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1 Introduction

Throughout this thesis, we will focus on hybrid systems [12]. Hybrid systems are
interactive systems and combine both continuous and discrete state dynamics [15].
Interactive systems react to events triggered by the environment [8]. While reacting
to the event, the system might even change the environment.

A simple example of a hybrid system is an air conditioning system. It consists of a
heater and a sensor for the current temperature. Based on the current temperature,
the heater is either on or off. Hence, the system is interacting with its environment,
namely the temperature.

Hybrid systems are rather sensitive systems, in the way that a failure of such system
could be critical. One only has to think of a power plant. In a power plant many
components need to be cooled. Water can be used for the purpose of cooling. The
water could be stored in a water tank. Building the system and testing the system
by running it, is not a good idea, since if we do not always have enough water in
the tanks a possible outcome would be a meltdown. Hence, it is crucial to validate
that there is always enough water in the tank.

Such a water tank system is a hybrid system. In the water tank, we have sensors
measuring the current water level. If the water level drops below a desired level, a
source pours water at a constant rate into the tank. Thus, the system is interacting
with its environment, since it reacts to an event triggered by the environment and
even changes it by reacting on the event. A way to validate a hybrid system is
simulation. During simulation, it is possible to test the system. A tool based on the
Modelica language could be used for simulating hybrid systems [5].

However, to simulate a hybrid system, we first have to model the system. While
modeling the system, we need to abstract the hybrid system. Unfortunately, the
process of abstraction can be error prone. Mostly, these errors are due to math-
ematical complexity and oversimplification [16],[11]. Therefore, the outcome of a
simulation of a system can differ from reality [3].

In case a model of a system shows zeno behavior, the outcome of the simulation and
the physical system can differ. Zeno behavior can only occur in a model of hybrid [10]
or temporal [17] systems, but not in the physical system. Roughly speaking, a hybrid
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1 Introduction

system shows zenoness if it undergoes an unbounded number of discrete transitions
in a finite and bounded length of time [10].

Here, my work comes into play. I implemented a tool to detect zeno sets. The tool
tells the user when the model of a system can exhibits zeno behavior. Even more,
in case the model can show zeno behavior, the zeno set of that model is printed out.
The zeno set contains all points to which the simulation can converge while showing
zeno behavior. If the simulation converges to one of these points, the modeler of
the simulation should check whether the outcome is trustworthy. Hence, one more
safety net for validating a hybrid system is generated. Bauer [2] describes another
approach to validating hybrid systems.

The thesis consists of the following parts: In Chapter 2, we take a closer look at
hybrid systems and explain them in more detail. I present the simulation tool
OpenModelica, which is based on the Modelica language, in Chapter 3. Further,
I demonstrate how a simulation can differ from the real world. In Chapter 4, we
discuss how it may occur, that a simulation differs from the real world. Therefore, we
need a deeper understanding of how zeno behavior occurs. Hence, we focus mainly
on understanding zeno behavior in Chapter 4. In Chapter 5, my contribution starts.
Here, I present the tool to detect zeno sets, describing what the tool does and how
it works. In Chapter 6, I conduct an evaluation of the tool. For the evaluation of
the tool, I show that it works for examples given throughout the thesis, as well as a
completeness evaluation. Finally, future work and how one could deal with hybrid
systems showing zeno behavior is described in Chapter 7.
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2 Hybrid Systems

Hybrid systems are systems that are coupled with the environment. Areas such as
aeronautics, automotive vehicles, bioengineering, embedded software, process con-
trol, and transportation use hybrid systems. Due to their increasing importance,
these systems become of more and more interest [12].

Hybrid systems combine both continuous and discrete state dynamics. A state
variable is discrete in case it can just take a finite number of values. A continuous
state variable can take any value form the Euclidean space Rn [14]. The change of the
continuous variables is normally represented as a differential equation. Throughout
the thesis, we abbreviate discrete state by state.

A formal representation of hybrid systems are hybrid automata. We take a closer
look at hybrid automata as representation of hybrid systems, in this thesis.

2.1 Example: Air Conditioning

As mentioned in Chapter 1, an example of a hybrid system is an air conditioning
system. It can be modeled using two discrete states, on and off, as well as one
continuous variable, the current temperature.

on
ẋ = 1

x ≤ 20

start

off

ẋ = −1

x ≥ 15

x ≥ 20

x ≤ 15

start

Figure 2.1: Hybrid Automaton of an Air Conditioning as a Heater
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2 Hybrid Systems

Fig. 2.1 shows an air conditioning system as a heater modeled as a hybrid automa-
ton. In the modeled air conditioning system, the current temperature always stays
between 15◦C and 20◦C, as long as the outside temperature is below 15◦C.

Still, we should check whether the temperature really always stays between 15◦C and
20◦C. Therefore, let us assume the current temperature is 17◦C in the beginning.
Further assume the air conditioning system starts in the on state. Hence, the system
starts to heat the room. When the current temperature reaches 20◦C, the transition
to the off state triggers and the automaton switches to the off state. In the off state,
the system stops to heat the room and the room starts to cool down again. When
the current temperature drops to 15◦C, the transition to the on state is triggered
and the process starts all over again.

Thus, modeling the air conditioning system in such a manner guarantees the tem-
perature to always stay between 15◦C and 20◦C.

2.2 Hybrid Automata

A hybrid automaton is a dynamical system describing the evolution of a set of
discrete and continuous variables over time [15].

Definition 1. A hybrid automaton H is a 7-tupel H = (Q,X, Init,D,E,G,R) : [20]

• Q, denotes the discrete states: {q1, .., qn}

• X, denotes the continuous variables from Rn with n ≥ 1

• Init, denotes the initial states from Q

• D: Q → P(X), denotes the domain, the legal region of operation, for each
discrete state

• E ⊂ Q×Q, denotes the edge or transition from one state to another: qi → qj

• Guards G : E → P(X), denotes a mapping from a transition to a guard.
When the guard holds true, the corresponding transition can be triggered.

• Reset map R : E × X → P(X), determines how continuous variables change
during a discrete state transition

In some papers, the domain is called invariant of the state.
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2.2.1 General Description

The set Q consists of all states. We only consider automata where every state
contains at least one differential equation, ensuring that we do not have any state in
which the system idles. Further, we operate in every state on at least one continuous
variable. Every continuous variable from the setX has to be in a differential equation
in at least one state. Hereby, we ensure that the value of every continuous variable
can change over time. To determine in which state the automaton can start, the
Init set is crucial. When starting the automaton, the automaton can only be in one
of the states defined by the Init set. The Init set is indicated by a double cycle in
the hybrid automaton.

Furthermore, every state has a domain, its legal region of operation. A state can
only operate as long as the domain of the state holds true. The set E consists of
all edges, so called transitions, from one state to another. Every transition has a
corresponding guard. The guard declares when a transition can be triggered, by
defining the legal region of operation for the transition. Another component of the
transition is the reset map. The reset map determines how continuous variables
change while taking the corresponding transition. Examples of the use of the reset
map are a damping coefficient or simulating a delay.

2.2.2 Air Conditioning

The hybrid automaton in Fig. 2.1 contains all of the elements of Definition 1. The
set of discrete states Q = {on, off } are the states the automaton can operate in.
The set of continuous variables X = {x} contains only one element, which represents
the current temperature. Even though there are two distinct states, on and off, the
set of continuous variables X is just from R1. Both states operate on the same
continuous variable.

The set of initial states contains the on and off state, meaning the automaton can
start in either of these states. The on state has the domain x ≤ 20. Therefore, the
automaton can only operate in the on state until the current temperature reaches
20◦C. The domain of the off state is x ≥ 15. While being in the off state, the
current temperature can only cool down to 15◦C.

The set E of the hybrid automaton consists of two transitions, one transition from on
to off and another one from off to on. Each of these transitions has a corresponding
guard and reset map. The guard for the transition from the on to the off state,
x ≥ 20, specifies that the transition can be triggered in case the current temperature
is at least 20◦C. Comparing the guard with the domain of the on state, one can see
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2 Hybrid Systems

that the transition is triggered exactly when the current temperature reaches 20◦C.
The on state can warm up the temperature until it reaches 20◦C and the transition
can be triggered when the temperature is at least 20◦C. Thus, the only intersection
of the domain and guard is when the temperature is exactly 20◦C.

The transition from the off to the on state adheres to the guard x ≤ 15. Therefore,
the transition can be triggered when the current temperature is 15◦C or below.
However, comparing the guard with the domain of the off state yields that the
transition can only be triggered when the current temperature is exactly 15◦C,
using the same argument as before. The reset map for both transitions is 1, since
the continuous variables do not change during taking a transition.

2.3 Example: Water Tank

We will now introduce another example of a hybrid system, a water tank system.
The example of the water tank system will follow us throughout the thesis to explain
what zeno behavior is.

Figure 2.2: Water Tank as Graphical Representation
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Fig. 2.2 shows the water tank system of Alur and Henzinger [1]. The water tank
system consists of two water tanks, a water source and a hole in each tank. From
the hole in each tank, water drains with a constant rate v1 and v2 respectively. The
water source can only pour water, at a constant rate w, into one tank at a time.
Hence, only one tank receives water from the source, while both are draining water
at the same time.

Furthermore, the variables x1 and x2 in the Fig. 2.2 represent the current water
level, while the variable r stands for the minimal required water level. To be able
to simulate the water tank system, we need an accurate model of it. Therefore,
in Fig. 2.3, we can see one approach to model the water tank system as a hybrid
automaton.

q1

ẋ1 = w − v1

ẋ2 = −v2

x2 ≥ r2

q2

ẋ1 = −v1

ẋ2 = w − v2

x1 ≥ r1

x2 ≤ r2

x1 ≤ r1

x1 > r1 ∧ x2 > r2 x1 > r1 ∧ x2 > r2

Figure 2.3: Hybrid Automaton of the Water Tank

The automaton has two discrete states denoted by the variables q1 and q2. They
seem to be related to the two water tanks. More accurately said, the states represent
that the water source w pours water into either of the tanks. Both states have a
corresponding domain: x2 ≥ r2 for state q1 and x1 ≥ r1 for q2. The set X consists of
the variables x1 and x2. The two transitions, one from q1 to q2 and another one from
q2 to q1, build the elements of the set E. Each of the transitions has a corresponding
guard and reset map. The transition from q1 to q2 has the guard x2 ≤ r2 and the
transition from q2 to q1 x1 ≤ r1. The reset map is equal to 1 in both cases. Now, let
us check whether the hybrid automaton really reflects the water tank system from
Fig. 2.2.

In state q1, the differential equation ẋ1 = w − v1 reflects the case of the water
source being above the first tank and pouring water, for every time interval, with
the constant rate of w into it. Water drains with a rate of v1 from the water tank.
The case that water only drains from the hole in the second state, is denoted by
the differential equation ẋ2 = −v2. The domain of q1, x2 ≥ r2, defines that the
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automaton can only operate in the state q1 as long as the current water level in the
second tank is above or equal to the minimal required water level r2. There is one
outgoing transition from q1 to q2 with the guard x2 ≤ r2. Due to the guard, the
transition can only be triggered when the current water level in the second tank is
equal or below the minimal required water level r2. Comparing the domain of q1
with the guard from the transition from q1 to q2, one can see that the only possibility
for the transition to be triggered is when the current water level in the second tank
is equal to the minimal required water level, i.e. x2 = r2.

So far, the model of the water tank system seems to be reasonable. The state q2
is similar to the state q1. The differential equations ẋ1 = −v1 and ẋ2 = w − v2
represent the reversed case of the differential equations from the state q1. While the
water source pours water at a constant rate of w into the second water tank, water
drains from both tanks with a constant rate of v1 and v2 respectively. The domain
x1 ≥ r1 has the same impact as the one from state q1. Namely, that the automaton
can only operate in q2 as long as there is enough water in the first tank. Finally,
there is the outgoing transition to q1 with the guard x1 ≤ r1. The guard can be
triggered when the current water level x1 is equal or below the minimal required
water level r1. Comparing the domain and the guard, the transition can only be
triggered in case of x1 = r1.

In the next chapter, we will take a look at a simulation tool for hybrid systems.
Further, we will see how the water tank example is modeled in that tool.
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3 Modelica

Many simulation and modeling tools are available. However, just a few fit our
purpose of simulating hybrid systems. Modelica, gPROMS, AnyLogic, VHDL-AMS
and Verilog-AMS simulators could be used for simulating hybrid systems [5]. We
will focus on tools based on the Modelica language. Modelica is a modern, strongly
typed, declarative, and object-oriented language for modeling and simulation of
complex systems [6]. The Modelica langauge differs in two important aspect from
other object-oriented language like Java or C++.

The first aspect is that Modelica is a modeling language. Unlike a programming
language, a Modelica model is not compiled in the usual sense but is translated
into objects that are then interpreted by a simulation engine. A Modelica model
is primarily a declarative mathematical description that simplifies further analysis.
The second and more important difference, for our purpose, is that Modelica focuses
on differential equations. The fact that Modelica focuses on differential equations
makes Modelica well suited for simulating hybrid systems [7].

There are many implementations of the Modelica language, such as AMESim, CA-
TIA Systems, Dymola, JModelica.org, MapleSim, Wolfram SystemModeler, Open-
Modelica, Scicos, SimulationX, Vertex and Xcos 1. We will focus on the open-source
tool OpenModelica.

3.1 OpenModelica

OpenModelica is a frontend for the Modelica language. It can be used to simulate
Modelica models and therefore, hybrid systems. Further, the editor of OpenModelica
provides an efficient environment to write Modelica models. In OpenModelica, the
Modelica models are translated into C code using a compiler, and then evaluated.

Translating the Modelica model to C code has one major advantage: It provides
the possibility to have access to a debugger. The OpenModelica debugger makes

1https://www.modelica.org/tools
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OpenModelica unique compared to other Modelica frontends since it is the only one
so far with good support for debugging Modelica algorithmic code [5].

Being an open-source tool makes OpenModelica rather transparent compared to
other Modelica frontends. Thus, it is possible to modify OpenModelica in a desired
way. It is also possible to write own libraries. One of these user-written libraries is
the hybrid automata library (HyAuLib). Unfortunately, the hybrid automata library
is not maintained anymore and therefore, hardly supported. However, the hybrid
automata library helps us modeling our hybrid systems. Hence, we will introduce it
now.

3.1.1 Hybrid Automata Library

OpenModelica is already well suited for simulating hybrid systems [4]. However,
using the hybrid automata library, it becomes more intuitive to model hybrid systems
in OpenModelica. Hybrid systems are formally represented as hybrid automata.
Therefore, using the representation as automata for writing models of hybrid systems
for simulations is more natural.

The library has been derived by extending the free Modelica StateGraph library by
Otter and Dressler [18], which is based on the JGraphChart method and provides
components to model finite state machines [15]. Instead of having to write the
explicit Modelica code, which can be burdensome and error-prone even for very
simple models, the hybrid automata paradigm can now be used in a natural fashion.
The HyAuLib takes care of all necessary state transitions.

There are two basic elements of automata, which are modeled in the HyAuLib, the
FiniteStates and the Transitions.

• FiniteStates:
Important elements of the state are the continuous dynamics as well as the
state domain or invariant. These two elements also have to be defined. Every
state can have a defined number of incoming and outgoing connections.

• Transitions:
The Transitions contain two elements. One element is the guard. Every
transition in a hybrid automaton has to have a corresponding guard, which
determines when a transition is triggered. The other element is a reset map.
There are two possible reset conditions available. The standard reset map is 1,
which is the first possibility. The second possibility allows the users to specify
their own reset map.
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Having all of these elements it is possible to model a hybrid automata in OpenMod-
elica using HyAuLib. Further, one can specify a transition delay, meaning that a
transition is not instantly triggered when the guard holds true, but after a specified
delay.

3.1.2 Bouncing Ball

The bouncing ball is a example used rather often in the field of hybrid systems. It
can be modeled as a hybrid automaton as shown in Fig. 3.1.

q

ẋ1 = x2

ẋ2 = −g

x1 ≥ 0

x1 == 0;x2 := −x2 ∗ c

Figure 3.1: Hybrid Automaton of the Bouncing Ball

To model the bouncing ball, only one state is needed. The continuous variable x1
represents the current height of the ball, while x2 models the velocity. The invariant
of the state, x1 ≥ 0, determines that the ball cannot go below the surface. In
addition to that, the transition is triggered when the ball hits the ground. Further,
the reset map states that in this case, x2, the velocity gets reversed and multiplied
with a variable c ∈ [0, 1), which represents the damping coefficient.

Obviously, one can also write a Modelica flat model to realize such a bouncing
ball. However, the zeno behavior of the bouncing ball system causes some problems
here. Due to numerical errors, x1 will eventually become negative and, since the
equations used to describe the model are still satisfied, the ball position will keep
decreasing [15]. In the next chapter, we will see what zeno behavior is and how the
numerical errors occur. The invariant set of the hybrid automaton using HyAuLib
solves this problem, by marking negative values for x1 as infeasible.

Therefore, HyAuLib can reduce the problems of numerical errors introduced by zeno
behavior. Hence, modeling hybrid systems using the HyAuLib is more intuitive and
less error prone than writing Modelica flat code.

11



3 Modelica

3.2 Water Tank in OpenModelica

Let us revisit the water tank system from the Fig. 2.2 and model it in OpenModelica.
Fig. 3.2 shows how the water tank could be modeled using OpenModelica.

1 model WaterTank

2 parameter Real w = 1.8; // Water from the source

3 parameter Real v_1 = 1; // Water drainage in the first tank

4 parameter Real v_2 = 1; // Water drainage in the second tank

5 parameter Real r_1 = 5; // Minimal required water level for

the first tank

6 parameter Real r_2 = 5; // Minimal required water level for

the second tank

7 parameter Real u_1 = w - v_1; // Equation for x_1

8 parameter Real u_2 = -v_2; // Equation for x_2

9 Real x_1(start = 10); //Start value for the water in the

first tank

10 Real x_2(start = 10); //Start value for the water in the

second tank

11 equation

12 der(x_1) = u_1;

13 der(x_2) = u_2;

14 // State change , therefore u_1 and u_2 need to be changed

15 when x_2 <= r_2 then

16 //The reinit function assigns the second argument to the first

17 reinit(u_1 , -v_1);

18 reinit(u_2 , w - v_2);

19 end when;

20 // State change , therefore u_1 and u_2 need to be changed

21 when x_1 <= r_1 then

22 reinit(u_1 , w - v_1);

23 reinit(u_2 , -v_2);

24 end when;

25 end WaterTank;

Figure 3.2: Water Tank in OpenModelica

Comparing it to the automaton from Fig. 2.3, there are similarities. For once, we
see the same differential equations as the ones in the states q2 and q2. Further, the
when cases in the equation part look exactly like the guard from the automaton.
The only part that is missing is the domain of the state. Here, the HyAuLib helps.

So far, it looks like a reasonable model of the water tank. However, we should check
the details and see what happens. We have the initial water levels of 10l in both
tanks. Both tanks have a minimal required water level of 5l. Both holes have a
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drainage of 1l. The water source can pour water with the constant rate of 1,8l into
one tank at a time.

We start in the state q1 of the automaton. The water source is above the first
tank. In the equation part, we first state der(x1) = u1 and der(x2) = u2, while
u1 = w − v1 and u2 = −v2. Here, we define the differential equation of x1 and x2.
Thus, we modeled the state q1 of the automaton, besides the fact that the domain
is missing.

When the water level in the second tank drops to the minimal required water level or
even below, we change the value of u1 and u2. By changing u1 and u2, the differential
equations also change. After the change, the differential equations are ẋ1 = −v1 and
ẋ2 = w − v2, which represents the state q2 in the automaton. Now, the water level
in the second tank rises again while the water level in the first tank drops. When
the water level in the first tank drops to the minimal required water level or even
below, the assignment for u1 and u2 change again to the initial assignment and the
procedure starts all over again. We can see, even without the domains of the states,
it seems that we have a precise model of the water tank system.

Let us now see what happens when we simulate the model of the water tank.

3.2.1 Simulation

At first, the simulation does exactly what we would expect, as Fig. 3.3 shows. First,
the value of x1 rises and x2 drops. When x2 drops down to 5, the transition is
triggered and changes the state in the automaton and x2 rises again.

Since there is less water getting poured into the tanks than its draining out, w <
v1 + v2, the water levels are converging to the minimal water levels. However, the
closer the variables x1 and x2 are to converging to the minimal required water level,
a strange behavior sets in. Namely, the water in one tank drops monotonically, it
would even drop below 0 and the water level of the other tank increases monotoni-
cally.

Not only the water tank system show such a behavior, but simulating the bouncing
ball system from Fig. 3.1 shows a similar phenomenon in Fig. 3.4. While converging
to 0, at some point the height of the bouncing ball becomes negative. Therefore, the
bouncing ball would be under the surface on which it bounced. In the next chapter
we will see how such a phenomenon can occur.
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Figure 3.3: Water Tank Simulation in OpenModelica

Figure 3.4: Bouncing Ball Simulation in OpenModelica
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4 Zeno Behavior

Zeno behavior is a phenomenon that can only occur in models of physical systems,
either hybrid [10] or temporal logic [17]. Therefore, such a behavior can not occur
in a physical system, but only in the model of that system. Roughly speaking, a
hybrid system shows zenoness in case it undergoes an unbounded number of discrete
transitions in a finite and bounded length of time [10].

Zenoness is a problem introduced by abstraction, especially oversimplification [16],[11].
However, abstraction is needed to build a mathematical model of a system. Thus,
we do need abstraction in order to validate hybrid systems. Besides the problem of
abstraction, zeno behavior is also a problem of certain combination from the domain
and the guard. Introducing zeno behavior is a risk we have to take due to the fact
that validating hybrid systems is crucial and we need a model to validate the system.

Zeno behavior is not limited only to hybrid systems. Zenoness can also occur in
systems based on temporal logic. Systems based on temporal logic normally have to
adhere to timing constraints. A timed automaton models systems based on temporal
logic. A way to deal with zeno behavior for timed automata is described in [17].

Throughout this chapter, we will see how such a phenomenon like zeno behavior can
occur in a model of a hybrid system. We start by using the hybrid automaton of the
water tank example to show how the model of the system can show zeno behavior.
Afterwards, we give a definition when zeno behavior can occur. We end with the
requirements for a hybrid automaton to be able to show zenoness.

4.1 Water Tank

Considering the hybrid automaton of the water tank system from Fig. 2.3, there are
three relevant cases.

The first case w > v1 +v2 reflects the case that the water source adds more water to
the tanks than water drains from the holes combined. In the simulation and the real
world, the amount of water in the tanks rises constantly and therefore, no problem
occurs.
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In the case of w = v1 + v2, no problem occurs either. The water source adds the
same amount of water into the tanks as water is draining from the holes combined.
Therefore, the amount of water in the tanks stays the same. In Fig. 2.3, there are
also guards to enter the automaton, namely x1 > r1∧x2 > r2. Hence, one can enter
the automaton only if there is at least as much water in each tank as required. Due
to the fact that we have had enough water to begin with and that the amount of
water in the tanks does not change, no problem can occur.

The third and last case is the most interesting. In the simulation of the water tank,
we ran into trouble when we had the case of w < v1+v2. Here, zeno behavior occurs.
In the real world, both tanks would be empty at some point in time. In contrast, the
model of the system yields that the water levels converge to the minimal required
water level. To explain such behavior, we take a deeper look at the automaton of
the system.

4.1.1 Zenoness

The domains and the guards of the automaton are crucial for understanding how the
phenomenon of zenoness can occur. As a result from the domains and guards, we
switch from q1 to q2 exactly when we reach x2 = r2 and the corresponding transition
is triggered at x1 = r1.

Let us assume we start in state q1, having the case of w < v1 + v2. Now the water
level in the second tank decreases until it reaches its minimal required water level.
At that point, the automaton can not operate in state q1 anymore. The transition
from q1 to q2 is triggered and the automaton switches to state q2. Now, we operate
in state q2 until the water level in the first tank drops down to its minimal required
water level. The automaton can not operate in state q2 anymore, but switches to
state q1 again.

During every alternation, the overall water amount drops and the time needed to
reach the minimal required water level decreases. The continuous variable x1 is
converging to r1 and the continuous variable x2 is converging to r2. Reaching the
point of convergence, x1 = r1 and x2 = r1, the automaton can not operate in either
of the states anymore. If the automaton would operate in either state, the state
would violate its domain. Thus, the automaton switches the states instantly after
entering a state.

As we can see, the automaton undergoes an unbounded number of discrete transi-
tions in a finite and bounded length of time. In case a hybrid automaton undergoes
such behavior, it shows zeno behavior. Here, we also see the difference between
the physical system and the hybrid automaton. In the physical system, the water
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tanks will be empty at some point in time, while in the hybrid automaton, showing
zenoness, the water level will never sink below the threshold.

The abstraction and the resulting model of the physical system are not completely
reflecting the physical system. However, due to oversimplification, the model behaves
the way we would want the physical system to behave. One problem we can see
here, is that the abstraction can introduce faults. In our case, it does not take into
consideration the time the physical system needs to switch the water source from one
tank to the other. While the physical system needs some time to change from one
water tank to the other, the hybrid automaton switches from one state to another
instantly.

4.1.2 Simulation

In Fig. 3.3 and Fig. 3.4, we see a rather strange behavior, while the continuous
variables, x1 and x2, converge to the minimal required water level. What we see
here, can be explained by zeno behavior paired with numerical integration methods.
Simulations of hybrid systems use numerical integration for the computation of the
differential equations. Even using different numerical integration methods can result
in different outcomes for the same simulation [3].

Due to the fact that we have infinite state transitions in a finite time, in case the
system undergoes zeno behavior, the behavior we see in Fig. 3.3 and Fig. 3.4 can be
explained. For every state transition, an error correction has to take place using
numerical integration. Having infinitely many transitions, these error correction
may not work correctly anymore and such a behavior can occur [3].

4.2 Zeno Set

For determining the zeno set, we need to examine the zeno executions. Zeno execu-
tions are runs of the system that show zeno behavior. A point (q, x) ∈ Q ×X is a
zeno point if it is a convergence point of a zeno execution with infinite transitions
in a finite time. During simulating, if the continuous variables converge to a zeno
point the simulation might yield a false result. The zeno set of a zeno execution
is the set of all its zeno points. Having all of the zeno points in a set, makes it
easier to validate our simulation results by checking that no continuous variable is
converging to a zeno point. In this case, the result is not falsified. If a continuous
variable converges to a point in the zeno set, the simulation can show zenoness.
Then, the modeler has to check again whether the zenoness falsified the outcome of
the simulation. Z∞ ⊂ Q×X denotes the zeno set [20].
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There are also different zeno types. In case all executions show zeno behavior, the
hybrid system is called strongly zeno. A hybrid system is called (weakly) zeno if at
least one run in the system is a zeno run [10].

4.3 Reset Map

The reset map is called identity if the value of a continuous variable does not change
during a transition. A reset map is called non-expanding in case:

∃δ ∈ [0, 1]s.t.∀e ∈ E, x ∈ G(e), x′ ∈ R(e, x) :
||x′|| ≤ δ||x||.

||x|| denotes the euclidean norm of x. The non-expanding reset map yields that the
new values of the continuous variables after a state transition can either stay the
same as described in the identity case or decrease. The reset map could be used to
model a damping coefficient or to simulate a delay.

4.4 Detecting a Zeno Set

Detecting a zeno set can be achieved by applying certain steps, which we are going to
explore in this section. First of all, we have to determine when a hybrid automaton
can show zeno behavior to make a statement about the zeno set. A cycle is a
prerequisite for a hybrid automata to accept zeno executions, which is formulated
in Proposition 1. ReachH denotes the set, which contains all reachable states for
the automaton H.

Proposition 1. If there exists a finite collection of states {(qi, xi)}Ki=1 such that

• (q1, x1) = (qK , xK)

• xi+1 = (qi, qi+1, xi),∀i = 1, ...,K − 1 (After taking a transition, the values of
the continuous variables are defined by the reset map); and

• (qi, xi) ∈ ReachH ,∃ i = 1, ...,K;

then the hybrid automaton accepts a zeno execution [20].
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Using the reset map, it is possible to make statements about the zeno set in case
the automaton accepts a zeno execution. Before we can give a statement about the
zeno set, we need a few definitions. Let Ū denote the closure of the set U , U0 its
interior, and ∂U = Ū \U0 its boundary. Further, we call the set of states, which are
infinitely often visited, Q∞.

Theorem 1. A hybrid automaton with a non-expanding reset map, which accepts
zeno executions, has the following zeno set:
Z∞ = {(qi, xi)}mi=1,m > 0
If G(q, q′) ∩D(q)0 = ∅,∀(q, q′) ∈ E with q, q′ ∈ Q∞
then xi ∈ ∂D(qi) for all i = 1, ...,m.

Thus, the zeno set of a hybrid automaton with a non-expanding reset map accepting
zeno executions consists of the boundaries of the domain if the intersection of the
guard and the interior of the domain is empty for every transition of the cycle.

Using this result, the following non-zeno condition follows.

Corollary 1. A hybrid automaton with identity reset map does not accept zeno
executions if

• G(q, q′) ∩D(q)0 = ∅,∀(q, q′) ∈ E,

• for all cycles {qi}Ki=1 with qK = q1 and (qi, qi+1) ∈ E,

1 ≤ i ≤ K − 1,∩K−1i=1 ∂D(qi) = ∅.

Hence, a hybrid automaton does not accept zeno executions if for every transition
of the cycle the intersection of the guard and the interior of the domain is empty,
and if for every cycle, the intersection of the boundary of the domains is empty.

Theorem 1 and Corollary 1 correspond to Theorem 3 and Corollary 1 from [20].

Cycle I NE G(q, q′) ∩D(q)0 = ∅ Zeno Set Zeno Behavior

× − × × xi ∈ ∂D(qi) YES
× − × − No clear statement MAYBE
× × − − No clear statement MAYBE

× × − × ∩K−1i=1 ∂D(qi) = ∅ NO

× × − × ∩K−1i=1 ∂D(qi) YES

- do not care ∅ NO

Table 4.1: Conditions for Zeno Behavior

Table 4.1 contains all possibilities whether a hybrid automaton can show zeno be-
havior. In every case but the last, the automaton contains a cycle. The first case
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reflects Theorem 1. The hybrid automaton possesses a non-expanding (NE) reset
map. Thus, the automaton allows zeno executions. Furthermore, the intersection of
the guard and the interior of the domain is empty for every transition of the cycle.
Hence, the boundaries of the domain are elements of the zeno set. Since the zeno
set is not empty, it is possible for the automaton to show zeno behavior.

The second case has nearly the same setup as the first. The only difference is that
the intersection, for every transition of the cycle, of the guard and the interior of the
domain is not empty. Therefore, we have an overlapping interval between the guard
and the domain. Such an overlapping interval makes it impossible to determine
when the automaton triggers the transition. Hybrid automata are nondeterministic,
hence, the transition can be triggered at any time after the guard holds true. Having
an overlapping interval, it is also possible for the automaton to keep operating in
the current state. Hence, zeno behavior could occur if the transition would always
trigger instantly, but does not if the automaton operates longer in the state. The
same argumentation holds true for the third case. In both setups, we can not make
a clear statement about the zeno set. Even more, zeno behavior can occur in the
automaton but not necessarily, resulting in MAYBE zeno behavior.

The fourth and fifth case relates to Corollary 1. The automaton possesses an iden-
tity (I) reset map. Furthermore, the intersection of the guard and the interior of the
domain is empty. Now, the intersection of the boundaries of the domain for every
state in the cycle is important. In the fourth case, the intersection is empty. There-
fore, the automaton can not show zeno behavior. In the fifth case, the intersection
is not empty. Due to Corollary 1, the automaton is not zeno free but shows zeno
behavior. The zeno set consists of the intersection of the boundaries of the domain
for every state in the cycle.

Finally, we have the case of no cycle. Having no cycle implies that the automaton
can not show zeno behavior. Theorem 1 and Corollary 1 and therefore, Table 4.1
are used for the zeno detection in the tool.
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Knowing what zeno behavior is and when it can occur, we now focus on detecting it
automatically. In this chapter, we will take a closer look at the tool for detecting zeno
sets which I implemented. The tool for zeno set detection is a command-line tool
written in Haskell. Generally, the tool goes through the following steps: The tool
takes an automaton in a file as input. It parses the automaton into a data structure.
The tool uses the algorithm of Robert Tarjan, “Enumeration of the Elementary
Circuits of a Directed Graph” [19], to detect cycles. The cases described in Table
4.1 form the basis for the implementation of the following part of the tool. After the
cycle detection, the tool checks whether the automaton contains any cycles. If the
tool finds a cycle, it continues with the calculation of the reset map of the first cycle.
Otherwise, it stops and generates the output that no zeno behavior can occur.

The next step is to intersect the guard with the interior of the domain for every
transition in the cycle. After the computation of the intersection, the tool checks
if all intersections are empty. In case the intersections are not empty, the tool
proceeds to generating the output for the overlaps in a readable format. Otherwise,
the tool has to consider the reset map. For the non-expanding reset map, the tool
calculates the zeno set as described by Theorem 1. By calculating the boundaries
of the domain for every state, the tool generates the zeno set for the cycle and
stores the result. For the identity reset map, the tool first has to check whether the
intersection of the boundaries of the domains of every state in the cycle is empty. In
case the intersection of the boundaries is empty, we know that the cycle is zeno-free.
Otherwise, the intersection is the zeno set, which is saved after being formatted in a
readable output. Thereby, the tool covers all cases of Table 4.1. In case more than
one cycle has been detected, the tool starts over with the next cycle until all cycles
are evaluated. At the end, the tool prints the results of the evaluation of all cycles,
i.e., the overlap, the zeno set, or the observation that no zeno behavior can occur.
To picture the steps of the program more clearly, a control flow graph is given in
Fig. 5.1 in the next subsection.

The tool was developed using Mac OS X, version 10.7.4, with GHCi, version 7.0.4.
To execute the tool, the library Data.IntervalMap.Interval is needed. It can be
downloaded using cabal (cabal install IntervalMap). Version 0.2.3.3 of
Data.IntervalMap.Interval was used for the development.
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5.0.1 Control Flow Graph
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Figure 5.1: Control Flow Graph of the Tool

In the next section, we give requirements the modeler has to follow to ensure that
the tool works correctly.
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5.1 Specification

There are a few properties of the automaton in the input file that have to hold.
First, we have the grammar which defines the syntactic structure of the input files.
Second, we have general properties. The general properties add requirements not
captured by the grammar as well as some invariants.

5.1.1 Automaton Grammar

A file has to contain exactly one automaton. The grammar of the file is defined the
following way:

“Automaton;′′ ((State|Transition)“;′′ )+

State = “State,′′ Name “,′′ Start “,′′ Domain “,′′ Equations
Name = [a− z,A− Z, 0− 9]+

Start = True |False
Domain = Conditions
Equations = Equation|Equation(“,′′Equation)+

Equation = [a− z,A− Z, 0− 9,=, ]+

Transition = “Transition,′′ Source “,′′ Dest “,′′ Guard “,′′ Reset
Source = Name
Dest = Name
Guard = Conditions
Reset = 1|(0.[0− 9]+)

Conditions = Condition(“ AND ′′ Condition)∗

Condition = ContinuousV ariable “ ′′ Comp “ ′′ (V ar|Number)
ContinuousV ariable = ([0− 9]∗[a− z,A− Z]+[0− 9]∗)+

V ar = ([0− 9]∗[a− z,A− Z]+[0− 9]∗)+

Number = ([0− 9]+)|([0− 9]+).([0− 9]+)
Comp = (< | >)|((< | > | =) =)

5.1.2 General Properties

The additional properties that have to hold are:

• The hybrid automaton has to be correct and specified as a set of states and
transitions.

23



5 Tool for Zeno Set Detection

• Neither the state set nor the transition set is permitted to be empty.

• There exists only one transition from one state to another. Therefore, the
combination of source and destination is unique in the set of transitions. More
formally said, the transitions have to be deterministic.

• A continuous variable must not be restricted more than twice in either a guard
or a domain.

• In case a continuous variable is bounded with another continuous variable, the
reversed case has to be inserted, meaning x1 <= x2 and x2 >= x1.

• The boundaries of the guard of a transition have to lie inside the boundaries
of the destination state in case the continuous variables are bounded from the
same side in both state and guard.

• If a continuous variable is restricted twice, it must be restricted with < | <=
and > | >=, but not any other combination.

x

< | <=

==

> | >=

Figure 5.2: Boundaries of a Continuous Variable of the Tool

To elaborate on the last point, Fig. 5.2 shows the operations that can be applied to
a continuous variable. If only one restriction is applied on a continuous variable, no
problem can occur. For the case of having two restrictions, one from above and one
from below is the only reasonable pair. However, if a continuous variable is bounded
twice from the same side in either a guard or a domain, the tool does not consider
the second restriction. Having more than two restriction is not reasonable either.

If the automaton of the input file violates either of these properties, I can not
guarantee a correct result of the tool.
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5.2 Tool Description

In this section, we give a more detailed description of the tool. Further, we will see
how the tool makes use of the requirements defined in the previous section.

5.2.1 Parsing and Cycle Detection

The tool requires a representation of a hybrid automaton in Haskell. A data struc-
ture for a hybrid automaton is used for that purpose. The data structure allows
parsing of the automaton from the input file. While parsing the input file, the tool
parses every line separately. The end of a line in the file is represented by the symbol
“;”. Due to the grammar, the first line of the file must only contain the word “Au-
tomaton”. If the first line does not start with “Automaton”, the execution stops
and returns an error. Otherwise, the tool proceeds to parse the next line. From
now on, every new line has to start with either the word “State” or “Transition”, as
defined by the grammar. In case the new line does not start with one of the words,
the tool returns an error.

If the new line starts with the word “State”, the tool checks whether all elements
of the state are defined. By separating the line after each “,” the tool retrieves the
elements and checks whether the line consists of at least four elements after “State”
indication. Otherwise, it returns an error. Next, the tool proceeds to parse every
element by itself. While parsing the elements the order, as specified in the grammar,
is crucial, e.g. the first element after “State” is parsed as the name of the state.
For the conditions, we recursively check if there is an “AND”, and combine the
restrictions. In case there are more than four elements, the state has more than one
equation. These elements are recursively added to the other equations. If either of
the elements do not meet the grammar, the tool returns an error.

In case the new line starts with the word “Transition”, the tool behaves similarly
to the case of “State”. It checks whether there are at least four elements separated
by the symbol “,” after the “Transition”. If there are less than four elements, the
tool returns an error. In case enough elements can be found, the elements are read
as follows: The first element is parsed as the source of the transition. The second
element is translated into the destination. The source as well as the destination
should refer to the name of a state. Parsing the third element, the conditions, works
exactly like parsing the condition in a state. The tool recursively parses the input
file until all lines are parsed.

After the file is parsed, the tool continues with a cycle detection. For the cycle
detection, I implemented the algorithm “Enumeration of the Elementary Circuits
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of a Directed Graph” [19] of Robert Tarjan. Due to the fact that an automaton
has directed edges, the automaton can also be represented as a directed graph and
therefore, the algorithm can be applied. Unfortunately, the algorithm assumes that
the graph has no reflexive edges. As the algorithm forms the basis for the cycle
detection, reflexive edges might not always be handled correctly. The tool generates
an adjacency matrix out of the transitions. The adjacency matrix is crucial to
run the algorithm of Robert Tarjan. With the adjacency matrix as input to the
algorithm, the tool can retrieve all cycles of the automaton.

5.2.2 Zeno Detection

Let us now go into detail about how the zeno detection works. Having the cycles,
the implementation of the cases of Table 4.1 can start. At the beginning, the tool
checks whether the automaton contains any cycles. In case the automaton consists
of no cycles, the execution stops and tells the user that the automaton does not show
zeno behavior as it contains no cycles. Otherwise, the tool proceeds with the zeno
detection. The first step is to retrieve the reset map for the cycle. The reset map
is calculated by summing up all reset maps in the transition and dividing the sum
by the length of the cycle. In case the result is 1, we have an identity reset map,
otherwise a non-expanding reset map, since the reset map , due to the grammar,
should be ≤ 1. However, at first, both branches continue along the same way.

General Idea

The tool checks the intersections of the interior of the domain with the guard for
all transitions in the cycle if they are empty. More formally said, G(q, q′)∩D(q)0 =
∅, ∀(q, q′) ∈ E with q, q′ ∈ Q∞. To check the intersection, the tool has to retrieve
the domain and the guard. For the guard, the tool only has to take the transition
into account. However, for the domain, it is not that simple. The domain does not
only consist of the restrictions in the state, but also of the guard from the incoming
transition in the cycle. To get a better understanding, consider the water tank
example in Fig 2.3. The domain of q1 should not only contain the restrictions for
q1, but should also be bounded by the incoming transition. The domain should
contain x2 ≥ r2 and x1 ≤ r1. Considering the cycle of q1 and q2, it is obvious. The
automaton can only operate in the state as long as x2 ≥ r2 holds true. In addition,
the state q1 can only be entered when x1 ≤ r1 holds true. Hence, the domain does
not only define how long the automaton can operate in the state, but also when it
can start to operate in the state.
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The intersection is implemented in the following way: The tool starts with retrieving
the names of the first two states in the cycle. The first state represents the source,
or q, while the second state is the destination, or q′. For the domain of q, the tool
retrieves the restrictions of state q as well as the guard of the incoming transition
to q, which lies in the cycle. Next, the guard of the transition from state q to q′ is
retrieved.

The tool intersects every continuous variable separately. For the intersection of a
continuous variable, the tool looks at the first restriction of the guard. The tool
selects the continuous variable that is restricted in the differential equation of the
first guard. Next, the tool checks if that continuous variable is bounded in any
other restriction of the guard. Having all restrictions of the guard, which bound
that continuous variable, the tool generates the interval spanned by the restrictions.
Afterwards, the tool checks the domain. The tool recursively searches through all
restrictions on the domain and retrieves the restrictions on the continuous variable.
Those restrictions are used to generate the interior of the domain for that contin-
uous variable. When generating the interior of the domain, the restrictions of the
state are weighted more than the ones from the incoming guard. State restrictions
are weighted more, since the guard of an incoming transition must lie inside the
boundaries of the state. After the guard and the interior of the domain are calcu-
lated, the tool takes the intersection of them. With the last step, the computation
of the intersection of the guard with the interior of the domain is completed for one
continuous variable. Now, the procedure starts all over again and looks for the next
continuous variable that is restricted by the guard. In the following subsections, we
will see how the general idea is implemented.

Implementation of Constant as Bound

Table 5.1 shows how the interval of the guard is constructed. Here, the tool uses the
property that a continuous variable is bounded at most twice in a guard. Since the
property of reasonable bounds holds, all cases are covered in Table 5.1. The guard
is constructed using the Data.IntervalMap.Interval library as pictured in Table 5.1.
The Data.IntervalMap.Interval library gets the lower and upper bound and generates
the interval for a continuous variable in the guard.

For the case of calculating the interior of the domain, we do not only have to account
for the restrictions made in the state, but also for the guard of the incoming transition
in the cycle. Therefore, we know that we have at most four restrictions, since the
state as well as the guard can restrict a continuous variable at most twice. While
calculating the intervals, the assumption is important that the boundaries of the
guard lie inside the boundaries of the domain.
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Guard

Lower Upper Equal Interval

× × − [l..u]
× − − [l..∞]
− × − [−∞..u]
− − − [−∞..∞]
− − × [e]

Table 5.1: Retrieving the Interval of a Guard for a Continuous Variable

Table 5.2 shows how the property is used to determine the interior of the domain.
Besides that property, the implementation makes use of the fact that the restrictions
of the state are retrieved before the restrictions of the guard. Therefore, the first
restrictions are the stronger ones. For example, if we bound a continuous variable in
the domain twice from above, the tool uses the first retrieved restriction, since that
is the one of the state. In fact, the tool just works on two restrictions at once, since
two restrictions are enough to model the lower and upper bound. Hence, if there
are two bounds from the same side and there are still restrictions in the domain,
the function calls itself again without the second bound from the same side. Thus,
we achieve to implement all cases from Table 5.2. The boundaries of the domain
are constructed using the Data.IntervalMap.Interval library, by passing it the lower
and upper bound.

Having the interior of the domain and the guard, the tool can take the intersec-
tion. The Data.IntervalMap.Interval library provides an overlap function. The
overlap function checks whether two intervals overlap. In case the intervals over-
laps, the intersection is not empty and we print out the overlap. Unfortunately,
the Data.IntervalMap.Interval library does not provide a function to determine the
interval of the overlap of two intervals. For that purpose, I implemented a function
that returns the interval of the overlap of two intervals. The function is called when
the overlap function returns that the intersection actually has an overlap. If the
intervals do not overlap, the tool returns the empty set.

Implementation of Variable as Bound

For the case that the continuous variable is bounded by a variable, the tool takes
the intersection as follows: The tool checks the relational operator and the variable.
The tool goes through the restrictions of the domain and tries to match the variables
of the restrictions with the variables from the guard. As declared before, a state can
have at most four restrictions on the domain.
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Domain

State Restriction Incoming Guard

Lower1 Upper1 Equal1 Lower2 Upper2 Equal2 Interval

× × − do not care (l1..u1)

× − − × − − (l1..∞)
× − − × × − (l1..u2)
× − − − × − (l1..u2)
× − − − − − (l1..∞)
× − − − − × (l1..∞)

− × − × − − (l2..u1)
− × − × × − (l2..u1)
− × − − × − (−∞..u1)
− × − − − − (−∞..u1)
− × − − − × (−∞..u1)
− − − × − − (l2..∞)
− − − × × − (l2..u2)
− − − − × − (−∞..u2)
− − × − − − []
− − × − − × []
− − − − − × []
− − − − − − (−∞..∞)

Table 5.2: Retrieving the Interval of the Interior of a Domain for a Continuous
Variable

Having only one restriction on the guard, the tool tries to match the variable of the
guard with the ones of the domain. In case a variable from the domain matches
the variable of the guard, the tool proceeds and takes the intersection. The first
match can simply be taken, since the state restrictions are retrieved first as they are
weighted more. Table 5.2 shows the possible restrictions on a continuous variable
and demonstrates that the state restrictions are weighted more.

If a continuous variable is bounded twice in the guard, the tool checks the restrictions
on the domain recursively to match both of them. While trying to match them, it
is possible that only one variable can be matched. Having found at least one match,
the tools proceeds by comparing the operator whether an overlap exists.

The operator comparison checks if the variables are bounded by the same category
of operators. < and <= as well as > and >= belong to the same kind of operator
for our purpose. For the operators of one category, no difference for the interior and
closure exists. In case a variable is bounded by the same category in both domain
and guard, an overlap exists. Every other combination of operators results in no
overlap. If no overlap exists, the tool returns an empty set, otherwise the overlap.
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5 Tool for Zeno Set Detection

After the tool calculated the intersection for one continuous variable, it proceeds with
the next one from the guard. When all restrictions on the guard are evaluated, the
tool checks if the domain holds continuous variables, which are not restricted in the
guard. For those, the tool generates the overlap. Having calculated the intersection
for every continuous variable, the tool checks if the empty set was returned at least
once. If the empty set is returned, the vector of all continuous variables does not
intersect in at least one dimension. Therefore, the interior of the domain and the
guard do not intersect at all.

Afterwards, the tool moves forward in the cycle. The tool recursively takes the
intersection for the next state and transition until the tool evaluated the whole
cycle. In the recursion, the state that previously was the destination becomes the
new source and the next state becomes the destination. Having evaluated every
transition in the cycle, the tool evaluates the intersections. In case the intersection
is empty, the tool can proceed to calculate the zeno set. The intersection is empty if
every intersection of the interior of the domain with the guard is empty. Otherwise,
the tool generates the output for the overlap, since we can not make any clear
statement about zenoness.

5.2.3 Determining the Zeno Set

This subsection applies if the intersection calculated in the previous subsection is
empty. For determining the zeno set, the calculated reset map is of importance.
If the reset map is non-expanding, the tool retrieves the boundaries for each state
and stores them as the result. Retrieving the boundaries of the domain follows the
same procedure as retrieving the interior. First of all, the tool retrieves the restric-
tions for the domain the way described in the Subsection 5.2.2 “Zeno Detection”.
While generating the domain, the same properties have to hold true as before when
the domain for the intersection was generated. The boundaries of the domain are
constructed separately for each continuous variable.

To construct the boundaries of a continuous variable, the tool behaves similarly to
the part of the intersection with a variable as bound. The tool tries to find bounds
from both sides. However, in case a continuous variable is bounded twice from one
side, the restriction of the state get weighted more as shown in Table 5.3. Table 5.3
depicts the boundaries that follow from varying restrictions.

Fig. 5.3 shows how the boundaries of a continuous variable are retrieved in the tool.
Var1 indicates a constant bound of the restriction. Var2 denotes a variable. In
case the continuous variable is only restricted once, retrieving the boundaries is
straightforward. The variable or constant that is restricting the continuous variable
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Domain

State Restriction Incoming Guard

Lower1 Upper1 Equal1 Lower2 Upper2 Equal2 Interval

× × − do not care − [l1, u1]

× − − × − − [l1]
× − − × × − [l1, u2]
× − − − × − [l1, u2]
× − − − − − [l1]
× − − − − × [l1]

− × − × − − [l2, u1]
− × − × × − [l2, u1]
− × − − × − [u1]
− × − − − − [u1]
− × − − − × [u1]

− − − × − − [l2]
− − − × × − [l2, u2]
− − − − × − [u2]
− − × − − − [e1]
− − × − − × [e1]
− − − − − × [e2]
− − − − − − []

Table 5.3: Generating the Boundaries of a Continuous Variable in a Domain

is saved as result. The only difference in the implementation is that the tool has to
convert a constant to a string, while a variable is defined as a string already.

The first two cases represent the fact that the continuous variable is bounded from
above and below. Cases three to four adhere to the == as operator. In case both
restrictions bound the continuous variable with the == operator to one point which
is not the same point, the tool returns an error since that is not possible. Else,
if the continuous variable is bounded to the same point, that point is returned.
Another case, which represents the fourth case, is having the equal operator only in
the guard of the incoming transition. Due to the assumption of reasonable multiple
restrictions, the tool can assume that the second restriction has to be in the guard.
Furthermore, using the assumption that the bounds of the guard lie inside the
restrictions of the state, the tool does not have to consider the restriction with
the equal operator. Additionally, there should not be any restrictions following due
to the assumption of only reasonable restrictions. Hence, the tool checks if there
are no more restrictions to consider. In that case, the tool returns the boundary.
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1 > makeBoundaries :: [Condition] -> Name -> [String]

2 > makeBoundaries [(Cond _ a b)] _ = (getVarName b) : []

3

4 > makeBoundaries ((Cond e a (Var2 b)):(Cond _ c (Var2 d)):xss) z

5 > | ((a == "<" || a == " <=") && (c == ">" || c == " >=")) = if

b == d then b : [] else d : b : []

6 > | ((c == "<" || c == " <=") && (a == ">" || a == " >=")) = if

b == d then b : [] else b : d : []

7 > | a == "==" && c == "==" = if b == d then b : [] else error

(show b ++ " and " ++ show d ++ " are both restricting the

variable " ++ show z ++ " with ==")

8 > | c == "==" = if null xss then b : [] else error ("Reasonable

restriction assumption in state " ++ (show z) ++ " violated.")

9 > | ((a == "<" || a == " <=") && (c == "<" || c == " <=")) = if

null xss then b : [] else makeBoundaries ((Cond e a (Var2

b)):xss) z

10 > | ((a == ">" || a == " >=") && (c == ">" || c == " >=")) = if

null xss then b : [] else makeBoundaries ((Cond e a (Var2

b)):xss) z

11 > | otherwise = error ("Could not determine which variable ,

should restrict " ++ show z ++ " either " ++ show b ++ " or " ++

show d)

12

13 > makeBoundaries ((Cond f a (Var1 b)):(Cond _ c (Var1 d)):xss) z

14 > | ((a == "<" || a == " <=") && (c == ">" || c == " >=")) = if b

== d then (show b) : [] else (show d) : (show b ): []

15 > | ((c == "<" || c == " <=") && (a == ">" || a == " >=")) = if b

== d then (show b) : [] else (show b) : (show d): []

16 > | a == "==" && c == "==" = if b == d then (show b) : [] else

error (show b ++ " and " ++ show d ++ " are both restricting the

variable " ++ show z ++ " with ==")

17 > | c == "==" = if null xss then (show b) : [] else error

("Reasonable restriction assumption in state " ++ (show z) ++ "

violated.")

18 > | (a == "<" || a == " <=") && (c == "<" || c == " <=") = if

null xss then (show b) : [] else makeBoundaries ((Cond f a (Var1

b)):xss) z

19 > | (a == ">" || a == " >=") && (c == ">" || c == " >=") = if

null xss then (show b) : [] else makeBoundaries ((Cond f a (Var1

b)):xss) z

20 > | otherwise = error ("Could not determine which variable ,

should restrict " ++ show z ++ " either " ++ show b ++ " or " ++

show d)

Figure 5.3: Function to Retrieve the Boundaries of a Continuous Variable
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Otherwise, an error is returned. The last cases handle two bounds from the same
side. Restrictions from the state are weighted more. Therefore, the function calls
itself recursively without the second restriction if there are more restrictions to
be considered in xss. Otherwise, the boundaries are constructed using the first
restriction. Following that procedure, the tool behaves as pictured in Table 5.3.

After generating all boundaries of the domains in the described way, the tool can
proceed. In case the reset map is non-expanding, the tool stores the zeno set. The
zeno set consists of the state combined with the boundaries of that domain. Other-
wise, having an identity reset map, the tool has to check if the automaton can show
zeno behavior. If the intersection of the boundaries of the domains for each state
in the cycle is empty, then the cycle is zeno free. We take a deeper look at how the
intersection of the boundaries of the domains works in the next subsection.

5.2.4 Boundary of the Domain Intersection

For the boundary intersection, the tool goes through the cycle and takes, for every
state and its successor in the cycle, the intersection of the boundaries of the domains.
Intersecting the boundaries is also similar to the intersection of the interior of the
domain and guard. It is done for each continuous variable separately. Fig. 5.4 shows
how the intersection of a continuous variable is implemented.

1 > intersectTwoStates ::[(Name , [Name])] -> [(Name , [Name])] ->

[(Name , [Name])]

2 > intersectTwoStates [] _ = []

3 > intersectTwoStates _ [] = []

4 > intersectTwoStates ((a,b):xs) ((c,d):ys)

5 > | a == c = (a,intersect d b) :

intersectTwoStates xs ys

6 > | a > c = intersectTwoStates ((a,b):xs) ys

7 > | otherwise = intersectTwoStates xs ((c,d):ys)

Figure 5.4: Function for the Intersection of the Boundaries of a Continuous Variable

The function intersectTwoStates has two lists of tuples as input. Both lists represent
a state in the cycle. The second list reflects the successor state of the first list. The
tuple (Name, [Name]) consists of the continuous variable in the first argument and
the boundaries for that continuous variable as a list in the second argument. Further,
the continuous variables are ordered ascending. Using the fact that the continuous
variables are ordered, the tool goes through both lists and check if the heads of the
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5 Tool for Zeno Set Detection

lists are equal. Otherwise, the tool drops the smaller head and calls the function
recursively.

If the continuous variables match, the tool checks whether there is an intersection
of the boundaries from the continuous variable. In Haskell, there is an intersection
function implemented. The function takes two lists as input and returns a list of
all elements, that are in both lists. Therefore, if the boundaries have an empty
intersection, the intersection function returns the empty list. Otherwise, the func-
tion returns the elements of the intersection. The tool concatenates a tuple of the
continuous variable and the result of the intersection of the two lists to the recursive
call of the intersectTwoStates without the heads of the lists. When either of the lists
is empty the function terminates and returns either an empty list, which represents
the intersection free case, or the tuple of continuous variable and intersection.

For the intersection of the boundaries, it is sufficient if in one continuous variable
or dimension, no intersection exists. Then the intersection of the two domains is
empty. Otherwise, if the intersection for every continuous variable is not empty, the
intersection of the two domains is not empty as well. After having calculated the
intersection for the boundaries of each domain in the cycle, the tool generates and
stores the output for that cycle. The output consists of the evaluated cycle and its
zeno behavior, followed by the zeno set. If the automaton consists of more than one
cycle, the tool starts again with the intersection of the domains and guards, until
all cycles are evaluated. After all cycles have been evaluated the tool prints out all
generated and stored outputs, as shown in Fig. 5.1.
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Knowing how the tool works, we still have to verify that the implementation is
correct. Therefore, we test the tool against a known result with the examples that
accompanied us throughout the thesis in Section 6.1 - 6.3. We check the example
of the air conditioning system, which does not show zeno behavior, in Section 6.1.
In Section 6.2, we test that the tool detects a cycle with a non-expanding reset map
which shows zeno behavior, by testing it against the bouncing ball system. The
water tank example is the last example left. In the last example, we check the tool
against an automaton with a cycle containing an identity reset map, which shows
zeno behavior, in Section 6.3. In Section 6.4, we will have a look at an example of
an automaton with overlapping interval. To conclude this chapter, we conduct a
completeness evaluation in Section 6.5.

6.1 Air Conditioning

First of all, we check the air conditioning example from the hybrid systems section.
Fig. 2.1 shows the automaton that we have to translate into our grammar. The
translated input file is shown in Fig. 6.1.

1 Automaton;

2 State , on, True , t <= 20, t = 1;

3 State , off , True , t >= 15, t = -1;

4 Transition , on , off , t >= 20, 1;

5 Transition , off , on , t <= 15, 1;

Figure 6.1: Input File for the Air Conditioning System

For the air conditioning system, a cycle is found by the tool. printCycle is a test
function that returns in a list every cycle of the automaton as a list.

*Zeno> printCycle ”air.txt”
[[”on”,”off”,”on”]]
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In case we would define the transitions in the reversed order, the cycle would be
[[”off”,”on”,”off”]]. As we can see, the cycle detection algorithm works for the air
conditioning system. The cycle [[”on”,”off”,”on”]] possesses an identity reset map.
Hence, Corollary 1 is of interest for this system. First, we check whether the first
part of the assumption, G(q, q′) ∩D(q)0 = ∅,∀(q, q′) ∈ E, holds. The guard of the
transition from the on state to the off state is t >= 20. Therefore, the corresponding
interval of the continuous variable t is [20..∞). Computing the interior of the domain
of the on state, we have to consider the guard from the incoming transition as well as
the restrictions of the on state. The restrictions t <= 20 from the state and t <= 15
from the incoming transition are used to generate the interval. The resulting interval
is (−∞..20) for the continuous variable t in the interior of the domain of the on state.
For the intersection of the interior of the domain and the guard, we have to intersect
the intervals (−∞..20) and [20..∞). Obviously, the intervals do not overlap in any
point. The intersection is empty.

Now, we have to examine the next transition in the cycle. Again, we consider the
guard of the transition, here from the off state to the on state, as well as the
interior of the domain of the off state. The guard is t <= 15. The interval of the
continuous variable t is (−∞..15]. For the domain, we have the restrictions t >= 15
and t >= 20. The interior of the domain has the interval (15..∞) for the continuous
variable t. Therefore, the intersection is empty as well.

The function printIntersection prints the result of the intersection of the interior of
the domain and the guard for each cycle. Every cycle is evaluated in a separate list
of the result. In the current case, there is only one cycle.

*Zeno> printIntersection ”air.txt”
[[]]

Looking at the outcome of the printIntersection function, we see that the tool cal-
culates the intersection correctly.

Next, we evaluate the second part of the assumption, ∩K−1i=1 ∂D(qi) = ∅. The bound-
ary is defined as the closure without the interior. Based on the fact that the closure
of t is (−∞..20], while the interior is (−∞..20), the boundary of the domain of the
on state is [20]. 20 is the only point that is in the closure but not in the interior.
Thus, the boundary consists only of the element 20. Following the same argumen-
tation, with the closure of the domain of the off state being [15..∞), the boundary
of the domain of the off state is [15]. The intersection of the boundaries of the
domain is empty since 15 and 20 do not intersect anywhere. To check the boundary
intersection computed by the tool, the printIntersectBoundaries function is used.

*Zeno> printIntersectBoundaries ”air.txt”
[[]]
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The boundary intersection works as expected for the air conditioning system. As
the assumptions of Corollary 1 hold, we conclude that the automaton is zeno free.
The main function runs the whole implementation and correctly computes that no
zeno behavior can occur.

*Zeno> main ”air.txt”
The cycle [off on off] does not show zeno behavior.

In this section we have shown that the tool works for the air conditioning system as
expected. In the next section, we will examine the example of the bouncing ball.

6.2 Bouncing Ball

The second example is the bouncing ball system as an example of an hybrid automa-
ton containing a cycle with a non-expanding reset map, which shows zeno behavior.
The input file of Fig. 6.2 shows how the bouncing ball system from Fig. 3.1 is trans-
lated into our grammar.

1 Automaton;

2 State , air , True , x >= 0, x = v;

3 Transition , air , air , x == 0, 0.9;

Figure 6.2: Input File for the Bouncing Ball System

The automaton consists of one cycle, which the tool detects.

*Zeno> printCycle ”ball.txt”
[[”air”,”air”]]

Due to the fact that the cycle possesses a non-expanding reset map, we have to check
it using Theorem 1. To use Theorem 1, we have to check that G(q, q′) ∩ D(q)0 =
∅,∀(q, q′) ∈ E holds. For this example with one transition, we only have to check
the intersection of one guard with the interior of the air state. Having x == 0 as
guard, the continuous variable x is not restricted to an interval but a single point,
[0]. The domain has the restrictions x >= 0 and x == 0. Therefore, the interior of
the domain has the interval (0..∞) for the continuous variable x. The intersection of
the guard and the interior of the domain is empty, which printIntersection confirms:

*Zeno> printIntersection ”ball.txt”
[[]]
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Based on Theorem 1, the automaton shows zeno behavior and the zeno set consists
of the boundaries of the domains for each state in the cycle. The boundary of the
domain from the air state is 0, since the interior is (0..∞), while the closure is
[0..∞).

*Zeno> main ”ball.txt”
The zeno set for the cycle [air air] is:
In state “air” for the continuous variable x the zeno point(s) are: 0.0.

Note that the zeno point, 0.0 is printed as a float. The tool calculates the same
result as we did by hand. We can record that the tool also works correctly for the
example of the bouncing ball. Hence, the tool works so far as expected.

6.3 Water Tank

One example is left, the water tank system. Fig. 2.3 shows a model of the water tank
system. The hybrid automaton of the system possesses an identity reset map and
shows zeno behavior. The input file, which represents the automaton from Fig. 2.3,
for the tool is pictured in Fig. 6.3.

1 Automaton;

2 State , q1 , True , x2 >= r2, x1 = w - v1, x2 = - v2;

3 State , q2 , True , x1 >= r1, x1 = - v1, x2 = w - v2;

4 Transition , q1, q2 , x2 <= r2 , 1;

5 Transition , q2, q1 , x1 <= r1 , 1;

Figure 6.3: Input File for the Water Tank System

Let us also derive the evaluation first by hand and then see if the tool works as
expected. The automaton consists of one cycle with the state q1 and state q2.

*Zeno> printCycle ”watertank.txt”
[[”q1”,”q2”,”q1”]]

Based on Corollary 1, we have to check G(q,′ )∩D(q)0 = ∅, ∀(q, q′) ∈ E. Due to the
guard x2 <= r2 of the transition from the state q1 to state q2, we get an interval
of (−∞..r2] for the continuous variable x2. The interior of the domain of state q1
is derived by the restrictions x2 >= r2 and x1 <= r1. Therefore, the continuous
variable x1 has the interval (−∞..r1) and the interval of x2 is (r2..∞) for the interior
of the domain. Taking the intersection of the guard with the interior of the domain
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from the state q1, we see that there is no overlap for x2. Hence, the intersection is
empty.

Further, we have to check the intersection of the interior of the domain from the state
q2 with the guard of the transition from state q2 to q1. The guard x1 <= r1 implies
that the continuos variable x1 has the interval (−∞..r1]. Based on the restrictions
x1 >= r1 and x2 <= r2, the interior consists of the following intervals: (r1..∞) for
x1 and (−∞..r2) for x2. Taking the intersection of guard and interior of the domain,
we see that there is no overlap for x1. Again, the intersection is empty. The fact
that the intersection of the guard with the interior of the domain is empty for every
transition pair yields that the overall intersection is empty as well.

*Zeno> printIntersection ”watertank.txt”
[[]]

Finally, we have to check ∩K−1i=1 ∂D(qi) = ∅. For the boundary, we need the closure
as well as the interior. We already know the interiors. Therefore, we only need
to compute the closures. The closure of the domain of state q1 is (−∞..r1] for x1
and [r2..∞) for x2. For the domain of the state q2, the closure is [r1..∞) for x1 and
(−∞..r2] for x2. Hence, the boundaries for q1 are r1 for x1 and r2 for x2. The state q2

has the same boundaries. More formally said, ∂D(q1) =

(
r1
r2

)
and ∂D(q2) =

(
r1
r2

)
.

The intersection of the boundaries of the two states is not empty, but consists of r1
for x1 and r2 for x2.

*Zeno> printIntersectBoundaries ”watertank.txt”
[[(”q1”,[(”x1”,[”r1”]),(”x2”,[”r2”])]),(”q2”,[(”x1”,[”r1”]),(”x2”,[”r2”])])]]

Unfortunately, Corollary 1 does not hold true. Thus, the automaton can show zeno
behavior. Its zeno set consists of the intersection of the boundaries.

*Zeno> main ”watertank.txt”
The zeno set for the cycle [q1 q2 q1] is:
In state “q1” for the continuous variable x1 the zeno point(s) are: r1; for the con-
tinuous variable x2 the zeno point(s) are: r2;
In state “q2” for the continuous variable x1 the zeno point(s) are: r1; for the con-
tinuous variable x2 the zeno point(s) are: r2.

So far, we have shown that the tool works correctly for every example that was
presented in the thesis. Therefore, the tool works so far as expected. However, by
now, we only know that it works for three examples.
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6.4 Another Air Conditioning System

So far we tested 3 cases of the Table 4.1. However, the case of an overlapping
interval is still missing. We will present one example for an overlapping interval in
this section. The air conditioning automaton described in the input file represented
by Fig. 6.4 is a slightly modified version from Henzinger [9].

1 Automaton;

2 State , on , True , x >= 18, x=-0.1x;

3 State , off , False , x <= 22, x=5 -0.1x;

4 Transition , on, off , x > 21, 1;

5 Transition , off , on, x < 21.1, 1;

Figure 6.4: Input File for another Air Conditioning System

Like the air conditioning system automaton from Section 6.1, the new one has one
cycle containing the on and off states, too.

*Zeno> printCycle ”anotherAir.txt”
[[”on”,”off”,”on”]]

Taking the intersection of the guard of the transition from the on to the off state
with the interior of the domain from the on state, we get an overlapping interval as
the result. The guard has x > 21 as restriction, the interval for x is (21..∞). The
domain consists of the restrictions x >= 18 and x < 21.1. Therefore, the interval
for x is (18.0..21.1). As one can see, the intersection overlaps in (21.0..21.1).

For the other pair of guard and domain, we have the following intervals: The con-
tinuous variable x has (−∞..21.1) as interval for the guard. In the domain, x has
the interval (21.0..22.0). This combination of guard and interior of domain results
in the overlap (21.0..21.1).

*Zeno> printIntersection ”anotherAir.txt”
[[(”on”,[”(21.0,21.1)”]),(”off”,[”(21.0,21.1)”])]]

Due to the fact that the intersection of guard and interior of domain is not empty
for all transitions of the cycle, we can not give a clear statement about zenoness.

*Zeno> main ”anotherAir.txt”
The overlapping intervals for the cycle [on off on] are:
For state “on” the overlapping interval(s) are:
For the continuous variable x (21.0,21.1);
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For state “off” the overlapping interval(s) are:
For the continuous variable x (21.0,21.1).
Thus, no clear statement about zenoness can be made.

Besides the examples where we could clearly say whether the automaton can show
zeno behavior, we now also know that the tool correctly detects an overlapping
interval. In the next section, we will conduct a completeness evaluation.

6.5 Completeness

Cycle I NE G(q, q′) ∩D(q)0 = ∅ Zeno Set Zeno Behavior Test Tested

× − × × xi ∈ ∂D(qi) YES ball X
× do not care − No clear statement MAYBE anotherAir X
× × − × ∩K−1i=1 ∂D(qi) = ∅ NO air X
× × − × ∩K−1i=1 ∂D(qi) YES watertank X
- do not care ∅ NO noCycle X

Table 6.1: Tests for all Conditions for Zeno Behavior

Table 6.1 shows that every case of zeno behavior is covered by a test. In the previous
sections, we have had a look at each test but the simple case of no cycle. To
conduct our completeness evaluation, we need to test that every computation step
is performed correctly. We start with the retrieval of the domain.

Table 6.2 shows all possible combinations of restrictions for a continuous variable
in a state and the guard of its incoming transition in the cycle. Further, the table
shows a test for each of these possibilities. Overall, 36 tests were conducted for
retrieving the interior of the domain. All of the tests turned out fine.

For testing all combinations, it was crucial to make a distinction between a bound
by a variable or a constant. The distinction is needed, since bounds by variables
and by constants are treated in different branches. Due to the assumption that the
boundaries of every continuous variable of a guard have to lie inside the boundaries
of the destination state, it is vital to make sure that the domain is retrieved correctly.
Table 6.2 shows that the tool retrieves the domain correctly using the assumption.

Knowing that the domains are retrieved correctly by the tool, the intersection of
the interior of the domain with the guard is the next component of interest. First,
we will consider the case of having variables as bounds in the restrictions. The
intersection of the guard with the interior of the domain is taken for each continuous
variable separately. For the intersection, it is necessary that the tool goes through all
restrictions on the domain and finds the matching boundary variables. While going
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State Restriction Incoming Guard Tests

Lower Upper Equal Lower Upper Equal Variable Constant Interval

× × − do not care stateLower-
AndUpper

X OverlapConst-
Multiple-
RestrictionEach

X (l1..u1)

− − − × × − OverlapVar-
Multiple-
RestrictionEach

X multOnOne-
ContConst

X (l2..u2)

− − − − × − OverlapVar-
Multiple-
RestrictionEach,
watertank

X multOnOne-
ContConst

X (−∞..u2)

− − − × − − OverlapVar-
Multiple-
RestrictionEach

X multOnOne-
ContConst

X (l2..∞)

− − − − − × equalVar X equalConst X []
− − × − − × equalVar X equalConst X []
− − × − − − equalVar X equalConst X []
− − − − − − equalVar X equalConst X (−∞..∞)

− × − × × − multOnOne-
ContVar

X multOnOne-
ContConst

X (l2..u1)

− × − × − − OverlapVar-
Multiple-
RestrictionEach

X anotherAirCond,
OverlapConst-
One-
RestrictionEach

X (l2..u1)

− × − − × − airGeneral,
test3

X air X (−∞..u1)

− × − − − − NoOverlap-
VarMultiple-
RestrictionEach

X NoOverlap-
ConstMultiple-
RestrictionEach

X (−∞..u1)

− × − − − × equalVar X equalConst X (−∞..u1)
× − − × × − multOnOne-

ContVar
X multOnOne-

ContConst
X (l1..u2)

× − − × − − airGeneral,
NoOverlap-
VarMultiple-
RestrictionEach,
test3

X air, NoOverlap-
ConstMultiple-
RestrictionEach

X (l1..∞)

× − − − × − OverlapVar-
Multiple-
RestrictionEach

X anotherAirCond,
OverlapConst-
One-
RestrictionEach

X (l1..u2)

× − − − − − NoOverlap-
VarMultiple-
RestrictionEach

X NoOverlap-
ConstMultiple-
RestrictionEach

X (l1..∞)

× − − − − × equalVar X equalConst,
ball

X (l1..∞)

Table 6.2: Retrieving the Interval of the Interior of a Domain for a Continuous Vari-
able with Tests
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through all restrictions, we make use of the assumption that the boundaries of the
guard of the incoming transition lie inside the boundaries of the state restrictions.
Therefore, even if a matching variable retrieved from the incoming guard is not used
for the generation of the interval of the domain, that variable can be used for the
intersection.

In case a continuous variables is bounded by different variables in the guard and
the domain, we can not always give a clear statement about the intersection. The
variable bounding the continuous variable in the guard has to overlap in at least
one point with the domain. Let us consider an example and focus on the continuous
variable x1. Further assume that x1 has the interval, [−∞..r1] and the guard the
interval [r2..∞]. Here, r1 = r2 has to hold true. Otherwise, the guard never could
hold true and the transition could never be triggered. If the overlap is bigger than
exactly one point the intersection would never be empty. An example is r1 = r2 + 3.
However, the boundaries of the continuous variable in domain and guard could be
equal. If the boundaries are equal, r1 = r2, the intersection is empty for some cases.
Hence, we can not give a clear statement in case we can not match the bounding
variables.

Domain Guard Tests

Lower Upper Equal Lower Upper Equal Variable Intersection

r1 r2 − r1 r2 − test4 X (r1..r2)
r1 r2 − − r2 − test5 X (r1..r2)
r1 r2 − r1 − − test4 X (r1..r2)
r1 r2 − − − r1 ∨ r2 test6 X []
r1 r2 − − − − stateLower-

AndUpper
X (r1..r2)

− − − r1 r2 − notInDomain X [r1..r2]
− − − − r2 − notInDomain X (−∞..r2]
− − − r1 − − notInDomain X [r1..∞)
− − − − − r1 equalVar X [r1]
− − r1 − − r1 equalVar X []
− − r1 − − − equalVar X []

− r2 − r1 r2 − test7 X [r1..r2)
− r2 − r2 − − test7 X []
− r2 − − r2 − airGeneral X (−∞..r2)
− r2 − − − − notInDomain X (−∞..u1)
− r2 − − − r2 equalVar X []

r1 − − r1 r2 − test7 X (r1..r2]
r1 − − r1 − − airGeneral X (r1..∞)
r1 − − − r1 − ballVar X []
r1 − − − − − notInDomain X (r1..∞)
r1 − − − − r1 equalVar X []

Table 6.3: Intersection of the Interior of a domain with a Guard for a Continuous
Variable with Tests
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Table 6.3 shows all possible combinations to intersect the interior of the domain with
the guard for a continuous variable if a boundary variable matches. The tool draws
the right conclusions for all of these cases. However, the tool does not always print
the correct interval, but only the interval from the intersection, where the variables
match. Therefore, the first case, having a lower and upper bound for both domain
and guard, would not return the interval (r1..r2), but (−∞..r2) and (r1..∞).

For state q1 the overlapping intervals are:
For the continuous variable x1 (”r1”..Infinity)(-Infinity..”r2”);

For the purpose of our tool, it is sufficient to check if the intersection is empty. Based
on the way the overlap is calculated, the intervals are not always exact. Nonetheless,
the tool derives the right conclusion that the intersection is not empty. Further, the
intervals give an indication how large the overlap actually is.

Guard Tests

Lower Upper Equal Constant Interval

r1 r2 − multOnOne-
ContConst

X [r1..r2]

− r2 − air X (−∞..r2]
r1 − − air X [r1..∞)
− − e1 ball X [e1]
− − − test8 X (−∞..∞)

Table 6.4: Interval for the Guard using Constants as Boundaries with Tests

Second, we will consider the case of having constants as bounds in restrictions. So
far, we tested that the tool creates the interiors of the domain correctly. For the
intersection with the guard, the correct creation of the guard is crucial. As one can
see in Table 6.4, the tool also generates the guards correctly in case the continuous
variables are bounded by a constant. Now, we know that we construct the intervals
for the interior of the domain and the guard correctly. The intersection is left
to be checked. Assuming the Data.IntervalMap.Interval library used implemented
the overlap function correctly denotes that our intersection is correct. Further, for
boundaries with constants, the tool generates the correct overlapping interval.

Table 5.3 states that the boundaries of the domain always consist of the bound that
was used to create the interval. With relational operators, the bound is always in the
closure of the interval, but never in the interior. Therefore, by the definition of the
boundaries, they only consist of the bounds used to span the interval. As we retrieve
the restrictions for the domain correctly, we can generate the boundaries correctly
by simply taking the bounds of the restrictions used to generate the domain.
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The only case left to check is the intersection of the boundaries of the domains.
Here are two cases to consider: The first case is that every continuous variable of
the given two domains intersect in at least one point. An example is the water tank
system. As shown previously, the tool works correctly for the water tank example.
The other case is that at least one continuous variable does not intersect. Thus,
the intersection is empty. The air conditioning system from Section 6.1 shows that
the tool handles the case correctly. Further, since our boundaries of the domains
are correctly retrieved and we use the intersect function from Haskell, no problem
should occur.

So far, the tool works correctly. However, we have a few more properties that the
tools has to handle properly.

Feature Test Implemented

Incoming transitions, which are not
in the cycle are not considered for
the domain

OverlapConst-
OneRestriction-
EachAdditionalTrans,
OverlapVarOneRestric-
tionEachAdditionalTrans

X

Order of defining lower and upper
bounds does not matter

OverlapVar-
MultipleRestrictionEach

X

Order of defining transitions and
states, except for the case of reflex-
ive edges, does not matter

OverlapVarMultiple-
RestrictionEach , threeCy-
clesCombined

X

Order of the continuous variables in
the restriction does not matter

OverlapVarMultiple-
RestrictionEach

X

Combination of distinct cycles are
correctly evaluated

watertankAndAir X

Compute the boundaries of the do-
main correctly

test3 X

Combinations of variables and con-
stants in one restriction

 

Improve the printout of the inter-
secting interval for boundaries with
variables

test4  

Always handle reflexive edges cor-
rectly

threeCyclesCombined  

Table 6.5: Properties of the Tool
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Table 6.5 shows the general properties of the tool. The first to fourth property is
needed to ensure that the domain and the guard are always retrieved correctly. The
algorithm for the cycle detection allows more than one cycle, which is checked by
the fifth property. Property six ensures that while we intersect the interior of the
domain with the guard, we go through all restrictions of the domain to match the
bounding variable. Moreover, it is checked that the tool evaluates each cycle.

Unfortunately, there are also some features that are not completely supported. Based
on the different ways of handling variables and constants as bounds in restrictions,
we do not allow combinations of both in restrictions.

Reflexive edges are not handled correctly due to the way the cycles are detected.
The only case a reflexive edge attached to another cycle is detected correctly, is the
following: The state with the reflexive edge has to be evaluated last for detecting
the cycles. This means that the state of the reflexive edge has to occur after every
state of the cycle has occurred before as a source in a transition. The occurrence
of transitions depends on the order in which the transitions are defined. The tool
creates the mapping from state name to number based on the occurrence of that
state as source in a transition. Since the reflexive edge is only evaluated correctly
when it is the last entry in the adjacency matrix by the algorithm, the mapping of
the state with the reflexive edge must have the highest mapping number. Therefore,
it has to be the last to get a number assigned. To solve the problem with detecting
reflexive edges correctly, probably another algorithm for detecting cycles is needed.

To sum this section up, the completeness evaluation shows that the tool works as
desired. Only three cases are not yet completely implemented as wanted. Even
without these cases, the tool can be used to validate Modelica simulations.
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7 Future Work

Even though the tool to detect zeno sets works as desired, there is still some work
to do. For once, the incomplete features from Table 6.5 should be improved and
incorporated. Besides getting every feature to work as desired, a better integration
with OpenModelica is desirable. After the demonstrated offline tool, an indication
directly at runtime of the simulation would be the next step. However, before a
complete integration, it might be easier to use the Modelica model as an input file
and let the tool parse the Modelica model. The HyAuLib would be of great help
for parsing the file. Another approach could be to leave the input file as it is, but
generate the corresponding Modelica model automatically, using the HyAuLib.

However, besides a closer integration to OpenModelica, it is also important to handle
the model correctly in case it shows zeno behavior. Johansson et al. [13] show an
approach how to deal with an automaton that shows zeno behavior. For example,
the water tank system had the flaw that no delay for the switching of the water
source from one tank to the other was assumed. Implementing such a delay the
water tank should work as desired. Fig. 7.1 represents the hybrid automaton of the
water tank system including a delay. Using the approach described by Johansson et
al. in [13] the modeler has to revisit the system and check if the model is missing a
detail of the physical system. For the water tank example, the missing detail would
be the delay.

Another approach is described in [10], where the authors describe a controller that
regulates the hybrid automaton based on invariants. Using these invariants, one can
define that every transition takes a certain amount of time. Thereby, we can ensure
that zeno behavior can not occur. However, one has to be careful. For example,
if a state expects the results instantly, a different problem than zeno behavior can
occur, since the result would also be delayed. Nonetheless, a closer integration to
OpenModelica should be of higher priority.
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q1

ẋ1 = w − v1

ẋ2 = −v2

x2 ≥ r2

q3

ẋ1 = w − v1

ẋ2 = −v2

ẋ3 = ε

x3 ≤ ε

q4

ẋ1 = −v1

ẋ2 = w − v2

ẋ3 = ε

x3 ≤ ε

q2

ẋ1 = −v1

ẋ2 = w − v2

x1 ≥ r1

x2 ≤ r2; x3 := 0

x1 ≤ r1; x3 := 0

x3 ≥ ε

x3 ≥ ε

Figure 7.1: Hybrid Automaton of the Water Tank with Delay
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8 Conclusion

In this thesis we derived a tool to detect zeno sets of hybrid systems. The zeno sets
are of interest when validating Modelica simulations of hybrid systems. Validation
is crucial since the outcome of the simulation can be falsified and therefore, differ
from actually running the physical system. Zeno behavior can influence the result
of simulating a hybrid system. Thus, knowing when zeno behavior can occur is of
interest for validation of hybrid systems. However, the tool does not only determine
if a hybrid automaton can show zeno behavior, but also the zeno points to which
the automaton converges in case of a zeno execution.

Knowing the zeno points, the modeler does not have to check every simulation of
a hybrid system, but only the ones converging to at least one zeno point. If the
simulation does converge to a zeno point, the modeler still has to derive the correct
result by hand or use one of the described approaches to handle zeno behavior.
Nonetheless, having the tool is another safety net while validating a system by
simulation.

A failure of such a hybrid system could have far-ranging impact on the environment.
Hence, it is necessary to know that the simulation is trustworthy, while validating
the system. Without knowing when the simulation outcome can be falsified, it is
not possible to achieve a proper validation of the system.

Even though some features are not fully supported, the tool works the way it is
desired and specified by Theorem 1 and Corollary 1 for the supported features. In
conclusion, we can state that the tool can be used to detect zeno sets and improve
our tool chain to validate hybrid systems.
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Appendix

1 Test Files

air:

1 Automaton;

2 State , on, True , t <= 20, t = 1;

3 State , off , True , t >= 15, t = -1;

4 Transition , off , on , t <= 15, 1;

5 Transition , on , off , t >= 20, 1;

airGeneral:

1 Automaton;

2 State , on, True , t <= r1, t = 1;

3 State , off , True , t >= r2, t = -1;

4 Transition , on , off , t >= r1 , 1;

5 Transition , off , on , t <= r2 , 1;

anotherAir:

1 Automaton;

2 State , on, True , x >= 18, x=-0.1x;

3 State , off , False , x <= 22, x=5 -0.1x;

4 Transition , on , off , x > 21, 1;

5 Transition , off , on , x < 21.1, 1;

anotherAirCond:

1 Automaton;

2 State , on, True , x >= 18, x=-0.1x;

3 State , off , False , x <= 22, x=5 -0.1x;

4 Transition , on , off , x > 21, 1;

5 Transition , off , on , x < 19, 1;
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ball:

1 Automaton;

2 State , air , True , x >= 0, x = v;

3 Transition , air , air , x == 0, 0.9;

ballVar:

1 Automaton;

2 State , air , True , x >= r, t = 1;

3 Transition , air , air , x <= r, 0.9;

equalConst:

1 Automaton;

2 State , q1 , True , x1 <= 1 AND x2 >= 2 AND x3 == 3 AND x4 == 4, x1 = w

- v1, x2 = - v2;

3 Transition , q1, q1 , x1 == 1 AND x2 == 2 AND x3 == 3 AND x5 == 5, 0.9;

equalVar:

1 Automaton;

2 State , q1 , True , x1 <= r1 AND x2 >= r2 AND x3 == r3 AND x4 == r4, x1

= w - v1 , x2 = - v2;

3 Transition , q1, q1 , x1 == r1 AND x2 == r2 AND x3 == r3 AND x5 == r5 ,

0.9;

multOnOneContConst:

1 Automaton;

2 State , q1 , Tue , x1 <= 1 AND x2 >= 2, x1 = w - v1, x2 = - v2;

3 Tansition , q1 , q1 , x1 <= 5 AND x1 >= 6 AND x2 <= 7 AND x2 >= 8 AND x3

<= 3 AND x3 >= 4 AND x4 <= 9 AND x5 <= 10, 0.9;

multOnOneContVar:

1 Automaton;

2 State , q1 , True , x1 <= r1 AND x2 >= r2, x1 = w - v1, x2 = - v2;

3 Transition , q1, q1 , x1 <= r5 AND x1 >= r6 AND x2 <= r7 AND x2 >= r8

AND x3 <= r3 AND x3 >= r4 AND x4 <= r9 AND x5 <= r10 , 0.9;
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noCycle:

1 Automaton;

2 State , on, True , t <= 20.0, t = 1;

3 State , off , True , t >= 15, t = -1;

4 Transition , on , off , t >= 20, 1;

NoOverlapConstMultipleRestrictionEach:

1 Automaton;

2 State , q1, True , x2 >= 20 AND x3 >= 30, x1 = w - v1, x2 = - v2;

3 State , q2, True , x1 <= 10 AND x4 >= 40, x1 = - v1, x2 = w - v2;

4 Transition , q1 , q2 , x2 <= 20 AND x4 >= 40, 0.9;

5 Transition , q2 , q1 , x1 >= 10 AND x3 >= 30, 1;

NoOverlapConstOneRestrictionEach:

1 Automaton;

2 State , q1, True , x2 >= 20, x1 = w - v1, x2 = - v2;

3 State , q2, True , x1 >= 10, x1 = - v1, x2 = w - v2;

4 Transition , q1 , q2 , x2 <= 20, 0.9;

5 Transition , q2 , q1 , x1 <= 10, 1;

NoOverlapVarMultipleRestrictionEach:

1 Automaton;

2 State , q1, True , x2 >= r2 AND x3 >= r3, x1 = w - v1, x2 = - v2;

3 State , q2, True , x1 >= r1 AND x4 <= r4, x1 = - v1, x2 = w - v2;

4 Transition , q1 , q2 , x2 <= r2 AND x4 <= r4 , 1;

5 Transition , q2 , q1 , x1 <= r1 AND x3 >= r3 , 1;

NoOverlapVarOneRestrictionEach:

1 Automaton;

2 State , q1, True , x2 >= r2, x1 = w - v1, x2 = - v2;

3 State , q2, True , x1 >= r1, x1 = - v1, x2 = w - v2;

4 Transition , q1 , q2 , x2 <= r2 , 0.9;

5 Transition , q2 , q1 , x1 <= r1 , 1;

notInDomain:
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1 Automaton;

2 State , q1 , True , x2 <= r2, x1 = w - v1, x2 = - v2;

3 State , q2 , True , x4 >= r4, x1 = - v1, x2 = w - v2;

4 Transition , q1, q2 , x3 <= r3 AND x3 >= r5 AND x5 <= r6 AND x6 >= r7 ,

1;

5 Transition , q2, q1 , x1 <= r1 , 1;

OverlapConstMultipleRestrictionEach:

1 Automaton;

2 State , on , True , x >= 18 AND x < 24, x=-0.1x;

3 State , off , False , x <= 23 AND x > 0, x=5 -0.1x;

4 Transition , on, off , x > 21 AND x < 23, 1;

5 Transition , off , on, x < 21 AND x > 18, 1;

OverlapConstOneRestrictionEach:

1 Automaton;

2 State , on , True , x >= 18, x=-0.1x;

3 State , off , False , x <= 22, x=5 -0.1x;

4 Transition , on, off , x > 21, 1;

5 Transition , off , on, x < 21.1, 1;

OverlapConstOneRestrictionEachAdditionalTrans:

1 Automaton;

2 State , on , True , x >= 18 AND x1 >= 20, x=-0.1x;

3 State , off , False , x <= 22, x=5 -0.1x;

4 State , q1 , False , x <= 22, x=5 -0.1x;

5 Transition , on, off , x > 21, 1;

6 Transition , off , on, x < 21.1, 1;

7 Transition , q1, on , x1 >= 20, 1;

OverlapVarMultipleRestrictionEach:

1 Automaton;

2 State , q1 , True , x2 >= r2 AND x1 >= r1 AND x3 >= r3, x1 = w - v1,

x2 = - v2;

3 State , q2 , True , x1 <= r1 AND x3 <= r3 AND x2 <= r2, x1 = - v1, x2

= w - v2;

4 Transition , q1, q2 , x3 >= r3 AND x2 >= r2 AND x1 >= r1 AND x4 >= r4 ,

0.9;
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5 Transition , q2 , q1 , x2 <= r2 AND x3 <= r3 AND x1 <= r1 AND x5 <= 1

AND x6 >= 0 AND x6 <= 1, 1;

OverlapVarOneRestrictionEachAdditionalTrans:

1 Automaton;

2 State , q1, True , x2 >= r2 AND x3 >= r3, x1 = w - v1, x2 = - v2;

3 State , q2, True , x1 >= r1, x1 = - v1, x2 = w - v2;

4 Transition , q1 , q2 , x2 >= r2 , 0.9;

5 Transition , q2 , q1 , x1 >= r1 , 1;

6 Transition , q3 , q1 , x3 <= r3 , 1;

stateLowerAndUpper:

1 Automaton;

2 State , q1, True , x1 <= r1 AND x1 >= r2, x1 = w - v1, x2 = - v2;

3 Transition , q1 , q1 , x2 <= r1 , 0.9;

test3:

1 Automaton;

2 State , q1, True , x1 <= r1, x1 = w - v1, x2 = - v2;

3 State , q2, True , x1 >= r1, x1 = - v1, x2 = w - v2;

4 Transition , q1 , q2 , x1 >= r2 , 0.9;

5 Transition , q2 , q1 , x1 <= r2 , 1;

test4:

1 Automaton;

2 State , q1, True , x1 >= r1 AND x1 <= r2, x1 = w - v1, x2 = - v2;

3 State , q2, True , x1 >= r1, x1 = - v1, x2 = w - v2;

4 Transition , q1 , q2 , x1 >= r1 AND x1 <= r2 , 0.9;

5 Transition , q2 , q1 , x1 >= r1 , 1;

test5:

1 Automaton;

2 State , q1, True , x1 >= r1 AND x1 <= r2, x1 = w - v1, x2 = - v2;

3 Transition , q1 , q1 , x1 <= r2 , 0.9;

test6:
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1 Automaton;

2 State , q1 , True , x2 >= r3 AND x2 <= r4, x1 = w - v1, x2 = - v2;

3 Transition , q1, q1 , x2 == r3 , 0.9;

test7:

1 Automaton;

2 State , q1 , True , x1 <= r1 AND x2 <= r3, x1 = w - v1, x2 = - v2;

3 State , q2 , True , x3 >= r4, x1 = - v1, x2 = w - v2;

4 Transition , q1, q2 , x1 <= r1 AND x1 >= r2 AND x2 >= r3 , 1;

5 Transition , q2, q1 , x3 >= r4 AND x3 <= r5 , 1;

test8:

1 Automaton;

2 State , q1 , True , x1 <= r1 AND x2 <= r3, x1 = w - v1, x2 = - v2;

3 Transition , q1, q1 , x1 <= r1 AND x1 >= r2 , 1;

threeCyclesCombined:

1 Automaton;

2 State , q1 , True , x1 >= r1, x1 = w - v1, x2 = - v2;

3 State , q2 , True , x1 >= r1, x1 = - v1, x2 = w - v2;

4 State , q3 , True , x1 >= r1, x1 = w - v1, x2 = - v2;

5 Transition , q1, q2 , x1 <= r1 , 0.9;

6 Transition , q3, q3 , x1 <= r1 , 1;

7 Transition , q2, q1 , x1 <= r1 , 1;

8 Transition , q3, q2 , x1 <= r1 , 1;

9 Transition , q2, q3 , x1 <= r1 , 0.9;

watertank:

1 Automaton;

2 State , q1 , True , x2 >= r2, x1 = w - v1, x2 = - v2;

3 State , q2 , True , x1 >= r1, x1 = - v1, x2 = w - v2;

4 Transition , q1, q2 , x2 <= r2 , 1;

5 Transition , q2, q1 , x1 <= r1 , 1;

watertankAndAir:

1 Automaton;
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2 State , q1, True , x2 >= r2, x1 = w - v1, x2 = - v2;

3 State , q2, True , x1 >= r1, x1 = - v1, x2 = w - v2;

4 Transition , q1 , q2 , x2 <= r2 , 1;

5 Transition , q2 , q1 , x1 <= r1 , 1;

6 State , on, True , t <= 20, t = 1;

7 State , off , True , t >= 15, t = -1;

8 Transition , on , off , t >= 20, 1;

9 Transition , off , on , t <= 15, 1;

2 Haskell Code

2.1 Defined Data Structures

1 > data Automata = Automaton [States] [Transitions] deriving (Show)

2

3 > data States = State Name Start [Condition] [Equation] deriving (Show)

4

5 > data Transitions = Trans Source Dest [Condition] Reset deriving(Show)

6

7 > type Name = [Char]

8

9 > data Condition = Cond Variable Comp Variable deriving (Show , Eq)

10 > data Variable = Var1 Float | Var2 Name deriving (Show , Eq)

11 > type Comp = [Char]

12

13 > type Reset = Float

14

15 > type Start = Bool

16

17 > type Equation = [Char]

18

19 > type Dest = Name

20 > type Source = Name

21

22 > type AdjacentEntry = (Source , [Dest])

23 > type AdjacentList = [(Source ,Int ,[Dest])]

24

25 > type Mapping = [(Name , Int)]

26 > type AdjaList = [(Int ,[Int])]

27 > type AdjaRow = (Int ,[Int])

28

29 > type Cycle = [Int]

30 > type Cycles = [Cycle]

31 > type NameCycle = [Name]

32 > type NameCycles = [[Name]]

33 > type Marked = [Int]
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2.2 State and Transition Parsing

1 States = State Name Start Condition [Equation]

2 Here all elements of a State are parsed into the data structure.

3 Further , the expected input data is matched against the data structure.

4

5 > getState :: [[Char]] -> [States]

6 > getState (x:xs:xss:xsss:xssss) = [(State xs (getStart xss) (getConds xsss)

xssss)]

7 > getState _ = error "Not correctly defined state"

8

9 Transitions = Trans Source Dest Condition Reset

10 Here all elements of a Transition are parsed into the data structure.

11 Further , the expected input data is matched against the data structure.

12

13 > getTrans :: [[Char]] -> [Transitions]

14 > getTrans (x:xs:xss:xsss:xssss:xsssss) = [(Trans xs xss (getConds xsss)

(getReset xssss))]

15 > getTrans _ = error "Not correctly defined transition"

2.3 Cycle Detection

1 Here the algorithm of Robert Tarjan is applied for "Enumeration of the

Elementary Circuits of a directed graph" is applied.

2 findCycle applies the backtracking algortihm for every adcacency list.

3

4 > findCycles :: AdjaList -> Cycles

5 > findCycles [] = []

6 > findCycles ((a,v):xs)

7 > | null (backTrack v a [a] xs) = findCycles xs

8 > | otherwise = backTrack v a [a] xs : findCycles xs

9

10 The backTrack function implements the algorithm of Robert Tarjan as specified

in the paper.

11

12 > backTrack :: [Int] -> Int -> [Int] -> AdjaList -> [Int]

13 > backTrack [] _ _ _ = []

14 > backTrack (v:vs) s marked x

15 > | v < s = backTrack vs s marked x

16 > | v == s = s : marked ++ backTrack vs s marked x

17 > | not (elem v marked) = backTrack (getAdjaRow x

v) s (v : marked) x

18 > | otherwise = backTrack vs s marked x

19

20 > getAdjaRow :: AdjaList -> Int -> [Int]

21 > getAdjaRow [] _ = []

22 > getAdjaRow ((a,b):xs) s

23 > | a == s = b

24 > | otherwise = getAdjaRow xs s
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2.4 Retrieving Restrictions on Domain

1 Returns the Conditions for a given State Name.

2

3 > retrieveDomain :: Automata -> Name -> [Condition]

4 > retrieveDomain (Automaton x _) y = getStateDomain (findState x y)

5 > where

6 > findState [] v = error ("State " ++ show v ++ " is not defined")

7 > findState (u:us) v

8 > | v == (getStateName u) = u

9 > | otherwise = findState us v

10

11 Returns all Conditions from the Transition that have the Destination and

Source given by the input.

12 Based on the properties only one Transition can have that pair of Destination

and Source , the tool can stop after one match was found and return the

restrictions of that Guard.

13

14 > retrieveTransToState :: Automata -> Dest -> Source -> [Condition]

15 > retrieveTransToState (Automaton _ x) y z = helper x y z

16 > where

17 > helper [] _ _ = []

18 > helper (x:xs) y z

19 > | getDestination x == y && getSource x == z = (getTransGuard x)

20 > | otherwise = helper xs y z

2.5 Intersection

1 Checks if there is an empty list in a list

2

3 > anyNull :: [[a]] -> Bool

4 > anyNull x = any null x

5

6 We pairwise take an intersection of the interior of the Domain with the Guard.

7 We do this recursively until we visited all States in a Cycle.

8 As long as in one variable/space the domain and the guard do not intersect ,

they do not intersect at all.

9

10 > takeIntersection :: Automata -> NameCycle -> Name -> [(Source , [[Char ]])]

11 > takeIntersection x y z = helper x y [] z

12 > where

13 > helper _ [b] c z = c

14 > helper a (b:bs:bss) c z

15 > | anyNull (checkTransition b a (( retrieveDomain a b)

++ (retrieveTransToState a b z)) (retrieveGuard a b bs)) = helper a

(bs:bss) c b

16 > | otherwise = (helper a (bs:bss) (c ++ [(b ,

(checkTransition b a (( retrieveDomain a b) ++ (retrieveTransToState a b

z)) (retrieveGuard a b bs)))])) b

17
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18 Here the intersection of guard with interior of domain is done for each

continuous variable separately.

19 For the intersection of a continuous variable , we retrieve all restrictions ,

which use that continuous variable and remove these restrictions.

20 First we use the continuous variable of the first restriction in the guard

and do this recursively until no restrictions are left.

21 Now , the tool checks if there are restrictions left in the domain and

evaluates them.

22

23 > checkTransition :: Source -> Automata -> [Condition] -> [Condition] ->

[[Char]]

24 > checkTransition _ _ [] [] = []

25 > checkTransition w x (y:ys) [] = checkDomain y : checkTransition w x ys []

26 > checkTransition w x y ((Cond (Var2 a) b c):zs) = case helper w x y ((Cond

(Var2 a) b c): getAllRelevantCondsFromTrans a zs) of

27 > [] -> [] : checkTransition w x (y \\

(getAllRelevantCondsFromDomain a y)) (zs \\

(getAllRelevantCondsFromTrans a zs))

28 > u -> ("For the continuous variable " ++ a ++ " " ++ u) :

checkTransition w x (y \\ (getAllRelevantCondsFromDomain a y)) (zs \\

(getAllRelevantCondsFromTrans a zs))

29 > where

30 > helper w x y ((Cond (Var2 a) b c): zs) = (intersectIntervalls

(getAllRelevantCondsFromDomain a y) ((Cond (Var2 a) b c): zs) a w)

31

32 In case a continuous variable is only restricted in the Domain , we format the

overlap here.

33

34 > checkDomain :: Condition -> [Char]

35 > checkDomain (Cond (Var2 a) b c)

36 > | b == "==" = []

37 > | (b == "<" || b == "<=") = "For the continuous variable " ++ a

++" (" ++ show ninfi ++ ".." ++ getVarName c ++")"

38 > | (b == ">" || b == ">=") = "For the continuous variable " ++ a

++ "( " ++ getVarName c ++ ".." ++ show infi ++")"

39

40 Now we check how many restrictions we have on one continuous variable and

based on it proceed with intersecting them.

41

42 > intersectIntervalls :: [Condition] -> [Condition] -> [Char] -> Source ->

[Char]

43 > intersectIntervalls [] [] y z = []

44 > intersectIntervalls [] ((Cond (Var2 a) b c): zs) y z

45 > | b == "==" = "[" ++ getVarName c ++"]" ++ intersectIntervalls []

zs y z

46 > | (b == "<" || b == "<=") = "(" ++ show ninfi ++ ".." ++

getVarName c ++")" ++ intersectIntervalls [] zs y z

47 > | (b == ">" || b == ">=") = "(" ++ getVarName c ++ ".." ++ show

infi ++")" ++ intersectIntervalls [] zs y z

48 > intersectIntervalls x y z w = checkIntervalLenght x y z w

49

50 Based on the number of restrictions we call a different method to generate

the intervals and then intersect.

51

52 > checkIntervalLenght :: [Condition] -> [Condition] -> Name -> Source ->

[Char]

53 > checkIntervalLenght [x] [y] z _ = checkInterval x y z
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54 > checkIntervalLenght (x:xs:xss) [y] z w =

checkIntervalWithMultipleRestrictionsOnDomain (x:xs:xss) y z

55 > checkIntervalLenght [x] (y:ys:yss) z w

56 > | null yss = checkIntervalWithMultipleRestrictionsOnGuard

x (y:ys:yss) z

57 > | otherwise = error ("Multiple restriction on" ++ show z

++ "guard in state " ++ show w)

58 > checkIntervalLenght (x:xs:xss) (y:ys:yss) z w

59 > | null yss = checkIntervalWithMultipleRestrictions

(x:xs:xss) (y:ys:yss) z

60 > | otherwise = error ("Multiple restriction on" ++ show z

++ "guard in state " ++ show w)

61

62 The following functions create the interior of the domain and the set of the

guard for the intersection.

63

64 Here we have the case of multiple restrictions only on the domain of one

continuous variables using variables as bounds.

65 The domain can have more than two restrictions , due to the fact that incoming

transitions are considered as well.

66 For the domain we use the assumption that the boundaries of the guard from

the incoming transition always lays in the boundaries of the domain of

the state.

67 Therefore , we look through every restriction on the domain and see if it can

be matched against the variable of the guard.

68

69 > checkIntervalWithMultipleRestrictionsOnDomain :: [Condition] -> Condition

-> Name -> [Char]

70 > checkIntervalWithMultipleRestrictionsOnDomain ((Cond _ a (Var2 b)) : (Cond

_ c (Var2 d)) : xs) (Cond g e (Var2 f)) z

71 > | b == f = compareInterval a e f

72 > | d == f = compareInterval c e f

73 > | null xs = error ("Could not compare " ++ show b ++ " and" ++ show d

++ " and " ++ show f ++ " in state " ++ show z)

74 > | (length xs == 1) = checkInterval (head xs) (Cond g e (Var2 f)) z

75 > | otherwise = checkIntervalWithMultipleRestrictionsOnDomain xs (Cond

g e (Var2 f)) z

76

77 Here we have the case of multiple restrictions only on the domain of one

continuous variables using constatns as bounds.

78 The domain can have more than two restrictions , due to the fact that incoming

transitions are considered , as well.

79 For the domain we use the assumption that the boundaries of the guard from

the incoming transition always lays in the boundaries of the domain of

the state.

80 Therefore , we look through every restriction on the domain and see if it can

be matched against the constants of the guard.

81

82 > checkIntervalWithMultipleRestrictionsOnDomain ((Cond g a (Var1 b)) : (Cond

_ c (Var1 d)) : xs) (Cond h e (Var1 f)) z

83 > | (a == "==" || c == "==") = []

84 > | a == c && b == d = checkGivenIntervalls (createInteriorInterval a

b) (createInterval e f)

85 > | (a == "<=" || a == "<") && (c == ">=" || c == ">") =

checkGivenIntervalls (createInteriorIntervalWithTwoBounds d b)

(createInterval e f)

86 > | (a == ">=" || a == ">") && (c == "<=" || c == "<") =

checkGivenIntervalls (createInteriorIntervalWithTwoBounds b d)
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(createInterval e f)

87 > | (a == ">=" || a == ">") && (c == ">=" || c == ">") = if null xs

then checkGivenIntervalls (createInteriorInterval a b) (createInterval e

f) else checkIntervalWithMultipleRestrictionsOnDomain ((Cond g a (Var1

b)) : xs) (Cond h e (Var1 f)) z

88 > | (a == "<=" || a == "<") && (c == "<=" || c == "<") = if null xs

then checkGivenIntervalls (createInteriorInterval a b) (createInterval e

f) else checkIntervalWithMultipleRestrictionsOnDomain ((Cond g a (Var1

b)) : xs) (Cond h e (Var1 f)) z

89 > | otherwise = error ("The restrictions made on a domain in state " ++

show z ++ "are not ok")

90

91 > checkIntervalWithMultipleRestrictionsOnDomain _ _ z = (error "Can not

compare a variable with a constant in state " ++ show z)

92

93 Here we have the case of multiple restrictions only on the guard of one

continuous variables using variables as bounds.

94 For the guard it only makes sense to have two restrictions at most.

95 Therefore , we look at the restriction on the domain and see if it can be

matched against a variable of the guard.

96

97 > checkIntervalWithMultipleRestrictionsOnGuard :: Condition -> [Condition] ->

Name -> [Char]

98 > checkIntervalWithMultipleRestrictionsOnGuard (Cond _ a (Var2 b)) ((Cond _ c

(Var2 d)) : (Cond _ e (Var2 f)) : ys) z

99 > | b == d = compareInterval a c b

100 > | b == f = compareInterval a e b

101 > | otherwise = error ("Could not compare " ++ show b ++ " and" ++ show

d ++ " and " ++ show f ++ " in state " ++ show z)

102

103 Here we have the case of multiple restrictions only on the guard of one

continuous variables using constants as bounds.

104 For the guard it only makes sense to have two restrictions at most.

105 Therefore , we look at the restriction on the domain and see if it can be

matched against a constants of the guard.

106

107 > checkIntervalWithMultipleRestrictionsOnGuard (Cond _ a (Var1 b)) ((Cond _ c

(Var1 d)) : (Cond _ e (Var1 f)) : ys) z

108 > | a == "==" = []

109 > | e == c && f == d = checkGivenIntervalls (createInteriorInterval a

b) (createInterval e f)

110 > | c == "==" = error ("Multiple restrictions with a == operator in the

guard in state " ++ show z)

111 > | e == "==" = error ("Multiple restrictions with a == operator in the

guard in state " ++ show z)

112 > | (c == "<=" || c == "<") && (e == ">=" || e == ">") =

checkGivenIntervalls (createInteriorInterval a b)

(createIntervalWithTwoBounds e f c d)

113 > | (c == ">=" || c == ">") && (e == "<=" || e == "<") =

checkGivenIntervalls (createInteriorInterval a b)

(createIntervalWithTwoBounds c d e f)

114 > | otherwise = error ("The restrictions made on a domain in state " ++

show z ++ "are not ok")

115 > checkIntervalWithMultipleRestrictionsOnGuard _ _ z = (error "Can not

compare a variable with a constant in state " ++ show z)

116

117 Here we have the case of multiple restrictions on both the domain and the

guard of one continuous variables using variables as bounds.
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118 For the guard it only makes sense to have two restrictions at most , however

the domain can have more , due to the fact that incoming transitions are

considered , as well.

119 For the domain we use the assumption that the boundaries of the guard from

the incoming transition always lays in the boundaries of the domain of

the state.

120 Therefore , we look through every restriction on the domain and see if it can

be matched against a variable of the guard.

121

122 > checkIntervalWithMultipleRestrictions :: [Condition] -> [Condition] -> Name

-> [Char]

123 > checkIntervalWithMultipleRestrictions ((Cond k a (Var2 b)) : (Cond l c

(Var2 d)) : xs) ((Cond i e (Var2 f)) : (Cond j g (Var2 h)) : ys) z

124 > | (b == h) && (d == f) = (compareInterval a g b) ++ (compareInterval

c e d)

125 > | (b == f) && (d == h) = (compareInterval a e b) ++ (compareInterval

c g d)

126 > | b == h = if null xs then compareInterval a g b else

checkIntervalWithMultipleRestrictions ((Cond k a (Var2 b)) : xs) ((Cond i

e (Var2 f)) : (Cond j g (Var2 h)) : ys) z

127 > | b == f = if null xs then compareInterval a e b else

checkIntervalWithMultipleRestrictions ((Cond k a (Var2 b)) : xs) ((Cond i

e (Var2 f)) : (Cond j g (Var2 h)) : ys) z

128 > | d == h = if null xs then compareInterval c g d else

checkIntervalWithMultipleRestrictions ((Cond l c (Var2 d)) : xs) ((Cond i

e (Var2 f)) : (Cond j g (Var2 h)) : ys) z

129 > | d == f = if null xs then compareInterval c e d else

checkIntervalWithMultipleRestrictions ((Cond l c (Var2 d)) : xs) ((Cond i

e (Var2 f)) : (Cond j g (Var2 h)) : ys) z

130 > | null xs = error ("Could not compare " ++ show b ++ " and" ++ show d

++ " and " ++ show f ++ " in state " ++ show z)

131 > | (length xs == 1) = checkIntervalWithMultipleRestrictionsOnGuard

(head xs) ((Cond i e (Var2 f)) : (Cond j g (Var2 h)) : ys) z

132 > | otherwise = checkIntervalWithMultipleRestrictions xs ((Cond i e

(Var2 f)) : (Cond j g (Var2 h)) : ys) z

133

134 Here we have the case of multiple restrictions on both the domain and the

guard of one continuous variables using constants as bounds.

135 For the guard it only makes sense to have two restrictions at most , however

the domain can have more , due to the fact that incoming transitions are

considered , as well.

136 For the domain we use the assumption that the boundaries of the guard from

the incoming transition always lays in the boundaries of the domain of

the state.

137 Thus , we first look at the domain , whether it bounds it already from both

sides , otherwise we also take the guard into consideration.

138 If a continuous variable is not bounded by the domain of a state but only in

an incoming transition we also take that one into consideration.

139

140 > checkIntervalWithMultipleRestrictions ((Cond i a (Var1 b)) : (Cond j c

(Var1 d)) : xs) ((Cond k e (Var1 f)) : (Cond l g (Var1 h)) : ys) z

141 > | (a == "==" || c == "==") = []

142

143 > | (e == "==" && g == "==") && (f /= h) = error " Can not bound the

guard correctly , since a variable is bounded twice with "==""

144

145 > | (a == "<=" || a == "<") && (c == ">=" || c == ">") && (e == "<=" ||

e == "<") && (g == ">=" || g == ">") = checkGivenIntervalls
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(createInteriorIntervalWithTwoBounds d b) (createIntervalWithTwoBounds g

h e f)

146 > | (a == ">=" || a == ">") && (c == "<=" || c == "<") && (e == "<=" ||

e == "<") && (g == ">=" || g == ">") = checkGivenIntervalls

(createInteriorIntervalWithTwoBounds b d) (createIntervalWithTwoBounds g

h e f)

147

148 > | (a == "<=" || a == "<") && (c == ">=" || c == ">") && (e == ">=" ||

e == ">") && (g == "<=" || g == "<") = checkGivenIntervalls

(createInteriorIntervalWithTwoBounds d b) (createIntervalWithTwoBounds e

f g h)

149 > | (a == ">=" || a == ">") && (c == "<=" || c == "<") && (e == ">=" ||

e == ">") && (g == "<=" || g == "<") = checkGivenIntervalls

(createInteriorIntervalWithTwoBounds b d) (createIntervalWithTwoBounds e

f g h)

150

151

152 > | (a == ">=" || a == ">") && (c == ">=" || c == ">") = if null xs

then checkIntervalWithMultipleRestrictionsOnGuard (Cond i a (Var1 b))

((Cond k e (Var1 f)) : (Cond l g (Var1 h)) : ys) z else

checkIntervalWithMultipleRestrictions ((Cond i a (Var1 b)):xs) ((Cond k e

(Var1 f)) : (Cond l g (Var1 h)) : ys) z

153 > | (a == "<=" || a == "<") && (c == "<=" || c == "<") = if null xs

then checkIntervalWithMultipleRestrictionsOnGuard (Cond i a (Var1 b))

((Cond k e (Var1 f)) : (Cond l g (Var1 h)) : ys) z else

checkIntervalWithMultipleRestrictions ((Cond i a (Var1 b)):xs) ((Cond k e

(Var1 f)) : (Cond l g (Var1 h)) : ys) z

154

155 Due to the assumption of reasonable restrictions.

156

157 > | (e == "==") = error ("Multiple restrictions with a == operator in

the guard in state " ++ show z)

158 > | (g == "==") = error ("Multiple restrictions with a == operator in

the guard in state " ++ show z)

159

160 > | otherwise = error ("The restrictions made on a domain in state " ++

show z ++ "are not ok")

161

162 > checkIntervalWithMultipleRestrictions _ _ z = (error "Can not compare a

variable with a constant in state " ++ show z)

163

164 The simple case for just one restriction each.

165 We check is the intersection of the case of one restriction each is empty.

166 In case it is not empty we retrieve the overlap.

167

168 > checkInterval :: Condition -> Condition -> Name -> [Char]

169 > checkInterval (Cond a b (Var2 c)) (Cond f d (Var2 e)) z

170 > | c == e = compareInterval b d c

171 > | otherwise = error ("Could not compare " ++ show c ++ "

and" ++ show d ++ " in state " ++ show z)

172 > checkInterval (Cond _ b (Var1 c)) (Cond _ d (Var1 e)) z

173 > | overlaps (createInteriorInterval b c) (createInterval d e)

= overlap (createInteriorInterval b c) (createInterval d e)

174 > | otherwise = []

175 > checkInterval _ _ z = (error "Can not compare a variable with a constant in

state " ++ show z)

176
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177 This function is called from the functions with multiple restrictions , but

also could be used in checkInterval.

178 Here we check if an overlap exists , in the case we call our own overlap

function to calculate the overlap.

179

180 > checkGivenIntervalls x y

181 > | overlaps x y = overlap x y

182 > | otherwise = []

183

184 compareInterval compares the intervals , which are bounded by the same

variables and print out the overlap , if there is any.

185

186 > compareInterval :: [Char] -> [Char] -> Name -> [Char]

187 > compareInterval x y z

188 > | x == ">=" && y == ">=" = "(" ++ show z ++ ".." ++ show infi

++")"

189 > | x == "<=" && y == "<=" = "(" ++ show ninfi ++ ".." ++ show z

++")"

190 > | x == ">" && y == " >=" = "(" ++ show z ++ ".." ++ show infi

++")"

191 > | x == "<" && y == " <=" = "(" ++ show ninfi ++ ".." ++ show z

++")"

192 > | x == ">=" && y == ">" = "(" ++ show z ++ ".." ++ show infi

++")"

193 > | x == "<=" && y == "<" = "(" ++ show ninfi ++ ".." ++ show z

++")"

194 > | otherwise = []

195

196 Just definitions of Infinity.

197

198 > infi = encodeFloat (floatRadix 0 - 1) (snd $ floatRange 0)

199 > ninfi = -(encodeFloat (floatRadix 0 - 1) (snd $ floatRange 0))

200

201 The following functions are used to generate the intervals for bounds with

constants using the Data.IntervalMap.Interval library.

202 The intervals are generated by comparing comparing the relational operators.

203 Further , we make use of the fact the lower bound is the first argument and

the upper bound the second argument , in case both bounds exists.

204

205 > createInteriorIntervalWithTwoBounds :: a -> a -> Interval a

206 > createInteriorIntervalWithTwoBounds x y = OpenInterval x y

207

208 > createIntervalWithTwoBounds :: [Char] -> a -> [Char] -> a -> Interval a

209 > createIntervalWithTwoBounds a b c d

210 > | a == ">" && c == "<" = OpenInterval b d

211 > | a == ">" && c == " <=" = IntervalOC b d

212 > | a == " >=" && c == " <=" = ClosedInterval b d

213 > | a == " >=" && c == "<" = IntervalCO b d

214

215 > createInteriorInterval :: [Char] -> Float -> Interval Float

216 > createInteriorInterval x y

217 > | x == "==" = OpenInterval y y

218 > | x == "<=" = OpenInterval ninfi y

219 > | x == ">=" = OpenInterval y infi

220 > | x == "<" = OpenInterval ninfi y

221 > | x == ">" = OpenInterval y infi

222

223 > createInterval :: [Char] -> Float -> Interval Float
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224 > createInterval x y

225 > | x == "==" = ClosedInterval y y

226 > | x == "<=" = IntervalOC ninfi y

227 > | x == ">=" = IntervalCO y infi

228 > | x == "<" = OpenInterval ninfi y

229 > | x == ">" = OpenInterval y infi

230

231

232 Here we print out the overlap of two intervals , which are bounded by

constants.

233 We use the assumption , that we already know that an overlap exists.

234 Now we have to take the maximum of the two lower bounds and the minimum of

the upper bounds , for the new bounds of the overlap.

235 To see whether the resulting overlap is an open or closed interval , it is

crucial to check what kind of interval the bounds for the overlap created.

236

237 > overlap :: (Ord a, Show a) => Interval a -> Interval a -> String

238

239 > overlap (ClosedInterval lo1 hi1) (ClosedInterval lo2 hi2) = "[" ++ show

(max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++ "]"

240 > overlap (ClosedInterval lo1 hi1) (OpenInterval lo2 hi2) = (if lo1 <= lo2

then "(" else "[") ++ show (max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++

if hi1 >= hi2 then ")" else "]"

241 > overlap (ClosedInterval lo1 hi1) (IntervalCO lo2 hi2) = "[" ++ show

(max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++ if hi1 >= hi2 then ")" else

"]"

242 > overlap (ClosedInterval lo1 hi1) (IntervalOC lo2 hi2) = (if lo1 <= lo2

then "(" else "[") ++ show (max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++

"]"

243

244 > overlap (OpenInterval lo1 hi1) (ClosedInterval lo2 hi2) = (if lo2 <= lo1

then "(" else "[") ++ show (max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++

if hi2 >= hi1 then ")" else "]"

245 > overlap (OpenInterval lo1 hi1) (OpenInterval lo2 hi2) = "(" ++ show

(max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++ ")"

246 > overlap (OpenInterval lo1 hi1) (IntervalCO lo2 hi2) = (if lo2 <= lo1

then "(" else "[") ++ show (max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++

")"

247 > overlap (OpenInterval lo1 hi1) (IntervalOC lo2 hi2) = "(" ++ show

(max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++ if hi2 >= hi1 then ")" else

"]"

248

249 > overlap (IntervalCO lo1 hi1) (ClosedInterval lo2 hi2) = "[" ++ show

(max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++ if hi2 >= hi1 then ")" else

"]"

250 > overlap (IntervalCO lo1 hi1) (OpenInterval lo2 hi2) = (if lo1 <= lo2

then "(" else "[") ++ show (max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++

")"

251 > overlap (IntervalCO lo1 hi1) (IntervalCO lo2 hi2) = "[" ++ show

(max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++ ")"

252 > overlap (IntervalCO lo1 hi1) (IntervalOC lo2 hi2) = (if lo1 <= lo2

then "(" else "[") ++ show (max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++

if hi2 >= hi1 then ")" else "]"

253

254 > overlap (IntervalOC lo1 hi1) (ClosedInterval lo2 hi2) = (if lo2 <= lo1

then "(" else "[") ++ show (max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++

"]"
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255 > overlap (IntervalOC lo1 hi1) (OpenInterval lo2 hi2) = "(" ++ show

(max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++ if hi2 >= hi1 then ")" else

"]"

256 > overlap (IntervalOC lo1 hi1) (IntervalCO lo2 hi2) = (if lo2 <= lo1

then "(" else "[") ++ show (max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++

if hi1 >= hi2 then ")" else "]"

257 > overlap (IntervalOC lo1 hi1) (IntervalOC lo2 hi2) = "(" ++ show

(max lo1 lo2) ++ "," ++ show (min hi1 hi2) ++ "]"

2.6 Printout

1 Here we format the output in a readable manner.

2 First , we check if the cycle can show zeno behavior.

3 Afterwards , in case it can show zeno behavior the tool formats the zeno set.

4 In the end , we add a "." to the end of the sentence.

5 getConvergence2 formats the overlapping interval in a reading manner in the

same way.

6

7 > printZenoSet :: NameCycle -> [(Name , [(Name , [Name])])] -> [Char]

8 > printZenoSet x [] = "The cycle [" ++ unwords x ++ "] does not show zeno

behavior."

9 > printZenoSet x y = "The zeno set for the cycle [" ++ unwords x ++ "] is:

\n" ++ (getZenoSet y)

10

11 > getZenoSet :: [(Name , [(Name , [Name])])] -> [Char]

12 > getZenoSet [] = []

13 > getZenoSet ((a,b):xs) = "In state "" ++ a ++ """ ++ getConvergence b ++

"\n"++ getZenoSet xs

14

15 > getConvergence :: [(Name , [Name])] -> [Char]

16 > getConvergence [] = []

17 > getConvergence ((a,b):xs) = " for the continuous variable " ++ a ++ " the

zeno point(s) are: " ++ unwords b ++ ";" ++ getConvergence xs

18

19 > seperateWords [x] = x

20 > seperateWords (x:xs) = x ++ ", " ++ seperateWords xs

21

22 > getConvergence2 :: [(Name , [Name])] -> [Char]

23 > getConvergence2 [] = []

24 > getConvergence2 ((a,b):xs) = "For state "" ++ a ++ """ ++ " the overlapping

interval(s) are: \n" ++ seperateWords b ++ ";\n" ++ getConvergence2 xs

25

26 > endSentence :: [Char] -> [Char]

27 > endSentence x

28 > | null x = []

29 > | otherwise = init (init x) ++ "."

30

31 In the case of NonZenoness we have to check , whether the intersection of the

boundaries of the domains is empty.

32 In that case the cycle does not show zeno behavior.

33 Otherwise , the zeno set consists of the intersection of the boundaries of the

domains.

34 Besides that , checkForNonZenoness and checkForZenoness are the same.
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35 First we intersect the interior of the domain with the guard , for each

transition in the cycle and based on the result we proceed.

36 The result is formatted in a readable manner and returned as the output of

the functions

37

38 > checkForNonZenoness :: Automata -> NameCycle -> [Char]

39 > checkForNonZenoness x y

40 > | null (takeIntersection x y (head $ tail $ reverse y)) =

case sortBoundaries $ generateBoundaries $ retrieveStateConditions x y

(head $ tail $ reverse y) of

41 > [x] -> endSentence $ printZenoSet y [x]

42 > x -> endSentence $ printZenoSet y $ intersectBoundaries x

43 > | otherwise = "The overlapping intervals for the cycle

[" ++ unwords y ++ "] are: \n" ++ endSentence (getConvergence2

(takeIntersection x y (head $ tail $ reverse y))) ++ "\nThus , no clear

statement about zenoness can be made."

44

45 > checkForZenoness :: Automata -> NameCycle -> [Char]

46 > checkForZenoness x y

47 > | null (takeIntersection x y (head $ tail $ reverse y)) =

endSentence $ printZenoSet y $ sortBoundaries $ generateBoundaries $

retrieveStateConditions x y (head $ tail $ reverse y)

48 > | otherwise = "The overlapping intervals for the cycle ["

++ unwords y ++ "] are: \n" ++ endSentence (getConvergence2

(takeIntersection x y (head $ tail $ reverse y))) ++ "\nThus , no clear

statement about zenoness can be made."
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