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Abstract

TouchDevelop is a novel development environment that is specially designed to support quick
and easy source code authoring on mobile devices running Windows Phone. TouchDevelop
is a common name both for the mobile IDE and the language it uses. As a language,
TouchDevelop is a multiparadigm, strongly typed language with static type checks.
This work presents a language specification that was derived from the script corpus
downloaded from the TouchDevelop cloud in December 2011 using a reverse-engineering
approach. It provides a formal description of the language as well as the implementation
of a compiler consisting of a parser, static semantic checker, and code generator.
The base-line grammar was reverse-engineered and successfully tested on a special very
small testset of scripts using ANTLR. This non-optimized yet highly human-readable
base-line grammar contains two left-recursive rules and requires the look-ahead of two
tokens.
Since the parser automatically generated by ANTLR from this grammar is computationally
inefficient and did not support the abstract syntax of the language, we also implemented a
non-backtracking recursive-descent strong LL(1) parser in F# using the parser combinator
library FParsec. This library provides an embedded expression parser, which we customized
for correct generation of abstract semantic trees out of TouchDevelop expressions. This
parser successfully parses 278 out of 282 sample scripts from the code base requiring less
than a second for 35075 lines of code. For the four scripts it fails to parse, it does so
correctly since the scripts contain syntax errors.
The static semantics for TouchDevelop was implemented manually in F# using the rules
described in the language specification using denotational semantics.
The code generator performs two transformations. The abstract syntax tree is first
transformed into a CodeDom tree representation. This tree is then converted into a .Net
binary by means of the CodeDom classes. The dynamic semantics of .Net runtime was
used for code execution.
The compiler targets .Net client profile and Silverlight 4.0: the console-only code compiles to
a full-fledged .Net 4.0 console application whereas the low-trust Silverlight 4.0 dynamically
linked library is generated as the target for Silverlight.
The compiler does not yet have industrial strength. In particular, there is no support for
Windows Phone as a compilation target, because the compiled package has to be digitally
signed to allow its deployment and execution on a mobile device or emulator. Therefore,
none of phone-specific aspects of TouchDevelop, including the described event model, are
currently supported. Furthermore, only a minimal set of the TouchDevelop library was
implemented to test the compiler.
This work contributes to the best practices in reverse engineering, especially to the use
of ANTLR in the two-step reverse engineering of language specification, as well as to
multi-targeting compiler implementations for the .Net platform.
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Zusammenfassung

TouchDevelop ist eine neuartige Entwicklungsumgebung, die speziell für das schnelle und
einfache Quellcode-Authoring auf mobilen Geräten mit Windows Phone konzipiert wurde.
Das Wort TouchDevelop ist eine gemeinsame Bezeichnung für die mobile IDE und für die
Programmiersprache. Sprachlich gesehen ist TouchDevelop eine multiparadigmale, stark
typisierte Programmiersprache mit statischen Typüberprüfungen.
Diese Arbeit präsentiert eine Sprachspezifikation, die anhand der im Dezember 2011
heruntergeladenen Skriptsammlung unter Verwendung eines Reverse-Engineering-Ansatzes
abgeleitet wurde. Neben einer formalen Beschreibung der Sprache ist die Implementation
der Compiler-Architektur, bestehend aus einem Parser, einem statischen Semantik-Checker
und einem Code-Generator, ebenfalls ein Teil dieser Diplomarbeit.
Die Rekonstruktion der Baseline-Grammatik und deren anschließendes Testen anhand
einer kleinen Menge von Testskripts erfolgte durch das ANTLR. Diese zwar rechnerisch
nicht-optimierte dennoch für Menschen höchst lesbare Baseline-Grammatik enthält zwei
linksrekursive Regeln und benötigt das Look-Ahead in Höhe von zwei Token. Der auto-
matisch durch ANTLR anhand dieser Grammatik erzeugte Parser war rechnerisch nicht
optimal und bot keine Unterstützung für die abstrakte Syntax der Sprache.
Um diese Probleme anzugehen, wurde ein nicht-zurückziehende rekursiv-absteigende starke
LL(1)-Parser in F # unter Verwendung der Parser-Kombinator-Bibliothek FParsec hän-
disch umgesetzt. Diese Bibliothek enthält einen eingebetteten Ausdrucksparser, der für
die korrekte Generierung von abstrakten syntaktischen Bäumen aus dem TouchDevelop-
Quellcode angepasst wurde. 278 von 282 Beispiel-Scripts aus der Skriptsammlung (35.075
Zeilen Code), wurden durch den Parser in weniger als eine Sekunde erfolgreich geparst.
Alle vier Skripte, bei denen das Parsen fehlgeschlagen ist, beinhalteten Syntaxfehler.
Die statische Semantik für TouchDevelop wurde anhand der Regeln der denotationellen
Semantik aus der Sprachenspezifikation manuell in F# implementiert, beschrieben.
Der Code-Generator führt zwei Transformationen durch. Der abstrakte Syntax-Baum wird
zuerst in die CodeDOM-Baum-Darstellung umgewandelt. Dieser Baum wird anschließend
in.NET Assembly umgewandelt. Für die Ausführung vom Code wurde daher die dynamische
Semantik der .NET-Laufzeitumgebung verwendet.
Der Compiler unterstützt .Net 4.0 Clientprofil und Silverlight 4.0 als Kompilierungsziele.
Der Code mit Konsolenausgabe wird in eine vollwertige .Net-4.0-Konsolenanwendung
kompiliert, während der Code für low-trust Umgebung in eine dynamische Bibliothek für
Silverlight 4.0 umgewandelt wird.
Der Compiler hat noch keine industrielle Stärke. Insbesondere gibt es keine Unterstützung
für Windows Phone als Kompilierungsziel, da das Deployment-Paket eine digitale Signatur
braucht, um auf einem mobilen Gerät oder Emulator installiert und getestet zu werden.
Daher werden derzeit keine Telefon-spezifische Aspekte von TouchDevelop, einschließlich
des beschriebenen Event-Modells, unterstützt. Nur ein Minimalanteil der TouchDevelop
Standardbibliothek wurde implementiert, um den Compiler zu testen.
Diese Arbeit trägt zur Ausarbeitung von Best Practices für Reverse Engineering und die
Implementation eines Multi-Targeting-Compilers bei. Insbesondere wurde gezeigt, wie der
Einsatz von ANTLR im Zwei-Schritt-Ansatz das Reverse-Engineering der Sprachenspezifi-
kation erleichtern kann.
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1 Chapter 1

Introduction

I have always wished for my computer to be as easy to use as my telephone; my
wish has come true because I can no longer figure out how to use my telephone.
Bjarne Stroustroup, the inventor of C++.

The reason to start this work was the lack of a comprehensive language specification
for TouchDevelop. The existing implementation available only for Windows Phone was
a language, an IDE, an interpreter, and a runtime in one with closed sources under a
proprietary (albeit royal-free) license.
To derive the language specification we used the original application for Windows Phone
and a set of 282 scripts downloaded from the TouchDevelop webpage in December 2011:
these were all scripts available on the webpage at that time. We designed our own script
to test for different aspects of language syntax and semantics which we used as input
for the TouchDevelop phone application. We never performed a decompilation of the
TouchDevelop binaries or used any other techniques to reverse engineer the source code of
the original application.
Thus, the main goal of this thesis was to reconstruct the language syntax and semantics of
a closed-source project by Microsoft Research called TouchDevelop. The secondary goal
was to provide an implementation of a simple TouchDevelop compiler using a re-engineered
language specification.
The major outcome of this work is the reverse-engineered version of the language specifica-
tion for TouchDevelop, presented in the third chapter. The language specification includes
both syntax and semantics of the language.
As a proof-of-concept for the reverse-engineered specification we implemented a simple
TouchDevelop compiler along with a minimal subset of the TouchDevelop standard library.
The compiler consists of the parser, semantic checker, and code generator. The details
about the compiler implementation are provided and discussed in the fourth chapter.
The current thesis consists of six chapters. The first chapter provides an introduction to
TouchDevelop and discusses the role of TouchDevelop as a platform. The second chapter
describes the foundations of formal languages, grammars, and the approaches to reverse-
engineering of language specification. The approaches presented in this chapter, like the
two-step re-engineering of language grammar, are applied to the existing TouchDevelop
application to derive the data necessary for the later chapters.
The third chapter contains the language specification for TouchDevelop, reconstructed from
publicly available scripts and the behavior of the mobile application. The specification
defines both the grammar and the syntax of TouchDevelop and discusses the problems of
specification mining in the case of TouchDevelop.
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Multitarget .Net compiler for TouchDevelop

Chapter four presents the details of the compiler architecture, the second outcome of the
current work. The workflow of the compiler implementation and the limitations of the
current implementation are discussed here as well.
The fourth chapter speculates on the validity and the lifetime of the derived language
specification and reflects on the most important design decisions for TouchDevelop as a
programming language.
The last, sixth chapter concludes the work and provides an outlook on the further develop-
ment of the project.
The ANTLR grammar for TouchDevelop, AST types for the parser, list of error messages
of the semantic checker and the sample TouchDevelop script used to derive the specification
are available in the Appendix.

1.1 TouchDevelop – a development environment for mobile
devices

More than 4000 programming languages have been created during the last fifty years.
Besides the well-known general-purpose multi-paradigm languages like C++, Java, or C#
there are plenty of domain-specific languages that are designed to satisfy the need of a
particular domain.
One of the most rapidly evolving domain for software development are mobile devices. The
number of smartphones and tablet devices exceeds that of conventional personal computers.
Due to the ubiquity of these devices they have been seen for a long time as a promising
market for developing games and business applications. However, nobody really treated
these devices as a development platform until recently: the properties of these devices
– their small-sized screen, low resolution, short battery life, absence of convenient input
device like keyboard – do not seem attractive for software development.
On the other side, the high prevalence of mobile devices among a wide range of social
groups, carrying these devices at all times, and the permanent connection to the Internet
makes them an attractive platform for hobby developers who may want to implement
simple projects that would immediately run on the device while commuting.
TouchDevelop was created with the idea in mind to develop a mobile developing environment
and language runtime (interpreter) that would enable the direct input of user scripts on
mobile devices using touch-sensitive displays and finger input.
TouchDevelop is a new programming environment and language designed „to make it
possible to write applications on mobile devices”Tillmann et al. [2011]. The project was
initiated in the beginning of 2011 and is currently developed by a group of researchers from
the Research in Software Engineering (RiSE) group at Microsoft Research in Redmond,
WA. The project rapidly grew into a full-fledged language with an option-rich IDE and
solid cloud support.

1.2 A programming language or just a game?

Before we begin with the formal specification of TouchDevelop we have to decide whether
we can and should consider TouchDevelop a programming language, a developer tool, or

2



1.2 A programming language or just a game?

Figure 1.1: Sample applications implemented in TouchDevelop
From left to right, upper row: (a) MegaPegs, a ball-breaking game; (b) SaveTheBubble,
dexterity action game; (c) TouchTris, a clone of the famous Tetris game; (d) Analogue
clock. Bottom row: Missile Defence - a shooter action game.

just another mobile application for Windows Phone, next to Facebook1 and Foursquare2

applications.
Analyzing the traditional games in his book „A Casual Revolution: Reinventing Video
Games and Their Players” Jesper Juul from MIT states that „[there is a] pull [...] of being
unable to fit a game into your life. There is a new wave of video games that seem to solve
the problem of the missing pull; games that are easy to learn to play, fit well with a large
number of player and work in many different situations.” (Juul [2010], page 5). Another
common trend in the Internet and social networks is the ever-growing role of casual games
in the user’s daily activity known as „gamification” (Deterding [2011]). Casual games,
requiring neither prior knowledge of the subject or a thorough study of the game manual
(in those rare occasions when one exists) nor special skills, flooded the social networks and
contribute to a substantial part of user’s daily activity.
If we look at TouchDevelop from the viewpoint of a player we will see many traits (and
design decisions behind them) similar to classical social network games like FarmVille.3 In
particular:

• TouchDevelop does not target professional developers. Rather, the focus is set to
1A free application for Windows Phone to work with the social network Facebook – a platform for internet
games, image and video sharing, blogging etc.

2A free client application and a social platform for location-based activities: providing feedback for
restaurants, hotels etc. and finding who from your friends is in the vicinity.

3FarmVille is a farming simulation social network game developer by Zynga in 2009 and popular as a
game application for the social network Facebook and other platforms

3
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hobby and casual developers and even to people without any developer background.
• TouchDevelop is a cloud-based platform with occasionally connected clients. User

activity is stored online and is automatically synced on all connected devices (similar
to game progress savings).

• TouchDevelop provides at least two levels of privacy: a private mode for scripts that
get synchronized but are not visible to other community members and „publishing”
scripts that are then visible for everyone and available for forking.

• Both the mobile client and the web portal feature rich possibilities to review, rate, and
comment the scripts submitted by a user. User activity and community contributions
can be rated by other community members (similar to „likes” on Facebook or „+1”
on Google+).

• Similarly to photo upload in social networks, TouchDevelop provides an one-button-
click upload for application screenshots. This similarity is also valid for applications
with leaderboards where TouchDevelop provides the transparent submission and
storing of user scores.

• Community feedback to user activity is tracked as a user personal rating („hearts” in
TouchDevelop), which is directly visible (and shown!) to other community members
along with the full list of submitted scripts. This is similar to the achievement
systems common for modern casual games.

TouchDevelop is not the first attempt to design a casual game with elements of a program-
ming language. However, those games were usually biased either towards the programming
language and algorithmic complexity, like Microsoft Terrarium (Richardson [2003]) or
AntMe! (Saumweber [2007, c2008]), which both used C# as a programming language
and served as a sample applications to implement artificial intelligence, or towards the
visual effects and gaming factor, like Kodu, a visual programming language for children
(MacLaurin [2009], Stolee and Fristoe [2011]).
The steady growth of community around TouchDevelop, as seen on its website, might prove
the fact that the application has found a good niche between a casual game for a mobile
device (phone) and a real-world programming language.
We did not examine the community, but judging from the scripts that get submitted to
the webportal and receive high rankings one can tell that TouchDevelop is actively used
for developing simple (but not primitive!) casual games (CloudHopper4, TapTris5) and
small utility applications (MyOnlineMeetings6, TodoList7). The mentioned scripts were all
developed (according to the information from personal profiles) by non-professionals: a
manager, a technologist, etc.
In this respect we would like to coin a new term to describe an ordinary community member
of TouchDevelop website – casual developer.

1.3 A programming language for casual developers

TouchDevelop appeared at the time when programming small but useful or attractive
application is no longer a privilege of a professional developer. To address the needs of
people with no prior experience in developing applications using traditional, „full size”
languages like Java or C#, the platform designers made several crucial decision:

4https://www.touchdevelop.com/wbxsa
5https://www.touchdevelop.com/vqno
6https://www.touchdevelop.com/mpuj
7https://www.touchdevelop.com/qanh
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1.3 A programming language for casual developers

• TouchDevelop is a stand-alone, mostly procedural language with1 predefined class-like
types.

• TouchDevelop supports reactive event-driven programming model with event handlers
automatically mapped to preset events.

• TouchDevelop encourages „thumb programming.”
• TouchDevelop runs directly and only on mobile phones — an ubiquitous device today,

which everyone normally carries along all the time.
• GameBoard leverages programming of 2D sprite-based games and even includes a

physics engine for games requiring it.
Therefore, by targeting a broader group of users as developers TouchDevelop was designed
with the trade-off between simplicity and powerfulness. It is no wonder that casual
developers favor rich built-in capabilities for 2D game programming over the support for
object-oriented or functional features.
To enable the implementation of an open-source compiler that would allow the casual
developers not only to author scripts, but also to publish them as standalone phone
applications, we needed to reverse-engineer the syntax and semantics of TouchDevelop, the
programming language of the platform.

5





2 Chapter 2

Syntax and semantics of
programming languages

Before one can start with the reverse-engineering of a language specification, one has to
acquire the general knowledge about the syntax and semantics of programming languages.
The minimum minimorum of this knowledge is summarized in the current chapter.
In the first section we describe the properties of formal languages. We begin with a brief
characterization of the most common formalisms, syntax and semantics, followed by the
basic definitions from formal language theory, like grammar, language, production etc.
Some aspects of formal languages that are required for the fulfillment of the thesis goal,
like grammar derivation and parser implementation, are presented with a higher level of
details.
The second section deals with other important requirement for language reverse-engineering:
the notations for the formalisms discussed in the first section.
The last, third section rests on the definitions from the previous two sections and provides
the necessary background information about the principles and best practices for reverse-
engineering of language grammars. These will be applied to the TouchDevelop for deriving
the language specification in the next chapter.

2.1 Properties of formal languages

2.1.1 Two essential formalisms: syntax and semantics

If we treat a compiler as a tool that receives text input and provides an executable as
output, the following data and steps are needed to perform this task:

• a formal, structural and systematic description of the input data (=grammar),
• a program for reading the input data and transforming it to an independent internal

format (=parser),
• a formal structural and systematic description of how the output can be generated

from input (=semantics),
• a program that would use the previous description to generate the code (=compiler

back-end).
So, to successfully develop a compiler we need two different types of formalisms: the
structure of the source code, called syntax, and the computational meaning of this code,
called semantics.

7
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The description of both semantics and syntax can be either informal or formal. Informal
description can be provided in the form of an essay-styled description of the language
illustrated with code samples to explain concepts. Formal description, however, has to be
written in a notation with precise meaning. To achieve precision the notation has to be
standardized and specified using other proven notations or by the means of mathematical
logic.
Formalization of the language syntax fulfills the following tasks:

• A formal definition of the language syntax leads to its standardization.. This step is
crucial for both language consumers – developers who would like to write syntactically
correct programs in this language – and for language implementers, whose task is to
provide the infrastructure for correct compiler implementations.

• As soon as the syntax of the language is formally defined one can perform analysis of
its (syntax) properties: whether it is possible to derive a context-free grammar for
this language, what amount of look-ahead is necessary for the parser, whether the
definition is LL(k), LR(k), or ambiguous etc.

• The proper format definition can be directly transformed into a parser by using
appropriate tools, like YACC (for LR parsers) or ANTLR (for strong LL parsers),
bypassing a manual implementation step.

If syntax concerns with how the program are written, semantics deal with the questions
what legal programs mean and describes the behavior these programs produce when
executed on some real computer or by a virtual machine. Several alternative semantics
are possible for the same syntax. Semantics can not cover the program execution in every
tiny detail, but usually this is not necessary: normally only the features that are deemed
to be relevant constitute the language semantics. Those features are often the relations
between the source code (input) and the program result (output) and whether the execution
terminates or not.
Formalization of semantics, in its turn, brings the following benefits:

• A formal definition provides a valid and standard way to interpret the code in the
given language. This is important for both developers to understand how the code is
executed and for compiler constructors to implement the correct transformation of
the language syntax into the executable form.

• A formal definition, along with the syntax, are the prerequisites for static analysis of
the language properties, for instance the formal proof of type safety. Besides, it can
ensure the validity of certain rules defined as contracts for the code, and the absence
of errors.

• Some software available today is capable of generating the back-end compiler code
based upon the language semantics, similarly to parser generation tools. These tools
are known as „compiler generators” or „compiler compilers”.

The purpose of a grammar, known as grammar use case, might be very different depending
upon the formalism it tries to describe. In the context of programming languages the
following are the most common use cases:

• Modeling of the source code. This use case corresponds to the lexer step in compiler
construction and helps to define the source code of the language under preservation
of rich features like annotations, aspects, scaffoldings or metadata. TouchDevelop
relies on the model of source code gained from the tokenized user input so that no
syntax error is possible at the script scope.

• Intermediate program representation. This is the next step of the source code
transformation where the complete program representation is abstracted from its
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source code and aligned according to the syntactic rules of the language. A typical
example of this use case can be the abstract syntax tree constructed by the parser
using the input from lexer.

The above two models can be further used concomitantly or alone as the input to the
following tools [Klint et al., 2005]:

• compiler middle- and back-ends for code generation,
• control- or data-flow-based static code analyzers,
• pretty printers,
• documentation generators,
• preprocessors and program specializers,
• debuggers and profilers.

2.1.2 Basic definitions

Before we can discuss the reverse-engineering approach to the grammar we need to precisely
define this term. This term originates from linguistics and according to Chomsky represents
„the essence of human language” (Chomsky [1976]). Adapting this aphoristic definition
for Computer Science we consider grammars as established formalisms and notations to
describe a language (Klint et al. [2005]). Possible formalisms can be context-free grammars,
algebraic signatures, or regular tree and graph grammars.
Grammars are typically a structural, static descriptions of a system and is seen independent
from its interpretation (semantics), which should not necessarily be meaningful; several
alternative semantics can exist for one grammar (Klint et al. [2005]). For example, a useful
semantics of context-free grammar can be the set of all valid derivation trees, whereas the
de facto standard semantics for the grammars of this type are their generated languages
(Aho et al. [1986]).
A language grammar G is a set of rules for combining entities to a well-formed text.
The entities are called terminal symbols if they contain only text and no other entities.
The combinations of terminal symbols are described using grammar rules, also known as
production rules, and non-terminal symbols. Non-terminal symbols do not appear in the
final texts: their only role is to describe the format of the well-formed text.
Definition 1. A generative grammar G = (VT , VN , R, S) is a 4-tuple containing a set VT

of terminals, a set VN of non-terminals, a set R of rules, and a starting symbol S such that
(1) VN and VT are finite sets of symbols, (2) VN ∩ VT = Ø, (3) R is a set of pairs (P,Q)
such that (3a) P ∈ (VN ∪ VT )+ and (3b) Q ∈ (VN ∪ VT )∗, and (4) S ∈ VN .1
Every rule R has the form A = f1| ... |fn, where A ∈ VN is a non-terminal symbol, each
alternative fi is a sequence, and n ≥ 1. Each sequence has the form e1 ... em, where each ej

is a symbol in T ∪N (i.e., either a terminal or a non-terminal), and m ≥ 0. When m = 0,
the sequence is empty and is denoted as Λ.

A grammar for binary literals representing one byte (8 bits) can be written using the
following rules:
B = TTTTTTTT .
T = ”0” | ”1”.
We may derive the string "0" or the string "1" from the non-terminal T , by replacing
or substituting either "0" or "1" for T . These derivations can be written T =⇒ ”0” and
T =⇒ ”1” respectively.

1∗and + are Kleene operators defined in the following way: if V is a set of symbols or characters then V +

is the set of all strings over symbols in V , and V ∗ = V + ∪ Λ where Λ is an empty string.
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In each step of a derivation we replace a non-terminal with one of the alternatives on the
right hand side of its rule. A derivation for the binary number „01010110” can be shown
as a tree with every tree node representing a non-terminal encoded as T . Each leaf of the
tree is labeled by a terminal symbol, such as "0" or „1”. Reading the values on the leaves
in sequence from left to right gives the string derived from the symbol at the root of the
tree: "01010110" (see Figure 2.1).

Figure 2.1: Derivation tree a binary literal.

One can imagine a grammar G as
a string generator for strings con-
taining only the terminal symbols.
Grammars are useful because they
are finite and compact descriptions
of usually infinite languages.

Definition 2. Let T ∗ be the set
of all strings that can be derived
from T , including the empty string
Λ. When A is a non-terminal, the
set of strings derivable from A is
called a language:

L(A) = {w ∈ T ∗| A =⇒ w}
L(A) denotes a language with A as a starting symbol and hence for the generative grammar
G with the starting symbol S the language generated by G or above G is L(G) = L(S).

The class of grammars described above is called the context-free grammars and is just one
class in the hierarchy identified by Chomsky, which constitutes

• the unrestricted,
• the context-sensitive,
• the context-free, and
• the regular grammars.

The unrestricted grammars are more powerful than the context-sensitive ones, which are
in turn more powerful than the context-free ones, which are again more powerful than
the regular grammars [Aho et al., 1986]. The unrestricted grammars cannot be parsed in
general; they are mostly of theoretical interest and of little practical use in computing. All
context-sensitive grammars can be parsed, but require an excessive amount of time and
memory space, and so they are of little practical use either. The context-free grammars
are the first class of grammars that are highly useful in computing. The regular grammars
can be parsed very efficiently using the constant amount of memory, but they are rather
weak; they cannot define parenthesized arithmetic expressions, for instance. Table 2.1
summarizes the hierarchy of grammar classes.
While some text books, as quoted above, state that “Type n grammars are more powerful
than Type n + 1 grammars” [Aho et al., 1986], other books claim “A regular (Type 3)
grammar is not powerful enough to match parentheses” [Grune and Jacobs, 2011]. To
address these statements we need to define the power of grammars. One might naively
think that the power of a grammar is measured by its ability to generate larger sets of
strings, but this is clearly incorrect because the largest possible set of strings is easily
generated by the regular expression ”a”∗, a straightforward Type 3 grammar. The power
of a grammar, however, is the richness of the possibilities how we can restrict this set:
more powerful grammars can define more sophisticated boundaries between correct and
incorrect phrases. Some boundaries are so delicate that they are beyond the capabilities of
any grammar.
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Chomsky hierarchy Sample rules Definition of the
grammar

Type 0: Unrestricted
grammars ”a” B ”b” =⇒ ”c” Unrestricted phrase

structure grammars
with ε-rules

Type 1: Context-sensitive
(CS) grammars ”a” B ”b” =⇒ ”a” ”c” ”b” CS grammars without

ε-rules
Type 2: Context-free (CF)

grammars B =⇒ ”a”B ”b” Context free ε-free
grammars

Type 3: Regular (RE) or
finite-state (FS) grammars B =⇒ ”a” | ”a”B Regular grammars

(regular expressions)
Type 4: Finite-choice (FC)

grammars B =⇒ ”a” | ”b” Finite-choice, no
production grammars.

Table 2.1: Chomsky’s hierarchy of grammars.

Figure 2.2: A metaphor for different grammar power as a silhouette of a rose. Numbers
represent the types of grammar according to the Chomsky hierarchy. From
Grune and Jacobs [2011].
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This idea can also be depicted metaphorically by a drawing where a rose is approximated by
increasingly finer outlines [Grune and Jacobs, 2011]. In this metaphor, the rose corresponds
to the language with its petals being the sentences of the language. We apply grammars of
different types to approximate its silhouette (Figure 2.2).

• A regular grammar (Type 3) would only allows us to use straight horizontal and
straight vertical lines to delineate the flower. A T-shaped form will be already enough
(and the only possible here), but the result is very coarse and imprecise.

• A context-free grammar (Type 2) would provide straight lines at any angle and arcs
for silhouette approximation. The resulting drawing would resemble a flower, but
would not allow us to recognize if it is a rose or camomile.

• A context-sensitive (Type 1) grammar would be a thin, smooth curve that tightly
envelops the flower. The smoothness, however, is the constraint here: the line fails to
follow all the sharp turns and might miss the silhouette at very abrupt sites. This is
a very realistic drawing of a somewhat idealized rose, not the rose that is standing in
a vase in front of us.

• An unrestricted phrase structure (Type 0) grammar is the one that can capture the
outline perfectly, but only to the extent a human hand can depict.

• The rose itself cannot be caught in any finite description, for its essence remains
forever out of our reach.

2.1.3 Syntax

Syntax deals with the structure of source code and refers to the spelling of programs,
whether it is „legal” or not. The legality is determined by finding connections and relations
between symbols (terminals) and phrases (production rules) that occur in the code. These
connections can represent concrete syntax which determines what text strings are accepted
as programs, or the abstract syntax that describes the general program structure.
Concrete syntax deals with the string input and is specified by formal grammars via
production rules defining the set of valid alternatives for source code. This grammar must
contain no ambiguities and each valid program leads to a unique parse tree.
Abstract syntax is generally simpler and more loosely defined as the concrete syntax and
is mainly concerned with the „deep structure” of programs [Mosses, 2006]; one operates on
the tree representations of the source code. These trees, called abstract syntax trees (AST),
represent the operations or transformations described in the source code and each node is
created by a particular constructor rule. Every input parameter of this rule is represented
as a separate child branch of this node and the result of the node action is propagated
towards the tree root as a single parent branch.
The complete syntax description should be a combination of both concrete and abstract
syntax. Nonetheless, it has become a usual practice to provide only the description of
the concrete syntax and leaving the abstract syntax unrestricted, so that it can be easily
defined by the parser or compiler implementors. Some elements of the abstract syntax,
however, can be restricted by means of semantics.

2.1.4 Parsing

When a parser reads an input file with source code, its task is not to get all possible
derivations for the given grammar. Rather, given the input text and grammar, we need to
check if the text follows the grammar, or in other words, if it could have been generated
by the grammar. In other words, we have to reconstruct the tree provided on Figure 2.1.
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Top-down Bottom-up
Non-directional Unger parser CYK parser
Directional Predict/Match automation

Depth-first search (with
backtrack)

Breadth-first search
Recursive descent parser
Definite Clause grammars

Shift/Reduce automation
Depth-first search (with

backtrack)
Breadth-first search

Linear directional
(breadth-first
with max 1
breadth)

LL(k) precedence parser
bounded-context parser

LR(k), LALR(1), SLR(1)

Table 2.2: An overview of parsing techniques, from Grune and Jacobs [2011], adapted.

This process is called parsing or syntax analysis.
In practice, parsing is almost exclusively performed with context-free (Type 2) or regular
(Type 3) grammars [Aho et al., 1986]. Unrestricted (Type 0) and context-sensitive (Type
1) grammars are user-unfriendly because it is extremely difficult to derive a simple and
understandable Type 0 or Type 1 grammar; besides, all known parsers for them have
exponential time requirements [Grune and Jacobs, 2011].
Concerning the regular grammars, they are used mainly to describe patterns that have to
be found in surrounding text (regular expressions) and can be parsed using a finite-state
automates. But in real-world applications regular grammars are often seen as a further
restricted context-free grammars and the toolset used for parsing these grammars is directly
applied for parsing of regular grammars – sometimes probably not computationally effective.
Depending upon the starting point of tree reconstruction, all parsing techniques can be
classified by starting at the tree root (top) and going towards the leaves (down), or starting
at the leaves (bottom) and ascending up to the root (up). These techniques are called
„top-down” and „bottom-up” parsing respectively. These are two principally different
techniques with different approaches to parser implementation, each having certain benefits
and limitations (see Table 2.2).
After the classification „top-down” or „bottom-up”, the next important criterion for parsing
method classification is the directionality: parsers can be directional or non-directional.
Non-directional parsers enjoy the random access to the complete input at any time while
constructing a parse tree: the complete input has to be known by the time when parsing
begins and should remain accessible (that usually means – directly in the operational
memory) during complete parsing time.
Non-directional top-down parsing is easy and straightforward, it was first described by
Unger [Unger, 1968, Aho et al., 1986]. For the bottom-up approach a non-directional
parsing was proposed independently by several people, so that the algorithm was named
after its three inventors CYK-parsing. As it is also usual for the bottom-up approaches,
the naive implementation of this algorithm is much more efficient than that of Unger [Aho
et al., 1986].
The directional methods, conversely, process the input symbol by symbol, from left to right
or from right to left (if this is more reasonable), uni-directionally. The main advantage
here is that parsing can start as long as the first symbol is at the input and progresses
considerably before the last symbol is reached. The comparison between directional and
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non-directional approaches is especially illustrative in two classical XML (and HTML)
parsers: DOM is a non-directional parser with full document representation whereas SAX is
a extremely quick and memory-saving unidirectional parser (for details see Harold [2003]).
All directional algorithms can be further classified by the technique used to drive the parsing
automation to find all possible derivations. As we discussed in the previous section, parsing
the text input is algorithmically a process of creating a tree. Therefore, the algorithms for
parsing automations are those used for tree search and traversal: depth-first and breadth-
first approaches. These two different techniques, determining the order how the tree nodes
are processed, must be combined with backtracking for the means of computational efficacy.
One very simple and computationally effective parsing method is called recursive descent
parsing and is an example of top-down parsing. This method is especially suitable for
manual parser implementation and is often used for this purpose. It works for a class of
grammars called LL(1): those that can be parsed by reading the input symbols from the
Left, making derivations always from the Leftmost non-terminal, and using a look-ahead
of one input symbol for rule matching. LL(k) is the only known linear top-down parser
[Grune and Jacobs, 2011], but sometimes it can be also called RR(k) if applied backwards
to the input.
One of the problems impeding the development of LL(1) parsers is that the grammar
definition is not allowed to contain recursive rules. The recursion can be either left-handed
(left recursion), which has the form

E = E ... | T .

or right-handed,

E = T E ... | T .

where E is a non-terminal, T is a terminal or non-terminal rule with E 6= T , and ellipsis
stands for any other symbols in the rule. For the recursive definitions the parser cannot
choose between the alternatives for E by looking at any bounded number of symbols from
the input start.
Several approaches exist to overcome the problem of using recursion in production rules.
The most naive one uses the backtracking while matching the grammar rules against the
input. In this approach the rules are applied recursively until the successful consumption
of the input or until the rule application fails. In case of failure the parser backtracks to
the last branching in the rule application and tries to match another branch against the
input. This leads to (potentially) undetermined look-ahead of the parser, dramatically
impairing its performance.
Another solution is the factorization of the recursive part of the rule. In its general form
the factorization is the transformation of the recursive grammar rule. Given in the form:

A = A g1 | ... |A gm | f1 | ... | fn .

where gi and fi stand for sequences of grammar symbols (possibly Λ), m,n ≥ 1 and no fj

can derive a string beginning with A, so the only left recursion is possible through the first
m alternatives. After factorization, this rule is transformed into the following two rules
[Aho et al., 1986]:

Â = f1 Aopt | ... | fn Aopt .

Aopt = g1 Aopt| ... | gm Aopt| Λ .
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There is a series of linear bottom-up methods, which are generally more powerful than LL(k).
One of the typical examples here is the LR(1) parser, which works bottom-up, reading the
input symbols from the Left, making derivations always from the Rightmost non-terminal,
and using a look-ahead of one input symbol. The drawback of this approach compared
to LL is that the grammars are more difficult to understand and the implementation of a
parser is less convenient. Therefore, construction of bottom-up parsers is seldom done by
hand. A useful subclass of LR(1) is the class LALR(1) (for „look-ahead LR”), which can
be parsed more efficiently, by smaller parsers and can be automatically generated.
The great difference in the number of top-down and bottom-up approaches is easily
understood when we examine the choices the corresponding parsers have to face. A top-
down parser by its nature has few choices: in case of a terminal symbol it has no choice
at all and can only assert that a match is present (or report a parsing error); only if a
non-terminal is predicted it has a choice in the production of that non-terminal. Contrarily,
a bottom-up parser can always shift the next input symbol, even if a reduction is also
possible (and it often has to do so). If, in addition, a reduction is possible, it may have a
choice between a number of right-hand sides. In general it has more choice than a top-down
parser and more powerful methods are needed to make it deterministic [Grune and Jacobs,
2011].
For the approaches discussed above there are parser generator systems available for LL(1)
and LALR(1), as both commercial products and open-source software in the public domain
(see next section for more details). Using a parser generator to generate the source code
for a parser is always more practical and efficient than writing a parser manually.
In this respect a frequent choice is that between (strong) LL(1) and LALR(1). Both parsers
are roughly equal at their performance and memory requirements, so that a resource-saving
implementation of either is possible.The main differences between them are the following:

• LL(1) parsers are often easier to read, to understand by a non-professionals (for
example project managers, clients), and to modify.

• LL(1) generally requires larger modifications to the grammar than LALR(1) to
implement an effective parser.

• LL(1) is capable to provide more user-friendly parser error messages than LALR(1)
thanking to the Follow(k) set holding the expected alternatives. LALR(1) parsers
just report the failure to parse the input.

• LL(1) parser can be directly implemented as a recursive-descent parser, so that the
semantic actions can have named variables and attributes, much like in a programming
language. LALR(1), as a bottom-up parser, is a table-driven parser and does not
provide this possibility.

Choosing a parsing algorithm can be very subjective: for some the requirements made by
LL(1) are totally unacceptable, while others consider them a minor inconvenience, largely
outnumbered by the advantages of the approach. If one has to design the grammar along
with the parser, LL(1) is almost always preferred:

• it is easier and more performant to parse and to perform semantic actions, and
• the well-defined text that conforms to LL(k) grammar is also clearer for a human

reader [Aho et al., 1986].
This explains the fact why we chose LL(k) for our reverse-engineering approach, both for
the base-line grammar and for the final parser implementation.
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2.1.5 Parser combinators

Even though LL(1) parsers can be implemented entirely manually without use of any third-
party library, the use of parser combinator libraries allow a very succinct implementations
without any impact on the parser performance.
Parser combinator are higher-order functions in functional languages that combine several
parsers into one. For example, if a production rule has several alternatives, each of those
may consist of a sequence of non-terminals and terminals and a simple parser is available
for each of these alternatives, a parser combinator can be used to combine each of these
parsers, returning a new parser that can recognize any or all of the alternatives.
Parser combinators employ a recursive descent parsing strategy, so it becomes easier to
construct, debug, and text complex parsers. Parsers built using combinators are straight-
forward to construct, easily readable, modular, well-structured, and easily maintainable;
this is why they are used in the prototyping of compilers and processors for domain-specific
languages.
Parser combinators are often implemented to look as an infix operator, which is used to
combine different parsers to form a complete rule. Thus, parser combinator libraries enable
parsers to be defined in an embedded style, using the code that is similar to the rules of
the grammar. This implementations can be seen of as a form of executable specification
with all of the advantages such a specification brings.
Parser combinators, like all recursive descent parsers, are not limited to context-free
grammars and can be used for construction of generalized parsers. Naive implementations
of parser combinators might have some shortcomings common for top-down parsing (see
previous section). Naive combinatory parsing requires exponential time and space when
parsing an ambiguous context-free grammar.

2.1.6 Semantics

There are several classifications of semantics. Depending upon the purpose of the semantics,
it can be either used for compiler-time checks of the program (static semantics), to model
the run-time behavior (dynamic semantics), or to describe the equivalence relation between
the abstract code representation and the outcome [Mosses, 2006].
A compiler check for well-formedness of the program code is similar to the parser check if
the source code is well-defined. Static semantics are used as formal descriptions for these
checks performed before the compiler starts to translate the program into the executable
code. They serve the goal to detect potential problems and avoid them. The outcome
of these checks is binary and states whether the code passes or fails them. Compiler
warnings generated as a by-product of these checks for the rules that do not block the code
compilation might be useful for developers.
Dynamic semantics are used to check (and constrain) the program execution and define the
well-formed behavior of these programs. The purpose of these semantics is either to ensure
certain security aspects of program execution (sandbox environment, isolated storage) or
to optimize the observable behavior (for CPU or memory consumptions etc.).
Equivalence bridges the gap between these two types of semantics by providing an abstract
model for the relevant features valid for all possible executions of the program. The
equivalence can be used to test for program clones: if two different programs have same
models, they can be considered clones, even if they differ significantly at the source-code
level (using different identifier names, slightly different order that is not important for
semantics etc.)
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A complete description of a language semantics should include all three types of semantics:
all three are required to successfully execute the program.
Depending upon the language properties there are several competing and complimentary
approaches to formally describe semantic rules [Schmidt, 2003]:
Operational semantics describes the computational steps needed to process the program’s
input. Another term used for this formalism is intensional semantics, because the sequence
of computation steps (the „intension”) is rigorously defined. One of the common approaches
here is to define a term rewriting system: a set of rules that describes transformations of
the source code from input to output. Another set of rules, called inference rules, define
the context in which a certain term rewriting rule can be applied. Two different programs
to check if a number is prime will have a different operational semantics.
Depending upon the size of these steps, operational semantics can be further sub-classified
into two approaches: structural operational semantics (also known as small-step semantics)
formally describes every individual step of a computation. Conversely, natural semantics
(big-step semantics) describe steps schematically, focusing on the overall results of the
program execution.
Operational semantics is used to publicly expose implementation concepts: heap, stack,
storage vectors, registers of CPU and their state. Due to the easiness of its implementation
and hardware-near traits this formalism is perfect for describing the semantics of purely
imperative and especially stack-based languages. These are many intermediate languages
executed by virtual machines (Common Intermediate Language, CIL executed by Common
Language Runtime, CLR; Java bytecode run by Java Virtual Machine, JVM etc.) or even
independent full-fledged languages (with prominent examples like PostScript, Forth and
Cat).
A disadvantage of a operation semantics (especially of the structural semantics) is that the
sequence of operations or single re-writing steps have to be explicitly specified even in cases
where this is not necessary. This does not mean that this type of semantic is not capable
of defining the non-deterministic formalisms: being very close to hardware implementation,
this semantic can describe the non-determinism of concurrent operations. But describing
this semantics one has to be explicit about the operation order. This is, of course, a very
precise and might be necessary for general operations on expressions, but if an expression
has several admissible orders (e.g., since it is commutative or non-deterministic), that is
inconvenient..
Denotational semantics addresses these drawbacks by emphasizing the meaning the given
program has and keeping the necessary implementation steps independent from this
meaning. This is only possible by using a compositional approach when the meaning
of a complex sentence is reconstructed from the meaning of its smaller parts. For this
property, to keep the meaning and the implementation apart, this semantics allows simple
and elegant definitions of mathematical problems and is also known as „mathematical
semantics”[Scott, 1977].
Denotational semantic defines the meaning of a phrase as the overall meaning of its
sub-phrases. Therefore, in order to prove if semantics fulfills certain criteria one can use
structural induction. This means, to prove that a property P holds for all programs in the
language one must show that the meaning of each construction in the language has the
property P . Therefore, one must show that each semantic clause produces a meaning with
property P .
Here is an example of the denotational semantics for arithmetic from Schmidt [2003] (for
detailed explanation of the syntax for this semantics, refer to the next section):
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Nat = N0, N ∈ Nat

ε : Expression→ Nat

ε [N ] = N

plus : Nat×Nat→ Nat

ε [E1 + E2] = plus(ε[E1], ε[E2])

In this semantics we first define the domain Nat that we will use in our calculations as a set
of natural numbers including zero. N is any number from this set. ε is defined as operation
that takes an expression and returns its computed value. We define also an operation plus
that is a binary operation requiring two parameters of type Nat and returning one value of
this type. For an expression containing a plus sign we define the meaning of this expression
as evaluation of both expressions, adding them using the plus function is not explicitly
defined here.
Denotational semantics has been often used in teaching of semantics and in research. It
was also used to completely define the semantics of the programming language Scheme
[Abelson et al., 1998]. Attempts to derive denotational semantics for other programming
languages were not so successful [Mosses, 2006].
An axiomatic semantics is used to describe properties of programs rather than meanings.
In this respect, using axiomatic semantics every program can be (statically) checked not
that it does not violate the defined properties (axioms) before the program is executed.
An example of axiomatic semantics are code contracts in .Net, which allow one to define
certain pre- and post-conditions as well as invariant conditions for every method call that
is checked statically or at runtime.
From these types of semantics we decided to use denotational semantics to describe the
properties of TouchDevelop. This choice is motivated by the fact that we want to define
the meaning of programs in TouchDevelop and the only available options are operational
or denotational semantics. Operational semantics requires the exact knowledge of how
a compiler works and how program code is transformed to obtain the result. It is not
possible to obtain this information by means of the reverse-engineering approach we used
(without hacking and disassembling the TouchDevelop phone application). Therefore it is
not possible to reverse-engineer the operational semantics.
On the other hand, our approach to reverse engineering by treating the TouchDevelop
mobile application as a black box with code input and output in form of the code execution
matches the essence captured by denotational semantics: to provide output for known input.
This is especially helpful also for the goal of implementing a multi-target compiler, for the
concrete implementation on different platform might differ due to external limitations.

2.2 Formal notation of program languages syntax and semantics

As the main goal of this thesis was to derive a language specification for TouchDevelop,
the knowledge about different notations for the required language formalisms is essential
for this task.
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Symbol Definition BNF equivalent
: is defined as a(n) ::=
; , or as a(n) |
, followed by a(n) (space)
. , and as nothing else. (new line)

Table 2.3: The notation by van Wijngaarden.

2.2.1 Notations for language syntax

A grammar as a structural description of a software system can be represented in many
different forms (Klint et al. [2005]):

• Backus-Naur Form (BNF, Extended BNF), which can be visualized in form of railroad
diagrams, widely used in this document to describe the grammar of TouchDevelop,

• van Wijngaarden form,
• algebraic data types (=discriminated unions) in functional programming languages

(like ML or Haskell) to represent the abstract syntax tree,
• XML Schema Definition (XSD) and Document Type Definitions (DTD),
• Unified Modelling Language (UML) diagrams or other graph-based languages graphi-

cally represented as diagrams,
• Syntax Definition Formalisms (SDF), allowing the description of concrete syntax to be

divided into modules with explicit dependence, so that a module specifying low-level
constructs can be reused in the syntax definition of several languages [Mosses, 2006],

• Abstract Syntax Description Language (ASDL).
From these types of representation the first two are common for formal definitions of
grammars. Algebraic data types provide a way to specify the program code as a tree and
are used in parser implementations to hold the parsed information in a structured form.
The Backus-Naur Form (BNF) was first used for defining ALGOL 60. Here is a sample of
this form for a binary literal:
<bindigit> ::= 0 | 1
<binsequence> ::= <bindigit> | <binsequence> <bindigit>
<number> ::= 0b<binsequence>
Every non-terminal in the original BNF was enclosed in angle brackets and the production
arrow was denoted by a special sign (::=). Today it is more common to use quotes (single
or double) for non-terminals, emphasizing the fact that they are strings.
There are many variants or dialects of this form: an extended BNF (EBNF) was developed
by Niklaus Wirth while working on the Pascal specification. This notation supports not only
definition and alternation, as basic BNF, but also optional parts in definitions, repetitions,
groupings and comments. Today this is a standard for grammar definitions.
Another popular notation is that of van Wijngaarden. Here is an example of the same
definition for binary literal in this notation:
bindigit: 0 symbol; 1 symbol.
binsequence: bindigit; binsequence, bindigit.
number: 0 symbol, b symbol, binsequence.
Every terminal symbol is explicitly denoted by the „symbol” keyword after it. Punctuation
is used similarly to its use in natural languages: every rule is terminated with a period,
the comma binds tighter than the semicolon (see Table 2.3). The punctuation can be read
as text.
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Some grammar notations are directly coupled to a specific formalism. For instance, BNF
is designed to represent context-free grammars. Other grammar notations, like EBNF, an
improved version of BNF, might be more convenient, but not more expressive in the formal
sense of the language.

2.2.2 Notations for semantics

Different notations of semantics are very close to notations used in mathematics that is
explained by the nature of these formalisms.
Operational semantics traditionally [Plotkin, 1981] uses rules to provide inductive speci-
fication for transition relations on states. The rules include the nodes from the abstract
syntax tree and the new computed values (the program outcome). Here is an example of
the rule for an expression with exception types in the JavaS language from Drossopoulou
and Eisenbach [1998]:

The rule consists of two parts separated by a horizontal line: the upper part describes the
condition that has to be met for the rule, the lower part contains the result of the rule
application.
The transition rules feature the concepts of bindings and stores [Mosses, 2006].
Bindings are the conventions that bind identifiers to particular values. A binding map
shows the actual association between the identifier and its value in the current scope.
Stores are containers for entities used to abstract the computer memory. An assignment
statement is treated as a command to change certain locations in the variable storage.
Because binding is independent from assignment, the same location can have several
bindings that are defined as aliases in the given language.
In the cases where the semantics of concurrent processes has to be expressed labels on
transitions (termed communications) are used to represent the relations between these
processes.
Operational semantics can be also seen as term-rewriting systems. Another notation, called
reduction semantics, was developed to describe the rules of this semantics [Felleisen and
Friedman, 1986]. In this notation the states are purely syntactic and have no mathematical
meanings. For example numbers are treated symbolically as decimal numerals and not
as numbers in mathematics. A rewriting step is called a reduction. Reduction does not
necessarily mean that the resulting term is shorter or simpler. The rewritten term is
termed as redex and the result of the transformation as reduct. Reduction is applied
literally according to the rules and might be infinite (non-terminating). Some programming
languages, like Algol60, were also proposed as formal notations for operational semantics.
Concerning denotational semantics, as it follows from its name, this formalism is comprised
by semantic rules called denotations.
Denotation is a function that links the information available before its application and the
result that represents the information available afterwards. The intermediate steps and
states, necessary only for the execution of this function, (usually) deemed non-relevant and
are not specified. Denotations are defined inductively.
Semantic functions bind a semantic construct to its denotation. In Section 2.1.6 we defined
a semantic function ε for expressions. The definition uses the λ-notation to specify the
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function signature, i.e., the arguments and the returning value. The addition expression
was then defined inductively as an operation plus on two sub-expressions.
Denotational semantics is very powerful at the definition of expressions that are similar
to mathematical constructs. For control-flow structures, like loops or jumps, one must be
able to provide a well-defined solution d = F (d), where F (d) is a particular composition
with denotations of the loop conditions and its body. The solution of this equation is the
least fix-point of the continuous function in a Scott-domain (complete partially-ordered
set) Mosses [2006].
To achieve a better modularity of the λ-notation one can use auxiliary notation to combine
the existing denotations into a new one in a most generic way. One of these notations
is monadic semantic. If we need to sequence two different annotations d1 and d2 both
computing the value of the same particular type, and if the value computed by the first
expression must be available to the second one, this is noted as

let x = d1 in d2 .

A set of such denotations represents the mathematical structure called monad. The monadic
expressions are often used in the formal definitions of semantics (and syntax) because of
its good readability.
Axiomatic semantic is entirely based upon certain branches of mathematical logic. One
of the most common logics for axiomatic semantics is the Hoare logic where the rules are
represented as tuples of assertions about variable values before and after the execution
of every construct. This semantic is usually applied to the statements, denoted as S.
The set of assertions that have to be fulfilled before (termed pre-condition, P ) and after
(post-condition, Q) are combined into a so-called partial correctness formula P {S}Q. This
formula states that if P holds before the statement execution of S and the execution
terminates, Q will always hold after the termination.
From the described formal notations, we will use the Extended BNF form for grammar
definition, because it is directly supported by the parser generation tool ANTLR. But
in order to keep the language specification understandable even for casual developers
we will use the railroad diagram representation of EBNF rules in the printed version of
specification.
Besides, the monadic syntax is used for the definition of the parser. The semantics is
customly implemented in the form of static semantic checker and is provided in an abstract
notation form.

2.3 Reverse engineering of languages

There are neither comprehensive books, nor best practices or university courses for grammar
development. A usual approach here is to develop a language parser that can safely parse
the existing codebase. In this respect, the grammar knowledge existing either explicitly
in the form of a language specification or as set of ideas is directly implemented as a
proprietary parser, as depicted on the left-hand side of Figure 2.3. A wiser approach is to
first derive the base-line grammar in subsequent customization steps without targeting a
concrete parser implementation (right-hand side). This grammar is used then to implement
an effective parser in the next step. The obtained parsers here are not only tested against
the existing code base, but can also be stress-tested to compare the performance of different
parser implementations.
There is a number of approaches that can help one to turn grammar hacking into grammar
engineering. Some of them are shown on the right-hand side of Figure 2.3:
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Figure 2.3: Grammar hacking vs. grammar engineering, from Klint et al. [2005].

• If the language specification or any other formal description of the language is
available, there is a possibility of semiautomatic recovery of the grammar. In this
approach it is possible to incrementally increase the quality of the grammar by adding
new transformations that cover omissions and correct the improper rules.

• The yet-to-be-derived grammar can be executed by a prototype parsing framework.
At this stage, the quality of the parse tree and the generated syntax tree are not
important and the execution serves the goal to merely test the overall validity of
the grammar (proof of concept). The existing codebase can be a driving factor for
improvements and corrections.

• Parser specification is derived automatically as a part of the grammar using appro-
priate tools.

• To test the derived parser specification one can test the generated parser against the
existing codebase. One can use the metrics known from Software Engineering, like
code coverage, to reason about the maturity of the parser.

Reverse engineering of languages is usually confined to the reconstruction of language syntax
and their implementation a language parser as a proof of concept for this reconstruction
[Lämmel and Verhoef, 2001]. The reconstruction of semantics is only performed for already
existing language specification with the aim to make it complete or to find relationships
with other languages [Lämmel and Zaytsev, 2011]. The reasons for this confinement are
the following [Klint et al., 2005]:

• Lack of best practices,
• Lack of comprehensive foundations,
• Lack of books on grammarware,
• Lack of coverage in curricula.
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2.3.1 Principles and life cycles of grammar engineering

The following principles, systematized by Klint et al. [2005], represent the approaches
adopted from contemporary common sense in software engineering for reconstruction of
language specifications, even if contemporary grammarware development does not adhere
to these principles.

1. Derive the base-line grammars first. In the attempt to reconstruct the grammar,
an early commitment to a concrete use case, specific technology, or other imple-
mentational choices should be avoided. The development should start from simple,
human-readable grammars: more or less plain structural descriptions using a fun-
damental notation, preferably paper-based. The first derivations, termed base-line
grammars, should be sufficiently structured and annotated to be useful in the poten-
tial derivation of concrete syntaxes. If necessary, these grammars can be extended by
auxiliary semantics for object models, parse trees, etc.

2. Derive the grammar use cases and optimize your base-line grammar for them. Aho
et al. [1986] and in particular Grune and Jacobs [2011] describe advanced transfor-
mations for the removal of left-recursion in a context-free grammar. These transfor-
mations are an important preparatory step for further implementations of a parser
using the recursive descent algorithm (see Section 2.1.4).

3. Divide the specification into smaller parts and re-engineer them separately. As in
programming, the principle of separation of concerns is applied to facilitate reuse and
modularity. Possible smaller categories include the basic syntax, the comments and
common layout (indentation) for syntax and error handling rules, scopes, and detailed
rules for different classes of language constructs (variables, expressions, declarations)
for semantic.

4. Refer to other known grammars, implementations, and specifications. Many princi-
ples are universal and are already realized in other available implementations and
documents. Trying to look at the existing grammarware for similar languages (same
language family, same or similar paradigm) might be of great help for the deriving of
an eventually complete and robust specification.

5. Repetitively test and assess your grammar. Besides the code base as a reference
point for parser tests, there are several other metrics to assess the grammar: human
readability, the general style, special metrics for correctness and completeness, the
depth of required look-ahead, backtracking and so on. Formal methods, used for
software validations, are in most cases also applicable on grammars and specifications.

The discussed principles are represented on Figure 2.4 as a grammarware life cycle. The
most important point here is the separation of the base-line grammar as an intermediate
step before working on parser specification. Base-line grammars do not directly commit to
the implementation. Instead, they provide solid foundations, which can be customized into
other, more specific types of grammarware.
The process of reverse-engineering has several levels of iteration. Several repetitive iteration
on one certain issue help to achieve the implementation optimized for performance and
memory consumption. The overall feedback and another „global” iteration contributes to
the precision and completeness of the derived grammars.
We did not include a separate step with semantics derivation into the discussed workflow.
This is because there is no any available information in the form of scientific methodology
or best practice how to perform this step. For our specification we relied on the semantics
of the .Net framework and Silverlight runtime and
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Figure 2.4: The life-cycle of language reverse engineering.

The general workflow for language specification mining, as depicted on Figure 2.4, is the
following:

• compilation of the base-line grammar for the object of reverse engineering,
• deriving the grammar use cases (parser, compiler etc.),
• implementation of the grammar in the format dependent upon the selected use case,
• quality assurance and testing of the grammar-dependent software,
• reconsolidation of the derived base-line grammar and return to the begin of the

iteration.
In the current work we tried a novel approach to use ANTLR Studio for rapid prototyping
of the base-line grammar as the first step in reverse engineering of a language specification.
With the support of the tools from ANTLR Studio we were able to derive a human-readable
grammar, to debug it and test against the source code and to detect the offending rules
preventing us from a computationally effective implementation of the parser. We also used
the rich visualizing features of ANTLR studio to prepare the railroad diagrams for this
manuscript.
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3 Chapter 3

Language Specification of
TouchDevelop

The lack of a formal language specification motivated us to start the reverse engineering of
the language specification of the TouchDevelop application for Windows Phone OS. This
work is based mostly on the original MS Research publication (Tillmann et al. [2011]). At
the places where the recently published user manual provides updated or slightly different
information we include notes with explanations.
The TouchDevelop project is developing very rapidly with a new minor version every
3-4 months. The changes between different minor versions include changes both in the
standard library and in the language. Therefore, we had to constrain our investigations
to the sample source code corpus. For this purpose we downloaded 282 sample scripts in
December 2011. Our specification therefore does not include any later language features, in
particular not those that became available together with the publication of the user manual
[Horspool et al., March, 2012]. These changes mostly concern the support for external
libraries which we did not exist in the application version we used for mining. Some minor
language improvements (like multiple where clauses) are mentioned in the note sections.
This chapter presents the derived language specification for the TouchDevelop. In the first
section we briefly discuss the peculiarities how the best practices, described in the previous
chapter, can be applied to the TouchDevelop specification. Since the code editor, language
itself and the runtime that are deeply interwoven in TouchDevelop, we provide a short
description of the user interface features that are essential for the further description of
the language and runtime.
The rest of the chapter, except for the last section, deals with the different aspects of the
TouchDevelop language specification, from notation to script execution. The last section
describes in a nutshell the cloud services of TouchDevelop, which we see as an important
part of the TouchDevelop infrastructure.

3.1 Reverse engineering of the language specification

With the ultimate goal of implementing a multi-target compiler for TouchDevelop we
performed the reverse engineering of the language syntax and semantics.
The problems we were facing during our work can be categorized into the following sections:

1. The work on the language parser was impeded by the absence of the formal description
of the language grammar. The technical report published internally by Microsoft
Research describes TouchDevelop predominantly from the user experience perspective.
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The language and the runtime environment are presented in a very schematic form
with large omissions, which necessitated the mining for a formal specification. The
derived syntax rules were implemented both in the form of an ANTLR grammar and as
a custom parser in F# using the FParsec library. You can find both implementations
in the Appendix section.

2. The reverse engineering of the compiler infrastructure was performed by analyzing
the runtime environment and interpreter because a compiler implementation does
not exist. An interpreter normally exhibits the dynamic semantic different from that
of a compiler, which might require a more accurate and thorough specification and
implementation.

3. The only possibility to author, test for syntactic and semantic validity, and run
TouchDevelop scripts as of today is to use the TouchDevelop application on a
Windows Phone 7.5 (Mango) device. All code snippets used for probing specification
details had to be typed using the finger-controlled touchscreen manually. There is
no possibility to programmatically generate any script code to (partially) automate
specification mining.

4. The only way to obtain TouchDevelop scripts in a plain text format currently is to
use a special web API for researchers that allows downloading of scripts from the
cloud storage. But we first have to synchronize the phone scripts with the cloud
storage. This operation required several manual steps for every script change to get
the source code of the authored changes.

5. The use of tokenized input and the mobile application as the only way to author scripts
for TouchDevelop account for the fact that there is no standard text representation
of the source code. Different „views” on the source code available to the user or
developer show considerable differences. We discuss this problem in more detail in
the next section.

3.1.1 Reverse engineering of the language syntax

The source code in TouchDevelop is authored and completely edited on mobile devices
using the code editor. Phone applications run in a sandboxed environment and hence
there is no way to access the temporarily stored scripts from other applications on the
phone. However, due to the permanent connection to the cloud services and the complete
synchronization of local scripts it is possible to look at the textual representation of the
source code using the web interface of the cloud portal or by employing the OData-service.
The latter allows for storing the source code in a plain text form.
We took the text-only version as basis for syntax derivations that also included the reverse
engineering of the serialization algorithm for TouchDevelop scripts. To accomplish this
task we implemented a small console utility for bulk download of TouchDevelop scripts via
the API available for researches (at the time of writing these lines this API does not require
any authorization for bulk downloads). Using this utility we downloaded 282 sample scripts
that were available via TouchDevelop API on December 9th, 2011. This source code corpus
was then used to derive the language syntax and the serialization algorithm for Unicode
identifiers and for conflicting names.
The Appendix contains the complete list of scripts we used for discovering the language
syntax. Aiming at verification and testing of the derived syntax rules we first implemented
the grammar for TouchDevelop using the ANTLR parser generator package (Parr and
Quong [1994]). The grammar was checked against a selected number of scripts manually and
used further to generate the railroad diagrams for this specification. With this grammar as
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a basis we implemented a custom language parser in F# using FParsec’s parser combinators
library and tested the grammar against the above mentioned source code corpus. The
reported parsing problems in four scripts turned out to be the syntax errors in the scripts
(missed commas, misspelled or erroneously serialized identifier names).

3.1.2 Mining language semantics

Figure 3.1: The TouchDevelop as it is seen in
the list of installed applications.

Mining of language semantics requires
the execution of small test scripts in the
TouchDevelop environment.
Our initial approach to download the
TouchDevelop package from Windows
Phone AppMarket and to install it on the
emulator was not successful: the AppMar-
ket does not officially provide any option to
download software packages. The free soft-
ware tool we found to fulfill this task is able
to download only the very first version of
the application and the manual re-signing of
the application to deploy it into the emula-
tion environment does not function reliably.
We used the Phone application v2.4 run-
ning on a Samsung Focus device to perform
all tests we needed to successfully reverse
engineer the semantics of the language.
To perform the reverse engineering we devel-
oped a sample TouchDevelop script. This
script was used to derive the semantics of
some complex TouchDevelop behavior, including the paradigms for parameter passing and
conformity with IEEE 784-2008 float point arithmetics (see page 96).

3.2 Script authoring

As mentioned previously, the only possibility to author user scripts for TouchDevelop is to
use the Windows Phone applications that features a script manager, and code editor for
creating, editing and sharing scripts by users.

3.2.1 Script manager

The script manager is the core administration tool that enables users to perform a large
variety of operations with scripts: creating new scripts, synchronizing the locally edited
scripts with the cloud, publishing own scripts (=making them publicly available), as well
as the browsing, reviewing and downloading of scripts implemented by other users. Similar
to the Game Center functionality in iOS, the script manager also provides native support
for application scoreboards and screenshot publishing, thereby promoting competitiveness
and facilitating the development of community games.
The script manager can be seen as a mobile client for the web platform known as Bazaar
(see Figure 3.2), which serves as a central repository for user scripts, maintains script
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Figure 3.2: TouchDeveloper Script Manager as WP7 Panorama application.

branching, and provides support for the user community (forum for application discussion,
leaderboards, evaluations etc.).
Even though the script manager can be seen as a pure browser application, it is implemented
with the idea of eventual connectivity in mind: the local script storage is completely
synchronized with the cloud in the background if the mobile device is online. This
synchronization includes both user changes of the locally installed scripts and updates to
installed scripts, published by their authors. The user changes, however, are not seen by
other users until the script (or its newer version) is published (see Figure 3.2). Should the
cloud not be accessible the complete list of changes is stored locally until reconnection.

3.2.2 Code editor

TouchDevelop as a language is built around the idea of using only a touchscreen as input
device to author code. To fulfill this goal, the TouchDevelop IDE features no classical
keyboard. Rather, the context-sensitive choice of keywords (tokens) is presented in the
form of an on-screen phone keypad, allowing the selection of necessary keywords with your
thumb (see Figure 3.3).
The tokenized keypad allows very quick and (syntax) error-free input of the program code
but requires some training to get fully mastered. The most tedious part in the code input
is the typing of string literals where one has to use the same reduced keyboard and type
the letters using repetitive pressing of the keypad buttons, similar to the text input on
mobile devices without T9 support.1
The code editor has two different modes: source view mode and line edit mode. In the
source view mode (Figure 3.3, left picture) the complete source code of the given action
is shown. Internal TouchDevelop keywords (like action) and some augmented syntax
information (for instance, the word var at the place of local variable declaration) are shown
using the accent color of the current Windows Phone theme. This code can be scrolled
using the swipe gestures. This mode also shows errors in the code.
Indentation is used to optically mark code blocks. Every new statement starts with a new
line. Long statements are wrapped over several lines with additional indentation for every
wrapped line.
Tapping any line of code will bring the line selection dialogue (Figure 3.3, middle picture),
from here the user can:

1. Extend the selection to several lines to perform any block-based operations using the
clipboard.

1Though the phone standard keyboard is overlaid on top of the phone pad while editing string literals or
identifier names in the latest version of the TouchDevelop phone application.

28



3.2 Script authoring

Figure 3.3: TouchDeveloper code editor.

Figure 3.4: Using the „fix-it” feature of code editor to declare a new local variable.

2. Add a new code expression directly before or after this line.
3. Edit the current line in the line editor.

The selection of the last two actions brings us to the line editor mode. In this mode only
the current line is visible, the rest of the screen is occupied by the keypad with tokenized
actions (Figure 3.3, right picture). These action contain local and global variables, literals,
and library functions. Some actions are grouped and the button icon features the miniature
picture of the complete group keypad (for example numbers, arithmetic operations).
Code editor applications perform the check for code syntax and (to some extent) semantics
„on-the-fly” and suggest quick fixes for the input code (see Figure 3.4). Quick fixes allow the
user of the application to quickly author code by writing short fragments and then applying
a quick fix to them. For example, the editor has no default support for the introduction of
local variables. One way to declare a local variable is to type in some expression and apply
a quick fix that translates it into an assignment statement automatically adding a new
local variable (appending an appropriate index to its name, if necessary) to the left part of
the assignment expression.
The tokenized input allows TouchDevelop to bypass the lexing step while authoring

29



Multitarget .Net compiler for TouchDevelop

Selection:
(_→ _�_) : Boolean× Types× Types→ Types
(true→ a�b) = a
(false→ a�b) = b

Figure 3.5: Basic definitions used in language semantics.

scripts: adding new declarations, adding new statements etc. are performed by tapping
an appropriate action on the keypad and eventually setting some properties. This input
prevents TouchDevelop scripts from any mistakes at the global (script) and statement
scopes, leaving the expressions (authored by the line editor) as the only source of syntax
errors.

3.3 Notation

3.3.1 Syntax and semantics

We use railroad diagrams in the text to describe the syntax of TouchDevelop. Railroad
diagrams graphically represent the extended Backus-Naur Form (EBNF) as railroads
(transitions) and stations (symbols, both terminals and non-terminals).
The railroad diagrams were created from the TouchDevelop grammar implementation in
ANTLR. The complete implementation of the grammar can be found in Appendix.
To describe the semantics of TouchDevelop we use predefined selection operation shown on
Fig. 3.5.
The selection operation chooses one of the branches depending upon the value of the
Boolean expression at the first place.

3.4 Source code representation

Application code is stored as a single text file with default Unicode (UTF-8 without BOM2)
encoding. The language itself makes extensive use of Unicode characters: for example the
arrow symbol used for referencing type properties and methods (→) is represented as a
Unicode symbol “rightwards arrow” (U+2192). Table 3.1 provides more details on Unicode
symbols in TouchDevelop.

3.4.1 Three views on the source code

Originally targeting exclusively mobile devices, the TouchDevelop environment is available
only as a Windows Phone application, which bundles both development and runtime
environments. Adapted for touch devices and thumb input, the code editor of TouchDevelop
provides the on-screen keypad with context-dependent language tokens. The tokenized
input enables rapid and convenient script authoring reducing the need to type long texts.
The script entered by the user can be viewed locally using the code editor and this view is
the major one. Upon synchronization of the script code with the cloud two additional views

2The byte-order mark (BOM) is a Unicode character used to signal the endianness (byte order) of
a text file or stream. Its code point is U+FEFF. BOM use is optional, and, if used, should ap-
pear at the start of the text stream. Beyond its specific use as a byte-order indicator, the BOM
character may also indicate which of the several Unicode representations the text is encoded in
(http://www.unicode.org/faq/utf_bom.html#BOM).
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Figure 3.6: The usage of Unicode identifiers in TouchDevelop scripts.
Left: The sample script in TouchDevelop phone applications (phone view) featuring
identifiers in Russian and German. Right: The same script as it is seen on the webpage
(web view).

come into play: the web view using the main TouchDevelop website and the text-only view
via the TouchDevelop RESTful API. In order to be able to reference different visualizations
of the scripts we use the following notation:

• Phone view is the source code as it is seen directly on the mobile device in the
TouchDevelop phone app. Despite substantial differences between different versions
of the phone application, we consider it to be a single code representation (see Figure
3.6 left).

• Web view is the version of the source code as it is shown to the users who are
logged in on the TouchDevelop main webpage (see Figure 3.6 right).

• API view is the plaintext-only version of the script, which is available via the
RESTful cloud API. The returned text contains the complete script and meta
information placed in meta declarations (see Section 3.7.4).

A major problem originates from the fact that these three views on the source code of a
TouchDevelop script are not consistent and the differences between different views go far
beyond differences in syntax highlighting. The phone application, for example, uses the
var keyword to indicate variable declarations. The web view does not have this feature,
instead, all the variables are shown with prepended dollar sign ($). The text-only version,
finally, obtained via the API for researchers, contained none of these, at least, not until
recently.3
Since the only way to get a text-only representation of a TouchDevelop script’s source code
is to use the API (the web-view is pre-rendered HTML with applied code highlighting and
other visualization techniques), we used this last view for reverse engineering of the language
syntax. For this reason there can be substantial differences between our specification and
the specification recently published by the TouchDevelop creators (Horspool et al. [March,

3Microsoft Research adopted a new format for script serialization in API view on April 15th, 2012. The
old format is available as well, but requires providing a special parameter to the webservice. Since
we downloaded the scripts for TouchDevelop much earlier, we do not use this syntax for any variable
definitions: the dollar sign is treated, however, as a normal character allowed at the beginning of a
variable name.
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2012]), for the latter tries to mimic the syntax as it is shown on the phone screen and
considers all other types of views mere “serialized text forms” (Horspool et al. [March,
2012], page 109). We discuss these differences in details in Chapter 5.

3.5 Lexical structure

3.5.1 Identifiers

Due to the use of Unicode the valid name for any identifier used in the program can contain
any Unicode character that can be typed on the Windows Phone4, covering all Latin-
and Cyrillic-based European languages (see Fig. 3.6). Every character that can satisfy
the System.Char.IsLetterOrDigit() predicate in .Net can be used here. Additionally,
space and underscore are both considered valid symbols. The attempt to use any other
symbols, like quotes, bang, asterisk, bracket, ampersands leads to their substitution with
an underscore; multiple underscores are collapsed into a single char.
Identifiers can contain spaces. Every space in an identifier name is escaped by an underscore
in the text-only view, nonetheless shown as space in the other views. The underscore itself
is escaped using a preceding backslash (\_).
Identifiers can clash with any of the reserved words (see Table 3.3 for the complete list of
reserved words): in this case the local variable name is internally prefixed with an at-sign
(@) similar to keyword escaping in C# (Marshall [2009]). As in case with the space, the
prefix is not shown in the phone view and can be seen only in the text version.
For names of global variables and actions as well as for script names there is no prefix
escaping. To avoid name collision with any of the reserved words the TouchDevelop
application automatically appends a running index to an offending name. This index is
automatically incremented on every subsequent trial to declare the entity with clashing
name.
Identifiers are case-sensitive and the complete identifier name is used to distinguish between
entities. We could not find any sensible boundary for the identifier length: two different
identifiers, 91 and 90 symbols long, sharing the first 90 symbols, were correctly distinguished
by both the editor and the runtime system (see Fig. 3.6).

3.5.2 Keywords

The TouchDevelop language consists of a relatively compact set of keywords (see Table
3.3). Keywords are reserved words: global variables and action names are not allowed to
coincide with them. It is nonetheless possible to use them for local variable names, the
TouchDevelop environment automatically escapes them in this case (see Section 3.5.1).
TouchDevelop uses 22 symbols and has 16 reserved words. Action declarations are not
allowed to clash with reserved words, whereas local variables are escaped internally if they
clash (see previous section for details on escaping).
Out of 22 symbols only the assignment operator (:=) and commentary sign (//) are
compound: the rest of the symbols is represented as single characters in Unicode.

4Windows Phone OS in its current version 7.5 does not support languages with right-to-left writing
direction as input languages (despite the full support for rendering this type of writing in the built-in
browser and in managed Silverlight applications).
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Criteria Phone view Web view
Script
overview

Script is pre-parsed and
different script entities
(actions, data, events) are
shown in separate sections

Script is shown as a single
text file.

Meta
information

Meta information is used
to render the correct script
icon and visibility for
actions. Otherwise, no
meta information is visible.

Meta information is fully
visible as plain text.
Icon rendering takes meta
information into account.

Unicode Full Unicode support for
all types of identifiers
(action and event names,
local variables), string
literals and comments.

Unicode symbols in
identifiers are escaped
(\uXXXX).
Unicode symbols in
comments and string
literals are in canonical
UTF-8 format.

Spaces in
identifiers

Identifier names are shown
with spaces and Unicode
symbols

Spaces in identifiers are
escaped by underscore.
Underscore signs are
escaped with “\_” symbol.

Statements
and
statement
blocks

Statements are shown one
per line without semicolon
at the line end.
Blocks of the same nesting
level have same
indentation.
Scopes are indicated by
indentation, curly brackets
are missing.
Else-branches are always
shown. Empty else
branches contain only the
“do nothing” statement.

Statements are separated
using semicolons, except
for the statements with
subscopes: no semicolon
after the closing curly
bracket.
Blocks of the same nesting
level have same
indentation and are
marked with curly brackets
in Indian Hill style.
Empty else-branches are
now shown.

Local
variables

Variable declaration with
initialization are denoted
with the keyword var.

Variable declaration with
initialization are not
designated.
Every local variable is
prepended with a dollar
sign.

Table 3.2: Visualization properties of different source code views.

( ) { } ‚ * / → ; + ”
|| < ≤ ≥ > = := 6= : - //
or not and meta returns while event do
if then else for foreach action private ...

Table 3.3: TouchDevelop keywords and symbols.
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3.5.3 Operators

Touch develop supports 2 prefix, one postfix, and 12 infix operators on different data types.
These operators are all disjoint and cannot be overloaded, meaning that no two types share
the same operator: for example string concatenation is indicated not with the plus sign,
but a double pipe (||).
For the complete list of operators with their precedence and associativity please refer to
Table 3.12).

3.5.4 Literals

TouchDevelop provides literals for three predefined value types: Boolean, Number, and
String.

3.5.4.1 Boolean literals

Boolean literals can be either “true” or “false”. The literals are written without quotes.
There is no conversion or mapping between other types (like Number or String) and
Boolean literals.

3.5.4.2 Number literals

A number literal is a decimal number, with or without fractional part. The number is
always treated as a real number, even if the fractional part is omitted. For bigger numbers
TouchDevelop supports the scientific format with base and exponential part separated by
an “E” character for output. This syntax is, however, is not supported in literals that
contain only numbers and a decimal separator.

3.5.4.3 String literals

String literals are any Unicode sequences between two quotes (“example”). There are no
limitations for these literals: both non-Latin based and right-to-left Unicode character sets
are supported.

3.5.5 Comments

Only single-line comments are supported. Comments can come at every place (within and
between declarations) and begin with two slashes. The rest of the line until the newline
character is skipped, providing no way to limit commentaries to only a part of a line. The
length of a single line of code is not limited. Therefore one can write as lengthy comment
as one wishes: it will be wrapped into several lines in phone and web views.
The content of the comment can be any Unicode sequence, including the non-Latin based
and right-to-left character sets.

3.5.6 Delimiters

The point is used as a decimal delimiter in all numeric values irrespective of the locale
settings on Phone device.
Blocks are embraced with parentheses. Single statements within blocks are separated with
semicolons.
Semicolons are also used to separate single meta declarations in script scope.
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3.6 Types

TouchDevelop is a statically typed language (Tillmann et al. [2011], see Section 5.3 for
more details), albeit the explicit type indication is not always necessary. Type information
is inferred and used by the phone application to compile a list with context-available tokens
and to present them on the keys of the phone pad.
The complete type system of TouchDevelop consists of predefined types. The language
does not support any mechanism for creating new types, like composition of existing types
or sub-typing.
All types in TouchDevelop are simple types: they can be only referenced using their names,
which nonetheless do not count as reserved words. No complex types, like collections, are
possible at the language level. Instead, predefined collection types for most common types
(Number, String etc.) exist. These collections provide properties similar to indexers for
collections in other languages.

3.6.1 Instantiatable and singleton types

There are two main classes of types in TouchDevelop. The first class constitutes the types
that can be instantiated as local variables or parameters by the user. The second group are
the singleton types, which do not support instantiation. To clearly designate the difference
between these two types, the singleton types are written fully in lowercase, whereas the
types supporting instances have their first letter capitalized.
Singleton types can be seen as bundled collections of properties and methods. Examples of
these types are bazaar (for cloud services), code (for predefine actions), data (predefined
global variables), or phone (phone services like SMS, calling) etc. These types can be
accessed directly without prior instantiation, which makes them similar to static types in
object-oriented languages.

3.6.2 Value and reference types

Another important classification of types in TouchDevelop, which is imminent to .Net
platform and is present in most .Net languages, is that of reference and value types.
Variables of value types directly contain their data in contrast to reference types, where
variables store only a reference to data, but not the actual value. The reason for this is
because these data represent entities of complex structure, known in .Net as objects. It is
therefore possible for two variables of reference type to point to the same entity so that
operations on one variable can affect the object referenced by the other variable. These
variables are called aliases. In case of value types, every variable keeps its own copy of the
data and therefore it is not possible that any operation on one variable affects the value of
another one.
Instances of value types are copied using a shallow (bitwise) copy. Therefore, an assignment
of a value type variable in TouchDevelop leads to appearance of a new variable holding
the copy of the r-value of the assignment statement. Conversely, for reference types only
a reference to the original data is copied, so that an assignment on reference types leads
to aliasing when two different variables point to the same or different, but overlapping
entities.
All value types in TouchDevelop are predefined simple types, the complete list of value
types is given in Table 3.4.
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Type name Short description
Vector3 Vector in 3D space with x, y and z coordinates.

DateTime Date and time with millisecond precision.
Number Real value of IEEE double precision.
Boolean Boolean value
String Line of text

Table 3.4: Value types in TouchDevelop (Horspool et al. [March, 2012], page 64).

Domains for reference and value types:
V al ⊆ Types, Ref ⊆ Types, Ref ∪ V al = Types, Ref ∩ V al = ∅
Bool ⊆ V al, String ⊆ V al, Num ⊆ V al
Operations:
typeof : Types→ String
typeof = λt.(t ∈ V al → (t ∈ Bool → ”Bool”�(t ∈ String → ”String”�(t ∈ Num →
”Num”�”Unknown”)))�accessproperty(t, ”type”))

Figure 3.7: Semantic domains for types (see Fig. 3.8 for selection operation)

3.6.3 Predefined value types

3.6.3.1 Nothing, invalid and is_invalid()

The Nothing type is used to designate the cases where no variable or entity is expected.
For example, for properties without any return values Nothing is used as the type for
return parameters, telling the TouchDevelop interpreter that no value is returned from the
code. This type supports no operations or methods and is similar to the void construct in
other languages (like C# or Java).
Every type in TouchDevelop supports the property is invalid(). This property is used
to check whether the variable contains any valid value or not. This property returns true
if the current variable state is invalid, meaning that it has not been assigned. This is true
for both reference and value types in TouchDevelop, therefore every type in TouchDevelop
can be seen as a type supporting the Null state (similar to nullable value types in C#:
Nullable<T>).
A variable can contain an invalid value only if it has not been assigned. This is possible in
two different scenarios.
For return parameters of an action one can read from these parameters prior to their
assignment in the code block and the value of this parameter is considered invalid.
The second possibility is to directly create a variable using the invalid (singleton) type.
This type provides properties for direct creation of variable with invalid flag set to true
for many TouchDevelop types (see Table 3.5). As long as this variable is not assigned
any value after creation, its value is considered as invalid. This approach is used in
TouchDevelop libraries to signal exceptional situations where the assignment was not
possible. For example, if requesting a current geo-position fails, the returned position
variable contains an invalid value and one can check if the position is a valid position by
calling is invalid() before processing this value.
The invalid type can be, on the other side, seen as a default constructor for the types
mentioned in Table 3.5. The default value for the newly created instances is not defined
and any attempt to access the value leads to the immediate halt of script execution.
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Description Character Associativity
Negation not right

Boolean operators and, or left
Table 3.6: Operators supported by the Boolean datatype in TouchDevelop.

Domain definition:
b ∈ Bool = Boolean = {true, false}
Operations:
not : Bool→ Bool
not = λb.¬b
and : Bool × Bool→ Bool
and = λb1.λb2.b1 ∧ b2
or : Bool × Bool→ Bool
or = λb1.λb2.b1 ∨ b2

Figure 3.8: Semantic of the Boolean type.

3.6.3.2 Boolean

The Boolean datatype holds the result of a comparison between two numeric values and can
be only true or false. It is the only datatype that can be used in conditional expressions
in the branching operator if or in while loops. There is no implicit conversion between
numeric values and Boolean ones.

The Boolean type supports very few operations only (see Table 3.6), in particular there is
no way to compare two different Boolean variables for equality. Operations on Boolean
types are all commutative, associative, and distributive.
Boolean expressions are always evaluated eagerly, so every partial expression in a complex
Boolean expression must be a valid one and is evaluated every time without shortcuts.

3.6.3.3 Number

Number is the only type to represent numerical values in TouchDevelop. The Number type
can be directly assigned using a numerical literal. Number literal can be any real number.
It has the internal precision of the IEEE type double and can be used to store both integer
and fractional values. Longer literals are rounded down to the precision of double.

Numeric literals always start with a digit optionally followed by a decimal point and the
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Description Operator Associativity
Parentheses (, ) left/right

Multiplication * left
Division / left
Addition + left

Subtraction - left
Arithmetic comparison <, ≤, =, ≥. 6= right

Table 3.7: Operators supported by the Number datatype in TouchDevelop.

fractional part.
For negative values the value is preceded by the „minus” sign. In current specification we
treat the unary minus not as a part of Number literal, but as a separate operation (because
it is possible to negate expressions, not only numbers) on Number. Positive numbers do
not allow any unary „plus” sign and must contain only numbers.
Should the number exceed the value of 106 it is automatically converted into a scientific
floating-point representation with exponent part (for example 1.345E+12). This conversion,
however, is only working for outputting the value to the wall. Trying to assign a variable
a value greater than 106 leads to the TouchDevelop suggested “quick fix” that converts
the number to the scientific format, but the letter E is not recognized as a valid identifier
for numeric literals and after the next automatic fix the value 1.345E + 12 is converted to
1.345 + 12.
Numeric literals are all decimals (even if starting with zero), there is no support for any
other bases.
Following the IEEE 754 specification for floating-point arithmetic the Number datatype
supports the NaN and infinity values as well as the methods to check for these values.
Number supports all common arithmetic operations as well as the comparison operations
(see Table 3.7). Because Number is a fixed-length datatype (RIEEE , see Figure 3.9 for
definition) that represents a finite set of values, the arithmetic operations on the variables of
these types have less properties compared to R that is infinite. In particular, commutative,
associative and distributive properties do not hold for these operations due to the fact
these operations are inexact and eventually include rounding to the next element of the
set. The rules for “roundToNext()” are defined by IEEE 784-2008 (IEE [2008]).
All comparison operations are predicates that return the value of type Boolean.

3.6.3.4 String

The String datatype is used to store Unicode character sequences. There is no special
type for a single character. Single quotes are used to indicate a string literal. The size of
the string literal is not constrained by the language and most likely has the same limitation
as in Silverlight: 32764 characters.
Every instantiatable datatype can be implicitly converted to String.
String supports only one operator, the infix string concatenation written as ||. If any of
the operands is not String it is implicitly converted to this type. The return value of this
operation is always of type String.
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Domain definition:
n ∈ Number, Number = RIEEE

here RIEEE is the domain of float point numbers as defined in IEEE 754-2008 for binary32
(IEE [2008] Table 3.5, page 13), including the values NaN ,∞ = {+∞, −∞}
Arithmetic operations:
op = {addition ::= ’+’ , subtraction ::= ’-’ , multiplication ::= ’*’,
division ::= ’/’}
here the names for operations refer to the arithmetic operations defined in IEEE 754-2008
(IEE [2008] Section 5.4.1, page 31)
Comparison predicates:
pred = {EQ ::= ’=’, ¬EQ ::= ’6=’, LT ::= ’<’, LT EQ ::= ’≤’, GT ::= ’>’,
GT EQ ::= ’≥’}
here the names for predicates refer to the predicated defined in IEEE 754-2008 (IEE [2008]
Tables 5.1-5.3, page 29).
Infinity arithmetics (in concordance with IEEE 754-2008, IEE [2008] p. 34):
for any finite n

• addition(∞, n) = addition( n, ∞) = ∞

• subtraction(∞, n) = subtraction(∞, n) = ∞

for any finite n, n 6= 0

• multiplication(∞, n) = multiplication( n,∞) = ∞

• division(∞, n) = division(n, ∞) = ∞

• division(n, 0) = ∞

NaN arithmetics:

• multiplication(∞, 0) = multiplication(0,∞) = NaN

• addition (−∞,+∞) = NaN

• division( 0, 0) = division (∞,∞) = NaN

Figure 3.9: Semantics of type Number and expressions with this type.

Domain definition:
′a′...′z′: Char
s ∈ String = Char∗
Operations:
concat ::=′ ||′
Operations:
tostring = λa.(typeof(a) = ”String” → a�(typeof(a) = ”Num” →
conv(a)�(typeof(a) = ”Bool”→ (a→ ”true”�”false”)�””)))
concat : Types × Types→ String
concat = λs1.λs2.(s1s2)

Figure 3.10: Semantics of the String type
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3.6.4 Predefined collection types

TouchDevelop does not provide support for user-defined collection type, but has some
frequently used collections built-in (see Table 3.8).
User collections can be created using the singleton class collections (for value types) or
invalid (for system types) which provides parameterless constructors for every collection
type labeled with C in the Table 3.8. The only exception is the Sprite Set collection,
which is bound to a certain Board instance and created using the appropriate method of
the Board instance.
There is no possibility to specify the number of dimensions or dimension size for collections:
every newly created collection is one-dimensional and has zero elements (if it contains
items of a value type) or is invalid (for items of system types) until at least one element
is added. Adding a new element automatically increased the dimension size by one and
deleting an element decreased it.
Most of the system collections (like Songs) are read-only and can not be modified from
the script. They are available via global singleton classes.
The members of every collection can be accessed via an access property at(elemnum:
Number) or using a collection iterator in a foreach loop. If the index lies outside of the
collection boundaries, an item instance is returned with is invalid property set to true.
Two special collections, called String Map and Number Map, implement the dictionary
collections with keys represented by Number and String respectively.

3.6.5 Type hierarchy

TouchDevelop features only a very constrained support for a type hierarchy: there is only
one implicit type conversion and due to lack of sub-typing or inheritance the type hierarchy
is flat.
Every instantiatable type can be implicitly converted to String. This conversion takes
place before any operation that requires String as one of its parameters: these include
custom actions with String parameters (both as input and as return) as well as the string
concatenation operator ||.
String and all types below in the type hierarchy implement the is valid() property that
returns false if the value of the current variable is not a valid one. Invalid variable values
are possible if the called method fails to return the expected value. While this is not
possible within user-defined scripts, this situation might occur if the user cancels the string
input or some phone sensor fails to provide its readings. In this respect the is valid
property is the counterpart to the optional value Some in functional languages or to nullable
types in object-oriented languages (C#).

3.7 Declarations

Declarations are the only constructs that are allowed in the topmost scope of TouchDevelop
scripts (script scope) and this is the only scope where they are allowed. No nested
declarations (like action-level global variables or nested actions) are possible.

3.7.1 Program structure

The complete program code is stored in a single text file.
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The module contains one or several declarations. The order of declarations is not restricted.
Creating a new script in the TouchDevelop environment leads to the simplest program
containing meta information and one parameterless action “main()” with the following
content:
action main()
"TouchDevelop is" −> post to wall

There are four different types of declarations: meta-declarations, declaration of global
variables, action declarations, and event declarations.

Meta declarations as well as single statements in action and event bodies are terminated
using a semicolon and a line break. Every statement or declaration occupies the complete
line: there is no way to have two statements or declaration within a single line. In case of
the declarations that use curly brackets to group expressions (action, global declaration,
event declaration), the semicolon is not used after the last closing curly bracket and it is
only the line break that terminates the declaration in this case.

3.7.2 Scopes

TouchDevelop has four scopes, namely script scope, action scope, event scope, and block
scope, indicated by curly parentheses (see Figure 3.11).
Script scope is the single, top scope. It begins with the first declaration and ends after the
last declaration and allows only declarations (see Section 3.7).
Action and event handler declarations introduce their own new scopes. Actions and events
can contain only statements or statement blocks. Block scopes are introduced only by flow
control structures: the conditional operator if...then...else and the loop operators
for, foreach, and while. Block scopes, similar to action or event scopes, contain only
statements of statement blocks. Block scopes can be nested to any degree.

3.7.3 Nesting and hiding

All predefined standard types, operations and actions are available in all scopes. They
cannot be hidden by local declarations, because TouchDevelop does not support declarations
for types or operations. Standard action are defined on types and therefore cannot be
redefined either.
Actions and global variables are visible within the script and all nested scopes. They
cannot be redefined or hidden.
Events declarations are not visible at all, therefore statements cannot be invoked directly
or indirectly. Event handler invocations are performed by the runtime environment.
Statements within event scopes can access the parameters that were passed into event
handlers as well as global variables or actions.
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Figure 3.11: Scopes in TouchDevelop.

Local variables exist only within the scope in which they were declared and in all nested
scopes. The redefinition of the variable within a nested scope is not possible: the semantics
of TouchDevelop does not distinguish variable definition and redefinition, therefore a new
definition within the child scope is treated as a re-assignment of the local variable from the
upper scope.
In some exceptional cases some variables can be hidden in the nested scopes: for example,
the upper bound for a for loop is hidden within the loop block scope and cannot be
accessed. The loop variable itself is visible, but as a read-only variable.
Actions can have a restricted visibility. Public actions can be directly started by a user,
whereas private actions can only be started by other actions. To mark an action as private
the meta private statement is added as the very last line of the action body.

3.7.4 Meta declarations

Meta declarations are mostly for internal use of TouchDevelop applications and contain
information about script execution (see Table 3.9).
In our original mining we considered the meta version to be the version of the language
API, but Horspool et al. [March, 2012] specify it as a TouchDevelop revision that was
used to serialize the script. Other meta declarations contain the script name (meta name
’sample’), the default icon used to show the script (meta icon ’clock’) in the Bazaar,
and the foreground color of the application icon with transparency as alpha-channel (meta
color ’#FF008080’).
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Meta identifier Sample value Semantic meaning
color #ff00cc99 ARGB representation of the script

icon’s foreground color.
icon question Name of the icon of the predefine

icon set.
name songs and events Name of the TouchDevelop script in

Bazaar.
version v2.0 Version of the language API or

serialization.
Table 3.9: Meta declarations in TouchDevelop.

Meta declarations have either global or action scope. In actions they are used to designate
certain actions as private (i.e., not directly runnable by the user, meta private).
The specification published recently (Horspool et al. [March, 2012]) also covers the usage
of meta declarations to bind to other scripts and use these scripts as external libraries.
Our specification does not include this feature, because it was not available at the time of
writing these lines.

3.7.5 Action declarations

Action is a codeblock that implements computations or an action that can be performed
on the type.
Actions are declared using action declarations, which are similar to the function declaration
in imperative languages.

Every action must have a unique name and can have multiple (including zero) input
and output parameters. A parameter declaration includes a parameter name and type,
separated by colon.

Parameter names must be distinct. This applies to both input and output parameters, which
are treated as one set of parameters. Return parameters have to be defined (=assigned,
due to the TouchDevelop semantics) before the end of the action, otherwise the action is
deemed erroneous and will not be executed by the runtime environment.
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3.7.6 Event declarations

Some TouchDevelop entities support events. Events are external situations that trigger
the execution of pre-defined actions (called event handlers). Events are supported only for
built-in entities and cannot be defined by users in the script. Only one event handler per
event is possible.
Much like types, events in TouchDevelop can be divided into two groups: singleton events
and instance events. Single events are unique and not bound to any global variable in the
script. Rather, they originate from singleton types, like phone or media. They represent
scenarios that normally happen globally to the phone device: changing its position in space,
shaking etc.
Instance events are “attached” to a global variable of the script. Only GameBoard, Sprite,
and wall types currently support instance events. The latter one provides the tapping event
for every information box that appears upon invocation of the post to wall property for
any variable or literal.
There is no explicit binding between events and event handlers. Rather, the event handler
names are used to map events (similarly to event handler mapping in ASP.NET Webforms):
for the name of an event handler (usually) contains the name of the global variable the
handler is “attached to” followed by the event name which is usually self-explaining.
Event handler declarations have the same syntax as action declaration, except for the
return parameters that they do not have.

Events can be directly called from TouchDevelop applications, similar to actions. There is
no difference in execution mode or allowed syntax between actions and events: the only
difference is that latter ones are only called by the system and there is no way to call
events directly from actions or other events.
Taking another view, events can be categorized depending upon the source of the event
triggering signal. One big group of events contains the extrinsic events triggered by phone
sensors (currently only accelerometer and camera are supported), these events are shown
in Table 3.10.
Another group of events comprises those triggered by the TouchDevelop environment and
internal objects, instantiated during script executions. These events are summarized in
Table 3.11)
Unlike actions, event handlers cannot have any return parameters: their definitions are
strictly predefined and cannot be altered by the user. Event handlers have full access to
global variables and can invoke actions (including private ones).

3.7.7 Local variables declarations

Depending upon their visibility scope, the variables can be declared as local or global ones.
All global variables that are used in the scripts have to be declared before their use in the
same or one of the parent scopes. Local variables are accessed merely through their names
and require no prior declaration, therefore the first use of a local variable as the L-value of
an expression is considered as both declaration and initialization of the variable. Attempts
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to access the value of a local variable before initialization (possible only for local variables
representing return parameters in actions) leads to an error message in TouchDevelop and
the whole action or event is deemed non-compilable.
Local variables are labeled with a leading dollar sign ($, for example $x) in the web view
(see Section 3.4.1), similar to PHP. This designation, however, is only syntactic sugar and
not persistent: there is no special designation of local variables in the remaining two views.

3.7.8 Global variables declarations

All global variables are explicitly typed and the type has to be selected from the list of
available types.
Global declarations denote the global variables that are available in every action within
the same module.

Every global declaration begins with the reserved keyword var followed by identifier name
and type separated by a colon. Only instantiatable (non-singleton) types can be used for
global variables (see Section 3.6). A global declaration also contains a codeblock section
with some attributes. This section is normally empty or omitted, but might contain
readonly=true expression for read-only global variables and is_resource=true for assets
(termed “arts” in TouchDevelop apps). Assets can optionally contain the URL property to
specify a link to an external resource (picture).
Global parameters, unlike the local ones, are not accessible merely via their names. Instead,
they are available as properties of a data singleton object. That makes them similar to
other script entities, like actions, and clearly different from local variables in the source
code, so that they can have the same names as local variables without clash or hiding. The
name of every global variable must be, however, unique within the global scope.

3.8 Expressions

Expressions are sequences of operators and operands.
An expression can be classified as one of the following:

• A literal. Every literal bears a value with an associated type and has a proper syntax:
for example string literals is enclosed in double quotes. For more details on literals
supported by TouchDevelop please refer to Section 3.5.4.

• A variable. Every variable has an associated type, either explicitly declared (as a
parameter of an action or library type) or implicitly derived taking into account the
type of l-value in variable declaration with initialization.

• A library type. Library type can appear only on the left-hand side of the arrow
expression (used for property access). In any other context an expression holding a
type name would lead to a runtime error.
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• A special global namespace. There are predefined namespaces for accessing actions
and variables of the current script: data (or a special Unicode sign , look Table
3.6) is used to access (via an arrow expression) globally declared variables, art for
assets of the current script and code for accessing actions of the current script.

• An operation, consisting of an operator and one or two operands. Unary and binary
operators are defined for basic built-in types (see Table 3.12) and for property access
(the arrow operator). For property access see for property invocation semantics (see
Section 3.8.3).

• Nothing. This occurs if the expression was an invocation of a property or action with
a return value of type Nothing. This expression can be valid only in the context of
statement expression.

The result of expression evaluation is always a value of a certain type. No any other values,
like action invocations or partially evaluated expressions (lazy expressions) are possible
here.

3.8.1 Operator expressions

TouchDevelop has all three types of operators: prefix, infix and postfix. All operators are
predefined. There is no possibility to define own operators or overwrite the properties of
existing ones.
Prefix operators are unary operators on data types (negation, both arithmetic and Boolean).
Operators in infix notation are available for the limited number of built-in data types:
Number, String and Boolean. These sets of operators supported by every data type are
fully disjoint.
Operators of Boolean logic are only applicable to the Boolean type values, there is no any
support for bit and bitvector operations.
Besides binary operators in infix notation, there are two unary operators: not for Boolean
and leading minus sign (-) for arithmetic negation. For Boolean negation the argument is
always in parentheses.

3.8.2 Arrow expressions

The Arrow operator is used to access properties of types and their instances.
For library types, properties are the combination of getter or setter functions (properties
having no setters are the read-only properties). Depending upon the type, these can be
either instance-level (for types supporting instances) or type-level (static properties).
In TouchDevelop scripts the declared actions are mapped onto the properties of a special
global object called code and the arrow operator is used for action invocations. In the
phone app, however, the actions are just designated using a special Unicode sign (see Table
3.6).
Properties can have arguments, and properties called with arguments are similar to function
invocations in procedural languages. The only difference is syntactic, that properties
without arguments do not require the empty pair of parentheses. Unlike properties in
OOP-languages, properties in TouchDevelop are allowed to have no return values (return
type Nothing), which makes them even more similar to procedures. These properties are
used only for side effects, like the most common post to wall property, available for
every TouchDevelop type. For types that do not implement this property explicitly it is
available implicitly due to the implicit conversion to String. Under the hood, the .Net
method .ToString() method is called on the underlying data type, sometimes leading to
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(for a TouchDevelop user) unexpected results.

3.8.3 Action and properties invocation

Properties of library types are called using the name of the library type, an arrow expression
to reference the respective property of the type and optionally by providing parameters.

If no parameters have to be specified, the empty brackets can be omitted, and only the
name of property is provided.

Property invocation can be either an expression (or its part) or a full-fledged statement.
Action from the same script are invoked using the same syntax as properties of library
types. The global singleton object code is used to refer to the current script with arrow
expression referencing a certain action (see Section 3.8.2).
All parameters are passed using call-by-value. This means, that every parameter (includ-
ing the return ones) corresponds to a local variable that gets its initial value from the
corresponding argument supplied in the property invocation. Every argument for input
parameters is fully evaluated and a copy of the value is assigned to the local variable with
the same name as the parameter. For output parameters local variables with invalid values
are created and no assignment happens on invocation, therefore leaving these variables in
an invalid, i.e. uninitialized state.
Every action invocations introduces a stack frame: the local variables are re-initialized on
every invocation (including recursive ones); there is no option to persist local variables
in-between single invocations and one should use global variables for any values that have
to be persistent between invocations.

3.8.4 Event calls

Events are not accessible from user script and cannot be accessed using the arrow operator.
This is the runtime environment that takes care of detecting the events and invocation
of event handlers. Some events have input parameters which are automatically filled by
the runtime environment. Even though one can theoretically always check the validity of
these parameters by invoking the is invalid property, these parameters should never be
invalid.
The specification by Horspool et al. [March, 2012] states that the event invocations are
queued for execution, so that the execution of an event handler is never interrupted. In
our mining experiments we, however, failed to observe any queuing of events: as long as
event code is being executed all incoming events are just silently ignored.

53



Multitarget .Net compiler for TouchDevelop

3.8.5 Evaluation order

For assignments the complete right-hand side is first evaluated and upon successful evalua-
tion all values (one or many in case of multiple assignment) are copied to the variables on
the left-hand side.
For action invocations only input parameters in actions are evaluated. Parameters are
evaluated from left to right and passed to the action as values (see 3.8.3 for details).

3.9 Statements

TouchDevelop supports 8 types of statements.

3.9.1 Empty statement

There is an empty statement, which consists of three dots5 and a separator (semicolon).

This statement is probably used by the TouchDevelop environment to mark the last editing
site in the source code. In the phone view these statements are shown as empty blocks
with small text “do nothing”.

3.9.2 Meta statements

Meta statement are similar to meta declarations (see Section 3.7.4), but used at the action
scope to store some information about action.

The only use of this statement in TouchDevelop script we detected was to mark actions as
private (not directly runnable by a user).

3.9.3 Expression statements

Expression statements consist of expressions that can be evaluated to return one or several
values which is not used in the script.

5In the latest version of the TouchDevelop cloud one can also see a new keyword skip which is used to
mark an empty action body together with the three dots.
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TouchDevelop always suggests an assignment for the expression statement via a quick fix
(see Section 3.4), providing an appropriate local variable name (depending upon the type
of the return value).

3.9.4 Assignment statements

The Assignment operator is the only compound operator in TouchDevelop, meaning that
it consists of two characters: colon and equal sign (:=). Thereby the assignment operator
is syntactically different from the equality operator available for Number comparisons, fully
in the tradition of Pascal and Modula languages.

The assignment operator is used for both declaration and initialization of a local variable;
local variables therefore do not require prior declaration and are treated as both declared
and initialized after the first assignment: therefore, there are no default values for variables.
There is no syntactic difference between a new declaration with initialization and an
assignment of the variables. This makes the re-declaration and hiding of variables from
outer scopes impossible.
To highlight the new declarations the TouchDevelop application performs a semantic check
of the source code on-the-fly and marks the declarations with a preceding var keyword
in the phone view (see Section 3.4.1). This might be misguiding for beginners, because
this designation is just a part of syntax highlighting of the TouchDevelop script editor and
does not appear in any other views of the source code: trying to edit the respective line of
code in the TouchDevelop editor (which makes it switch to a single line editor) one can
not see this label.
The right-hand side of an assignment expression is always evaluated before assignment (see
the table with operator precedence, Table 3.12) and the resulted value is assigned to the
respective variable as a copy. Variables can contain only values or type instances, there is
(currently) no way to store an action or event in a variable.

3.9.4.1 Multiple assignment

Multiple assignment is an assignment of several local variables at once. Should the right-
hand side of the assignment expression return more than one value, the left-hand side
should match in the number of the local variables. The only expressions that return more
than one value are invocations of actions that have several return values in their signature.
There is no way to group several expressions ad-hoc to produce a tuple-like structure on
the statement level.
L-values must exactly match the signature for returning values that is to be of the respective
type. Multiple assignment can be combined with variable declaration: in these case the
local variables of the type matching the action signature for return values are declared
and initialized with return values. Unlike pattern matching, however, all variables are
mandatory and there is no a placeholder for an empty value (like underscore in the
mentioned languages): every variable has to be provided explicitly. It is also possible to
mix already assigned local variables with non-assigned in the multiple assignment.
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3.9.5 Control flow statements

There are four types of control flow statements in TouchDevelop: one conditional statement
(if) and three types of loop statements (conditional loop (while), loop with counter (for)
and iterator loop (foreach)).
As a condition for conditional statements can serve any expression (Boolean, numeric,
function invocation) which can be evaluated to Boolean.

3.9.5.1 if

Control flow can be ramified using the if...then...else operator. Both branches (then
and else) are mandatory for the TouchDeveloper app view, but not in the other views (see
Table 3.4.1). The condition of the if operator must be of type Boolean. Both branches
introduce subscopes for local variables (see Section 3.7.2), the local variables declared and
used here are not available after the end of the branch scope. There is no way to leave the
scope prematurely.

3.9.5.2 while

TouchDevelop supports only one type of conditional loops: loops with pre-condition
(while...do).

It is possible to implement a non-terminating loop using while (true) do{} syntax.
However, there is no construct that would allow one to break the loop: the only possibility
to stop the loop execution is to perform a forbidden operation (for example, division by
zero), which would halt the script execution together.

3.9.5.3 for

Classic loops with numeric iterators or counters are also present in TouchDevelop. These
loops, however, are rather constrained as regards the iteration domain: the counter always
starts at zero and is incremented by one until the provided maximal value reached (for
≤ iterator≤ max do {}). The counter equals the maximal boundary in the very last
iteration of the loop. There is no way to explicitly provide the starting value or to construct
a loop with a decrementing counter.

Iterators over collections are only possible for the built-in types of collections (see Section
3.8) using the at() property, but the use of a special collection iterator is preferred here
(see next section).
The counter variable is read-only within the loop scope: there is no way to skip some
iterations by manually setting the counter variables to an appropriate value.
The expression used for the upper bound is calculated once at the beginning of the loop
execution and is not updated after every loop iteration. Therefore, the number of loop
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iterations is determined at the starting point of the loop and cannot be increased or
decreased.

3.9.5.4 foreach

For built-in collection types (see Section 3.8) there is support for foreach loops (foreach
iterator in collection where...[,where...]) with collection iterators.

According to our results from reverse engineering, the foreach loop can have only a single
where guard, which contains an additional criterion that are imposed on every iterated
collection item. The recently published alternative language specification (Horspool et al.
[March, 2012]) indicates support for multiple where keywords in the latest version. These
conditions are executed in a lazy way: as long as a certain condition returns false, the
iterator automatically moves to the next item in the collection without evaluating the
remaining conditions.
For collection iterators it is possible to modify the properties of collection items if the
items support it. The collection itself cannot be modified within the loop body: doing so
would result in an error message.

3.10 Special types

To support easy script authoring and sharing by hobby developers TouchDevelop provides
several types with simple API and hidden implementation details. GameBoard allows user
to implement 2D board games with smooth animation without manual redrawing of every
single frame. Wall servers as a substitute for system console as regards basic input and
output operations.

3.10.1 Game Board

GameBoard is a special feature-rich, instantiatable type in TouchDevelop, which provides
APIs useful for 2D game development. The properties of the GameBoard type can be
classified in the following groups:

1. Board API represents the properties necessary for creating GameBoard and SpriteSet
objects and iterators over SpriteSet collections associated with the board variable.
An important part of the Board API are the board events: tapping, swiping, and
dragging. These events can be resolved at the board level (if there is no internal
object at the screen position where the event took place) or directly at the sprite
level. Therefore, every sprite within the SpriteSet can be seen as having its own
events with a unified event handler on the board level.

2. Sprite and SpriteSet API contains the functionality to output and manipulate a
sprite’s position, color, and rotation angle.

3. Physics Engine API is useful to implement games simulating real-world physics.
GameBoard provides the methods for adding obstacles and walls with different
elasticity along with the methods for setting gravity and friction of the medium.
The position of single sprites is automatically calculated on every next step using a
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built-in differential equation solver and the sprites are automatically animated to fall
along the gravity gradient and to bounce from obstacles.

The GameBoard type is described in details in a technical report from Microsoft Research
(Fahndrich [2012]).

3.10.2 Wall

Figure 3.12: Wall with prompts for Boolean
and numeric values.

One of the most common types of applica-
tions for regular PCs are so-called console
applications: they use the system console
to read the user input and output their re-
sults again to the console. A system console
can be seen as a sort of legacy concept for
non-distributed operating systems or for sys-
tems where the graphical interface is deeply
interwoven with the system core, as it is
true for most mobile OS.6 Mobile phones
do not support any kind of system console;
to facilitate user interaction TouchDevelop
provides a special structure called „Wall”
(see Fig. 3.12), which is similar to the per-
sonal wall in the famous web-portal Face-
book (http://www.facebook.com/).
Every type in TouchDevelop supports the
post to wall property that is used to out-
put the value of the variable of this type to

the wall. Many types (for example Song) provide their own implementation to publish
their content and to allow some type of interactivity or context-dependent user actions (in
case of Song, the “wall posting” allows one to play, pause, and resume the song).
For the types without own implementation of this property the conversion to string can
be used to display the value of the variable. Depending upon the type of the variable the
value can be numeric (for the type Number), “true” or ”false” for Boolean, or just text
for String.
Besides the possibility to post the variable content on the wall, the wall supports some
interaction with the phone user: the posted song can be played, paused, rewound, etc.
Similar to the console, the wall supports the input of Boolean, numerical and string
literals7 using the phone keypad via the wall→ask boolean(), wall→ask number()and
wall→ask string() methods. In the upcoming version 2.4 of the language there is a way
to use the built-in phone controls for data input directly from the console: wall→pick
date() and wall→pick time() should invoke a date or a time picker.

6The only modern mobile OS that still features the notion of the system console is Android by Google,
where the system architecture has been completely inherited from Linux and comes originally from
UNIX systems. All other OS, like Windows Phone (Microsoft), iOS (Apple), BlackBerry OS (Research
In Motion), Baidu (Samsung), Maemo (Nokia), feature no system console.

7Despite the fact that there are two different methods for string and numerical literals, the user input is
not constrained and there is the possibility to enter any alphanumerical sequence for both inputs. The
only difference between these two methods is that the input string is converted into a number before
assignment. This conversion fails if there is any other symbol in the string besides numbers and the
decimal separator.
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3.11 Program execution

A TouchDevelop phone application provides not only support for authoring scripts on
mobile devices, rather it also serves as a runtime environment during script execution.
TouchDevelop is known to interpreter the scripts, providing the mechanism for catching
errors during code execution: a pop-up window titled “something fishy happened” and
a short explanation of the error appears if the error caused an exception during code
interpretation.
There are several aspects of the runtime environment that we had to reverse engineer.

3.11.1 Entry point

A TouchDevelop script can contain multiple public actions, directly runnable by the user.
Nonetheless, there is only one default action, which is started when tapping the script icon.
This action is marked with a special icon.
The action with no input parameters and with the name main is automatically marked as
the default action. If this action is missing in the script, the first public action in the list
(sorted alphabetically, case sensitive) is selected as the default action.
Should the default action depend on input parameters, these will be asked from the user
using an interactive area generated automatically on the wall depending upon the types of
the required parameters. However, this is supported only for the predefined value types:
Boolean, String, and Number.8 Starting the action with reference parameter types directly
leads to unexpected behavior: the parameter is passed uninitialized and any attempt to
use it causes the runtime system to report unexpected behavior.

3.11.2 Exceptional situations

TouchDevelop does not provide any mechanisms to deal with exceptions in the code except
for the invalid property of the variables described in Section 3.6.3.1.
All exceptional situations during the code execution lead to the immediate halt of the
execution. Depending upon the severity of this situation, a pop-up message can appear
with the text „something glitchy has happened.” After the script has been halted there is
no possibility to continue the execution – the runtime data are completely discarded.

3.11.3 Event loops

TouchDevelop as a language encourages the development of reactive applications that
execute certain actions as a reaction to user interaction. Those interactions are mapped onto
events with self-explaining names (see Section 3.7.6 for more details on events) representing
the handlers that execute when a certain event occurs.
The script execution begins with the default action (see previous section) or a user selected
action.
After the execution of script actions is complete the TouchDevelop environment enters the
infinite event loop by listening to the incoming events and executing the respective event
handlers, which are allowed to call other actions.
This means that no event handlers are executed before the execution of the default action
(including all actions invoked from there) completes. Until then the script stops reacting

8For other types the input controls contain the grayed-out (read-only) full class names from the TouchDe-
velop implementation: these classes are located within the Microsoft.T ouchDevelop namespace; due
to the size of controls on the phone device there is no way to read the actual (short) class names.
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Figure 3.14: Screenshot of the TouchDevelop web portal.

to any user input except for the hardware buttons. Furthermore, all other incoming events
are ignored until the execution is over. Since events can call actions holding extensive
computations the script might look non-responsive for some time after the event. In case of
the gameloop event, which is timer-triggered approximately every 50 ms and is supposed
to be used to update the position of graphical game objects and redraw them (similar
to the gameloop in XNA) – the long-lasting calculations can easily deteriorate the game
performance due to a lowered FPS (frame-per-second) rate.
The event loop is stopped if the executed code calls time→stop, if the user presses the
“Back” button on the phone, or if any error happens during event handling.

3.11.4 Asynchronous execution

The TouchDevelop phone application was implemented on the basis of Silverlight for a
Phone, a managed framework, which, in turn, is based upon a subset of the .Net runtime
and class library. To prevent blocking of user interfaces certain actions with unknown
execution time are only available as asynchronous calls with callback methods. Examples of
the typical asynchronous methods in Silverlight are web request methods, which download
content from Internet. TouchDevelop provides the synchronous execution of this calls,
awaiting for the data to arrive before a user accesses the value of the web content (similar
to the await operator in C# 5.0).
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3.12 Cloud services

One of the important parts of the TouchDevelop architecture are the cloud services, known
under the name Bazaar.9 The cloud services keep track of every script, providing the
information about script rating, number of reviews, and the total number of script runs.
For the derived scripts the complete history is preserved, similar to how it is done by
version control systems like SubVersion. The complete statistics on every script, including
the number of runs, is then shown on the community web page10 (see Figure 3.14).

Figure 3.15: Information about a single script
on the TouchDevelop web portal.

The tile contains information about the script
name (top middle), its unique ID (top right),
the author (middle), availability of a new ver-
sion for the base script (middle right), pub-
lication date (below the icon), script rating,
number of script reviews, and the total count
of script runs (right block).

Not only published scripts, but every lo-
cally authored script is stored in the cloud
for the current user. The cloud contains
the complete information about a user’s
local actions (writing scripts, rating other
scripts, or writing reviews for them) and
serves as the central repository for the dis-
tributed application state. Upon instal-
lation of TouchDevelop on a new device
(or emulator) and log-in to the TouchDe-
velop cloud this state is automatically syn-
chronized on all connected devices and all
changes will be propagated almost instantly.
Newly created scripts are kept private until
they are published. The unpublished scripts
are designated by a small upper arrow (pub-
lishing button) located next to the script

name in the script manager. Publishing the script makes it available for the community for
downloading and creating derived works. Every published script is assigned a unique short
identifier, which consists of four Latin letters in lower case preceded by a slash (see Figure
3.15).11 A personal page for every published script is available under its ID appended to
the URI of the web portal, for example http://www.touchdevelop.com/lfwq, providing
the options for automatic download of the script to the TouchDevelop application.
In addition to the web-based interface for script sharing and reviewing, the cloud service also
provides special services for developers that allow the download of the script information
including the complete source code and the pre-processed version of the scripts in form of
the abstract syntax tree with flattened leaves in JSON12 format. This intermediate format
can be used to quickly implement third-party tools for interpretation or compilation of
the code. However, the flattening of the tree leaves to mere token sequences necessitates
statement-level parser. This makes the available webservice much less attractive for tool
development.
The web-portal also contains the complete reference for the library functions and data types
that are currently available.13 Due to the ongoing further development of the language
and its continuous changes there is a specification versioning that is independent from the
versioning of the phone application.

9The first letter is capitalized to distinguish between the singleton class bazaar and the actual system
behind it.

10http://www.touchdevelop.com/
11The total number of possible scripts in the system is then limited to 264 = 456976.
12JSON = JavaScript Object Notation, a lightweight string-based format for storing information about

objects, widely used in JavaScript applications for serialization and persistence of objects.
13https://www.touchdevelop.com/help/api
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4 Chapter 4

Implementation aspects

This chapter describes the implementation details of our compiler for the language specifi-
cation presented above. This is the first compiler for TouchDevelop and its primary goal is
to provide a proof-of-concept for the derived language specification. For this reason, the
compiler does not have any industrial strength and currently supports only a minimal set
of the TouchDevelop standard library.
This chapter follows the roadmap adapted from Aho et al. [1986] and describes the
implementation details of the all four steps of this roadmap shown on Figure 4.1, including
the description of the CAD-tools used for the derivation of language specification in
the first section. The second section deals with the syntax analysis and describes the
implementation of a high-performant parser for TouchDevelop. The third section describes
the static semantic checker which was implemented as a part of the compiler pipeline. The
last section covers the standard library subset, implemented to test the compiler, and the
code generation.

4.1 Deriving the language specification

According to the best practices in grammarware re-engineering formulated by Klint et al.
[2005] we reconstructed the language syntax of TouchDevelop in a two-step process. A
human-readable grammar was first derived manually from existing scripts followed by a
manual parser implementation. Instead of the grammar derivation „on paper” as suggested
in the publication above, we decided to immediately start with computer-aided approach
and used ANTLR for the first step.

4.1.1 Reconstruction of the base-line grammar using ANTLR

ANTLR is a public-domain (licensed under a BSD-compatible license model) parser
generator adopted by many educational and commercial facilities, which unites the flexibility
of hand-coded parsing with the convenience of a parser generator. Its advantages as a
CAD-tool for grammar discovery and reverse-engineering are the following:

Figure 4.1: Roadmap of a compiler implementation (adapted from Aho et al. [1986])
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Figure 4.2: Debugging the TouchDevelop grammar in ANTLR.

• ANTLR integrates the specification of lexical and syntactic analysis and generates
both lexer and parser. A separate lexical specification is unnecessary because lexemes
in form of regular expressions (token descriptions) can be placed in doublequotes and
used as normal token references in an ANTLR grammar.

• ANTLR supports an easily readable Extended Backus-Naur Form (EBNF) notation
for all grammar constructs.

• ANTLR performs static checks of the grammar to ensure that the rules are not
ambiguous and graphically illustrates the offending definitions.

• ANTLR supports grammar debugging by constructing the abstract trees and prompt-
ing for parsing shunts.

• ANTLR suggests some grammar transformations to derive context-free grammars
even if the original grammars are not context-free.

• ANTLR can automatically test the grammar against the codebase and provide
meaningful error messages. The constructed parse tree is very informative and
provides valuable feedback for further iterations in grammar engineering (see Figure
4.2).

• ANTLR depicts the grammar rules in form of syntax diagrams and supports the
export of those as railroad diagrams. This simplifies the process of creating language
documentation and explaining the grammar to non-professionals.

• ANTLR contains a very large set of sample grammars, including those for Java,
C/C++, Python, and JavaScript. This grammar corpus significantly facilitates the
development of own grammars providing the possibility for copying the existing
patterns and applying the best practices from other grammars.
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4.2 Parser implementation (syntax analysis)

The base-line grammar for TouchDevelop was successfully re-engineered. This grammar,
specially designed for human readability, required two tokens of look-ahead and contained
two left-recursive rules. We decided not to refactor the recursive rules, because that would
result in a less readable grammar definition. To overcome the problem with left recursion we
instead used the backtracking option for parser generation. This enabled us to successfully
generate the parser and test it against the preselected scripts for correctness.
ANTLR Studio is a tool that is primarily concerned with the concrete syntax of a lan-
guage. We had difficulties with the definition of how the abstract semantic tree should be
constructed for binary operations with different precedence and associativity (expression
parser). This problem did not impede the derivation of the language syntax for the base-line
grammar and we did not face this problem during the manual implementation of the parser,
as explained in the next subsection.
It is a usual practice in ANTLR is to include some piece of code (which is escaped as
comments in the grammar file) to control the AST generation and to keep track of certain
metadata, like the nesting level of block scopes, etc.
During the process of reverse-engineering of the base-line grammar in ANTLR we faced
the following problems:

• ANTLR does not support the testing grammar against a file list: only a single file
could be tested at a time.

• It is rather difficult to implement an expression parser for operators with different
arity, precedence and associativity.

• ANTLR grammars provide support for Unicode terminals, but generated parsers do
not: the automatically generated parser code fails to compile and with numerous
compilation errors and warnings.

• The only working target for the parser generator was Java. Several different C#
parser generators, including the built-in and customly downloaded ones from the
ANTLR webpage, did not bring any results: the generated code could not be compiled,
mostly because some referenced classes were obsolete.

• The generator boilerplate code was not easily readable and any, even subtle, modifi-
cation thereof required considerable efforts.

We used Java as the target language for parser generation in ANTLR. To overcome the
problem with Unicode symbols while debugging and testing the grammar specification, we
manually substituted all Unicode symbols used in TouchDevelop scripts (see Table 3.6) by
their non-Unicode alternatives.

4.2 Parser implementation (syntax analysis)

Despite the parsing power of LR algorithms in general and LARL(1) in particular, the
available tools (YACC and its custom implementations) usually feature a command-line
only support for grammar input; no support exists, e.g., for stepwise grammar authoring,
debugging, or testing. Besides, automatically generated parsers require some customization
to correctly handle Unicode input that is also crucial for TouchDevelop scripts.
Therefore, programmers often choose to implement recursive-descent parsers by hand aiming
at flexibility, better error handling, and ease of debugging. Manual parser implementation
becomes especially difficult when it goes hand-in-hand with grammar hacking, i.e., if the
grammar knowledge is not complete by the time the parser implementation started and the
parser is used to derive the syntax (and to some extent also the semantics) of the parsed
language.
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Following the principles by Klint et al. [2005], we did not try to optimize the reverse
engineered grammar to proceed with the parser implementation. Instead, we started a
complete new implementation with the goal to implement an effective parsing algorithm.
To reach the maximal parsing performance we have chosen to implement a predictive parser,
that is, a top-down recursive descent parser with one token look-ahead (LL(1)) and no
backtracking.
One of the limitations for the parser implementation was the compatibility with the .Net
platform, because:

• Windows Phone OS supports only Silverlight (as a subset of .Net runtime environment)
for mobile application, native code is not allowed to run within the context of a user
application. So, for the compiler to run directly on Windows Phone OS it has to be
implemented in .Net.

• TouchDevelop itself is entirely based upon .Net, therefore the use of the same platform
would allow us to have the same dynamic semantic. For the parsing stage that mostly
concerns the support for Unicode: we used the .Net library for all operations with
Unicode texts.

Unfortunately, traditional .Net languages, like C# and Visual Basic .Net, are biased
towards the object-oriented programming paradigm and are not as flexible as functional
languages for compiler implementation: they lack many features that would be useful for a
parser, like algebraic data types, pattern matching, and type inference.
Taking this rationale into account we decided to use F#, a relatively new functional
programming language for the .Net platform from the ML family, as the core language for
both parser and compiler implementation. The language is greatly influenced by OCaml
and provides support for all three above-mentioned concepts.1
To reach a succinct and easy readable implementation we used a parser combinator library
for F# called FParsec.
FParsec is an F# implementation of the famous parser combinator library Parsec for
Haskell, originally implemented by Daan Leijen from Microsoft Research [Leijen and Meijer,
2001]. While the implementations of Parsec and FParsec are completely different, they share
a similar top-level API. Unlike Parsec, FParsec discourages developers to use imperative
monadic syntax for parsers and encourages the use of static combinators for parsers. This
results in much cleaner parser code with improved readability and an optimized, fast
parser. Besides, FParsec also has the following features, useful for the manual parser
implementation for TouchDevelop:

• A permissive open source license (simplified BSD license), which allowed us to use it
for this diploma project.

• Full Unicode support both for parsers and for text input, which was crucial for
TouchDevelop that uses Unicode in keywords (refer to Table 3.1).

• An embeddable, flexible and highly configurable operator-precedence parser compo-
nent with support for pre-, in- and postfix operators as well as operators of different
arity (unary, binary and ternary), which helped us to solve the problems we were
facing with the ANTLR auto-generated parser.

• Full support for medium-trust environments for parser execution. This is especially
important because one run the implemented parser in Silverlight runtime environment.

Other important features of FParsec that helped us during the parser development but are

1Following the established terminology for this language, algebraic data types are called discriminated
unions in F#. These constructs have the same properties as the classical algebraic data types in Haskell,
including the fact that each constructor is a full-fledged first-order function.
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not specific for TouchDeveloper are:
• support for context-sensitive, infinite look-ahead grammars,
• automatically generated highly readable error messages,
• comprehensive documentation with a well-thought tutorials and user manual.

For these reasons the second version of the parser was manually implemented in F# using
FParsec. We used LINQPad for code prototyping and Visual Studio 2010 Ultimate for
debugging.
The definitions of the algebraic data types used for abstract syntax tree are provided in
the Appendix, on page 94.
The final version of the parser comprises about 200 lines of code plus 50 lines for the
algebraic types definitions that are used to construct the abstract syntax tree.
This parser successfully parsed 278 out of 282 sample scripts from the code base, requiring
less than a second for 35075 lines of code. The four scripts that failed to be parsed were
found to contain syntax errors.

4.3 Semantic analysis

The static semantic checker is implemented as a higher-order function in F# that evaluates
the abstract semantic tree from the parser and statically checks its validity using a ruleset,
implemented as first-order functions. To facilitate the rule checks on the level of statements
and expressions we performed an additional transformation of the respective branches of
the syntax tree into another data type, CodeEntry (see the listing of AST types in the
Appendix, page 94).
The semantic checker is implemented to support three different rule-sets with different
severity level: hint, warning, and errors. Due to time limitations only the support for the
error rules was implemented.
The following rules were checked (for details see the error messages of the static checker in
the Appendix, page 95):

• Action, local, and global variables must be declared before first use.
• Global variables, actions, events, and meta declarations must be declared only once.
• Parameter of events and actions must have disjoint names.
• Conditional operators must have the condition of type Boolean.
• The for each statement can only be applied to the type of collection type (imple-

menting an IEnumerable<> interface in .Net).
• The left-hand side of assignment must not be read-only.
• Only local variables can be on the left-hand side of an assignment statement.
• Loop variables in a for loop are not accessible within the loop body.
• The if statement must have a non-empty then branch.

If one of the rules is violated, the semantic check fails and the compiler pipeline is aborted.

4.4 Code generation

Before to proceed with the compiler implementation we reviewed the existing approaches
to code generation for .Net. Because of the complexity of the .Net binary format and the
existence of many different libraries for code generation that hide the low-level details of
the executable format, we did not consider the manual generation of the executable code.
The comparison of these approaches is given in Table 4.1. We decided against the use of
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compilers, because the C# compiler from Microsoft, currently implemented in C++, does
not provide any public API to monitor and manage the process of compilation. Besides,
the implementation is not modular and there is no way to bypass the compiler front-end.
Therefore, a code-to-code transformation from TouchDevelop to C# would be needed.
The Common Compiler Infrastructure (CCI) is an open-source project2 from Microsoft
Research, a set of libraries and an API that supports some of the functionality that is
common to compilers and related programming tools. It is a compiler compiler for .Net
with support for static code verification and code re-writing. Despite the attractivity of
this approach, the lack of any developer documentation and the abandoned state of the
project were the decisive points for not selecting this option.
The current successor of the CCI project is the ongoing Microsoft initiative „compiler as
a service” to provide a managed open-source version of the .Net compiler designed with
the ideas of modularity and extensibility. This initiative, known under the working name
„Project Roslyn”, has produced a community technical preview (CTP) of this compiler
libraries (bearing the same name as the project). Despite the CTP status of the project the
project supports customization of the language parser and has a sizable community. Due
to the premature status of this project and in attempt to minimize the number of external
dependencies we decided to rather consider some of the approaches immanent to .Net.
The .Net foundation classes library (FCL) provides two different APIs for code generation.
The low-level API, provided as the all-mighty class Emit within the Reflection namespace
(and therefore often referenced to as Reflection.Emit API), is often used by third-party
compilers to generate valid .Net binaries. Examples of such compilers are Phalanger3 (.Net
compiler for PHP) and the Iron languages, including Iron Python4 and Iron Ruby5. All
these tools implement a manual code generator and use the Emit class to generate the
assembler code in the Common Intermediate Language (CIL).
A high-level API in .Net is represented by the CodeDom namespace (see Table 4.3). This
namespace contains interfaces and classes for abstract syntax tree representation as well as
implementations of several code providers that convert the AST either into the source code
or to the .Net binary. The namespace was criticized as biased towards the object-oriented
paradigm and provides less support for non-OOP constructs and phenomena.
Having critically reviewed the low-level and the high-level approaches to the code generation,
we decided to use CodeDOM, because this high-level framework contained all necessary
classes to represent the TouchDevelop scripts. It allowed us to confine the compiler
implementation to the implementation of the transformation function from the AST to
CodeDOM, as described in detail below.

4.4.1 TouchDevelop standard library

To test the compiler we implemented a minimal subset of the TouchDevelop standard
library that meets the following requirements:

• The subset must contain at least one instantiatable and one singleton TouchDevelop
type.

• The subset must provide implementation for every operation (both binary and unary)
and implements the types for these operations.

• The subset must contain the types and methods whose implementation can be safely
2http://cciast.codeplex.com/
3http://www.php-compiler.net/
4http://ironpython.net/
5http://www.ironruby.net/
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4.4 Code generation

Figure 4.4: The class diagram of compiler library attributes.

shared between different compilation targets, as well as target-specific implementa-
tions.

• The subset must contain the implementation of at least one Unicode action identifier
that cannot directly represented using ASCII character set. Ideally, several types of
Unicode characters (subscripts and superscripts, compound characters) have to be
present.

• The subset must support the basic input and output operation for user interaction.
The following five types were implemented as a minimal set of a TouchDevelop library for
compiler tests: Number, String, Boolean, math, and wall.
The library was implemented in C#, the flagship language of .Net platform which is close
in its semantics to TouchDevelop.
During the implementation of the standard library we had to overcome the following
limitations:

• .Net does not support Unicode in identifiers, however we needed this support because
Unicode identifiers are widely used in the TouchDevelop standard library.

• To implement the multi-targeting in the compiler we had to provide alternative
implementations for some methods. For example, the console application target uses
the system console as a wall object, but Silverlight does not provide any support for
a console and we had to instead use a static class to hold the output.

To overcome these challenges we implemented a set of attribute class that contain meta
information about the TouchDevelop token names, the instantiability of a type, the compiler
target, and optionally the description. The class diagram for these attributes in presented
in Figure 4.4.
We used class and methods decorations with our custom attributes to provide information
about the mappings between the C# implementation of the library and the TouchDevelop
syntax (see Figure 4.5). Thereby we were allowed use Unicode in strings and could map
our C# implementation to the TouchDevelop library invocations.
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[TouchType("Number", TargetPlatforms.Universal, HasInstances = true)]
public class Number : TouchBase
{

[TouchOperator("-")]
public static Number operator − (Number left, Number right)
{

return left.value − right.value;
}

[TouchOperator("*")]
public static Number operator ∗(Number left, Number right)
{

return left.value ∗ right.value;
}

//....
}

Figure 4.5: Attribute decorations in the implementation of the TouchDevelop standard
library.

4.4.2 CodeDOM transformation

We could confine the compiler implementation to a transformation function that maps
the AST of a TouchDevelop script onto the CodeDOM representation. This was possible
because of the following properties of TouchDevelop:

• TouchDevelop has a syntax largely based upon the syntax of C#.
• TouchDevelop provides full support for procedural programming and only limited

support for object-oriented programming. We did not have any difficulties to map
the procedural aspects of TouchDevelop onto object-oriented model of .Net and C#
(see Table 4.2 for exact mapping).

• CodeDom provides the implementation of the static semantics for C# and we had
only to cover that part of the semantics of TouchDevelop that is different from the
basic semantics already covered by the C# static semantics. For example, we did not
have to implement the semantics of an assignment (including all necessary checks
like check for the existence of the assigned variable, type check etc.), but had to
deal with the multiple assignment which is not a part of .Net or C#. We used the
output parameters of .Net framework to return several values from a method before
assigning the variables.

• The dynamic semantics of the .Net runtime is used for the script execution. For
example, we do not perform the checks for division by zero in our implementation,
the .Net runtime throws an DivideByZeroException during the script execution if
this situation happens.

The compiler was implemented as a single higher-order F# function that takes the abstract
syntax tree (see Appendix on page 94) and transforms this tree into the respective tree of
CodeDOM.
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4.4.3 Multi-targeting of the compiler

TouchDevelop provides the possibilities to author and run scripts on Windows Phone
device where only Silverlight6 applications are allowed to run. For the compiled scripts to
run in the same environment one must consider the constraints of the Silverlight runtime,
including the following:

• Silverlight is a medium-trust environment where only certain subset of .Net instruc-
tions is allowed (for example, no pointer arithmetics is possible here),

• The Silverlight code does not have full access to the drive. Only a small part called
isolated storage can be accessed.

• Applications run in isolation in a single process. No inter-process or inter-application
communication is possible.

• Silverlight runtime has a preemptive execution model with tombstoning events used
to put running applications to sleep. Every application has to serialize its state on
this event to its internal storage and re-read this state upon continuation.

• Application code along with the dependencies has to be put in a special XAP package
that is digitally signed before deployment on the device. Only signed code is allowed
to run.

These aspects of the Silverlight runtime were, however, beyond the scope of this work.
Therefore the implemented the compiler was designed to support multi-targeting.
The default compilation target is a .Net 4.0 console application which does not have to
deal with the constraints imposed by the Silverlight runtime. As a console application is
has access to the system console which was used for the input and output operations and
for interaction with user. The interaction with the console were encapsulated in the wall
type which was specially implemented for this compilation target.
The support for the second goal, Silverlight for Phone, is implemented at the level of both
compiler and standard library.
We used special attributes to decorate the types and methods in the standard library either
require no special implementation for Silverlight runtime (we call them „universal”) or
provide a special Silverlight-tailored implementation.
To avoid the problems with correct packaging of the generated code we implemented the
support only for the library output. This means, that the source code is compiled into a
Silverlight dynamically linked library (DLL) that can be then used in any Windows Phone
application.

4.4.4 Limitations of the compiler

We compiler only implements the transformation of the abstract syntax tree and does
not perform the code generation itself. The abstract syntax of CodeDOM can be either
compiled to the .Net assembly7 or converted to the source code (text representation) using
a special language provider for CodeDOM. The .Net FCL contains the CodeDOM providers
for C#, VB.NET and JavaScript. F# CodeDOM provider is available as an open-source
implementation.
The current version of the compiler has the following limitations:

• The compiler performs the transformation in a single pass. Therefore it cannot
6Under Silverlight we everywhere mean the Silverlight for Windows Phone.
7Assembly is a binary code for .Net (the bytecode for the Common Language Runtime). Depending upon
the meta information (the presence of an entry point) an assembly can be stored as a PE (portable
executable) file (.exe) or a dynamically linked library (.dll).
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compile the code references (actions, global variables) that are declared in the script
after they are referenced. The direct recursion is possible: the action signature is
treated as its declaration.

• Only the code translation is performed. There is no support for the functionality
provided by the TouchDevelop runtime environment. In particular no support for
the event model and for tombstoning is provided.

• Some constructs of the TouchDevelop, like meta statements and foreach loop are
currently not supported. This means that every action is mapped onto a public static
method irrespective of its visibility in TouchDevelop.

• The executable file is only created when compiling against the .Net 4.0 framework.
The compilation for Silverlight runtime yields the not directly executable library
code.

Despite the limited functionality, this is in fact the first compiler implementation for
TouchDevelop8. For the completing of the second goal of the current work it was important
for us to provide an implementation of the complete compiler pipeline, as it is depicted on
Figure 4.1. The existing implementation provides the basic framework for the compilation
of the TouchDevelop scripts which can be always extended to accommodate the latest
changes in the TouchDevelop syntax and semantics.

8It should be noted here that the idea to implement a compiler for TouchDevelop was suggested by
Nikolai Tillmann to address the demands of many TouchDevelop users who would like to publish their
TouchDevelop scripts as standalone applications on the Windows Phone Application Market. This idea
was, however, undermined by the possibility to create standalone executables for Windows Phone that
contain the TouchDevelop scripts along with embedded TouchDevelop interpreter and runtime, which
was recently made available on the TouchDevelop webportal.
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5 Chapter 5

Discussion

In this chapter we identify potential threats to validity and life time of the language
specification presented in Chapter 3 and evaluate their impact.
We also assess the current specification in comparison to other scientific publications on
TouchDevelop. A particular emphasis is put on the analysis and review of the TouchDevelop
manual published by the original authors of TouchDevelop very recently [Horspool et al.,
March, 2012].
At the end of the chapter we speculate on the design decisions for TouchDevelop as
programming language, runtime environment, and integrated developer environment (IDE).

5.1 Threats to validity

In this thesis we made an attempt to re-engineer a complete and accurate description of
TouchDevelop syntax and semantics. Despite best efforts we admit that there are reasons
for some concerns about the completeness, applicability and timeliness of the derived
language specification.
The language specification was reconstructed using the source code corpus containing 284
TouchDevelop scripts downloaded in December 2011 from the TouchDevelop webpage and
the TouchDevelop application installed on a Windows Phone device around this time. More
recent updates to TouchDevelop that add some new features to the language and runtime
environment are not covered in this specification (in Table 5.1 the double line demarcates
the changes that are not captures by the current specification).

5.1.1 Threats to the correctness and completeness of this specification.

Reverse engineering is an approach for which it is very crucial but at the same time also
difficult to reason about the correctness of results. In our particular case, this reasoning
was even impossible due to lack of an existing specification.
We had to use the existing phone application along with the downloaded script files to
perform the reverse engineering of language syntax and semantics. It has to be pointed
out that this application is not a compiler; rather, it can be regarded as a thick client for
the cloud infrastructure with support for script authoring, syntax and semantic checks,
and the execution of these scripts in interpreter mode. This work presents an attempt to
generalize the acquired knowledge to an implementation-agnostic specification.
In addition to the challenges to specification mining mentioned in Section 3.1, the following
peculiarities of the system under analysis could have contributed to eventual inexactitude
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Ver Most important changes in the language and the libraries Date
v2.0 The project was renamed to TouchDevelop.

TouchDevelop website with cloud support launched.
2.08.2011

v2.1 Support for Leaderboards.
Full support for IEEE 754-2008 for float-point arithmetics.
String selection from preset list of string („string picking”) on the
app wall.

18.08.2011

v2.2 Support for Windows Phone 7 themes querying.
Support for data arithmetic and custom data object creation with
Invalid.
Access to built-in media library objects (images and image names).
Cropping of picture object.

13.09.2011

v2.3 Support for Windows Phone calender objects.
Access to Bing maps and driving directions.
Access to Motion API of Windows Phone, querying the presence
of gyroscope and compass and requesting their readings.
Access to contact address, saving a new contact locally and search
for appointments and contacts using Social Networks API of
Windows Phone.
Support for internet-based media.
Access to songs collection, support for song playing.
Support for clipboard (only copying). Working with application
tiles.
Previous APIs for working with social networks, application tiles
and contact collections are now obsolete. Dropped support for
panorama tiles.

7.10.2011

v2.4 Board supports camera output as background. Camera settings
can be programmatically set (via Camera class). Support for
color manipulations (darkening, lightening) and for HSB
(hue-saturation-brightness) color model. Full support for contact
creating and editing, access to all built-in contact properties.

11.11.2011

v2.5 Small improvements in picture, song, playlist and social networks
functions (support for random picking). Improved app wall with
date/time user input and background picture. Some Bing searches
(phone numbers) and Bazaar options are now obsolete.

20.12.2011

v2.6 Support for external libraries in TouchDevelop scripts. New events
for items on wall. New API to access devices in home network.

21.02.2012

v3.0 Support for TouchDevelop query language is expected. tbd
Table 5.1: Overview of the specification versioning for TouchDevelop as language.
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5.1 Threats to validity

of this document:
1. Limited support for script authoring. The only way to implement a new script for

TouchDevelop is to author it on a mobile device. Every script has to be manually
typed on a virtual keypad and tested, no automatic testing of (randomly) generated
script code is possible.

2. Non-transparent storing and serialization of the scripts. The tokenized input of the
user scripts allows the mobile application to parse the syntax of the script in a much
easier way than the plain text with source code. The text version of the script requires
several script transformations along the following change chain: mobile device ⇒
cloud ⇒ text version.

3. Limited possibilities to debug and test scripts. There is no built-in debugger that
would allow one to peek the values of local and global variables or examine the
properties of script objects. The only way to debug the scripts is to output critical
values either to the wall or as a pop-up message, which means that the semantics of
the script execution is only „palpable” through the semantics of the wall object or
pop-up message.

4. Limited information about errors in scripts. Despite the static analysis of the script
code and some helpful error messages and quick fixes („fix-it” option of the IDE, see
Figure 3.4) covering many syntactic and some semantics features of TouchDevelop,
many errors are revealed only during execution and are not reported by the code
editor. Therefore, to reverse engineer the dynamic semantics of the code we needed
to run every script we used.

5. Limited possibilities to distinguish intentionally loose design from potential bugs.
Having encountered an unexpected or strange behavior of TouchDevelop one can
never be sure if this is loose design decision, a bug in the language design or a bug
in its implementation. Therefore, this document describes potentially unexpected
behavior as it was observed.

5.1.2 Threats to the life time of this specification

As every project under active development, TouchDevelop undergoes rapid changes in the
design of the Windows Phone UI, the standard code library, and the language itself. The
high pace of project development casts concerns about the life time of this specification and
especially about obsoleting of certain parts of our specification. We identify the following
threats to the validity of the document:

1. Rapid development and short iteration time between versions. Table 5.1 contains
information about the most important changes in every public version of TouchDevelop
since version 2.0. The average time interval between two subsequent versions comprises
one month, meaning that every month some new features are published. This is an
extremely high tempo for a developing environment. Taking into account that the
final goal declared in the first draft of the language and platform (Tillmann et al.
[2011]) has not been reached yet (see the last line in Table 5.1) it is expected that
the tempo will stay high until version 3.0 of TouchDevelop is here.

2. Opaqueness of the development process. The platform is developed by a group
of scientists from Microsoft Research. The leader of the group, Nikolai Tillmann
publishes updates with detailed overview of the new features after every public release
in his official blog. This blog remains the primary source of information about the
TouchDevelop development progress: there is neither any public code repository, nor
a feature requests page. The webpage of TouchDevelop provides minimal support for
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a forum, but this is bound to users and their scripts and is intended to discuss the
existing scripts rather than the evolution of the platform.

3. No specification or any public information about serialization of TouchDevelop scripts.
If the rapid development of the platform is balanced by the ever growing user
communities and the necessity to maintain backward compatibility to the existing
script pool, the serialization of the TouchDevelop scripts authored on a mobile device
remains uncovered and can be changed at any time. This is the serialization that
accounts for three different source code views. Any changes to the serialization, even
subtle ones, might have a drastic impact on the syntax of TouchDevelop and require
duly adaptation of parser.

Because it is impossible to keep pace with the steadily evolving platform, the complete
specification is derived from version v2.4 of the phone application. Newer changes, as
shown in Table 5.1 with a double demarcating line, are not reflected here.
Putting aside the improvements in the user interface and new capabilities in the standard
library, the major compatibility-breaking change in the latest version of TouchDevelop
is the support for external user-defined libraries. As of today, third-party scripts in the
TouchDevelop cloud can be referenced from a user program. This allows one to invoke the
public actions from these scripts in the user code, similarly to the libraries in procedural
languages. With the current support for libraries, only actions of referenced scripts are
available, but the developers divulged the plans to add support for custom collections
exported as tables (Horspool et al. [March, 2012], p. 111). This example shows that
no definitive specification can be provided at the moment and the life time of every
specification, even that provided by developers themselves, is limited.

5.2 Comparison to existing works

In this section we compare our specification against the currently existing publications on
the TouchDevelop language and environment.
As of today, there are two publicly available descriptions of the TouchDevelop language
(besides this document) that can be seen as a sort of language description. Those are the
original publication of Microsoft Research Group (Tillmann et al. [2011], available both
as conference submission and as technical report) and the user manual „TouchDevelop:
Programming on a phone” (Horspool et al. [March, 2012], self-published in electronic form
on the project webpage), written in collaboration with the University of Victoria.
The first publication, dated back in spring 2011, contains no formal description of the
language. The paper describes the platform as a whole, with detailed coverage of the user
interface on mobile devices as well as the cloud service. The language specification is short
and mostly deals with the syntax. The syntax rules for almost every language construct
include ellipses implying the rules are incomplete and potentially have more alternatives
besides the given ones. Out of four pages dedicated to the language description, one page
covers the query language, similar to LINQ in C#, that is to be implemented in the next
major version of the system (see the Table 5.1). The goal of the article was most likely to
show the place of TouchDevelop among developer environments for mobile devices, that is,
the exact description of the language was not the main focus of the publication. Therefore,
we will not further consider this publication and will focus on the second publication we
will reference to as „published publication” thereafter.
The second publication, which appeared very recently (March 2012), looks more like a
draft of the specification than a finished work. Besides numerous spelling and formatting
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glitches throughout the text, it contains many commentaries that belong to the internal
communication of the group like „TODO: add reference” (p. 110), „TODO: maybe we
want to revise this?” etc. Despite its draft style, this publication goes much deeper in
describing the language syntax and semantics with the last chapter titled „TouchDevelop
language specification.” This chapter on the one side describes the language in a very brief
form, but on the other side provides no explanation for certain terms and thus requires the
reader to refer to previous chapters to find necessary clarifications or details. For example,
value and reference types are just briefly touched here, more information is available in
Chapter 3 (pages 37-38), whereas the exact list of value types is given only in Chapter 6
(page 64). We identified 16 potential inaccuracies in this language specification that were
summarized in Table 5.2.
One of the main problems of the specification by Horspool et al. [March, 2012] is that it
describes mostly the unified syntax of TouchDevelop scripts without paying any attention
to the serialization algorithm and any different views to the source code. This leads to the
problem that some described syntax rules cannot be applied to the source code in all of
the available code representations.
Every communication between the user mobile device with an authored script and the
cloud requires serialization and deserialization. In its attempt to keep this transformation
private (probably with the goal to be able to adapt it any time to the ever-growing needs
and wishes of the user community), the specification by Horspool et al. [March, 2012]
looses its precision: it describes the syntax neither as it is directly seen on the screen of a
mobile device nor as it is rendered by the cloud-connected web portal. We try to tackle
this problem by providing the description of different „views” (refer to Section 3.4.1 for
the explanation on views) to the script source code and describing the source code as it is
serialized to a plain text file.

5.2.1 Syntax issues

Focusing on an unified language syntax the specification by Horspool et al. [March, 2012]
does not define how single declarations or statements are separated: a mobile application
uses new lines and wraps longer lines with additional indentation to show the statement
(or declaration) continuation on the next line. Other views explicitly use semicolons as
separators between expressions (including expression statements) and meta declarations,
and these semicolons are clearly visible in the browser or in the plain text file.
Probably for the same reason („unified syntax”) the syntax rule for a conditional if-
statement declares the else block as mandatory. This might be correct in the phone view
where an empty else branch provides a tapping area to add some code, but this branch is
almost always omitted if empty in the web view.
The specification uses the term „keyword” (page 109), but does not provide any list of
keywords or explanation how to deal with name collisions. The only phrase „any name can
be used for an action” (page 110) is not entirely correct: as long as the name of an action
collides with a reserved word or an already existing action, a running number is appended
to this name automatically. Therefore, there is no possibility to overload existing actions
by providing the same name but different signature, as one might suppose from the quoted
statement.
Several production rules contain the non-terminal symbol identifier on their right-hand
part, but this symbol is never defined in the specification, neither syntactically (for allowed
symbols) nor semantically (for case sensitivity, maximal allowed length etc.). The results
of our mining experiments show that not every ASCII symbol is allowed in local identifiers
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and some symbols are substituted by escape sequences or removed from the identifier.
Besides, the phrase from the specification "Identifiers, strings and keywords are arbitrary
(possibly empty) strings..." (page 109) is misleading, because "possibly empty" applies only
to the string literals and is not possible for the other two groups.
In contrast to the current document, the published specification does not provide a separate
syntax definition for event handlers, merging event handlers and action declarations into
one production rule. According to this rule, event handlers are also allowed to have return
values. The use of those values is not clear because event handlers are called by the
execution environment and not by a user and expect no return values. Notwithstanding,
the specification itself implies that event handlers can only have input parameters in the
phrase „Local variables are introduced ... by action input/output, and by event input
parameters”, separating actions from event handlers. This phrase also shows that events
(situations triggering code execution) and event handlers (the triggered code) are not
distinguished in the specification (probably for the sake of simplicity).
The published specification does not include the term „number literal”, even though the
format of numbers is defined by two production rules. It would be logical to provide a
special rule or terminal for number literals in this context, especially considering the fact
that the specification uses the terms and provides definitions for string and Boolean literals.
While mining the specification by examining the source code corpus for the downloaded
scripts we encountered an empty statement. Trying to map this statement to the visual
representation of the script in mobile applications we discovered that in some cases the
empty statement, represented in the source code by three dots, is mapped onto the „do
nothing” commentary in the mobile application. The specification by Horspool et al.
[March, 2012] provides no clue if this type of statement exists.

5.2.2 Semantic issues and versioning

Horspool et al. [March, 2012] provide a detailed description of the meta declarations that
are visible in none of the available views: the list of recently used identifiers (probably to
provide a better context-sensitive code completion) and unique global identifiers (GUID)
are internal („the guid is purely internal”, page 113) for TouchDevelop mobile applications
and are not propagated to the cloud. The same applies for some other meta declarations,
like „seed”: once mentioned in the specification, this declaration is not explained further
and cannot be found in any code view.
The published specification uses the terms „mutable type” and „reference type” as direct
synonyms (see page 111, for example) while explaining the copying semantics for value and
reference types as parameters. Parameter passing in TouchDevelop is strictly by value and
Horspool et al. [March, 2012] correctly point out that parameter passing semantics differs
for reference and value types. Yet, passing a reference type by value does not change the
semantics into „call-by-reference”; specifically, it is a copy of the reference that is passed
into the action, not the reference itself.
The research paper from 2011 introduced the concept of asynchronous data fetching, which
seems to be the way to overcome the limitations of the Windows Phone platform where
the calls to external services (including the HTTP requests) are always asynchronous. The
published specification from 2012 does not include any mention about asynchrony and
when the data are actually fetched.
An important point is the different (but similar!) versioning of the TouchDevelop language
and serialization format. The specification describes the latest version of the language
and UI of the TouchDevelop. According to the blog by Nikolai Tillmann and the official
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web portal, the latest version as of today is „v2.6” (the small „v” belongs to the version
identifier), whereas the specification quotes version „v2.7” as one of the past versions („This
behavior was introduced in v2.7”). At the same time, the serialization of the scripts, as
indicated in the meta declaration on the script level, has currently only version „v2.3”
(Horspool et al. [March, 2012], page 110). In the middle of April 2012 a new serialization
format for scripts introduced dollar signs as a designation for local variables, but newly
authored scripts still bear version „v2.2”, as seen in the web view1.

5.2.3 Differences to the actual state of TouchDevelop

Due to the reasons discussed on page 25 our specification compared to the one by Horspool
et al. [March, 2012], published 4 months after the beginning of our work, does not cover
certain aspects of the actual state of the language. In particular, the following recent
changes are important:

• Support for multiple where clauses in foreach loop statements.
• Support for user-defined libraries, including

– a new type of scripts (code library) that cannot be directly run, in addition to
the standard scripts directly runnable by the user, and

– the possibility to reference the libraries from user scripts and to use the library
actions.

As regards the first change, we added support for optional where clauses to the syntax
to keep our parser up-to-date, but the current version of the compiler does not provide
support for collection iterators and therefore this change was not dramatic.
Concerning the support for user libraries, this change is so drastic that it requires a
thorough investigation and major changes on all levels of the compiler infrastructure, from
parser to code generator. For this reason we did not incorporate this change into the
existing specification and compiler.

5.3 Reflection on design decisions

Unlike many other programming languages where the design decisions are often motivated
by the complexity of the parser implementation, the general compiler performance, and the
possibilities to perform code optimization in the compiler, we approach TouchDevelop as a
language designed for casual developers (see Section 1.3 for discussion on this topic). In
this respect, the following rationales should have been taken into account while designing
it:

• The language has to be easy enough to learn and to be used by non-professionals.
• The language infrastructure (consisting of the language itself, the runtime, and the

IDE) has to hide the unnecessary complexity of the underlying .Net and Silverlight
platforms.

• The platform (including the cloud service along with the language infrastructure)
has to encourage script authoring, sharing, and collaboration.

Table 5.3 summarizes the design decisions for the language infrastructure. Even though
the primary goal of the designers evidently was to make the language easy to learn and
use, we categorized these decisions into the two groups: design decisions that aim at the

1We checked it by opening the following link on May, 9th 2012: https://www.touchdevelop.com/api/
gjto/text
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simplification of the language and the decisions needed to abstract from the underlying
.Net and Silverlight runtime environments and to hide their unnecessary complexity.
Besides, we would like to emphasize the role of the cloud (for synchronization, as a web
portal etc.) as a design decision because it contributes greatly to the evolution of the
language and its popularity. The following infrastructure provided by the cloud commits
to this last goal:

• The cloud-based versioning system for scripts that keeps track of script forking and
derived works.

• The local script repository that is synchronized completely with the cloud during
occasional Internet connections eliminating the needs for code commits.

• The leaderboards for game scripts that are directly managed by the cloud.
The following points in the design seem to be suboptimal from our point of view:

• The overall closedness of the platform which is reflected in very limited possibilities
to author and execute the TouchDevelop scripts.
– Only mobile device can be used for scripts authoring. There is no possibility

to author (or edit) the scripts on the TouchDevelop webpage or to add custom
text to the script.

– No support for script templates. The only possibility to start not from an empty
page is to fork somebody’s script. This is very helpful, but the existence of
templates could facilitate the language learning.

– Even though many scripts are not directly coupled to the device-specific features
and the Silverlight code is generally highly portable, there is no possibility to
run scripts as Silverlight application on the web page.

• The approach that hides the details of the Silverlight runtime on Windows Phone
makes TouchDevelop not an easy target for compiler implementation. The significant
role of the TouchDevelop runtime that deals with many platform-specific issues
(like the event model and the gameloop event) requires the constant presence of
this runtime as a part of the compiled application. Besides, to successfully perform
the application state serialization and deserialization on tombstoning events (that
is one of the key requirements for the successful certification of the application of
on Application Market) this embedded runtime must have access to the complete
information about every script object (including local variables, wall, sprites, assets).
The need for embedded runtime compromises the idea of compiler implementation
and favors a straightforward „canning” approach to the creation of stand-alone
applications.
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6 Chapter 6

Conclusion

We obtain the following results in this work:
• The language specification for TouchDevelop is reverse-engineered.

– The language syntax was reconstructed and debugged using ANTLR studio.
The grammar implementation in ANTLR format is available in the Appendix.

– The manually implemented parser successfully parses 100% of the TouchDevelop
scripts that were available on the TouchDevelop webpage in December 2011.1

– The language syntax and semantics are documented in written form and provided
as Chapter 3 of the current thesis.

• The re-engineered knowledge is implemented in form of a TouchDevelop compiler.
– This is the first compiler for TouchDevelop and the second software (after

TouchDevelop itself) which deals with the TouchDevelop scripts.
– The compiler front-end is a highly performant predictive parser, which was

implemented in F# using the FParsec parser combinator library. The 282 files
with total 35075 lines of codes are parsed on the developer’s machine in less
than a second. Out of these 282, four are correctly identified to contain syntax
errors.

– A static semantic checker is implemented as a part of the compiler pipeline to
perform semantic check of the parsed TouchDevelop code.

– The compiler performs the transformation of the abstract syntax tree into the
CodeDOM representation of the code.

– CodeDom foundations from the .Net framework are used as compiler back-end
for code generation for the .Net runtime.

• The best practices (as formulated by Klint et al. [2005]) are successfully applied for
reverse engineering of the TouchDevelop grammar.
– The language grammar is reverse-engineered in several iterative steps.
– On the first step, the human-readable base-line language grammar is derived

using ANTLR to catch the essence of the language syntax.
– On the second step, the base-line grammar is used for the manual implementation

of the parser.
– This two-step approach helps us to decouple the grammar derivation from the

implementation, making high optimization of the parser possible.
• We suggest an improvement for the best practices by Klint et al. [2005] to use CAD

1For the complete list of scripts see page 89.
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grammarware tools during the very first stage of the grammar reverse engineering.
– ANTLR was used for the prototyping of the language grammar.
– The use of ANTLR allows us to instantly perform the quality assurance of the

grammar on every edit.
– The export feature of ANTLR was used to produce the railroad diagrams that

were used in the language specification.
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Appendix

List of TouchDevelop scripts used for specification mining

aawt
aewy
afnk
afxx
ahad
aisj
ajlu
akdt
akto
algi
amat
aojn
aojp
aoxh
aplm
asnma
auny
awic
awmq
aznq
azwg
bdrx
bjft
brui
brzp
bzqt
cfor
cnyr
cpob

csix
ctdb
cvas
dace
dark
dfzz
dhzd
dicc
dphd
drpc
dvpr
ecvs
efwy
ehmo
ejjr
ejum
ekdx
ekuu
elpk
eogy
epdc
eqcf
erzn
euwv
ezec
fbdv
fgau
fhnm
flal

flnc
fnkl
frks
fuvn
fvhi
fynv
gbbr
gdmr
gkkw
gnah
gpid
gydj
gyti
hbei
hcaj
hcoh
hebw
hejn
hgmt
hhkz
hkqf
hllw
hqrx
hqvc
hrmw
hrvg
hsaj
htgb
hvch

hvkq
hwtc
hwyo
hypt
iiom
ijck
ileo
imqe
imsi
iqik
iqri
irdy
ired
irkb
iufd
ixxf
jjuj
jmee
jmlw
jqer
jucv
julr
jvkg
kdmd
kdpo
keyj
kocc
kvmi
kxte

lchr
lcno
leri
lfms
lheta
lney
lqiz
lrzu
lvde
lwtt
meim
mfwr
mmzb
mrqc
mtzs
mwzl
mykj
mzln
nalg
nclh
ndqv
nlik
nmru
nmwz
nnky
nnlg
nofk
nwat
nykc

oawp
oces
ociv
odxv
ohxf
onux
oomv
orto
oubt
ovkh
ovkt
owme
oxvj
oylo
ozbi
ozok
paqt
pbkt
pddx
pdsv
peju
pgcv
pprs
ppyd
pqtq
pquj
prqb
ptkr
pxxf

pycw
qdph
qftc
qhuj
qhzm
qitd
qkkl
qkrs
qmbc
qogr
qrsl
qsxc
qurl
qvci
qvxs
qwxp
qyxf
rmjf
rolh
rpyj
rsey
rsyo
rvdy
shfv
sjji
slfs
smrw
somi
sqak

srdq
srvj
srxi
suzp
swgx
swtd
sxoc
tagy
tamo
tavb
tbai
tbts
tglf
tius
tktv
tqnd
ttky
tulc
txew
tzvt
ucjf
ucvw
ugny
ujsp
uovg
uovt
uqwy
uwqr
uxti

velk
vevb
vggu
vizt
vlhva
vmcr
vnps
vrgt
vrse
vryl
vxez
vzkb
wawr
wfps
wfvj
wglv
wiip
wlgr
wntg
wowr
wqvj
wtbg
wtud
wyjg
xcbk
xcfu
xdsz
xdzj
xfxh

xkmz
xreh
xrwy
xynq
ygnn
yzty
zder
zenx
zilb
zimi
ztlra
ztwi
zvpj
zxwn
zycu
zzah
yuhe
ywqu
ywys
yxbe
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TouchDevelop Grammar for ANTLR

grammar TouchDev;

// program blocks

program
: (declaration)+

;

declaration
: metaDeclaration
| actionDeclaration
| globalVariableDeclaration
| eventDeclaration
;

metaDeclaration
: ’meta’ (’icon’|’color’|’name’|’version’) STRING ’;’
;

metaParam
: ’version’
| ’name’
| ’icon’
| ’color’
| ’private’
;

globalVariableDeclaration
: ’var’ varIdentifier ’:’ typeIdentifier

’{’
(
((’is_readonly’) ’=’ (’true’))|
((’is_resource’) ’=’ (’true’)
(’,’ ’URL’ ’=’ STRING)?

)
)

’}’
;

eventDeclaration
: ’event’ eventIdentifier ’(’ ( formalArg (’,’ formalArg)*)? ’)’

codeblock
;

codeblock
: ’{’

statement*
’}’

;

actionDeclaration
: ’action’ actionIdentifier ’(’ ( formalArg (’,’ formalArg)*)? ’)’ (’

returns’ ( formalArg (’,’ formalArg)*)+ )?
codeblock
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;

formalArg
: varIdentifier ’:’ typeIdentifier
;

statement
: emptyStatement
| metaStatement
| expressionStatement
| assignmentStatement
| ifStatement
| whileLoopStatement
| forLoopStatement
| foreachLoopStatement
;

emptyStatement
: ’...’ ’ ’* ’;’
;

metaStatement
: ’meta’ (’private’) ’;’
;

ifStatement
: ’if’ booleanCondition ’then’ codeblock

(’else’ codeblock)?
;

assignmentStatement
: varIdentifier ’:=’ expression ’;’
| varIdentifier (’,’ varIdentifier)* ’:=’ invocation
;

whileLoopStatement
: ’while’ booleanCondition ’do’ codeblock
;

forLoopStatement
: ’for 0<=’ varIdentifier ’<’ expression ’do’ codeblock
;

foreachLoopStatement
: ’foreach’ varIdentifier ’in’ varIdentifier (’where’ expression)+ ’do’

codeblock
;

expressionStatement
: expression
;

invocation
: varIdentifier ((’->’ (varIdentifier | functionInvocation)))*

;
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functionInvocation
: actionIdentifier ’(’ (expression (’,’ expression)*)? ’)’
;

booleanCondition
: booleanExpression ( (’and’ | ’or’) booleanExpression )*
;

booleanExpression
: expression ( (’<’ |’>’| ’=’ | ’<=’ | ’>=’ | ’!=’ ) expression )*
| (’not’ booleanExpression)
;

expression
: multExpr ((’+’^|’-’^) multExpr)*
| stringExpression

;

multExpr
: atom ((’*’^|’/’^) atom)*
;

atom: numLiteral
| invocation
| BOOLEAN
| STRING
| varIdentifier
| ’(’! expression ’)’!
;

// identifiers
varIdentifier

: (’@’)?(’$’)? ID
;

typeIdentifier
: ID
;

eventIdentifier
: ID
;

actionIdentifier
: ID
;

literal
: STRING
| numLiteral
;

numLiteral
: INT
| DOUBLE
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;

stringExpression
: STRING
| STRING ’||’ STRING
;

//basics
//====================== literals ==================================

BOOLEAN : (’true’|’false’)
;

ID : (’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’0’..’9’|’_’)*
;

INT : ’0’..’9’+
;

DOUBLE
: INT+ ’.’ INT*
;

COMMENT
: ’//’ ~(’\n’|’\r’)* ’\r’? ’\n’ {$channel=HIDDEN;}
;

WS : ( ’ ’
| ’\t’
| ’\r’
| ’\n’
) {$channel=HIDDEN;}

;

STRING
: ’\’’ ( ESC_SEQ | ~(’\\’|’\’’) )* ’\’’ //’
;

//unicode support
HEX_DIGIT : (’0’..’9’|’a’..’f’|’A’..’F’) ;

ESC_SEQ
: ’\\’ (’b’|’t’|’n’|’f’|’r’|’\"’|’\’’|’\\’) //’
| UNICODE_ESC
| OCTAL_ESC
;

OCTAL_ESC
: ’\\’ (’0’..’3’) (’0’..’7’) (’0’..’7’)
| ’\\’ (’0’..’7’) (’0’..’7’)
| ’\\’ (’0’..’7’)
;

UNICODE_ESC
: ’\\’ ’u’ HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT
;
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TouchDevelop AST types (F#)

module touchdev_ast
open FParsec
type Name = string
type Operator =

| Plus | Minus | Slash | Asterisk
| LessOrEqual | Less | Equal | Unequal | GreaterOrEqual | Greater
| Assignment // :=
| And | Or | Not
| Arrow // −>
| Concat // ||

type Parameter = Name (∗param name∗) ∗ Name (∗type qualifier∗)

type Expression =
public
| Nothing
| Float of float
| Boolean of bool
| Variable of string
| String of string
| BinaryOperation of Operator ∗ Expression ∗ Expression
| FunctionCall of Name (∗fun name∗) ∗ Expression list (∗arguments∗)

and Statement =
public
| Block of Statement list
| Expression of Expression
| Assignment of Expression list (∗multiple assignment∗) ∗ Expression
| If of Expression ∗ Statement (∗then∗) ∗ Statement option (∗else∗)
| ForI of Name (∗loop variant∗) ∗ Expression (∗upper bound∗) ∗ Statement
| ForEach of Name (∗iterator∗) ∗ Expression (∗collection∗) ∗ Expression option (∗condition∗)

∗ Statement
| While of Expression ∗ Statement
| MetaStatement of Name

and public FunctionType =
Name (∗fun name∗) ∗ Parameter list option (∗input values∗)∗ Parameter list option (∗return

values∗) ∗ Statement

and TopLevel =
public
| MetaDeclaration of Name (∗type∗) ∗ string (∗value∗)
| Action of FunctionType
| Event of FunctionType
| Global of Parameter ∗ Statement (∗options∗)

type CodeEntry =
public
| Namespace of string (∗ name ∗) ∗ bool (∗ singleton ∗) ∗ CodeEntry list option (∗ properties

∗) ∗ string option (∗ help ∗)
| Property of string (∗ name ∗) ∗ bool (∗ public ∗) ∗ Parameter list option (∗ input ∗) ∗

Parameter list option (∗ return values ∗) ∗ string option (∗ help ∗)
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| Variable of string (∗ name ∗) ∗ bool (∗ assignable ∗) ∗ bool (∗ initialized ∗) ∗ string (∗ type
∗) ∗ string option (∗ help ∗)

| BinaryOperator of string (∗ name ∗) ∗ string (∗ type left ∗) ∗ string (∗ type right ∗) ∗ string
(∗ type return ∗) ∗ string option (∗ help ∗)

| Meta of string (∗ name ∗) ∗ string (∗ value ∗)

Issue types and error messages of semantic checker

type Issues =
| Hints
| Warnings
| Errors

type Issue =
| Hint of string
| Warning of string ∗ Issue option
| Error of string ∗ Issue option

let messages =
dict [

("td001", (Errors, "Identifier not found."));
("td001.local", (Errors, "Local variable ’{0}’ not found."));
("td001.global", (Errors, "Global variable ’{0}’ not found."));
("td001.art", (Errors, "Art ’{0}’ not found."));
("td001.action", (Errors, "Action ’{0}’ not found."));
("td001.event", (Errors, "Event ’{0}’ not found."));

("td002", (Errors, "Ambiguous declaration: identifier already exists."));
("td002.global", (Errors, "Global variable ’{0}’ already declared."));
("td002.art", (Errors, "Art ’{0}’ already declared."));
("td002.action", (Errors, "Action ’{0}’ already declared."));
("td002.event", (Errors, "Event ’{0}’ already declared."));
("td002.meta", (Errors, "Meta ’{0}’ already declared."));
("td002.params", (Errors, "In action or event ’{0}’ the parameter

’{1}’ declared more than once."));
("td003", (Errors, "Type mismatch".));

("td003.g", (Errors, "Expected type ’{0}’, but found ’{1}’."));
("td003.binary", (Errors, "Binary operator ’{0}’ requires ’{1}’ and

’{2}’, but was provided with ’{3}’ and ’{4}’."));
("td003.foreach", (Errors, "ForEach loop requires a collection type,

the provided type ’{0}’ is not a collection type."));
("td004", (Errors, "Assignable and read-only."));

("td004.left", (Errors, "Left side of the assignment expression must
contain only assignable identifiers."));

("td004.loop", (Errors, "Loop variable ’{0}’ is read-only and cannot
be re-assigned."));

("td005", (Errors, "Other errors"));
("td004.nothen", (Errors, "If statement requires a non-empty then-

branch."));
]
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TouchDevelop Script used for specification mining (in web view)

meta version "v2.2";
meta name "Syntax_Deriving";
meta icon "ABC";
meta color "#ffff0038";
//

action Identifiers() {
// Test for allowed identifier names
$a\_2 := 53;
$answer_to_life\__the_universe_and_everything := 42;
$comma\__bang\__at\__sharp\__percent\__potence\__ampersand\__asterisk\

__rbrackets\__cbrackets\___ := 11;
$equal\__sbrackets\__apostroph\__quote\__colon\__tilde\__question\_ := 22;
$\u043A\u0430\u0436\u0434\u044B\u0439_\u043E\u0445\u043E\u0442\u043D\u0438\

u043A_\u0436\u0435\u043B\u0430\u0435\u0442_\u0437\u043D\u0430\u0442\u044C_\
u0433\u0434\u0435_\u0441\u0438\u0434\u0438\u0442_\u0444\u0430\u0437\u0430\
u043D := 56;

$flei\u00DFige_\u00FCbungen_h\u00E4rten := 56;
// Test for identifier length
$x23456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

:= 52;
$x234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901

:= 33;
// Test for case sensitivity
$X := 23;
$x := 45;
$res := $x || $X;
$res−>post_to_wall;
// Testing if reserved words can be used as identifiers
$@meta := 523.63;
$@action := "RAIN IS PLAIN IN SPAIN";
$meta_version_\_v2\_0\_ := 52 = 3;
$e\_ := false;

}

action test_wall() {
$b := wall−>ask_boolean("Ask bool ", "");
$x := wall−>ask_number("Ask number");
$tb := wall−>create_text_box("Textbox", 18);
$x−>post_to_wall;
$b−>post_to_wall;

}
var v : String_Collection {
}

action test_asynchron() {
$s := web−>download("http://www.google.com");
$links := web−>search_images("Esperanto");
$links−>post_to_wall;
$s−>post_to_wall;

}

action test_precision() {
$pi := − 3.1415;
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}

action test_loops() {
for 0 <= i < 258 do {
$i := $i + 3;
}

}

action test_unequations() {
$a := true;
$b := true;
$c := false;
while($a = $b) or ($b −> $c) do {
... ;

}
if $c = false then {
skip;

}
else {
if ... then {
skip;

}
}
$x := 1;
$y := 2;
$z := 3;
if not ($x = $y) or ($z = $y) and $x −> $z then {
$a\_ := $a < $z;
}

else {
if $x then {
$x;

}
$w := 56;
$h1 := 52;

}
if $b then {
skip;

}
}

action is_true() returns res: Boolean {
"true" −> post_to_wall;
$res := true;
... ;
... ;
meta private;

}

action is_false() returns res: Boolean {
"false" −> post_to_wall;
$res := false;
meta private;

}

action test_boolean_shortcuts() {
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"--- OR ---" −> post_to_wall;
if code−>is_true or code−>is_true then {

"-- OR checked --" −> post_to_wall;
}
else {
// Nop
... ;

}
if not (code−>is_false and code−>is_false) then {

"-- AND checked --" −> post_to_wall;
}

}

action test_division_by_zero() {
$x := 56 / 0;
$x−> post_to_wall;

}

action test_lazy_if_semantics() {
if true then {
6 >= 5;

}
else {
5 = 63;

}
}

action test_impossible_operations() {
"sqrt(-3)" −> post_to_wall;
math−>sqrt( − 3)−> post_to_wall;
"acos(12)" −> post_to_wall;
math−>acos(012)−> post_to_wall;
"log(-18)" −> post_to_wall;
math−>log(2, − 18)−> post_to_wall;
math−>log( − 4, 056)−> post_to_wall;

}

action test_overload() {
skip;

}

action test_overload1(x1: Number) {
skip;

}

action test_return() returns x1: Number {
$x1 := 6;

}

action test_return1() returns contact1: Boolean {
$contact1 := false;

}

action test_implicit_conversions() {
$x := 45;
$s := "this is string";
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($x −> $x)−> post_to_wall;
($s −> ($x −> "this is literal"))−> post_to_wall;

}

action test_implicit_conversion_by_arguments(s1: String, s2: String) returns res: Boolean {
$res := $s1−>count = $s2−>count;

}

action test_implicit_conversion_runner() {
$s := "Initial value";
$s := code−>test_implicit_conversion_by_arguments((52 −> ""), 18 −> "") −> "";
$s−> post_to_wall;

}

action test_immutable_LValue() {
math−>\u03C0 := 2;
math−>sqrt(55) := 5;
"This is literal" := "This is new literal";

}

action test_assignment_value() {
$x := 52;
$x1 := ($x := 36);
$x1 := 56;
$x1 := "String literal";

}

action test_static_types() {
$board := media−>create_board(640);
$board := 56;
$b := true;
$b := "false";
$b := 42;
$s := "string";

}

action test_string_assignments() {
$s := "String";
$s−> post_to_wall;
$s := true −> "";
$s−> post_to_wall;
$s := 417 −> "";
$s−> post_to_wall;
$s := wall−>create_text_box("Test", 18) −> "";
$s−> post_to_wall;

}

action incrementing_number(x1: Number) {
$x1 := $x1 + 1;
meta private;

}

action flipping_boolean(b1: Boolean) {
$b1 := not $b1;
meta private;
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}

action concatenating_strings(s1: String) {
$s1 := $s1 || " appended to the string";
meta private;

}

action intensifying_a_color(c1: Color) {
$c1 := colors−>accent;
meta private;

}

action playing_with_time(dt1: DateTime) {
$dt1 := $dt1−>add_days(10);
meta private;

}

action changing_contact(contact1: Contact) {
$contact1 := social−>contacts("facebook")−>at(1);
meta private;

}

action test_parameter_passing() {
$x := 41;
$x−> post_to_wall;
code−>incrementing_number($x);
$x−> post_to_wall;
$b := true;
$b−> post_to_wall;
code−>flipping_boolean($b);
$b−> post_to_wall;
$s := "text";
$s−> post_to_wall;
code−>concatenating_strings($s);
$s−> post_to_wall;
$c := colors−>rand;
$c−> post_to_wall;
code−>intensifying_a_color(colors−>accent);
$c−> post_to_wall;
$dt := time−>now;
$dt−> post_to_wall;
code−>playing_with_time($dt);
$dt−> post_to_wall;
$contact := social−>contacts("facebook")−>at(0);
$contact−> post_to_wall;
code−>changing_contact($contact);
$contact−> post_to_wall;

}
var a : Picture {
is\_resource = true;

}

action go(aps1: Appointment_Collection, x1: Number, b1: Boolean, s1: String, aps2: DateTime,
aps3: Color) {

$aps3−> post_to_wall;
}
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action Abc() {
skip;

}

action main() {
skip;

}
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