
Implementing Exhaustive Search for the
Coil-in-the-box Problem using MPI

Marcel Gehrke, Jan Winkelmann

Hamburg University of Technology
Institute for Software Systems

Abstract—This paper addresses parallelization of the exhaus-
tive search for solving the coil-in-the-box problem. Since exhaus-
tively solving the problem takes roughly 20 days, compairing
different techniques to prune the search tree is unrealistic. How-
ever, every subtree of the search tree can be treated individually,
an ideal setup for parallelization techniques. We present a simple
client server architecture using MPI and analyze experimental
data with respect to overhead; including work towards finding
start parameters that minimize overhead.

I. INTRODUCTION

This paper deals with the coil-in-the-box problem and how
to parallelize it. To find a coil-in-the-box, we need to find the
longest induced cycle in a hypercube. An induced cycle is a
simple cycle, in which only adjacent vertices in the sequence
are connected by an edge.

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Fig. 1. One illegal coil (left) and one maximal coil (right) for a 3D hypercube

Traversing from 011 to 111, we have to mark 011 and 001
as unusable. Therefore, we can not, as shown in Fig. 1 on the
left example, traverse from 101 to 000 over 001, but would
have to go over 100.

A simple way to search for a cycle through the hypercube,
we have to follow a few steps: when visiting a new vertex in
the hypercube, we mark the previous vertex and its neighbors
as unusable. The cycle through the hypercube is complete
when reach the point of origin again. In order to be able to
reach the origin again, we do not mark any vertex during the
first traverse. There is also a snake-in-the-box, which is the
longest induced path in a hypercube.

However, to find the longest induced cycle, all possible solu-
tions have to be considered. Therefore, we need to exhaustively

search the hypercube. The problem has been widely studied
and is assumed to be NP-Hard [1].

Due to the fact that we need to exhaustively search the
hypercube, the search space grows exponentially with the
number of dimensions. Unfortunately, it is not possible to
consider results of the 8th dimension, since it is computation-
ally infeasible to calculate the coil-in-the-box problem for it
[1]. Moreover, the computation for a 7 dimensional hypercube
should take roughly 470 hours, based on our experiments.

Notwithstanding, to be able to compare different improve-
ments on the algorithm, data up to the 7th dimension should be
considered. Parallelizing the traverse of the search tree reduces
the waiting time for the results. In order to parallelize it we
present an implementation using MPI.

The paper consists of the following parts: In section 2, we
explain the parallel process and MPI. We present the parallel
architecture of our implementation in section 3. Finally, we
conduct an analysis of overhead in section 4.

II. PARALLEL PROCESSING

This section gives a short introduction on the problems
of parallelizing the coil-in-the-box problem and the paral-
lelization method used. First, we mention the difficulties
of parallelizing the coil-in-the-box problem, followed by an
introduction into MPI and its basic communications. Third,
we discuss the specific types of MPI functions used in the
implementation.

A. Challenges in the context of coils
The obvious approach to parallelizing exhaustive search

problems is to delegate subtrees. We will call these chunks
of the search space subproblems from now on.

The delegation of subtrees yields a good approach for
parallelization since there is no computational overlap or
dependency between nodes. Unfortunately, there is no known
way to estimate the work needed for each subproblem. This
difference between subproblems makes balancing workload
difficult. It is, in fact, the most challenging part of the parallel
architecture design.

Our implementation is based on the passing of subtrees,
since exhaustive search divides into subproblems, which par-
allelize very well. The uneven workload distribution between
subproblems calls for various measures to reduce workload
imbalance.



B. MPI Primitives

Since we need minimal sharing between the copies of the
program, message passing was an easy choice as a paral-
lelization technique. And more specifically we chose Message
Passing Interface, MPI for short. Another advantage to MPI is
its high deployment rate on cluster systems. MPI implements
advanced functionality including broadcast sends, grouping of
nodes, and scatter-reduce. However, our simple approach does
not use this functionality.

MPI starts one copy of the program per requested core. The
copies pass messages through the interface provided by MPI.

The basic MPI functions allow one copy to communicate
with exactly one other instance. The send and recv func-
tions, allow to send and receive data from other instances.

Two relevant attributes to these basic modes of communica-
tion are synchronicity and whether they block or not. Blocking
communications do not return until the communication has fin-
ished on both sides. Conversely non-blocking communications
return immediately. Synchronicity of communication affects
only send functions and guaranty that the matching receive
also completed.

C. Synchronous, non-blocking communication

The implementation uses synchronous, non-blocking com-
munication only.

Synchronous, non-blocking communication allows the send-
ing of more than one message at a time and to ensure a
message has arrived, which is desirable, especially in a client-
server environment. Additionally, non-blocking receives make
it possible to check for the arrival for more than one message at
a time. The implementation employs non-blocking receives to
monitor for delegated subproblems as well as the termination
signal.

III. PARALLEL ARCHITECTURE

A. Implementation Details

We decided that a simple client server architecture would
be the best fit for us, since it is easy to implement, and
allows for clear separation of computation and parallelization
tasks. In our implementation, a simple server only delegates
subproblems to the clients who solve them.

Both server and client are written in C++. A typical run
has three phases: a build-up, a computation phase, and the
tear-down phase.

During program start up, in the build-up phase, only the
server works, while the clients are all idle. The server starts
by traversing the search tree up to a certain depth, which we
refer to as initial depth. While generating the subproblems,
the server can already find some solutions that will then be
written to an output file.

Then, the server sends out one subproblem to each client.
Afterwards, the server has to remove the problem to make sure
no problem gets sent out twice.

After the build-up phase, work is mainly on the client side,
while the server delegates new subproblems on demand. Upon
reception of a new subproblem, a client starts to calculate

all possible solutions and writes the results to an output file.
Having completed one subproblem the client immediately
requests a new subproblem.

After a client requests the last subproblem, the server
initiates termination in the tear-down phase.

Algorithm 1 Server Control Flow
P ← calculate subproblems until initial depth
send out a subproblem to each of the n clients
remove n subproblems from P
repeat

wait for a request
send out a subproblem
remove subproblem from P

until P is empty
set up a termination message for every client
wait until every client received termination message

In the build-up phase, the client enters a loop where it
waits for server delegations. Nonetheless, during the build-
up phase, the client has to wait for the server to generates
the subproblems. As soon as the client receives a subproblem,
it enters the computational phase and calculates all possible
solutions. Then the loop starts again and is repeated until
the client receives the termination message. On receipt of the
termination message, in the tear-down phase, the client leaves
the loop and terminates.

Algorithm 2 Client Control Flow
loop

receive from server
if subproblem then

calculate all possible solutions of subproblem
writes all possible solutions to an output file

else if termination message then
terminate

end if
end loop

B. Termination

After the last subproblem has been requested by a client
and delegated to it by the server, the tear-down phase begins
and the server sets up a termination message for every client.
However, a client will only receive the message once it has
finished its last subproblem. Receiving such a termination
message will force the client to leave its normal working
loop and to terminate. In order to be sure the termination
process succeeded, the server waits until every client received
the termination message.

To demonstrate the problem of balancing the workload
between clients, consider the following example:

The server has one subproblem left and all clients are
nearly done calculating their subproblem. In the worst case,
to compute the last subproblem takes the longest. Now one



Idle X
Send Problem

Send Term. Signal

Request
Calculates X

Request
Calculates X

Request
Calculates X

Server

Client1

Client2

Client3

Fig. 2. Termination

client is occupied with the last subproblem while all the other
clients have already terminated. Ideally, the workload would
be split, so that all clients terminate simultaneously.

IV. EVALUATION

This section analyzes the behavior of the implementation,
in order to evaluate its scalability and efficiency. In particular,
the parallelization technique. We will need the following terms
throughout this section:

Wall-time is the difference between the Unix time at start
of the program and at its end for a single core.

Core hours is wall-time multiplied with the number of cores.
Computation time is whenever a client works on a subprob-

lem. The amount of computation time for the entire exhaustive
search is constant throughout runs. For our set of runs it is at
about 470 hours.

The size of a subproblem refers to the amount of computa-
tion time needed to exhaustively search it.

First, we will discuss some specifics on gathering data.
Second, is a discussion on the adjustable parameters of the
algorithm, followed by the presentation of the results. Last
is the analysis of the results, which includes works towards
minimizing overhead.

A. Gathering Data

Gathering data for the evaluation requires running the pro-
gram on a cluster and collecting profiling data. However, our
implementation uses non-blocking sends on the server side and
non-blocking receives for the client, only. These facts render
conventional profiling libraries mostly useless.

The primary source for statistics is the accounting report
provided by the task scheduler used on the cluster. The
report includes the wall-time and the core hours of the run,
but unfortunately it reports the maximum wall-time and not
individually per client.

Additionally, the implementation itself measures the compu-
tation time per subproblem using the MPI Wtime() function.

For the data gathered during these runs see Subsection C.

B. Adjustable parameters

The two main parameters that impact performance are the
depth up to which the server pre-calculates the tree before
delegating them to clients, called initial depth, and the number
of cores running the program in parallel.

The initial depth changes number of subproblems that the
server delegates and the size of the subproblems, which
directly determines the computation time necessary per sub-
problem.

The number of cores impacts the run-time of the program.
Since the implementation is a client server architecture the
number of cores should be at least three, and certainly no
more than the number of subproblems. Ideally, the execution
time would scale linearly with the number of cores used.
Unfortunately this is not the case, since the parallelization is
not perfect, especially in a client-server architecture.

C. Experiment Results

It stands to reason, that some combinations of the initial
depth and the number of cores are more efficient than others.
We want to get a value for the initial depth that causes the least
overhead for a small range of cores, in this case 8-64 cores.
To achieve this goal we did two sets of experiments. The first
experiments investigates the initial depth, and the second one
the number of cores.

1) Initial depth experiments: We first investigated the dis-
tribution of sizes for given initial depths, arbitrarily choosing
an initial depth of 8 for our experiments and compare that
with one level deeper and shallower.

Consider Table I, which shows properties of the subprob-
lems delegated at the initial depths of 7 to 9. The data
gathered on a certain initial depth refers to the properties of
the exhaustively searched subproblems at that level. Indicated
on the table are the number of subproblems at this level and
the wall-time necessary to execute the implementation at that
level and with 32 cores. Additionally, the minimum, maximum
and average computation time per subproblem.

2) Number of cores experiments: Table II is the data set
for runs with a varying number of cores and the chosen initial



TABLE I
TABLE WITH PROPERTIES OF THE COIL-IN-THE-BOX SUBPROBLEM AT DIFFERENT INITIAL DEPTHS

Initial Depth # Subproblems Wall-time (h) min. Time (h) avg. Time (h) max. Time (h)
7 131 – 1.6 3.5 9.4
8 483 18.1 0.2 1.0 3.94
9 2043 15.9 0.03 0.2 1.1

TABLE II
TABLE OF EXPERIMENT DATA AT INITIAL DEPTH 8; ALL TIMES IN HOURS

Cores Wall-time Core Hours Overhead Overhead per Client
8 67.2 538 68.0 0.1
16 33.7 539 70 1.5
32 18.1 579 110 2.5
64 9.8 627 158 2.1

depth of 8. Provided are values for the wall-time, the core
hours, the overhead produced, and adjusted overhead, all of
which are in hours. Overhead is calculated by subtracting
the ideal computation time, 470 hours, from the core hours.
Overhead per client is the total overhead adjusted for the server
(by subtracting the wall-time from the core hours) and divided
by the number of clients (number of cores −1).

D. Discussion

The first Subsection is the analysis of the initial depth.
Second, is the discussion of the number of cores. Lastly,
a discussion on finding optimal values for the adjustable
parameters.

1) Initial depth: The following section will discuss Table I.
The number of subproblems generated per initial depth level
increases drastically from 131 at level 7 to 2043 in level 9. This
growth is to be expected, since the subproblems are essentially
generated by breadth-first search of a tree and the number of
nodes per depth of a tree increases exponentially.

The wall-time is also dependent on the initial depth. In-
creasing the initial depth from 8 to 9 resulted in a speedup
of 14% from 18.1 hours to 15.9 hours. We will discuss the
influence of the initial depth on overhead later on.

Columns 4 to 6 on Table I refer to the computation time
per subproblem. (This is not obvious from the Table, is
that ok?) The columns indicate that the average, minimum
and maximum computation time per subproblems decreases
with an increase in the initial depth. From a constant amount
of computation time for the entire tree and an increase in sub-
problems follows the decrease in average computation time per
subproblem. Especially note that the maximum computation
time per subproblem decreases by a factor of 3 for the levels
7 to 9, since it is of importance for a later section.

From the knowledge gained in the findings and the archi-
tecture of the program we can draw some conclusions on the
influence of the initial depth on overhead. The implementation
has 3 phases, the build-up, the computation and the tear-down
phase, all of which are influenced by the initial depth in
different ways. During the build-up phase the server need to
traverse the search tree up to the initial depth. If the initial
depth is higher, the server takes longer. Since the clients are

not able to do anything but wait in this phase, a higher initial
depth increases overhead in the build-up phase.

Overhead is generated during the computation phase by
the passing of messages. Higher values for the initial depth
generate more subproblems, and thus more overhead, because
more messages require more communication.

As already discussed, the length of the tear-down phase
is bound from above by the maximum of the computation
times of the subproblems. Therefore a small value for this
maximum can decrease the length of the tear-down phase and
thus decrease overhead.

2) Number of cores: Table II indicates that wall-time
decreases when cores are added in the range of 8 to 64.
However, the decrease in wall-time is not strictly linear, from
67.2 hours at 8 cores down to 9.8 hours at 64 cores, which
can be explained by a loss of efficiency. The table also shows
that overhead increases linearly per additional core running
the program. Core hours increase from 538 for 8 cores up to
627 hours for 64 cores.

From the data we can conclude, that increasing the number
of cores can significantly decrease the wall-time necessary to
run the program. The decrease in wall-time comes at the cost
of more overhead. Generally the overhead increases with an
increased number of cores. This is due to the fact, that the
increase in communication and the wait times inherent in the
model do not make up for the better client to server ratio.

There are exceptions to that pattern. Table II shows remark-
ably small values for 8 and 64 cores, namely 0.1 and 2.1
hours of adjusted overhead. These exception could be caused
by lucky breaks in the timing of delegations to clients. If the
subproblems are delegated in such a manner, that client wait
times are reduced during the tear-down phase, this decreases
overhead. Conversely, one of the major sources for the increase
in overhead when adding more cores is probably ill-timing
during the tear-down phase. Other sources may include wait
times in the build-up phase and communication related waiting
times during the computation phase.

3) Towards an optimal value for the initial depth: Given the
two parameters values that minimize overhead are desirable.

From an evaluation point of view the number of cores is of
little significance, since it does not immediately relate to the
program and because in real-world usage the number of cores



is limited by external factors. Ideally one would determine
values that lead to a global minimum in overhead. This might
not be practical since reducing the wall-time might be more
desirable than reducing overhead when running a program.
More helpful would be a value for initial depth that is nearly
optimal for a reasonable number of cores, which in this work
is between 8 and 64.

It is certain that the initial depth of 8 is too small to
be optimal. Unfortunately, determining the optimum value is
not trivial, because increasing the depth decreases the length
of the tear-down at the cost of the length of the build-up
phase. Determining this optimum depth is beyond the scope
of this work, since the only way to determine the optimum
value is by experiment. For very large values for the initial
depth the communication overhead and the load on the server
will become a bigger source of overhead than the workload
imbalance. The optimal value is most likely not much bigger
than 9.

V. FUTURE WORK

To even further improve the execution time needed to
exhaustively search the hypercube for the coil-in-the-box,
there are a few approaches. One could implement the before-
mentioned backwards delegation or split up the last subprob-
lems in a few more subproblems. Focusing on the server,
using it to do some work as well, after the pre-calculation
of subproblems, is also a possibility. However, the more cores
you add the less improvement will be done by the server’s
improvement.

Another approach would be to use heuristics on the algo-
rithm to calculate the coil-in-the-box for a hypercube. Doing
that some of the mentioned improvements on the parallelized
architecture might not work anymore, but maybe others will
be needed. Therefore, our implementation is a good start, but
there might still be some need for improvement, depending on
what you want to do with the implementation.

VI. CONCLUSION

We presented a way to parallelize the coil-in-the-box prob-
lem, the simple client server architecture of the implementation
and evaluated its behavior. We analyzed overhead, using
experimental data, and speculated as to possible sources of
the overhead.

Overall our simple approach yields a working parallel
implementation. This approach comes with some inherent
overhead. But a better performance can be reached if a better
value for the initial depth is know. Finding this value, however,
requires experimental runs. Since the number of cores is
almost always limited by external constraints the initial depth
is worth quite some attention when running the coil-in-the-box
problem in parallel by delegation of subtrees.

ACKNOWLEDGMENT

Thanks to Professor Schupp for giving us the opportunity
to work as a student help in the institute for software systems
and to Gustav Munkby for overseeing and helping us at every
step.

REFERENCES

[1] Technical Report TR-CIS-UG-2008-001, Department of Computing
and Information Science, University of Guelph, Canada.
http://www.cis.uoguelph.ca/department/technical_reports.html, 2008.


