is usually
the heart of the cover, and the cutlery objects are located next to the plate.

The standard location of the knives and spoons is usually on the right side of the
plate and the standard location of the fork is on the left side of a plate.4 Therefore, if
an object is located on a non-standard position next to the plate, this object should
be ignored; in other words, these rules should ignore this situation.

The model discussed above is shown in figures 3.1 and 3.2. The rules shown in
these figures could also be described as follows:

1: PLATE(Y) ←− Meal Cover(Z), belongs(Y,Z)

2: near-right-of(X,Y) ←− KNIFE(X), PLATE(Y),Meal Cover(Z),
belongs(X,Z), belongs(Y,Z)

3: near-right-of(X,Y) ←− Spoon(X), PLATE(Y),Meal Cover(Z),

4It should be mentioned that it is also possible to locate the cutlery objects on different positions
next to a plate;however, since this is not standard and the scene interpretation of this scenario,
should be real and standard, the standard definitions are applied.

25

belongs(X,Z), belongs(Y,Z)

4: near-left-of(X,Y) ←− FORK(X), PLATE(Y),Meal Cover(Z),
belongs(X,Z), belongs(Y,Z)

The first rule explains that an instance of PLATE could exist, because there
is an instance of Meal Cover and for this instance, the instance of PLATE is a
filler of the role has-part.

The second rule indicates that if an instance of KNIFE is the nearest instance
of all the knives on the scene which are on the right side of an instance of PLATE,
this could be explained by an instance of Meal Cover which has the instance of
PLATE and KNIFE as fillers for the role has-part. In other words, the instances
of these two primitive objects belong to an instance of Meal Cover. This is also
true for the third rule, but for an instance of Spoon instead of KNIFE.

Finally, the forth rule indicates that if an instance of FORK is the nearest in-
stance of all the forks on the scene which are on the left side of an instance of
PLATE, this could be explained as follows: There exists an instance of Meal Cover
which has the instances of PLATE and FORK as fillers for the role has-part. In
other words, the instances of these two primitive objects belong to an instance of
Meal Cover.

The necessary condition (also sufficient) for an instance of Dessert Cover is
having an instance of CUP as its part. In other words, an instance of CUP must
be a filler of the role has-part for each instance of Dessert Cover and having an
instance of CUP is sufficient for forming an instance of Dessert Cover.

The position of an instance of SAUCER (in case of existence) regarding the cup
it belongs to is clearly under the cup. This means that both of these objects have
the same X-Y position on the scene; hence, the role on-same-position-of is defined
for this situation. The standard position of an instance of TeaSpoon is usually
on the right side of the cup and saucer (in case of existence). As a result, other
non-standard situations should be ignored.

The standard situations discussed above are illustrated in figures 3.3 and 3.3 and
their corresponding rules could be shown as follows:

1: CUP(Y) ←− Dessert Cover(Z), belongs(Y,Z)

2: near-right-of(X,Y) ←− TeaSpoon(X), CUP(Y),
Dessert Cover(Z),
belongs(X,Z), belongs(Y,Z)

3: on-same-position-of(X,Y) ←− SAUCER(X), CUP(Y),
Dessert Cover(Z),
belongs(X,Z), belongs(Y,Z)

The first rule indicates that if an instance of CUP exists, it could mean that

26

Figure 3.3: bottom-up Rules for the Aggregate Dessert Cover using the Instances
of CUP and SAUCER

there is an instance of Dessert Cover and for this instance, the instance of CUP
is a filler of the role has-part.

The second rule indicates that if an instance of SAUCER is located on the same
position where an instance of CUP is located, it could mean that there is an instance
of Dessert Cover which has the instances of CUP and SAUCER as fillers for the
role has-part. In other words, the instances of these two primitive objects belong
to an instance of Dessert Cover.

Finally, the third rule indicates that if an instance of TeaSpoon is the nearest
instance of all the teaspoons on the scene which are on the right side of an instance
of CUP, this could be explained as follows: There is an instance of Dessert Cover
which has the instances of CUP and TeaSpoon as fillers for the role has-part ;
therefore, the instances of these two primitive objects belong to the instance of
Dessert Cover.

An instance of Combined Cover could be formed by two different approaches:
either the primitive objects are used to form such an instance or an instance of
Meal Cover and an instance Dessert Cover are used. These two approaches are
introduced as:

27

Figure 3.4: bottom-up Rule for the Aggregate Dessert Cover using the Instances
of CUP and TeaSpoon

3.1.1.1 Absolute-bottom-up

The first to form an instance of Combined Cover is to use the primitive objects
as shown in figure 3.5. According to this figure, an instance of CUP is the nearest
cup on the right side of an instance of PLATE, because the standard location of
a cup is on the right side of plate. As it has been mentioned, an instance of CUP
is sufficient to form an instance of Dessert Cover and an instance of PLATE is
sufficient to form an instance of Meal Cover. Thus, the instance of Dessert Cover
is also on the right side of the instance of Meal Cover and also the nearest one. As
a result, an instance of Combined Cover is formed by using two primitive objects.

The corresponding rule is shown as follows:

near-right-of(X,Y) ←− CUP(X), PLATE(Y),
Dessert Cover(Z), belongs(X,Z),
Meal Cover(W), belongs(Y,W),
Combined Cover(V),
is under(Z,V), is under(W,V)

3.1.1.2 Stepwise-bottom-up

Another way to form an instance of Combined Cover is to use the instances of
Meal Cover and Dessert Cover under the condition that the spatial relationships
between the instances of these two concepts are already given in the ABox. There-
fore, if an instance of Dessert Cover is the nearest cover among all the dessert
covers, which are on the right side of an instance of Meal Cover, an instance of
Combined Cover could be formed using the meal and dessert covers as fillers of the
role contains for the combined cover. This is shown on figure 3.6 with the following
rule:

28

Figure 3.5: bottom-up Rule for the Aggregate Combined Cover using the Instances
of CUP and PLATE

near-right-of(X,Y) ←− Dessert Cover(X)
Meal Cover(Y),
Combined Cover(Z)
is under(X,Z), is under(Y,Z)

As it can be seen, the second option uses only the aggregates and not the prim-
itive objects. Nevertheless, the relation near-right-of between these aggregates is
determined using the primitive objects in the lower levels of the interpretation.

�
It is possible for the user of the framework of this work to choose which rule could

be used to form the instances of Combined Cover. This will be described in the
next Chapter.

3.1.2 Top-down Rules

Another approach in high-level scene interpretation is to generate hypotheses
of high-level assertions and aggregates and to use the top-down rules [21] [16] in

29

Figure 3.6: bottom-up Rule for the Aggregate Combined Cover using the Instances
of Meal Cover and Dessert Cover

order to find the missing objects, evidences and low-level image analysis results that
should be present in the scene to make these hypotheses become valid.

In other words, the hypotheses should be explained by using the evidences that
are available in the scene. This approach is called then the top-down approach.

The retrieve-with-explanation command of RacerPro that was mentioned ear-
lier, could be used again for this matter. This command creates a temporary instance
of the aggregate that should be formed. The temporary instance is in fact a variable.
The command tries to explain why this variable exists in the knowledge base using
the evidences that are available in the scene. If such evidences are not found or are
partly found, RacerPro creates temporary instances of the concept or role assertions
that are missing and are needed to form an instance of the aggregate, which the
command tries to find and explain.

It should be noted that using the retrieve-with-explanation command in the
top-down mode requires the aggregate, that should be found, to occur in the head
of the rule. The rule body contains the assertions that explain why the aggregate
(which will be addressed as a variable) in the head exists. These assertions may be
already available fully or partly in the knowledge base or even not available at all.
The missing parts will also be constructed to complete the rule.

The retrieve-with-explanation command should be called in the :final- con-
sistency - checking t mode. Otherwise false assertions or explanations would be
suggested.

A small example to show how this command works is illustrated in figure 3.7.
The first line shows that the TBox5 and the ABox are loaded. Lines (2-5) show that
there is an instance of CUP (myCup) and an instance of SAUCER (mySaucer) and
no instances of TeaSpoon and Dessert Cover in the ABox.

In the sixth line, the rule that should be used to form an instance ofDessert Cover
in a top-down direction is shown. This rule indicates that an instance of Dessert
Cover could exist because there are a cup, teaspoon and saucer in the scene, and

5The TBox is described in Chapter 2, Section 4.

30

Figure 3.7: The retrieve-with-explanation Command

the saucer is on the same position of the cup (the cup is on the saucer) and the cup is
the nearest instance among all instances of CUP on the left side of the teaspoon. In
addition, these three primitive objects belong to the instance of the Dessert Cover.

By creating an instance of Dessert Cover indirectly in form of a variable and
calling the retrieve-with-explanation command for this variable, all of the parts
in the body of the rule should exist, so that the variable becomes valid as an instance
of Dessert Cover. If there are missing parts, they should be instantiated.

If the command retrieve-with-explanation is called for this example, since there
is an instance of CUP(myCup) and SAUCER(mySaucer) on the same position(on-
same-position-of(myCup, mySaucer) is entailed), the first, third and fifth tuples of
the body of the rule are entailed. The rest of the tuples are not entailed and should
be hypothesized first.

The seventh line shows the result of the retrieve-with-explanation command.
IND-14 is the instance of Dessert Cover that has been created for the variable ?x
(in other words, it is hypothesized for the current situation in the knowledge base).

The other new individual is IND-2 which is an instance of TeaSpoon and has
been hypothesized because no instance of TeaSpoon has been yet discovered in the
scene; hence, this missing evidence must be hypothesized and added first. The
teaspoon should be positioned correctly according to the rule. This is done by

31

hypothesizing the role assertion near-left-of(myCup, IND-2)6 .
Finally, the only missing evidences are stating that the primitive objects belong

to the instance of the Dessert Cover which has been hypothesized earlier. This is
done by the three role assertions for the role has-part.

The aggregates that are addressed in the head of the rules for the top-down mode
are Combined Cover, Meal Cover and Dessert Cover.

Figure 3.8 shows the rule defined for the concept Combined Cover which could
also be described as follows:

Combined Cover(X) ←− Dessert Cover(Y)
Meal Cover(Z),
CUP(C), PLATE(P)
has-part(Y,C), has-part(Z,P)
near-right-of(C,P), near-left-of(P,C)
contains(X,Y), contains(X,Z)

As it can be seen, an instance of a Combined Cover could exist when there
is an instance of Meal Cover and an instance of Dessert Cover available. Since
these two instances should be hypothesized, an instance of PLATE and an instance
of CUP are needed, because they are the necessary and sufficient condition for
forming their corresponding covers. Additionally, the instance of CUP should be
the nearest individual among the cups that are on the right side of the instance of
PLATE so that the condition for the standard location of a cup regarding a plate
is fulfilled.

If this rule results in assertions for Meal Cover and Dessert Cover, the rest of
the primitive objects that should be added to the cover groups will be added using
the rules in the lower levels.

The next two aggregates which are addressed in the rules in the lower level are
Meal Cover and Dessert Cover.

There are different combinations of the primitive objects for these two aggregates;
therefore, there are different explanations for why an instance of each of these aggre-
gates could exist. It is also possible that more than one explanation is correct for the
current situation in the scene. The decision which explanation should be chosen and
which assertions should be added into the ABox is made as discussed before by us-
ing the scoring function that has been implemented in the retrieve-with-explanation
command in RacerPro. This issue will be discussed later, after describing the rules
for the two aggregates mentioned above.

The rules for the explanation of an instance of Meal Cover are as follows:

Meal Cover(X) ←− PLATE(Y), FORK(Z),
KNIFE(W), Spoon(V),
near-right-of(Y,Z),
near-left-of(Y,W),

6This is equivalent to near-right-of(IND-2, myCup), because the role near-right-of is the inverse
role of near-left-of.

32

Figure 3.8: The top-down Rule for the Combined Cover Aggregate

near-left-of(Y,V),
has-part(X,Y), has-part(X,Z),
has-part(X,W), has-part(X,V)

Meal Cover(X) ←− PLATE(Y),
FORK(Z), Spoon(W),
near-right-of(Y,Z),
near-left-of(Y,W),
has-part(X,Y),
has-part(X,Z), has-part(X,W)

Meal Cover(X) ←− PLATE(Y),
FORK(Z), KNIFE(W),
near-right-of(Y,Z),
near-left-of(Y,W),
has-part(X,Y),
has-part(X,Z), has-part(X,W)

Meal Cover(X) ←− PLATE(Y),
Spoon(Z), KNIFE(W),
near-left-of(Y,Z),
near-left-of(Y,W),
has-part(X,Y),
has-part(X,Z), has-part(X,W)

33

Meal Cover(X) ←− PLATE(Y),
Spoon(Z)
near-left-of(Y,Z),
has-part(X,Y), has-part(X,Z)

Meal Cover(X) ←− PLATE(Y),
FORK(Z)
near-right-of(Y,Z),
has-part(X,Y), has-part(X,Z)

Meal Cover(X) ←− PLATE(Y),
KNIFE(Z)
near-left-of(Y,Z),
has-part(X,Y), has-part(X,Z)

Meal Cover(X) ←− PLATE(Y), has-part(X,Y)

Dessert Cover(X) ←− CUP(Y),
TeaSpoon(Z)
SAUCER(W)
near-left-of(Y,Z),
on-same-position-of(Y,W),
has-part(X,Y),
has-part(X,Z), has-part(X,W)

Dessert Cover(X) ←− CUP(Y),
TeaSpoon(Z)
near-left-of(Y,Z),
has-part(X,Y), has-part(X,Z)

Dessert Cover(X) ←− CUP(Y),
SAUCER(Z)
on-same-position-of(Y,Z),
has-part(X,Y), has-part(X,Z)

Dessert Cover(X) ←−CUP(Y), has-part(X,Y)

Figures 3.9, 3.10, 3.11 and 3.12 show different combinations of the primitive
objects that could be the different explanations for an instance of Meal Cover. It
should be mentioned again that in this work the instance of Meal Cover will be
created in terms of a variable for the top-down direction; the reasoner then should
try to explain if this instance could exist or not; if yes, it determines which ABox
assertions are needed for the corresponding explanation.

Figure 3.9 shows a situation where all four primitive objects that a meal cover
could have are available in the scene and could be used to explain the instance
of Meal Cover. In figure 3.10, those situations in which only three out of four
primitive objects, which belong to an instance of Meal Cover, are available in the
scene are illustrated. The same story is also shown in figure 3.11 where instead of
three primitive objects, the instances of Meal Cover could only have two primitive
objects as their parts.

Finally, in figure 3.12, the situation where an instance of Meal Cover could be
explained due to the presence of only an instance of PLATE in the scene is presented.

As it is shown, in all of the situations above, an instance of PLATE should always

34

Figure 3.9: The top-down Rule for the Meal Cover Aggregate

be present because this is a necessary condition for the existence of an instance of
Meal Cover.

Figures 3.13 and 3.14 show the different rule definitions for the concept Dessert
Cover.

The first model in figure 3.13 shows the situation where all the objects that an
instance of Dessert Cover could have as its parts are present.

In the second model of figure 3.13 and in the first model of figure 3.14, those
situations in which only two (out of three) primitive objects, which belong to an
instance of Dessert Cover, are available in the scene are illustrated.

Finally, the second model of figure 3.14 shows the initial necessary (and sufficient)
condition for an instance of Dessert Cover where only an instance of CUP is avail-
able in the scene. This condition is also fulfilled in other models of Dessert Cover.

As discussed earlier, before forming the higher aggregates by using the top-down
rules, the ABox contains only the primitive objects that have been found in the
scene by the image processing tools. There are different approaches for how the
top-down rules for forming the higher aggregates are applied. In this work, two
different approaches are introduced7.

7The comparison between the results of each approach is studied and shown in Chapters 5
and 6.

35

Figure 3.10: The top-down Rules for the Meal Cover Aggregate using Three Prim-
itive Objects

3.1.2.1 Absolute-top-down

In this approach, the instances of the aggregates in the highest level are formed
first by applying the top-down rules. Each level has a higher priority than its lower
level and a lower priority than its higher level.

By applying this approach, the aggregates are formed starting from the highest
level and ending in the lowest level. If two concepts are in the same level, the order
by which they are formed does not matter. In our example, the instances of the

36

aggregate in the higher level, which is Combined Cover, are created first; then, the
instances of the aggregates in the lower level, which are the instances of Meal Cover
and Dessert Cover, are created.

3.1.2.2 Stepwise-top-down

This approach uses the same top-down rules used before; however, the order by
which these rules are called is different; namely, the instances of the aggregates in

Figure 3.11: The top-down Rules for the Meal Cover Aggregate using Two Primi-
tive Object

37

Figure 3.12: The top-down Rule for the Meal Cover Aggregate using One Primitive
Object

Figure 3.13: (top): The top-down Rule for the Dessert Cover Aggregate using
Three Primitive Objects – (bottom): The top-down Rule for the Dessert Cover
Aggregate using Two Primitive Objects

the lowest level are formed first. Each level has a higher priority than its higher
level and a lower priority than its lower level. For the scenario of this work, this

38

approach looks for the instances of Meal Cover and Dessert Cover that are in the
same level; then, for the instances of Combined Cover that are in the higher level.

Figure 3.14: (top): The top-down Rule for the Dessert Cover Aggregate using Two
Primitive Objects – (bottom): The top-down Rule for the Dessert Cover Aggregate
using One Primitive Objects

This method forms the aggregates starting from the lowest level and ends in the
highest level. If two aggregates are in the same level, the order by which they are
formed is not important.

3.1.3 Difficulties of top-down Rules with RacerPro
and Solutions

During the examination of the top-down rules in RacerPro, some errors and dif-
ficulties were observed. One problem was that the hypotheses, which were delivered
by RacerPro according to the top-down rules, were not the ones which were ex-
pected. Another problem was that the same results were repeated several times as
the outcome of the explanation command which were not always true.

Before discussing this issue with the RacerPro developers, the issues that caused
this behavior of RacerPro were sought.

39

To find out these issues the rules were studied on paper in order to see if they
match the scenario completely, and if they are able to deliver the desired results.
In the next step, the focus was only on one of the aggregates and its corresponding
top-down rules, for which the Dessert Cover aggregate was chosen.

In figure 3.15, the result in the second line has been delivered after calling the
retrieve-with-explanation in order to form the instances of Dessert Cover(in
case of existence).

Figure 3.15: Problem with the Scoring Function of the retrieve-with-explanation
Command

As it is shown, all the explanations look exactly the same and there is no difference
between the new individuals as well as the hypothesized assertions that are suggested
for the query in figure 3.158

By enabling the :show-score-p feature of the retrieve-with-explanation com-
mand, it is possible to see the scoring of the results and also more details about how
the explanations, such as the entailed assertions, their corresponding scores and the
old individuals that are used in the explanation, are constructed. These terms are
illustrated in figure 3.16.

The explanations shown in figure 3.16 suggest that an instance of CUP and
TeaSpoon should be grouped under an instance of Dessert Cover. This explanation
is correct according to the scene.

All of the assertions that are shown under entailed assertions are also correct;
however, in the first line of these assertions for the first explanation, the individual
FORK<16>, which is an instance of FORK, has appeared under the entailed
assertions as <top> although, as it was shown earlier, the concept FORK has
nothing to do with the concept Dessert Cover, and it was not mentioned in the

8The warning messages were ignored during the study of the cause of the issues at first. These
warning messages are addressed later in this Section.

40

Figure 3.16: Undesired Top Conjunctions in the Explanation

corresponding rules for dessert covers neither9.
This issue is also observed in other explanations where an instance of CUP

and an instance of SAUCER have been grouped correctly under an instance of
Dessert Cover as shown in figure 3.17.

In figure 3.17, the individual KNIFE<14> that is an instance of KNIFE has
been appeared under the entailed assertions, although there is no relation between
this individual (its corresponding concept) and the concept Dessert Cover.

The reason why the same results are suggested by RacerPro is the top conjunc-
tions. Each result contains the same explanations but different top conjunctions
under the entailed assertions.

It was attempted to eliminate these top conjunctions in the explanations by
changing the rule definitions. To do so, not terms were added into the rules to
avoid the unrelated objects to occur in the explanations. Unfortunately, this effort
was not successful.

Enabling the only-best-p option of the retrieve-with-explanation command
was not helpful because all the explanations that were repeated got the same score
again.

Despite the efforts mentioned above and some further efforts, the issue remained
unchanged, which resulted in some difficulties for the framework by preventing it to
distinguish between the correct explanations and the ones that were suggested as
a consequence of the bug in RacerPro. At this point, it was decided to inform the
development team of RacerPro about this issue.

Their respond to this issue was that the abduction rules in RacerPro also consider
the individuals that already exist in the ABox as possible bonds for the variables;
therefore, the top conjunctions are caused by expansion of these rules.

To illustrate this incident, the following top-down rules for the Dessert Cover

9The line (:instance FORK<16> top) is true by itself.

41

Figure 3.17: Undesired Top Conjunctions in the Explanation

are considered:

(define-rule (?d Dessert Cover)

(and (?c CUP) (?t TeaSpoon) (?c ?t near-left-of)

(?d ?c has-part) (?d ?t has-part)))

(define-rule (?d Dessert Cover)

(and (?c CUP) (?s SAUCER) (?c ?s on-same-position-of)

(?d ?c has-part) (?d ?s has-part)))

The description of these rules in RacerPro is shown in figure 3.18. Both rules are
expanded and described in the form of a union query. For the first, rule the term
(?t-ano1-ano1 top) and for the second, rule the term (?t-ano1-ano3 top) have
been added to their descriptions.

The developers of RacerPro said that these terms are added in the descriptions so
that the result of the union queries get the same arity although this is not necessary
for the queries; therefore, this issue could be considered as a bug.

The first solution that they gave was trying to rewrite the rules, in the following
form:

(define-rule (?d Dessert Cover)

(and (?c CUP) (?t TeaSpoon) (?c ?t near-left-of)

(?d ?c has-part) (?d ?t has-part)))

(define-rule (?d Dessert Cover)

(and (?c CUP) (?t SAUCER) (?c ?t on-same-position-of)

42

Figure 3.18: Undesired Top Conjunctions in the Description of the Rules

(?d ?c has-part) (?d ?t has-part)))

In the rewritten format of the rules the, same variable names are used for the
instances of TeaSpoon and SAUCER. The descriptions of these rules in the form
of a union query are illustrated in figure 3.19.

As it is shown in figure 3.19, there are no terms of top conjunctions in the descrip-
tions. The result of calling retrieve-with-explanation command forDessert Cover
is shown in figure 3.20. As it can be seen, the redundant results do not occur any-
more and the correct results are outputted.

It should be noted that this bug was fixed quickly and the issue with the different
variables was solved10. However, after adding the following rule, the same disturbing
issue occurred again. Figure 3.21 shows the reoccurrence of the top conjunctions in
the descriptions of the queries.

(define-rule (?d Dessert Cover)

(and (?c CUP) (?t TeaSpoon) (?s SAUCER)

(?c ?t near-left-of) (?c ?s on-same-position-of)

(?d ?c has-part) (?d ?s has-part) (?d ?t has-part)))

The team of developers of RacerPro were informed again about this issue. Mean-
while, other solutions were tested to deal with this problem.

One of the ideas that was tested was rewriting the rules so that the variable
10The error messages were also eliminated at this point.

43

Figure 3.19: Result of defining the Rules with the same Variable Names

Figure 3.20: Correct Explanation for the Rules that have the same Number of Tuples

names in one rule were not present in other rules. This solution failed because the
issue remained unchanged in the explanations.

The other idea was implementing a parser so that the results that contain a top
conjunction were going to be eliminated by the parser. This idea could be an optimal
solution, but it was not implemented due to time constraints.

Another solution was deactivating all the rules, then activating them one by
one, calling the retrieve-with-explanation command according to the active rule,

44

analyzing and asserting the explanations and finally deactivating the rule. This
procedure should be applied to all the rules. The final result should be the same
result as if the disturbing issue does not exist and all the rules are active. However,
deactivation/activation of the rules should be first implemented in RacerPro because
these options were not present in any versions of RacerPro.

Figure 3.21: Reappearance of the Top Conjunctions in the Description of the Rules

In the meantime, one of the supervisors of RacerPro suggested to redefine the
scoring function so that the explanations that contain the top conjunctions under
the entailed assertions and the hypothesized assertions get a lower score at the end;
as a result, they would automatically be eliminated by the only-best-p feature of
the retrieve-with-explanation command.

The suggested scoring function for this case is:

Score = (# entailed assertions) - (# hypothesized-assertions)
- (# TOP-conjunctions under the entailed assertions)

- (# TOP-conjunctions under the hypothesized assertions)

45

Each top conjunction in the result of an explanation has a negative effect on the
score of this explanation. This is an advantage for the explanations that do not
contain any top conjunctions.

The new scoring function should be implemented in LISP. With the help of the
supervisor, the scoring function called rasouli-paper-fn was implemented in LISP
as follows:

Figure 3.22: rasouli-paper Scoring Function in LISP

Figure 3.23: Result of using the rasouli-paper Scoring Function

etops contains the list of top conjunctions under the entailed assertions, and
htops contains the list of top conjunctions under the hypothesized assertions.

If the length of each list (number of the top conjunctions) is subtracted from the
length of the list of the entailed assertions (number of entailed assertions) following
by the length of the list of the hypothesized assertions (number of hypothesized
assertions), the correct score for each explanation will be calculated.

46

By using the order-by feature followed by the name of the new scoring function
(rasouli-paper-fn), it is possible to run the retrieve-with-explanation command
and choose the explanations based on their scores regarding the new scoring function.

Figure 3.23 shows the correct behavior of the reasoner for the instances ofDessert Cover
in the scene.

3.2 Strategies

In the previous Section, the question how the aggregates are formed using the
rules has been answered, but the question when these rules should be applied has
been remained unanswered.

The initial solution that could be used is to fire the rules for each frame of the
movie. This strategy may be the simplest solution, but it is not efficient at all
because it takes a long time for the framework to reach the last scene of the clip
and the user should wait for a long time to get the scene interpretation results.

Secondly, the information that each frame delivers is highly redundant compared
to the previous and next frames; therefore, the amount of the data that is gained
in each frame is mostly the same for the frames that are close to the current scene
that is being interpreted.

This solution also matches the normal behavior of a human being when he is
watching a movie and trying to analyze and make hypotheses for that movie. No
one can interpret a whole movie by watching just a few frames of that movie (ex-
cept detecting the primitive objects that are available in the frames which are not
important initially and belong to the low-level data).

In the normal behavior, a human viewer can come to some conclusions about
the movie in specific points in time, which depends surely on the person. The
interpretation times may vary from one person to another.

The moment that a human tries to interpret a scene of a movie based on the
observation that he has made so far, is called a Synchronization Point.

Accordingly, the frame that the user tries to interpret is named a Keyframe.
There are different ways to categorize a frame under the list of the keyframes. The
chosen approach is to specify if the primitive objects in the scene are moving or not.
If no moving object has been found in the scene and all the objects that are observed
are immobile, this frame could be added to the list of the keyframes. Since the sit-
uation where all the objects in the scene are constant may occur in many adjacent
frames, only one of these frames should be selected and added to the collection of
the keyframes. In this work, a keyframe is selected from a list of potential keyframes
that are next to each other in the following manner:

If a is the number of the first frame among the potential keyframes which
are all next to each other and b is the number of the last frame among them, the
frame that will be chosen and added to the list of the keyframes has the number c

47

and is calculated using this formula:

c = d a + b

2
e11 (3.1)

Each person uses its own method to interpret a keyframe. These methods could
be implemented in the form of different Strategies in a machine.

Since scene interpretation of machines should work as correctly and efficiently as
humans, the same terms such as Synchronization Point, Keyframe and Strategies
that a person uses should be implemented in the machines.

For identifying the keyframes, the tracking data that the image processing tools
deliver could be used. As shown in Section 2.2, to specify if a primitive object is
moving in a frame or not, there is a term for each frame, which appears as in the
tracking data: (PV MOVE (0 or 1)). If MOVE is set to 1, it means that the
object is moving, and if it is set to 0, it means that the object is standing still in
the scene.

If the MOVE properties of the objects are considered as binary variables and if
the result of disjunction of these binary variables (move properties) of the objects
in a frame is 0, it means that none of the objects in the scene is moving. Otherwise,
if the result of disjunction is 1, it means that at least one of the objects is moving.

In order to choose a keyframe, the frames are marked in the following:
When a frame with the disjunction result of 0 for the move properties of the

existing objects is reached, the number of this frame is marked as the beginning
frame a. The disjunction operation continues until the disjunction result of a frame
is changed from 0 to 1. The number of this frame is marked as b. By using formula
3.1, a keyframe with the number c is specified and added to the list of the keyframes.

It should be noted that the first frame and the last frame of the clip will also be
added to the list of the keyframes, even if moving objects are detected in the scene
of these two frames.

After the keyframes are identified and added to the list of the keyframes, a strat-
egy is needed to process them. In this work, three different strategies are introduced.
While working with the framework, the user can change the strategy, whenever he
wishes.

3.2.1 Optimist Strategy

An optimist person is someone who is confident and hopeful that the outcome and
the result of an operation is successful. In other words, he thinks positive that what
he sees and believes, remains true and unchanged. For this person, the observations,
he has made so far are facts, and he expects that they will not change in the future.

If a machine is considered an optimist, the same behavior that an optimist human
being has, should be implemented for this machine. In the context of this work, an
optimist machine should consider the primitive objects, which have been identified
in the scene of a keyframe, to be positioned in the same location until the last frame
of the clip, and that they would not change their locations.

11If the result is not a natural number, the ceiling of the result will be taken, because it is closer
to the end of the clip.

48

For example, if an instance of Spoon is the nearest spoon on the right side of
an instance of PLATE in the current keyframe, the optimist strategy assumes that
this spoon will remain on the right side of the plate until the last frame of the clip
has been reached.

Furthermore, it will assume that no other instances of Spoon will be put on
the right side of the instance of PLATE, between the plate and the initial spoon;
otherwise, the initial spoon is not the nearest spoon on the right side of the plate.

The result of this behavior is that the machine groups the instance of PLATE and
the instance of Spoon under the aggregate Meal Cover and adds the corresponding
instances and role assertions into the ABox.

3.2.2 Pessimist Strategy

A pessimist person is someone who has the tendency that the worst aspect of
a thing could happen. This person always considers the worst case scenario. This
means that he is not confident in what he has seen and observed so far; thus, he
remains restrained when dealing with an issue.

He may change his behavior when the end point of a story has been reached;
then, he is ready to express his views and interpretation about the whole case.

A pessimist machine ignores the observations in the scene and would not try to
explain the evidences that has been discovered so far until the last keyframe of the
clip has been reached. This means that the machine assumes the position of the
primitive objects that have been discovered and identified so far could be changed
and that the scene of the last keyframe could differ completely from the current
keyframe.

For example, if an instance of CUP is located on an instance of SAUCER, the
machine does not group them under the aggregate Dessert Cover because it assumes
that the instance of CUP could be removed from the instance of SAUCER or even
from the scene or could be put on another instance of SAUCER that would arrive
later in the scene.

This machine does not make any high-level interpretation until the last keyframe
has been reached. In other words, no high-level information will be asserted until
the end of the clip.

3.2.3 Realist Strategy

A person who thinks realistic is someone who observes everything as it is. He
has the attitude to accept the current situation while at the same time he thinks
that the current conditions and situations could change in the future; therefore, he
is ready to deal with the current situation as well as the situations in the future that
may differ from the current one.

The realist machine in the context of this work is a machine that explains the
observations that seem accurate in the current situation and ignores the observations
that are highly capable of change in the future.

As an example, the situation where an instance of KNIFE is the nearest knife
among all instances of KNIFE in the scene, that are next to an instance of PLATE,

49

is considered. In this situation, there are two possibilities for a realist agent:

1- If there is space for an instance of KNIFE between the instance of PLATE
and the nearest instance of KNIFE on the right side of the instance of PLATE,
the agent remains restrained and does not make any interpretation regarding the
current situation.

2- If the gap between the instance of PLATE and the nearest instance of
KNIFE on the right side of the instance of PLATE is so small that no other in-
stances of KNIFE are able to be placed on the right side of the instance of PLATE
closer to this instance, it means that the initial nearest instance of KNIFE on the
right side of the instance PLATE should be removed first so that a new instance of
KNIFE could be put next to the instance of PLATE.

In other words, the current situation seems to stay unchanged; therefore, the
realist agent tries to make high-level interpretation for the current situation by
grouping the instance ofKNIFE and the instance of PLATE under theMeal Cover
aggregate.

50

Chapter 4

Implementation

For showing and illustrating the result of the interpretation of the table cloth
scenario, a framework using the JAVA programming language and jRacer is imple-
mented.

The major task of this framework is showing the keyframes of the scene, marking
the objects that have been identified by the image processing tools with their ID
and outputting the high-level interpretations in different fields.

In this Chapter, an overview of the structure of the framework will be discussed
first. The implementation of each package of this structure will be shown afterwards.

4.1 Overview

The framework has many different tasks, which could be summarized as:

1- Analyzing the tracking data
2- Choosing the keyframes
3- Providing the graphical interface
4- Communicating with RacerPro using jRacer
5- Updating the ABox of the scene
6- High-level interpretation of the scene based on the chosen rules

and strategies by the user
7-Showing the results of the interpretation on the graphical interface

Each of these tasks is performed by one or more packages of the software. For
implementing the framework, Eclipse Galileo IDE, RacerPro and jRacer are used.
For the graphical part, JSwing1 is used. The main programming language used is
Java.

In the next Sections, the structure of the GUI and the framework will be described
in terms of software packages that are implemented.

1A Java GUI widget toolkit implemented by Sun Microsystems for Java developers as an API
to be used for implementing GUIs.

51

4.2 GUI of the Interpretation Framework
Understanding the results of the interpretation of a frame in a text format is a

hard task; specially, when the interpretation rules and methods should be tested
first in order to verify their correctness. The time-consuming task of tracing the
results by hand is another problem. Without a visual demonstration of the results,
it would also hard to view the resulting groups and instances of the aggregates.

To overcome these problems, a graphical user interface(GUI) is designed and
implemented. The images of the keyframes, the primitive objects and the resulting
aggregates can be shown on the GUI. It is also possible to choose between different
strategies and groups of rules for the interpretation steps. Finally, the time that the
framework needs to explain a scene is shown on the GUI when the interpretation of
a scene is finished.

Figure 4.1 shows the GUI of the framework. The most important parts of the
interface are marked by letters. The description of each part is explained in the
following lines:

A: Number of the frame that is being interpreted.

B: The image of the frame.

C: A primitive object with its ID. The blue color of the ID indicates that the
object has been identified in the previous keyframes.

D: A primitive object with its ID. The red color of the ID indicates that the
object has been identified in the current keyframes.

E: Instance of Meal Cover with its bounding box drawn with solid lines. The
objects inside the bounding box are the parts of the cover.

F: Instance of Dessert Cover with its bounding box drawn with solid lines.
The objects inside the bounding box are the parts of the cover.

G: Instance of Combined Cover with its bounding box drawn with dotted lines.
The objects inside the bounding box are the parts of the cover.

H: Slider showing the position of the keyframe in the clip.

I: First Frame Button - Going to the first frame.

J: Rewind Button - Going to the previous keyframe.

K: Forward Button - Going to the next keyframe.

L: Last Frame Button - Going to the last frame.

M: Exit Button - Finishing the interpretation.

52

F
ig
ur
e
4.
1:

G
U
I
of

th
e
Fr
am

ew
or
k

53

N: Indicating if a waitress has been seen in the clip.

O: Interpretation time - This is the time that it takes for the framework to
load the ABox, to interpret and to add the new assertions to the loaded ABox.

P: The objects that have been identified so far. The objects written in red
are the objects discovered in the current keyframe and the objects written in
blue are the objects found in the previous keyframes.

Q: Instances of Meal Cover. The objects belonging each cover are written in
black.

R: Instances of single covers. These are the covers that do not belong to any
instances of Combined Cover.

S: Instances of Dessert Cover. The objects belonging each cover are written
in black.

T: Instances of Combined Cover. The covers that form a combined cover are
written in their corresponding color.

U: Instance of the table. The type of the table and whether or not the table
is in a restaurant or at home is shown here.

W: Strategies Column - To choose a strategy for the interpretation of the scene.
This strategy could be changed by the user during the session.

X: Rules Column - To select a rule for the interpretation of the scene. The
rule could be changed by the user during the session.

The GUI starts by showing and interpreting the first frame 2 ; then, it shows
the results of the interpretation of this frame on the screen followed by the interpre-
tation time.

A user can change the rules and strategies or go to the next or previous keyframes.
The last frame 2 of the clip is the last frame that is going to be shown on the screen.

It should be noted that for each combination of the strategies and rules, a different
timer is set. Therefore, the user can see which approach is more ideal for the
interpretation of the frame, although this depends on the content of the media
document and the position of the current keyframe in the document3.

2Not necessarily a keyframe.
3More details regarding the verification and validation of the framework and GUI are discussed
in Chapter 6.

54

4.3 Packages
The framework is consisted of six packages. The structure of the framework and

the classes of each package and the relations between them are shown in figure 4.2.
trackingDataParser package was the first package that is implemented to parse

the tracking data file and transform the tracking data into a structure that is easier
for other packages to use.

For illustration of the data and the frames of the clip, the package graphics has
been implemented, which was mostly based on Java Swing.

In the package rules , the class for each group of rules is defined, which determines
how the framework should work in different situations based on the rules that have
been selected by the user.

The management of the frames is done by the frameManagement package.
This package also updates the information that is needed for the graphics package
to update the GUI of the framework.

To communicate with the RacerPro software the package racerInterface is used,
which includes the classes in the jRacer package provided by the Racer Systems
company.

Finally, the management of all the frames and the classes that include the neces-
sary information about how to handle the objects and frames of the scenes is done
by main package. This package also contains a class that is responsible for the
timing of the scene interpretation and registering the results.

4.3.1 Package trackingDataParser

This package was implemented for representing the tracking data in a user friendly
format in the first steps of this work.

Since it was a little hard to read the tracking data, for the initial phases of my
research, a parser was implemented to parse the tracking data file and gather the
information stored in the file and output them so that it becomes more readable.

This package contains the following four classes: PrimitiveObject, Bounding-
Box, NeighboringObjects and Parser.

The PrimitiveObject class is responsible for the presentation of a primitive
object in the framework. The presentation includes both the specification of the
object and its spatial relations with other primitive objects.

Each primitive object is specified by an ID, name(type), its corresponding posi-
tion, its bounding box4 on the scene and whether or not the object is moving or
is constant. This data is stored in the tracking data file. For the bounding boxes,
an extra class with the name BoundingBox is implemented, which contains useful
methods and functions specially for the graphical interface. The area of each object
is calculated using the bounding box and is added to the specifications of the object
by the framework.

The second part of the class contains the spatial relations between a given primi-
tive object and other primitive objects in the scene. An object could be on the right

4The smallest rectangle surrounding an object. In this work 2-dimensional bounding boxes
are used, which are also called also Minimum bounding rectangles.

55

or left side of another object if they do not have the same horizontal position. An
object could be either above or under another object, if they do not have the same
vertical position in the scene. If two objects have the same horizontal and vertical
position, it means that they are located on the same position on the scene.

For alleviating the job of the reasoner while working with the spatial relations
between the objects, these relations are specified for each object regarding other
objects based on the nearest object for each type in the scene. For example, if the
object a1 of type A is on the right side of the objects b1, b2 and b3 of type B and the
distance between a1 and b1 is smaller than the distance between a1 and b2 as well as
the distance between a1 and b3, it means that a1 is located closer to b1 ; thus, only
the object b1 will be considered for the object a1 as its right side relation regarding
the objects of type B.

Although only the spatial relations between the nearest objects for different types
are presented to the reasoner, the whole spatial relations of an object regarding other
objects(regardless of their type) are presented in the data presentation of an object5.

In order to distinguish between the information that is used for the reasoner and
the information that is extracted from the tracking data file, the NeighboringOb-
jects class was implemented. Each instance of this class contains an ID number, a
type and a position. Any primitive object that is identified has an array of Neigh-
boringObjects.

Finally, the Parser class uses these three classes for parsing the tracking data
and representing them in a way that is easy for the framework to work with. This
class gets the path of the tracking data as input and opens the file. The main
variable in this class is an array list of the instances of the ResultRegistry class.
Each of the instances in this array is responsible for a frame of the clip.

The parser reads the tracking data frame by frame, identifies the objects and
their corresponding specifications and constructs an instance of PrimitiveObject
for each object, and updates it in the list of the objects of the frame. For each object,
the spatial relations regarding other objects is also calculated and outputted6.

When the parsing of the tracking data is finished, the keyframes are spotted;
therefore, the contents of the variable move of the objects in each frame are logically
disjuncted7. If the result of the conjunction is 0, it means all the objects of the frame
are stable; as a result, this frame is a keyframe candidate.

If there is a series of candidate keyframes next to each other, the frame in the
middle of the series will be chosen and added to the list of the keyframes. The first
and the last frame of the clip are added to the keyframe list too.

Two keyframes that follow each other have to be at least 30 frames far from each
other, otherwise the latter one will be discarded.

An instance of the Parser class is used in the General class. In the main
package where the path of the file containing the tracking data of the clip is given
to the class Parser and the resulting keyframes list8 could be retrieved by calling

5This information is discarded, because it is not useful for the reasoner.
6Figure 2.3 shown in Chapter 2 is the resulting output of these steps.
7The objects of type Hand are all discarded when the parsing of the tracking data is finished;
therefore, they have no effect on the rest of the work.

8An array of the instances of class ResultRegistry.

56

Figure 4.2: UML Class Diagram of the trackingDataParser Package

the function getList() of this class.
The UML class diagram of this package is shown in figure 4.2.

4.3.2 Package graphics

This package provides the required graphical tools for updating the data in graph-
ical user interface (GUI) of the framework and is consisted of the four following
classes: UpdateGUI, DrawBox, MyButton and GuiManager. The UML class
diagram of this package is shown in figure 4.3.

The MyButton class supports the GUI with the buttons that are placed on it
and has three major tasks. Initializing the buttons is the first major task of this
class. Its second assignment is recognizing if a button is pressed. The third job of
this class is reacting to the action that is performed by pressing the button based
on the type of the button and the event that is occurred.

TheGuiManager class is the main class responsible for the establishment of the
GUI. This class uses JSwing components. In the first step, the main window of the
GUI and its size are initialized. The control buttons and the radio buttons for select-
ing the rules, the strategies and the labels will be added to the main window in the
next step. A slider is configured and appended to the window, showing the position
of the current keyframe in the clip. To show the content of the covers, separate scroll

57

panes for the instances of Objects, Meal Cover, Dessert Cover, Single Cover and
Combined Cover are created and embedded to the window. All the tasks regarding
the update of the GUI contents such as the timer, the appearance of the waitress
and, etc. (expect in the image area) are done by the methods that are implemented
in this class. This class adjusts the size and area of the contents of the GUI using
the finest size.

Figure 4.3: UML Class Diagram of the graphics Package

When the framework and RacerPro analyze the scene and the high-level interpre-
tations are asserted into the ABox, the new updated ABox should be illustrated on
the GUI. This is done in the UpdateGUI class. This class loads the picture of the
frame on the GUI. The information that is presented in the ABox should be shown
and marked on the picture.

Each object will be marked with its ID on the picture. If a new object has been
identified, its ID will be shown in red and if the object has been identified in the
previous keyframes, its ID will be marked in blue. This class also calculates the
bounding boxes of the new high-level instances such as instances of Meal Cover,
Dessert Cover and Combined Cover. Each high-level instance and its bounding
box will be shown by a color that is specified for them randomly. The objects that
are grouped under a high-level instance are also included in the bounding boxes of
the higher-level instances.

58

When the user asks the framework to analyze the next keyframe by pressing
the Next Button, the GUI shows a message informing the user to wait until the
interpretation of the keyframe is finished. When the interpretation is done, the
package discussed above gets the new data from the KeyFrameManager 9 and
updates the contents of the GUI.

4.3.3 Package frameManagement

This package, which manages the operations between RacerPro and the frame-
work, contains the following two classes: ClipManager and KeyFrameManager.

In the ClipManager class, first, the list of the primitive objects which are
discovered by the image processing tools and saved in the tracking data file is loaded.
In the next step, the picture of the frame is placed in the image area of the GUI.
This class also decides whether or not an instance of Waitress should be added to
the scene. If it decides to add an instance of Waitress, it should also determine the
frame number in which this instance should be added. Based on the combination of
the rules and the strategies, the corresponding instance of theKeyFrameManager
class is initialized for the current frame. The timer of the framework starts when
the KeyFrameManager class takes the control.

An instance of KeyFrameManager is responsible for a specific keyframe. In
this class, for each combination of the rules, the strategies and the position of the
keyframe in the clip (frame number), a separate ABox is created. After adding the
individuals (primitive objects) and role assertions to the ABox, the methods of the
corresponding interpretation class are called based on the rules and the strategies
for the explanation of the ABox (scene).

If the Optimist strategy is selected, all the role assertions identified between the
individuals by the parser are asserted. For the Pessimist, no role assertion is added
(unless the last frame has been reached). Finally, for the Realist strategy, those
roles which appear to remain until the end of the clip are asserted into the ABox.
After finishing the interpretation of a scene and before starting the next level, the
framework performs the closing operation mentioned in 3.3.

When the closing operation ends, the control goes back to the ClipManager
class. This class stops the timer and prints the time between the loading of the
ABox and the end of the interpretation on the GUI. Afterwards, the content of the
GUI text boxes is updated. The new content is delivered by running the command
"(retrieve (?x) (?x C10))" for each desired concept. RacerPro answers this query
by returning the list of the individuals, which are the instances of C.

After updating the content of the GUI, the framework waits for an event triggered
by the user such as changing the rule or the strategy of interpretation of the frame
(using the buttons). If the exit button is pressed, this class closes the connection
with the RacerPro.

An instance of the ClipManager class should be available in the General class
in the package main. However, before that, the tracking data should be presented
as discussed in Section 4.3.1.

9More details are available in the description of the frameManagement package.
10C stands for a concept.

59

4.3.4 Package rules

The task of this package is controlling the interpretation of the scene based on the
rule that is selected by the user in the GUI. The different rule groups are Absolute-
bottom-up,Absolute-top-down, Stepwise-bottom-up and Stepwise-top-down
and their corresponding classes are AbsoluteBottomUpRules, AbsoluteTop-
DownRules, StepwiseBottomUpRules and StepwiseTopDownRules. In all
of these classes, the command retrieve-with-explanation is used for the interpre-
tation.

In the classes responsible for the rules with bottom-up directions, the reasoner
and framework try to explain the existing assertions. In other words, if the head of
a rule matches an assertion (either a concept or a role assertion) the reasoner tries
to find an explanation that matches the body of the rule.

It is possible that the assertion matches the head of different rules. Therefore,
different explanations could be delivered by the reasoner for the same assertion. Only
the explanations that do not cause the ABox to become inconsistent are accepted11.
If more than one consistent explanation is found, those with the highest score will
be selected and asserted into the ABoxes.

The main difference between the AbsoluteBottomUpRules and StepwiseBot-
tomUpRules classes is that in the first class, the aggregates are created by the
primitive objects; however, in the second class, the aggregates in each level are
created using the primitive objects or aggregates in the lower level. For example,
the instances of Meal Cover or Dessert Cover in this class are generated using
the primitive objects and the instance of Combined Cover are created using the
instances of Meal Cover or Dessert Cover.

In the classes containing the top-down rules, the framework and the reasoner try
to find instances of a desired aggregate based on the observations that are available
in the ABox. In other words, it will be attempted to explain the observation by
creating aggregates that verify the occurrence of these observations and events.
In this situation, all or some of the observations are used as entailed assertions
to generate the aggregates by hypothesizing concept or role assertions. The less
hypothesized assertions and the more entailed assertions are used, the more reliable
the explanation is.

In the AbsoluteTopDownRules class, it will look for the aggregates in the
highest level first, whereas in the StepwiseTopDownRules class, it will look for
the aggregates in the lowest level. In the table cloth scenario, the first class tries to
create an instance of Combined Cover first and then the instances of Meal Cover
and Dessert Cover. The opposite happens in the second class.

It should be mentioned that these classes are not implemented hard-coded;
therefore, if the pattern of the scenario in this work changes, these classes should
not be re-implemented.

The rule patterns for each class are saved in separate files under the folder Rules.
Before the interpretation begins, the rules should be loaded in RacerPro. This is
done in the LoadRules class. When an instance of this class is created, the previous
rules, which are defined in the reasoner, will be deleted first and the new rules are

11This is possible by enabling the final-consistency-p feature of the explanation command.

60

read from the corresponding file and loaded into the reasoner. This option makes
the definition of the rules independent of how the rules should be used and fired in
the framework.

4.3.5 Package racerInterface

This package is based on the JRacer API12 provided by the Racer Systems Com-
pany to access the server of RacerPro. JRacer uses a socket-based interface for the
connection to RacerPro. This is implemented in the RacerClient class. One of the
most important classes in this package, is the RacerStubs class in which for each
Racer function, a Java function is represented with the same signature.

In addition to this package, the RacerCall class is implemented for establishing
a connection with RacerPro using the arguments required for this work, whenever a
connection is needed between the framework and RacerPro. The port 8088 and the
localhost as the IP are used for opening the connection. After opening the connec-
tion, the RacerPro is fully reset if desired by the user, and the logging-on option is
enabled. This makes it possible to see all the operations done in RacerPro while the
framework is running; therefore, the debugging of the framework regarding RacerPro
becomes easier. By closing the connection, the logging-on option is disabled.

4.3.6 Package main

This package contains the classes that start the framework and track the results
of the interpretation and includes the following three classes: ResultRegistry, In-
terpretationTimer and General.

The ResultRegistry class registers the results of the interpretation. For each
combination of frame numbers, rules and strategies, the duration of the interpre-
tation is registered separately. Since there are three strategies and four different
rule types in this work, for each frame twelve different interpretation times could be
measured. Each of these twelve interpretation times is set once for a frame. Thus, if
a frame is revisited in a situation13 that has been visited before, the same interpreta-
tion time for that situation that has been measured before, will be outputted on the
GUI. For measuring the time, the InterpretationTimer has been implemented in
which the time of an event could be measured by using the start and stop functions.

Finally, the class General that contains the static void main() function is the
class that starts the framework. First, an instance of the Parser class is created to
read and parse the tracking data from the tracking data file and hand over these data
in a framework-friendly presentation. In the next step, it establishes a connection
with RacerPro and loads the TBox in the reasoner. In the end, the GUI of the
framework is started and the interpretation of the keyframes begins. The results of
running this class are shown in the next Chapter.

12The JRacer API can be downloaded from
http://www.racer-systems.com/products/download/nativelibraries.phtml .

13A combination of a rule and a strategy.

61

Chapter 5

Tests and Results

This Chapter focuses on the results of the interpretation done by the framework
for the video document introduced in the previous Chapters.

The results of running the framework in two different states are illustrated in the
first Section. The first situation is where a user has chosen the Stepwise-bottom-
up rule and the Optimist strategy. In the second example, the rule is changed to
Absolute-top-down and the strategy is switched to Realist.

In the second section, a comparison between the results of interpretation based
on different combinations of rules and strategies is shown. Each combination is
demonstrated graphically as well as in tables.

5.1 Results of Run

In this Section, the interpretation results for two different situations will be
demonstrated and discussed. The first situation is where the Stepwise-bottom-up
rule and Optimist strategy are selected. In the second situation, the Absolute-
top-down rule and Realist strategy are chosen. For simplification, the first situa-
tion is called SBUO and the second situation is called ATDR1.The interpretation
results for each combination of rules and strategies are illustrated at the end of this
work.

5.1.1 Rule: Stepwise-bottom-up, Strategy: Optimist

The framework starts with the interpretation of the first frame of the clip. As
it can be seen, the first frame is an empty table, and no primitive objects are
identified in this frame (figure 5.1). It should be mentioned that the first frame is
not a keyframe.

In frame 86 (the first keyframe), a plate and a saucer have been identified by the
image processing tool2. Since these objects have been appeared in this frame for

1The full description of the abbreviations used in this Chapter are illustrated in table B.1.
2The information in the tracking data file contains the results of the image processing tool used
by KOGS[11].

62

Figure 5.1: Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 2

the first time, they are written in red color in the image area and also listed in red
under the list of the objects.

Figure 5.2: Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 86

The appearance of the plates points to the existence of an instance ofMeal Cover
in this frame and as it is shown in figure 5.2, an instance of Meal Cover with the

63

name Cover1 3 is instantiated in this frame that can be explained by the presence
of the plate. Since the instance of Meal Cover in this frame does not belong to an
instance of Combined Cover, the cover is listed under the single covers. Because
only one cover has been instantiated by the framework for this frame4, the table has
been designated as a single table.

The next keyframe is frame 262 that is illustrated in figure 5.3. This figure shows
that a cup and a saucer have become apparent in this frame. The objects that have
been discovered in the previous keyframe continue to exist in this frame; therefore,
their IDs are marked in blue in the image area, and they are also listed in blue under
the list of the objects. The cup and the saucer under it are grouped under an instance
of Dessert Cover with the name Cover6. In addition, the description of this cover
matches the Dessert Cover with the name Bitter Coffee Cover ; thus, this cover
is listed as an instance of Bitter Coffee Cover under the list of Dessert Covers.

Figure 5.3: Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 262

Since the instance of Dessert Cover in this frame is on the right side of the
instance ofMeal Cover and there are no instances of Dessert Cover between them,
these two covers build an instance of the higher Combined Cover aggregate with
the name Cover11. The placement of the primitive objects in this frame suggests
that the instance of the Combined Cover has been created as an explanation for the
scene of this frame by mistake. This surmise is verified as the framework continues
with the interpretation of the next keyframes.

3The names for the new individuals are generated by RacerPro automatically. The framework
only defines the new prefix for the new individuals. The prefix chosen for this work is the
word Cover.

4Independent of their types.

64

Although three covers have been constructed as explanations for the content of the
table in this frame, this table has been characterized as a table for a single person
because the Combined Cover is a higher aggregate compared to the other two
aggregates (Meal Cover and Dessert Cover). On the other hand, the instances
of these two lower aggregates belong to an instance of Combined Cover and since
no one shares a cover with another person, only one person can sit at this table.

In figure 5.4, the interpretation for the frame 458 is demonstrated. In this frame,
four covers have been created. The new instance with the name CUP<6> points to
a new instance of Dessert Cover, which could be considered with the other instance
of Dessert Cover that was found in the previous cover. This new instance has
the name Cover11 and contains CUP<6> and TeaSpoon<5> individuals. Since
CUP<6> that is on the right side of PLATE<2> is located closer to this plate
than CUP<3>, the instance of Combined Cover, which has been found in the
previous keyframe, is discarded and the new instance of Combined Cover named
Cover24 has been created. This cover contains the instance of Meal Cover that
was created in the previous keyframe and the new instance of Dessert Cover.

Figure 5.4: Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 458

The absence of a teaspoon in Cover11 has caused this cover to become an instance
of BITTER COFFEE COVER. However, the situation is different on the other
side of the table. The CUP<3>, SAUCER<1> and TeaSpoon<5> individuals
are grouped under an instance of Dessert Cover with the name Cover6. This cover
contains all the possible primitive objects that an instance of Dessert Cover could
have. Cover6 has the type TEA Cover and is listed under the single covers because
it does not belong to an instance of Combined Cover.

In general, two independent covers are found in this frame, and two persons can
now sit at this table. Therefore, the type of the table is Double Table.

65

Figure 5.5: Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 692

A new situation is seen in the next keyframe. Figure 5.5 shows that in keyframe
692, six covers have been found, namely two instance Meal Cover, two instances of
Dessert Cover and two instances of Combined Cover.

Figure 5.6: Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 818

Since in this keyframe a new instance of PLATE, named PLATE<8>, has been

66

Figure 5.7: Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 888

added to the scene, a new instance ofMeal Cover with the name Cover12 is created.
Together with the instance of Dessert Cover that has been found in keyframe 458
and contains SAUCER<1>, CUP<3> and TeaSpoon<5>, they build up a new
instance of Combined Cover. This new instance of Combined Cover has the name
Cover46.

Another new individual that is identified in this frame is an instance of KNIFE
that will be added to Cover1 which is a meal cover. In this frame,Cover1 and
Cover20 build an instance ofCombined Cover with the name Cover42, and Cover12
and Cover34 build an instance of Combined Cover named as Cover46.

It should be noted that since no waitress has been seen so far, the framework
assumes that the table is located at home. This assumption turns to be wrong as in
the next keyframe a waitress will be seen (figure 5.6. From this point, the reasoner
and framework know that the table is not located in a house but in a restaurant.
This is also shown for frame 818 in the table specifications on the lower right corner
of the GUI (Figure 5.6). The new individual Spoon<7> is added to the instance
of Meal Cover that contains the individualPLATE<2>.

The new instance of Spoon in frame 888 causes the meal cover on the right side
to get the type SOUP Cover as figure 5.7 shows. According to the interpretation
time, the closer it gets to the end of the clip, the longer it takes to interpret the
scene.

Fork<13> in the keyframe 970 is the first individual of type FORK that has been
identified from the beginning of the clip. This individual is added to the Cover12
and gives this cover the type Dinner Cover. The other covers keep the same most
specified types that have been shown and discussed in the previous keyframes.

As illustrated in 5.8, Cover12 contains all possible primitive objects that an in-

67

Figure 5.8: Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 970

Figure 5.9: Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 1022

stance of Meal Cover could have; hence, no additional primitive object of type
Meal Objects could be added to this cover anymore. In addition, the type of the in-
stance of Combined Cover that contains Cover12 and Cover31 (shown in 5.8)
has been updated to DINNER WITH BITTER COFFEE COVER because

68

Figure 5.10: Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 1126

Figure 5.11: Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 1220

the instance of Meal Cover that belongs to this cover has the type DINNER
COVER and the instance of Dessert Cover that belongs to this cover has the
type BITTER COFFEE COVER.

In the next keyframe (figure 5.9), the only difference is the appearance of the indi-

69

Figure 5.12: Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 1246

vidual KNIFE<14>. As it is shown, this individual is added to theCover15. Figure
5.10 shows that both instances of Dessert Cover in the next keyframe have the type
TEA COVER. As a result, the type of the instance of instance of Combined Cover
on the left side is changed to FULL DINNER COVER. This cover contains all the
different primitive objects that are introduced in this work.

Finally, the individual FORK<16> in frame 1220 causes all the covers to become
full; all possible primitive objects that each cover could contain is listed under
these covers. In other words, the two instances of Meal Cover both have the type
FULL DINNER COVER and the two instances of Dessert Cover both have the
type TEA COVER. The resulting instances of Combined Cover both have the
type FULL DINNER WITH TEA COVER. Therefore, the type of the table is
changed to FULL DINNER WITH TEA as shown in figure 5.11.

Frame 1220 is the last keyframe in the clip. As mentioned before, the interpre-
tation will also be done for the last frame of the clip. Figure 5.12 shows the last
frame of the clip, frame 1246. No new individual is found in this frame and the
individuals listed for this frame are the primitive objects that have been identified
in the previous frames.

It takes 24.217 seconds for the framework and the reasoner to interpret the
last frame of the clip. The average interpretation time for the keyframes is 11.369
seconds.

Since the clip has 1246 frames and the average interpretation time has almost
been reached by frame 888, it could indicate that almost 71.26% of the frames
are interpreted below the average interpretation time of the frames. In Section 5.2,
these time and percentage calculations will be studied more.

The graph in figure 5.13 shows that how the interpretation time changes as the

70

frame number increases. The average time is shown with a green line. Using MatLab,
the interpolation for the interpretation time has been calculated and drawn with a
red line. The interpolation shows a linear behavior for the interpretation time of
the scene regarding the frame number when the Stepwise-bottom-up rule and
Optimist strategy are selected.

Frame Number Interpretation Time
Number of Objects (seconds)
2 0 0.336
86 2 0.371
262 4 1.167
458 6 3.733
692 8 7.925
818 9 9.976
888 10 11.175
970 11 14.83
1022 12 18.162
1126 13 20.724
1220 14 23.817
1246 14 24.217

Average 8.58 11.369

Table 5.1: Results of Optimist - Stepwise-bottom-up Mode

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

frame number

ti
m

e
 (

s
e
c
)

Optimist − Stepwise Bottom Up

Optimist − Stepwise Bottom Up

Interpolation

Average Time

11.369 sec

Figure 5.13: Graph of Optimist - Stepwise-bottom-up Mode

71

Figure 5.14: Rule: Absolute-top-down, Strategy: Realist - Frame 458

5.1.2 Rule: Absolute-top-down, Strategy: Realist

In this Section, the results of the framework in the situation where Absolute-
top-down rule and Realist strategy5 are selected, will be studied.

In the first three keyframes, there are no differences between the results of the
interpretation compared to the previous Section, where the Stepwise-bottom-up
rule and Optimist strategy have been selected.

The first difference occurs in frame 458 as shown in figure 5.14. In this frame,
SAUCER<4> is not added to the instance of Dessert Cover that contains the
individual CUP<6>. As a result, this cover could not be specified more regarding
its type. This is not the case in figure 5.4.

As it could be read from figures 5.14 and 5.4, the interpretation time in ATDR
mode is almost 2.7 times longer than the interpretation time in SBUO mode. This
is because the framework tries to explain a specific relation between two individuals
in SBUO mode; there could be at most one explanation for the relation between
these two individuals, which should also match the rules and should not make the
ABox inconsistent. However, inATDR mode, instead of explaining the scene by ex-
plaining the relations between specific primitive objects in the scene, the framework
tries to build instances of higher aggregates using the primitive objects.

Since there could be a higher number of possible explanations in this mode com-
pared to bottom-up mode, the framework asks the reasoner to deliver the best
explanation if an instance of aggregate (in the form of a variable) is verifiable for
the current scene; therefore, the reasoner must study all possible explanations, dis-
card the inconsistent ones and choose the best explanation among the consistent

5ATDR

72

Figure 5.15: Rule: Absolute-top-down, Strategy: Realist - Frame 692

explanations by using the scoring function introduced in Section 3.1.3. Thus, the
reasoner and the framework need a longer time to analyze and process the results;
therefore, the interpretation time in ATDR mode is longer although the Realist
strategy is selected in this mode in which fewer numbers of assertions are present
in the ABox compared to SBUO mode. In other words, the interpretation time is
highly affected by the rule that is used for the interpretation.

The effect of the Realist strategy could be seen in figure 5.15. KNIFE<7> has
not been added to the instance of Meal Cover that contains PLATE<2>. This is
because there is still space for another instance ofKNIFE between PLATE<2> and
KNIFE<7>; therefore, the Realist strategy prevents the following role assertion
to be added to the ABox: near-right-of(KNIFE<7>, PLATE<2>). As a result,
the reasoner is not able to add KNIFE<7> to the instance of Meal Cover because
the mentioned relation is not present in the ABox6.

In spite of the difference described above, the same number of instances of
Combined Cover are instantiated at the same locations in the scene under different
modes.

Another effect of theRealist strategy is illustrated in figure 5.16 where Spoon<9>
has been added to the scene but not to the instance of Meal Cover on the left
side of the scene because there is still room for another instance of Spoon next to
PLATE<2>. In addition, the instance of Waitress, which has been added to the
scene, is considered; therefore, from this point, the framework knows that the table
is located in a restaurant.

6It should be mentioned that near-right-of(KNIFE<7>, PLATE<2>) could be
hypothesized for the current situation, but this results in a worse scoring result compared
to the other explanations regarding the Realist strategy.

73

Although the bounding boxes of the instances ofMeal Cover and Dessert Cover
only contain the individuals that they own, the bounding boxes of the instances
of Combined Cover also contain the individuals that they do not own; however,
regardless of the picture shown on the GUI, the framework and the reasoner both
are aware of exact individuals under all instances of Cover. This visual wrong effect
is due to the fact that the bounding boxes of the instances of Combined Cover are
calculated using the tracking data. As a result, when the bounding boxes are drawn
in the picture area, some individuals are under these bounding boxes but not under
the instances of Combined Cover. This effect can be seen in figure 5.17 in which
the old individual Spoon<9> has appeared in the bounding box of Cover1219,
which is an instance of Combined Cover, although this instance does not own it.

Figure 5.16: Rule: Absolute-top-down, Strategy: Realist - Frame 818

A main characteristic of the Realist strategy is shown in 5.18. The new instance
of KNIFE, which is called KNIFE<14>, is added to the scene. The Realist
strategy perceives that there is no room7 between PLATE<8> and KNIFE<14>;
therefore, it assumes that KNIFE<14> is related to PLATE<8>. As a result,
KNIFE<14> is added to Cover1594, an instance of Meal Cover that contains
PLATE<8>. If KNIFE<14> is relocated in the scene in a way that enough room
for another instance of KNIFE to be placed closer next to PLATE<8> is made,
Cover1594 will be discarded.

The interpretation time in figure 5.18 for frame 1022 is 151.009 seconds. This
time is 8.31 times longer than the interpretation time of this frame in SBUO mode,
which shows the difference between the top-down and bottom-up rules.

Finally, figure 5.19 shows the interpretation results for the last frame of the clip
7Horizontally

74

Figure 5.17: Rule: Absolute-top-down, Strategy: Realist - Frame 970

Figure 5.18: Rule: Absolute-top-down, Strategy: Realist - Frame 1022

in ATDR mode. As it is illustrated in this figure, the exact same results that
the framework has delivered for this frame in SBUO mode have been reached for
this frame in the ATDR mode. Since frame 1246 is the last frame of the clip, the
Realist strategy considers all the relations in the scene as facts and interprets the

75

Figure 5.19: Rule: Absolute-top-down, Strategy: Realist - Frame 1246

scene as if the Optimist strategy has been selected. However, the interpretation
time for the scene in this frame in ATDR mode is 1218.134 seconds, which is
50.3 longer than the interpretation time of this frame in SBUO. This is because of
the rule that has been chosen and not the strategy.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

frame number

ti
m

e
 (

s
e
c
)

SBUO vs. ATDR

Optimist − Stepwise Bottom Up

Realist − Absolute Top Down

Figure 5.20: SBUO vs. ATDR

Table 5.2 shows the interpretation time of ATDR for all the keyframes. Fur-

76

thermore, the graph in figure 5.20 shows the behavior of the interpretation time
for SBUO and ATDR as the frame number increases. The interpretation time of
SBUO is shown with a blue line and the interpretation time of ATDR is shown
with a green line.

Frame Number Interpretation Time
Number of Objects (seconds)
2 0 1.455
86 2 2.762
262 4 12.999
458 6 10.064
692 8 31.496
818 9 43.988
888 10 56.373
970 11 75.689
1022 12 151.009
1126 13 128.062
1220 14 213.984
1246 14 1218.134

Average 8.58 162.168

Table 5.2: Results of Realist - Absolute-top-down Mode

5.2 Comparison

In this Section, a comparison is made between the results of the test in different
situations. As mentioned before, the three strategies and the four groups of rules
result in twelve combinations. Two of these combinations have been studied in detail
in the previous Sections. The results for each rule group and each strategy are shown
and discussed in the following Sections.

5.2.1 Rules

As discussed before, each group of rules could be run in three different modes
according to the strategies. The best interpretation time average is achieved when
the Stepwise-bottom-up rule is chosen because the framework and the reasoner
only try to explain a specific relation between two individuals in this situation. In
other words, they do not have to consider other primitive objects that are present on
the scene. The disadvantage of that many explanations for the current scene accord-
ing to the primitive objects could be found, which many of them might contradict
each other or become the same score. As a result, the framework must study each
explanation to choose the best answer among them. The only-best-p feature of the
retrieve-with-explanation command of RacerPro delivers the explanations that

77

have become the highest score. Since it is possible that more than one explanation
becomes the highest score, it is the job of the framework to study these explana-
tions and chooses the best one of them. In other words, the probability that more
than one explanation is achieved after interpreting the relations between each two
individual that are present in the scene is higher than getting a single explanation.

The opposite situation is observed if the top-down rules are applied. Since in
this work, different rules are defined for each aggregate, the reasoner needs a longer
time to apply different rules for finding an instance of an aggregate. It is possible
again that the reasoner finds more than one explanation for the current situation in
the scene. However, since the rules have different number of tuples in their body, it
is most likely that one explanation becomes the highest score. This is illustrated by
the following example.

The following situation is considered:

CUP(C), SAUCER(S), TeaSpoon(T),
on-same-position-of(C,S), on-same-position-of(T,S),
near-right-of(T,C), near-left-of(C,T),

The reasoner is asked to retrieve and explain the instances of Dessert Cover with
the help of the rules shown in 3.13 and 3.14. Figure 5.21 shows the result of the query
where three different explanations could be found for this situation. As it could be
seen, the first explanation has a higher score than the other explanations. If the
only-best-p feature of the query was enabled, when the command was run, the first
explanation would have only been delivered by the reasoner; however, all possible
explanations that two of them are shown here additionally should be calculated in the
reasoner; therefore, the reasoner needs a longer time to consider all the explanations
and deliver the best results. If more than one explanation are delivered for the scene,
the framework most likely can use all of them as explanations, since based on the
definitions in the TBox, these explanations are independent of each other.

5.2.1.1 Stepwise-bottom-up

Figure 5.22 and table 5.3 show the results of applying the Stepwise-bottom-
up rules for the interpretation of the clip. The Optimist strategy shows a linear
behavior in this mode. The Pessimist and Realist strategies show almost the same
behavior. The interesting point is that in frame 1220, the interpretation time of the
Realist strategy is less than the interpretation time of the Pessimist strategy.
This is because of the less numbers of assertions that the Realist strategy causes
compared to Pessimist strategy.

The interpretation time average of the Realist strategy is almost 47.7% of the
Optimist strategy and 127.3% of the Pessimist strategy. Since between there is a
tradeoff between the amount of the data that the framework and reasoner explain
and the time that they need for the interpretation, the Realist strategy shows a
better performance if Stepwise-bottom-up rules are chosen.

78

Figure 5.21: Different Instances of Dessert Cover explaining the same situation

Interpretation Time (seconds)
Strategy

Frame # Objects Optimist Pessimist Realist
2 0 0.336 0.018 0.171
86 2 0.371 0.085 0.317
262 4 1.167 0.326 0.644
458 6 3.733 0.671 2.152
692 8 7.925 1.391 4.280
818 9 9.976 2.203 4.760
888 10 11.175 2.820 5.157
970 11 14.830 3.823 5.698
1022 12 18.162 4.871 6.249
1126 13 20.724 5.932 6.649
1220 14 23.817 7.615 7.163
1246 14 24.217 21.309 21.774

Average 8.58 11.369 4.255 5.418

Table 5.3: Results of Stepwise-bottom-up Rules

79

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

frame number

ti
m

e
 (

s
e
c
)

Stepwise Bottom Up

Optimist

Pessimist

Realist

Figure 5.22: Graph of Stepwise-bottom-up Rules

5.2.1.2 Absolute-bottom-up

As it can be seen in figure 5.23 and table 5.4, the Absolute-bottom-up rules
have a worse behavior compared to Stepwise-bottom-up rules regardless of the
strategy that has been chosen.

Since by Absolute-bottom-up rules only the primitive objects are used to build
the aggregates, no matter in which level these aggregate are located, the reasoner
needs a longer time to achieve the aggregates (if possible) in the higher levels by
only using the primitive objects compared to Stepwise-bottom-up rules where
each aggregate is built by the aggregates in the below level an only the aggregates
in the first level are built using the primitive objects.

By comparing the two variant of bottom-up rules, Stepwise-bottom-up rules
show a better performance than Absolute-bottom-up rules.

5.2.1.3 Stepwise-top-down

The behavior of Stepwise-top-down rules is shown in figure 5.24 and 5.5. The
curve of the Realist strategy shows that the interpretation time of this strategy has
increased and moved towards the curve of Optimist strategy, when the Stepwise-
top-down rules have been chosen.

5.2.1.4 Absolute-top-down

The results of the interpretation of the scene using Absolute-top-down are
shown in figure 5.25 and 5.6. As it could be seen, the curve of the Realist strategy
is almost near to the curve of the Pessimist strategy. Furthermore, the curve of the

80

Interpretation Time (seconds)
Strategy

Frame # Objects Optimist Pessimist Realist
2 0 0.204 0.606 0.138
86 2 0.34 0.9 0.285
262 4 2.764 0.342 0.56
458 6 39.686 0.843 13.758
692 8 158.912 1.658 80.517
818 9 239.896 2.365 100.602
888 10 367.308 3.094 125.429
970 11 558.989 4.276 155.359
1022 12 639.769 5.584 276.318
1126 13 868.087 6.717 231.817
1220 14 1193.036 8.735 294.838
1246 14 1175.135 1250.838 1339.154

Average 8.58 437.011 107.163 218.231

Table 5.4: Results of Absolute-bottom-up Rules

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

frame number

ti
m

e
 (

s
e
c
)

Absolute Bottom Up

Optimist

Pessimist

Realist

Figure 5.23: Graph of Absolute-bottom-up Rules

Optimist strategy has decreased compared to the Optimist curve in Stepwise-
top-down and even compared to Absolute-bottom-up.

This happens because in Absolute-bottom-up mode, the framework and the
reasoner look for the existence of instances of the aggregates in the highest level.
If such an instance is found and built, the instances of the aggregates in the levels
between will be instantiated automatically, whereas in the Stepwise-bottom-up

81

Interpretation Time (seconds)
Strategy

Frame # Objects Optimist Pessimist Realist
2 0 2.925 0.005 1.235
86 2 2.347 0.052 2.629
262 4 6.708 0.245 7.079
458 6 28.601 0.677 22.821
692 8 93.2 1.41 67.042
818 9 146.017 2.068 98.199
888 10 237.055 2.683 140.64
970 11 354.426 3.729 199.327
1022 12 529.205 4.786 293.224
1126 13 840.595 5.587 391.053
1220 14 1103.341 7.039 517.65
1246 14 1118.579 1185.311 1132.541

Average 8.58 371.917 101.133 239.453

Table 5.5: Results of Stepwise-top-down Rules

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

frame number

ti
m

e
 (

s
e
c
)

Stepwise Top Down

Optimist

Pessimist

Realist

Figure 5.24: Graph of Stepwise-top-down Rules

mode, the aggregates in the lowest level are instantiated first (if existing) and by
looking for the aggregates in the higher level, the current level will be revisited again;
therefore, the interpretation time increases in the Stepwise-bottom-up mode. In
other words, the interpretation time is lower for Absolute-bottom-up rules; thus,
this group of rules shows a better performance by the interpretation.

82

Interpretation Time (seconds)
Strategy

Frame # Objects Optimist Pessimist Realist
2 0 1.451 0.01 1.455
86 2 2.418 0.071 2.762
262 4 4.01 0.258 12.999
458 6 14.277 0.611 10.064
692 8 63.258 1.33 31.496
818 9 101.942 1.963 43.988
888 10 171.292 2.495 56.373
970 11 258.96 3.692 75.689
1022 12 451.81 4.832 151.009
1126 13 609.607 5.659 128.062
1220 14 920.009 6.851 213.984
1246 14 916.667 1029.03 1218.134

Average 8.58 292.975 88.067 162.168

Table 5.6: Results of Absolute-top-down Rules

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

frame number

ti
m

e
 (

s
e
c
)

Absolute Top Down

Optimist

Pessimist

Realist

Figure 5.25: Graph of Absolute-top-down Rules

5.2.2 Strategies

In general, regardless of the rule that has been chosen, the Pessimist strategy
has the lowest interpretation time average for each group of rules; however, as the
name of this strategy suggests, the amount of the data that will be delivered by the

83

framework during the clip is very low8. In other words, the user has to wait until
the last frame of the movie to get the interpretation results of the framework.

TheRealist strategy has a better interpretation time average than theOptimist
strategy and a worse interpretation time average than the Pessimist strategy.

Finally, theOptimist strategy explains and generates the highest amount of data
compared to the other two strategies, although it has a higher interpretation time
average (almost 1.8 times longer than Realist strategy and 3.44 times longer than
the Pessimist strategy).

Although the Pessimist strategy has the lowest interpretation time average re-
garding to the other two strategies, the amount of data and explanations that this
strategy delivers is very low and the user has to wait until the end of the movie to
become the explanations of the scene. As a result, the Realist strategy delivers
better information for the user, even if its interpretation time is longer than the
Pessimist strategy. Nevertheless, the user can rely on the explanations that the
Realist strategy delivers. Finally, the textbfOptimist delivers the highest amount
of data and explanations; however, not all the data that this strategy delivers is nec-
essarily correct because it does not consider that the situation might change later
in the clip. On the other hand, its interpretation time is longer than the other two
strategies.

In the following Subsections, the behavior of each strategy according to the rules
that have been chosen is shown and discussed.

5.2.2.1 Optimist

The graph in figure 5.26 shows the different behavior of the rules in case of
choosing the Optimist strategy. As it can be seen, the interpretation time in

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

frame number

ti
m

e
 (

s
e
c
)

Optimist

Stepwise Bottom Up

Absolute Bottom Up

Stepwise Top Down

Absolute Top Down

Figure 5.26: Graph of Optimist Strategy

8The data includes only the primitive objects and their low-level relations regarding one another.

84

SBUP mode is extremely lower than other modes. The curves of the other three
modes have almost the same shape; however, as it is shown, the Absolute-top-
down rule delivers the results in a shorter time compared to the red curve and the
green curve.

Furthermore, it is observed that the sudden increase of the interpretation time
for the ABUO, ATDO and STDO rules is almost by frame 800. This is the point
where half of the objects that are supposed to be added to the scene until the end
of the clip has already arrived at the scene.

Interpretation Time (seconds)
Rule

Frame # Objects SBU ABU STD ATD
2 0 0.336 0.204 2.925 1.451
86 2 0.371 0.34 2.347 2.418
262 4 1.167 2.764 6.708 4.01
458 6 3.733 39.686 28.601 14.277
692 8 7.925 158.912 93.2 63.258
818 9 9.976 239.896 146.017 101.942
888 10 11.175 367.308 237.055 171.292
970 11 14.83 558.989 354.426 258.96
1022 12 18.162 639.769 529.205 451.81
1126 13 20.724 868.087 840.595 609.607
1220 14 23.817 1193.036 1103.341 920.009
1246 14 24.217 1175.135 1118.579 916.667

Average 8.58 11.369 437.011 371.917 292.975

Table 5.7: Result of Optimist Strategy - Interpretation Time (seconds)

5.2.2.2 Pessimist

If the Pessimist strategy is chosen, the Stepwise-bottom-up again shows a
better interpretation time average; nevertheless, all the rules show the same behavior
before reaching the last frame of the clip, as shown in figure 5.27. The pessimist
strategy could be studied better in terms of the amount of time that the framework
needs to start the interpretation from the first frame and finish it in the last frame.

For the Stepwise-bottom-up rule, the entire runtime of the clip is 51.064
seconds. Compared to the interpretation time of the entire clip for Absolute-
top-down rule, which is 1056.8 seconds, the framework delivers the results of the
entire interpretation in ATDP almost 96% lower than in SBUP.

5.2.2.3 Realist

The graph in figure 5.28 shows that except for the Stepwise-bottom-up rule,
the corresponding curves for the other three rules have almost the same shape;

85

Interpretation Time (seconds)
Rule

Frame # Objects SBU ABU STD ATD
2 0 0.018 0.606 0.005 0.01
86 2 0.085 0.9 0.052 0.071
262 4 0.326 0.342 0.245 0.258
458 6 0.671 0.843 0.677 0.611
692 8 1.391 1.658 1.41 1.33
818 9 2.203 2.365 2.068 1.963
888 10 2.82 3.094 2.683 2.495
970 11 3.823 4.276 3.729 3.692
1022 12 4.871 5.584 4.786 4.832
1126 13 5.932 6.717 5.587 5.659
1220 14 7.615 8.735 7.039 6.851
1246 14 21.309 1250.838 1185.311 1029.03

Average 8.58 4.255 107.163 101.133 88.067

Table 5.8: Results of Pessimist Strategy - Pessimist Interpretation Time (seconds)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

frame number

ti
m

e
 (

s
e
c
)

Pessimist

Stepwise Bottom Up

Absolute Bottom Up

Stepwise Top Down

Absolute Top Down

Figure 5.27: Graph of Pessimist Strategy

however, the Absolute-top-down rule has a better interpretation time average
among these three rules.

A decrease in the interpretation time is observed for the Absolute rules between
frame 1022 and frame 1126. Frame 1126 is the point where a missing evidence,
(TeaSpoon<15>, arrives at the scene. The result of presence of this individual in
the scene of this frame causes that both of instances of Dessert Cover, which now

86

have all the individuals that they can own, get the same highest score; therefore, the
reasoner and the framework should not process the situation more to interpret the
scene, while in the previous keyframe (frame 1022), the absence of TeaSpoon<15>
caused a longer interpretation time. In other words, by the arrival of the missing
objects at the scene, the interpretation time could even become shorter9.

Interpretation Time (seconds)
Rule

Frame # Objects SBU ABU STD ATD
2 0 0.171 0.138 1.235 1.455
86 2 0.317 0.285 2.629 2.762
262 4 0.644 0.56 7.079 12.999
458 6 2.152 13.758 22.821 10.064
692 8 4.28 80.517 67.042 31.496
818 9 4.76 100.602 98.199 43.988
888 10 5.157 125.429 140.64 56.373
970 11 5.698 155.359 199.327 75.689
1022 12 6.249 276.318 293.224 151.009
1126 13 6.649 231.817 391.053 128.062
1220 14 7.163 294.838 517.65 213.984
1246 14 21.774 1339.154 1132.541 1218.134

Average 8.58 5.418 218.231 239.453 162.168

Table 5.9: Results of Realist Strategy - Interpretation Time (seconds)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

frame number

ti
m

e
 (

s
e
c
)

Realist

Stepwise Bottom Up

Absolute Bottom Up

Stepwise Top Down

Absolute Top Down

Figure 5.28: Graph of Realist Strategy
9Depending on the rule that has been chosen.

87

The graph in figure 5.29 shows all the curves of the twelve modes that have been
introduced in this work. In the next Chapter, this graph is studied in terms of
a scoring function determine the performance of each interpretation mode. The
average of interpretation time of each mode is calculated and shown in table 5.10.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

frame number

ti
m

e
 (

s
e
c
)

All Rules & Strategies

Optimist − Stepwise Bottom Up

Optimist − Absolute Bottom Up

Optimist − Stepwise Top Down

Optimist − Absolute Top Down

Pessimist − Stepwise Bottom Up

Pessimist − Absolute Bottom Up

Pessimist − Stepwise Top Down

Pessimist − Absolute Top Down

Realist − Stepwise Bottom Up

Realist − Absolute Bottom Up

Realist − Stepwise Top Down

Realist − Absolute Top Down

Figure 5.29: Graph of All Rules & Strategies

Rule
SBU ABU STD ATD Average

Strategy
Optimist 11.369 437.011 371.917 292.975 278.318
Pessimist 4.255 107.163 101.133 88.067 75.155
Realist 5.418 218.231 239.453 162.168 156.318

Average 7.014 254.135 237.501 181.070

Table 5.10: Average Interpretation Time Summary (seconds)

88

Chapter 6

Validation and Verification

This Chapter focuses on the performance of the framework and the accuracy of the
result that the framework delivers. As discussed in the previous Section, regardless
of the strategy and the group of rule that have been selected by the user, there
exist a tradeoff between the interpretation time and the amount of the data that
could be explained; therefore, to present and compare the quality of the results, a
scoring function is introduced in this Chapter. Before describing the characteristics
of the scoring function, three measurements are described in the first Section. In
the second Section, the scoring function is introduced and with its help, the results
of the interpretation are evaluated.

6.1 Preliminaries
The following measurements are introduced in [22] and discussed and studied in

[19] and [3].

precision: It shows the ratio of the documents that are correct and relevant
in the set of the results and could be measured as follows:

P =
(relevant documents) ∩ (retrieved documents)

(retrieved documents)
(6.1)

recall: Measures the ratio of the relevant documents in the result set to all the
relevant documents that are available and could be calculated as follows:

R =
(relevant documents) ∩ (retrieved documents)

(relevant documents)
(6.2)

F-Measure: Combines precision and recall to a single number that is the
harmonic mean of these two measurements [22] and is calculated
by using the following formula:

F1 =
2PR

(P + R)
(6.3)

89

F-Measure is a number between 0 and 1. The closer this number is to one, the
better the quality of the system is.

To illustrate the meaning of the measurements introduced in 6.1, 6.2 and 6.3, the
following example is considered:

There is a collection of 80 documents which 50 of them are relevant documents. If
a system retrieves 40 documents, which only 25 of them are relevant, the precision,
recall and F1

1 are calculated as follows:

P = 25
40 = 0.625, R = 25

50 = 0.5, F1 = 2∗0.625∗0.5
(0.625+0.5) ' 0.56

6.2 Scoring Function

In this Section, a scoring function is introduced to show the trade-off between the
interpretation time of a frame and the quality of the explanations that the framework
delivers. The main characteristics of this scoring function are the interpretation time,
the recall rate and the precision rate and F1 rate of the results of the interpretation
of each frame.

A short interpretation time of a frame could be a desire goal at first glance;
however, the amount of the data that could be explained correctly differs based on
the interpretation time. The lower the interpretation time is and the higher the
amount of the data that are explained, the better is the result of the framework
according to the strategy and rule that have been selected. The F1 is a suitable rate
to measure the quality of the result that the framework delivers as explanations of
the scene.

In the context of table scenario, the precision rate indicates how relevant are the
explanations that the framework and the reasoner deliver for the current scene and
the recall rate indicates which proportion of the relevant and correct explanations
in the scene are retrieved and found by the framework and the reasoner. F1 combines
these two rates to show the quality of the results. By calculating the F1 rate and
interpretation time of a frame, a scoring rate for the interpretation of a frame could
be defined as follows:

Sk =
F1(k)

tk
(6.4)

where k is the frame number, F1(k) is the F1 rate of the explanations delivered
by the framework and the reasoner for this frame, tk is the interpretation time and
finally, Sk is the interpretation score of the frame k.

To evaluate the performance of the framework and the reasoner for the entire
clip and summarize the scores of all keyframes, the following score function for the
entire interpretation is defined as follows:

S =

∑n
i=1 Si

n
(6.5)

1The F-Measure is also called F1 score.

90

where Si is the score of frame i, n is the number of keyframes and S is the score
of the entire interpretation. The scoring function S is the average of the scores of
the keyframes. The closer the average is to 1, the better the result of interpretation
for the strategy and rule, which have been selected, is.

The combinations of the rules and strategies could now be evaluated using the
scoring function defined above6.5.

Table 6.1 and figures 6.1 and 6.2 show the score of each combination of rules and
strategies.

Rule
SBU ABU STD ATD Average

Strategy
Optimist 0.3991 0.3043 0.0578 0.0697 0.2077
Pessimist 0.00427 0.00007 0.00007 0.00009 0.00113
Realist 0.5518 0.4686 0.0537 0.0561 0.2826

Average 0.3184 0.2577 0.0372 0.042

Table 6.1: Score of All Rules and Strategies

As it can be seen, the best score is achieved by choosing the Realist strategy
and Stepwise-bottom-up rules. Regardless of the rules that have been chosen, the
Pessimist strategy becomes the worse score compared to the other two strategies.
The Realist strategy shows the best performance among the strategies by achieving
the score average 0.2826. Finally, the best performance of the rules is achieved
by Stepwise-bottom-up rule and the worse performance by the Stepwise-top-
down. As as figure 6.3 shows, this behavior of the rules is also verifiable when the
Pessimist strategy is chosen.

91

Figure 6.1: Chart of the Scores of All Rules and Strategies

92

Figure 6.2: Chart of the Scores of All Rules and Strategies

93

Figure 6.3: Chart of the Scores of Pessimist Strategy

94

Chapter 7

Conclusion and Future Works

This Chapter focuses on the results of this diploma thesis. During the work, a
framework was implemented to interpret the video clips with the help of RacerPro
and the tracking data of the frames of the clips. The performance of the interpre-
tation using the frame is discussed in the first Section. In the second Section, the
cases of study, which could improve the performance of the work introduced and
studied in this work are mentioned.

7.1 Conclusion
Four groups of rules and three strategies for interpreting the scene were introduced
in this work; therefore, the interpretation was done in twelve different modes. To
evaluate these modes, a scoring function1 was introduced in Chapter 6. By examin-
ing the rules and the strategies using the scoring function, the following results were
achieved:

• The Realist strategy reached the best score compared to the Optimist
and the Pessimist strategies. The weakness of the Optimist strategy is the
high interpretation time. The average interpretation time of this strategy is
278.318 seconds. The advantage of this strategy is the high amount of the
data that is interpreted and explained. The weakness of the Pessimist strat-
egy is the low amount of data that the framework delivers if this strategy
is chosen; nevertheless, this strategy has the best interpretation time aver-
age, which is about 75.155 seconds. The Realist strategy balances the
advantages and disadvantages of the other two strategies by reaching the time
interpretation average of 156.318 seconds, which is 56.16% shorter than the
interpretation time average of the Optimist strategy but 207.99% longer the
interpretation time average of the Realist strategy. However, the Realist
strategy delivers a high amount of data as explanations of the scene compared
to the Optimist strategy.

The scoring function shows better the balance between the Optimist and
the Pessimist strategies, which has been achieved by the Realist strategy.

1Equation 6.5

95

The average score of each strategy is shown in table 7.1.

Strategy Average Score
Optimist 0.2077
Pessimist 0.00113
Realist 0.2826

Table 7.1: Average Score of the Strategies

As it can be seen, the score of the Realist strategy is 0.2826, which is 1.36
times better than the Optimist strategy and 250.8 times better than the
Pessimist strategy.

• Each group of rules explains and delivers almost the same amount of data;
therefore, the interpretation time has the major role if the performance of the
rules is to be considered. Table 7.2 shows the scores of each group of rules.

Rule Average Score
Stepwise-bottom-up 0.3184
Absolute-bottom-up 0.2577
Stepwise-top-down 0.0372
Absolute-top-down 0.042

Table 7.2: Average Score of the Rules

Between the groups of rules introduced in this work, the Stepwise-bottom-up
showed the best results, mostly because of the low interpretation time that is needed
when this rule is chosen; however, the bottom-up rules are only able to describe a
relation between two primitive objects or the existence of a primitive object. On the
one hand, this is an advantage for the bottom-up rules, since the interpretation of
a single concept or role assertion is a short process, on the other hand, the quality
of the explanation decreases, since the other primitive objects on the scene are not
considered, and the explanation might not be an accurate regarding the general
situation of the scene.

The top-down rules need a longer time for the interpretation of the scene,
since they consider the aggregates in the higher levels first and try to explain the
scene by instantiating the instances of these aggregates or the relations between
them; Because the best explanation should be chosen by the reasoner, the reasoner
needs a longer time to study all the results and since different explanations could be
found for a specific aggregate and in general, for the scene, the number of possible
explanations is a high number; even though, only a few or even a single one of
them is the best explanation. The Absolute version of the top-down rules shows
a better behavior than the Stepwise version because the levels in the hierarchy of
the aggregates and the concepts in Stepwise version are visited and processed more

96

than one time by the reasoner and therefore, the framework and the reasoner need
a longer time to interpret a scene using this group of rules.

7.2 Future Works
As mentioned so far, the interpretation time plays a major role for the explanation

of the scene, regardless of the rules and the strategies that are chosen. The per-
formance of the interpretation will be improved if the interpretation time becomes
shorter. To do so, many approaches could be studied.

One approach could be the idea mentioned in 3.1.3, which was deactivating all
the rules with the same head, activating them one by one (based on their priority
and completeness) and explaining the scene with the help of a single rule. If a rule
with a higher priority could explain the scene, the rest of the rules should be ignored;
otherwise, another rule should be activated and applied.

Another possibility is to switch between the rules and strategies regarding the
position of the frame, which is to be interpreted, in the clip. In other words, each
rule or strategy is active in specific point of time of the interpretation [8] [10] [7] [21].
For example, the interpretation could begin with a Pessimist strategy because the
interpreting framework is not aware of the situation in the scene at the beginning
of its work. The strategy could be changed to Realist when enough evidences are
present in the scene to explain some of the observations. By reaching the end of the
clip, the strategy could be changed to theOptimist strategy because the probability
that the primitive objects change their positions or be replaced becomes lower as
the clip reaches its end.

This could also be done for the rules. The interpretation can begin with the
bottom-up rules in order to interpret the initial observations in the scene. The
framework can specifies then which aggregates have the highest probability to be
instantiated on the scene; as a result, the framework is able to fire the corresponding
top-down rules of these aggregates. �

97

List of Figures

2.1 Basic Schema of the Primitive Objects and Aggregates 4
2.2 Tracking Data of Frame 192 . 5
2.3 Modified Tracking Data of Frame 192 6
2.4 Frame 192 . 7
2.5 RacerPorter: GUI of RacerPro . 8
2.6 Hierarchy of the Primitive Objects 10
2.7 Hierarchy of the Covers . 11
2.8 ER Diagram of Primitive Objects and Covers 16
2.9 ER Diagram of the Table . 21

3.1 bottom-up Rules for the Aggregate Meal Cover using the Instances
of PLATE and KNIFE . 24

3.2 bottom-up Rules for the Aggregate Meal Cover using the Instances
of PLATE, FORK and Spoon . 25

3.3 bottom-up Rules for the Aggregate Dessert Cover using the In-
stances of CUP and SAUCER . 27

3.4 bottom-up Rule for the AggregateDessert Cover using the Instances
of CUP and TeaSpoon . 28

3.5 bottom-up Rule for the Aggregate Combined Cover using the In-
stances of CUP and PLATE . 29

3.6 bottom-up Rule for the Aggregate Combined Cover using the In-
stances of Meal Cover and Dessert Cover 30

3.7 The retrieve-with-explanation Command 31
3.8 The top-down Rule for the Combined Cover Aggregate 33
3.9 The top-down Rule for the Meal Cover Aggregate 35
3.10 The top-down Rules for theMeal Cover Aggregate using Three Prim-

itive Objects . 36
3.11 The top-down Rules for the Meal Cover Aggregate using Two Prim-

itive Object . 37
3.12 The top-down Rule for the Meal Cover Aggregate using One Prim-

itive Object . 38
3.13 (top): The top-down Rule for the Dessert Cover Aggregate using

Three Primitive Objects – (bottom): The top-down Rule for the
Dessert Cover Aggregate using Two Primitive Objects 38

3.14 (top): The top-down Rule for the Dessert Cover Aggregate us-
ing Two Primitive Objects – (bottom): The top-down Rule for the
Dessert Cover Aggregate using One Primitive Objects 39

98

3.15 Problem with the Scoring Function of the retrieve-with-explanation
Command . 40

3.16 Undesired Top Conjunctions in the Explanation 41
3.17 Undesired Top Conjunctions in the Explanation 42
3.18 Undesired Top Conjunctions in the Description of the Rules 43
3.19 Result of defining the Rules with the same Variable Names 44
3.20 Correct Explanation for the Rules that have the same Number of Tuples 44
3.21 Reappearance of the Top Conjunctions in the Description of the Rules 45
3.22 rasouli-paper Scoring Function in LISP 46
3.23 Result of using the rasouli-paper Scoring Function 46

4.1 GUI of the Framework . 53
4.2 UML Class Diagram of the trackingDataParser Package 57
4.3 UML Class Diagram of the graphics Package 58

5.1 Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 2 63
5.2 Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 86 63
5.3 Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 262 64
5.4 Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 458 65
5.5 Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 692 66
5.6 Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 818 66
5.7 Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 888 67
5.8 Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 970 68
5.9 Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 1022 68
5.10 Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 1126 69
5.11 Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 1220 69
5.12 Rule: Stepwise-bottom-up, Strategy: Optimist - Frame 1246 70
5.13 Graph of Optimist - Stepwise-bottom-up Mode 71
5.14 Rule: Absolute-top-down, Strategy: Realist - Frame 458 72
5.15 Rule: Absolute-top-down, Strategy: Realist - Frame 692 73
5.16 Rule: Absolute-top-down, Strategy: Realist - Frame 818 74
5.17 Rule: Absolute-top-down, Strategy: Realist - Frame 970 75
5.18 Rule: Absolute-top-down, Strategy: Realist - Frame 1022 75
5.19 Rule: Absolute-top-down, Strategy: Realist - Frame 1246 76
5.20 SBUO vs. ATDR . 76
5.21 Different Instances of Dessert Cover explaining the same situation . 79
5.22 Graph of Stepwise-bottom-up Rules 80
5.23 Graph of Absolute-bottom-up Rules 81
5.24 Graph of Stepwise-top-down Rules 82
5.25 Graph of Absolute-top-down Rules 83
5.26 Graph of Optimist Strategy . 84
5.27 Graph of Pessimist Strategy . 86
5.28 Graph of Realist Strategy . 87
5.29 Graph of All Rules & Strategies . 88

6.1 Chart of the Scores of All Rules and Strategies 92
6.2 Chart of the Scores of All Rules and Strategies 93

99

6.3 Chart of the Scores of Pessimist Strategy 94

A.1 Rule: Absolute-top-down, Strategy: Realist - Frame 2 103
A.2 Rule: Absolute-top-down, Strategy: Realist - Frame 86 104
A.3 Rule: Absolute-top-down, Strategy: Realist - Frame 262 105
A.4 Rule: Absolute-top-down, Strategy: Realist - Frame 458 106
A.5 Rule: Absolute-top-down, Strategy: Realist - Frame 692 107
A.6 Rule: Absolute-top-down, Strategy: Realist - Frame 818 108
A.7 Rule: Absolute-top-down, Strategy: Realist - Frame 888 109
A.8 Rule: Absolute-top-down, Strategy: Realist - Frame 970 110
A.9 Rule: Absolute-top-down, Strategy: Realist - Frame 1022 111
A.10 Rule: Absolute-top-down, Strategy: Realist - Frame 1126 112
A.11 Rule: Absolute-top-down, Strategy: Realist - Frame 1220 113
A.12 Rule: Absolute-top-down, Strategy: Realist - Frame 1246 114

100

List of Tables

5.1 Results of Optimist - Stepwise-bottom-up Mode 71
5.2 Results of Realist - Absolute-top-down Mode 77
5.3 Results of Stepwise-bottom-up Rules 79
5.4 Results of Absolute-bottom-up Rules 81
5.5 Results of Stepwise-top-down Rules 82
5.6 Results of Absolute-top-down Rules 83
5.7 Result of Optimist Strategy - Interpretation Time (seconds) 85
5.8 Results of Pessimist Strategy - Pessimist Interpretation Time (seconds) 86
5.9 Results of Realist Strategy - Interpretation Time (seconds) 87
5.10 Average Interpretation Time Summary (seconds) 88

6.1 Score of All Rules and Strategies . 91

7.1 Average Score of the Strategies . 96
7.2 Average Score of the Rules . 96

A.1 Result of Absolute-top-down Rule - Realist Strategy 102

B.1 Abbreviation Table . 115

101

Appendix A

Result of Run for
Rule: Absolute-top-down,
Strategy: Realist

Frame Number Interpretation Time
Number of Objects (seconds)
2 0 1.455
86 2 2.762
262 4 12.999
458 6 10.064
692 8 31.496
818 9 43.988
888 10 56.373
970 11 75.689
1022 12 151.009
1126 13 128.062
1220 14 213.984
1246 14 1218.134

Average 8.58 162.168

Table A.1: Result of Absolute-top-down Rule - Realist Strategy

102

F
ig
ur
e
A
.1
:
R
ul
e:

A
bs
ol
ut
e-
to
p-
do

w
n,

St
ra
te
gy

:
R
ea
lis
t
-
Fr
am

e
2

103

F
ig
ur
e
A
.2
:
R
ul
e:

A
bs
ol
ut
e-
to
p-
do

w
n,

St
ra
te
gy

:
R
ea
lis
t
-
Fr
am

e
86

104

F
ig
ur
e
A
.3
:
R
ul
e:

A
bs
ol
ut
e-
to
p-
do

w
n,

St
ra
te
gy

:
R
ea
lis
t
-
Fr
am

e
26

2

105

F
ig
ur
e
A
.4
:
R
ul
e:

A
bs
ol
ut
e-
to
p-
do

w
n,

St
ra
te
gy

:
R
ea
lis
t
-
Fr
am

e
45

8

106

F
ig
ur
e
A
.5
:
R
ul
e:

A
bs
ol
ut
e-
to
p-
do

w
n,

St
ra
te
gy

:
R
ea
lis
t
-
Fr
am

e
69

2

107

F
ig
ur
e
A
.6
:
R
ul
e:

A
bs
ol
ut
e-
to
p-
do

w
n,

St
ra
te
gy

:
R
ea
lis
t
-
Fr
am

e
81

8

108

F
ig
ur
e
A
.7
:
R
ul
e:

A
bs
ol
ut
e-
to
p-
do

w
n,

St
ra
te
gy

:
R
ea
lis
t
-
Fr
am

e
88

8

109

F
ig
ur
e
A
.8
:
R
ul
e:

A
bs
ol
ut
e-
to
p-
do

w
n,

St
ra
te
gy

:
R
ea
lis
t
-
Fr
am

e
97

0

110

F
ig
ur
e
A
.9
:
R
ul
e:

A
bs
ol
ut
e-
to
p-
do

w
n,

St
ra
te
gy

:
R
ea
lis
t
-
Fr
am

e
10

22

111

F
ig
ur
e
A
.1
0:

R
ul
e:

A
bs
ol
ut
e-
to
p-
do

w
n,

St
ra
te
gy

:
R
ea
lis
t
-
Fr
am

e
11

26

112

F
ig
ur
e
A
.1
1:

R
ul
e:

A
bs
ol
ut
e-
to
p-
do

w
n,

St
ra
te
gy

:
R
ea
lis
t
-
Fr
am

e
12

20

113

F
ig
ur
e
A
.1
2:

R
ul
e:

A
bs
ol
ut
e-
to
p-
do

w
n,

St
ra
te
gy

:
R
ea
lis
t
-
Fr
am

e
12

46

114

Appendix B

Abbreviations

Abbreviation Rule Strategy
SBUO Stepwise-bottom-up Optimist
SBUP Stepwise-bottom-up Pessimist
SBUR Stepwise-bottom-up Realist
ABUO Absolute-bottom-up Optimist
ABUP Absolute-bottom-up Pessimist
ABUR Absolute-bottom-up Realist
STDO Stepwise-top-down Optimist
STDP Stepwise-top-down Pessimist
STDR Stepwise-top-down Realist
ATDO Absolute-top-down Optimist
ATDP Absolute-top-down Pessimist
ATDR Absolute-top-down Realist

Table B.1: Abbreviation Table

115

Bibliography

[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

[2] Wilfried Bohlken and Bernd Neumann. Generation of Rules from Ontologies
for High-Level Scene Interpretation. 2009.

[3] S. Castano, S. Espinosa, A. Ferrara, V. Karkaletsis, A. Kaya, R. Möller, S. Mon-
tanelli, G. Petasis, and M. Wessel. Multimedia Interpretation for Dynamic
Ontology Evolution. Oxford University Press.

[4] S. Espinosa, A. Kaya, and R. Möller. Formalizing Multimedia Interpretation
based on Abduction over Description Logic Aboxes. 2009. CEUR Workshop
Proceedings (Vol. 477).

[5] O. Gries, R. Möller, A. Nafissi, K. Sokolski, and M. Rosenfeld. Basic rea-
soning engine: Report on optimization techniques for first-order probabilistic
reasoning. Technical report, Hamburg University of Technology, 2009.

[6] O. Gries, R. Möller, A. Nafissi, K. Sokolski, and M. Rosenfeld. Casam domain
ontology. Technical report, Hamburg University of Technology, 2009.

[7] O. Gries, R. Möller, A. Nafissi, K. Sokolski, and M. Rosenfeld. Formalisms
supporting first-order probabilistic structures. Technical report, Hamburg Uni-
versity of Technology, 2009.

[8] Oliver Gries, Ralf Möller, Anahita Nafissi, Maurice Rosenfeld, Kamil Sokolski,
and Michael Wessel. A probabilistic abduction engine for media interpretation
based on ontologies. In Proceedings of the Fourth international conference on
Web reasoning and rule systems, 2010.

[9] Stefan W. Hamerich, Lars König, and Marcus E. Hennecke. Sprachdialogsys-
teme im kfz. KI, 19(3), 2005.

[10] Somboon Hongeng. Unsupervised learning of multi-object event classes. 2004.

[11] Lothar Hotz and Bernd Neumann. Scene interpretation as a configuration task.
KI, 2005.

[12] Lothar Hotz and Bernd Neumann. Learning and recognizing structures in
façade scenes (etrims) - a retrospective. KI, 24(1):63–68, 2010.

116

[13] Lothar Hotz, Bernd Neumann, and Kasim Terzic. High-Level Expectations for
Low-Level Image Processing. 2008.

[14] Lothar Hotz, Bernd Neumann, Kasim Terzić, and Jan Sochmann. Feedback
between low-level and high-level image processing. Technical Report Report
FBI-HH-B-278/07, Universität Hamburg, Hamburg, 2007.

[15] Andreas Jungbluth. über die kopplung von bildverarbeitung und bildverstehen.
Studienarbeit, TU Hamburg-Harburg, July 2009.

[16] Karsten Martiny. Query generation for high-level interpretation of multimedia
documents. Technical report, Technische Universität Hamburg-Harburg Insti-
tute for Software Systems, 2010.

[17] R. Möller and B. Neumann. Ontology-based Reasoning Techniques for Multi-
media Interpretation and Retrieval. In Semantic Multimedia and Ontologies :
Theory and Applications, pages 55–98. Springer, 2008.

[18] R. Möller, C. Schröder, and R. Carsten Lutz. Analyzing configuration systems
with description logics: A case study. Technical report, University of Hamburg,
Computer Science Department, 1996.

[19] Irma Sofia Espinosa Peraldi, Atila Kaya, and Ralf Möller. Formalizing Multi-
media Interpretation based on Abduction over Description Logic Aboxes. 2009.

[20] David Poole. Logic programming, abduction and probability. In FGCS, pages
530–538, 1992.

[21] David Poole. Logic programming, abduction and probability - a top-down any-
time algorithm for estimating prior and posterior probabilities. New Generation
Comput., 11(3):377–400, 1993.

[22] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, Upper Saddle River, NJ, 3. edition, 2009.

[23] Kasim Terzic, Lothar Hotz, and Bernd Neumann. Division of work during
behaviour recognition - the scenic approach. 2007.

[24] Kasim Terzic, Lothar Hotz, and Jan Sochman. Interpreting Structures in Man-
made Scenes - Combining Low-Level and High-Level Structure Sources. 2010.

117

118

	Introduction
	Table Cloth Scenario
	The Scenario
	Tracking Data
	Reasoner
	RacerPro

	TBox of the Scenario

	Rules and Strategies
	Rules
	Bottom-up Rules
	Absolute-bottom-up
	Stepwise-bottom-up

	Top-down Rules
	Absolute-top-down
	Stepwise-top-down

	Difficulties of top-down Rules with RacerPro and Solutions

	Strategies
	Optimist Strategy
	Pessimist Strategy
	Realist Strategy

	Implementation
	Overview
	GUI of the Interpretation Framework
	Packages
	Package trackingDataParser
	Package graphics
	Package frameManagement
	Package rules
	Package racerInterface
	Package main

	Tests and Results
	Results of Run
	Rule: Stepwise-bottom-up, Strategy: Optimist
	Rule: Absolute-top-down, Strategy: Realist

	Comparison
	Rules
	Stepwise-bottom-up
	Absolute-bottom-up
	Stepwise-top-down
	Absolute-top-down

	Strategies
	Optimist
	Pessimist
	Realist

	Validation and Verification
	Preliminaries
	Scoring Function

	Conclusion and Future Works
	Conclusion
	Future Works

	List of Figures
	List of Tables
	Result of Run for Rule: Absolute-top-down, Strategy: Realist
	Abbreviations
	Bibliography

