
Project Work

Modelling and Verification of

QoS properties of a Biomedical

Wireless Sensor Network

Author:

Emmanouil Fanourgakis

Supervisor:

Prof. Dr. Sibylle Schupp

February 2012

Abstract

Biomedical Wireless Sensor Networks are small size sensor networks used in medical care

applications which transmit vital body information of the patients to a sink node. Meeting QoS

requirements such as keeping nodes connected to the sink, or maintaining a high packet delivery

ratio and a low packet end-to-end delay, can be life-critical for patients, while minimizing power

consumption can be quite important as well. One of the ways to tune such a network, is to

change the temporal configuration of the nodes, namely the active and the sleep period duration,

in order to save energy against performance. In the existing literature, mostly simulation

approaches have been used to analyze sensor networks.

In this paper, we have remodelled an existing Biomedical Sensor Network consisting of nodes

that use the Chipcon CC2420 transceiver and follow the IEEE 802.15.4 wireless standard. Like

the reference model, we use the Uppaal toolbox and model the wireless nodes as timed automata,

i.e. finite state automata enriched with real-time clock variables. We have verified with the

use of Uppaal the QoS properties of the network, namely connectivity and packet delivery

ratio, and tuned its temporal configuration under various topologies, trying to decrease power

consumption and to observe the effects on QoS properties.

The results show that nodes that forward packets to the sink need longer active periods,

while the opposite applies to collision points in the network. Our model faces the state space

explosion problem, despite the careful design. The reference model reveals a similar behaviour

and similar problems, but scales better because of design simplifications. These simplifications

are, as we argue, in part unrealistic, yet present the unavoidable compromise, if formal modelling

and verification is to be applied to wireless sensor networks of non-trivial size.

Contents

Abstract 1

Contents 4

1 Introduction 5

2 Foundations 9

2.1 Biomedical Sensor Networks . 9

2.1.1 Definition . 9

2.1.2 QoS requirements . 10

2.1.3 Temporal configuration of the nodes in a sensor network 10

2.1.4 The Chipcon CC2420 transceiver . 11

2.2 The Uppaal platform . 12

2.2.1 Timed Automata . 12

2.2.2 The Uppaal platform . 12

2.2.3 Reducing state space of models . 14

2.3 Related work . 14

3 Modeling the network 17

3.1 Network Topologies . 17

3.2 The sensor node . 18

3.3 Design decisions . 21

3.4 State space issues during model design . 22

4 Verifying the network 23

4.1 Hardware used and Uppaal options . 23

4.2 Deadlock Absence and Sink Connectivity . 23

4.3 Packet delivery ratio . 25

4.4 The state space explosion . 27

5 Comparison with the reference model 29

5.1 The reference model . 29

5.2 Model comparison . 30

3

4 CONTENTS

5.3 Comparison of verification results . 31

6 Conclusions & Future Work 35

Bibliography 37

Chapter 1

Introduction

A Wireless Sensor Network is mainly a network of sensors equipped with wireless transceivers.

Its task is to monitor environmental conditions within a certain small or larger area and transmit

it to central processing points. The importance of such networks is very high due to their

innumerable uses, the easiness of installation and the low costs involved. There are however

many restrictions that should apply in order that a sensor network functions properly. These

restrictions include the ability to operate under very limited resources, namely battery and

transmission power and the challenge to adapt to on the fly network topology changes.

A Biomedical Wireless Sensor Network contains sensors installed in patients in order

to measure vital body functions such as temperature or heart rate, and inform medical staff.

Purpose of the network is the efficient and on-time delivery of these measurements, in order

to provide feedback for medical staff. The use of Biomedical Sensor Networks introduces high

benefits for health care, such as making continuous monitoring of patients possible, and increase

the number of patients to be treated effectively in emergency situations.

Because of the nature of their use, ensuring high QoS for Biomedical Sensor Networks can

be critical for the life of patients. Relevant QoS properties originate from the requirements

for efficient and on-time delivery of the measurements. The nodes should connect directly or

indirectly to the sink in regular time intervals, the packet delivery ratio should be adequately

high, and the end-to-end delay for the packets should be bounded by a specified value.

To mitigate the issue of limited power resources and increase the lifetime of a Biomedical

Sensor Network, the nodes alter their state between active and sleep in regular periods. The

longer the sleep periods, the more energy is saved, but also the more the network performance

degrades, as sleeping nodes are not able to forward packets of other nodes towards the sink.

Thus, for every individual network topology, there exists an optimal compromise point of its

temporal configuration between energy saving and network performance.

A decent low cost and low power solution is the Chipcon CC2420 transceiver[1], very

commonly used in wireless sensor networks. Its behaviour can be described by a finite state

machine alternating mainly among receive, transmit and idle states.

A timed automaton is a finite state machine enriched with real value clocks. Clocks can

5

6 CHAPTER 1. INTRODUCTION

be reset to track time between events and state transitions. A timed automaton can effectively

describe the behaviour of a real time system, such as a traffic light.

Uppaal is a toolbox for modelling real time systems as networks of timed automata. The

user can design templates of automata and encode states, transitions and constraints, in order

to represent the behaviour of system units. To create the network, templates are instantiated as

nodes. User can query for the satisfaction of network properties using TCTL (Timed Compu-

tation Tree Logic). Uppaal also offers a simulation interface, so that user can ‘debug‘ its model

by viewing state progression and the value of all network variables and clocks. A known issue

of such models is the state space explosion, the exponential growth of the state space to the

number of objects in the model. Unless correct precautions are taken during the model design,

it is possible that even relatively small systems will take in practice infinite time to be verified.

So far, mostly simulation approaches have been used to analyze the behaviour of wireless

sensor networks. Various simulation tools have been developed, some of them being able to

handle effectively even huge networks. Despite the problems in scalability, formal modelling is

still a valuable tool for the early design phases of a network.

This paper has been inspired by a work of Tschirner et al.[2] that constructs in Uppaal a

formal model of a Biomedical Sensor Network, consisting of nodes that use the Chipcon CC2420

transceiver and follow the IEEE 802.15.4 wireless standard. The QoS properties of this model,

(reference model from now on), are verified against different temporal configuration settings.

Finally, the OMNET++ simulator is used to repeat the tests and compare results.

In this work, we have remodelled the Biomedical Sensor Network in Uppaal. We have verified

the QoS properties of the network under various topologies and temporal configuration settings,

looking for the optimal compromise between energy save and network performance.

The results show that the intermediate nodes that forward packets to the sink need longer

active periods. On the other hand, we need to decrease the active time to achieve better

performance for specific nodes where collisions occur. The major issue the model faces is

the state space explosion problem, which does not allow networks larger than 3 nodes to be

verified. We also experience a collision issue due to simultaneous forwarding attempts, because

inserting random waits into the model is not possible for state space reasons. The comparison

with the reference model shows a similar behaviour and similar problems, but better scaling

because of design simplifications. These simplifications, even unrealistic ones, is the unavoidable

compromise in order that formal modelling and verification can be applied in non-trivial size

networks.

The next sections are organized as follows: Chapter 2 gives the definition of Biomedical

Sensor Networks and their quality properties, as well as describing how temporal configuration

can save energy and affect performance. It also gives a short definition of timed automata and

introduces the Uppaal platform and the state space explosion issue. Finally, it gives a view in

the existing literature concerning sensor networks. Chapter 3 presents the network topologies

examined and the model created for this paper, the design decisions met and the precautions

7

taken during design to reduce state space. Chapter 4 analyzes the verification process for the

QoS properties as well as the results. Chapter 5 compares our model with the reference model,

analyzing similarities and differences and demonstrating the results from the verification of the

same networks. Chapter 6 summarizes the conclusions and gives directions for future work.

Chapter 2

Foundations

In this chapter, we shall introduce the basic terms used in the paper. We will give the defini-

tion of a Biomedical Sensor Network and its importance in medical care, as well as the QoS

requirements involved due to its critical task. We will also analyze how energy for its nodes can

be saved, with a cost to network performance, by altering the temporal configuration. We will

also describe the Chipcon CC2420 transceiver that we will use in the nodes of the network we

model. Finally, an introduction on timed automata and a description of the Uppaal toolbox is

given.

2.1 Biomedical Sensor Networks

2.1.1 Definition

A wireless sensor network is formed by sensor nodes equipped with wireless transceivers. It

covers a small or large geographical area and its task is to monitor environmental conditions

like temperature, pressure or pollution, and send the sensed information through wireless trans-

mission to processing spots. Because of the easiness of the installation and the low maintenance

costs of such networks, it is possible to monitor hard to access or dangerous locations. This is

particularly useful in business and factory automation[3].

In order for a wireless sensor network to function correctly, many restrictions should apply

because of limited node resources, namely battery duration and transmission power. Due to

the short wireless range, packets may need to be forwarded many times through the network

to reach their destination. Additionally, common requirements include flexibility to allow on-

the-fly network topology changes and node mobility, unattended operation, and tolerance to

individual node failure.

In a Biomedical Sensor Network, sensors installed in patients can measure vital body func-

tions such as temperature, heart rate, and blood pressure[5]. These information is transmitted

through the wireless network to a sink node where it can be evaluated and generate feedback

for medical staff. Such networks are of small size, containing as many as some tens of nodes[2].

Purpose of the network is the efficient and reliable delivery of the critical information.

9

10 CHAPTER 2. FOUNDATIONS

Figure 2.1: A medical sensor wireless network (Source: [4])

By using such systems, continuous monitoring of patients is possible, as well as instant

notifications for changes in their health status[5], both at low costs. Not only intensive care

units can strongly benefit, but also regular treatment. It is highly important that by using

such systems in case of emergency situations like natural disasters, the number of patients that

is possible to be treated can substantially grow. Additionally, it is possible to create medical

databases with long term patient data for use in medical research[6]. On the other hand, the

nature of Biomedical Sensor Networks imposes even more functional constraints and challenges.

On-time and efficient delivery of messages can be life-critical for patients.

2.1.2 QoS requirements

Quality of Service is a somehow abstract term. In this work, we will focus on the efficient and

on-time delivery of sensor measurements to the sink node

An important requirement is that every node gets to connect with the sink at least once in

a specified time frame. This connection will be either directly, because of a direct wireless link,

or through packet forwarding. We shall call this requirement connectivity to the sink[2].

It is also important that a reasonable amount of the total packets produced in each node is

finally delivered to the sink. The packet delivery ratio should, thus, be equal or higher than

a percentage specified by the requirements.

Finally, it is of equal importance not only that packets are delivered to the sink, but also

that they are delivered on time. Therefore, the end-to-end delay for the delivery of every

packet should be equal or shorter than a reference time specified by the requirements.

2.1.3 Temporal configuration of the nodes in a sensor network

In order to save energy and extend their lifetime, the nodes of a wireless sensor network can

alter their state between active and sleep as can be seen in Figure 2.2. An active period will be

followed by a sleep period, then a new active period and so on. The node is able to transmit

2.1. BIOMEDICAL SENSOR NETWORKS 11

Figure 2.2: Active and sleep periods of a sensor node (Source: [2])

or receive only during the active period. The energy consumption of the sleep state is usually

several orders of magnitude smaller than the one of the active mode. By extending the sleep

periods, we increase the amount of the energy saved, and thus the node lifetime.

If the sole purpose of the node is to use its sensor to collect measurements and transmit

them, then the active period can be reduced to a small fraction of the node life cycle. However,

as mentioned before, because of the limited transmission range, packets in a wireless sensor

network often have to be forwarded in order to reach the sink. Thus, every node plays also

an essential role as an intermediate forwarding point for packets of other nodes. As during its

sleep period the node is unable to do any forwarding, packets from other nodes will have fewer

chances of reaching the sink. Obviously, depending on the network topology, some nodes will

need more active time in order to be able to forward the packets they receive. Therefore, there

is a compromise between the energy saving and the ability of the network to deliver packets.

The optimal point is different for every specific network according to the available resources

and the performance requirements.

2.1.4 The Chipcon CC2420 transceiver

The Chipcon CC2420 transceiver is a very commonly used hardware in sensor networks. It is a

single small-size, low-power and low-cost solution for wireless applications suitable for use with

low cost micro-controllers. It offers an effective data rate of about 250 kbps and high sensitivity

up to -94 dBm. It runs at 2.4 GHz and uses 0.18 µm CMOS technology[1].

The chip behaviour can be understood as a state machine, a simplified diagram of which we

can see in Figure 2.3. Initially, the chip is turned off, so a warming up and stabilization time

is necessary. After that, the chip is in the idle (power-save) state, from which it can quickly

change into the active state awaiting for transmissions and receptions to be done. In the end of

a transmission or a reception, the chip goes back to the active state. Reentering the idle state

is possible from all states.

12 CHAPTER 2. FOUNDATIONS

Figure 2.3: State machine of the CC2420 transceiver

2.2 The Uppaal platform

2.2.1 Timed Automata

A timed automaton is a finite state automaton equipped with a set of real-valued clocks[7]. The

clocks are synchronized, thus they proceed in the same pace as time advances[8]. A clock can

be individually reset. In that case it keeps track of the time since the reset.

With the help of these clocks, it is possible to track the time between events in the automaton

and code time restrictions in its behaviour. For instance, to put a constraint in a transition, an

expression on clocks called guard, is assigned to it. The transition cannot be taken if the guard

is not satisfied.

Timed automata provide a framework for modelling real-time systems, systems for which

the correct behaviour is dependent on timing constraints. There are many examples of such

systems in everyday life, such as traffic lights.

2.2.2 The Uppaal platform

Uppaal is an integrated environment for modelling systems as networks of timed automata

enhanced with integer variables. Uppaal provides the functionality to simulate models and

verify their properties. Uppaal is jointly developed in the Universities of Uppsala and Aalborg.

Since the first version in 1995, development still goes on[9]. A commercial and an academic

version are available. Uppaal uses a client-server architecture with a Java-based graphical user

interface and a model checking engine (server) that can run on various operating systems.

Command line interface for verification, is also available.

The user will at first design the model in the graphical user interface. Uppaal supports

parametric node templates for effective representation of multiple similar objects. Channels

assist the communication between objects, allowing message passing. States and transitions

have to be defined for each template. Clocks and integer variables can be added both as local

in a template, or globally. In transitions, clock and variable expressions can be assigned as

2.2. THE UPPAAL PLATFORM 13

Figure 2.4: The Uppaal Graphical User Interface: Model designer, simulator and verifier

Guards, Syncs, and Updates, to express constraints to execute the transition, conditions that

triggered it, and actions executed by it respectively. In a similar way, invariants can be assigned

to states in order to express conditions to be met when the node is in the state. Expressions

and statements can be grouped in functions using a c-like language for which a simple text

editor is available. Finally, in global declarations, nodes of the network are instantiated from

the templates.

Uppaal provides the capability to simulate models. Users can run and ‘debug’ the model

having a view of the system state and the contents of all clocks and variables, and being able

to choose in every state which transition among the valid ones to execute for going to the next

state. It is possible to save the current state of a run as a system trace file. From that file, the

state can be loaded in order to continue the simulation. There is even an auto play feature, for

observing a random run of the model.

For verification, Uppaal provides a query editor. Users can form queries about model prop-

erties using a temporal logic language, subset of TCTL (Timed Computation Tree Logic).

Quantifiers such as A� and E♦, ‘for all possible states along all possible paths...’ and ‘for at

least one state in at least one path...’ are available respectively. In the case that the property

queried is not satisfied, Uppaal can generate a counterexample as a system trace and load it,

so that the user can examine the system status during the counterexample.

Uppaal offers some parameters to be tuned regarding the model checking engine. Users can

choose among various algorithms such as breadth-first or depth-first for searching in the model,

different levels of state space reduction techniques, and the option to use over-approximation or

under-approximation. Batches of queries can be easily verified using the command line interface.

Within the limitations of the Uppaal platform, it should be mentioned that no parallel processing

is supported.

14 CHAPTER 2. FOUNDATIONS

2.2.3 Reducing state space of models

Because the state space of formal models is exponential to the number of objects, simply adding

an object can increase tremendously the number of states to be checked. This issue is known

as the state space explosion problem. In order to keep the state space small, the desired

model complexity should be defined so that the implementation can be as simple as possible,

focusing only in the required details. Unless the correct precautions are taken, even systems

with relatively low number of objects may not be able to be verified within reasonable time.

The number of variables, clocks and channels to be used shall be kept to the minimum. The

integer variables should preferably be declared as bounded, in order to limit the possible values.

It is of equal importance to reset variables when their value is not important.

The number of states should also be kept to a minimum and possible state interleaving

should be minimized. Uppaal provides a useful state option, the committed states. After the

model visits a committed state, the transition to one of the successor states should be taken

immediately. This means that time does not pass in a committed state. Because of these

properties, adding a committed state adds less complexity to the model than adding a normal

state.

Another useful structure provided by the Uppaal is the scalar sets. A scalar set is an integer

type, the elements of which cannot be distinguished. Only assignment and identity testing are

available for scalar sets, not ordering and comparison. Scalar sets are particularly effective for

representing symmetric objects, thus applying symmetry reduction to the model in order to

reduce state space.

2.3 Related work

In the literature, mainly simulation-based approaches are used to analyze the behaviour of

wireless sensor networks. Various tools have been developed. Avrora[10] can simulate AVR

microcontroller-based sensors in a cycle-by-cycle instruction basis, scaling up to thousands of

nodes, with the capability to handle simulation of tens of nodes in real time. To measure

the performance of a sensor network, the most well-used scheme is through a discrete event

simulator such as OMNET++[11], using extensions that accurately describe the behaviour of

wireless sensor components. One of them is Castalia[12], written on top of OMNET++.

Formal models, on the other hand, have issues with scalability, because of the state space

explosion problem. However, formal modelling can be valuable for the initial design phase

applying on small size networks, because it takes into account all possible scenarios, notably

the worst case. It can also reveal possible problems in the implementation of the relevant

protocols.

Tschirner et al. have created a formal model of a Biomedical Sensor Network using the

Uppaal platform. Their network consists of nodes using the Chipcon CC2420 transceiver and

follows the IEEE 802.15.4 wireless protocol. They tested the network under various temporal

2.3. RELATED WORK 15

configurations in order to minimize energy consumption under certain QoS requirements. They

also developed an optimized version of the Uppaal simulator that allows them to efficiently run

tests and gather statistics in networks up to 16 nodes. They have conducted an OMNET++

simulation as well, and showed that it produces similar results, though OMNET++ describes

more effectively the wireless channel[2].

Chapter 3

Modeling the network

In this chapter, we will present our model. At first, we describe the network topologies of two

and three nodes that we model. Then, we give a detailed description of the node template in

Uppaal, as well as the design decisions and the considerations taken into account to keep the

state space small.

3.1 Network Topologies

We choose to model small networks as can be seen in Figure 3.1. There will always be one

sink connected to the nodes. In the two nodes network, node 1 acts as an indirect connection

between node 2 and the sink. In network 3a, the sink connects to node 1, node 1 connects

to node 2 and node 2 connects to node 3. Finally, in network 3b, nodes 2 and 3 are directly

connected to the sink, while node 1 is connected to both of them. Networks of greater size were

not modelled due to the state space explosion.

Figure 3.1: Network topologies examined

Among the requirements of the network, is the ability to adapt to topology changes. This

is a real life requirement, since the sensor nodes are installed in possibly moving patients.

Furthermore, it is realistic to assume that nodes are not aware of the location of the sink. The

17

18 CHAPTER 3. MODELING THE NETWORK

only information a node should be aware of, is the existence of the nodes to which it is directly

connected. With such a design, we have a highly flexible network, in which we can on the fly

relocate, add, or subtract nodes and sinks.

From the previous, it is obvious that for such a design, a fixed routing scheme is not the

best choice. To adopt a suitable mechanism in order to give messages a chance to reach the

sink, we choose the controlled flooding scheme. In this scheme, each node forwards every packet

received to all its neighbour nodes, including the sender. Each node remembers the packets it

has already received and does not forward them again. This avoids unnecessary flooding in the

network.

The use of acknowledgements is also important in order to decrease the chance of messages

getting lost along the way to the sink. After node A has transmitted a message to node B,

it waits for the acknowledgement. Node A will regard as an acknowledgement the packet

retransmission from node B. If no acknowledgement is received before a timeout expires, node

A will retransmit.

It is possible that collisions may be encountered if many neighbour nodes transmit at the

same time within a node’s listening range. Against collisions, the IEEE 802.15.4 wireless pro-

tocol specifies a back-off mechanism. Each node can sense the channel only when not trans-

mitting. When about to transmit, every node checks whether the channel is active, that is,

whether somebody is already transmitting within the node’s listening range. If not, the node

starts transmitting itself. If, on the other hand, there is already a transmission in the channel,

the node will back-off for a random period of time and then retry.

Every node will produce a packet of measurements once in its life cycle. The life cycle of a

node, however, is way longer than the packet transmission time. Therefore, a node will spend

only a small fraction of its time transmitting. For small size networks, even if the node has to

forward packets from other nodes, it is reasonable to assume that the network traffic will be

sparse or moderate. In addition to that, during the life cycle of the node, its packet has the

chance to be forwarded many times. So, we can assume that the life cycle of the node should

be enough time for the packet to reach the sink.

3.2 The sensor node

In the diagram in Figure 3.2, every individual node is identified by its ID. All nodes except for

the sink have a non-zero ID, the sink has a zero. Each node except for the sink produces packets

containing the sensed measurements. These packets are identified by the ID of the generator

node. The variable outg marks for every node the current packet for transmission. A value of

zero means there is no packet to transmit. The global array variable inc[] marks the current

incoming package per node, the one or ones being transmitted in the node’s range. A zero and

a negative value denote no active transmissions and a collision respectively. The global double

array f s[][] stores for every node the forwarding status for packets generated in all nodes

including itself. For example, f s[x][y] is the status for node x concerning packets from node

3.2. THE SENSOR NODE 19

Figure 3.2: Model of a node

y. A value of zero means that the node did not receive the packet yet, 1 and 2 both represent

a received and forwarded packet waiting for an acknowledgement, and 3 stands for a forwarded

packet with the acknowledgement already received. The variable bo cnt counts the number of

back-off waits during transmission. The variables rx sender and rx packet store temporarily

the sender and the generator node of the packet during the reception. Finally, periods[] and

s recvd[] are used in the verification, counting the number of periods and packets received in

the sink respectively.

Each node has two internal clocks: t op and t tr. The first one is for timing the operation

of the node, identifying whether it should be active or sleeping. The second clock is for timing

of receptions, transmissions and back-off waiting. The first clock is reset in the beginning of

each period, just after the node wakes up from the sleep, while the second gets reset in the end

of every reception, transmission or back-off waiting.

The Finite State Machine encapsulating the node functionality starts from the power off

(Initial) state. Because not all nodes are fully functional at the same time, we modelled an

20 CHAPTER 3. MODELING THE NETWORK

initial delay per node (D[ID]). Afterwards, the node initializes its state and proceeds to the

Active state, producing a new set of measurements provided from its sensor. This set forms a

packet to be transmitted.

Two critical time settings that are specific for each node are its main and active period.

The first is the node’s life-cycle. The second is the subset of the first during which the node

can transmit and receive. For the rest of the time within one life cycle period, the node stays

in sleep mode, in Idle state. At the end of the sleep mode, the node wakes up and produces

a new packet for transmission. The ActVsIdle is an intermediate decision state that leads to

Active or Idle depending on the node operation timer t op. Similarly, the PeriodComplete

is an intermediate state after ActVsIdle, before going again to Active in the case that node has

completed a period.

While not in sleep, the Active state is the node’s main waiting state. Various events trigger

its subsequent transitions. If the active period has ended, the node goes into sleep, in the Idle

state.

When in Active state, if there is a packet to transmit, if thus outg[ID] is non-zero, the node

follows the transmitting sequence that starts from the Backoff state. From there, the node

instantly goes to ChanCheck state, to check if the channel is free. If not, then it returns to

the Backoff state, now waiting for a random period of time. At the end of this time, it checks

the channel again. If the channel is still not free, the maximum value of the random waiting

in Backoff state will be twice as big. The procedure goes on until the channel is free or the

maximum number of back-offs is reached. In the latter case, the node rejects the packet and

goes back to the Active state. During any of the back-offs, if the main period is over, the node

goes to sleep rejecting the packet to be transmitted. At any point where the node will find

the channel free to transmit, it starts transmitting (PreTransmit & Transmit states). In the

end of the transmission, the node returns either to Active or to Sleep state, depending on the

operation timer compared with the active period.

During the Active state, the node also listens for new packets transmitted within its channel

range. Packets that the node has already received and forwarded, will be ignored. Otherwise,

the node starts reception getting into the Receive state. In case there is a collision during the

Receive state, the node terminates the reception and rejects the partially received package. If

no collision occurs, we end up back in Active state with a new packet to forward or into sleep

in case the main period is over.

There are two more functions of the node during the active state: Listening for acknowl-

edgements of forwarded packets and waiting for an acknowledgement timeout. When an ac-

knowledgement is received, the corresponding packet is marked to be ignored in the future. In

the case of an acknowledgement timeout, the relevant packet will be directly retransmitted.

The sink is modelled as a special case of a node, that neither produces nor forwards packets.

It only collects packets from other nodes and gathers statistics. The sink has always an ID equal

to zero. Its temporal configuration is such that it does not sleep. For implementation reasons

3.3. DESIGN DECISIONS 21

however, the sink will pass from the Sleep state, instantly returning to the Active state.

3.3 Design decisions

It was mentioned that the node will go to sleep after the end of its active period. An exception

to this rule is that the node does not stop a transmission or reception in order to go to sleep

mode. This makes sense as a design decision in order to prevent ‘important’ actions from

being interrupted. It does not alter the node behaviour to a large extent, since the duration

of transmission and reception are very small relative to the main period. We need, however,

a new intermediate state, ActVsIdle, which can be introduced as committed though, to avoid

issues from active period constraints violated.

When a node goes to sleep, all information from the active period is erased. Variables are

reset for packets already sent, waiting for acknowledgements, and packets pending to transmit.

So, in the beginning of the next active period, the node will have a fresh state start. This is

done in order to aid solving implementation issues.

Concerning the reception of an acknowledgement for a transmitted package from a sender

node, the first bytes of the package forwarded from any neighbour node are regarded from

the sender as a valid acknowledgement. The sender stops the reception and marks the packet

as acknowledged. The sender will not expect acknowledgements from other neighbour nodes

concerning that packet. This design minimizes the model complexity. We assure that at least

one neighbour has received the packet and will proceed forwarding it. The scheme can survive

possible collisions or packet losses, if at every forwarding stage, at least one neighbour node

transmits the packet successfully.

According to our design, the node can transmit more packages while waiting for acknowl-

edgements. This sounds like a good approach, as it allows the node to handle multiple pending

packets and to be flexible. Each node will remember the acknowledgement state of the pack-

ages it has transmitted. This state is stored in the f s[][] array. However, because there is

only one timer for acknowledgements per node, every time a transmission ends, this timer is

reset by the node. Upon the timer expiration, among all the pending packets, the check for an

acknowledgement will be applied for the packet with the earliest transmission time.

In case the acknowledgement of a packet is lost, the sender will attempt to retransmit the

packet until its active period ends. This is a non critical issue. The neighbour nodes will simply

ignore new transmissions of the packet. Plus, the timeout is selected large enough so that the

retransmissions do not happen so often, in order to increase dramatically traffic and collisions

in the node’s neighbourhood.

The timeout period has to be set to a reasonable value, that should not be very low because

of the previous issue mentioned, but should also not be very high such as to decrease the

retransmission frequency, and thus the chances of a packet reaching the sink within the main

period of its node. We set the timeout duration to such a value, that every packet has the

chance to be transmitted at least 10 times.

22 CHAPTER 3. MODELING THE NETWORK

3.4 State space issues during model design

In order to keep the state space of the model small, so that networks of more nodes can be

verified, a careful select of variables has been used. The global double array f s[][] for instance,

that represents for every node the forwarding state of packets coming from all nodes, is allowed

to take only three possible values, so its type is declared as an integer, bounded to these values.

Another example is in the local per node wait ack variable which is declared as boolean because

we are interested in only two possible values.

By looking at the model state diagram in Figure 3.2, we see that clocks and variables are

constantly reset when their value is not useful. For example, during both transitions from

Active to Idle and from Idle to ActVsIdle, the clock t tr is reset, because the node is not going

to receive or transmit any package during Idle state. Without these resets, in two similar cases

where the model goes from Active to Idle state with different value in t tr, two different traces

need to be generated. The clock t tr is also reset in the end of all receive or transmit sequences.

Same holds for the rx sender and rx packet variables that are immediately reset when the

transmission is over, as well as the back-off counter bo cnt in the end of the back-off sequence.

We can also see in the model state diagram, that there has been extensive use of committed

states. Basically, the only states where time is allowed to pass are the Active, Idle, Backoff,

Receive and Transmit. In some cases where states had to be introduced to solve implementation

issues, like in PreTransmit or PeriodComplete, a committed state was used, and care was taken

to avoid branches.

Scalar sets can unfortunately not be used in the current model. If they were used, it would

not be possible to distinguish between nodes. So, neither applying individual per node temporal

configuration, nor defining a custom topology would be possible. The network would be fully

symmetric.

Concerning design decisions mentioned in the previous section, the decision not to interrupt

reception or transmission in order to go to sleep, will certainly enlarge the state space, because

it creates new possible scenarios for the system trace. Same holds for the decision to allow the

node to handle multiple packets and acknowledgements.

Chapter 4

Verifying the network

In the previous chapter, we described the network topologies to be verified and the details of our

model. In this chapter, we will analyze the procedure as well as the results of the verification

tests on the QoS properties of the Biomedical Sensor Network

4.1 Hardware used and Uppaal options

The hardware used for the verification, was a series of 6 laboratory computers with a dual core

Intel Pentium processors and 8 gigabytes of RAM. For the verifications that demanded more

memory, a server of four 8-core AMD Opteron processors sharing 128 GB of RAM was used. It

should be noted that for every simulation run, Uppaal utilizes only a single core.

CPU type RAM (GB) # of machines

Intel Pentium @3.33 GHz, dual core 8 6

4x AMD Opteron @800 MHz, 8-core 128 1

Table 4.1: Hardware used for verification

In the Uppaal settings, the Difference Bound Matrices option for the state space representa-

tion and the ‘aggressive’ for state space reduction were used. The Random Depth Search option

was used for connectivity and the Breadth First Search for the packet delivery verification. The

model checker was accessed from the command line with the assistance of utilities like screen

(create multiple terminals per session, keep session active after logging out), time (program

resource usage measure), and script (terminal logging).

4.2 Deadlock Absence and Sink Connectivity

The first property to be verified in the model, is the fact that it does not fall into deadlocks. This

is relatively easy to accomplish, since in Uppaal there is the built-in state formula deadlock,

23

24 CHAPTER 4. VERIFYING THE NETWORK

which holds true for all deadlock states. So, we need to ensure that across all states in all

possible paths, this formula is not satisfied. The code for the query is thus A[] not deadlock.

All tested networks under all temporal configurations were successfully verified for the absence

of deadlock.

Next, we will verify that each node stays connected with the sink. This will be achieved

through the periods[] array, which is indexed by the IDs of the nodes, such as each array entry

corresponds to a node. For every node, its value in this array is increased upon the completion

of a main period. The sink, however, clears the periods[] for the creator of every packet it

receives. Thus, the periods[X] of a node X will indicate the number of consecutive packets

that did not reach the sink.

To ensure that for a node X it never happens that Y consecutive packets do not reach the

sink, we need to verify that across all states in all possible paths, the periods[X]<Y property

is satisfied. In other words, we require that the node X gets connected to the sink at least every

Y periods. The relevant query is A[] periods[X]<Y.

The strategy for running this verification is to start querying for small values of Y for each

node and increase that value until we get a property satisfaction. A small value of Y denotes

a strict requirement, as it restricts the nodes to have more often connections to the sink. The

smaller the value for Y, the easier it will be for Uppaal to find a counterexample and return non

satisfaction. We will assist the search for a counterexample by using the Random Depth First

option for the search order in the Uppaal settings. As Y grows larger, fewer counterexamples

exist. More states should be checked to find one, so the response will need more resources. At

some point, where for some Y the property will hold, Uppaal will need to check the entire state

space, and will be unable to find a counterexample, returning a satisfaction.

Verification has been run from the command line with the help of a shell script. The “Reuse

existing state space” option has been enabled, so as Y grows larger, the states already examined

for its previous values are retained in memory. The verification of the connectivity did run

together with the verification for the absence of deadlock. A synopsis can be seen in Table 5.1.

The networks mentioned in the table are the ones shown in Figure 3.1. We start by giving

to every node an active time equal to two thirds of its main period. For every network, there

is a row in bold, which marks the optimal configuration, the best compromise between energy

saving and good performance.

We can see that for the two-node network, the performance is very good and does not

degrade significantly until we decrease the percentage of the active period to 40% for both

nodes. On the other hand, in the network 3a, we need to increase the fraction of active time

for nodes 1 and 2, from which traffic towards node 3 is routed. Finally, in network 3b, where

nodes 2 and 3 act as intermediates between node 1 and the sink, the performance of node 1

is very bad and can not improve significantly by tuning. The best approach is to increase the

active time for node 1 and to decrease slightly for the other two nodes.

By observing Table 5.1, we see that the higher the network performance, the smaller the

4.3. PACKET DELIVERY RATIO 25

Network
Temporal conf. Connectivity

States CPU time RAM(% act./total per node) (periods per node)
1 2 3 1 2 3

2 67 67 n/a 2 2 n/a 46 K 5 sec 42 MB
2 50 50 n/a 2 2 n/a 51 K 6 sec 44 MB
2 40 40 n/a 2 3 n/a 46 K 4 sec 42 MB
2 40 30 n/a 2 4 n/a 48 K 5 sec 42 MB
2 30 40 n/a 2 4 n/a 48 K 5 sec 42 MB

3a 67 67 67 3 5 4 16 M 1.2 days 73 GB
3a 90 80 80 2 2 3 690 K 143 sec 321 MB
3a 90 80 67 2 2 3 680 K 128 sec 315 MB
3a 80 80 67 2 4 3 3.5 M 24 min 1.4 GB

3b 67 67 67 8 4 4 258 M 3.8 days 62 GB
3b 90 67 67 8 4 4 478 M 6.4 days 62 GB
3b 90 50 50 8 3 4 257 M 3.8 days 63 GB

Table 4.2: Connectivity verification

state space. For network 3a, the number of states in the optimal 90-80-67 configuration is 20

times smaller than in the initial 67-67-67. The explanation for this is relevant to the retransmis-

sions. In the optimal temporal configuration, we have far less retransmissions, and thus simpler

scenarios with less possible variations.

4.3 Packet delivery ratio

To verify that the packet delivery ratio stays above a threshold, we will need to modify slightly

the model. The introduced s recvd[] array which, like periods[], is indexed by the IDs

of the nodes, serves the purpose to count the number of packets per node that are delivered

successfully to the sink. To calculate the ratio per node of packets delivered to the sink over

the total packets produced, we simply need to divide the s recvd[X] by periods[X], where X

is the node.

We can clear the value of the periods[] array for each node, when it reaches an arbitrary

value such as 10. The corresponding value of the s recvd[] array, denoting the number of

packets the sink has received from the node, can also be cleared at the same time. So, in the

end of every tenth period for every node, the contents of s recvd[] will number the packets

that reached the sink.

We can use the imply keyword of the Uppaal verifier in order to assure that, for instance,

when periods[1] is 10, s recvd[1] is bigger than a number, say 7. If we verify this formula

across all paths and all possible states, then we know that the packet delivery ratio for node

1 is above or equal to 7/10. The formal syntax of the formula is A[] periods[1]==10 imply

s recvd[1]>=7. By using this technique, we can approximate the actual value for the packet

delivery ratio. It should be noted that using this technique, we obtain more information than

26 CHAPTER 4. VERIFYING THE NETWORK

just a probability. A probability 70% for a packet delivery, would simply mean that it is possible

-though unlikely- that an arbitrarily long number of consecutive packets are not delivered. In

our case, we can guarantee that 7 out of every 10 consecutive packets will be delivered.

The verification strategy here is to start by issuing a query for packet delivery of the highest

possible ratio, 100%, and keep querying decreasing this ratio until we get a satisfaction. Like in

the connectivity verification, as ratio drops, requirements are less strict, less counterexamples

exist, so more states have to be examined. Until at some point the property holds, in which

case the entire state space will be examined. Results can be seen in Table 5.2. The verification

was unable to complete in many cases, mainly in network 3b, due to the high memory resources

required. The numbers stated here should be correct though, judging by the resource escalation.

In other words, in all non-finished cases, the verification running, seemed to be examining the

entire state space.

Network
Temporal conf. Packet delivery

States CPU time RAM(% act./total per node) (% ratio per node)
1 2 3 1 2 3

2 67 67 n/a 100 100 n/a 456 K 29 sec 128 MB
2 50 50 n/a 100 100 n/a 314 K 33 sec 138 MB
2 40 40 n/a 100 80 n/a 461K 27 sec 121 MB
2 40 30 n/a 100 50 n/a 400 K 17 sec 110 MB
2 30 40 n/a 90 60 n/a 480 K 21 sec 130 MB

3a 67 67 67 90 50 40 318 M 2.5 days
3a 90 80 80 100 100 80 8 M 12 min 2 GB
3a 90 80 67 100 100 80 7.9M 12 min 1.9 GB
3a 80 80 67 100 70 80 12.9 M

3b 67 67 67 30 601 701

3b 90 67 67 401 701 801

3b 90 50 50 301 801 901

Table 4.3: Packet delivery ratio verification

By observing the results, we see that, as we tune the temporal configuration, the packet

delivery follows the same pattern with the connectivity: very good performance for the two-

node network, so we can decrease the active fraction for both nodes up to 40%; a need for an

increase in nodes 1 and 2, especially 1 for the network 3a; and bad performance for node 1 in

the network 3b.

Looking for the optimal temporal configuration in network 3b, we see that there is a conflict

between the connectivity and the packet delivery results. As far as connectivity is concerned,

the best configuration is 90-50-50 which has slightly better performance for node 2: connectivity

every three instead of four periods. However, as far as packet delivery is concerned, the best

configuration seems to be 90-67-67 which improves the weak point of the network, the delivery

1Incomplete verification

4.4. THE STATE SPACE EXPLOSION 27

ratio in node 1 from 30% to 40%, even though it degrades slightly the performance in nodes 2

and 3.

To explain the bad performance in network 3b, let us examine the network topology as seen

in Figure 3.1. The sink is directly connected to nodes 2 and 3. However, packets from node

1 need to be forwarded through nodes 2 and 3 to reach the sink. The problem is identified in

the collisions at the sink from nodes 2 and 3 trying to forward simultaneously. Because of the

model implementation, when a packet is transmitted from node 1, nodes 2 and 3 will receive

it and proceed to forward it at the same time. The collision occurs in the sink. Nodes 2 and

3 cannot tell there is a collision, only the sink can. They both wait for an acknowledgement.

When the acknowledgement timeout expires at the same time for both of them, they will both

try to retransmit the packet, resulting to a new collision. The collision sequence continues until

one of the two nodes gets to sleep. This also provides an explanation for the increase in the

packet delivery ratio, when decreasing the active time for nodes 2 and 3.

To resolve this issue, a random delay needs to be introduced in the node just before the

transmission of a new packet. Thus, after a few transmission attempts, it should happen that

only one node is transmitting, the other node should be waiting. However, this modification

deteriorates the state explosion problem, making the model impossible to verify.

By comparing the number of states in the same configurations between in the model for

connectivity and for deadlock verification, we can see that the second has 10 to 20 times more

states than the first one. The introduction of s recvd[] is responsible for this, along with the

modifications in the usage of periods[], namely resetting once every 10 periods, not when a

packet reaches the sink.

4.4 The state space explosion

As it is already explained, it was not possible to verify a network with 4 nodes. The current

model does not scale well.

Network # of states CPU time RAM

3a 320 20600 1740

3b 5600 65600 1480

Table 4.4: Normalized state space and verification resources used (1 ≡ Network 2)

Let us try to compare the state space and verification resources for all networks. Taking the

connectivity verification with the initial temporal configuration and normalizing with respect

to the smallest figures, those of network 2, we end up in Table 4.4. The state space in network

3a is 320 times larger than network 2, but the one in 3b is 5600 times larger! Obviously the

explanation for this is the collisions in network 3b because of the simultaneous forwarding

28 CHAPTER 4. VERIFYING THE NETWORK

attempts of nodes 2 and 3. The effect on the state space due to the constant retransmission

attempts is tremendous. We also observe that the verification time for network 3b is only 3

times longer than the one for 3a, while the memory consumed is slightly less in 3b. These

numbers are probably due to Uppaal optimization techniques.

Chapter 5

Comparison with the reference

model

In the previous chapters, we introduced our model and discussed the procedure and the results

of the QoS verification for the Biomedical Sensor Network. In this chapter, we shall present the

reference model, analyze the similarities and differences with our model, and apply the same

verifications in order to be able to compare the results.

5.1 The reference model

The timed automaton for the Chipcon CC2420 transceiver node can be seen in Figure 5.1.

The state machine begins with an initial delay in the state Initial delay. A new packet of

measurements coming from the sensor is produced, and the node goes to the RX SFD SEARCH

state, its main waiting state. The node will enter the PowerDown state when its operational

clock x shows that the time of the work period (P W) is over. From the PowerDown state, the

node will come back to the RX SFD SEARCH state when the time of the main period (P M) is over,

starting a new main period and assembling a new package for transmission.

From the RX SFD SEARCH state, when a packet to be transmitted exists, the node follows the

transmitting sequence of the states Backoff, PreTX, TX CALIBRATE, TX PREAMBLE and TX FRAME.

In the two first states, the node will wait until the channel within its listening range is free from

other transmissions. In the two last states, the preamble and the main part of the packet are

transmitted. In the end of the transmission, the node either returns to the RX SFD SEARCH state,

or to the PowerDown depending on the value of its operational clock.

A packet reception occurs when the node is in the RX SFD SEARCH state without a packet to

transmit itself, as soon as another node starts a transmission. As long as the sender node is in

a listening range, a check performed in the PreRX state, the node goes further to the RX FRAME

state, receiving the packet. If a collision occurs during RX FRAME state, the node will discard the

packet and go back to RX SFD SEARCH. Otherwise, the reception ends successfully, and the node

goes back to the RX SFD SEARCH state, with a new packet to forward. During the RX SFD SEARCH

29

30 CHAPTER 5. COMPARISON WITH THE REFERENCE MODEL

Figure 5.1: The node template in the reference model

state, the node also receives and processes acknowledgements, as well as marking packets for

retransmission in case a timeout expires.

We can see in Figure 5.2 the automaton for the sink node in the reference model. The sink

starts in the RX SFD SEARCH state, ready to receive packets. Whenever a node in the network

starts transmitting, the sink goes to the PreRX state. If the transmitting node is within the

sink’s listening range, the sink advances to the RX FRAME state for the packet reception. If

a collision occurs during RX FRAME, the reception is cancelled. Otherwise, after a successful

reception, the sink returns to the RX SFD SEARCH updating its statistics and setting the packet

acknowledgement status to true in all nodes in network.

5.2 Model comparison

By comparing the reference model with the one presented in Section 3.2, we observe that,

according to the reference model, when the work period of a node is over during receiving, the

node stops the reception immediately, in order to go to PowerDown state. In our model, the

node continues until the reception is over, and then goes to sleep. The approach of the reference

model is simpler and makes more sense. There is no point finishing a packet reception and then

ignore the packet to go to sleep.

5.3. COMPARISON OF VERIFICATION RESULTS 31

Figure 5.2: The sink template in the reference model

Other than that, the basic structure of the two models is pretty similar, which of course is

not a surprise. Both models follow the state machine given for the Chipcon CC2420 transceiver

by its manufacturer.

There exists a difference in the acknowledgement behaviour of the sink node not visible in the

previous diagram of the node automaton. In our model, the sink produces an acknowledgement

for every packet it receives, by transmitting it back to all its connected nodes. In the reference

model, the sink node, upon receiving a packet, sets the acknowledgement status to true for this

packet in all nodes in the network. This approach is a simplification that certainly prevents

the nodes from useless retransmissions of the packet and thus simplifies the model. In a real

network, however, the sink node will not have such solutions available.

Another difference not visible in the diagram is that, according to the reference model,

the node retransmits a packet only once after a timeout. If the second transmission is also

unsuccessful and a new timeout occurs, the node simply marks the packet to be ignored. This

is a clever approach to reduce the complexity of the model, as less available retransmissions

decrease the total possible number of states. The approach can be realistic. If the two first

transmissions fail, chances are that there are collisions in the network, so it is better not to

further increase traffic by retransmitting. Alternatively, the packet may be delivered correctly,

but the acknowledgement may be lost for any reason. However, in the case that the packet has

not been received from intermediate nodes because they are in sleep mode, the best approach

is indeed a later retransmission.

5.3 Comparison of verification results

To make the comparison more interesting, we have used the reference model to verify the same

network topologies, so that we can compare results for both models.

The reference model was successfully verified for the absence of deadlock in all network

topologies. The results for the connectivity verification can be seen in Table 5.1. The first

observation is that the reference model scales much better. All topologies can be verified within

very short time. This should not be a surprise. Because of the lower complexity and the

32 CHAPTER 5. COMPARISON WITH THE REFERENCE MODEL

Network
Temporal conf. Connectivity

States CPU time RAM(% act./total per node) (periods per node)
1 2 3 1 2 3

2 67 67 n/a 2 2 n/a 650 0.06 sec 22 MB
2 50 50 n/a 2 2 n/a 750 0.06 sec 22 MB
2 40 40 n/a 2 3 n/a 790 0.06 sec 22 MB
2 40 30 n/a 2 4 n/a 760 0.06 sec 22 MB
2 30 40 n/a 2 4 n/a 950 0.08 sec 22 MB

3a 67 67 67 3 4 4 4.2 K 0.44 sec 25 MB
3a 90 80 80 3 2 3 4.3 K 0.5 sec 25 MB
3a 90 80 67 3 2 3 3.9K 0.5 sec 25 MB
3a 80 80 67 3 3 3 3.9 K 0.4 sec 25 MB

3b 67 67 67 6 4 4 1.6 M 2 min 350 MB
3b 90 67 67 6 4 5 4.8 M 5.5 min 850 MB
3b 90 50 50 6 3 5 1.2 M 1.5 min 235 GB

Table 5.1: Connectivity verification in reference model

simplifications in design, the state space is indeed smaller.

In addition to that, the sink connectivity property follows here the previously encountered

pattern concerning its dependency on the temporal configuration. In networks 2 and 3a, where

there is no issue of collisions, the nodes get to connect more often to the sink as the active time

of the nodes increases.

Network
Temporal conf. Packet delivery

States CPU time RAM(% act./total per node) (% ratio per node)
1 2 3 1 2 3

2 67 67 n/a 100 100 n/a 3.2 K 0.05 sec 21 MB
2 50 50 n/a 100 100 n/a 3.6 K 0.06 sec 21 MB
2 40 40 n/a 100 90 n/a 3.4 K 0.06 sec 21 MB
2 40 30 n/a 100 80 n/a 3.6 K 0.06 sec 21 MB
2 30 40 n/a 100 60 n/a 3.9 K 0.05 sec 21 MB

3a 67 67 67 100 80 80 25 K 0.5 sec 42 MB
3a 90 80 80 100 100 100 27 K 0.5 sec 45 MB
3a 90 80 67 100 100 100 26 K 0.5 sec 44 MB
3a 80 80 67 100 90 100 26 K 0.5 sec 43 MB

3b 67 67 67 40 70 70 1.3 M 21 sec 680 MB
3b 90 67 67 40 70 50 3.4 M 52 sec 1.5 GB
3b 90 50 50 50 80 60 1.2 M 20 sec 500 MB

Table 5.2: Packet delivery ratio verification in reference model

We can also see that the collision issue concerning node 1 in network 3b is also present in

the reference model. According to this model too, each node forwards instantly any received

packages. Thus, nodes 2 and 3 will attempt to forward simultaneously the packets received

5.3. COMPARISON OF VERIFICATION RESULTS 33

from node 1. To mitigate the problem, we can decrease the active time of nodes 2 and 3 to

reduce collisions, as we did in our model.

The results from the packet delivery verification of the reference model can be seen in

Table 5.2. Conclusions are similar to the ones from connectivity verification.

Network

Temporal conf. Model in current paper Model in reference paper
act./total Connectivity

States
Connectivity

States(% per node) (periods per node) (periods per node)
1 2 3 1 2 3 1 2 3

2 67 67 n/a 2 2 n/a 46 K 2 2 n/a 650
2 50 50 n/a 2 2 n/a 51 K 2 2 n/a 750
2 40 40 n/a 2 3 n/a 46 K 2 3 n/a 790
2 40 30 n/a 2 4 n/a 40 K 2 2 n/a 760
2 30 40 n/a 2 4 n/a 48 K 2 4 n/a 950

3a 67 67 67 3 5 4 16 M 3 4 4 4.2 K
3a 90 80 80 2 2 3 690 K 3 2 3 4.3 K
3a 90 80 67 2 2 3 680 K 3 2 3 3.9 K
3a 80 80 67 2 4 3 3.5 M 3 3 3 3.9 K

3b 67 67 67 8 4 4 258 M 6 4 4 1.6 M
3b 90 67 67 8 4 4 478 M 6 4 5 4.8 M
3b 90 50 50 8 3 4 257 M 6 3 5 1.2 M

Table 5.3: Connectivity verification in both models

The performance of both models under the same topologies can be compared in Tables 5.3

and 5.4. In some cases, the reference model has slightly better performance. In the rest of

the cases, the performance is exactly the same. The reference model proves to handle more

effectively the collision situations in networks 3a and 3b.

It should also be mentioned that the reference model behaves much better, as far as its

state space is concerned, when the conditions in the network deteriorate because of collisions

or a decrease of temporal resources. This makes sense. When network conditions deteriorate

and packets are lost, the nodes will have to retransmit. In our model, constant retransmissions

increase hugely the state space. In the reference model this does not happen because of the

limited number of retransmissions.

By comparing the state space sizes between networks, we can see that network 3b has a

state space three orders of magnitude larger in relation to network 3a in both models. This

reflects the complexity created by the collisions in network topology 3b.

34 CHAPTER 5. COMPARISON WITH THE REFERENCE MODEL

Network

Temporal conf. Model in current paper Model in reference paper
act./total Packet delivery

States
Packet delivery

States(% per node) (% ratio per node) (% ratio per node)
1 2 3 1 2 3 1 2 3

2 67 67 n/a 100 100 n/a 456 K 100 100 n/a 3.2 K
2 50 50 n/a 100 100 n/a 314 K 100 100 n/a 3.6 K
2 40 40 n/a 100 80 n/a 461 K 100 90 n/a 3.4 K
2 40 30 n/a 100 50 n/a 400 K 100 80 n/a 3.1 K
2 30 40 n/a 90 60 n/a 480 K 100 60 n/a 3.9 K

3a 67 67 67 90 50 40 318 M 100 80 80 25 K
3a 90 80 80 100 100 80 8 M 100 100 100 27 K
3a 90 80 67 100 100 80 7.9 M 100 100 100 26 K
3a 80 80 67 100 70 80 12.9 M 100 100 100 26 K

3b 67 67 67 30 60 70 40 70 70 1.3 M
3b 90 67 67 40 70 80 40 70 50 3.4 M
3b 90 50 50 30 80 90 50 80 60 1.2 M

Table 5.4: Packet delivery ratio verification in both models

Chapter 6

Conclusions & Future Work

Our test results show that the intermediate nodes that forward packets to the sink need –not

surprisingly– longer active periods. Reducing the active time can, on the other hand, increase

performance in points of the network where collisions occur. Because it is not possible to include

random waits in the model, an issue of collisions due to simultaneous forwarding attempts exists,

which would not be present in a real-life scenario.

The state space explosion appears to be a big issue for our model. We are able to verify

networks of only 2 and 3 nodes apart from the sink. The basic guidelines for keeping the

state space small were taken into account during the design, namely the sparing use of clocks

and variables, bounded if possible, their reset when their value is not useful and the use of

committed states. However, the model proves itself to be quite complex. In addition to that,

symmetry reduction cannot be applied to reduce state space, because the networks we model

are not symmetric.

Comparing our model with the reference model, we observe a similarity in the results. The

network faces even exactly the same simultaneous forwarding collision issue. The difference

is mainly that the reference model scales much better, because of simplifications in the de-

sign. Such simplifications include the restriction to only one retransmission, and the unrealistic

automatic acknowledgement in the entire network for packets in the sink.

Limitations and differences of our verification method compared to traditional simulation

techniques are apparent. It is easy to guarantee for the best or worst case for a property value,

but it is hard to calculate percentages, or distributions.

Uppaal is proved to be a sophisticated, flexible, and reliable tool able to handle very big

models of hundreds of millions of states that size up to many tenths of gigabytes in memory.

The support for multiple processors is, however, a feature we miss, because the multiple core

architecture of our workstations and servers can not be fully utilized.

Future work could include testing the system reaction towards changes in the topology

network, introducing for example a new node, or modifying the connection scheme during

operation. Or calculating the packet end-to-end delay from the generator node to the sink. The

packets are created in the beginning of the node’s period when the t op clock of the node is

35

36 CHAPTER 6. CONCLUSIONS & FUTURE WORK

reset. The value of the same clock at the moment the packets reach the sink is the end-to-end

delay. We can form queries for the Uppaal verifier in order to verify the worst case value for

the end-to-end delay. Packets not reaching the sink will not be taken into account.

Bibliography

[1] Chipcon corporation, ZigBee-ready RF Transceiver, CC24240 data sheet, June 2004.

[2] S. Tschirner, L. Xuedong, and W. Yi. Model-Based Validation of QoS Properties of Biomed-

ical Sensor Networks. In 8th ACM International Conference on Embedded Software, 2008.

[3] L.Q. Zhuang, K.M. Goh and J.B. Zhang. The wireless sensor networks for factory au-

tomation: Issues and challenges. In Proceedings of the IEEE Conference on Emerging

Technologies and Factory Automation (2007), pages 141 –148, Sept. 2007.

[4] E. Naess-Ulseth. Biomedical Wireless Sensor Network - BWSN. Nordic Innovation Center,

Oslo, Norway, 2007.

[5] V. Shnayder, B. Chen, K. Lorincz, T. Jones, T. R. F. Fulford and M. Welsh. Sensor

networks for medical care. In Proceedings of the 3rd International Conference on Embedded

Networked Sensor Systems, SenSys ’05, pages 314–314. ACM, 2005.

[6] M. Welsh, D. Malan and B. Duncan. Wireless sensor networks for emergency medical care.

GE Global Research Conference Harvard University, 11(1):13–15, 2004.

[7] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,

126:183–235, April 1994.

[8] S. Yovine. Model checking timed automata. In European Educational Forum: School on

Embedded Systems, pages 114–152. Springer-Verlag, 1998.

[9] G. Behrmann, A. David and K. G. Larsen. A Tutorial on UPPAAL. In Formal Methods

for the Design of Real-Time Systems, pages 200–237. Springer, 3185 edition, 2004.

[10] B. L. Titzer et al. Avrora: Scalable Sensor Network Simulation with Precise Timing.

In Proceedings of the 4th International Conference on Information Processing in Sensor

Networks (IPSN), pages 477–482, 2005.

[11] A. Varga. The OMNeT++ Discrete Event Simulation System. In Proceedings of the

European Simulation Multiconference ESM 2001, pages 319–324.

[12] H. N. Pham, D. Pediaditakis and A. Boulis. From Simulation to Real Deployments in

WSN and back. In IEEE International Symposium on a World of Wireless, Mobile and

Multimedia Networks, 2007, pages 1–6, june 2007.

37

	Abstract
	Contents
	Introduction
	Foundations
	Biomedical Sensor Networks
	Definition
	QoS requirements
	Temporal configuration of the nodes in a sensor network
	The Chipcon CC2420 transceiver

	The Uppaal platform
	Timed Automata
	The Uppaal platform
	Reducing state space of models

	Related work

	Modeling the network
	Network Topologies
	The sensor node
	Design decisions
	State space issues during model design

	Verifying the network
	Hardware used and Uppaal options
	Deadlock Absence and Sink Connectivity
	Packet delivery ratio
	The state space explosion

	Comparison with the reference model
	The reference model
	Model comparison
	Comparison of verification results

	Conclusions & Future Work
	Bibliography

